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Abstract

Lane detection (LD) under different illumination conditions is a vital part of lane departure warning system and vehicle

localization which are current trends in the future smart cities. Recently, vision-based methods are proposed to detect lane

markers in different road situations including abnormal marker cases. However, an inclusive framework for driverless cars

has not been introduced yet. In this work, a novel LD and tracking method is proposed for the autonomous vehicle in the

IoT-based framework (IBF). The IBF consists of three modules which are vehicle board (VB), cloud module (CM), and

the vehicle remote controller. The LD and tracking are carried out initially by the VB, and then, in case of any failure, the

whole set of data is passed to CM to be processed and the results are sent to the VB to perform the appropriate action. If

the CM detects a lane departure, then the autonomous vehicle is driven remotely and the VB would be restarted. In addition

to the proposed framework, an illumination invariance method is presented to detect lane markers under different light

conditions. The simulation results with real-life data demonstrate lane-keeping rates of 95.3% and 95.2% in tunnels and on

highways, respectively. The approximate processing time of the proposed method is 31 ms/frame which fulfills the real-time

requirements.
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Introduction and related work

The stumbling of drivers on the road is a vital risk factor

in road safety. Therefore, driver assistance systems (DAS)

are developed, implemented, and adopted by many manu-

facturers. The LD is a essential subsystem in DAS. The main

component in vehicle localization is lane detection (LD)

which is employed in the lane departure warning (LDW)

system for DAS in autonomous vehicles. Many research

papers have reported LD related problem statements; how-

ever, few of them have addressed the deployment of LD for

the industrial purpose in an integrated framework. Using IoT

is increasing recently which yields better performance and

cheaper solutions for complicated real-life problems. Never-

theless, relying on one module to achieve road safety is not

enough in practice. Instead, an alternative solution should

be ready in place of device failure. To achieve this, a cloud

computing environment is used to enhance the model robust-

ness and to make the faster decisions. Cloud computing uses

remote resources which saves the cost of servers and other

equipment. In addition, hardware failures do not lead to data

loss because of networked backups. The architecture of the
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Fig. 1 Block diagram of the IBF

IoT-based framework (IBF) for LD and tracking is presented

in Fig. 1. Simplified vanishing point detection method is

employed in [1], and a scan-line method is applied to detect

lane ridge features. Multi-LD algorithm that is robust to

the challenging road conditions has been proposed in [2].

An adaptive threshold has been applied to extract strong

lane features from images with obstacles and barely visi-

ble lanes. Then, an improved RANdom SAmple Consensus

algorithm has been introduced using the feedback from lane

edge angles and the curvature of lane history to prevent false

LD. Dynamic ROI extraction, edge detection, and Hough

straight-line detection have been applied to extract the lane

line in [3]. The model predictive control has been applied

to track the extracted lane line and the front wheel steering

angle has been corrected by the fuzzy controller based on

the yaw angle and the yaw rate. Some reported articles have

addressed the issue of LD and tracking using vision-based

techniques without or with little knowledge of road geometry

[4,5]. These techniques mostly depend on the color threshold

and work well on highways and urban avenues under day-

light or white lighting conditions. YCbCr color model has

been used to focus on the most important visual information

contained in the Y component, and to reduce time complex-

ity [6]. In another method, the HSV color space is employed

to achieve an 86.21% accuracy in detection rate [7]. Under

daylight or white light conditions, the white lane markers

and yellow lane markers almost preserve individual true col-

ors. Therefore, global thresholding on different color plane

in YCbCr or HSV color model efficiently segments the color

planes to extract the lane markers. However, in the tunnel

because of the color light, the color of the lane markers does

not preserve their true colors. Hence, the global threshold-

ing methods yield poor results in the segmentation of lane

markers. Therefore, in this paper, an efficient LD method is

developed to detect the lane markers efficiently in the tun-

nel either with artificial colored light as well as on highway

under the daylight.

