
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 46972, 8 pages
doi:10.1155/2007/46972

Research Article

Lane Tracking with Omnidirectional Cameras:
Algorithms and Evaluation

Shinko Yuanhsien Cheng and Mohan Manubhai Trivedi

Laboratory for Intelligent and Safe Automobiles (LISA), University of California, San Diego, La Jolla, CA 92093-0434, USA

Received 13 November 2006; Accepted 29 May 2007

Recommended by Paolo Lombardi

With a panoramic view of the scene, a single omnidirectional camera can monitor the 360-degree surround of the vehicle or mon-
itor the interior and exterior of the vehicle at the same time. We investigate problems associated with integrating driver assistance
functionalities that have been designed for rectilinear cameras with a single omnidirectional camera instead. Specifically, omnidi-
rectional cameras have been shown effective in determining head gaze orientation from within a vehicle. We examine the issues
involved in integrating lane tracking functions using the same omnidirectional camera, which provide a view of both the driver
and the road ahead of the vehicle. We present analysis on the impact of the omnidirectional camera’s reduced image resolution on
lane tracking accuracy, as a consequence of gaining the expansive view. And to do so, we present Omni-VioLET, a modified imple-
mentation of the vision-based lane estimation and tracking system (VioLET), and conduct a systematic performance evaluation
of both lane-trackers operating on monocular rectilinear images and omnidirectional images. We are able to show a performance
comparison of the lane tracking from Omni-VioLET and Recti-VioLET with ground truth using images captured along the same
freeway road in a specified course. The results are surprising: with 1/10th the number of pixels representing the same space and
about 1/3rd the horizontal image resolution as a rectilinear image of the same road, the omnidirectional camera implementation
results in only three times the amount the mean absolute error in tracking the left lane boundary position.

Copyright © 2007 S. Y. Cheng and M. M. Trivedi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION: OMNIDIRECTIONAL CAMERA
FOR LOOKING IN AND LOOKING OUT

Omnidirectional camera’s main feature is its ability to cap-
ture an image of the scene 360 degrees around the camera.
It has the potential to monitor many things in the scene at
one time, illustrated in Figure 1. In an intelligent driver assis-
tance system, this means a single sensor has the potential to
monitor the front, rear, and side views of vehicle and even in-
side the vehicle simultaneously. This eliminates the need for
multiple cameras and possibly complex calibration mainte-
nance algorithms between multiple cameras. Due to the fact
that reducing redundancy is one of the main goals in embed-
ded systems, combining multiple functionalities into a single,
simpler sensor reduces the cost associated with maintaining
individual sensors for each sensing function.

There is also evidence that driver behavior should be
an integral part of any effective driver assistance system [1],
driving the need for a suite of sensors that extracts cues from
both outside and inside the vehicle. With these motivations,

we investigate problems associated with integrating driver as-
sistance functionalities that have been designed for multiple
rectilinear cameras on a single omnidirectional camera in-
stead. For this paper, we examine issues involved in and sug-
gest solutions to integrate lane tracking functions using the
omnidirectional camera in this multifunction context.

Huang et al. [2] demonstrated that an omnidirectional
camera can be used to estimate driver head pose to gener-
ate the driver’s view of the road. Knowledge of the driver’s
gaze direction has of course many uses beyond driver-view
synthesis. The driver head motion is the critical component
that added one second of warning time to a lane departure
warning system in [3]. This human-centered driver support
system uses vehicle lane position from cameras looking out
of the vehicle, vehicle speed, steering, yaw rate from the ve-
hicle itself, as well as head motion from a camera looking in
the vehicle to make predictions of when drivers make lane-
change maneuvers. Estimates of driver head movement also
improved intersection turn maneuver predictions [4]. There,
each of these predictions can potentially describe the driver’s
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Figure 1: This figure shows an illustrative image captured by omni-
directional cameras and the panoramic field of view with a potential
for holistic visual context analysis.

awareness of the driving situation. For example, given an ob-
stacle in the vehicle’s path and continued driver preparatory
movements to perform the maneuver, the assistance system
can then conclude that the driver is unaware of the danger
and take appropriate action. Observing the driver also has
applications in driver identity verification, vigilance moni-
toring, along with intention and awareness monitoring. It is
clear that driver bodily movements are very significant cues
in determining several driver behaviors. It is also clear that
visual methods using omnidirectional cameras of extracting
some of this driver information have been shown to be an
effective approach.

