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Abstract 
In this paper, we proposed a new B-snake based lane 
detection algorithm. Compared with other lane models, 
the B-snake based lane model is able to describe a wider 
range of lane structures, since B-spline can form any 
arbitrary shape by a set of control points. The problems 
of detecting both sides of lane markings (or boundaries) 
have been formulated here as the problem of detecting 
the mid-line of the lane, by using the knowledge of the 
perspective parallel lines. A robust algorithm called 
CHEVP is presented for  providing a good initial 
position for  the B-snake. Furthermore, a minimum 
energy method by MMSE (Minimum Mean Square 
Energy) is suggested to determine the control points of 
the B-snake model by the overall image forces on two 
sides of lane. Experimental results show that the 
proposed method is robust against noise, shadows, and 
illumination variations in the captured road images, and 
also applicable to both the marked and the unmarked 
roads, and the dash and the solid paint line roads. 

1. INTRODUCTION 
Autonomous Guided Vehicles (AGV) have found 

many applications in the industries. In most applications, 
these AGVs have to navigate in the unstructured 
environments. Path findings and navigational control 
under these situations are usually accomplished from the 
images captured by camera mounted on the vehicles. 
These images are also interpreted to extract meaningful 
information such as positions, road markings, road 
boundaries, and direction of vehicle’s heading. Among 
many extraction methods, the lane marking (or road 
boundary) detection from the road images had received 
great interest. As the captured images are usually 
corrupted by noises, lots of boundary-detection 
algorithms have been developed to achieve robustness 

against these noises. 

boundary) detection techniques should possess are: 
The main properties that the lane marking (or 

The quality of lane detection should not be affected 
by shadows, which can be cast by trees, buildings, 
etc. 
It should be capable of processing the painted and 
the unpainted roads. 
It should handle the curved roads rather than 
assuming that the roads are straight. 

0 It should use the parallel constraint as a guidance to 
improve the detection of both sides of lane markings 
(or boundaries) in the face of noises in the images. 
It should produce an explicit measurement of the 
reliability of the results obtained. 

In Section 2, reviews on existing lane-detection 
techniques are presented. Section 3 introduces a novel B- 
spline lane model with dual external forces. In Section 4, 
an algorithm, called CHEVP, is described both for 
vanishing line detection and B-snake lane model 
initialization. Section 5 presents a minimum energy 
method, called MMSE (Minimum Mean Square Energy), 
to determine the parameters for lane detection. This 
paper concludes in Section 6. 

0 

2. RELATED WORKS 
Up to present, various vision-based lane detection 

algorithms have been developed. They usually utilized 
different road models (2D or 3D, straight or curve) and 
different techniques (Hough, template matching, neural 
networks, etc.). 

The approach based on morphological filtering has 
been suggested [ 1][2]. This technique used the 
morphological “watershed” transformation to locate the 
lane edges in the intensity gradient magnitude image, 
Although this technique has the advantage of not 
requiring any thresholding for the gradient magnitudes, it 
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has the disadvantage of not imposing any global 
constraints on the lane edge shapes. 

A curve road model was proposed by [3][4]. It was 
supposed that the lane boundaries could be presented by 
a parabolic curve on a flat ground. Although it  can 
approximate normal road structures, it still cannot 
describe some cases, i.e. a “T” turn. A deformable 
template method was proposed by optimizing a 
likelihood function based on this model. However, this 
algorithm cannot guarantee a global optimum and the 
accuracy, without requiring ’ huge computational 
resources. 

An edge-based road detection algorithm was 
presented by [5]-[SI, i t  could work nicely in well-painted 
roads even under shadowy condition, but it  will fail for 
the unpainted roads. 

An approach by combining the Hough transform and 
the Line-Snake model was presented by [9], i t  divided an 
image into a few sub-regions along the vertical direction. 
The Hough transform was then performed for each sub- 
region to obtain an initial position estimation of the lane 
boundaries. Afterwards, the Line-Snake improved the 
initial approximation to an accurate configuration of the 
lane boundaries. This approach suffers from two 
problems. One is, in the case of broken lane markings, i t  
may not extend all the ways to the upper of the image. 
Another is, the contrast of one (or both) of the lane edges 
may not be high enough to detect near the bottom of the 
image. 