The general LD procedure starts with preprocessing the

input frame to remove the perspective noisy information from

the image. The preprocessing stage is followed by ROI iso-

Fig. 2 Generalized flowchart for LD scheme

lation where lane markers are likely to be presented. Within

ROI, extraction of features of lane marker is carried out.

The lane marker detection stage is divided into two cate-

gories, feature-based and model-based. The feature-based

LD methods and lane marker candidates are identified by

some features like color, shape, and orientation. Whereas, in

the model-based LD methods, search for lane markers sys-

tematically according to either the geometric measurements

perceived in the road scene or the persistent information

between successive frames. The candidate lane markers

extracted from the previous stage are then validated to reduce

the false-positive rate. Either linear or curved lane fitting

is applied to validate lane markers as the output of the LD

process. This output is used for many purposes including

lane departure warning, automatic lane centering, and adap-

tive cruise control systems. In this paper, a model-based lane

marker detection is proposed to adress the problem arrises

due to the color light in tunnel. Figure 2 shows the general-

ized flowchart of LD. Image preprocessing is carried out to

reduce the distortion and noise present in the captured image.

Distortion is caused by the perspective effect when acquir-

ing the image using normal cameras. To reduce the distortion,

inverse perspective mapping (IPM) is employed to convert

the input image into the bird’s view image [2,8–11]. The IPM

is also used in calculation of lane width between left- and

right-lane boundaries [12]. Despite its efficiency, the IPM is

sometimes avoided because of its significant processing time

of around 35.3 ms/frame [13]. The LD potentiality is affected

by noise due to different surrounding illumination sources,

on-lateral-road objects, and weather conditions. A shadow

invariant method is introduced [14] using the maximally sta-

ble extremal region (MSER)-based approach in the blue color

channel as well as using Hough transform. Employing the
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averaging of the pixel values of preceeding frames approach

is introduced in [2] to improve the low-quality lane mark-

ers. Noise smoothing Gaussian filter to remove the noise of

the mounted camera is dealt in [15]. The image pyramid

approach is adopted in [16] to diminish the details and to

present the high-frequency data. A four-level Gaussian pyra-

mid model is employed to reduce the image dimensions and

to make the edge drawing lines algorithm works effectively

for the lowest resolution image at the top level of pyramids.

In [17], the ROI containing lane markers is considered as the

bottom third of the input image. The extraction of vanishing

point (VP) is used in [2,8,12,14,18–22,26]. The VP is con-

sidered to be the point in which the most extracted lines of

image are intersected. Adaptive ROI based on the longitudi-

nal velocity changes of the vehicle is introduced [3] in which

the upper boundary line moves down and up according to

autonomous vehicle speed. The ROI extraction based on the

minimum safe distance between the ego vehicle and the vehi-

cle in front of it is proposed in [23]. In this paper, authors have

reported that 150-pixel height is enough to cover 35 meters

ahead when the vehicle speeds at 110 km/h. Generally, lane

markers within the ROI are extracted using either predefined

model or features. In feature-based LD scheme, lane marker

candidates are initially defined by some features such as the

orientations to x-axis [8], the width–height ratio [14], length,

angles, and y-intercept in Hough transform [11]. The model-

based LD techniques search for lane markers in a systematic

method according to either the geometric measurements per-

ceived in the road scene or the persistent information between

successive frames. The temporal–spatial information match-

ing method is suggested in [24]. In this paper, the top-view

binary image is searched linearly for lane markers and, there-

after, the extracted markers are fitted using a cubic B-spline

method. An improved version of the random sample consen-

sus (RANSAC) algorithm is dealt in [10]. In this algorithm,

two lane fittings, straight-line fitting model in the near field

to the vehicle, and third-degree curve fitting for the far-field

models are presented. The RANSAC is also employed in

[12] to reduce the false-positive rate by removing the out-

liers from the lane candidates pool. A sliding window-based

approach is used to extract the left- and right-lane markers

using the highest peaks from the sliding window histogram

for a horizontal scan line. The extracted lane markers are

then connected using a polynomial fitting method and the

final output is validated using a multi-sensor fusion method.

