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Abstract— Lane detection is one of the indispensable and key
elements of self-driving environmental perception. Many lane
detection models have been proposed, solving lane detection
under challenging conditions, including intersection merging and
splitting, curves, boundaries, occlusions and combinations of
scene types. Nevertheless, lane detection will remain an open
problem for some time to come. The ability to cope well with
those challenging scenes impacts greatly the applications of lane
detection on advanced driver assistance systems (ADASs). In this
paper, a spatio-temporal network with double Convolutional
Gated Recurrent Units (ConvGRUs) is proposed to address lane
detection in challenging scenes. Both of ConvGRUs have the same
structures, but different locations and functions in our network.
One is used to extract the information of the most likely low-
level features of lane markings. The extracted features are input
into the next layer of the end-to-end network after concatenating
them with the outputs of some blocks. The other one takes some
continuous frames as its input to process the spatio-temporal
driving information. Extensive experiments on the large-scale
TuSimple lane marking challenge dataset and Unsupervised
LLAMAS dataset demonstrate that the proposed model can
effectively detect lanes in the challenging driving scenes. Our
model can outperform the state-of-the-art lane detection models.

Index Terms— Lane detection, end-to-end, ConvGRUs, spatio-
temporal, convolutional neural network.

I. INTRODUCTION

ADVANCED driver assistance systems (ADASs) have
become a hot topic in the current computer vision

and autonomous driving research. The main bottleneck of
autonomous driving is the environmental perception prob-
lem [1]. Self-driving itself is a very complex problem due
to the changes in autonomous driving environments. Envi-
ronmental changes include many factors, and each one is a
challenging subtask for an ADAS, such as road detection, lane
detection, vehicle detection, pedestrian detection, drowsiness
detection, collision avoidance and traffic sign detection [2].

Manuscript received August 10, 2020; revised January 11, 2021; accepted
February 12, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 61873215, in part by the Fundamen-
tal Research Funds for the Central Universities under Grant 2682019CX59,
in part by the Key Program for International S&T Cooperation of Sichuan
Province under Grant 2019YFH0097, and in part by the Sichuan Science and
Technology Program under Grant 2018GZ0008 and Grant 2020JDRC0031.
The Associate Editor for this article was L. M. Bergasa. (Corresponding
author: Tao Deng.)

The authors are with the School of Information Science and
Technology, Southwest Jiaotong University, Chengdu 611756, China
(e-mail: zhangjiyong-com@163.com; tdeng@swjtu.edu.cn; fyan@swjtu.
edu.cn; l2571630192@163.com).

Digital Object Identifier 10.1109/TITS.2021.3060258

Lane perception, as one of the two primary related tech-
nologies given by [3], is a crucial step towards a fully
autonomous car, and it can help a car to place in itself
among the lanes and perceive its surroundings when
driving on roads.

To tackle such changes, many lane detection techniques
have been developed. They are divided into traditional
method-based techniques and deep learning-based technolo-
gies. By studying many relevant literatures, we know that
traditional methods are often applied in situations in which
the changes of road scenes are not obvious, and the advantage
of a deep learning method is that it can overcome the problem
in which scenario changes generally cause traditional methods
to fail.

The contents of lane detection have the following char-
acteristics. First, the lane lines themselves exist in different
scenes in different periods on different sections of a road.
For example, they may include both shadows and dashed
lanes at time T1. Then at time T2, the situation may contain
shadows and unclear lanes. However, at time T3, the road
scenes may comprise curved lines, broken lines, split lines,
and so on. The changing environment mentioned above is
hard to circumvent. Therefore, although many lane detection
approaches have been proposed, lane detection in challenging
scenes, still remains unresolved in fact, as shown in Fig. 1.
This paper is inspired by the following two points. One point
is the relationship between visual perception and memory,
which is taken from Brodmann’s brain map and the relative
theories [5]–[7]. The other point is the successful application
of semantic segmentation to image processing [8]–[11].

In this paper, we regard lane detection as a segmentation
problem according to the second point above. The first point
enlightens us to consider adding one Convolutional Gated
Recurrent Unit (ConvGRU) [12] in the low-level feature
extraction phase in our end-to-end neural network, which
then concatenate the output of the added ConvGRU unit
with some intermediate results and use them as an input
vector in the next layer. In order to detect lanes in some
challenging scenes, we design an end-to-end neural network
with double ConvGRU units to cope with it. To summarize,
the contributions of this work are the following:

• An encoder-decoder network with double ConvGRUs is
proposed in this work.

• Both the spatial and temporal driving information are
considered in the lane detection problem.
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Fig. 1. Lane detection in challenging situations. (a) Different driving scenes.
(b) Ground truth. (c) Lane detection results of the proposed method. (d) Lane
detection results of the U-Net_ConvLSTM [4].

• A Front ConvGRU is used to extract more accurate
information on the low-level features.

• Our lane detection model can detect lane lines in chal-
lenging scenes such as curves, junctions, occlusions due
to vehicles and so on.

The remainder of this paper is organized as follows.
Section II reviews the related lane detection research work.
Section III describes the proposed network. Section IV reports
the designed experiments and analyzes the results. The effects
of our proposed model are also investigated in this section.
Section V discusses some problems encountered during the
training and testing processes. Section VI concludes our work.

II. RELATED WORK

In the past two decades, a number of studies on lane detec-
tion have been published. These methods are mainly based on
classical image processing and deep learning methods. In this
section, some existing works on lane detection and prediction
are reviewed briefly.