In [IO][ 111, an approach of detecting lane boundary, 
especially for the country roads, by artificial vision was 
described. It used statistical criteria, i.e. energy, 
homogeneity, contrast, etc., to distinguish between the 
roads and the non-roads. It combined the random 
searching with the chi-square fitting to obtain the best set 
of parameters of a deformable template. However, they 
used the same road model as [3][4]. 

Here, we present a novel B-snake lane model, its 
initialization by CHEVP, and its iteration by a Minimum 
Mean Square Energy (MMSE). Details were given in the 
following sections. 

3. ROADMODEL 
3.1. The Modeling of-Lane Boundaries 

In this paper, we focus on constructing the 2-D lane 
model, by assuming that the two sides of the road 
boundaries are parallel on the ground plane. 

In addition, let’s assume that the right side of road is 
the shifted version of the left side of road at a horizontal 
distance, D = (x, - x,), along the x (horizontal) axis in 
the ground plane. Here, x, and x, are the x coordinates 

of the two correspondence points, P , ( x , , y )  and 
P, (x,, y)  , in the ground plane. After projection from the 
ground plane to the image plane, the horizontal distance 
d = (c,. - c, ) between the corresponding points 
p/(c/,r) and p,(c,,r) in the image plane, which are 
the projected points of P/ (x, , y)  and P, (x,, y)  , is: 

d = k ( r  - hz)  

where k =&I, A. is the focal length of the lens, 

H is the height of the camera location, hz is the 
position of vanish line in the image pane, and r is the 
vertical coordinate used in the image plane. 

Let’s define the mid-line of the road in the image 
plane as 

Thus the left side of the modeled road is 
4 J l i d  = (cm rfn 1 ’ 
4,,1 = (c, 3 5 ) 3 

where 
1 1 
2 2 

Similarly, the right side of the modeled road is 

c ~ = c , , - - d = c , , , - - k ( r , - h z )  and r , = r n , .  

L,,,l,, = (cr 7 r,. 1 
where 

1 1 

2 2 
c, = c,,, + - d = c,,, + --k (r,. - h z )  and r,. = r,,, . 

From the above modeling, it  is easy to observe that 
the problem of detecting two sides of road can be merged 
as the problem of detecting the mid-line of road. 

3.2. B-spline Snake 
Snakes [12], or active contours, are curves defined 

within an image domain which can move under the 
intluence of internal forces from the curve itself and 
external forces from the image data. Once internal and 
external forces have been defined, the snake can detect 
the desired object boundaries (or other object features) 
within an image. 

A more economical realization of snake can be 
reached by using far fewer state variables by cubic B- 
splines. B-splines can represent curves by four or more 
state variables (control points). As required, the 
represented curves may be open or closed. The flexibility 
of the curve increases as more control points are added. 
Each additional control point either allows one more 
inflection in the curve or, when multiple knots are used 
[ 131, reduces continuity at one point. 

3.2.1. Uniform Cubic B-Splines 
The B-splines are piecewise polynomial functions that 

provide local approximations to contours using a small 
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number of parameters (control points). 

In this paper, we deal with the open curves that are 
C2 continuous, have both their continuous slopes and 
curvatures, and are modeled by cubic B-splines. Figure 1 
shows a cubic B-spline. 

fB 0 
Q( I Q,, 

An open cubic B-spline, with n + 1  control points 

{e,, QI , .-, e,,}, consists of (n - 2) connected curve 
segments, g I  (x)= (r, (.s),cl (s)), i = 1,2 ,..., (11 - 2)  . Each 
curve segment is a linear combination of four cubic 
polynomials by the parameter s ,  where s is normalized 
between 0 and I (0 I s 5 I ) ,  i t  can be expressed as: 

Figure 1. Cubic 8-spline curve. 

