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ABSTRACT In intelligent traffic monitoring, speed measuring millimeter waves (MMW) radar is one of

the most commonly used tools for traffic enforcement. In traffic enforcement field, the radar must provide

the evidence of each vehicle belongs to which lane. In this paper, we propose a novel kernel line segment

adaptive possibilistic c-means clustering algorithm (KLSAPCM) for lane determination of vehicles. Firstly,

the raw measurement data is preprocessed using the extracting method of data adjacent lane centerlines.

Secondly, according to the improved minimum radius data search method, outliers are removed and the

proposed KLSAPCM algorithm is initialized. Finally, the accuracy of lane determination has been improved

by the proposed KLSAPCM clustering algorithm based on adaptive kernel line segment that conforms to the

shape features of the measurement data in the actual scene. The experiment results for multiple scenes were:

the KLSAPCM algorithm is compared with the DBSCAN, the k-means, the FCM, the PCM, the AMPCM,

and the APCM algorithms on real measurement datasets, and the results highlight the classification rate of

the proposed algorithm. Meanwhile, the proposed algorithm gets a good real-time performance and strong

robustness for some sparse moving vehicle scene applications.

INDEX TERMS MMW radar, radar measurements, lane determination, clustering algorithms.

I. INTRODUCTION

In intelligent transportation systems, lane detection is a

research hotspot, including lane routes, road boundaries, and

vehicles passing areas [1], [2]. In actual traffic situations,

some drivers do not strictly control the speed of the vehicle

as required, which may result in overspeed. The problem

of speeding in traffic is a major problem that threatens the

safety of life. At present, the speed limit signs are used to

enforce speed limits on different roads. At the intersection

of roads or highways, the radar speedometer is installed

to monitor the speed of passing vehicles. However, due

to technical limitations, some false detections and missed

The associate editor coordinating the review of this manuscript and
approving it for publication was Chao Tong.

detections may occur during the speed measurement process,

and the intelligent lane separation algorithms can greatly

improve this effect [3]–[5]. However, in the application of

actual scenes, it is often found that these lane separation

algorithms are not accurate in judging the lane of illegal

vehicles, which triggers the camera of the wrong lane, result-

ing in the illegal vehicle capture failure and escape from

legal sanctions. Therefore, improving the accuracy of vehicle

lane judgment has important practical significance for traffic

enforcement.

In the past few years, vision-based detection techniques

have been widely used due to the low cost of acquiring

large amounts of image and video data [6]. In 2008, Felzen-

szwalb [7] et al. proposed the DPM (Deformable Parts

Model) algorithm. It uses root filters and component filters
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to extract features of the image and uses LSVM (Latent

Support Vector Machine) to train the gradient model which

is used as a template to match the target. But the vision-

based detection techniques may be affected by environmental

conditions such as glare and inclement weather. With the

development of civilian radar technology [8]–[10], in recent

years, radar has gradually been used for lane detection task.

However, there are still very little open literature related to

this topic. Xu [11] divides the radar data points into several

regions and calculates the random density of the region to

detect roadsides. Han et al. [12] uses the threshold segmenta-

tion method and proposes an IPDAF (Integrated Probabilistic

Data Association Filters) algorithm to detect and track road

edges. The lane division method based on clustering algo-

rithm is also widely used. Stauffer and Grimson [13] pro-

posed the GMM (Gaussian Mixture Model), and the method

of clustering using this model is called soft clustering. The

method gives the probability that the sample belongs to each

class. Hulle et al. [14] proposed the SOM (Self-organizing

feature Map), which can give the centers of different classes.

In 2016, Xenaki et al. proposed a novel adaptive possibilistic

c-means clustering algorithm (APCM) for removing redun-

dant clusters problem [15]. In APCM, the parameter η, after

their initialization, are properly adapted as the iterations of

the algorithm. Compared with other related PCM framework

algorithms, the adaptive algorithm for parameter η makes the

APCM algorithmmore flexible in discovering the underlying

clustering structure, especially in unusual datasets such as big

difference in their variances or even with those consisting of

closely located to each other clusters.

FIGURE 1. The multi-target traffic MMW radar.

The data used in this paper is obtained from a multi-target

traffic MMW radar of the actual scene, which is a product of

Beijing Trans-Microwave Science and Technology Company,

Ltd, as shown in Fig.1. The multi-target trafficMMW radar is

designed to capture the speed illegal vehicle vehicles and trig-

ger a camera to take a picture. According to the shape features

of the measurement data for the lane determine in the actual

scene, we propose an enhanced kernel line segment APCM

clustering algorithm (KLSAPCM) based on minimum radius

data search method to improve the accuracy of lane determi-

nation. After receiving the raw measurement data, we first

extract the effective monitoring area data based on the lane

centerlines. Then, the outliers is removed and the KLSAPCM

algorithm is initialized according to the minimum radius data

searchmethod. Finally, the proposedKLSAPCMalgorithm is

used to classify the data and calculate the similarity between

the kernel line segment and the lane to determine the degree

of membership between the vehicle and the lane. In the

KLSAPCM algorithm, the initial kernel segment direction

is the lane centerline direction, the segment center is the

initial clustering center, and the segment length is adjusted

adaptively according to the length of the maximum distance

between two points in the cluster. Therefore, the KLSAPCM

algorithm can correctly determine which lane each vehicle

belongs to without manually measuring the installation posi-

tion and installation angle of radar. For radar measurement

data, the processing flow is shown in Fig.2.

FIGURE 2. Flow chart of measurement data processing.

In summary, the main contributions of the paper are as

follows:

1. An extracting monitoring area method (adjacent to the

lane centerline) and aminimum radius data searchmethod for

the MMW radar measurement data are introduced in traffic

detection. These twomethods effectively reduce the impact of

noise on the clustering algorithm. Meanwhile, the minimum

radius data search method can also effectively initialize the

KLSAPCM clustering algorithm.

2. A KLSAPCM clustering algorithm is proposed in this

paper. The algorithm can correctly determine which lane each

vehicle belongs to without manually measuring the installa-

tion position and installation angle of radar.

