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Abstract 
Lane boundary detection is the problem of estimat- 

ing the geometric structure of the lane boundaries of 
a road based on the images grabbed by  a camera on 
board a vehicle. W e  use Hough transform to detect 
lane boundaries with a parabolic model under a variety 
of road pavement types, lane structures and weather 
conditions. I n  the three-dimensional Hough space, a 
parabolic curve is represented as a straight line. To 
simplify the computation, the parametric space can be 
divided into (i)  a two-dimensional space measured by  
the parameters which are shared by  all the lane edges, 
and (ii) a one-dimensional space of the parameter 
which makes a distinction among different edges in an 
image. A multiresolution strategy is used to  improve 
both the speed and accuracy of the Hough transform. 
Experimental results show that the proposed method is 
relatively less prone to the image noise and is compu- 
tationally tractable. 

1 Introduction 
Lane detection is the problem of locating road lane 

boundaries without an a priori knowledge of the road 
geometry. Together with lane tracking techniques, a 
vision-based lane boundary location system can assist 
in a number of “driver assistant’’ applications, includ- 
ing intelligent vehicles, highway maintenance with in- 
telligent cruise control, cambered power steering and 
automatic navigation. An automatic lane detector 
should be able to handle both straight and curved lane 
boundaries and the full range of lane boundary mark- 
ings (either single or double and solid or broken) and 
pavement edges. At the same time, it should take 
advantage of global scene constraints to  improve its 
robustness in the presence of noise in the images. Fig- 
ures l(a) shows an input image containing lane bound- 
aries. 

A number of systems for lane boundary detection 
have been reported in the literature [l, 21. Several 
of them make the assumption that the lane bound- 
aries are straight lines and detect them by using the 
Hough transform [3]. Kluge [4] proposed a parabolic 

Figure 1: An example: (a) input image; (b) edge de- 
tection. 

model for generic lane boundaries. A deformable tem- 
plate method was proposed by optimizing a likelihood 
function based on this model [5]. However, this algo- 
rithm cannot guarantee a global optimum without re- 
quiring huge computational resources. Using Kluge’s 
model and an edge detector, we estimate the parame- 
ters which characterize a lane structure in the Hough 
space. In order to reduce the computational complex- 
ity and increase the accuracy of the estimation, the 
Hough space is separated into two subspaces in which 
parameters are separately estimated using a multires- 
olution strategy [6] with a modified Hough voting al- 
gorithm. Experimental results show that our method 
works well on lane images in various situations] includ- 
ing different lane marking conditions and road envi- 
ronments. Further, our method has a higher accuracy 
in the presence of noise because Hough transform can 
utilize all the lane edges, which share two of three 
parameters of the lane structure in an image instead 
of only two edges used in the deformable template 
method. 

2 Model of Lane Boundaries 
According to Kluge [4], the markings and pavement 

boundaries defining the road and its lane structure 
can be approximated by circular arcs on a flat ground 
(z, y) plane over the length of the road visible in a sin- 
gle frame of image. Furthermore, a circular arc of cur- 
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vature k can be approximated by a parabolic equation 
of the form x = !$ + my + b, where m and b are tan- 
gent and offset parameters, respectively. In the case 
where the camera is not tilted, the derivation of the 
shape of individual lane boundaries in the image plane 
is straightforward. Assuming perspective projection, 
a pixel f ( c ,  r )  in the image plane projects onto a point 
(E, y )  on the ground plane according to the equations 
x = cwy and y = $, where H is the height of the 
focal point above the ground plane and h and w are 
the height and the width of an image pixel divided by 
the focal length, respectively. Combining the camera 
calibration and road shape parameters together, the 
parabola on the ground plane projects into the image 
plane as a curve of the form 

n 
c = - + Pr + U ,  

r 
kH hb where n = m, P = z, and v = E. Note that r = 0 

is the row representing the horizon in the image plane. 
In the case where the camera is tilted downward 

[4], the lane structure has the same form as Eq. (l), 
but the parameters are defined as 

kH2 (1 + r: h2)2 
IE = 2 w h H d m - ’  

1 
2 

P = h2(b - mHroh + -kH2r$h2), 

and v = Hh(1 + r$h2) (m  - kHroh), where ro is the 
row corresponding to the center of the field of view of 
the camera. 

If we assume that all parabolic lane boundaries in 
the ground plane have approximately the same curva- 
ture k and have parallel tangents at their x intercepts, 
then all lane boundaries in the image plane share the 
same parameters n and v and are distinguished by the 
parameter P. The problem of detecting lane bound- 
aries is then converted into estimating the parameters 
ti, v and PI and PT for the left and the right lane 
boundaries in an image. 

3 Edge Detection 
We use Canny edge detector [7] to locate the posi- 

tion of pixels where significant edges exist. The key 
idea of Canny edge detector is to use Gaussian di- 
rectional operator. Let g(c,r) = e- 2~ be a two- 
dimensional Gaussian function. Its directional opera- 
tor is 

&g 

where n is the directional vector oriented normal to  
the direction of an edge to  be detected and can be 

estimated as 

An edge point is defined to be a local maximum of 
the operator gn applied to the image f ( c , r ) .  That is 
a a2 

Figure l(b) shows edges extracted by the Canny 
edge detector from the innage shown in Fig. l(a). A 
Canny edge map is obtained by thinning the binary 
image output from the edge detector where an edge 
consists of the pixels with a gradient value higher than 
50% of the maximum arid at least one 8-connected 
pixel with gradient value higher than 90% of the max- 
imum. In our experiments, we choose = 1 and a 
9 x 1 mask is used for Gaussian convolution in both X 
and Y directions. 

