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Lane-Change Fuzzy Control in Autonomous
Vehicles for the Overtaking Maneuver

José E. Naranjo, Carlos González, Member, IEEE, Ricardo García, and Teresa de Pedro

Abstract—The automation of the overtaking maneuver is con-
sidered to be one of the toughest challenges in the development
of autonomous vehicles. This operation involves two vehicles (the
overtaking and the overtaken) cooperatively driving, as well as
the surveillance of any other vehicles that are involved in the
maneuver. This operation consists of two lane changes—one from
the right to the left lane of the road, and the other is to return
to the right lane after passing. Lane-change maneuvers have been
used to move into or out of a circulation lane or platoon; however,
overtaking operations have not received much coverage in the
literature. In this paper, we present an overtaking system for auto-
nomous vehicles equipped with path-tracking and lane-change
capabilities. The system uses fuzzy controllers that mimic human
behavior and reactions during overtaking maneuvers. The system
is based on the information that is supplied by a high-precision
Global Positioning System and a wireless network environment. It
is able to drive an automated vehicle and overtake a second vehicle
that is driving in the same lane of the road.

Index Terms—Fuzzy control, hybrid control, intelligent control,
proportional–integral differential (PID) control, road vehicle
control.

I. INTRODUCTION

THE LANE-CHANGE maneuver is one of the most thor-
oughly investigated automatic driving operations for au-

tonomous vehicles after trajectory tracking. This maneuver is
used as a primitive for performing more complex operations
like changing lanes on a highway, leaving the road, or overtak-
ing another vehicle on a two-way road. In this paper, we will
focus on this third maneuver because it is one of the less well-
researched issues in the autonomous vehicle field.
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A total of 13 939 fatal crashes occurred during overtaking
maneuvers in the United States from 1994 to 2005. As a direct
consequence of these accidents, 24 565 people died (Fatality
Analysis Reporting System, National Center for Statistics and
Analysis, U.S. Department of Transportation). Most of these
accidents were caused by failing to leave enough distance,
overtaking when there was poor visibility, or by not giving way
to an overtaking vehicle.

Consequently, First World governments are under pressure to
take action to reduce such a high number of fatalities. Perhaps
one of the most drastic actions is the measure taken by the
government of The Netherlands. It has banned overtaking on
two-way roads, which is an inconvenience for drivers [1]. The
objective of driving assistance and autonomous driving system
research is to avoid this kind of Draconian measure, as well
as to improve the safety and comfort of potentially dangerous
maneuvers like overtaking.

One basic element in autonomous vehicle development
is lateral or automatic steering management. According to
the literature, the first automated steering wheel was built
in 1977 in Japan as part of the Comprehensive Automo-
bile Traffic Control System project under the direction of
Prof. Tsugawa [2]. As part of the ARGO project [3], which
was developed at Parma University by Prof. Broggi’s team, a
vehicle was instrumented with artificial vision cameras and a
PC-based computer to automatically manage the steering wheel
on routes along public highways. The guidance system is based
on a classical P controller, whose input signals are directly
supplied by the lane recognition vision system [4]. Carnegie
Mellon University’s NavLab laboratory has gained a lot of
experience in developing steering controllers for the NavLab
vehicle series. These vehicles are equipped with artificial vision
systems, and the steering of the early versions was controlled
by the neural-network-based Rapidly Adapting Lateral Position
Handler (RALPH) [5]. Several lateral controllers have also been
developed at the Partners for Advanced Transit and Highways
(PATH) Program [6]–[9]. One such controller is described in
[10], where Hessburg and Tomizuka presented a fuzzy-control-
based lateral vehicle guidance system that has been installed
in a Toyota Celica experimental test vehicle. There are other
techniques for controlling steering, such as H∞, Adaptive, and
PID, as described by Chaib et al. [11]. Other real vehicle appli-
cations have been developed that are capable of autonomous
steering management and performing human-like tracking
[12]–[14].

After the steering wheel of a vehicle has been automated, it
can do more complex maneuvers that may require high-level
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planning and information-sharing cooperation among vehicles
that are circulating along the same stretch of the road. Auto-
matic parking [15], obstacle avoidance, intersection automatic
management, and overtaking, which is the maneuver studied
in this paper, are some examples of this kind of cooperative
autonomous driving.

There is a lot of literature, as well as research projects, related
to the lane-change issue, which has mainly been generated by
the California PATH Program. In [6], a lane change is used
to get an autonomous vehicle to automatically leave or join a
platoon of unmanned vehicles circulating in a different lane.
This paper describes a control system for lane keeping and lane
change. Lane change is carried out by defining the estimated
lane-change trajectory and then using onboard sensors to track
the path. It is a three-phase maneuver—lane exit, new lane
entry, and lane tracking. A classic analytical control system
is proposed. Its input variables are lateral and angular errors
from the magnetic marker sequence that is placed in the center
of the lane. Other PATH groups are working on lane-change
systems using diverse techniques. Hessburg and Tomizuka [16]
from the Department of Mechanical Engineering, University of
California, Berkeley, presented a fuzzy controller to manage
the steering wheel of an autonomous vehicle in lane-change
maneuvers. The rule base of this system consists of 24 linguistic
rules, three control inputs (the lateral lane displacement, the
lateral acceleration, and the lateral acceleration error), and one
output (the steering target angle).