The structure of the paper is as follows. In Section II,

we introduce the data acquisition method of multi-target

traffic microwave radar. Meanwhile, the k-means, the FCM,

the PCM, and APCM clustering algorithms are reviewed. The

Section III first preprocesses the measurement data, that is,

the extraction of data adjacent lane centerlines. Then, based
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on the improved minimum radius data search method, out-

liers is removed and the proposed KLSAPCM algorithm is

initialized. Finally, the principle of KLSAPCM algorithm is

described in detail. The Section IV describes the results of

several scene experiments, the performance of several algo-

rithms is compared, and the applicability of the algorithm is

discussed. Section V summarizes this paper.

II. VEHICLE DATA ACQUIRED BY MMW RADAR AND

RELATED ALGORITHM REVIEW

A. THE MMW RADAR IN TRAFFIC MONITORING SCENE

The MMW radar, like the microwave radar, emit electromag-

netic waves that are a cone-shaped beam, unlike the laser

that are a line. Because the antenna of this band mainly

uses electromagnetic radiation as the main method, the large

reflective surface makes the millimeter wave radar more reli-

able, but its resolution is greatly affected. The advantages and

disadvantages of millimeter wave radar compared with other

kinds of radar are as follows:

· Compared with the centimeter wave radar, the millimeter

wave radar has the characteristics of small size, light weight,

and high spatial resolution;

· Compared with optical radars such as infrared and laser,

the millimeter wave radar has strong ability to penetrate fog,

smoke, and dust. Meanwhile, it has the characteristics of long

transmission distance and adapting to some extreme weather

conditions;

· Stable performance. Not affected by the shape and color

of the target.

Therefore, the millimeter wave radar can make up for the

shortcomings of sensors such as infrared, laser, ultrasonic,

and camera in traffic monitoring applications.

FIGURE 3. The actual scenes. (a) The corresponding camera of the lane.
(b) Multi-target millimeter wave radar mounted on the forward direction
of three lanes. (c) Multi-target millimeter wave radar mounted on the
right side of three lanes. (d) Multi-target millimeter wave radar mounted
on the forward direction of three lanes at crossroad.

In this paper, the Beijing Trans-Microwave Science and

Technology Company, Ltd. has provided us with a large

number of experimental data of actual application scenes. The

actual scenes is shown in Fig.3, where figure (a) is the actual

scene of the lane cameras, figure (b) is multi-target millimeter

wave radar forward installation, figure (c) is multi-target

millimeter wave radar side installation, and figure (d) Multi-

target millimeter wave radar mounted on the forward direc-

tion of three lanes at crossroad.

Besides, the radar measurement period in this paper is

50ms. The proposed algorithm usually requires 5 to 15 frames

to accumulate data (The frame number can be adjusted based

on vehicle speed), and the vehicle driving distance in the

monitoring area is about 10 to 30meters (the higher the speed,

the longer the length). The method of accumulating data

is: after the radar obtains the measurement data per frame,

the system determines whether there are the illegal speeds.

If there is illegal speed, the system starts to accumulate data.

After the data is accumulated, the proposed algorithm begins

to process the data.

B. DEFINE LANE CENTERLINE

After installing the radar, we had to calibrate the number of

lanes and the centerline of each lane. The number of lanes

can be inputting directly, but the centerline of each lane must

be calculated and analyzed by a specific calibrated vehicle

equipped with a corner reflector. The acquisition method of

the lane centerlines: Firstly, a calibrated vehicle equipped

with a radar reflector move slowly along the centerline of

each lane at a certain speed. Because the monitoring area

is usually not more than 100 meters, the calibration vehicle

usually travels from a position 100m away from the radar to

the bottom of the radar. Secondly, after the measurement data

of the radar calibration vehicle is obtained, the measurement

data corresponding to the vehicle speed is extracted and

filtered. Finally, the centerline of each lane is calculated by

the proposed algorithm in this paper and processed in parallel

(the center lines of lanes are parallel to each other). The

obtained lane centerlines will be used as the basis for judging

the lanes of vehicles. After comparing with the actual manual

measurement, the error of the calculated lane centerline based

on this method is not more than 10cm. Because the extracted

measurement data based on fixed speed is very accurate,

the calculated centerlines are very accurate.

Because the accuracy of the lane centerline has a large

impact on the performance of the algorithm in this paper,

we must obtain an accurate lane centerline. If the calculation

of the lane centerline is completed automatically based on the

measurement data of vehicles randomly on the lane, the error

of the centerline based on this method is much larger than

that based on above method. The measurement data of these

random vehicles may have the following problems:

(a) Most vehicles may not follow the centerline of the lane;

(b) The road may have an intersection, and most vehicles

entering the intersection will deviate to one side of the lane;

(c) Many drivers may have common driving habits that can

cause the vehicle’s driving trajectory to deviate to one side of

the lane.

Therefore, there are many uncertain factors in the mea-

surement data of randomly driven vehicles, which cause

63006 VOLUME 8, 2020



L. Cao et al.: Lane Determination of Vehicles Based on a Novel Clustering Algorithm

FIGURE 4. Vehicle data transformed from frequency spectrum to
scattering points: (a) Frequency spectrum. (b) Vehicles’ position.

a large error in the calculated lane centerline. We performed

10 related experiments. The calculated lane centerline error

based on this method is not less than 25cm, and the error of

the centerline is very unstable.

If the method of training the lane centerline from a large

amount of measurement data is used, it takes a long time to

accumulate the training data first. Meanwhile, the training

data may also have the (b) and (c) problems described above,

and the error of the obtained lane centerline is large. In addi-

tion, if this method is used in scenarios with low vehicle flow,

it will take longer time (hours or days) to accumulate training

data, which is much more time consuming than the method

in this paper to obtain the centerline.

C. VEHICLE DATA ACQUIRED BY MMW RADAR

The FSK (Frequency-Shift Keying, FSK) radar is used in

the paper. The FSK radar alternately transmits two contin-

uous waves of different frequencies at periodic intervals. The

Doppler principle is used for velocity measurement, and the

phase difference of different carrier frequencies is used to

measure distance. According to the principle of the FSK

system, it cannot detect the velocity of stationary target.

In actual traffic applications, we can use this to shield the

information of stationary targets, but also to obtain distance

and angle information for stationary targets such as roads,

manhole covers, guardrails, and trees.