A. Lane Detection Based on Classical Image Processing
Although roads are structured, the lane lines on roads vary

for a moving car. With respect to traditional lane detection,
Borkar et al. [13] utilized the Inverse Perspective Transforma-
tion (IPM) to transform images, then used a Random Sample
Consensus (RANSAC) algorithm to remove interference, and
last, adopted the Kalman filter to complete the lane line
prediction. Aiming at the multiple lane problem, a Bayes
filtering method based on multi-objects was studied to predict
for lane markings in bad conditions [14]. Hur et al. [15]
posed a CRFs-based method to deal with the problem that
complex urban lane situations included parallel lines but no
parallel scenes and proved the validity of their designed
algorithm through related experiments. Tan et al. [16] devised

the Improved River Flow (IRF) and RANSAC-based method
to address the curves in the changing conditions stated
above. The IRF was used to obtain feature points, and the
RANSAC calculated the curvatures that were utilized to fit
the curved lane lines in the postprocessing phase. From the
color-information point of view, Chiu et al. [17] merely
addressed lane detection as a classification problem. They
extracted color-based segmentation information with the help
of probability knowledge, and applied a quadratic function
to find out lane boundaries. Finally, both the extracted infor-
mation and boundaries were used together to detect lane
lines. To handle the challenge of inner-city scenes without
distinguishing ego-lane scenes, Kuhnl et al. [18] designed an
approach based on confidence maps. The confidence maps
were used as the basic classifiers to produce spatial ray features
which were calculated and used to determine the existence
of ego-lanes. Considering both the light intensity and width
of lane markings, Liu et al. [19] combined a local threshold
segmentation algorithm and Hough transform with a few
subsidiary prerequisites to detect lane markings.

B. Lane Detection Based on Deep Learning
Deep learning-based approaches have been the mainstream

in recent years. These methods can be broadly divided into two
categories: classification-based lane detection and semantic
segmentation-based lane detection.

Considering the spatial structures of lane markings, Li et al.
constructed a deep neural network that consisted of a mul-
titask deep convolutional network and a recurrent neural
network [20]. The former detected the target and its geometric
attributes, including its location and orientation. The latter
dealt with the spatial visual cues distributed in an object.
Last, their outputs were combined together to produce lane
prediction and recognize the lane markings. Kim et al. [21]
mixed a simple CNN framework and the RANSAC algorithm
to detect lanes and lane markings. For simple road scenes, they
only used the RANSAC algorithm to check the lane markings.
For complex scenes that included roadside trees, fences, etc.,
they adopted the CNN to measure the lane markings after the
RANSAC processing. Although semantic segmentation is a
common lane detection method, Ghafoorian et al. [22] thought
that some lanes can not be treated as pixel-wise classification
in semantic segmentation, hence, they proposed the EL-GAN
network to conduct lane detection. The EL-GAN network
can produce a structure-preserving output that stabilized the
training process and further improved the model performance
according to their experimental results. When running on the
road, the first aim of the autonomous driving was to position
its own ego-lanes and side lanes. Chougule et al. [23] formed
it as a detection and classification problem, and they combined
a CNN network with regression approaches to conduct training
according to that idea. Their experiments showed that the
trained model cooperatively worked well at recognizing thin
and elongated boundaries, especially occlusions caused by
vehicles. Chen et al. [24] proposed a different method using
common approaches. They constructed an end-to-end network
that output a steering angle using raw image as the input,
and the steering angle can be directly used to operate the
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Fig. 2. Architecture overview. FCGRU: Front ConvGRU. MCGRUs: Middle ConvGRUs.

car and keep the self-driving car in its lane. A study by
Lee et al. [25], established a VPGNet framework to predict
vanishing points by training their proposed neural network,
and it further detected and classified lanes and road markings
in the following challenging scenes: no rain, rain, heavy rain,
and night. Due to complex scenes stated previously, there was
no existing benchmark dataset that can be used when they
evaluated the validity and accuracy of their proposed model,
therefore, the authors designed their own dataset that consisted
of 20,000 images with 17 classes. Finally, the experiments
showed the validity of their proposed algorithm.

Increasingly more deep learning methods based on seman-
tic segmentation have been applied for lane detection.
Yeongmin et al. [26] proposed a lane detection framework
(named PINet) that includes several branches, which roughly
divided the whole lane detection task into three parts. The
first was to extract the features of input images with the
help of hourglass network [27], and produced three results,
including confidence, offset, and feature. The second was to
use confidence and offset to predict the exact points, and
distinguished the predicted exact points into each instance.
The last is to generate the smooth lane by applying the post
processing technology. Neven et al. regarded lane detection
as an instance problem, and built a LaneNet framework that
consisted of two subneural networks, including an embedding
branch and a segmentation binary branch [28]. The former
generated a pixel embedding, which was further processed
using a discrimination operation in order to obtain clear
and accurate pixels for each lane. The latter produced a
binary mask feature map. Both of them were cooperatively
and orderly clustered to produce the final result of LaneNet.
Furthermore, the HNet was constructed to train the parameters
for the purpose of fitting the curves when producing the final
result.

