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Lane-Level Map-Matching With Integrity on High-Definition Maps

Franck Li1,2, Philippe Bonnifait1, Javier Ibanez-Guzman2 and Clément Zinoune2

Abstract— Navigation maps provide important information
for Advanced Driving Assistance Systems (ADAS) and Au-
tonomous Vehicles. This paper presents a method estimating
a set of likely map-matched hypotheses containing the correct
solution with a high probability. This addresses the problems
encountered when using a high definition map when a large
number of ambiguities arise. These occur for instance, when
only inaccurate prior information on position is available at
initialization. The method uses lane-level accurate maps with
dedicated attributes, such as connectedness and adjacency,
and an automotive Global Navigation Satellite System (GNSS)
receiver assisted with dead-reckoning (DR) sensors. GNSS can
be so inaccurate that map-matching relies mainly on DR
estimates, the GNSS fixes being used as uncertain estimates
with protection levels. This paper proposes a formalization of
the map-matching integrity problem as well as a sequential
method using a Particle Filter providing a reliable set of map-
matched hypotheses. The performance is evaluated using data
acquired in public roads.

I. INTRODUCTION

To navigate, an intelligent vehicle needs a digital repre-

sentation of the world as perceived by its on-board sensors.

To this end, a priori information on features of the road

network is mandatory. These are stored in digital road maps

where description of the road network provides geometric

and contextual information such as lane markings, traffic

signs, etc.

A strong effort is currently made by map suppliers to

meet the requirements of intelligent vehicles, that require

high level of accuracy for new advanced tasks.

To access the relevant information, vehicles must be

localized with respect to these maps. For this purpose,

vehicles rely on Global Navigation Satellite Systems (GNSS)

receivers which provide an absolute position on Earth. The

process of associating these position estimates to roads

on a map is known as Map-Matching. Considering GNSS

measurements generally bear errors that can reach several

meters [1], matching the true position on a lane-level map

remains a challenging issue.

This paper presents a method for a lane-level map-

matching using a Particle Filter (PF), focusing on the in-

tegrity of the result. Section II introduces the concept of map-

matching integrity and demonstrates how PFs can be used

in this sense. Secondly, Section III presents an optimized

use of the map in the context of map-matching: as PF is
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usually calculation-heavy, efficiently use the map is very

important. The implementation of the algorithm is explained

in Section IV before presenting experimental results of this

algorithm using data acquired in public roads in Section V.

II. MAP-MATCHING INTEGRITY

A. Multiple Hypotheses Policy

The goal of the method described here differs from the

most common use of map-matching for automotive appli-

cation used in navigation systems for which map-matching

should give a single position estimate to the user as a result.

This corresponds to the usual need of such a system: a single

position must be used to calculate a route and, in most cases,

if this position is erroneous, the user is able to see the error

and wait for a correct matching by disregarding the given

information.

On the opposite, map-matching aimed to autonomous nav-

igation systems must not be over-confident about its results:

the worst-case scenario would be to provide an erroneous

single position as there may be no human to detect the error

and to apply a correct action. If there is an ambiguity in the

matching, then the algorithm should keep it in mind and not

make a decision. This is the notion of map-matching integrity

[2]: the desired result is to get a method providing in real-

time a set of likely matched lanes in which the correct lane is

highly likely to make part. The size of the set has to be kept

as small as possible. In other words, that would be a single

lane if the pose estimate uncertainty is small and if there

is no ambiguity or multiple ones that must include the real

matched solution. This topic begins to be very important as

progresses in intelligent vehicles are made and starts being

developed in the literature [3], [4].

B. Particle Filtering

Most of existing map-matching algorithms do not tackle

this integrity problem as they perform at the macro-scale

road-level. Ambiguities can be present at this scale, espe-

cially in dense areas, but advanced techniques, such as fuzzy

logic map-matching applied by Quddus et al. [5] have a great

capability to resolve them. A single solution can be found

most of the time once the matching has converged. When

coming down on the lane level, a lot of ambiguities rise. For

example, Quddus’ fuzzy inference system uses the vehicle’s

heading as an input criterion, but on a 2-lane road, both lanes

have very close headings: it is therefore no longer a strong

discriminant information. The algorithm will most likely not

be able to decide on which lane to match and therefore fail.