Another PATH application using the automatic lane-change
maneuver is as a response to an emergency situation like
obstacle avoidance. Swaroop and Yoon [17] from Texas A&M
University, College Station, presented the design of a con-
troller, control law, and a communication system to manage
this situation using the steering and speed controllers that were
developed in [18].

Under the PATH subproject “Enhanced Coordination and
Link Layer Control Algorithms for Improving AHS Capacity,”
Horowitz et al. [19] presented an efficient lane-change maneu-
ver control system for platoons of vehicles. They remarked
upon the fact that the previous PATH lane-change architec-
ture was not efficient at supporting the lane change within
platoon operations and presented a new longitudinal controller
for lane-change tracking. This longitudinal controller works
together with the lateral controllers to optimize the length of
the maneuver. Hatipoglu et al. [20] reported the design of an
automated lane-change controller. This system requires a two-
layer hierarchical architecture. The low-level layer includes two
controllers—one for lane keeping and another one for lane
changing. The high-level layer gently switches from one low-
level controller to the other. The system navigates following
magnetic markers that are placed in each lane of the road.
The lane-change maneuver is conceived as the movement from
one lane to the contiguous lane, where navigation is by dead
reckoning until the vehicle locates the new lane magnetic sensor
sequence. In this instance, we assume that roads are straight for
correct system performance.

An exhaustive analysis for calculating the lane-change tra-
jectory is conducted in [21]. It also defines the four situations
in which a lane change is safe or unsafe when circulating on

freeways. Consider that the overtaking vehicle is vehicle 1, and
vehicle 2 is circulating in the contiguous lane.

Case 1) Vehicle 1 is moving at a lower speed than the other
vehicle; vehicle 1 performs a lane change without
modifying its speed and pulls in behind vehicle 2.

Case 2) Vehicle 1 is driving slower than vehicle 2 and makes
a lane change, constantly accelerating to pull into
the lane in front of vehicle 2.

Case 3) Vehicle 1 is driving faster than vehicle 2 and makes
a lane change at a constant speed to pull into the
lane in front of vehicle 2.

Case 4) Vehicle 1 is moving at a higher speed than vehicle 2
and makes a lane change, constantly decelerating to
pull in behind vehicle 2.

Some European projects take a similar approach, where the
aim is not to automate the overall maneuver execution but to
track maneuver while assisting the driver to get into the right
lane and avoid obstacles, as well as advising him or her of
any vehicles circulating in a collision trajectory. This is true of
the SAFESPOT or PReVENT Integrated Projects (IST-2005-
026963 and IST-2003-507075), which are deploying driving
aids to improve road safety and halve the number of road deaths
by 2010.

In the EU CyberCars-2 Project (IST-2005-028262), the ob-
jective is to create a new concept of a cybernetic road transport
system, where autonomous vehicles play a central role in urban
people mobility. This project proposes a set of cooperative
maneuvers by a set of autonomous vehicles. Some of these
maneuvers are merging and splitting from a platoon and per-
forming the respective lane changes.

In Japan, important automatic driving system research is
being conducted at the National Institute of Advanced In-
dustrial Science and Technology by Prof. Tsugawa’s team.
Kato et al. [22] presented an automatic driving system that
manages longitudinal and lateral controls. This system could
manage route tracking maneuvers, as well as stop and go,
adaptive cruise control (ACC), and platooning, allowing lane
changes for vehicles merging or splitting from the platoon but
always on highways with multiple one-way lanes.

From the point of view of complexity, there is a clear differ-
ence between a simple lane-change maneuver and an overtaking
maneuver. An overtaking maneuver is a sequence of a lane-
change maneuver, a path tracking along the new lane, and a
return to the original lane; it requires a much greater degree
of planning. First, there is the decision whether to initiate an
overtaking maneuver. Then, after deciding that the maneuver
is possible and necessary, the sequence of partial maneuvers is
to be coordinated, so the vehicle returns to the original lane as
soon and as safely as possible.

We also have to take into account that a car is an example
of a typical system where driving models, sensorial informa-
tion, objectives, constraints, and control actions are essentially
inaccurate. In this paper, we have used fuzzy logic to design
lateral controllers. The main reason for using this approach is
that a suitable driving process model is essential for automatic
steering wheel control. Nevertheless, classical approaches
frequently fail to yield appropriate models of complex
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(nonlinear, time-varying, ill-defined) processes—and driving
a car certainly falls into this category—whereas fuzzy-logic-
based control methods provide an alternative tool for dealing
with car and subsystem complexity. In particular, Sugeno and
Nishida [23] demonstrated that fuzzy control was capable of
handling nonlinear control problems to maneuver a model car
using oral instructions.

In this paper, we present an evolution of the simple automatic
lane-change system that upgrades autonomous vehicles to use
this maneuver to perform complete overtaking operations. We
propose a two-level architecture. The low level consists of two
fuzzy steering controllers—one for path tracking, which was
previously presented in [24], and the other for lane change.
Each controller is defined by only two linguistic variables
and four fuzzy rules. This configuration reduces the system’s
complexity without any loss in performance. The aims of the
high-level layer of the architecture are to evaluate the necessity
and the possibility of overtaking and to switch from one low-
level controller to the other when appropriate. Speed control is
also autonomously managed, keeping the vehicle either at the
right speed (cruise control) or at a safe distance from the lead
vehicle when overtaking is not possible (ACC) [25]. The main
sensorial information is obtained from a high-precision Global
Positioning System (GPS) and a wireless communication
system.