Qin et al. [29] regarded lane detection as a row selection
problem with global information. Row-based selecting helped

them reduce the corresponding computational cost, and global
information helped them handle the challenging scenes. For
lane detection in the challenging scene of a weak visual
appearance, Du et al. [30], further highlighted the feature
representation capability of the CNN via discussing different
settings in their proposed multiple encoder-decoder networks.
In semantic segmentation, the spatial relationships between
pixels were considered the main point by Pan et al. [31]. They
modified a CNN and constructed the Spatial CNN (SCNN)
framework to train a model and let the model detect the shapes
and structures of lane lines. The continuity of information
between multiple frames was considered by Zou et al. [4],
a novel hybrid deep architecture that combined CNN and the
recurrent neural network (RNN) was proposed to detect lane
lines.

III. PROPOSED NETWORK

In this section, we introduce the proposed network that fuses
an end-to-end CNN and two ConvGRUs in order to detect lane
lines in challenging driving scenes.

A. Proposed Network Description
Our network includes encoder and decoder networks. The

architecture overview of our model is shown in Fig. 2. Each of
the convolution blocks includes 2-D convolutions, batch nor-
malization [32], maxpooling, upsampling and an ReLU [33]
activation function. In the encoder phase, we add a ConvGRU
after the second convolution block. In the human brain,
we guess that the low-level features (such as colors, shapes,
boundaries and so on) should be correspondingly remembered.
Some memory related brain regions may participate in the
low-level feature extraction phase [34], [35]. Therefore, one
ConvGRU is used in the encoder phase for memorizing and
learning the low-level features. More descriptions are stated in
Section III-B. The output of the encoder network is input into
the multiple ConvGRUs, which are added to make full use of
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Fig. 3. Internal structure of ConvGRU.

spatio-temporal information of continuous driving images. The
detailed contents are also expatiated in Section III-B. Finally,
the decoder network is responsible for decoding the content as
an image that has the same size as the original input images.
Note that there is a skip connection operation similar to that of
the U-Net [36], which works between the encoder and decoder
phase in order to provide more information to obtain more
accurate predictions of lane lines.

B. End-to-End CNN and ConvGRU

The end-to-end CNN and ConvGRU have their own
strengths. Learning more about those advantages is founda-
tional and necessary for cooperatively using the end-to-end
CNN and ConvGRU to build a model for solving the lane
detection problem.

1) CNN: The ability of the end-to-end CNN has been
proved by many existing studies [12], [33], [37], [38], [39].
The end-to-end CNN architecture is better at extracting fea-
tures by convolution operations and pooling operations, espe-
cially those of regular objects. Furthermore, the end-to-end
network can obtain images with the same size as the inputs
by convolution operations and upsampling operations. Road
lanes have regular markings, and their attributes include their
location, color, width, length, and so on. Therefore, an end-
to-end CNN is more suitable for the feature extraction of lane
detection.

2) ConvGRU: The ConvGRU [12], [40], which has
the same or even slightly higher performance than the
RNN or ConvLSTM, has a simpler structure and less memory
consuming [41]. The acquisition of the current state is not
only related to the current input, but also to some extent
related to the previous moment. The internal structure of the
ConvGRU is shown in Fig. 3. It is a nonlinear time-series
model that has the computing complexity and time memory
abilities when processing spatio-temporal information. The
convolutional operations in the ConvGRU give it a stronger
feature learning ability by making the internal coefficients of
the proposed model no longer fixed. The changed coefficients
allow the model to better fit and learn the current context
when extracting features. Therefore, the last output of the
ConvGRU is the most likely information to be remembered.
The process reflects that the ConvGRU has the learning and
memory abilities.

The computational Formulas of the ConvGRU are shown in
the following:

zt = σ(W t
z ∗ xt + Ut

z ∗ ht−1 + bz) (1)

r t = σ(W t
r ∗ xt + Ut

r ∗ ht−1 + br ) (2)

h̃t = tanh(W t ∗ xt + Ut ∗ (r t � ht−1) + b) (3)

ht = (1 − zt )ht−1 + zt h̃t (4)

In the above Formulas, * means the convolution operation. zt

is the update gate of layer l at time t , which actually decides
to what extent to update when producing the final result ht at
layer l in Formula 4. r t is the reset gate at time t . Although
the driving environment conditions change over time, it is
not appropriate to leave out all previous information [4],
[12]. Because the current scene is related to its previous
moment. At this point, r t is used to control how much feature
information should be forgotten by an element-wise multipli-
cation operation with the previous hidden state information
when current candidate hidden information is calculated. �
represents the element-wise multiplication operation. h̃t is the
current candidate hidden representation that is calculated using
activation function tanh. It is used to multiply an update
gate at layer l. To be exact, most of the information of ht

comes from h̃t . ht−1 is a previous hidden-state representation
of layer l, which participates in the whole computing process
of building the final feature ht . In addition, W t

r , W t
z , and W ,

Ut
r , Ut

z , U denote different convolution kernel variables that
have different subscripts to represent the different stages. They
are used when calculating the corresponding reset gate, update
gate and current candidate hidden representation, respectively.
bz , br , and b are the biases used for adjusting the correspond-
ing outputs at different stages. xt is an input feature vector.
σ(·) represents the sigmoid operation and tanh(·) represents
the hyperbolic tangent nonlinearities.

Based on the advantages and theories of both the ConvGRU
and the end-to-end CNN, and the corresponding conjecture
described above, we choose to put two ConvGRUs in an end-
to-end CNN at different locations when designing our model,
which can be seen in Fig. 2.