4 Multiresolution Hough Transform 
Applying the Canny edge detector to a N, x N, 

lane image f ( c , r ) ,  we can obtain two images: a bi- 
nary image fe (c, r )  denoting edge pixels and an image 
f g ( c , r )  = m, denotiing the ratio of vertical and 
horizontal gradients. We can also take a derivative of 
Eq. (1) with respect to the variable r as 

Z ; ; [ s n ( C ,  r )  * f ( c ,  .)I = 0 or m [ g ( c ,  r )  * f ( c ,  .)I = 0. 

dc n 
dr r2 + P, - = 

where 2 = -fg(c,r) .  
There are three parameters in Eqs (1) and ( 2 )  

from which three paramet,ric equations representing a 
straight line in the three-dimensional parametric space 
(P, n, U )  can be derived as 

P( t )  = t ,  
n(t) = (t - $)r2 ,  { v(t) = c + (g - 2t)r. 

The Hough transform i$S such was first introduced 
by Hough in 1962 [8]. Yu and Jain presented a mul- 
tiresolution Hough transform to reduce the compu- 
tational cost in document skew detection [6]. This 
method can be used in the lane detection application. 
The idea is to implement Hough transform multiple 
times, say twice, for the same data. The bin size in 
the Hough space changes from a low resolution to the 
desired resolution and, meanwhile, the detection range 
changes from the desired range to a smaller one cen- 
tered at the preceding estimate. 

Assume that the bin size in a 3D Hough space is 
(Ap, An, AV). In each implementation of the Hough 
transform, we accumulate the integral value instead of 
the number of occurrences of the curve in the Hough 

(3) 
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space to increase the accuracy. Therefore, we define 
the Hough accumulator array as 

V(P, 4 'U) = 

where, At@, K ,  'U) is the interval of integration and is 
defined as At@, K , Y )  = At,(@) n A~, (K)  n At,(u). 
The three intervals in individual dimensions are re- 
spectively defined as 

W P )  = [ t P ( P ) ,  t p ( P  + Wl, 
A~,(K) = [tn(n), t K ( ~  + AK)], 
At, ('U) = [tu ( U ) ,  t u  ('U + A'U)], 

[tu(.) = 0.5($ - 7). 
Substitute the integrated term in Eq. (4) with Eq. 
(3), we have 

V(P,K,.) = C f e ( C , T ) & 4  + 4 r 2  + IlAt(P,K,'U)l, 
C , T  

where, the term lAt(P, K ,  u)l denotes the length of the 
integration interval, At(/?, K ,  'U). In spite of the fact 
that we only need the geometric parameters for the 
left and the right lane boundaries, actually, there are a 
number of individual lane edges extracted by the edge 
detector (see Fig. l(b)) because a lane marking has 
two edges and several lane markings and other objects 
in the image such as shoulders and lane fences have 
edges that share the same lane structure. Among the 
three lane structure parameters, these edges approxi- 
mately share the two parameters, K and v. The differ- 
ence among them is the value of the parameter P. This 
property allows us to divide the 3D Hough space into a 
2D and an 1D space shown in Fig. 2. We can estimate 
parameters K and u as ( k , i j )  = argmax,,vV(K,w), 
where 

V ( K , W )  = Cfe(c,r)JT4 + 4 r 2  + I l A t ( K , V ) I *  

C , T  

The integration interval is A t ( ~ , w )  = A~,(K)  n 
At,(v). The parameter /3 can be estimated by ,d = 
arg maxp V(P) ,  where 

V ( P )  = Cfe(c,r)h4 + 4 r 2  + llAt(/3,k,ij)l. 

We choose two maximum values with different signs 
as estimates of the left and right lane boundaries. 

In implementation, we execute Hough transform at 
two resolutions for estimating the parameters ( K ,  'U). 

The bin sizes are chosen such that the number of total 
iterations is minimized and given as follows. 

{ A&) = 20, 
AK(') = 800, 

and 

{ ;:;:;I ioo, 
The bin size in Hough transform for estimating the 
parameter P is AP = 1. 

5 Experimental Results 
This system has been tested on 34 images grabbed 

by an on-board camera at different locations and at 
different times. Figure 3 shows some of our experi- 
mental results of lane boundary detection where de- 
tected lane boundaries are superimposed onto the orig- 
inal images. These images contain both paved and 
unpaved roads and lanes which are either marked or 
unmarked. The proposed method is robust in terms 
of the noise present in the input image in the form 
of shadows, variations in illumination and road con- 
ditions. Our program runs on a Sun UltraSPARC- 
I workstation and takes approximate 0.5 seconds for 
Canny edge detection and 0.2 seconds for parame- 
ter estimation. All experimental images are 8-bit 
gray scale images of size 256 x 240. Theoretically, 
the proposed method can utilize many edge detection 
algorithms with less computational complexity than 
Canny operator which can reduce the cost of the whole 
system. 

6 Conclusion 
We have addressed the problem of lane boundary 

detection. A multiresolution Hough transform is em- 
ployed to solve this problem to reduce the high com- 
putational cost associated with the traditional Hough 

c 
K 

Figure 2: Hough space separation: (a) IE - 'U space; 
(b) P space. 
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Figure 3: Experimental results of lane boundary detection. The detected lane boundaries are overlaid on the 
input gray scale image. 

transform and at the same time to preserve its ad- 
vantages of high accuracy, especially for the noisy im- 
ages. To simplify the problem, the 3D Hough space is 
divided into a 2D and a 1D space. The Hough trans- 
form extracts as much useful information as possible 
from the input data which gives the system the ca- 
pability of handling images with different qualities in- 
cluding those with paved and unpaved roads, marked 
and unmarked roads, shadows, and poor illumina- 
tions. Another advantage of using Hough transform 
for this problem is that instead of one single output 
given by most other methods, our system can provide 
more plausible candidates which can be fed to a post- 
processing module. 
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