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Lane-Change Decision Aid System Based on
Motion-Driven Vehicle Tracking

Javier Díaz Alonso, Eduardo Ros Vidal, Alexander Rotter, and Martin Mühlenberg

Abstract—Overtaking and lane changing are very dangerous
driving maneuvers due to possible driver distraction and blind
spots. We propose an aid system based on image processing to help
the driver in these situations. The main purpose of an overtaking
monitoring system is to segment the rear view and track the
overtaking vehicle. We address this task with an optic-flow-driven
scheme, focusing on the visual field in the side mirror by placing a
camera on top of it. When driving a car, the ego-motion optic-flow
pattern is very regular, i.e., all the static objects (such as trees,
buildings on the roadside, or landmarks) move backwards. An
overtaking vehicle, on the other hand, generates an optic-flow
pattern in the opposite direction, i.e., moving forward toward
the vehicle. This well-structured motion scenario facilitates the
segmentation of regular motion patterns that correspond to the
overtaking vehicle. Our approach is based on two main processing
stages: First, the computation of optical flow in real time uses a
customized digital signal processor (DSP) particularly designed
for this task and, second, the tracking stage itself, based on motion
pattern analysis, which we address using a standard processor. We
present a validation benchmark scheme to evaluate the viability
and robustness of the system using a set of overtaking vehicle
sequences to determine a reliable vehicle-detection distance.

Index Terms—Collision-avoidance systems, lane-change deci-
sion aid systems, machine vision, safety.

I. INTRODUCTION

THIS PAPER was carried out within the framework

of the ECOVISION Project (http://www.pspc.dibe.unige.

it/~ecovision/). One of the objectives of the ECOVISION con-

sortium is to develop precognitive visual models for use in

real-world environments. Within this context, we describe here

a side-view-mirror, blind-spot monitor, and driver-distraction

alert system in which motion processing can provide useful

cues for the motion pattern segmentation of an overtaking

vehicle.

Although the use of an image processing system in a vehicle

is not straightforward, as it requires complex algorithms and
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high computational power, the use of video cameras with

computer vision techniques offers an attractive alternative with

multiple applications in traffic scenarios [1]–[4]. Most of the

current techniques concerning vehicle tracking usually focus

on road-traffic monitoring for incident detection using static

cameras [1], [5]. Onboard cameras and efficient processing

devices open the door to advanced vision systems for driving

assistance [2]. We focus on overtaking scenarios, which are an

important cause of accidents. In fact, the European Commission

is studying specific actions to eliminate the blind spot on motor

vehicles [6]. A lane-change assistant would recognize vehicles

in the blind spot and warn the driver if he/she starts changing

lanes. A standardization committee has been formed to study

the subject of a Lane-Change Decision-Aid System (LCDAS).

To evaluate this system, we have applied the norms set out

in a preliminary draft of the International Organization for

Standardization (ISO) (ISO/TC204/WG14/N40.27).

Over the last few years, driver-assistance systems have be-

come a priority with car manufacturers. Nowadays, onboard

cameras and image processing platforms are in high demand

to help in lane keeping and to detect and avoid collisions from

fast-approaching or lane-changing vehicles [7], [8], even to the

extent of including stereo cameras [9], [10]. Although radars

constitute a very valid alternative, such as in [11], other authors

propose sensor fusion schemes, such as radar and stereovision

fusion [12] or laser scanner and stereovision [13], as effective

methods for avoiding collisions. Some companies, such as

Mobileye N.V. [8], Volvo [14], and Fico S.A. [15], have devel-

oped aids to lane-change decision making and claim that their

products work properly, but no reports on their technical details

or the performance of these approaches have been published

yet. Their initiatives only cover the application itself but with

no benchmark information to validate their systems, making it

impossible to compare the different approaches. There is also a

product based on radar sensors [16] to solve the same problem,

but again, it lacks any validation information.

In our approach, we use a monocular camera within the car,

which allows us to detect the overtaking vehicle by using an

optical-flow algorithm. This system can be used to generate

alarm signals to the driver. The use of monocular cameras as

well as motion information has been highlighted elsewhere by

other authors as a useful strategy to solve dangerous driving

situations [2], [17]. The optical-flow-driven scheme has several

properties that can be very useful for car segmentation. Basi-

cally, by focusing on the optical-flow field, we should find static

objects and landmarks moving backwards (due to our ego-

motion) and the overtaking vehicles moving forward toward

our vehicle. Nevertheless, there are several artifacts, such as

0018-9545/$25.00 © 2008 IEEE



ALONSO et al.: LANE-CHANGE DECISION AID SYSTEM BASED ON MOTION-DRIVEN VEHICLE TRACKING 2737

perspective deformation and camera vibration, that can affect

the performance of the system. The proposed scheme needs to

address these kinds of artifacts.