3) FCGRU and MCGRUs: The FCGRU shown in Fig. 2
denotes Front ConvGRU unit located behind the second convo-
lution block in the encoder phase. At this time, the information
of the current frame is processed in the whole calculation
process of the FCGRU. In this case, the variable t equals 1,
only the current frame xt is fed into the FCGRU. The variables
xt and ht−1 have the same size B × C × H × W (B =batch
size = 6, C = 48, H = 64, W = 128). Before using the
FCGRU for the first time to extract the low-level features of the
current frame, the variable ht−1 should be initialized based on
the size of the variable xt . After that, they are used to calculate
the corresponding output ht according to Formulas 1 to 4 in
combination with the initialized weights. Both the learning
and short-term memory abilities from the internal nonlinear
attribute of ConvGRU are fully utilized to extract the low-
level features at the beginning phase of the encoding network.

The reason why we implement an FCGRU unit after
conv2_2 is based on the relationship between the low-level fea-
tures and high-level features implied by Brodmann’s relative
theories [5]–[7] and their functions in predicting fixation [42].
It has been proven that there is a certain relationship between
visual perception and memory [34], [35]. We hypothesize that
the brain memory areas (such as the hippocampus) can aid the
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Fig. 4. Low-level features of lanes. (a) Results of conv2_2. (b) Results of
the FCGRU.

primary visual cortex (such as the LGN and, V1). Before the
objects are recognized, the low-level features of objects may
also be recognized. The FCGRU can memorize the features
of lane lines more accurately. Some corresponding samples of
the abstracted feature maps are shown in Fig. 4.

The feature maps of conv2_2 (Fig. 4 (a)) and the outputs of
the FCGRU (Fig. 4 (b)) are shown in Fig. 4. It is not difficult
to see the difference between them. In Fig. 4 (a), the CNN
has the feature extraction ability from images and obtains a
large number of features about the target lane lines using the
repeated convolution operations and maxpooling operations.
However, the generated low-level features from the CNN may
be not clear for the lane detection task in the initial stage of
the encoding network. There is plenty of interference signals
in them. There is no doubt that a large amount of interference
information is likely to affect the training model of the neural
network, especially its weight parameters. It may further affect
the generation of the final lane detection results. In Fig. 4 (b),
the low-level features of the lane lines are obvious. There are
few traces surrounding them.

The Middle ConvGRUs (MCGRUs) shown in Fig. 2 is
implemented between the encoder and decoder phases. It has
a different function than the FCGRU. It takes K continuous
frames as its input and gets one output corresponding to the
K th frame. The input frames can provide a wealth of spatio-
temporal information about lane lines. As a matter of fact,
it is with this point in mind that the MCGRUs located in
front of the decoder network are used to extract the high-level
features by making the best of the long-short-term memory
ability. During this feature extraction process, when we take 5
(K = 5) continuous frames into the MCGRUs, it implies the
variable xt represents different features of different frames at
different time (t = 1, 2, 3, 4, 5). At this point, the variables xt

and ht−1 have the same size B ×C ×H ×W (B =batch size =
6, C = 128, H = 8, W = 16). When the variable t equals
to 1, the calculation process is similar to that of the FCGRU
unit. At this moment, xt and ht−1 use the same content in the
process of calculating low-level features. When the variable t
equals to 2, xt represents the features of the second frame, and
ht−1 represents the output of the previous frame. Until t equals
to 5, the corresponding features of lane lines in the 5th frame is
predicted. Obviously, xt and ht−1 are truly different from their
previous moments in the process of calculating and producing
the features by using the MCGRUs. Through the analysis
of Formulas 1 - 4 and the comparison of the above features
in Fig. 4, it follows that the ConvGRUs can accurately and
effectively obtain the lane features by calculating the variables
in the above Formulas.

TABLE I

NETWORK ARCHITECTURE PARAMETERS

C. Implementation Details

1) Network Details: The proposed network is used for the
lane detection task. At the beginning, K continuous image
frames (K = 5 in our work) are input into the convolution
blocks of the encoder network. The outputs of conv2_2 are fed
into the FCGRU. Then, the outputs of the encoder network are
taken into the MCGRUs. More useful and accurate features are
further to be extracted by dealing with spatio-temporal signals.
In a word, the encoder network is primarily responsible for
extracting features converting larger images into the specified
sized images, increasing the number of channels and iteratively
adjusting the weights in order to minimize the loss.

The outputs of the MCGRUs are input into the decoder
network that rebuilds and highlights the features using decon-
volution and upsampling operations at pixel-level granularity.
Finally, the lane prediction result Pt (k) with the same size
as the original input frame is obtained after the decoder
phase. The detailed parameters of the entire network are listed
in Table I.

2) Training Details: After constructing the proposed net-
work, it is trained by repeatedly updating the weight parame-
ters and loss based on the deviation between the ground truth
and output from the proposed network. We set the input size
to 128 × 256, the batch size to 6 due to the limitation of our

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on February 27,2021 at 11:00:23 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Sample input frames of different time intervals, the details of which are shown in Table II. (a) same interval (0.15s), and (b) different intervals.

GPU and the learning rate to 0.001. The RAdam [43] optimizer
is used in our work. Compared with the performance of the
SGD [44] and Adam [45], the corresponding loss of RAdam is
the lowest in our experiments. The cross-entropy loss function
is used to calculate the loss in our work. The model is trained
on a platform with an Intel Core i7-6800k CPU, 64GB of
RAM, and one NVIDIA TITAN Xp 12GB GPU.