This paper is organized as follows. Section II presents a brief
summary of the project’s results to give a better understanding
of the overtaking maneuver. Section III describes this maneu-
ver. The software agent in charge of overtaking is described in
Section IV, and some experiments are outlined in Section V.

II. VEHICLE INSTRUMENTATION

These results are part of the Spanish National Research
Council’s Autopia Program. The main goal of this program is to
develop unmanned vehicles and test fuzzy-logic-based artificial
cybernetic drivers. Two Citroën Berlingo vans were automated
and instrumented [26] to incorporate an automatic driving sys-
tem that is installed on an onboard computer. This computer can
manage and automatically drive the vans. The main sensors that
are used for the navigation and overtaking system are a to-the-
centimeter-accurate real-time kinematic differential GPS (RTK
DGPS), an onboard speed sensor, a steering angle encoder, and
an IEEE 802.11-compliant wireless network, which is used to
gather the navigation information from the other vehicles that
are involved in the overtaking operation.

A. Route Tracking

The route tracking system that is installed in our automated
vehicles is based on the information supplied by the GPS.
It digitally maps the driving zone around which the vehicles
circulate like commercial navigators do. As each vehicle carries
a GPS receiver, they all know one another’s positions and any
trajectory error from the reference map defining the route to be
followed.

As soon as the system knows the GPS route to be followed,
we can calculate the deviations of the vehicle from this route

from the GPS positions that are supplied by the onboard re-
ceiver. The system can also locate and map all the other vehicles
that are circulating around the driving zone. We can then take
action, depending on whether these vehicles are in our way.

III. OVERTAKING MANEUVER

An overtaking maneuver is generally used to pass a vehicle
that is stationary or driving slower than we are in the same lane.
This operation can be performed on two-way roads as well as on
freeways, where there is more than one lane in either direction.
Although the preconditions that must be met to safely perform
the maneuver differ, the performance of the operation is exactly
the same: a lane change to the contiguous left lane, trajectory
tracking in the left lane until the overtaking vehicle has passed
the other vehicle or obstacle in the right lane, and a second
lane change to go back to normally circulating in the right lane
(Fig. 1).

According to this scheme, each overtaking maneuver in-
cludes two lane changes and a path-tracking component. Con-
sequently, the autonomous vehicle’s speed and steering need
to be managed. Both controls are considered to be partially
decoupled. This means that these tasks can be independently
executed; however, they share the input information and
decision-making layers and work in a coordinated way. The
speed control works as an ACC and is described in [25]. It
maintains a reference speed for overtaking and obstacle-free
circulation and a safety headway when there is a vehicle ahead.
We have defined an architecture to support steering control in
overtaking maneuvers.

A. Architecture of the Automatic Overtaking System

When designing an architecture that emulates human driving,
we have to look at how humans organize the driving task and
what operations they perform.

According to psychologists, human driving can be divided
into three activity levels, depending on the attention, resources,
and perception that are applied. These are the strategic, tac-
tical, and control levels [27]. The strategic level includes
planning and selects, for example, the best route to reach a
destination. The tactical level executes complex maneuvers
like stopping, overtaking, yielding, etc. Last, the control level
performs basic actions to keep the car on the right trajectory—
moving the steering wheel and pressing the throttle or brake.
These levels are ranked in descending order of complexity. This
implies that the higher the complexity becomes, the greater the
reasoning that is required, and the less reactive the system is.

A control system based on human behavior, which will sup-
port automated operation, has to be built around an architecture
paradigm. In our case, we have chosen the Michon [27] model,
implemented as a hierarchical architecture, which is capable
of supporting automatic driving and can be upgraded to deal
with other human-driving scheme maneuvers. Our architecture
is, thus, divided into six elements, as shown in Fig. 2.

The strategic layer of the architecture has not been repre-
sented in the figure because, in our case, the strategic planning
stage is performed by a human user that manually selects the
route to be tracked.
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Fig. 1. Overtaking maneuver phases. (a) First lane change to the contiguous left lane. (b) Circulation in the left lane. (c) Second lane change to the right lane.

Fig. 2. Hierarchical architecture for steering wheel control in overtaking operations.

The first module is named copilot and emulates the tactical
layer of human driving. This is a decision-making module
whose mission resembles the job of a rally copilot. It tells the
driver when the vehicle is entering a bend or a straight part
of the route, when to increase or decrease the target speed,
or when it is possible and necessary to overtake, that is, it
manages the sequence of operations to be done. Usually, the
copilot keeps to the reference route in the right lane. When
an overtaking operation starts, it changes the reference route
to the left lane and keeps to it until the vehicle it is overtaking
has been passed. Then, the reference route returns to the right
lane. The copilot checks all the input variables, selects the
right driving mode to continue the automatic route, and assures
a smooth changeover from one mode to another, that is, it
provides for passenger comfort. It can choose between three
kinds of steering behavior controllers—bend, straight road, or
lane change. These controllers represent the control layer of
human driving. These three behaviors are modeled using fuzzy
logic. This technique can apply the knowledge of an expert
operator (in this instance, a human driver) to control the equip-
ment [23]. Another advantage is that complex mathematical
models [28] are not needed to manage the equipment. This is
a very useful feature where hard nonlinear systems, like vehicle
steering, are concerned. In other words, by applying fuzzy logic
to control the steering of a car, we are modeling the driver’s,
and not the vehicle’s, behavior and responses. These fuzzy

controllers output the target steering turning to complete the
maneuver.