Raw data containing vehicle information is acquired by the

radar in the time domain. In the following, we will introduce

how to convert raw data into the vehicle data used in this

paper: The spectral amplitude of the vehicle is obtained by

using an FFT of the time domain signal. Use the following

formula (1) to obtain the distance R between the vehicle and

the radar.

R =
c ·1φ

4π (f1 − f2)
(1)

There is a Doppler shift for the radar echo signal of the mov-

ing vehicle. The echo signal and the transmitted signal are

mixed by a mixer to output the Doppler signal. The frequency

(the abscissa of Fig.4(a)) of the Doppler signal depends

on the moving velocity, and the amplitude (the ordinate of

Fig.4(a)) depends on the distance, target material, and radar

cross-section (RCS) of the target. The expression of relative

velocity v between the radar antenna and the vehicle is:

v =
c · fd

2 · fTx · cosα
(2)

Use the following formula (3) to obtain the angle θangle
between connecting line between target and antenna center

and the normal direction of the radar antenna.

θangle = arcsin(
λ ·1φ

2πd
) (3)

The radar is designed with ‘‘one transmitting, two receiving’’

scheme, and carrier frequencies transmitted alternately are

f1 and f2, respectively; 1φ is the phase difference between

the mixing output of two different echo signals for the same

target; fd is Doppler frequency; fTx is the center frequency

of the radar; α is the angle between the radar beam and the

moving direction of the vehicle; λ is the wavelength of the

emitted electromagnetic wave; d is the distance between two

antennas.

Converting data from a polar coordinate system (R, θangle)

to a Cartesian coordinate system (x, y), the final vehicle data

contains three-dimensional information, i.e. velocity v, hori-

zontal distance x, and vertical distance y. The vehicle data for

Fig.3(b) is shown in Fig.4, where the figure (a) is the spectrum

of the Doppler signal corresponding to the three vehicles for

the scene of Fig.3(b), and the 11 red points are considered

as the frequency points of the detection data of the vehicles

(Firstly, the peak points are searched, such as red dots 1,

5, and 9. Secondly, the points whose amplitude are higher

than the threshold are selected at intervals based on the peak

points. Finally, the 11 red frequency points are obtained).

Based on the 11 frequency points, 11 two-dimensional coor-

dinate measuring points of three vehicles in Fig.3(b) can be

calculated, as shown in Fig.4(b). In summary, vehicle data

containsmany scattering points and each point contains three-

dimensional information (x, y, v). In particular, one measure-

ment point does not represent one vehicle (representing a

certain point on the vehicle’s body), and one vehicle has

multiple measurement points. It is difficult to represent the

exact position of one vehicle with one measurement point.

Therefore, the clustering method in this paper is used to

identify all the measurement points of one vehicle and find

the center of these points.

D. RELATED ALGORITHM REVIEW

1) THE k-MEANS CLUSTERING ALGORITHM

In this section, the shortcomings of the classical k-means

clustering algorithm are first analyzed. Then a solution was

proposed: to overcome these shortcomings by using kernel

functions.

The k-means algorithm [16] is an efficient and widely-

used clustering algorithm that uses iterative ideas to minimize

the distortion function. The distortion function J is defined
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as follows:

J (c, µ) =

m
∑

i=1

∥

∥

∥
x(i) − µc(i)

∥

∥

∥

2
(4)

where c(i) represents the cluster to which point i-th belongs,

andµj is themean vector of class j corresponding to the center

of the cluster.

c(i) = argmin
j

∥

∥

∥
x(i) − µj

∥

∥

∥

2
(5)

µj =

∑m
i=1 χ (c(i) = j) · x(i)
∑m

i=1 χ (c(i) = j)
(6)

The number of lanes that need to be monitored must be

predetermined based on the hardware of the radar. Therefore

the parameter k of the k-means algorithm is usually constant

and there is no need to bother with it.

However, the k-means algorithm is not suitable for data

with a non-spherical distribution because it assumes that the

data is subject to a Gaussian distribution.

2) FCM CLUSTERING ALGORITHM

Fuzzy c-means algorithm allocates dataset X = {x1, · · · ,

xi, · · · , xn} (1 ≤ i ≤ n) into c clusters according to member-

ship degree matrix (fuzzy partition matrix) U = (µij)c×n
when the objective function JFCM reaches minimum. The

FCM objective function JFCM can be formulated as follows:

JFCM (U , θ) =
∑c

j=1

∑N

i=1

(

µ
(l)
ij

)α

× d2
(

xi, θ
(l)
j

)

(7)

where α ∈ [1,∞) is the fuzzy weighting exponent for the

membership. l is number of iterations. θ j is center of the

cluster j. µij represents the membership degree measures

how much the sample xi belongs to the cluster center θ j.

Here, the c clusters are marked by cluster centers θ =
{

θ1, · · · , θ j, · · · , θc
}

(1 ≤ j ≤ c), θ was randomly selected

in the first iteration. Then the membership degree µij is

calculated as follows:

µ
(l)
ij ∈ [0, 1] ,

∑c

j=1
µ
(l)
ij = 1, and 0 <

∑N

i=1
µ
(l)
ij < N

(8)

µ
(l+1)
ij =































∑c

h=1

(

d2(xi, θ
(l)
j )

d2(xi, θ
(l)
h )

)(1/(α−1))




−1

,

if d2(xi, θ
(l)
j ) > 0

1, if d2(xi, θ
(l)
j ) = 0

(9)

θ
(l+1)
j =

∑n
i=1

(

µ
(l)
ij

)α

xi

∑n
i=1

(

µ
(l)
ij

)α (10)

the objective function is minimized by continuously updat-

ing the membership functions and centers of clusters until
∥

∥U (l+1) − U (l)
∥

∥ < δ is satisfied. Similarly, the FCM algo-

rithm is not suitable for data with a non-spherical distribution.

3) PCM CLUSTERING ALGORITHM

The FCM algorithm calculates the membership degree of

each measurement point for every cluster, which gives us

a calculation method that refers to the reliability of the

measurement point classification results. If the membership

degree of a measurement point for a certain cluster has an

absolute advantage in all membership degrees, it is a very reli-

able method to assign the measurement point to the cluster.