With this perspective, a Particle Filtering approach is cho-

sen here, as it is able to manage multiple hypotheses. Another



solution is to assign a Kalman filter to each hypothesis in a

multiple model framework with a Gaussian mixture posterior

approximation [6] but it leads to a more complicated im-

plementation. Some matching algorithms have already been

implemented using PF [7], [8], [9], but did not emphasize

on the integrity possibilities of such methods.

In our model, the state of each particle is hybrid (contin-

uous and discrete, see Eq. 1). Xi
p = (xi, yi, ψi) represents

the 2D pose and mli, the matched link of the ith particle.

Each particle has an associated weight wi representing its

likelihood.

Xi = (Xi
p,ml

i) = (xi, yi, ψi,mli) (1)

Please note that the particles are not constrained to the links

(e.g. [10]) which can induce curvilinear distortion at nodes

or junctions difficult to handle and need careful management

of the abscissa like proposed in [11].

The algorithm described in this paper uses an automotive

GNSS receiver, DR sensors and a centimeter-accuracy lane-

level map (as described in more details in Section III).

1) Evolution model: The evolution model is a unicycle

since we measure the speed and yaw rate of the car:






xit = xit−1
+ vt ·∆t · cosψ

i
t−1

yit = yit−1
+ vt ·∆t · sinψ

i
t−1

ψi
t = ψi

t−1
+ ωt ·∆t

. (2)

U i
t = [vit, ω

i
t]
T is the input vector of the ith particle,

with vit ∼ N (vraw , σ
2

v) and ωi
t ∼ N (ωraw, σ

2

ω), based

on raw measurements of the vehicle’s speed and yaw rate

(vraw , ωraw ) with an added random noise. The noise allows

the particles to spread during their evolution, being added

independently for each particle.

For matching the link, two approaches are used: particles

are map-matched once at the filter initialization (see Sec-

tion IV-A) and then follow the links logically using attributes

stored in the lane-level map describing connectedness and

adjacency (as described in Section III). This choice is very

efficient in terms of real-time computation.

2) Map Likelihood Computation : When a map is pro-

cessed as a raster (see [7]), a likelihood field can be computed

in advance to accelerate the processing. In our case with a

vectorial map, the likelihood is modeled as a Gaussian to

compute the probability of belonging to a given lane. The

lateral (also called cross-track) distance yt to the closest

matched point is used to compute it. Gaussian cuts being

fitted on links, the likelihood is maximum if the distance

is null (the particle is right on the centerline) and quickly

decreases as the particle gets to a distance greater than the

half width of a driving lane. This likelihood is then used

to update the weight of each particle recursively using a

bootstrap strategy:

wi
t = wi

t−1
· p(yt|X

i
k) (3)

Note that this calculation takes into account the complete

pose: the likelihood depends on the cross-track distance but

also on the heading difference between the hypothesis and

A B
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D

E

Fig. 1. Lane Forking where particle cloning occurs: the particle MAB is
duplicated into MBC , MBE and MBD

its matched link. Indeed, a vehicle is more likely to follow

a heading close to the direction of the road it is following.

3) GNSS positions as points with Protection Levels: In

order to provide map-matching with high integrity, estimated

positions computed by the GNSS receiver are only used

to limit the spread of the particles and not to update the

weights of the particles. We suppose that every position is

associated with a Horizontal Protection Level (HPL) which is

a bound of the estimation error (associated with an integrity

risk) and used in aeronautics for monitoring the integrity of

a GNSS position [12]. As positions can be greatly biased,

especially in urban environments, the filter considers an

area around every position computed by the GNSS receiver

instead of a single point as an input. This area is the HPL,

i.e. an area where the true position is highly likely to be

located: all the particles inside this HPL are considered

valid whereas the other are eliminated by the filter. This

strategy can be seen as a gating process. The HPL depends

greatly on the environment the vehicle evolves in: it can be

conservative in poor satellites visibility conditions (e.g. tens

of meters) or, inversely can be very small with high accuracy

receivers and modern point computations like Precise Point

Positioning [13].

4) Resampling Strategy: To avoid the degeneracy of the

particles set, resampling is applied using Kitagawa’s strat-

egy [14], with a threshold of 66% effective particles. A

low variance resampling [15] is performed to redraw the set

of particles. Kitagawa’s method is preferred to a systematic

resampling at every step to favor particles spreading which

allows a better exploration of the 2D-space.