The application involves significant challenges. Most of the

contributions developed for traffic analysis work with static

cameras [1], [5], [18]. Onboard cameras considerably increase

the complexity of the system, partly because the algorithm

needs to deal with nonstatic scenarios (which means complex

algorithms to analyze the scene) and partly because the process-

ing frame rate becomes a critical factor for such an analysis.

Onboard cameras have been used for lane tracking [19], [20]

as well as in front/rear vision for obstacle avoidance [12], [17],

but the application we present here focuses on a different field

of view, i.e., the side-view mirror. It is important to emphasize

that we have to deal with such important factors as perspective

deformation [21], and to satisfactorily perform, the proposed

system needs to overcome this problem.

One important implementation issue concerns the codesign

strategy, i.e., deciding the software/hardware code partitioning,

which will have an important impact on the final flexibility of

the system and its cost. The working scheme that we adopted is

composed of two very different stages. In the first step, we cus-

tomized an FPGA device (to be used with embedded systems)

for real-time motion processing [22]. The chosen optical-flow

scheme uses a gradient model based on the classical approach

of Lucas and Kanade [23], [24]. As mentioned in [22], this

model achieves satisfactory optical-flow accuracy using afford-

able hardware resources. We also used a high-level hardware

description language (Handel-C, cf. [25]), which allows us to

describe hardware using high-level (C-like) algorithmic struc-

tures. This makes it easy to decide the critical code to be im-

plemented on a customized digital signal processor (DSP). In

the second step, based on the previous motion-salience map, we

combined Kalman filtering techniques with appropriate filtering

operations to compensate the effects of perspective deformation

to arrive at a reliable estimation of a vehicle’s position in the

scenario. Furthermore, this stage, which is now run on a stan-

dard processor, has been carefully designed to allow efficient

implementation on an embedded processor in the same FPGA

chip to get a standalone embedded system (system-on-a-chip).

II. SYSTEM DESCRIPTION

What is the aim of the system? The system should warn the

driver of impending critical situations during a lane change.

Critical situations occur in different possible scenarios.

1) Another vehicle is beside the lane-changing vehicle in the

so-called blind spot, and the driver does not realize that

his/her lane change would cause a critical situation.

2) A vehicle is coming up from behind at relatively high

speed, which would also result in a dangerous situation

if the driver were to change lanes.

3) The absent-minded driver begins to change lanes without

noticing that an overtaking vehicle is approaching.

Within this context, we are only interested in the approaching

vehicle closest to us, and therefore, the local search is per-

formed, starting within the right-hand area of the image (for

the sake of clarity, we only consider right-hand driving with

Fig. 1. System functional blocks. Note that the different thresholds dynam-
ically adapt according to the evolution of the recent scenario. Final alarm
decision uses overtaking-car position, car-steering sensors, and blinkers.

the steering wheel on the left and left-hand overtaking). We

are interested in detecting the vehicle as soon as possible and

not losing track of it, particularly when the vehicle is close

to us. Furthermore, the proposed application needs to direct

alarm signals to the driver to prevent an accident. Therefore,

we estimated the vehicle’s position and the confidence level.

This facilitates the generation of the alarm signal.

We are currently working on the hardware implementation

of the whole system, and as a result, the algorithms we use

must take into account the target hardware. For this purpose,

we have taken into account several parameters such as the type

of arithmetic operations, bit width, memory requirements, and

so on. For extra details about the hardware system architecture,

a preliminary system is described in [26].

The next sections describe the processing stages of the sys-

tem. They are schematized in Fig. 1.

A. Pattern Selection and Optical-Flow Filtering Templates

Optical flow is a well-known method used for motion-based

segmentation, cf. [27], and according to our previous results

[28], we have validated this approach for the onboard segmenta-

tion of overtaking vehicles. In our system, some simplifications

can be made because of the structure of the problem addressed.