If there are some measurement point with relative average

membership for every cluster, we need other methods to

process. Besides, the FCM algorithmmust give the number of

clusters, and cannot adaptively identify the number of clusters

in the dataset. Meanwhile, when there is noise in the mea-

surement dataset and the density difference of measurement

point between the clusters is large, the classification results

may be inaccurate. In order to deal with these disadvantages,

Krishnapuram proposed the PCM algorithm based on the

FCM algorithm [17], and objective function JPCM added a

constraint term to JFCM :

JPCM (U , θ) =
∑c

j=1

∑n

i=1

(

µ
(l)
ij

)α

d2
(

xi, θ
(l)
j

)

+
∑c

j=1
ηj
∑n

i=1

(

1− µ
(l)
ij

)α

(11)

where ηj is a scale parameter, and each one associated with a

cluster. More specifically, each η remains unchanged during

algorithm execution. The greater the η value, the greater the

influence of cluster around θ ; on the contrary, the smaller the

η value, the smaller the influence. The value of ηj is calculated

after running the FCM algorithm:

ηj = B

∑n
i=1 µFCM

ij d2
(

xi, θ
FCM
j

)

∑n
i=1 µFCM

ij

, j = 1, · · · , c (12)

where the constant B is usually equal to 1. The update of the

membership degree µij and cluster center θ j is as follows:

µ
(l+1)
ij =

1

1+
(

d2
(

xi, θ
(l)
j

)

/ηj

)1/α−1
(13)

θ
(l+1)
j =

∑n
i=1

(

µ
(l)
ij

)α

xi

∑n
i=1

(

µ
(l)
ij

)α (14)

According to the iteration between the two equations,

the PCM algorithm gives the update estimates of µij and θ j at

each iteration until the set termination condition is met. From

the above description, the PCM algorithm can be summarized

as follows:

In [17], Krishnapuram and Keller proposed the second

PCM clustering algorithm (PCM2) in 1996, and objective

function JPCM2
is as follows:

JPCM2 (U , θ) =
∑c

j=1

∑n

i=1
µ

(l)
ij d

2
(

xi, θ
(l)
j

)

+
∑c

j=1
ηj
∑n

i=1

(

µ
(l)
ij lnµ

(l)
ij −µ

(l)
ij

)

(15)

63008 VOLUME 8, 2020



L. Cao et al.: Lane Determination of Vehicles Based on a Novel Clustering Algorithm

Algorithm 1 PCM

Require: xi, c, and α.

Ensure: fuzzy partition matrix U , clustering center θ , and

scale parameter Ŵ = {η1, · · · , ηc}.

1: initialization: θ j from the FCMalgorithm, and using (12)

initialize Ŵ;

2: repeat

3: using (13) update the membership degree matrix U (l);

4: using (14) update cluster center θ (l);

5: l = l + 1;

6: until the difference between θ (l) and θ (l+1) is sufficiently

small;

7: return: results U , θ , and Ŵ;

Using 15, the small values of the memberships are be penal-

ized based on the last term. Setting to zero the derivatives of

JPCM2 (U , θ) with respect to the memberships µ
(l)
ij :

∂JPCM2 (U , θ)

∂µ
(l)
ij

= d2
(

xi, θ
(l)
j

)

+ ηj lnµ
(l)
ij = 0 (16)

Then, µ
(l)
ij is obtained:

µ
(l)
ij = exp



−
d2
(

xi, θ
(l)
j

)

ηj



 (17)

where, the calculation methods of η and θ are unchanged.

After many years of development, some new classification

algorithms based on the PCM algorithm have been proposed.

The PCM algorithm described above has no cluster elimina-

tion capability, that is, if the number of clusters is overesti-

mated during initialization, they cannot eliminate any clusters

in the iteration process. A adaptive possibilistic c-means

(APCM) algorithm is proposed for this disadvantage [15].

More specifically, in APCM, the parameter η will be adjusted

with the evolution of the algorithm after initialization.

Compared with other PCM algorithms, the adaptability of η

makes the algorithm more flexible to reveal the underlying

clustering structure, especially in dense datasets such as the

clusters with large differences in variance or contains clusters

that are close to each other. The parameter η of the APCM

algorithm is as follows:

ηj =
γ̂

a
γj (18)

where the parameter γj is a measure of the average absolute

deviation of cluster cj, a is a custom positive parameter, and

γ̂ is a constant defined as the minimum of all initial γj,

the expression is as follows:

γ̂ = min
j

∑n
i=1 µFCM

ij d2
(

xi, θ
FCM
j

)

∑n
i=1 µFCM

ij

, j = 1, · · · , cini

(19)

γ
(l+1)
j =

∑

xi:µ
(l)
ij =max

r=1,··· ,c(l+1)
µ
(l)
ir

d2(xi, θ
(l)
j )

n
(l)
j

j = 1, · · · , c(l+1) (20)

where cini is the number of clusters at the initial iteration. The

objective function JAPCM is as follows:

JAPCM (U , θ) =
∑c

j=1

∑n

i=1
µ

(l)
ij d

2
(

xi, θ
(l)
j

)

+
γ̂

a

∑c

j=1
γj
∑n

i=1

(

µ
(l)
ij lnµ

(l)
ij − µ

(l)
ij

)

(21)

Then, µ
(l)
ij is obtained:

µ
(l)
ij = exp



−
a

γ̂

d2
(

xi, θ
(l)
j

)

γ
(l)
j



 , j = 1, · · · , c(l) (22)

From the above description, the APCM algorithm can be

summarized as Algorithm 2.

Algorithm 2 APCM

Require: xi, c, and a.

Ensure: fuzzy partition matrix U , clustering center θ , and

label.

1: initialization: θ j from the FCM algorithm, using (12)

initialize γj, and set: γ̂ = minj=1,··· ,ciniγ
(l)
j ;

2: c(l) = cini;

3: repeat

4: using (22) update the membership degree matrix U (l);

5: using (14) update cluster center θ (l);

6: for i← 1 to n do

7: µ
(l)
ir = maxj=1,··· ,c(l)µ

(l)
ij

8: label(i) = r

9: end for

10: p = 0 //number of removed clusters;

11: for j← 1 to c do

12: if j /∈ label then

13: Remove cj
14: p = p+ 1

15: end if

16: end for

17: c(l+1) = c(l) − p

18: using (20) update γ
(l+1)
j ;

19: l = l + 1;

20: until the difference between θ (l) and θ (l+1) is sufficiently

small;

21: return: results U , θ , and label;

III. KERNEL LINE SEGMENT ADAPTIVE POSSIBILISTIC

C-MEANS CLUSTERING ALGORITHM

This section first preprocesses the measurement data, that

is, the extraction of data adjacent lane centerlines. Secondly,

based on the improved minimum radius data search method,

outliers are removed and the proposed KLSAPCM algorithm
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FIGURE 5. The measurement data processing in actual scene of the
Fig.3(b). (a) Raw measurement data. (b) Data Adjacent to the Lane
Centerline. (c) Outliers Remove.

is initialized. Finally, the principle of KLSAPCM algorithm

is described in detail.