5) Particle Cloning: In the same perspective of through-

out exploration, a new strategy is adopted at lane forking:

to be sure to explore all possible path, a particle arriving

on a lane forking is cloned and each clone follows one of

the connected path hypotheses (see Fig. 1). This creates a

variable size of the set of particles (which is not a problem in

practice if enough memory has been allocated for the filter).

To avoid an exponential rise in complexity, a maximum

number of particles is set (e.g. 150% of the original number

of particles). Moreover, at each resampling, only the original

number of particles is redrawn; the additional particles are

of course taken into account during this step, but only the

most likely will survive.

III. SEMANTIC USE OF THE MAP

The map used in this study is considered faultless and

highly accurate like in [11] and [16]. This allows to focus
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Fig. 2. Detail of the map of a roundabout in Compiègne, France. The
centerline of the lanes are drawn in brown and the lane markings in blue.
Complete connectedness is notably visible in the roundabout entrances and
exits

on the map-matching algorithm considering no error from

the map. This assumption is acceptable as map providers are

currently working on high accuracy maps of public road with

a large coverage. To comply with this assumption, a high

accuracy lane-level map has been made by a mapmaker, cov-

ering 4 km of open roads in Compiègne (details on Fig. 2).

An absolute accuracy of 2 cm is guaranteed. This prototype

study map is oriented towards an intelligent automotive use:

it includes additional details that are not present in most

maps used in current navigation maps (e.g. lane markings

information).

A. Lane-Level Map Structure

This mesoscale map [17] is stored in a SQLite database.

The Spatialite library is used, extending SQL functionalities

with useful geographic utilities such as spatial requests and

data structures (e.g. 2D/3D points, polylines). The main

layers in this map are described as follows:

• Links that represent each driving lane’s centerline. They

are represented by polylines. A polyline is a sequence of

Shapepoints (2D or 3D points, depending on the type of

map) that follows the geometry of a drivable lane. This

allows to not be limited in the representation of straight

lanes but also curves. Subdivision of links (delimited

by two shapepoints) will be referred to as segments.

• Nodes that binds consecutive links together; they denote

most of the time intersections, but could also mark lane

merging, splitting. Nodes represent the connectedness

information in the link network. They enable fast link

searching methods by storing parent and child links IDs.

• Lane markings are also stored in the database. In addi-

tion to the geometric description of the road marking,

this layer contains attributes to identify the marking type

(e.g. solid line) and associated link ID.

These three tables form the basis on which the database is

built.

B. Semantic Information

A digital road map can be viewed only as a Geographic

Information Database, containing the coordinates of the

different road structures. This is the natural approach when

dealing with a digital map. But the most recent digital maps,

such as the one used in this article, contain richer information

that enables a more interesting processing. Once matched

on the map, a hypothesis can heavily rely on the semantic

information about the road network to evolve. For instance,

every link accessible from a given matched position is easily

accessible from the database, without the need of costly

distance calculation. The map thus provides an evolution

framework relatively independent to the 2D-plan geometry,

as such a position can be projected on the map for a 1D

evolution.

C. Adjacent Links

Another important feature in our research map is the

adjacency information: every link is aware of the links on its

sides. This is mandatory to check for matching ambiguities,

as adjacent links present the biggest challenge for map-

matching. This information being available directly from

the map, no costly calculation is neither needed and the

exploration of hypotheses is greatly improved. This adds the

second dimension of the map exploration, after the longitu-

dinal one, provided by the link succession information. The

matching algorithm thus have a complete framework to use

efficiently the map, removing part of the heavy calculation

and taking advantage of the efficient map design.

IV. METHOD IMPLEMENTATION

In this section, we describe the main steps to implement ef-

ficiently the map matching method described in the previous

sections and illustrated by Fig. 3. SQL based map format are

efficient when using large map (i.e. large database size) due

to the possibility to make spatial queries. Although the query

is fast to execute, query formatting and returned data parsing

cause significant CPU load. Its use is therefore limited to

punctual queries using caching methods as implemented

by Bonnifait et al. [18], where the map information was

stored into memory as the car is moving from one position

to another. The approach presented here loads the whole

map information once when starting, as its size is relatively

limited.

The initial filter sample set is populated and matched to the

road network to finalize the initialization process. The filter

then runs the real time execution loop. These two processes

(see Fig. 3) are described in the following paragraphs.