The third architecture module is the low-level controller. Its
mission is to receive the target steering wheel angle from the
active fuzzy controller and generate the appropriate control
signals for the motor to move the steering bar and, hence, the
direction in which the vehicle is moving. A PID, which is tuned
to manage the dc motor and is attached to the steering column,
forms this low-level controller that receives the steering target
position from the fuzzy controller and moves the steering wheel
until it reaches the target.

The fourth, fifth, and sixth architecture modules consist of
the actual dc motor engaged by a gear to the steering bar that
turns the wheels and, consequently, the moving vehicle.

This architecture is very similar to that of Hatipoglu et al.

[20]. In both architectures, two modules are defined to execute
the control layer tasks—lane keeping and lane change—and
each behavior is selected from a high-level tactical layer. The
difference between these two architectures is basically that,
in our case, we add a higher module in charge of strategic
planning. However, the functionality of both architectures is
identical. On the other hand, the techniques that are used to
implement the two architectures are completely different. In
our case, the system is based on fuzzy logic controllers and
GPS guidance. The Hatipoglu et al. architecture is based on
analytical controllers and dead-reckoning systems.
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Fig. 3. Experimental relationship between the speed and the lane-change distance.

IV. OVERTAKING CONTROLLER

As mentioned above, the copilot module manages the over-
taking maneuver. It controls its two main aspects: 1) checking
whether the conditions are right for overtaking and 2) doing the
whole maneuver by accordingly selecting the appropriate fuzzy
low-level controllers.

We define a set of conditions to be met by the vehicle
environment and the lead vehicle to assure a safe overtaking
operation as follows.

1) The overtaking vehicle is moving along a straight road.
2) The overtaken vehicle is moving in the same lane as the

overtaking one.
3) The speed of the overtaking vehicle is higher than the

speed of the lead vehicle (this means that it has to be
overtaken).

4) The left lane is free.
5) The lane is long enough for the overtaking maneuver to

be completed at the current speed.

The first condition is verified by checking the selected
driving mode. The second depends on the GPS position of the
two vehicles, and the fourth depends on the fact that no GPS
position of any other vehicle is detected in the left lane. If
a vehicle is detected, we need to know whether it can affect
the maneuver. The last condition is harder to calculate; the
system must make sure that there is enough road space for the
permitted overtaking maneuver to be completed. This estimate
is described in Section IV-A.

A. Overtaking

If all these constraints are met, then the overtaking maneuver
can start. We define the sequence of operations that must be
executed to undertake the maneuver.

1) Compute the time when the first lane change starts.
2) Perform the first lane change to the left lane.
3) Circulate in the left lane until the lead vehicle has been

passed.
4) Return to the right lane.
5) Continue to normally circulate.

TABLE I
LANE CHANGE DISTANCE AND CAR SPEED

Initially, the car’s reference route is the right lane of the road,
and the straight-path fuzzy controller manages the steering
wheel.

The first operation determines when the overtaking vehicle
has to start to make the first lane change into the left lane
of the road. The condition for this operation is that the lane
change must have finished by the time the front part of the
overtaking vehicle is at the same X coordinate as the overtaken
one’s rear (Fig. 3). Let us not forget that vehicle 1 follows
vehicle 2 using the ACC. Then, it accelerates to its target
speed while it changes lanes. Its acceleration is nonlinear and
depends on the initial speed and fuzzy rules that control the
speed. Furthermore, the vehicle might reach the target speed
before the lane change has been completed, and then, it will
stop accelerating. Next, the overtaking vehicle will circulate
for a time in the right lane, approaching the overtaken vehicle
until its front part reaches the rear part of vehicle 2. For safety
reasons, we define the distance D as the separation between
the overtaking and overtaken vehicles at which the overtaking
maneuver must start. This complies with the condition of
minimizing the time that the overtaking vehicle circulates in the
left lane. This distance will be a function of the speeds of both
vehicles involved, i.e., D = f(v1, v

′
1, v2), where v1 is the speed

of the overtaking vehicle at the beginning of the maneuver (t1),
v′
1 is the target speed of this vehicle, and v2 is the speed of

the overtaken vehicle, which is assumed to be constant. For
our purposes, we consider v′

1 only because it is the maximum
speed that the vehicle will reach, and it is impossible to estimate
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Fig. 4. Overtaking maneuver variables for starting distance calculation.

Fig. 5. Left-lane track for passing the overtaken vehicle.

the vehicle’s acceleration during the maneuver. v′
1, therefore,

will be the target speed that is selected by the cruise control
as the maximum speed for the road. We will also define D1

as the longitudinal distance that it takes the vehicle to change
to the contiguous lane and D2 as the distance the overtaken ve-
hicle moves during this lane change. It is not easy to determine
D1 a priori using analytical means. Therefore, we have used
a classical engineering method; we have searched for a least
squares solution minimizing a series of points (D1, v′

1) taken at
different initial speeds v1. D1 will, thus, be nontime dependent
because its value is empirically calculated by running a number
of automatic lane-change experiments using our controllers and
defining the outline of the function that estimates the distance
that it takes to change a lane. Table I shows the results of the
lane-change experiments for several lane changes at different
speeds (v′

1).
In this table, each different value of the distance has been

obtained by performing five experiments at the corresponding
speed and rounding the result to the nearest integer. The exper-
imental data collection was conducted by performing an auto-
matic lane change at the corresponding speed while registering
the route as tracked by centimeter-accuracy GPS coordinates.