A. EXTRACTION OF DATA ADJACENT TO THE

LANE CENTERLINE

The obtaining method of the lane centerline for each scene

and the raw measurement data from the MMW radar are

described above. For example, the raw measurement data in

actual scene of the Fig.3(b) is shown in Fig.5(a). Based on

the lane centerline, we can effectively extract the interesting

measurement data of the adjacent lane. When the raw data

from the traffic radar measurement is obtained, we first need

to extract the measurement data from the centerline of the

adjacent lane. Firstly, we calculate the vertical distance from

each data point to the centerline of each lane, extract the

minimum distance, and then remove the measurement data

where the minimum distance is greater than the set threshold

d ′. Because the lane width is generally about 3.5m, and the

error of the radar measurement is less than 0.2m, we generally

set it to 1.95m. Finally, the measurement data of the traffic

surveillance area was obtained.

B. OUTLIERS REMOVE AND INITIALIZATION BASED

ON SAMPLE DENSITY FEATURE

After the extraction of data adjacent lane centerlines, the vehi-

cle data can be visualized as follows. As shown in Fig.5(b),

there is still some noise in the data. In the following, the coor-

dinate information of the vehicle data will be used to elimi-

nate the influence of outliers.

Let us represent datasetX = {xi = (xi, yi), i = 1, · · · ,M}

containing all the coordinate information of the processed

data. Where xi is a two-dimensional vector and M is the

total number of scattering points in this dataset. Since dense

points are more likely to be produced by the vehicle, the den-

sity characteristics are calculated. And dense points are sur-

rounded by outliers with low local density.

The minimum radius τi [18] of the i-th measurement point

is defined as follows:

τi = min
ρi>C

(dij) (23)

where dij is the Euclidean distance between xi and xj. The

local density ρi can be interpreted as the number of points

closer to the point i in the neighborhood. When ρi is greater

than constant C , minimum neighborhood radius is treated

as the minimum radius τi of the point i. Fig.5(c) shows the

result of simulated dataset (the radius has been normalized to

give a better intuition). In practice, any measurement point

greater than the β × τ̄ is considered an outlier, where β is a

proportional coefficient, and τ̄ the average of the minimum

radii of all points.

Next, we extract the previous data points with theminimum

radius value less than the threshold dr , and merge the neigh-

boring extraction points into one data point (that is, if the

mutual distance between the extraction points is less than

the threshold dr1, we will merge these points. The position of

themerged point is the average of these extracted points in the

neighborhood). Then, the remaining extraction and merged

points are considered to be the initial clustering center θ .

Finally, the initialization of θ j is carried out using the

final cluster representatives obtained from the above method.

Taking into account that the above method is very likely

to drive the representatives to dense in data regions (since

cini > c), the probability of at least one of the initial θ j to be

placed in each dense region (cluster) of the dataset increases

with cini. Besides, we combine the longest distance between

the two elements in the cluster with the shape of the measur-

ing vehicle to determine whether there are missing clusters.

This provides better initialization results for APCM. After

the initialization of θ j, we can calculate the correspondingµij

value based on (22). Then, the initialization of γj is as follows:

γj =

∑n
i=1 µini

ij d
(

xi, θ
ini
j

)

∑n
i=1 µini

ij

, j = 1, · · · , cini (24)

where θ inij s and µini
ij in (24) are calculated.

C. KLSAPCM ALGORITHM

As well known, all clusters obtained from moving vehicles

for several frames will have a large number of clusters that

are elongated in shape. However, the APCM algorithm has a

good classification effect for clustering with circular shape,

and has poor classification performance for slender cluster-

ing. If the length of clustering shape is too large, the APCM

algorithm may be divided into two or more clusters. In this

part, we design a KLSAPCM algorithm based on adaptive

line segment kernel according to the characteristics of the

measurement dataset. After the measurement data is pro-

cessed by the above method, the initial clustering result is

obtained. The adaptive line segment along lane centerline

for each clustering data are used to update the kernel func-

tion. In the proposed KLSAPCM, the Kernel function K is

improved to accommodate the classification of traffic radar

measurement data. The Kernel function K is as follows:

K
(

xi,L
(l+1)
j

)

= min d̂2
(

xi,L
(l+1)
j

)

(25)
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where

L
(l+1)
j =

[

x̂
(l+1)
i

ŷ
(l+1)
i = a1x̂

(l+1)
i + a2

]

,

y
(l+1)
i − αδ

(l+1)
i ≤ ŷ

(l+1)
i ≤ y

(l+1)
i + αδ

(l+1)
i (26)

and

x
(l+1)
j =

∑n
i=1

(

µ
(l)
ij

)α

xi

∑n
i=1

(

µ
(l)
ij

)α , y
(l+1)
j =

∑n
i=1

(

µ
(l)
ij

)α

yi

∑n
i=1

(

µ
(l)
ij

)α (27)

where L
(l+1)
j is the center line segment of the cluster j, d̂ is

the distance from the measurement point to the point on the

center line segment. x̂
(l+1)
i and ŷ

(l+1)
i are the abscissa and

ordinate value of the center line segment, respectively. x
(l+1)
j

and y
(l+1)
j are the abscissa and ordinate value of the center

point of the center line segment for the cluster j, respectively.

a1 and a2 are the coefficients of center line segment expres-

sion, whose values can be obtained by the lane centerline.