A. Initialization Step

After loading the SQL map into an internal data structure,

the filter initializes on the first valid GNSS position received.

Particles are then generated around this position, in a circular

pattern to cover the full area corresponding to the associated

HPL. Each particle is then matched to its corresponding

link. This step follows a point-to-curve method which selects
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Fig. 3. Flowchart of the filter. Heavy calculation is kept out of the main
processing loop

Fig. 4. Particle Initialization: colors denote the matched link. The initial
heading corresponds to the matched link. Some particles are far from the
links due to the 50 m HPL (high value chosen to be very conservative), but
will be quickly eliminated during an resampling step.

the link candidate with the lowest Euclidean distance to the

particle.

The algorithm makes the assumption that the vehicle is

driving on-road, and that this road is in the map. Therefore,

it is reasonable to initialize the particles’ heading to be the

link’s (see Fig. 4). This initialization ensures considering all

the links present on the map around this position. Some

particles are notably created outside the drivable area rep-

resented in the map. It illustrates the fact the particles are

not strongly constrained onto the map and can evolve in the

2-dimensional space and not only on the centerlines. This

provides a spatial flexibility to the filter, only limited by the

decreasing likelihood of particles that get too far away from

a link. These particles will be quickly eliminated by the filter

during the update step.

A B

M1
+

M2
+

0<r<1 r>1

Fig. 5. Particle M1 is still on the current segment (AB) while M2 leaves
it. This is determined by calculating the ratio described by Eq. 4

B. Main Filtering Loop

Once associated to the road network, the free 2D spatial

evolution of the particles becomes an evolution heavily tied

to the map. The distance calculation is therefore simplified

and the filter efficiency is improved. This process is synchro-

nized with the proprioceptive information input rate (10 Hz).

The ID evolution of the particle is easily determined by

simply calculating if its projection has left the currently

matched segment. It is done simply by projecting the particle

as shown on Fig. 5. The ratio

r = (
−−→
AB ·

−−→
AM)/||

−−→
AB||2 (4)

is computed and if r > 1 (respectively r < 0), the particle

has left the current segment and has to be associated with

the next one (respectively the previous one) by simply using

the connectedness information of the table of the map.

This is the only calculation needed to make the particles

evolve on the map. Cloning and resampling are then applied

as explained before. Each time a new GNSS position is

available, the HPL gating is applied. The filter is designed

to need as little calculation as possible.

C. ID Estimates Of The Map-Matched Points

To estimate the matching hypotheses, the filter simply

takes the weighted mean of the particles’ pose. This calcu-

lation is done separately for each different link hypothesis:

Xhypj
=

∑

i

wi
j ·X

i
p. (5)

Xhypj
is the jth matching hypothesis, wi

j is the normalized

weight of the ith particle of the jth hypothesis and Xi
p, its

pose. This computes an estimate for each hypothesis with its

associated weight. It is therefore possible to determine the

most probable one.

V. RESULTS

A. Experimental Setup

A C++ implementation of the algorithm has been de-

veloped using the Pacpus framework1, that provides easy

integration in the laboratory’s test vehicle and offline data

replay. An experimental vehicle was used for real road data

acquisition. The car was equipped with a Septentrio PolaRx4

GNSS receiver and DR information was accessible directly

from the vehicle CAN bus.

The algorithm has been tested using Pacpus data replay

capability running in real time. The test trajectory (see

1developed at Heudiasyc. More info at pacpus.hds.utc.fr

pacpus.hds.utc.fr


Fig. 6. Test GNSS trace (in white) over the lane map (in blue). Large
GNSS errors are clearly visible.

Fig. 6) is representative of a peri-urban trip (2x2 lanes

roads, including roundabouts). Some high-rise building are

present, as well as open-sky conditions at the bottom of the

figure. The algorithm runs in real-time conditions with 1000

particles on an AMD A8-4500M CPU@1.90 GHz with 8 Go

RAM.

Fig. 7 shows the GNSS positioning error during the test.

The error is relatively contained with a mean error of 0.5 m

and a standard deviation of 0.82 m but can still interfere

with a lane-level map-matching. Lots of spikes (up to 8 m)

are notably present which can be highly problematic for the

matching stability. The filter performs well even with these

errors (note that losses of GNSS signal occur in the dataset,

but are not reflected in Fig. 7 as no error can be computed).