These data can be used to obtain the equation that states the
relationship between the speed of a vehicle and the distance that
it takes to complete a lane change. Fig. 3 shows these data as
well as the adjusted second-degree polynomial for (1).

Now, we can calculate the distance D as follows to begin
overtaking:

D = D1 + l − D2

D1 = 0.0118v′2
1 + 0.0862v′

1 + 20.943

D2 = v2 · ∆t = v2 · (t2 − t1)
∆t = D1

v′

1

}

D2 = D1

v2

v′
1

(1)

D = l + D1

(

1 −
v2

v′
1

)

(2)

where l is the length of the overtaking vehicle (4 m for the
Citroën Berlingo van).

Formula 2 can also be used to calculate the fifth constraint
on overtaking; make sure that the lane is long enough for the
overtaking maneuver to be completed at the current speed. To
check whether this condition is met, we have to estimate the
distance that it takes to complete the maneuver (Fig. 4). This
distance is an addition of the distances that it takes to execute
the three parts of the maneuver: D1 for the first lane change and
the distance from when the overtaking vehicle finishes the first
lane change until it completely passes the overtaken car (D3;
Fig. 5) for left-lane tracking.

With this information, we can estimate the distance the
vehicle is to travel, i.e.,

D3 = 2l + D4

D3 = v1 · t
D4 = v2 · t

}

D4 = v2

D3

v1

(3)

D3 = 2l + v2

D3

v1

D3 =
2l · v1

v1 − v2

. (4)

Last, we consider that the time taken for the second lane change
is the same as that for the first lane change, i.e., D1. Then, the
estimated distance for overtaking is given by

Dovertaking = 2D1 + D3. (5)

The second step in overtaking is to perform the first lane
change to the left lane. This operation is done by switching
to the lane-change fuzzy steering controller and selecting the
left lane of the road as the reference route. No trajectory
definition is necessary to perform this lane change. Once the
lane-change operation is complete, the system keeps the left
lane as the reference route but selects the straight-path-tracking
fuzzy controller until it passes the overtaken vehicle. When
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TABLE II
STEERING CONTROL FUZZY RULE BASE

the overtaken vehicle has been passed, the overtaking vehicle
returns to the right lane. To do this latter operation, we select
the lane-change fuzzy controller, and the right lane is defined
as the reference route. Last, as soon as the vehicle is centered
in the right lane, the straight-path-tracking fuzzy controller is
selected, and the vehicle continues to circulate normally.

B. Fuzzy Lateral Controller

Fuzzy controllers do the computation for the steering control.
From a formal point of view, a fuzzy controller consists of a
rule base containing the experts’ procedural knowledge and a
variable base containing the different linguistic values that they
consider.
Fuzzy rule base: The human driver’s procedural knowledge

is represented by a fuzzy rule base. This rule base contains
the necessary information on how drivers execute their actions
to keep the vehicle to the target route. In this instance, the
fuzzy rule base is common to all driving modes because the
driver’s main objective is to keep the vehicle to the route, i.e.,
to minimize the lateral as well as angular errors.

Therefore, only four rules are necessary to keep the vehicle
in the lane or to perform a lane change. They are shown in
Table II, where the words in italics are the fuzzy input and
output variables, and the words in bold are their associated
linguistic values.

These rules stand for human reasoning: If the vehicle is
moving out of the lane to the left, then turn the steering wheel
to the right to offset the deviation. The same thing applies if the
deviation is to the right.
Fuzzy variable base: We define two linguistic variables

named lateral_error and angular_error. These two variables
have two associated linguistic values named (left, right), each
with their respective membership function. The shape of the
membership functions depends on how and how much we want
these variables to affect the control. This feature is illustrated
in the following sections, where we differentiate the driver’s
behavior in straight path tracking and lane change by differently
modeling the associated membership functions. Last, we define
a fuzzy output variable, named steering, whose linguistic labels
are (left, right).

From a functional point of view, the fuzzy reasoning process
can be divided into three stages—fuzzification, inference
engine, and defuzzification.
Fuzzification: In this step, current crisp input values are

transformed into linguistic or fuzzy values that can be inter-
preted by the fuzzy compiler. This transformation computes a
degree of truth for each one of the input fuzzy variable values,
depending on the shape of their associated membership func-
tions. This represents human drivers’ subjective knowledge.

In our case, we consider two input variables for lateral
control—lateral and angular errors from the reference route.

These are the distance of the front of the vehicle to the GPS
reference route and the angle between the vehicle’s direction
vector and this route, respectively.
Inference engine: The inference engine propagates the

matching of the conditions to the conclusions, generating the
contribution of each rule to the control action. In our case,
Mamdani’s [29] inference method (min–min–max) is used to
solve the fuzzy implication.
Defuzzification: Defuzzification is the transformation of the

output fuzzy values that are generated by applying the inference
method into crisp values that can be used to output control
intentions. In this instance, we use the center of area (CoA)
method, i.e.,

yCoA =

∫

B · ydy
∫

Bdy

B =
⋃

i

ωiBi (6)

where ωi represents the membership degree resulting from the
inference of the ith rule, and Bi is the membership function
for the different values of the output variable of the ith rule.
This method is very commonly used in control applications
[30]–[34].