In addition to head pose, lane tracking is also an impor-
tant component in many intelligent driver assistance systems.
Lane tracking has utility in lane departure warning, over-
speed warnings for sharp curves, ahead vehicle proximity
estimation for adaptive cruise control, collision avoidance,
obstacle detection, and many others [5]. Just as observing
drivers will enhance driving safety, lane tracking is an inte-
gral part in the same task.

This naturally leads to the following question: can ef-
ficiency be improved by utilizing a single omnidirectional
camera rather than two rectilinear cameras to perform these
same functions of observing the driver and the road? Since
the only difference between rectlinear and omnidirectional
images is the projection function, that is, the manner in
which 3D points in space are projected onto the 2D image
plane, the answer should be yes. The question is to what ex-
tent. We attempt to answer these questions by comparing
the results between VioLET, a vision-based lane estimation
and tracking system [6] operating on rectlinear images, and
Omni-VioLET, a modified version operating on omnidirec-
tional images. We compare the tracking results from both
systems with ground truth. Our contributions can be listed
in the following:

(1) we introduce a lane tracking system using an omnidi-
rectional camera that utilizes a well-tested, robust lane
tracking algorithm called Omni-VioLET. The omnidi-
rectional camera also captures a view of the driver at
the same time for driver monitoring applications;

(2) we discuss and undertake a systematic performance
comparison of the lane tracking systems using a recti-
linear camera and omnidirectional camera of the same
road course with ground truth.

2. RELATED RESEARCH IN VISION-BASED
LANE TRACKING

Most previously proposed vision-based lane tracking systems
follow a processing structure consisting of these three steps:
(1) extract road features from sensors, (2) suppress outliers
from the extracted road features, and (3) estimate and track
lane model parameters.

There are several notable lane tracking approaches us-
ing rectilinear cameras. The one by Bertozzi and Broggi [7]
proposes to use stereo rectilinear camera for lane detection
combined with obstacle detection. They employ a flat-plane
transformation of the image onto a birds-eye view of the
road, followed by a series of morphological filters to locate
the lane markings. A recent contribution by Nedevschi et
al. [8] augments the usual flat-plane assumption of the road
to a 3D model based on clothoids and vehicle roll angles.
That system relies on depth maps calculated from a stereo
camera and edges in images to infer the orientation of the 3D
road model. A detailed survey of lane position and tracking
techniques using monocular rectilinear cameras is presented
in [6].

Ishikawa et al. [9] proposes an approach using an omni-
directional camera to track lane position in an autonomous
vehicle application. The approach first transforms the omni-
image to flat-plane, followed by Hough transform to search
for the left and right lane marking with a lane separation
prior. With an autonomous vehicle application in mind,
the scene captured by this omnidirectional camera saw lane
markers ahead and behind the vehicle, both aiding in deter-
mining the vehicle’s position in the lane and lane width. Fur-
thermore, lines perpendicular to the vehicle could also be de-
tected with this system since the sides are also monitored as
well. This work demonstrates that effective lane tracking can
be achieved to some extent with omnidirectional images.

Because the Ishikawa approach was designed in the con-
text of autonomous vehicles, the operating environment, al-
though the setting was outdoors, was idealized with solid
white lines for lane markings with constant lane widths. The
central component of the VioLET system is the use of steer-
able filters, which has been shown to be highly effective in
extracting circular reflectors as well as line segments, preva-
lent lane markings in actual California freeways. Further-
more, the algorithm lacked a mechanism to incorporate tem-
poral history of last observed lane locations with the current
estimate. We will use the Kalman filtering framework to up-
date interesting statistics of lane position, lane width, and so
forth using lane position measurements from the current as
well as previous moments in time. Lastly, we are interested in
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Figure 2: This illustrates the system flow diagram for VioLET, a driver-assistance focused lane position estimation and tracking system.

examining the extent to which lane tracking can be accurate
by using only the view of the road ahead of the vehicle, defer-
ring the other areas of the omnidirectional image for other
applications that monitor the vehicle interior.

3. OMNI-VIOLET LANE TRACKER

In this section, we describe the modifications to the VioLET
system for operation on omnidirectional images. An omnidi-
rectional camera is positioned just below and behind the rear
view mirror. From this vantage point, both the road ahead of
the vehicle as well as the front passengers can be clearly seen.
With this image, left lane marker position, right lane marker
position, vehicle position within the lane, and lane width are
estimated from the image of the road ahead. Figure 2 shows
a block diagram of the Omni-VioLET system for use in this
camera comparison.