We only consider rightward movements. During overtaking

maneuvers, the approaching vehicle is moving to the right-hand

side of the side-view image, so we do not need to consider

leftward velocities (Fig. 2). Wrong velocity estimations of the

optical flow are frequent, so we need to clean up these erroneous
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Fig. 2. (a) Overtaking car sequence. (b) Templates for filtering the optical
flow based on rectangles to estimate the car’s position. (c) Original optical-
flow saliency map (grey levels indicate velocity orientations: Grey encodes
rightward motion, and light pixels encode leftward motion). Several template
examples are also shown. [Note that the template surrounding pixel D is not
square because the rest of the template lies outside the image and can, therefore,
be neglected. This is indicated in (1) and (2).] (d) Final result (segmented car)
after applying the filters. This figure only shows the active pixels that are used
for centroid computation. In pixels A and D, velocity values indicate leftward
motion, and therefore, these pixels are rejected for vehicle-position estimation
because they do not fulfil the velocity direction rule. In pixels B and E, although
the estimated velocity is in the right direction, there are not enough active pixels
inside the filtering templates. Finally, pixel C is used for centroid computation
because there is a percentage above α of pixels with rightward motion inside
this template. Note that different sizes and shapes of template are used to correct
the deformation in the side-mirror perspective.

patterns in the next few steps. We define an image coordinate

system placed at the bottom left-hand corner of the image, with

positive values growing from left to right and from bottom to

top. The coordinate x stands for the pixel column and y for

the pixel row. If Vx is the x component of the velocity of one

pixel, Vy is the y component, and Vmin is a threshold that

represents the minimum reliable velocity component module,

the pixels of the scene are taken into consideration only if

their velocity verifies Vx > Vmin and |Vy| < Vx (with a typical

Vmin value = 0.25 pixels/frame).

This allows us to only consider rightward motion and takes

into account the focus of expansion in the side-view mirror,

which apparently produces both vertical and horizontal patterns

for the moving objects.

The proposed system uses templates that filter the motion-

saliency map. We use them to clean up the optical flow of

the previous stage and maintain only the more reliable data

to compute the position of the overtaking vehicle. The key

idea is to convolve the image with uniform rectangular kernels

of different sizes. They collect information regarding homo-

geneous areas with well-structured motion, which has been

filtered according to the condition of the previous paragraph.

The template forms are rectangles that grow along the x-axis

toward the right-hand side of the image, where the vehicle is

expected to be larger (cf. Fig. 2). Each spatial position has an

associated template that establishes the minimum number of

points and the neighborhood area to carry out the search. If

we call Hr and Vr the horizontal and vertical image resolution

(width and height of the images) and N the number of regions

into which we divide the image (typically N = 20 in our

experiments), the size and shape of the template change every

Hr/N columns. For each image pixel, their corresponding

horizontal and vertical template sizes Tx and Ty are computed

according to (1), shown at the bottom of the page, where we

have defined the following:

• xn and yn: the pixel column and row image position,

where we use values normalized to one (dividing by Hr

and Vr sizes of the image);

• Round (): rounding to the nearest integer operation;

• ∆: defined as 1/N ;

• Tx0 and Ty0: initial horizontal and vertical template sizes

(corresponding to the first image columns on the left and

typically of two pixels).

Equations (1) and (2), shown at the bottom of the page, define

the template sizes in units of pixels. They have been experimen-

tally determined to roughly compensate for any deformation in

the side-view mirror perspective. For an analytical study of this

perspective and the way to determine perspective parameters,

see [21]. A study concerning perspective deformation and

different techniques available to reduce its effect when tracking

vehicles can be found in [29] and [30].

For each pixel, their value, after convolving with the tem-

plate, will be nonnull only if the number of pixels with right-

ward movement exceeds a predefined threshold that we have

called template threshold (TT ) and is computed according to

TT = α · Tx · Ty (3)

where α is a constant factor that represents the percentage of

nonnull pixels in the template neighborhood (with a typical

value of 0.5). Pixels that pass to the next processing stage

are called active pixels (only these pixels will not have null

values). An illustrative example of how the templates function

is shown in Fig. 2. This scheme fits quite well into specific

Tx =







Tx0 + round(xn/∆), if xn < 0.25
Tx0 + round(0.25/∆) + 2 · round ((xn − 0.25)/∆) , if xn ≥ 0.25 and xn < 0.75
Tx0 + 3 · round(0.25/∆) − 2 · round ((xn − 0.75)/∆) , if xn ≤ 0.75

(1)

Ty =







Ty0 + round(xn/∆), if xn < 0.25
Ty0 + round(0.25/∆) + 2 · round ((xn − 0.25)/∆) , if xn ≥ 0.25 and xn < 0.75
Ty0 + 3 · round(0.25/∆), if xn ≤ 0.75

(2)
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hardware because the required operations are pixelwise and

can be implemented as convolvers and comparators, producing

binary outputs.