,q;(.v)= X&)U-l  + x,(.v)Q1 + x,(.Y)21+1 + x,(.r)U,+,+z 

where 

3.2.2. Relationship Between Knot Points and 
Control Points 

The points connecting the neighboring segments 
(Figure I )  are called the knot points P , ( ; = I . ~  , . . . . / , - I ) ,  

where the B-spline bases are tied together. Given the set 
of knot points f=(/j.fi.....<,-I) of a uniform cubic B-spline 
curve (Figure I ) ,  we can uniquely determine control 
points Q = (&.Q, ,._.. Q,l ) , by substituting s = 0 into 
equation (1) .  The relationship between the control points 
and the connection points is given as: 

(3)  
I 7 1  

6 3 6  
4 =-Qi-1+=Ql+-Q,+,, i z 1 . 2  ,_._,  ! I - 1  

3.3. Using B-Snake to Describe Lane 
Markings (or Boundaries) 

We use a set of control points to describe the mid-line 
of the road by B-spline, and a additional parameter k (as 
described in section 3.1) to determine the left and the 
right sides of road model. In order to make B-splines 
pass through the first and the last control points, we set 
the first three control points equal and the last three 
control points equal. The mid-line of road model can be 
expressed by a B-spline as 

L i d  = k n t  'tu 1 

The mid-line of  lane model can be deformed by the 
external forces EM - sum(.s), which is the sum of the dual 

external forces calculated from the left and the right sides 
o f  lane model, E,-(.Y) and ER(.$). 

EM-sum(S)= E L ( S ) +  E R ( S ) '  

Also, the difference o f  horizontal components of 
E,(s) and E R ( s ) ,  denoted as Eh dif  (s), would lead to 

adjustment of the parameter k . 

Eh-dli (s)=E;;(s)-  E k ( s )  

There are two advantages for using dual external 
forces to deform the B-snake model: First, the processing 
time will be reduced since two deformation problems 
have been formulated to one deformation problem; 
Second, the B-snake model would be robust against 
shadows, noises, etc., since the knowledge of parallel 
lines on the ground plane has been used. 

Q, 
Figure 2. 8-snake based lane model. 

For most lanes, we found that using 3 control points is 
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efficient to describe their shapes. Therefore, we select 3 
control points in this paper for constructing the lane 
model. Figure 2 shows a lane model formed by a set of 3 
control points, @, , Q, and Q2.  

4. INITIALIZATION OF B-SNAKE LANE 
MODEL: CHEVP ALGORITHM 

The CHEVP (Canny/Hough Estimation of Vanishing 
Points) algorithm has been developed to initialize the B- 
snake. The road is assumed to have two parallel 
boundaries on the ground, and in the short horizontal 
band of image, the road is approximately straight. As a 
result of the perspective projection, the road boundaries 
in the image plane should intersect at a shared vanishing 
point on the horizon. There are following five processing 
stages. 
(1) Edge pixel extraction by Canny edge detection. 
( 2 )  Straight Lines Detection by Hough Transform. 
( 3 )  Horizon and Vanishing Points Detection. 
(4) Estimate the mid-line of road and the parameter k 

by the detected road lines. 
(5) Initial the control points of the lane model to 

approach the mid-line detected by last step. 
The CHEVP algorithm has been applied to more than 

50 images. Some results are shown in Figure 3 .  

5. B-SNAKE PARAMETERS UPDATED FROM 
IMAGE DATA 

Based on the initial location of the control points that 
are determined either by CHEVP algorithm or lane 
detection result of previous frame, the B-snake would 
further approach to road edge accurately in the current 
frame. This section deals with this problem. 

5.1. Minimum Mean Square Energy Approach 
The advantage of using B-snake is that internal forces 

are not required, since the B-snake representation 
maintains smoothness via hard constraints in the 
representation. 

B-snake should be updated to minimize (1) the sum of 
the external forces from the both sides of the road model 
for achieving accurate position of B-snake, and ( 2 )  the 
difference of the external forces from the both sides of 
the road model for achieving suitable parameter k . In 
addition, external forces should be transmitted to each 
control point when updating B-snake. Details are 
described as follows. 

When the B-snake approaches the road boundaries, its 
external force should satisfy the equation. 

Eex, = 0 (4) 

Figure 3. Results of CHEVP Algorithm. 

where 
= EM-surn E L ( s ) + E R  (.). 

If external force of the B-snake is zero, then there is 
no change in both the position and the shape of the mid- 
line of road. So we can define the following equation for 
solving the requirement of external force being zero. 