The VioLET system operates on a flat-plane transformed
image, also referred to as a birds-eye view of the road. This
is generated from the original image captured from the cam-
era, with knowledge of the camera’s intrinsic and extrinsic
parameters and orientation of the camera with respect to the
ground. The intrinsic and extrinsic parameters of the cam-
era describe the many-to-one relationship between the 3D
points in the scene in real-world length units and its pro-
jected 2D location on the image in image pixel coordinates.
The planar road assumption allows us to construct a one-to-
one relationship between 3D points on the road surface and
its projected 2D location on the image in image pixel coordi-
nates. This is one of the critical assumptions that allow lane
tracking algorithms to provide usable estimates of lane loca-
tion and vehicle position, and is also the assumption utilized
in the VioLET system.

The model and calibration of rectilinear cameras are very
well studied, and many of the results translate to omnidi-

rectional cameras. We can draw direct analogs between the
omnidirectional camera model and the rectilinear camera
model, namely its intrinsic and extrinsic parameters. Tools
for estimating the model parameters have been also recently
made available [10]. Table 1 summarizes the transformations
from a 3D point in the scene P = (x, y, z) to the projected
image point on the image u = (u, v).

Utilizing the camera parameters for both rectilinear and
omnidirectional cameras, a flat-plane image can be gener-
ated given knowledge of the world coordinate origin and the
region on the road surface we wish to project the image onto.
The world origin is set at the center of the vehicle on the road
surface with the y-axis pointing forward and z-axis point-
ing upward. Examples of the flat-plane transformation are
shown in Figure 3. Pixel locations of points in the flat-plane
image and the actual locations on the road are related by a
scale factor and offset.

The next step is extracting road features by applying
steerable filters based on the second derivatives of a two-
dimensional Gaussian density function. Two types of road
features are extracted: circular reflectors (“Bots dot”) and
lines. The circular reflectors are not directional so the filter
responses are equally high in both the horizontal and verti-
cal directions. The lines are highly directional and yield high
responses for filters oriented along its length. The filtered
images such as the one shown in Figure 3 are then thresh-
olded and undergo connected component analysis to isolate
the most likely candidate road features.

The locations of the road features are averaged to find the
new measurement of the lane boundary location. The aver-
age is weighted on its proximity to the last estimated location
of the lane boundary. The measurement for the other lane
boundary is made the same way. The last estimated lane
boundary location is estimated using a Kalman filter using
lane boundary locations as observations, and vehicle position
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Table 1: Projective transformation for rectilinear and omnidirectional cameras.
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in the lane, left lane boundary location, right lane boundary
location, and lane width as hidden states. For more details on
these steps of extracting road features and tracking these fea-
tures using the Kalman filter we refer the reader to the origi-
nal paper [6]. The original implementation also takes advan-
tage of vehicle speed, yaw-rate, and road texture to estimate
road curvature and refine the estimates of the lane model.
We chose to omit those measurements in our implementa-
tion, and to focus on estimating lane boundary position and
vehicle position in the lane, for which ground truth can be
collected, to illustrate the point that omnidirectional cam-
eras have the potential to be used for lane tracking.

Altogether, the VioLET system assumes a planar road sur-
face model, knowledge of camera parameters, road feature
extraction using steerable filters, and the lane model param-
eters are tracked with a Kalman filter using road feature lo-
cation measurements as observations. The outputs are lane
boundary positions, lane width, and vehicle position in the
lane.

4. EXPERIMENTAL PERFORMANCE EVALUATION
AND COMPARISON

Omni-VioLET lane tracking system is evaluated with video
data collected from three cameras in a specially equipped
Laboratory for Intelligent and Safe Automobiles-Passat
(LISA-P) test vehicle. A rectilinear camera placed on the roof
of the car and the omnidirectional camera hung over the
rear-view mirror capture the road ahead of the vehicle. A
third camera is used to collect ground truth. All cameras are
Hitachi DP-20A color NTSC cameras, and 720 × 480 RGB
images are captured via a Firewire DV capture box to a PC at

29.97 Hz. The vehicle was driven along actual freeways and
video was collected synchronously along with various vehi-
cle parameters. Details of the test-bed can be found in [4].

For evaluation, we collected ground truth lane position
data using the third calibrated camera. A flat-plane image
from this camera is also generated such that the horizontal
position of the transformed image represents the distance
from the vehicle. A grid of points corresponding to known
physical locations of the ground is used to adjust the orienta-
tion and position of the side camera. Figure 4 shows the re-
sult of manually correcting the pose of the camera, and thus
the grid of points in the image from the side camera. With
this grid of points and its associated location in the image,
a flat-plane image is generated as shown in the same figure.
From the flat-plane image, lane positions are manually an-
notated to generate ground truth. This ground truth is com-
pared against lane tracking results of both the rectilinear and
omnidirectional VioLET systems.