The HPL is set to 50 meters, largely exceeding the GNSS

error. This high value reflects a low confidence on the GNSS

position, the algorithm being very conservative. It could be

tuned to reflect the situation more closely and put higher

confidence to this input.

As the test trajectory is quite long (about 4 km in a

10 minute-long acquisition), the following graphs split it to

focus on specific points. They represent the variation of the

different hypotheses weights over time.

Fig. 8 shows the situation right after initialization, 4

hypotheses are found (the initialization is done next to a

roundabout, a difficult situation). 2 of them are eliminated

as the vehicle leaves the roundabout, leaving the 2 driving

lanes as the only surviving hypotheses. Ground truth is the

green line, fluctuation is visible between the two adjacent

lanes, as ambiguities cannot be resolved by the filter at this

time instant.

Inside roundabouts (Fig. 9), a high fluctuation is observ-

able: this is explained by the high variation of yaw rate in

these locations. It is a difficult scenario, but the algorithm
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Fig. 7. Errors of GNSS fixes compared to real positions. Error spikes are
clearly visible.

0 2 4 6 8 10 12

Tim e (in s)

0.0

0.2

0.4

0.6

0.8

P
ro

b
a

b
il
it

y

Fig. 8. Probabilities of the map-matched hypotheses with respect to
samples. At initialization, 4 hypotheses are found but soon collapse into
2, corresponding to the 2-lane road (ground truth in green).

still manage to determine a correct set of hypotheses.

Fig. 10 shows a cloning event happening at the location

shown on Fig. 11: the rightmost lane forks and forms a new

lane (a deviation) which the test vehicle is taking. In the first

half of Fig. 10, the ground truth is represented by the green

line. Then the purple hypothesis emerges after the forking

and becomes the new ground truth. The two old hypotheses

lose weight while the new one gets more and more important,

until becoming the dominant hypothesis.

Repeatability has been studied by executing the filter

on the same input data 15 times. Ground truth has been

determined by manually labeling the dataset with the correct
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Fig. 9. Fluctuations inside roundabouts (high yaw rate variation, ground
truth in green).
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Fig. 10. Filter behavior at a lane forking: the hypothesis corresponding to
the new lane (actual path taken) quickly gains importance, while the other
two drop.
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Fig. 11. Details of the location described in Fig. 10. A new lane is created
a the rightmost (top of the figure): cloning happens.

lane. Results are shown in Table I: the filter does not keep

the correct matching hypothesis only 2.4% of the time.

Otherwise, the set of hypotheses always includes the ground

truth. But the ground truth is only identified as the most

probable hypothesis 51.3% of the time. This illustrates that

the filter cannot discern two hypotheses on which ambiguity

is still present. These two figures are in consistent with

the idea of a map-matching integrity (keeping the correct

matching but also the other likely candidates). Moreover, the

availability of the algorithm is correct as it provides 2 or less

hypotheses 76% of time, and 3 or less 94% of the time.

VI. CONCLUSION

The lane-level map-matching algorithm presented in this

paper developed a new approach for solving the problem. It

aims at providing results with high integrity by estimating

more than an unique solution that could be erroneous. The

map-matching output can therefore be a set of multiple

lane hypotheses in ambiguous situations or when pose

uncertainty is high. This result is beneficial for all the

systems that need to get confidence indicators associated

with the map-matching procedure. The proposed method has

been designed to exploit as much as possible the semantic

information stored in the high definition map. As shown

by the results, its behavior is reliable, the convergence is

quite fast (in the order of seconds after a first GNSS fix,

with a moving vehicle and dead-reckoning information). This

quick convergence is crucial when guiding an autonomous

TABLE I

MATCHING CORRECTNESS IN PERCENTAGE FOR 15 REPETITIONS

Metrics %

Set including Correct Matching 97.6
Set of 3 or less hypotheses 94.1
Correct Best hypothesis 51.3

vehicle, in particular if the approach resides only on relative

localization

To be used more effectively such a technique has to be

further improved. The current algorithm uses only a GNSS

receiver in a very careful way thanks to HPL indicators. To

improve the matching, a next step is to add data from a

perception system and fuse them with the algorithm output.

This data fusion is necessary to remove more ambiguity on

the lane-level matching. The filter could also be implemented

using a graphics processor (GPGPU) to associate the parallel

paradigm of these architectures with the highly parallel

nature of Particle Filtering.
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