After template filtering, we count the remaining number of

active pixels (NAPs). A vehicle (an overtaking truck for in-

stance) will pass to the next stage if it has enough of these active

pixels. A simple centroid of active pixels can be computed to

estimate the vehicle’s position. Although this centroid compu-

tation of the saliency map gives us an estimation of the vehicle’s

position, this is correct only for continuous overtaking. Some

more complex and realistic situations still need to be solved.

1) Static overtaking: An overtaking vehicle seems to stop

(and its optical flow vanishes) because it maintains the

same velocity as the vehicle being overtaken. In this

situation, we need to maintain the vehicle’s estimated

position for a certain time.

2) Multiple vehicle overtaking: This is a very common

situation on highways that needs to be solved.

Another subject to address is the minimum number of overall

valid pixels that gives us reliable vehicle-position estimations.

After template filtering, a small number of pixels remain ac-

tive (nonnull values) and represent our saliency map. They

correspond to homogeneous areas with basically rightward

motion. When there are no vehicles in the sequence, or they

maintain the same speed as our own vehicle, no valid data

should appear in the saliency map. We use a second confidence

threshold called active pixel threshold (TAP) after template

filtering, which is experimentally determined using the over-

taking vehicle sequence database provided by Hella KGaA

Hueck and Company [31] (see the Appendix for typical values).

This threshold represents the minimum NAPs in the saliency

map to keep only reliable features active (i.e., the minimum

NAPs to reject spurious artifacts from the camera or overall

motion). The NAPs represent the number of confidence points

used to estimate the vehicle’s position. The threshold TAP is

dynamically adapted according to the system’s recent record

using a threshold function that linearly decreases with time

in the absence of inputs (enhancing the system sensibility)

and increases when a high number of inputs are presented

(improving the system’s reliability). This threshold also varies

according to the vehicle’s estimated position using our a priori

knowledge about the mirror perspective deformation. Higher

thresholds are used in the right-hand area of the image, where

vehicles are expected to be larger. Furthermore, the motion

extracted in this area is noisier because speeds are higher. The

method used to compute this threshold is

TAP(k) = TAP0 + x′
est · T

2

AP0

+ (C(k − 1) − 1) · TAP(k − 1)/4 (4)

where k is the frame number, x′
est is the normalized horizontal

vehicle-position estimation at this frame k (computed as a

centroid of the active pixels), and C is a binary variable that

stands for the confidence value computed from

C(k) = NAPs > TAP(k). (5)

Note that this threshold is computed for the case of only

one overtaking vehicle presented in the scene. For a multiple

overtaking scenario, this threshold value is iteratively refined as

described in Section II-C.

B. Solution for Static Overtaking: Kalman Filtering

We need to use a memory system to retain the vehicle

position when it remains stationary relative to our vehicle.

Traditionally, Kalman filtering has proved to be satisfactory in

resolving many problems involved in predicting the position

of moving targets [32], [33] and is even useful for object

motion prediction and segmentation [34]. It is also advisable

because of the inherent latency of the system’s processing. For

an introduction to Kalman filtering theory, see [35].

Although the proposed platform can compute 25 frames/s,

the optical-flow processing unit has a latency of three frames.

This means that the estimated position of the vehicle undergoes

a short delay with respect to its real position. This is not a

problem for low relative velocities, but when the velocity is

high, it might result in the system underestimating the vehicle’s

position. The capability of Kalman filtering to predict position

allows us to overcome the artifact produced by this inherent

processing latency, thus increasing the system’s reliable detec-

tion distance.

As far as hardware feasibility is concerned, we have used

linear Kalman filter equations that basically act as a short-term

memory system with prediction capability.

After optical-flow postprocessing, we can estimate from the

saliency map the vehicle position that we note at frame k as

x′
est(k), y′

est(k) by means of centroid computation. We can

also compute the average velocity from the optical-flow values

noted henceforth as vx
est(k), vy

est(k). Kalman filtering can be

used to refine the vehicle position, leading to a more accurate

estimation, which is written as xest(k), yest(k). This can be

done in the following way. Using the standard Kalman filter

nomenclature, the process and measurement model we use can

be described by

sk = Ask−1 + Buk + ξk−1

sk =







xest(k)
yest(k)
vx
est(k)

vy
est(k)







A =







gm 0 gv 0
0 gm 0 gv

0 0 1 0
0 0 0 1







ξk−1 =







ξ1

ξ2

ξ3

ξ4







uk =







x′
est(k)

y′
est(k)

0
0







B =







(1 − gm) 0 0 0
0 (1 − gm) 0 0
0 0 0 0
0 0 0 0






(6)
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Qk = σ2

Q







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







zk = Hsk + µk

H =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







µk =







µ1

µ2

µ3

µ4







Rk = σ2

R







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






. (7)

The system state sk is described by matrices A and B in (6).