The lane tracking performance is analyzed on data col-
lected from a test vehicle driven at dusk on a multilane free-
way at freeway speeds for several minutes. It was shown that
dusk was one of the many times during a 24-hour period
when VioLET performed most optimally, because of the light
traffic conditions [6]. This allows a comparison of the omni-
image based lane tracking with the most optimal rectilin-
ear image-based lane tracking results. The image resolution
of the flat-plane transformed image derived from the om-
nicamera was set at 100 × 100, while the one derived from
the rectilinear-image was set at 694 × 2000. For the omni-
case, that resolution was chosen because the lateral resolution
of the road is approximately 100 pixels wide. For the recti-
linear case, the lateral resolution is slightly shorter than the
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Table 2: Lane tracking accuracy. All units are in cm.

Lane following (RMSE/MAE) Lane changing (RMSE/MAE) Overall (RMSE/MAE)

Omni-VioLET 3.5/4.7 3.9/4.2 4.7/4.4

Recti-VioLET full-res. (720× 480) 1.3/1.5 6.1/5.5 5.9/4.5

Recti-VioLET half-res. (360× 240) 1.7/2.2 5.3/5.2 5.1/4.2

Recti-VioLET qtr-res. (180× 120) 1.5/2.1 5.7/6.7 5.6/4.9

Recti-VioLET eighth-res. (90× 60) 1.6/2.2 lost-track** lost-track**

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: This illustration shows the original images, the flat-plane
transformed images, and two filter response images from the flat-
plane transformed images for circular reflectors and lane line mark-
ers.

width of the 720 pixel-wide horizontal resolution of the im-
age. The vertical resolution was chosen by making road fea-
tures square, up to 100 feet forward of the camera.

In aligning lane tracking results from the two systems
with ground-truth, the ground-truth is kept unchanged for
reference. The lane tracking estimates were manually scaled
and offset to compensate for errors in camera calibration,
camera placement, and error in lane-width estimation. This
alignment consists of three operations on the lateral lane
boundary and lane position estimates: (1) global offset, (2)

(a) (b)

Figure 4: This illustrates the alignment of the ground-grid to the
perceived ground in the ground-truth camera, and the resulting
flat-plane transformed image. Radial distortion is taken into ac-
count as can be seen by the bowed lines.
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global scale, and (3) unwrapping amount. The global offset
puts all 3 cameras on the same lateral position of the car. The
global scale changes the scale of the estimates which result
from errors in camera calibration. Unwrapping amount is
specified to compensate for errors in lane-width estimates,
which impact left-lane position estimates when the left-lane
location is more than half a lane-width away. These align-
ment parameters are set once for the entire experiment. The
resulting performance characteristics are shown as error in
centimeters.

It is important to note that these error measurements are
subject to errors in the ground-truth-camera calibration ac-
curacy. Indeed, an estimate that closely aligns with ground-
truth can be claimed to be only that. In this particular case,
a scaling error in ground-truth calibration could result in a
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Figure 6: The illustration shows the distribution of error of the omnidirectional camera-based lane tracking from ground-truth during (a)
the lane keeping segment, (b) the lane changing segment, and (c) the overall ground-truthed test sequence.
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Figure 7: The illustration shows the distribution of error of the rectilinear camera-based lane tracking from ground-truth during (a) the
lane keeping segment, (b) the lane changing segment, and (c) the overall ground-truthed test sequence.

scaling error in the lane tracking measurements. This would
be the case for any sort of vision-based measurement system
using another vision-based system to generate ground-truth.
For the ground-truth camera used in our experiments, we
approximate a deviation of ±5 cm of the model to the actual
location in the world by translating the model ground plane
and visually inspecting the alignment with two 2.25 m park-
ing slots; see Figure 4. With that said, we can however make
conclusions about the relative accuracies between two lane-
tracking systems, which we present next.

Several frames from the lane tracking experiment are
shown in Figures 8 and 9. The top set of images show the even
and odd fields of the digitized NTSC image, while the bottom
set of images show the lane tracking result showing the lane
feature detection in boxes and left and right lane boundary
estimates in vertical lines. The original image was separated
because each image was captured at 1/60 second from each
other, which translates to images captured at positions 50 cm
apart with the vehicle traveling 30 m/s (65 mph). Figure 5
shows results of estimates over time of left and right lane

boundaries from both systems against left-lane boundary
ground-truth during two segments of one test run. Two seg-
ments of lane-following and lane-changing manuevers are
analyzed separately. The error distributions are shown in Fig-
ures 6 and 7. In these two segments, we can see the strength
of the rectilinear camera at approximately 1.5 cm mean abso-
lute error (MAE) from ground-truth as compared to omnidi-
rectional camera-based lane tracking performance of 4.2 cm
MAE. During a lane change maneuver, the distinction is re-
versed. The two systems performed with 5.5 cm and 4.2 cm
MAE, respectively; root mean square (RMS) error shows the
same relationship. Over the entire sequence, the errors were
4.5 cm and 4.4 cm MAE and 5.9 cm and 4.7 cm RMS error
for Recti-VioLET and Omni-VioLET, respectively. Errors are
summarized in Table 2.