A parallel constraint is applied [25] to an open snake model to

detect broken lane markers. The lateral curvatures of the road

are estimated in [15], and subsequently, the control points are

extracted using vector fuzzy connectedness (VFC) technique.

Road boundaries are built using a non-uniform B-spline inter-

polation method.

In few articles, the authors report the test results using

their LD methods in tunnels [19,26]. A real-time illumination

invariant LDA (IILDA) using a third-order polynomial func-

tion of the longitudinal distance between vehicle and lane is

proposed in [26]. In [26], it is reported that the average detec-

tion rate in the tunnel under daylight and in the night time is

91.17% in approximately 34.3 ms/frame. The lowest detec-

tion rate for this method observed when entering the tunnel

is 87.4% because of sudden changing in illumination. A two-

stage feature extraction (TSFE) method is proposed in [19] to

detect two boundaries of lanes. To enhance robustness, lane

boundary is taken as collection of small line segments. There-

after, a modified Hough transform is applied to extract small

line segments of the lane contour, which are then divided

into clusters using the density based spatial clustering of

applications with noise clustering algorithm. Then, the lanes

are identified by curve fitting. False-negative test cases are

reported in [19] when exiting from tunnel to the high way.

A field-programmable gate array (FPGA)-based dual-stage

lane detection (DSLD) algorithm [31] to cope with real-world

challenges such as cast shadows, occlusion of lane markers,

brightness variations, wear, etc. In the first stage, Sobel oper-

ator and adaptive threshold are used to extract lane edges,

followed by Hough transform to extract the road markers is

proposed. The second stage of the algorithm operates on the

original grayscale image and identifies stripe features near

several candidate points with highest probabilities to find the

landmarks. These extracted features are then used to detect

the lane boundaries with high accuracy.

The review of the literature reveals that the color-based

solution alone is not enough for correct LD. Under daylight

or white light, the white and yellow lane markers almost

preserve their true colors. Therefore, global thresholding on

different color plane in YCbCr or HSV color model can effi-

ciently segment the color planes to extract the lane markers.

However, in the tunnel because of the color light condi-

tion, the color of the lane markers does not preserve their

true colors. Hence, the global thresholding methods produce

poor results in the segmentation of lane markers. To alle-

viate this problem, in this paper, an efficient LD method is

proposed to detect the lane markers efficiently in the tunnel

with artificial colored light as well as highway under daylight

condition. The review indicates that none of the previous

articles addressed this issue of development of a suitable

LD framework using IoT and cloud computing techniques

under artificial colored light in tunnels and on highways. It

may be noted that in many real-life situations, artificial col-

ored light in tunnel and highway are experienced by drivers.

Therefore, the main objective of this research is to develop a

concrete model using vision-based LD and tracking method

and cloud computing which can be used for driverless tasks

in smart cities. The proposed method is shown to be effi-

cient when testing on tunnel traffic images captured by a

vehicular onboard camera. Time complexity of the proposed

method is found to be less than that of other reported methods.
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Fig. 3 Flowchart of the proposed IBF scheme

Therefore, the proposed method fulfills one of the real-time

application requirements.

This section has dealt with the current state of vehicle

localization. It also presents the motivation and the key objec-

tive of the current investigation. Sect. 2 details the proposed

framework and its modules in detail. Sect. 3 reports the find-

ings and contribution of the proposed framework as well as

comparison with the results obtained by existing work. Con-

clusion and future extension of this work are presented in

Sect. 4.

The proposed lane detection and tracking
module on IoT framework

The architecture of the IBF for LD and tracking is illus-

trated in Fig. 1. Three modules connect each other using

a 5G network to sustain safety while autonomous driving.