Matrix B constrains our parameter prediction according to the

current position measurement, i.e., the state control input uk.

The system state also depends on the position and velocity

estimations at the previous instants, which are represented

in matrix A. Dependencies are modeled using the position

memory gain parameter gm and the velocity gain parameter

gv . These parameters are constraints that imply smooth veloc-

ities and vehicle position. For the measurement model, which

is described by zk, we use (7). Vectors ξ and µ represent

the process and noise measurement, respectively. They are

supposed to be independent of each other and modeled via

a random Gaussian white-noise vector of zero means. They

have diagonal covariance matrices Qk and Rk, which are also

defined in (6) and (7) with σ2
Q and σ2

R as model parameters.

This model makes the assumption that the velocity is con-

stant between two frames and that any acceleration of the object

will be seen as noise. The range and typical values of the

parameters of the Kalman filters are set out in the Appendix.

An illustrative example of the properties of the Kalman filter is

shown in Fig. 3.

Fig. 3 shows the two main advantages of the Kalman filter in

tracking vehicle position. First, the position estimation is sta-

bilized, avoiding spurious errors. This is graphically shown by

the smoother curve for the Kalman-based tracking [Fig. 3(b)].

We can quantitatively evaluate this effect just by computing the

standard deviation of the position estimation derivative. We find

a derivative standard deviation of 1.06 pixels/frame for non-

Kalman tracking and a value of 0.78 for the Kalman-based one.

We conclude from this that the Kalman filter helps to stabilize

the data and reduce spurious measurement variations.

The second advantage of this technique is its prediction

capability. Since the system provides the vehicle position with

a latency of three frames, the Kalman filter is used to predict the

position three frames ahead, i.e., to estimate the current vehicle

position. To analyze the Kalman filter prediction capability, we

computed offline the vehicle position without any latency with

and without Kalman filtering. We delayed these estimations by

three frames to take the latency of the system into account

Fig. 3. Kalman filter refining the estimation of the vehicle position. (a) Image
taken from an overtaking sequence of 75 frames of a car driving in a straight
line with a closing speed of 5–10 m/s (the checkered square indicates the
estimated position of the vehicle). (b) Estimated vehicle position (x-axis)
using (circles) Kalman filtering and (stairs) without Kalman filtering. Note that
Kalman-computed estimations predict a forward position due to their prediction
capability. (c) Error estimation. We estimate the vehicle position offline and
compare our estimation with Kalman and without Kalman filtering, both with
a delay of three frames (simulating latency effect). This shows that the Kalman
technique effectively helps to reduce latency errors.

and compared the results with the estimations with neither

latency nor Kalman filtering. These values have been taken as

reference positions. We estimated the error between the delayed
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estimation and the original estimation with and without Kalman

filtering [Fig. 3(c)]. This graph clearly shows that latency error

is reduced thanks to the use of Kalman filtering. Quantitatively,

we obtained an RMS error of 3.97 pixels and a mean error of 3.4

for the system without a Kalman filter. With this filter, the RMS

error was reduced to 1.98 and the mean error to 1.53 pixels.

Similar results were achieved for the rest of the overtaking

vehicle sequences. This confirms that the Kalman filtering

technique effectively helps to reduce the latency problem. This

translates into early detection of the overtaking vehicle, thus

improving system performance.

C. Solution for Multiple Vehicle Overtaking: Iterative Process

For our application, a multitarget tracking system is unneces-

sary. We only need to know whether there is at least one vehicle

in a potentially dangerous situation. We use an iterative com-

putation with several steps to compute the vehicle’s position. In

the first step, we use all the saliency map points of the whole

image to give the estimated position of the vehicle, which will

be the correct position if there is only one present. When there

are several targets in the scene, however, the main goal is to

detect the position of the vehicle closest to us. Therefore, we

focus on a restricted image region, i.e., the right-hand area of

the image, using the computed centroid position as the left-

hand image boundary. We try to calculate a centroid of this

restricted area in the image if we have significant features (i.e.,

if the number of elements of the corresponding saliency map

is above TAP); otherwise, we take the value calculated in the

larger image region. We can repeat this computation several

times until the estimation converges, or we can use a limited

number of iterations. For our system, we have used only three

iterations to get adequate results.