IV. EXPERIMENTS

In this section, the robustness and accuracy of our proposed
lane detection model are verified using extensive experi-
ments. We qualitatively and quantitatively compare several
state-of-the-art deep learning models, such as PINET(32 ×
16) [26], PINET(64 × 32) [26], Res18-Qin [29], Res34-Qin
[29], SCNN [31], LaneNet [28], U-Net [36], SegNet [46],
U-Net_ConvLSTM [4] and SegNet_ConvLSTM [4], with our
model.

A. Dataset
1) TuSimple Dataset: The TuSimple lane marking challenge

dataset [47] is used for training and testing our network. The
TuSimple dataset consists of 3,626 training and 2,782 testing
clips that are captured at different time periods under different
weather conditions. There are 20 continuous frames in each
one-second clip. Only the lane lines in the 20th frame are
officially marked as the ground truth in each clip. There are
2-5 lane lines in each labeled frame as the driving environment
scenes change due to the different conditions on different
sections of road, such as crossings, intersection merging and
splitting, curved lane, and so on. The K continuous frames
(K = 5 in this work) of each clip are used as the input
to train our model, and the output of K th frame is used to
identify the lane lines by comparing it with the fixed label
frame. The spatio-temporal information of previous K frames
is extracted by double ConvGRUs to predict the lanes of
K th frame. We sample K different frames from each clip
to construct new datasets in order to verify the performance
of the proposed method when using different spatio-temporal
information. Table II shows the different frames from each
clip at different time intervals. Dataset 1# has the same time
interval between adjacent frames. Dataset 2# has different time
intervals between continuous frames. Some sample images of
the two datasets are given in Fig. 5, we can clearly see that
different frame sequences contain different information.

2) Unsupervised LLAMAS Dataset: Another dataset used
for training and testing is Unsupervised LLAMAS dataset
released by [48]. It is one of the largest public lane marker

TABLE II

RECONSITUTION DATASET FROM ORIGINAL TUSIMPLE DATASET

TABLE III

RECONSITUTION DATASET FROM ORIGINAL UNSUPERVISED

LLAMAS DATASET

datasets and consists of 100,042 images. Among them,
79,113 images are used for training and 20,929 images are
used for testing. Because of that there are no corresponding
labels for 20,929 images, we divide 79,113 into two groups
in our experiments, 58,269 images are used for training and
20,844 images are used for testing. Unsupervised LLAMAS
dataset is different from TuSimple dataset, its characteristics
are as follows: (1) the ground truth of lane lines are auto-
matically labeled by the software. (2) the number of pixels
occupied by the marked lane lines varies according to its
distance and location. (3) the marked lane lines are intermittent
and sporadically distributed. (4) for each image, the number of
positive pixels is very small, about 2%. These characteristics
may pose a great challenge to the models that are trained and
tested on it.

We build two new datasets according to the original Unsu-
pervised LLAMAS dataset. Table III shows more information.
Dataset 1# has the same time interval between frames and each
consecutive five pictures is taken as a record in it. In dataset
1#, 11,650 records are used for training and 4,168 records
are used for testing. Dataset 2# has different time intervals
between frames and each consecutive fifteen pictures is taken
as a record in it. In dataset 2#, 3,880 records are used for
training and 1,369 records are used for testing.

B. Qualitative Evaluation

1) TuSimple Dataset: A qualitative evaluation is the most
intuitive analysis for evaluating the performance of one algo-
rithm. In Fig. 6, we present some lane detection results of our
model and other state-of-the-art deep learning models in the
challenging scenes. All of the results from the different models
are not post-processed. Those challenging scenes displayed
in Fig. 6 are quite often the combinations of multiple scenarios,
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Fig. 6. Qualitative evaluation of our proposed model and other state-of-the-art deep learning models on TuSimple dataset. All of the detection results are
not postprocessed. (a) Input frames. (b) Ground truth. (c) PINET(32 × 16). (d) PINET(64 × 32). (e) Res18-Qin. (f) Res34-Qin. (g) SCNN. (h) LaneNet.
(i) SegNet. (j) SegNet_ConvLSTM. (k) U-Net. (l) U-Net_ConvLSTM. (m) Proposed model.

TABLE IV

ROAD CONDITIONS IN EACH INPUT FRAME SHOWN IN FIG. 6

as shown in Table IV. We detail the challenging scenes
including broken lines, solid lines, unclear broken lines, yellow
lines, no lines, occlusions, curves, intersections and splits in

the left and right-side roads, respectively, in Table IV. For
example, the first input frame shown in Fig. 6 includes a
solid line, a shadow, and a broken line. We hold that all the
properties of the lane lines and driving environment scenes
should be considered when comparing the performance of each
model. The robust algorithms should work well in different
challenging scenes.

The properties of lane lines may mainly include the follow-
ing aspects:

• The number of lane lines should not be mispre-
dicted or misjudged. A wrong detection or missed detec-
tion may lead to the consequence that the self-driving
car considers unreachable areas as drivable areas. If that
occurs, there is no doubt that such an incorrect predic-
tion would surely results in unimaginable consequences.
As shown in the first and second columns of Fig. 6,
the proposed model can clearly detect the number of lane
lines. However, other models more or less cannot detect
the complete lane lines.
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Fig. 7. The details of lane detection results when occlusion exists.
(a) Input frames. (b) PINET(32 × 16). (c) PINET(64 × 32). (d) Res18-Qin.
(e) Res34-Qin. (f) SCNN. (g) LaneNet. (h) SegNet. (i) SegNet_ConvLSTM.
(j) U-Net. (k) U-Net_ConvLSTM. (l) Proposed model.