δ
(l+1)
j is the length of the cluster j along Y axis, α is the

coefficient that determines the length of the cluster center line

segment. γ̂ is a constant defined as the minimum of all initial

γj, the expression is as follows:

γ̂ = min
j

∑n
i=1µ

ini
ij d

2
(

xi, θ
ini
j

)

∑n
i=1 µini

ij

, j = 1, · · · , cini (28)

γ
(l+1)
j =

∑

xi:µ
(l)
ij =max

r=1,··· ,c(l+1)
µ
(l)
ir

K (xi,L
(l)
j )

n
(l)
j

j = 1, · · · , c(l+1) (29)

The objective function JAPCM is as follows:

JAPCM (U ,L) =
∑c

j=1

∑n

i=1
µ

(l)
ij K

(

xi,L
(l)
j

)

+
γ̂

a

∑c

j=1
γj
∑n

i=1

(

µ
(l)
ij lnµ

(l)
ij − µ

(l)
ij

)

(30)

Then, µ
(l)
ij is obtained:

µ
(l)
ij = exp



−
a

γ̂

K
(

xi,L
(l)
j

)

γ
(l)
j



 , j = 1, · · · , c(l) (31)

From the above description, the proposed KLSAPCM algo-

rithm can be summarized as Algorithm 3.

When the iteration is ended, the best individual in the cur-

rent generation is the global optimum solution. Partitioning

dataset by the best cluster line segments, we can get the

classification results finally.

IV. EXPERIMENT RESULTS

In this section, the proposed clustering method is compared

with the DBSCAN, the k-means [19]–[21], the FCM [22],

the PCM [5], the AMPCM [20], [23], and the APCM in a

typical scene. Then, the experimental results for the scenes

Algorithm 3 KLSAPCM

Require: γj, cini, α, and a.

Ensure: fuzzy partition matrix U , clustering center θ , and

label.

1: initialization: θ j from the initialization method,

using (24) initialize γj, and set: γ̂ = minj=1,··· ,ciniγ
(l)
j ;

2: c(l) = cini;

3: repeat

4: calculating the δ
(l+1)
j of each cluster;

5: using (27) update the cluster centers θ (l);

6: using (26) update the center line segment L(l) of each

cluster;

7: using (25) update the Kernel function K (l);

8: using (31) update the membership degree matrix U (l);

9: for i← 1 to n do

10: µ
(l)
ir = maxj=1,··· ,c(l)µ

(l)
ij

11: label(i) = r

12: end for

13: p = 0 //number of removed clusters;

14: for j← 1 to c do

15: if j /∈ label then

16: Remove cj
17: p = p+ 1

18: end if

19: end for

20: c(l+1) = c(l) − p

21: using (29) update γ
(l+1)
j ;

22: l = l + 1;

23: until the difference between L(l) and L(l+1) is sufficiently

small;

24: return: results U , θ , and label;

in the Fig.3(b) show that the proposed clustering method is

superior than the other several clustering algorithms. Finally,

the proposed clustering method had better robustness against

some special scenes.

A. COMPARISON WITH EXPERIMENTAL RESULTS OF

CLUSTERING ALGORITHMS

This section gives experimental comparisons of the

DBSCAN, the k-means, the FCM, the PCM, the AMPCM,

the APCM, and the KLSAPCM algorithms in the scene

of Fig.3(b). In the scene of Fig.3(b), highway speed limit:

the speed range of miniature vehicle in the driving lane is

60 ∼ 100km/h(16.67 ∼ 27.78m/s), and the speed range

of big vehicle in the driving lane is 60 ∼ 80km/h(16.67 ∼

22.22m/s).

The scene 1 description: Two trucks are running on three

lanes. The length and width of the truck in the middle lane are

about 8 m and 2.4 m respectively (From the type of truck in

video surveillance). The velocity is about 25m/s. The length

and width of the truck in the left lane are about 11m and 2.4m

respectively. The velocity is about 24 m/s. The two trucks

were moving at closing speed in the adjacent lane.
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FIGURE 6. The actual scenes. (a) and (b) The scene 1 and 2 in the Fig.3(b).

The scene 2 description: One microbus and one car are

running on three lanes. The length and width of the microbus

in the middle lane are about 4.5m and 1.8m respectively.

The velocity is about 34 m/s. The length and width of the

car in the right lane are about 4.2m and 1.8m respectively.

The velocity is about 33 m/s. The two vehicles were mov-

ing at closing speed and very close together in the adjacent

lane. Meanwhile, the microbus was suspected of dangerous

driving.

FIGURE 7. The measurement data after removing the outliers. (a) and
(b) The scene 1 and 2 in the Fig.6.

Firstly, we extracted measurements in the adjacent lane

centerline and filtered out the outliers from the raw data

to obtain the effective measurement data of the vehicles,

as shown in Fig.7. By observing the measurement data after

removing the outliers, it is known that the measurement of

the two vehicles is difficult to distinguish about the 2 scenes.

Here, we find that when the outliers removed from raw data,

the different cluster centers are very clear in the Fig. 5, but the

vehicle data are mixed together and hard to decide its cluster

center in this section. The main reasons are: in the real scene

Fig. 3(b) of the Fig. 5, the distance between the three vehicles

is large, and there is no mirror interference between each

other during radar measurement. However, in this Section,

we deliberately selected two scenarios where the vehicles

are very close to each other to show the performance of the

algorithm. We observe the two scenes of the Fig. 6, because

the distance between the vehicles is close, there will be a

lot of mirror interference between the vehicles, making the

measurement data of the two vehicles mixed together and

difficult to distinguish. Aiming at this problem, the tradi-

tional clusteringmethods cannot distinguish the twomeasure-

ment datasets correctly. Therefore, this paper proposed the

KLSAPCM algorithm to deal with the problem.

Next, the noise-filtered data is processed by the DBSCAN,

the k-means, the FCM, the PCM, the AMPCM, and the

APCM classification algorithms, and the results are shown

in Fig. 8. It can be seen that the DBSCAN, the k-means,

the FCM, the PCM, the AMPCM, and the APCM algorithms

are not suitable for data with non-spherical distribution.

When the DBSCAN algorithm is executed, the algorithmwill

also filter out low-density measurement data, as shown by

Outliers in Fig.8 (a) and (g). When the PCM algorithm is

executed, because the PCM algorithm can greatly eliminate

the influence of low-density data (outliers) on the clustering

result, we first remove the low-density data (outliers) before

executing the PCM clustering algorithm, as shown by Out-

liers in Fig.8 (d) and (j). The clustering results of the PCM

algorithm obtained by this method are very close to those

obtained by directly executing the PCM algorithm, and the

computational efficiency of the algorithm is improved. The

Fig.9 shows the clustering results of the proposed algorithm,

and the results are obviously better than other algorithms.