The main operations can be described as follows, where

Ni stands for the number of iterations, the function

Estimated_vehicle_position() computes the centroid of the

saliency map pixels, and the function Compute_TAP(x) eval-

uates this model threshold at the centroid position. Note that,

as shown in the pseudocode, the value of TAP is refined in

each iteration because the searching area is modified at each

stage. This is consistent with the scenario geometry described

in Section II-A and is necessary to take into account the mirror

perspective deformation.

Iterative tracking pseudocode

search_area = 1: Hr;

For Number_of_iterations = 1 to Ni

(x, y, NAPs) = Estimated vehicle_position
(filtered_image, search_area);

Compute_TAP(x);
if (NAPs > TAP)

PositionX = x;

PositionY = y;

Search_area = (x −
number_of_image_columns/8):

(number_of_image_columns);

else

End_loop;

In our experiments, a number of iterations Ni between 1

and 4 performed well. As stated above, a good tradeoff was

experimentally determined for three iterations.

After applying all these operations, the final saliency map

contains a limited set of active and reliable pixels, which are

used for centroid computation. Their position is then marked

as a checkered square in the image (cf. Fig. 4, containing a

qualitative example with some frames of an overtaking se-

quence). The car labeled (1) is tracked (frame a). Once it

overtakes another vehicle, the vehicle estimation searches for a

new vehicle (frame b). The car labeled (2) is found and tracked

(frames c and d). When this vehicle has overtaken another,

the system looks for the next car and finds the one labeled

(3) (frame e).

Note that, due to perspective deformation, closer vehicles

have large NAPs, meaning that in a multiple overtaking sce-

nario, the estimation of the position of the overtaking vehicle

(which is computed as a centroid of the active pixels) is not

placed in the middle of the vehicle position but biased to the

right-hand side of the image. The main consequence of this is

that an iterative tracking not using active pixels at the left-hand

side of the estimated position is able to track the closest vehicle,

regardless of the number of overtaking vehicles on the scene or

their position in the image. This procedure has been outlined in

the iterative tracking pseudocode above.

D. Confidence Measurement Estimator Discussion

After the optical-flow filtering step, the resulting image only

contains reliable points (active pixels) for centroid computation.

If there are only a few points remaining, no reliable information

can be obtained, and no estimation can be arrived at. The NAPs

threshold (TAP) also varies with the evolution of the system,

as discussed in Section II-A. Closer vehicles appear larger in

the image due to perspective, so NAPs must increase with

the estimated vehicle position moving rightward. Nevertheless,

with a small TAP, we can obtain a stable vehicle position and

a stability signal that indicates that our system confides in the

acquired data. On one hand, we should bear in mind that the

main goal of our system must always be to detect overtaking

vehicles; true negatives are an unacceptable system response,

whereas on the other hand, we should also avoid false positives.

Sometimes the optical flow is very noisy (on a bumpy road,

for example), and despite the number of thresholds imposed

to compensate for them, some mistakes appear (such as the

isolated points shown in Fig. 5). These spurious estimations

should not be allowed to trigger the alarm signal, or they

would upset the driver’s confidence in the monitoring system.

Although the number of errors presented as isolated dots in

Fig. 5 is very small (less than 2%), from a psychological point

of view, false-positive alarms significantly affect the driver’s

confidence. Therefore, our system only triggers the alarm in

the shaded areas in Fig. 5. The system can also benefit from

methods for monitoring the driver’s state of vigilance or fatigue

(cf. [36] and [37]), and information about this can efficiently

be used to either inhibit or increase the generation of the alarm

signal. This is important in reducing the number of unnecessary
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Fig. 4. Multiple cars overtaking on a highway on a cloudy day [sequence frames from (a)–(e)]. Number labels have been added at the top of the vehicles to
clarify the process. The reliable position is automatically marked by the system in the figures with a checkered square.

Fig. 5. Example of confidence vehicle-tracking estimators for an overtaking
sequence of three cars. The vertical axis represents the estimated horizontal
car position. The values have been normalized by dividing each value by
the number of image columns to allow data representation, regardless of the
image resolution. The horizontal axis corresponds to the time dimension (image
sequence frame). The target vehicle closing speed is about 15 m/s. The black
dots represent the estimation of the car’s position using centroid computation
from optical-flow data and Kalman filtering (a value zero of the vertical axis
is used for nonreliable car position estimations). There are still some isolated
errors. The filled-in areas represent high confidence frames in which the car’s
position is reliably estimated (i.e., exceeding the confidence thresholds), and
the isolated points represent unreliable data. The horizontal line represents the
limit at which the system must generate the alarm signal if necessary (due to a
steering maneuver, for instance).

alarms and raises an interesting topic to be explored in future

studies.