We have defined the output fuzzy variable membership func-
tion shapes using Sugeno’s singletons [35], [36], which use
monotonic functions. In this instance, a modified CoA equation
is applied, i.e.,

y′

CoA =

∑

i

ωiBi

∑

i

ωi

. (7)

Therefore, when speaking of the lateral control, y′

CoA would
indicate the target turning angle for the steering wheel. This
value is normalized and defined in the [−1, 1] interval and
needs to be multiplied to obtain 540◦, which is the maximum
the steering wheel will turn.

Thus, the rule base is the same for both controllers; however,
the definition of the input membership functions implements
the behavioral differences. Next, we show this definition and
explain the differences supporting lane keeping and lane-
change behavior.

As already mentioned, the human drivers’ procedural knowl-
edge (the fuzzy rules) is the same for both driving modes.
The difference between straight-lane and lane-change driving
lies in the quantification of trajectory errors, which humans
unconsciously do. This is the definition of the membership
functions for the input and output variables. These membership
functions have been tuned to mimic human behavior in the
respective situations.
1) Straight-Road Fuzzy Controller: Fig. 6(a) and (b) shows

the definition of these functions for the lateral and angular
errors, each with three linguistic labels (right, center, and left).
They depend on the sign and the magnitude of the trajectory
error.

Circulation on straight roads is usually very fast, and
consequently, the permitted trajectory errors are very small.
Accordingly, the shape of the membership functions has been
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Fig. 6. Membership function definition for the input fuzzy variables. (a) Straight-path-tracking error. (b) Straight-path-tracking angular error. (c) Lane-change
lateral error. (d) Lane-change angular error.

defined as very sharp to make the system very reactive and stop
the vehicle that is moving out of the lane.

The lateral error fuzzy variable contains three membership
function definitions for each of its three associated linguistic
labels. The membership function for the center linguistic label
has been defined in the [−0.8, +0.8] m interval; this means that
the maximum membership degree is when the crisp value of
the lateral error is 0 m, and this membership degree decreases
following a linear function to the limits of this interval, where
the membership degree is null. The aim of this definition is to
qualify how centered the vehicle’s trajectory is in the road.

Similarly, the left linguistic label has a related membership
function whose aim is to define how far deviated to the left the
vehicle is from its target trajectory. This membership function
is defined in the interval [0, ∞], where the membership degree
is minimum (null) at 0 m, the degree between 0 and 0.8 m
increases following a linear function, and the maximum
membership degree is maintained in the remaining interval.

The right linguistic label has an associated linguistic
function defined in the [−∞, 0] interval, whose objective is to
define how far deviated to the right the vehicle’s trajectory is.

Note that these membership functions have been defined
as symmetric because we want the system response that is
centering the vehicle when it is deviated to the left to be the
same as when it centers the vehicle that is deviated to the right.
The symmetry does not necessarily apply in every case.

All three linguistic labels are perfectly determined when
the position of the 0.8-m vertex is known. The value of the
membership function vertex was experimentally fine tuned by
studying the effect of this value on the system response.

All the points that have been made for the lateral error also
apply to the angular error. The linguistic label center has

a maximum value when the vehicle is parallel to the target
trajectory (0◦) and linearly decreases to 0 when the angle is 2◦.
The right and left linguistic values also peak when the absolute
angle is greater than 2◦ and linearly decrease to 0 when the
vehicle is parallel to the reference trajectory. As with the
linguistic values of the lateral error fuzzy variable, the 2◦ value
has been experimentally determined to be the one yielding the
best response.

These linguistic labels imply that when the deviation
is greater than ±0.8 m, rules R1 or R2 will be the only
contribution to the steering movement.

The angular error membership function has the same effect
on the steering output variable. The contribution of rules R3
and R4 is maximum when the crisp error is higher than ±2◦.
This falls when this variable value decreases from ±2◦ to 0◦.

These definitions assure that the deviation of the vehicle’s
trajectory is always less than ±0.8 m and ±2◦ because the
control system will act before the errors reach this level to
prevent them from occurring.

The output fuzzy variable, named steering, also has two
linguistic labels (left and right), whose membership functions
are defined as Sugeno’s singletons. The normalized monotonic
functions are defined at −0.025 and 0.025, respectively. These
values have also been experimentally determined, and their
meaning is clear—to limit the total output to 2.5% of the
maximum. The reason for this is that the steering wheel must
move very carefully when the vehicle moves along a straight
lane. Of course, this does not apply to bend driving, where the
steering wheel output is unlimited [24].
2) Lane-Change Fuzzy Controller: The lane-change fuzzy

controller is designed to use the same rule set as the path-
tracking controller, albeit for a different mission. In this
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Fig. 7. Control surfaces for the fuzzy controllers. (a) Straight-road controller. (b) Lane-change controller.

instance, the mission is to control the vehicle when its reference
trajectory changes from a reference lane in the right lane of the
road, which is defined as a sequence of GPS coordinates, to an
alternative trajectory that is located in the contiguous left lane,
or vice versa. The lane-change controller does not generate a
trajectory for the change of lane. Rather, it makes the vehicle
smoothly adjust its route so that it naturally adapts to a new
reference trajectory in the new lane.