• The location of each lane line should be exactly the
same as the corresponding ground truth. It can be
seen from Fig. 6 that, compared with other models,
the results of the proposed model (Fig. 6(m)) are almost
identical to those of the corresponding ground truth
(Fig. 6(b)). In Fig. 6, U-Net_ConvLSTM either does not
predict the locations of lane lines or partly obtains a
few lines relative to the ground truth in the challeng-
ing scenes. The same problems occur in PINET(32 ×
16), PINET(64 × 32), Res18-Qin, Res34-Qin, SCNN,
LaneNet, SegNet_ConvLSTM, U-Net, and SegNet in
their own corresponding predicted images.

• The continuity of lane lines requires an unbroken pre-
diction from the start to the end of the lane line. If there
are some discontinuous lane lines in the prediction, a self-
driving vehicle may mistake the missing part as a drivable
area. In Fig. 6, we can see that most of the lane prediction
results from other models are discontinuous. Compared
to the results from our model in Fig. 6, our results have
good continuity, which is the same as the ground truth.

• The driving environment scene should be considered
when qualitatively evaluating the performance of one
algorithm. Apparently, an algorithm not only performs
well in common scenes but, more importantly, also
performs well in challenging scenarios that often have
higher requirements for models because those scenes are
often combinations of different driving scenes. In Fig. 6,
the conditions in each input frame are different from
the others, which are listed in Table IV. Experiments
show that the proposed algorithm can accurately and
completely detect all the lines even in the challenging
scenarios. Furthermore, other models more or less lose
something in the challenging scenes. Taking the occlusion
in the eighth column of Fig. 6 as an example, our
proposed method accurately detects the lines. However,
either a part of the lines or rougher lines are detected
by the other models. The details of the prediction results
are shown in Fig. 7. We can see that the prediction lane
results of other models are rougher or missing.

2) Unsupervised LLAMAS Dataset: As shown in Fig. 8,
for those models whose output results are discrete points,
including PINET(32 × 16), PINET(64 × 32), Res18-Qin and
Res34-Qin, their detection results are still not good. For the

Fig. 8. Qualitative evaluation of our proposed model and other state-of-
the-art deep learning models on Unsupervised LLAMAS dataset. All of the
detection results are without postprocessing. (a) Input frames. (b) Ground
truth. (c) PINET(32×16). (d) PINET(64×32). (e) Res18-Qin. (f) Res34-Qin.
(g) SCNN. (h) LaneNet. (i) SegNet. (j) SegNet_ConvLSTM. (k) U-Net.
(l) U-Net_ConvLSTM. (m) Proposed model.

Unsupervised LLAMAS dataset with fewer labeled pixels,
the performance of U-Net and SegNet is no longer the same
as they are on TuSimple dataset, and they detect only a small
number of lane lines. SCNN, LaneNet, SegNet_ConvLSTM,
U-Net_ConvLSTM and our proposed model can detect most
lane lines. But for the detection results, as far as the width,
location and number of lane lines, our proposed model is better
than other models.

C. Quantitative Evaluation
1) TuSimple Dataset: A quantitative evaluation is usually

used for evaluating the performance of algorithms in computer
vision research. To accurately and comprehensively evaluate
the algorithms, we choose four evaluation metrics to eval-
uate our proposed method: Accuracy, Precision, Recall and
F1-Measure. Accuracy shown in Formula 5 involves the cor-
rect judgment of pixels and is quite often used for evaluating
the overall performance [49], [50]. True Positive means that
the forecasted results are consistent with actual results. Here,
True Positive represents the number of lane pixels that are
correctly predicted as lanes. Similar meanings exist for True
Negative, False Positive and False Negative. True Negative
denotes that a pixel’s value in the predicted image equals
the corresponding background value, which means that the
corresponding pixel point does not belong to any lane lines.

Accuracy = True Posi tive + True Negative

T otal Number o f Pi xels
(5)
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TABLE V

PERFORMANCE COMPARISON OF OUR MODEL WITH STATE-OF-THE-ART
MODELS ON THE TUSIMPLE DATASET

As seen from Table V, the accuracy value of proposed
model is very close to that of U-Net_ConvLSTM, which is
the most accurate one, but the proposed model is still more
accurate than the others. Accuracy is a reference metric for
evaluating the lane detection task, and its value initially reflects
the rationality of the proposed network model. In our proposed
network model, we treat lane detection as a binary classifica-
tion task. The number of pixels belonging to the background
is far greater than the number belonging to the ground truth
in the dataset. Therefore, we may obtain a higher accuracy
than the one in Table V by adjusting the weights of both
the background and ground truth when training and testing
the model. However, for an algorithm, the wrong judgment of
pixels cannot be ignored. Precision and Recall are two other
metrics that reflect a fairer and more reasonable comparison
when calculating the performance of an algorithm [4], [31].
They are defined as

Precision = True Posi tive

T rue Posi tive + False Posi tive
(6)

Recall = T rue Posi tive

T rue Posi tive + False Negative
(7)

False Positive represents the number of pixels belonging to
the background that are wrongly predicted as the ground truth.
False Negative represents the number of pixels belonging to
the ground truth that are predicted as background. As exhibited
in Table V, the Precision of our proposed model is very close
to the highest value of LaneNet. The Recall of our proposed
model is slightly lower than that of SegNet_ConvLSTM.
Combined with the qualitative evaluation, the higher Preci-
sion is mainly due to the following predicted items: (a) the
number of lane lines, (b) the position of each lane line, and
(c) the continuity of the lane lines. The correct prediction
directly reduces those misjudged operations which increases

the number of False Positives. With respect to the model’s
structure, a further explanation of the high Precision and
Recall of our proposed model can be summarized as follows:
First, the nonlinear ConvGRU makes our model have a better
information extracting ability from its input vector. Second,
the FCGRU can effectively extract and remember the low-
level features shown in Fig. 4. The further extracted features
can compensate for the missing information caused by the
convolutional operations. Finally, the MCGRUs make full use
of the spatio-temporal information by processing K frames
and adjusting the relative weights of the convolutional kernels.