The corresponding flowchart is shown in Fig. 3. The 5G

mobile networks require an end-to-end latency of within 1

ms, (including the wireless section; the required one-way

latency of the wired section, particularly in 5G mobile net-

works, is about 100 µs). The camera in the VB module

acquires the road image and passes it to the lane detection

algorithm (LDA) which detects both sides of the lane and

the captured image along with the localized lane markers are

stored in the SD card for further processing. If LDA fails to

detect the equations for lane lines, then the current image

accompanying the last stored image is sent to the CM where

the current lane markers are detected using information from

the last image. Thereafter, the amount of lane departure is

measured, and if this value is bigger than a certain thresh-

old, τ , then the overall control is delivered to man-powered

remote which controls the vehicle in the vehicle remote con-

troller (VR) module.

Vehicle boardmodule

The IoT device to be employed in the implementation of the

proposed scheme has the following specifications: Raspberry

Pi 4 Model B, 1.5 GHz 64-bit quad-core Arm Cortex-

A72 CPU, has three RAM options (2 GB, 4 GB, 8 GB),

gigabit Ethernet, integrated 802.11ac/n wireless LAN, and

Bluetooth 5.0. That enables the IoT module to execute the

computational processes fast and to give a real-time decision.

Raspberry Pi 4 Model B is installed in the vehicle, and it is

chosen, because it decodes the video using the H265 standard

and gives 4K P60 quality. Moreover, it can work at a high

temperature up to 50◦ which enables installing it outside the

vehicle compartment. The Raspberry Pi Camera Module v2

is attached with Raspberry Pi to enable video recording of

8MP for the traffic scene and to store them on the SD card to

be processed by the LDA. It is the major part of the VB mod-

ule and it does the LD tasks in tunnels and on the high ways.
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The performance of the proposed algorithm is robust and

does not get affected when illumination conditions change,

like when colored artificial light presents.

The color-based thresholding is observed to have poor

detection potentiality of lane markers under the colored light

condition of the tunnel. However, the structural features are

invariant to day light as well as colored light. Therefore,

the knowledge of lane structure is considered to extract the

structural features of the lanes in the proposed LD approach.

The vanishing point (VP)-based method is used in LDA to

identify the region of interest (ROI). Thereafter, lane markers

are extracted using textural features that are extracted using

the standard deviation filter. Lane markers are segmented

using associated geometric characteristics, and then, these

are clustered and fitted to find the formula of lateral lines

for the lane. The output of the LDA is represented in two

equations, one equation for each side of the lane, and if this

output cannot be met, then the currently captured image along

with the previous image is sent to the CM to be processed

using LD using the cloud algorithm. The flowchart of the

proposed structural feature-based LD algorithm is placed in

Fig. 4. The details of LDA are explained in the following

subsections.

The region of interest (ROI) extraction

The bottom half of the road image contains most lane seg-

ments, while the top half shows other objects not related to

lane markers. The VP-based ROI extraction is a standard

method in LD algorithms in which the ROI is considered to

be the region under the VP. The VP is defined as the point

in which the most extracted lines are intersected [26]. In this

work, first, edges are extracted from the gray image by apply-

ing the Canny method because of its robustness against noise

[27]. Second, the line segments are extracted using Hough

transform. The 2-D accumulation array with the same size

as the inputted raw image is used to get the VP coordinates.

Each cell of the accumulative array is increased by 1 when-

ever it satisfies an extracted line equation. Finally, the cell

with the maximum value is marked, and its indices are used

to identify the VP coordinates. Figures 5 and 6 demonstrate

the aforementioned steps.

Standard deviation filter

The standard deviation (SD) filter is a textural filter that

provides information on the local intensity variation. The

response of SD filter is smaller when the texture is smoother,

and hence, the SD filter is used in this paper to act as an indi-

cator of the degree of variability of pixel values in a region.