Fig. 6(c) and (d) shows the definition of the membership
functions for the lane-change controller. The vertex in the
angular error linguistic label definition is the same as that for
path tracking. The reason is that the maximum angular error
during the lane change should be kept under ±2◦ to assure
that the maneuver is smoothly executed. On the other hand, the
lateral error membership function definition vertex has been
defined at ±1.5 m. This distance is half the width of a lane.
This means that, at the beginning of the lane change (when the
vehicle is circulating in the right lane), the reference is changed
to the contiguous lane, and then, the lateral error becomes about
3 m, considering that the lane is about 3 m wide. Therefore, the
maximum membership degree for the contribution of rules R1
or R2 (whichever is applicable) is when the vehicle is located
between the starting position and the lane’s dividing line (as
the lateral error changes from 3 to 1.5 m). As the lane change
proceeds, the lateral error decreases to less than 1.5 m, and the
contribution of the rule drops in the final control signal because
the membership degree also falls from 1 at 1.5 m to 0 at 0 m.

With this configuration, at the beginning of the lane change,
the lateral error induces the vehicle to get into the contiguous
lane as quickly as possible, whereas when it reaches the center
of the road, the angular error makes the vehicle smoothly track
the new lane.

In this instance, the output variable steering also has two
linguistic labels, i.e., left and right, whose associated single-
tons are defined as normalized monotonic functions at −1
and 1, respectively. This means that, contrary to what was
said at the end of the preceding section, there is no limit
on steering wheel movement. However, we have determined
that, for safety reasons, the steering movement of a circulating
vehicle must be speed dependent, and a 2.5% limit has to be
set on the maximum output when the vehicle is circulating in a

straight lane. Yet, the limitations that are forced on the output
to make straight-lane driving easy would prevent the vehicle
from smoothly changing lanes. Thus, we have determined a
function where vr represents the real speed of the vehicle, and
vt represents the target speed that is selected by the control
system. The value that this function yields will multiply the
crisp output of the fuzzy controller to obtain the final output.
The criterion used to obtain this function is that the coefficient
is 0.025 for high speeds [where a high speed indicates that
the mean speed (vr + vt)/2 is greater than 66 km/h], linearly
varying up to a value 0.147 for low speeds, which is a value that
has been experimentally determined.

This function is shown in the following:

f(vr, vt) = −0.00185 ·
1

2
(vr + vt) + 0.147

⇔
1

2
(vr + vt) ∈ [0, 66] km/h

f(vr, vt) = 0.025 ⇔
1

2
(vr + vt) > 66 km/h. (8)

Fig. 7 shows the response surfaces that represent the input/
output mapping according to the fuzzy rules. The surfaces are
smooth, which means that the rules are reasonable.

V. EXPERIMENTS

After we had defined the automatic overtaking system, we
ran some field tests to demonstrate that it was correctly con-
figured. We used two vehicles. The first, i.e., the overtaking
vehicle, was unmanned, and the second, i.e., the overtaken
vehicle, was manually driven. Although both vehicles could
circulate in the automatic mode, we opted to test automatic
driving against human driving because human behavior is
more unpredictable than automatic actions. This should give
an idea of the flexibility of the driving system developed.
Each experiment is explained in a figure with two graphs. The
top graph represents the speeds of both vehicles during the
automatic overtaking test in kilometers per hour. The second
graph represents the straight road where the experiments were
performed. Two horizontal black lines define the road borders,
and one central black dotted line is the separation between the
two lanes. This graph represents the trajectory followed by both
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Fig. 8. Automatic overtaking experiment.

vehicles during the experiment, where the position of the cars
at the same time instant is represented by waypoints, which are
taken at 5-s intervals.

A. Automatic Overtaking of a Circulating Vehicle

At the beginning of the first experiment, shown in Fig. 8, the
overtaking vehicle is stationary, and the overtaken vehicle is
circulating at a speed of about 10 km/h. Both vehicles are 50 m
apart in the same lane. The target speed for the overtaking and
overtaken vehicles is 30 and about 10 km/h, respectively.

Since the overtaking vehicle is moving at a higher speed
than the overtaken one, it closes in on the overtaken car. This
activates the ACC, which reduces the speed to maintain a
safety headway and permit an emergency stop if necessary. This
continues until the distance between them decreases to D [see
(1); in this case, D ∼ 70 m] at 18.2 s from the start of the
experiment. At this point, the tracking controller switches from
the ACC straight-lane tracking controller to the lane-change
controller, and the left lane is selected as the reference route.
The lane-change operation is, therefore, smoothly executed, as
shown, with no overshooting of the lateral or angular errors.
Last, the lane-change maneuver finishes when the absolute
value of the lateral error is less than 0.7 m, and the absolute
value of the angular error is less than 5.2◦. This happened 24 s
from the start of the experiment, when the distance between the
front of the overtaking vehicles and the rear of the overtaken
vehicles is 3 m. This means that the design requirements of the
overtaking algorithms are satisfied, and the first lane-change
maneuver is completed, minimizing the left-lane occupation
time. The time taken to complete this first part of the maneuver
is 5.2 s.