To solve this situation, a very simple hardware-friendly

scheme was adopted. Using a temporal memory window of

TMW frames (with typically TMW = 7) and median filtering of

the confidence value C described in (5), we finally achieved

high confidence, high stability, and high reliability in deciding

whether we are in a critical situation. This is represented in

Fig. 1 by the block labeled Temporal coherence. The temporal

persistence of the stimulus allows us to reject noisy inputs, and

thanks to the large detection distance (provided by subpixel

optical-flow configuration), we can use this median filtering

without any loss of performance.

The final system output is represented by the grey areas in

Fig. 5, corresponding to three different overtaking cars. These

areas represent the alarm signal that a driver will see if he/she

tries to steer toward the overtaking lane.

To conclude, the final system is able to robustly detect over-

taking vehicles, but multiple operations are required. For the

sake of clarity, a summary with a list of the system’s different

system typical ranges and values is set out in the Appendix.

III. SYSTEM PERFORMANCE EVALUATION

Evaluating the accuracy and efficiency of the system for real-

image sequences is not easy. A visual inspection of the results

gives us some “quality hints” to evaluate the performance, but

this is not a valid “quality evaluation procedure.”

For our application, we used a camera mounted on the side-

view mirror. We have tested the algorithm in different overtak-

ing sequences provided by Hella KGaA Hueck and Company

[31] with different vehicles and weather conditions (different

light conditions, cloudy, foggy, sunny days, diverse road types,

and so on). Thus, we obtained 20 sequences composed of more

than 9000 frames. Our goals were the following:

1) to detect the overtaking car as soon as possible;

2) to reliably track it.

This is a complex task because if we use a very sensitive

system, continuous false alerts can render the approach useless

and make the driver lose confidence in the system. The next

section describes the system benchmark procedure. It should

be remembered here that although there are some commercial

initiatives under development toward similar systems [8], [14],

[15], no performance evaluation or scientific benchmarking

methodology seems to have been applied to date. This makes

it impossible to compare the different approaches and estimate

their applicability.

A. Benchmark Methodology and System Description

The idea that the vehicle in question is the closest to us

and, therefore, must be in the right-hand area of the image

has important implications for our test. We are interested in

detecting the vehicle as soon as we can and not losing track of

it, particularly when it is close to us. We measure the distance

at which reliable tracking starts to evaluate the quality of the

system.

For benchmarking, special test sequences were recorded by

Hella KGaA Hueck and Company [31] according to the prelim-

inary version of the ISO standard (ISO/TC204/WG14/N40.27).

Three systems are considered based on the areas they cover [see

Fig. 6(a)].

1) Type I: Blind-Spot Warning. This system is intended to

only warn about target vehicles in the adjacent zones

(the zones on the left and right of the subject vehicle).
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Fig. 6. (a) Car for device type classification. (b) Intercar distances using the
LIDAR sensor and camera view angle to cover the blind-spot areas.

It is not required to provide warnings of target vehicles

approaching the subject vehicle from the rear.

2) Type II: Closing Vehicle Warning. This system is intended

to warn about target vehicles that are approaching the

subject vehicle from the rear.

3) Type III: Lane-Change Warning. This type combines the

blind-spot and closing-vehicle functions, i.e., a Type III

system is a system that fulfils the Type I and Type II

requirements.

The Type II specifications consider different closing speeds:

A → 5–10 m/s; B → 15–20 m/s; C → 25–30 m/s. For the

evaluation, we used two instrumented test cars: the Target Car

(TC), which is the overtaking car, and the Subject Car (SC),

which is equipped with the camera and the system described

for tracking the target car. TC has a LIDAR sensor installed

in front [38] [illustrated in Fig. 6(b)] to measure the distance

between the two vehicles. Both instrumented data-acquisition

systems are synchronized to match the recorded frames of SC

with the LIDAR information of TC at any time. An onboard

computer stores this information for offline analysis.

In the test scenario, it is possible to get image data from SC

and, as a reference, the value of the distance between both vehi-

cles from the LIDAR sensor of the overtaking car. Most of the

recorded video streams have corresponding LIDAR-measured

distances. Nevertheless, due to technical problems, only a lim-

ited number of cross-validated sequences were recorded. Day

and night scenarios were tested, but we only include here the

results from the day scenarios, which present the most difficult

Fig. 7. System evaluation results. The average detection distances (in meters)
with their typical deviation are depicted. Two different cases are considered:
two-lane motorways and three-lane motorways. At the top of the bars, we
include the number of cross-validated sequences used in each case.

situation, since at night, the headlights of overtaking vehicles

facilitate the tracking task.