This SD filter calculates the SD for the neighbor pixels to the

pixel of interest. The SD at each pixel over a 3 × 3 neighbor-

hood on each RGB color plane of the ROI is evaluated. The

Fig. 4 Flowchart of the proposed LD algorithm

response of the SD filter at each pixel in a particular color

plan is obtained using (1):

sk (i, j) =

√

∑1
m=−1

∑1
n=−1

[

xk (i + m, j + n) − µk (i, j)
]2

[(r × c) − 1]
, (1)

where k = 1, 2, and 3 for color planes R, G, and B, respec-

tively. The mean µk value is defined as given in Eq. (2)

µk(i, j) =
1

9

1
∑

m=−1

1
∑

n=−1

xk(i + m, j + n). (2)

The symbol xk(i, j) represents the pixel at (i, j) position in

the kth color plane. Based on the response of SD filter in each

color plane, a monochromatic SD plane Sq is generated as in

[28] using Eq. (3):

Sq = 0.2989S1 + 0.5870S2 + 0.11405S3. (3)
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Fig. 5 Linear segments extraction using Hough transform. a Original

tunnel image. b Canny edges. c Hough lines. d Hough transform

Fig. 6 Vanishing point extraction. a Accumulative map. b Extracted

vanishing point

The Sq plane for highway ROI and tunnel ROI is shown in

Fig. 7c, d. From these two figures, it is observed that the SD

filter has a very significant response in smooth areas. This

variation is suppressed using the Gaussian smoothing kernel

of size 3×3 for σ = 8. The Gaussian mask and the associated

weights for σ = 8 are given in Eqs. (4) and (5), respectively:

G(x, y) =
1

2πσ 2
e
−

x2+y2

2σ2 (4)

G(3×3,8) =

⎡

⎣

0.1105 0.1114 0.1105

0.1114 0.1123 0.1114

0.1105 0.1114 0.1105

⎤

⎦ . (5)

The smoothed ROI is defined by Eq. (6) and is shown in

Fig. 8:

SRO I = G(3×3,8) ∗ Sq . (6)

Lane edge detection

The lane markers appear generally in four directions, verti-

cal, horizontal, primary, and secondary diagonal [24]. The

Fig. 7 The Sq plane for highway ROI and tunnel ROI. (a) ROI image

on the highway. (b) ROI image in the tunnel. (c) Standard deviation

filter results for (a). (d) Standard deviation filter results for (b)

Fig. 8 The smoothed ROI. (a) The smoothed ROI on the highway. (b)

The smoothed ROI in the tunnel

left and right lines for a lane are parallel in real world. More-

over, the perspective projection of these lines does not appear

in horizontal or vertical direction in the image plane [29].

Instead, they tend to give high responses for 45◦ and 135◦

filter kernels [30,31]. Some other proposed methods search

within an angle range for a better LD template matching

[18,20]. Equation (7) shows the Sobel kernels A45◦ and A135◦

used to detect the lane markers

A45◦ =

⎡

⎣

0 1 2

−1 0 1

−2 −1 0

⎤

⎦ ; A135◦ =

⎡

⎣

2 1 0

1 0 −1

0 −1 −2

⎤

⎦ . (7)
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Fig. 9 The extracted 45◦ and 135◦ edges for the ROIs. (a) On the

highway. (b) In the tunnel

Fig. 10 The binary connected components for ROI images. (a) On the

highway. (b) In the tunnel

The responses of these masks in the smoothed SD image are

as in Eq. (8)

ω45◦ = A45◦ ∗ SRO I

ω135◦ = A135◦ ∗ SRO I .
(8)

The resultant of ω45◦ and ω135◦ is given in Eq. (9):

R =
√

ω45◦ 2 + ω135◦ 2. (9)

A threshold, α, is used to binarize the final image R using

the condition given in Eq. (10):

Mi j =

{

1, i f R(i, j) ≥ α

0, otherwise.
(10)

The value α in Eq. (10) is set as 70 which is obtained by trial

and error basis. Figure 9 shows the left and right edges of

lane along with some redundant edge points not belonging

to lane edges of a highway and tunnel ROIs. These redundant

edges are further reduced through the connected component

clustering approach.