TABLE 1. CR and running time of clustering algorithms for the
scene 1 and 2.

In the following, the proposed classification algorithm

is compared with the DBSCAN, the k-means, the FCM,

the PCM, the AMPCM, and the APCM algorithms on real

measurement datasets from the scenes of Fig.6 with respect to

the classification rate (CR) index and the time consumption.

Table 1 and Fig. 10 shows the CR values obtained by the

DBSCAN, the k-means, the FCM, the PCM, the AMPCM,

the APCM, and the KLSAPCM algorithms in the two scenes.

As it can be deduced from the Table 1 and the Fig. 10,

the KLSAPCM algorithm has optimal CR index. It is worth

noting that the time consumption of the KLSAPCM algo-

rithm is more than that of the DBSCAN, the k-means, and the

FCM algorithms, but less than the PCM, the AMPCM, and

the APCM algorithms. Because the KLSAPCM algorithm is

first initialized through the improved minimum radius data

search method, and then the KLSAPCM algorithm is run.

In terms of time complexity, it is necessary to calculate

the minimum radius of each data point and find the data

point with the smallest minimum radius in the neighborhood.
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FIGURE 8. The clustering results. (a)∼(f) The results of the DBSCAN, the k-means, the FCM, the PCM, the AMPCM, and the APCM classification algorithms
for the scene 1. (g)∼(l) The results of the DBSCAN, the k-means, the FCM, the PCM, the AMPCM, and the APCM classification algorithms for the scene 2.

But proposed algorithm can remove many outliers by the

minimum radius data search method, and reduce the number

of processing points of the subsequent algorithm. In addition,

the lane centerline is known. When the KLSAPCM cluster-

ing algorithm is run, the initial cluster centerline segments

calculated based on the lane centerline are already close to

the true cluster center, thereby greatly reducing the number

of iterations of the algorithm. Therefore, the proposed algo-

rithm improves the clustering accuracy, the time consumption

is within the acceptable range, and is less than some new

clustering algorithms proposed in recent years. The time

consumption comparison is shown in Fig. 11.

In summary, while ensuring real-time application, the clas-

sification performance of the proposed algorithm is better

than that of the DBSCAN, the k-means, the FCM, the PCM,

the AMPCM, and the APCM classification algorithms in the

lane determination of the vehicle.

B. COMPARISON OF EXPERIMENTAL RESULTS FOR

NEAREST LANE CENTERLINE METHOD

As we all know, the higher the accuracy of capturing illegal

vehicles on the expressway (the lower the rate of missing and

wrong capturing, that is, the more accurate the law enforce-

ment), the more it will help reduce the incidence of traffic

accidents. Besides, the Section II-C of this paper introduces

the data acquisition of the MMW radar. Based on the Section,

we can know that one measurement point does not represent

one vehicle (representing a certain point on the vehicle’s

body, one vehicle has multiple measurement points) and

FIGURE 9. The clustering results of the proposed algorithm. (a) and
(b) The scene 1 and 2.

vehicle measurement data of different densities can be

obtained by adjusting relevant thresholds. If we use the lane

centerline and the vehicle position to determine the lane of a

vehicle for the scenes of the Fig.12, law enforcement errors

may occur. Next, the distance between the position of the

vehicle and the centerline of the lane (nearest lane centerline

method) is used to determine the lane of the vehicle, the mea-

surement data processing steps and possible problems are as

follows:

a) When the measurement data is sparse (there are only

a few or one measurement points per vehicle, and even

some vehicles do not have measurement points). Although
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FIGURE 10. The CR of the different clustering algorithms for the
scene 1 and 2.

FIGURE 11. The time consumption of the different clustering algorithms
for the scene 1 and 2.

FIGURE 12. The actual scenes. (a) and (b) The scene 3 and 4 in
the Fig.3(b).

we can easily obtain the number of vehicles in all lanes,

these measured points are from the position where the radar

wave reflects strongly on the vehicle, that is, it is likely

to be on one side of the vehicle, such as the vehicles in

Fig.12 (a) and (b). The measurement points of the vehicle

for several consecutive cycles may be in the wrong lane,

and the position of the vehicle may be inaccurate. Therefore,

the position of the vehicle may be in the wrong lane, and

finally causing the vehicle’s lane to be determined incorrectly.

In addition, some vehicles will be missed detection in this

mode, that is, there is no measurement in several cycles and

some illegal vehicles may be missed.

FIGURE 13. The experimental results. (a) The nearest lane centerline
method for the scene 3. (b) the proposed method for the scene 3. (c) The
nearest lane centerline method for the scene 4. (d) the proposed method
for the scene 4.

b) When the measurement data is dense (every vehicle has

many measurement points). 1) We must first calculate the

number of vehicles included in the measurement data, and

then calculate the position of each vehicle. The clustering

algorithm can well calculate the number of vehicles, then

the related algorithm is used for accurate positioning, and

finally the distance between the position of the vehicle and

the lane centerline is calculated to define the lane of the

vehicle. Its computational cost is greater than the computa-

tional cost of the proposed method in this paper, and it also

performs the clustering algorithm. 2) It is assumed that the

clustering algorithm and the positioning algorithm are not

used in lane determination. Without knowing the number

of vehicles, the lane of each measurement point is directly

calculated based on the Euclidean distance between the point

and the centerline of each lane. For example, in the scenes

of Fig.12 (a) and (b), one vehicle is directly driving between

lane 2 and lane 3, respectively. The main body (number plate)

of the vehicle in Fig.12 (a) and (b) is in themiddle lane and the

lane 3, respectively. In this way, the measurement data of the

vehicle is divided into two parts (one in lane 3 and the other

in lane 2), and the system will mistakenly consider them as

two vehicles, as shown in Fig. 13 (a) and (c).

63014 VOLUME 8, 2020



L. Cao et al.: Lane Determination of Vehicles Based on a Novel Clustering Algorithm

In summary, the dense measurement data mode in this

paper is used (although this mode has a large amount of

data, but the vehicle measurement is stable and there will be

no missed detection vehicle). Then, the proposed clustering

algorithm can be used to achieve the accurate determination

of vehicle lanes, as shown in Fig. 13 (b) and (d). The accuracy

of lane determination is higher than the method of judging

vehicle lanes by using the distance between the position of

the vehicle and the centerline of the lane.