B. Results of the Evaluation

The results from our 20 cross-validated test sequences

(Fig. 7) indicate the distance between vehicles as measured us-

ing the LIDAR sensor. For each sequence, only one overtaking

maneuver has been evaluated (the one done by the vehicle with

the LIDAR sensor). For the remaining vehicle-overtaking ma-

neuvers, which take place in the sequence (typically one to three

or more), only qualitative tracking information is available, and

therefore, we cannot use them in our benchmarking scheme.

Basically, we have two different kinds of recorded sequences:

one for the Type I system test (dark bars) and another for the

Type II system test (light bars). In this case, three different

approaching speeds are possible according to our preliminary

standard (except for three lanes and 25–30 m/s, where no

distance information is available due to technical problems).

Fig. 7 shows that vehicles approaching faster are reliably

detected at longer distances (in the two-lane bars). This is

highly desirable since the Time-To-Contact (TTC) is shorter in

these situations, which is possible because TC is approaching

faster, and the motion cues become significant even when TC is

still far away.

The sequences were taken under different visibility and

weather conditions. This also affects system performance (sig-

nificantly in the third bar of the three-lane case in Fig. 7).

These results show the high potential for a possible appli-

cation within the framework of a driver-assistance system, al-

though further experiments with a larger number of overtaking

sequences are required. With these data, we have been able to

evaluate and classify the system, using the ISO draft, as nearly

fulfilling the requirements for a Type-III system (lane-change

warning), because we passed Type I and Type II tests, with the

subtype C (relative velocities of up to 20 m/s).

IV. CONCLUSION

In this paper, we have described a system to track overtaking

vehicles using the side-view-mirror perspective. Basically, it

is implemented in two steps. First, we compute the optical
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TABLE I
SYSTEM PROCESSING STAGES AND LIST OF PARAMETERS. FROM LEFT TO RIGHT, WE SHOW THE METHODS OF THE PROCESSING STAGES AND THEIR

PURPOSE, THE METHOD EQUATION/ALGORITHM OF THE STAGE, THE PARAMETERS TO DETERMINE, THEIR DEFINED RANGE,
AND THE VALUES USED IN OUR EXPERIMENTS

flow, and then, after a filtering stage, this motion-saliency

map reliably represents vehicle points that are used to

compute the overtaking vehicle’s position. We implemented a

hardware/software hybrid approach using a customized DSP for

optical-flow computation combined with a standard processor

for the tracking stages and generation of the alarm. Finally,

we also applied a benchmark trial with a wide set of diverse

overtaking sequences to evaluate the system’s performance.

Although further experiments with more overtaking sequences

are required, the results shown are very promising because the

system is very reliable and stable, even for very difficult image

sequences in poor visibility (for some qualitative examples,

cf. [26]).

From Fig. 7, we can also compute the TTC when the alarm

signal is generated. Using the fastest velocity of each interval

and taking into account the lowest detection distance (average

value minus typical deviation), the worst case is 1.61 s, which

was presented in the bar corresponding to two lanes and a

closing speed of 15–20 m/s. Based on driver behavior studies

[39], the worst reaction time for a driver is 1.5 s for braking

(less if we consider that the lane-change maneuver just implies

a steering action, which is more than 0.15 s faster than braking,

and therefore, the reaction time becomes 1.35 s). Therefore, we

believe that our system can effectively alert the driver and leave

him/her enough time to react.

However, there are still some open issues for future work.

1) On three-lane roads, an overtaking vehicle in the outside lane

should not generate a warning signal. This implies a distinction

between overtaking maneuvers in the other two lanes. 2) In

inverse overtaking scenarios, when the SC is overtaking the TC,

the warning signal should be generated, since lane changing

would also cause a dangerous situation. 3) A smart warning

strategy (human–machine interface field) is necessary. Future

work will cover these points and test the whole system on the

vehicle.

APPENDIX

For the sake of clarity and to facilitate the replication of the

presented approach, we have summarized the model stages and

parameters in Table I, which presents the purpose (function)

of the different methods applied, indicating the values of the

parameters used for our study.

To determine the different values of the parameters, we made

a heuristic multiparametric search. The parameter space scan-

ning process was done via a feedforward procedure (sequen-

tially adjusting the parameters that affect the first stages of the

system) to arrive at the best system configuration sequentially

throughout the different processing stages. The list of parame-

ters shown above proved to be adequate for the complete set

of experiments described in Section III. Furthermore, we found

that the system performs quite stably and operates satisfactorily

for most of the parameter values within the proposed ranges

(Table I).
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