Fig. 11 θ and yi properties of a component

Connected components detection and clustering

Binary connected components are detected using the 8-

neighbor pixel connectivity. Figure 10a, b shows the different

regions based on binary pixels in Fig. 9a, b. It is observed

from these figures that the connected regions over the lane

are discontinued. Moreover, other connected regions that do

not belong to the lane would reduce the accuracy of the

lane fitting stage. Consequently, these outliers would gen-

erate false lane markers which would reduce the safety level

in autonomous vehicles. Therefore, there is a need to clus-

ter the connected components to detect the candidate lane

markers and minimize the outliers. Two parameters of each

region, component angle θ and y-axis intercept yi , are con-

sidered for the clustering the regions in Fig. 11. To calculate

θ of a region, first, the center of the corresponding region

(xc, yc) is calculated from Eq. (11), and then, the slope m

of the longest diagonal line which passes through (xc, yc) is

evaluated to measure θ as given in Eq. (13)

xc =

∑n
1 xi

n

yc =

∑n
1 yi

n
,

(11)

where (xi , yi ) refers to the i th pixel location in a region in

line segment in Fig. 11, and n is the number of connected

components of respective region. Let m be the slope of the

largest diagonal line passing through (xc, yc) of a region, as

shown in Fig. 11. This largest diagonal line can be defined

as in Eq. (12):

yi = yc − xc(tan θ). (12)

Then, the parameter θ is given by (13):

θ = arctan(m). (13)

123



Complex & Intelligent Systems

Fig. 12 Connected components clustering for ROI images. (a) On the

highway. (b) In the tunnel

Regions satisfying both conditions of Eq. (14) are marked

with same label:

∣

∣θi − θ j

∣

∣ ≤ ε1
∣

∣yi − y j

∣

∣ ≤ ε2,
(14)

where ε1 and ε2 equal 0.035 and 0.016, respectively. It is

observed from the Fig. 12 that all the clusters belonging to

a particular lane mark have similar label. Outlier clusters

not belonging to lane mark increase the false detection of

lane mark. To suppress these outliers, the regions with the

nearest orientation to 135◦ and 45◦ are considered as the

candidate lane marker regions. Therefore, any region hav-

ing an orientation between (30◦ and 60◦) or (120◦–150◦) is

considered as belonging to lane mark. Any region does not

satisfy these two conditions is deleted. If none of the lane

mark regions in Fig. 12 falls in the above orientation criteria,

then information from the previous frame is compared with

the under-processing frame.

Least-square line fitting

The least-square method finds the coefficient in such a way

that the cost function (sum of the square of the deviations)

between the data and the estimated ones are minimized. The

lane markers generally take straight-line shapes within the

ROI. Because it contains only a few portions of the road ahead

of the vehicle [21]. Therefore, a polynomial fitting of first

degree has been considered. Accordingly, the least-square

approach has chosen to achieve the instantaneous curve line

fitting. The polynomial fitting of the first degree considered

in this work may cause double lines in each side of the lane.

This problem cannot be avoided by minimizing ε1 and ε2 in

Eq. (14) which may lead to increase of the number of clusters

and, consequently, to a wrong LD. Therefore, the fitted lines

with the nearest slope angle of 45◦ and 135◦ are considered

as lane borders and the other fitted lines, if any, are discarded.

Figure 13 shows the output of the line fitting algorithm and

the final result after suppression.

Fig. 13 The line fitting results and the final result after suppression . (a)

Line fitting for ROI image on highway. (b) Line fitting for ROI image

in tunnel. (c) Suppression of final lines for ROI image on highway. (d)

Suppression of final lines for ROI image in tunnel

The proposed approach employs structural-based features

instead of the colored light feature-based thresholding for

the lane marker extraction process. The use knowledge of

the lane geometry is more potential features compared to the

color features in capturing the lane marker points. There-

fore, the proposed structure-based features efficiently detect

the lanes under colored as well as in day light conditions.