C. CLUSTER PERFORMANCE EVALUATION FOR

MULTIPLE APPLICATION SCENES

More to illustrate the performance of the algorithm,

we extract data from 4 different scenes in Fig.3 (c) and (d).

The 4 scenes are as follows:

The scene 5 description: In Fig.3(c), highway speed

limit: light rain, visibility less than 200m, less than

60km/h(16.67m/s). In the scene, two cars (the car’s length

and width are about 4m and 1.8m respectively) are driven on

three lanes at about 21m/s and 17m/s respectively, and the

weather is light rain.

The scene 6 description: In Fig.3(d), highway speed

limit: the speed of entering the intersection is less than

40km/h(11.11m/s). In the scene, three vehicles travel at

speeds of about 23m/s, 18m/s(entering the intersection), and

21m/s, respectively. On the right side of the lane, a car runs

normally along the lane. In the middle lane close to the radar,

the vehicle is the medium-sized buses with a width of about

2.5m and a length of about 10m, which runs normally along

the middle lane. In the middle lane away from the radar,

a car drives from the middle lane into the leftmost lane at the

fork.

The scene 7 description: In Fig.3(c), highway speed

limit: less than 120km/h(33.33m/s). In the scene, two high-

speed vehicles travel at speeds of about 28m/s and 39m/s,

respectively. The vehicle in the rightmost lane is speeding

vehicle.

The scene 8 description: In Fig.3(d), highway speed limit:

the speed in the driving lane (the rightmost lane) should not

be less than 60km/h(16.67m/s). In the scene, a vehicle in the

right-most lane slowed down, changed lanes, veered into the

left-most lane, and accelerated.

We use the proposed algorithm to analyze the measured

data of the four scenes, and the experimental results are shown

in Fig.14. The experimental results of the four scenes are

all correct. For the experimental result of the first scene,

as shown in Fig.14(a), our system operates normally in an

appropriate light rain environment. The experimental result

of the second scene show that our algorithm can adapt to

the simultaneous detection of multiple vehicles, as shown

in Fig.14(b). The experimental result of the third scene show

that the proposed algorithm can accurately judge the lane of

the overspeed vehicle without affecting the real-time perfor-

mance, as shown in Fig.14(c). The experimental result of the

last scene, as shown in Fig14(d), show that the low-speed

FIGURE 14. The experimental results of the different scenes. (a)∼(d) The
experimental result of the scene 5∼8.

lane-changing vehicle appears in three lanes simultaneously.

The system will capture illegal vehicles in three lanes at the

same time.

In addition, we extracted experimental data of 42 min-

utes, 35 minutes, and 68 minutes in the three different

scenes of the Fig.3 (b), (c), and (d), respectively, and

372 vehicles, 416 vehicles and 397 vehicles were monitored

respectively. The analysis results of the proposed algorithm

were compared with the monitoring video, and three vehi-

cles were missed. The KLSAPCM algorithm can achieve

the accuracy of 99.58% in the three different scenes of

the Fig.3 (b), (c), and (d).

D. DISCUSS

The proposed algorithm in this paper is used to capture

illegal vehicles on speed-limited highways. The speed limit

of highway is generally between 40km/h(11.11m/s) and

120km/h(33.33m/s), the safe driving distance is more than

30m, and the lane length of the monitoring area from accu-

mulate measurement data of 5 to 15 frames in this paper is

generally 4 to 30 meters. When the car is running at high

speed, it is difficult for vehicles to complete the whole lane-

changing process based on about 20m. Therefore, we believe
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that vehicle in the monitoring area was driving in the fixed

lane. When a speeding vehicle appears, the lane of the speed-

ing vehicle is identified and captured. When there are single

or sparse illegal ultra-low-speed vehicles, the frame number

of measurement data for low-speed vehicles in themonitoring

area is more. If the vehicle changes lanes, the vehicle is simul-

taneously captured by cameras in multiple lanes before and

after lane changes.When the vehicle is parked in the monitor-

ing area, it is difficult to distinguish the measurement points

of the vehicle from the road surface measurement points. The

algorithm needs other types of algorithms to judge, such as

data association algorithm. The innovation of the algorithm

in this paper is on data classification, so there is no specific

description of how to judge the driving vehicle parking in

the monitoring area. In the event of traffic congestion and

ultra-low speed driving, the radar can determine whether it

is a traffic congestion mode by the running speed of multiple

vehicles and the number of vehicles in the monitoring area.

In this case, the algorithm stops running and the camera stops

capturing. If there are weather conditions such as dust storms,

hail, torrential rain, heavy snow, fog, ice and so on, the traffic

management department closes the system by remote control.

However, if there are some special scene such as some cars

with the same speed, the big car shielding the small car, and

the continuous driving of many low-speed illegal vehicles,

the algorithm will fail, and the system needs other corre-

sponding means to deal with them.

V. CONCLUSION

In this paper, a novel KLSAPCM clustering algorithm was

developed in intelligent transportation monitoring system.

The main works of the paper can be concluded as fol-

lows: 1) The extracting monitoring area method (adjacent

to the lane centerline) and the minimum radius data search

method for the MMW radar measurement data are intro-

duced in traffic detection. These two methods effectively

reduce the impact of noise on the clustering algorithm.Mean-

while, the minimum radius data search method can also

effectively initialize the KLSAPCM clustering algorithm;

2) A KLSAPCM clustering algorithm is proposed in this

paper. The algorithm can correctly determine which lane

each vehicle belongs to without manually measuring the

installation position and installation angle of radar; And

3) the detailed experiments of multiple scenes were pre-

sented and the results were: the KLSAPCMalgorithm is com-

pared with the DBSCAN, the k-means, the FCM, the PCM,

the AMPCM, and the APCMalgorithms on real measurement

datasets, and the results highlight the classification rate of

the proposed algorithm. Meanwhile, the proposed algorithm

has good real-time performance and strong robustness for

some sparse moving vehicle scene applications. As described

in the discussion section, our future research content will

be carried out to improve classification accuracy for more

complex scenes, and increasing the scope of application of

the system.
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