After the first lane change has been completed, the driving
controller switches back to straight-lane tracking using, in this
instance, the left lane as the reference route. Owing to the

difference in speeds, it takes the overtaking vehicle 4.1 s to pass
the other vehicle. When the overtaking vehicle has completely
passed the lead vehicle, the lane-change controller is activated
again, and the reference route is modified from the left lane to
the right lane.

As shown in Fig. 8, this second lane change is correctly
performed, and the return to the new reference lane is executed
without overshooting the trajectory. When the overtaking vehi-
cle is centered in the right lane and the absolute value of the
lateral and angular errors is less than 0.7 m and 5.2◦, respec-
tively, the straight-path-tracking controller is loaded again, and
the overtaken vehicle continues along its normal route. It only
takes 3.1 s to complete this operation. The difference in duration
between the first and second lane changes was due to the fact
that the vehicle was moving at different speeds each time.

Fig. 8 also illustrates that the switches between the straight-
and lane-change controllers are smooth because there is no
oscillation in the four controller changes.

The evolution of the overtaking vehicle’s speed is also note-
worthy. Fig. 8 shows that this vehicle’s speed decreases by more
than 10 km/h from the reference speed about 40 m from the
start. The reason for this reduction in speed is that, until the
overtaking conditions are met, the overtaking vehicle’s speed is
adapted to keep a safe distance from the vehicle in front using
the system described in [25]. Once the overtaking conditions
are met, the speed is only limited by the reference speed, and
the vehicle reaccelerates to perform the maneuver. This speed
increase is also correctly dealt with by the driving system that
adapts the distance D to the reference speed. The overtaken
vehicle also behaves strangely. It reduces its speed when the
overtaking vehicle passes, but it does not give way to the second
vehicle. Do not forget that it is manually driven, and this just
reflects the driver’s unpredictability. The driver of the vehicle
admits to driving his own vehicle this way. In any case, the
computations do not put the bodies of any of the vehicles at risk.
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Fig. 9. Overtaking a stationary car.

Fig. 10. Overtaking with the ACC.
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B. Automatic Overtaking of a Vehicle Stopped in the Road

The second experiment, which is shown in Fig. 9, consists of
automatically overtaking a stationary vehicle. In this instance,
the circulation speed of the overtaking vehicle is set at 21 km/h
to show the system performance at a different initial setting.
As we can see, the speed is maintained all the time, except
when the stationary vehicle is detected, and the ACC attempts
to keep a safe distance until the overtaking distance is reached.
No overshooting appears in the trajectory either when changing
to the left lane or returning to the original lane. In this instance,
the circulation in the left lane is minimal because the obstacle is
a 4-m-long stationary car. Comparing these two graphs, we find
that the lane-change distance is about ∼46 m (from meter 64
to meter 110) in the former and ∼30 m (from meter 73 to meter
103) in the latter. This is perfectly coherent with the different
vehicle speeds. The faster the vehicle goes, the greater the lane-
change distance is because, according to (8), steering wheel
movement is more limited.

C. Combination of the ACC With Overtaking

The third experiment represents a more complex scenario,
where the ACC is combined with the overtaking maneuver
(Fig. 10). In this instance, a third graph has been added to
show the ACC performance where the safety time headway
is preset at a target of 6 s. In this instance, the target speed
of the overtaking vehicle is set at 55 km/h, and the overtaken
vehicle circulates about 15 km/h. Overtaking is not allowed
at the beginning of the experiment, and the control system
selected keeps a safety headway from the preceding vehicle
to avoid a crash. During the first 60 m of the experiment,
the ACC system reduces the overtaking speed and maintains
a correct safety headway of 6 s. At meter 60, the overtaking
prohibition disappears, and the overtaking vehicle increases its
speed to 55 km/h and approaches the overtaken vehicle until it
reaches the distance at which the overtaking should start. Then,
the first lane change proceeds correctly, following the desired
smoothness and safety parameters, using the same controllers
as in the previous experiments but at a higher speed. Fig. 10
shows that, at the very instant that the first lane change finishes,
the overtaking vehicle reaches the same X coordinate as the
overtaken vehicle, and the time gap between both vehicles is 0.

After the first lane change has finished, the straight-lane con-
troller is activated until the overtaking maneuver has finished,
and then, a second lane change is executed to return to the
original right lane. Fig. 10 also shows that the controller change
is smooth, as indicated by the absence of oscillations in the
overtaking vehicle’s route when the driving mode changes.

In this experiment, the distance traveled by the overtaking
vehicle during the first lane change is also consistent with the
controller design because the higher the speed, the lower the
permitted maximum steering turning. For a target speed of
55 km/h, the lane-change distance traveled is about 60 m.

VI. CONCLUSION

In this paper, we have presented an automatic driving system
that is capable of performing automatic driving on straight

roads and overtaking maneuvers when a slower vehicle appears
in the unmanned vehicle’s way, and a set of safety conditions
is satisfied. This system implements a fuzzy-control-based au-
tomatic lane-change system. No specific reference trajectory
needs to be defined for this maneuver, as the lane-change
system is able to perform this maneuver by just specifying
the contiguous reference lane GPS mapping. The navigational
information that is needed to do the overtaking operation is
supplied by an RTK DGPS governing the navigation of each
vehicle and the data gathered from a wireless communication
system that supplies the GPS coordinates of the overtaken ve-
hicle in real time. From the information on the GPS position of
both vehicles and the GPS mapping of the reference route, the
driving system can perform human-like overtaking maneuvers.
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