Consequently, the road image is segmented well which leads

to correct detection.

Lane tracking

Tracking helps in case of inaccurate detection or occlusion

caused by imperfect lane markers or by a vehicle which

makes lane departure at the time of image acquiring. The

Kalman filter is employed in this work to perform the lane

tracking process as it helps to converge to real values faster

than other methods. It is observed from Eq. (15) that Kalman

gain kg becomes small if inaccurate detection happens which

leads to large error, em , in measurement. Consequently, the

estimated value for t th frame becomes approximately the

same as it in the previous (t − 1)th frame. That signifies that

detection relies more on information from the previous frame

compared to that of the current ones:
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kg =
es

es + em

st = s(t−1) + kg[m − s(t − 1)]

es(t) = (1 − kg)(es(t−1)),

(15)

where kg is Kalman gain, es is the error in estimation, em is

the error in measurement, and st is the estimated value in the

current frame. s(t−1) is the estimated value for lane marker

position in the previous frame, and the m is the measured

position of lane marker in the current frame.

Cloudmodule and vehicle remote controller

The cloud module (CM) provides more reliability to the IBF,

because the possibility of hardware failure is less than it in

the VB. The main role of the CM is to differentiate between

temporal failure and crucial failure. The crucial failure occurs

when the vehicle has departed the lane which causes a non-

safety problem for the ego vehicle and the other vehicles, as

well. In such a case, the CM decides that VR should take

over the driving remotely until the destination is reached. In

case of VB failure, the CM receives two successive frames,

f1 and f2, and applies the LDA on f2. If the lane markers

are not correctly detected, then the LDA is applied on the

f1 and the amount of departure, α, is calculated. The value

of α is compared to a safe threshold, τ = 10 cm; if α ≤ τ ,

then the failure is classified as a crucial and the full control

for driving the vehicle is immediately deliver to the VR. The

VR controls the driving of the autonomous vehicle using a

secure 5G connectivity.

Experimental results

Based on the visual perception, the proposed framework effi-

ciently localizes the vehicle within the lane markers in all

the images of Figs. 14 and 15. It is also noticed that the

proposed LDA does not detect the lane markers perfectly in

case of blurred vision, small-radius curvature, and if there is

another object which has the same features as lane markers

such as footpath. In Fig. 16a, the left-lane markers are not

properly detected, which signifies that the method relies on

the information of previous frames. According to Fig. 16b, it

is observed that if lane markers are deeply curved, it produces

a wrong detection in the far field from the ego vehicle. The

cross-walk boundaries in Fig. 16c act like lane markers and

hence lead to false detection. The performance of proposed

LDA is tested using Caltech [32] and DIML [26] datasets.

Caltech contains road images for traffic scene with 640×480

resolution. The DIML contains videos with 1280 × 800 res-

olution and 15 frames per second. Three tunnel scenarios are

Fig. 14 LD results in different conditions. (a) Daylight. (b) Night time.

(c) Rainy weather. (d) Occlusion

Fig. 15 LD results in different conditions. (a) Tree shadow. (b) Tunnel

entering. (c) Inside tunnel. (d) Exiting from tunnel

considered under daylight and in the night time, entering,

inside, and exiting of tunnel. The results of different tun-

nel scenarios of the proposed LDA and a comparison with
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Fig. 16 Wrong detection cases . (a) Blurred vision. (b) Small-radius

curved lane. (c) Cross-walk ahead the vehicle

Table 1 Comparison between the percentage detection rate in the pro-

posed method and IILD [26] in tunnel scenes, DIML

Condition Tunnel scenario Proposed method IILD [26]