The F1-Measure, as a benchmark that balances Precision
and Recall, is also used to evaluate the performance of our
proposed model. The F1-Measure metric is defined as

F1 − Measure = 2 ∗ Precision ∗ Recall

Precision + Recall
(8)

In the F1-Measure, the weights of Precision and Recall are
equal. The experimental results show that the F1-Measure is
directly related to the performance of the algorithm. As shown
in Table V, the F1-Measure of our proposed model is the
highest among all the models. The experiments show that
it is impossible to increase the F1-Measure by increasing
only the Precision or Recall. Only when both Precision
and Recall increase will the F1-Measure increase. Therefore,
although U-Net, SegNet and SegNet_ConvLSTM have the
higher Recalls or LaneNet has the higher Precision, their
F1-Measures are lower than our mode’s F1-Measures. From
the above analysis, regardless of whether we conduct a qual-
itative evaluation or a quantitative evaluation, our proposed
model outperforms the other state-of-the-art deep learning
models. We can conclude that the proposed model can detect
the lanes more precisely than other models under the condi-
tions of challenging scenes. Furthermore, we further compare
the performance of our proposed model trained on dataset 1#

and dataset 2#. As shown in the last two rows of Table V,
the scores on dataset 1# are slightly higher than those on
dataset 2#. Therefore, we consider that the same time interval
between the input continuous frames leads to more favorable
results than using different time interval for the lane detection
task in our proposed model.

2) Unsupervised LLAMAS Dataset: Besides Precision and
Recall, the Formula 9 is also used to evaluate the models which
are trained and tested on Unsupervised LLAMAS dataset. The
Formulas 6 and 7 provide more information about Precision
and Recall.

AP =
U∑

p=1

(

V +1∑

q=1

(Precisionq ∗ �Recallq)) (9)

The variable AP means average precision, U means the
number of all test images. V means the number of samples
for a single image. �Recall represents a difference between
adjacent samples for the values of Recall. The variables p and
q are subscripts. In actual calculation, Recall0 is set to 0,
Precision0 is set to 1, and the variable V is set to 100.

As can be seen from Table VI, our proposed model achieves
very competitive results. The AP values of our proposed
model are close to the highest value of U-Net, but the
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TABLE VI

PERFORMANCE COMPARISON OF OUR MODEL WITH STATE-OF-THE-ART
MODELS ON THE UNSUPERVISED LLAMAS DATASET

corresponding value of Recall of U-Net is very low, less
than 0.3. As mentioned earlier, the lower the value of Recall,
the higher the value of FN, which means the more posi-
tive points are considered as the negative points. Compared
with other models, the evaluation metrics calculated by our
proposed model always keep a balance. When the values
of Precision and Recall are synchronously improved in our
proposed model, the difference between them is always kept
in a certain range, while the corresponding difference between
Precision and Recall from other models fluctuates greatly.
For example, the values of AP from SegNet_ConvLSTM and
U-Net_ConvLSTM are closer to our proposed model, but the
difference between Precision and Recall from them is 0.14 and
0.07, respectively, while the difference from our proposed
model is 0.05 (0.015).

These experimental results further verify the calculation
Formulas, and further explain that the output of a model is
closer to the ground truth only when all the relevant evaluation
metrics are improved and the difference between them is small
and within a certain range.

D. Ablation Study

We investigate the effects of the model with only MCGRUs
(shown in Table VII) and also perform extensive experiments
to investigate the effects of different locations of FCGRU
(shown in Table VIII), e.g., embedding FCGRU into the low
level layers (such as conv1_2) or the high-level layers (such
as conv5_2).

The performance of the model with only MCGRUs is
discussed in Table VII. The experimental results show the
following: (1) the performance of same time interval is better

than the different time interval. The reason may be that equal
interval between frames makes the missing information present
regularity and stability, which enables ConvGRUs to look back
in the past better and predict the future frame well. However,
the sequential and unequal interval between frames fluctuates
greatly and destroys the regularity and stability of information.
(2) under the same conditions, the performance of the model
with FCGRU and MCGRUs is better than that of the model
with only MCGRUs. The possible reason is that FCGRU can
try its best to memorize and retain the most likely features of
lane lines (as shown in Fig. 4 (b)).

We have discussed the experimental results of different
locations of FCGRU in our proposed model, as shown
in Table VIII. The experimental results show the following:
(1) When trying to embed FCGRU into the lowest level
layer (such as conv1_2), the performance of the corresponding
model is not ideal. The possible reason is that the low-level
feature layer mainly contains local information. (2) When
trying to embed FCGRU into the highest level layer (such
as conv5_2), the performance of the corresponding model
is not ideal. The possible reason is that the highest-level
feature layer mainly contains global information. (3) When
trying to embed FCGRU close to a middle-level layer (such
as conv2_2), the performance of the corresponding model is
ideal. The possible reason is that the FCGRU may act as a
connector between the local and global information. Therefore,
we set the FCGRU at a layer (after conv2_2) in our work.