E , ,  = Y(L,,, ( r )  - L i d  - 1)) 

= N R  (.y)(Q(r) - QU - 1)) ( 5 )  

= N R  (s)AQ(t) 
where y is a step-size and AQ(r) is defined as the 
adjustment of the control points Q in each iteration step. 
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External force can be sampled along the B-spline of 
B-snake at a certain distance. Then equation ( 5 )  can be 
solved digitally, Here, the Minimum Mean Square 
Energy solution for the digital version of the equation (5 )  
is given as a matrix form. 

a ~ ( t )  = y-1 [M T ~ ) ’  M T ~ ,  

where 

M =  

2 
Si, I 

2 
S i .  2 

2 
Si,m 

S i ,  I 

si, 2 

(7) 

1 
2 
- 

-1 

-1 

2 
3 
- 

I I  -- - 
2 6  

I 
- 0  
2 
1 
- 0  
2 
I 
- 0  
6 

, 

and m is the sampling points number in i th segment of 
the B-spline. E,,Tf is the force vector digitized on the B- 
spline. Here, n = 2 is for’the case of using three control 
points. 

The difference of the external forces from the left and 
the right side of lane model would lead to changing the 
parameter k (as given in section 3.1). Estimation of the 
parameter k can be similarly given as follows. 

E ,  = E&if = (E: (s)- E: (s)) (8) 

E, = 7 ( k ( t ) - k ( t - I ) ) = ~ A k ( t )  (9) 

k ( t )  = k( t  - 1) + Ak( t )  (10) 

where 7 is a step-size for k . Thus, 

Ak( t )  = Ek 17 ( 1  1) 

Here we choose Gradient Vector Flow (GVF) [ 141 as 
the external force for B-snake to perform the lane 
detection, since GVF has a larger capture range. 

5.2. Application in Lane Detection 

In order to achieve the solutions in equations (6) and 
(lo), an iterative procedure is adopted. The steps 
contained in this iterative minimization process are as 
follows: 

1. Initialization Step. Initialize the control point 
parameters by CHEVP algorithm introduced in 
section 4. 

2.  Calculate the GVF of the edge road image as the 
external force of B-snake. 

3. Calculate MMSE in equations (7) and (1 I )  for 
obtaining A Q ( t )  and Ak( t )  , respectively. 

4. Obtain Q ( t )  and k ( r ) .  

S. If IlAQ(r)ll> rhreshold’ and llAk(r)\\ > rhreshdd’ , 

then set Q ( r )  to Q(r-1) and k ( r )  to k ( t - I ) ,  and 
go to step 3; Otherwise, go to step 6. 

6. Stop. The last estimations of Q ( r )  and k ( r )  are 
regarded as the solutions of MMSE. 

Application of the MMSE approach to real image is 
shown as follows. We take Figure 4 as an example. 
Although CHEVP algorithm can provide a quite good 
initialization for B-snake lane model (as shown in Figure 
4(b)), in  order to show the robustness of our algorithm, 
the initialization for B-snake is set far from the CHEVP 
result, as shown in Figure 4(c). The convergence 
procedure of the B-snake lane takes 55 iterations. Thc 
final result of MMSE approach is shown in Figure 4(d). 
It can be seen that the B-snake lane model approaches to 
the lane boundaries accurately. 

(C) (d)  Fi  
gure 4. An Example of MMSE approach. 

5.3. Lane Detection Results 

This lane detection algorithm has been simulated by 
Matlab codes and tested on more than SO images grabbed 
by a camera at different locations and at different times. 
These lane images include curve and straight road, with 
or without shadows and lane marks. Some of these 
results are shown in Figure 5. 
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Figure 5. Lane detection results. 

6. CONCLUSION 

A novel B-snake based lane model, that describes the 
perspective effect of parallel lines, is established for 
generic lane boundaries (or markings). It is able to 
describe a wider range of lane structures than other lane 
models, such as straight and parabolic models. 

A robust algorithm, called CHEVP, is presented for 
initializing the B-snake lane model. This algorithm is 
robust against noise, shadows, and illumination 
variations in the captured road images, and is also 
applicable to both the marked and the unmarked, and 
dash and solid paint line roads. 

A minimum energy method, MMSE (Minimum Mean 
Square Energy), that measures the matching degree 
between the model and the real edge map is presented to 
determine the control points of road model for lane 
detection by iteration. The obtained results are quite 
good and accurate even under shadow conditions. 
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