Day light (1000 frames) Entering 94.4 83.5

Inside 96.7 93.2

Exiting 96.1 86.7

Night time (790 frames) Entering 92.1 91.3

Inside 97.7 98.1

Exiting 94.5 94.2

Average detection rate 95.3 91.2

Bold values indicate the best values between the compared values in

one row

method reported in [26] are shown in Table 1. The correct

detection rate is obtained, and the average detection time in

millisecond per frame is calculated. The detection rate, R, is

calculated using Eq. (16):

R =
C

N
× 100%, (16)

where C is the number of true positive samples out of total

N samples. The maximum detection time of the proposed

method is 54 ms. Whereas, the average detection time of the

proposed framework is found to be 31 ms/frame which ful-

fills the requirement of real-time application. The detection

time depends on the number of redundant responses in (10)

Table 2 Comparison of detection rate of different methods

Condition Proposed method IILD [26] DSLD [31] TSFE [19]

Daylight 95.7 94 92.1 91.5

Night time 95.8 94.3 89.6 95.9

Rain 94.3 91 – 94.8

Tunnel 95.3 91.2 97.6 92

Caltech 94.9 93.6 93.8 96.5

Average 95.2 92.8 93.3 94.1

Bold values indicate the best values between the compared values in

one row

due to noise or similar structure(s) in the ROI. If the num-

ber of redundant points increases, then the time required to

extract the connected components and connected component

clustering also increases. Furthermore, when the detection

process fails it relies on the previous lane marking data. This

information is provided by the detected lane markers from

the previous frame. The time of normal LD is added to the

time of tracking which makes the detection time longer. The

detected lines have matched with the ground truth based on θ

and yi parameters. The findings from the proposed LDA are

compared with those reported methods in [19,26,31]. Table 2

shows experimental results in different weather and lighting

conditions. In the Caltech dataset, the scene is visualized

through a circular window. Commonly, the camera captures

the scene in a rectangular window. The proposed method

when uses the circular vision of this dataset of the error in

ROI extraction stage becomes high. However, the proposed

method still produces improved LD results.

Conclusion and future work

A novel vehicle localization framework is proposed in this

paper along with LD and tracking scheme. The framework

consists of three modules. The VB module is the main mod-

ule that runs the LDA using Raspberry Pi 4 Model B equipped

with a compatible camera. The second module on cloud CM

ensures the robustness of the VB and detects the lane markers

in case of any failure in VB. Moreover, the CM measures the

amount of lane departure which has been made by the vehi-

cle due to the failure and provides this information to the

VR stage, which finally controls the vehicle to save lives and

properties. A novel and illumination invariance lane detec-

tion algorithm is also proposed. The vanishing point-based

ROI extraction is employed to reduce the time complexity and

to enhance detection accuracy. The input image is filtered to

extract structural features using the standard deviation filter,

followed by the Gaussian filter to reduce noise. The can-

didate lane markers are detected using 45◦ and 135◦ filter

kernels for edge detection. The connected components are
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clustered according to the cluster slope and y-intercept. The

least-square lane fitting approach is used to form the left and

right line equations for the lane. Finally, the lane is tracked

using the Kalman filter. The experimental results demonstrate

the robustness of the proposed LDA in tunnel scenarios and

on highways, as well. The proposed framework is shown

to be more efficient than other reported works. The aver-

age detection time fulfills real-time application requirements.

But still, limitation and shortcomings exist in the proposed

scheme. The fitting algorithm used does not work well in

case of high curvature lane. The differentiation between left

and right lines of the lane is required in DAS. Therefore, the

proposed LDA needs further improvement to overcome this

shortcoming. Enhancement of blurred vision which could

happen because of shaking or under rainy weather condi-

tions needs to be addressed and solved for achieving a robust

and efficient vehicle localization framework. Furthermore,

for ROI extraction and efficient detection of curved lane,

Deep Learning methods such as RCNN, LSTM, and GAN

can also be gainfully employed which can be take up as a

future extension of the paper.
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