V. DISCUSSION

A. The Drawbacks of Ground Truth

There are some problems encountered in the experiment
that may directly affect the evaluation results of our model.
One problem is due to the official lane labels. In some
cases, the official lane labels do not exactly match the actual
conditions in the TuSimple dataset. For example, as shown
by the second, third and last rows in Fig. 9, the number
of lane lines marked in the testing dataset does not match
the number of lane lines that obviously exist in the original
images. Such labels, which are inconsistent with the actual
conditions, undoubtedly cause some of the ground truth to be
treated as background during the testing process. Nevertheless,
the proposed model detects those extra lanes.

The paradox stated above directly leads to more False
Negative and a lower Recall. It may aggravate the changes of
the internal weights which further make the proposed network
difficult to stabilize when training and testing the model.
Nevertheless, our proposed network can still detect the lane
lines shown in the second, third, and fourth rows of Fig. 9.
However, according to the facts, the extra predicted results are
considered to be False Negative pixels when calculating the
metrics. Obviously, for an algorithm, this reduces the values
of the evaluation metrics.

Another problem is that the lengths of the labeled ground
truth are shorter than the actual lengths in the original images.
However, the proposed model can detect more information
than the marked length as shown in the first row of Fig. 9.
Nevertheless, these extra predicted parts are also considered to
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TABLE VII

PERFORMANCE COMPARISON OF DIFFERENT MODULE IN PROPOSED NETWORK ON TUSIMPLE TEST DATASET

TABLE VIII

PERFORMANCE COMPARISON OF DIFFERENT LOCATIONS OF FCGRU IN PROPOSED NETWORK ON TUSIMPLE DATASET

Fig. 9. Discussion of the labeled lanes in the TuSimple dataset. (a) Input
frames. (b) Ground truth. (c) Prediction results of the proposed model.

be False Positive pixels when calculating the quantitative eval-
uation, which also decreases the values of the corresponding
metrics to some extent.

B. The Selection of K Continuous Frames

In our work, K continuous frames are input into the net-
work, where K is set to 5. Although the length of continuous
frames is fixed to K , we have considered the different time
intervals of input to make up for the lack of different K .
Actually, K = 5 is a more appropriate value on the TuSimple
and Unsupervised LLAMAS datasets caused by the selections
of different time intervals. In addition, the different frames
from each clip (7 values of K ) at different time intervals also
have been discussed to verify the performance of our model on
TuSimple dataset. As shown in Table IX, we can see that the

TABLE IX

RESULTS ON TUSIMPLE DATASET WITH DIFFERENT

K CONTINUOUS FRAMES

evaluation scores are the highest when K = 5, which indicates
that K = 5 is more reasonable in our work.

VI. CONCLUSION AND FUTURE WORKS

In this paper, a novel spatio-temporal network with double
ConvGRUs is proposed for reliably detecting lane lines in the
challenging scenarios. The spatio-temporal network includes
encoder and decoder parts. The continuous frames are input
into the encoder network. Considering that the low-level
features extracted by the CNN contain much interference
information and the advantages of the ConvGRU, a Front
ConvGRU (FCGRU) is added to the encoder network to go
a step further to extract features from the interfered low-level
features. After that, we concatenate the filtered features from
the FCGRU with the interfered features from the CNN together
into the next layer of the encoder network. The outputs of the
encoder network are input into the other Middle ConvGRUs
(MCGRUs) to extract more effective features by dealing with
the spatio-temporal information of multiple continuous frames.
At last, the decoder network completes decoding using decon-
volution and upsampling operations. Finally, the predicted
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results corresponding to K th frame are obtained. After training
the model, we validate our network on the TuSimple and
Unsupervised LLAMAS datasets, which are both designed for
autonomous driving deep learning methods. Qualitative and
quantitative evaluations are used to evaluate the results in the
challenging conditions. The experimental results show that
our proposed model outperforms other state-of-the-art deep
learning models.

In this work, a lane detection model, which is an important
research branch in autonomous driving, has been proposed.
This work has the following potential positive impact in the
society. This work may provide a performable lane detec-
tion technology and some driving decision assistance for
autonomous driving cars or ADASs. At the same time, this
work may have some negative consequences because the deep
learning algorithm relies heavily on datasets, and our model
is trained on two lane detection benchmarks that lack some
weather conditions (such as fog, snow, rain and sandstorms).
Furthermore, we should be cautious of the result of failure
of the algorithm which could cause unsafe driving judge-
ments or the occurrence of traffic accidents. In the future work,
we will try to optimize the structure of proposed model to
improve the lane detection accuracy. We will further consider
improving the feature representation ability of our model, such
as adding spatial pyramid pooling (SPP) to obtain multi-scale
feature maps, or dilated convolutions to increase the receptive
field to get more feature information of lane lines. Moreover,
more lane detection datasets including complex driving scenes
(such as nighttime, crowded road and bad weather) will be
trained and tested by our model to improve the robustness
of our proposed model. Some latest other complex driving
scenes datasets, such as Vehicle Detection in Adverse Weather
Nature (DAWN) [51], also could be developed to solve the
lane detection problem.
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