During the lane-change segment, a significant source of
error in both systems is the lack of a vehicle heading estimate.
Rather, the lanes are assumed to be parallel with the vehicle
as can be seen from the lane position estimate overlaid on
the flat-plane images in Figures 8 and 9, which is of course
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Figure 8: This illustrates the lane tracking results from rectilinear images. The top and middle images are the even and odd fields of the
original NTSC image. The bottom two images are the flat-plane transformed images of the above two images. The two overlay lines depict
the estimated left and right lane positions while the boxes represent detected road features.

Figure 9: This illustrates the lane tracking results from omnidirectional images. The top and middle images are the even and odd fields
of the original NTSC image. The bottom two images are the flat-plane transformed images of the above two images. The two overlay lines
depict the estimated left and right lane positions while the boxes represent detected road features.

not always the case. For that reason, we gauge the relative ac-
curacy between Recti-VioLET and Omni-VioLET along the
lane following sequence. Despite the curves in the road, this
segment could show that the diminished omni-image reso-
lution resulted in a mere 3 times more MAE.

Additional runs of Recti-VioLET were conducted on half,
quarter, and eighth resolution rectilinear images. The size
of the flat-plane transformation is maintained at 694 ×
2000. At a quarter of the original resolution (180 × 120),
the lateral road resolution in the rectilinear image is ap-
proximately equal to that of the omni-image. The resulting
accuracies are summarized in Table 2. Remarkable is their
similar performance even at the lowest resolution. To de-
termine lane boundary locations, several flat-plane marking
candidates are selected and its weighted average along the
lateral position serves as the lane boundary observation to
the Kalman tracker. This averaging could explain the result-
ing subpixel accurate estimates. Only at the very lowest res-
olution (eighth) input image was the algorithm unable to
maintain tracking of lanes across several lane changes. How-
ever, eighth-resolution lane tracking in lane following situa-
tion yielded similar accuracies as lane tracking at the other
resolutions.

Resolution appears to play only a partial role in influ-
encing accuracy of lane tracking. The lane-markings de-
tection performance appears to suffer increased number of
misdetections at low resolution. This error appears in the ac-
curacy measurements in the form of lost tracks through lane

changes. Accuracy seems to not be affected by the reduced
resolution. At resolutions of 180 × 120, misdetections oc-
curred infrequently enough to maintain tracking throughout
the test sequence. Lane-marking detection performance itself
in terms of detection rate and false alarms at these various
image resolutions and image types would give a better pic-
ture of the overall lane tracking performance; this is left for
future work.

5. SUMMARY AND CONCLUDING REMARKS

We investigate problems associated with integrating driver
assistance functionalities that have been designed for recti-
linear cameras with a single omnidirectional camera instead.
Specifically, omnidirectional cameras have been shown effec-
tive in determining head gaze orientation from within a car.
We examined the issues involved in integrating lane-tracking
functions using the same omnidirectional camera. Because
the resolution is reduced and the image distorted to produce
a 360-degree view of the scene through a catadioptric camera
geometry as opposed to the traditional pin-hole camera ge-
ometry, the achievable accuracy of lane tracking is a question
in need of an answer. To do so, we presented Omni-VioLET,
a modified implementation of VioLET, and conducted a sys-
tematic performance evaluation of the vision-based lane es-
timation and tracking system operating on both monocular
rectilinear images and omnidirectional images. We were able
to show a performance comparison of the lane tracking from
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Omni-VioLET and Recti-VioLET with ground-truth using
images captured along the same freeway. The results were
surprising: with 1/10th the number of pixels representing the
same space and about 1/3rd the horizontal image resolution
as a rectilinear image of the same road, the omnidirectional
camera implementation results in only twice the amount of
the mean absolute error in tracking the left-lane boundary
position.

Experimental tests showed that the input image reso-
lution is not the sole factor affecting accuracy, but it does
have an impact on lane marking detection and maintaining
track. The nearly constant error for full, half, quarter, and
eighth resolution input images implied that accuracy is not
affected by resolution; we attributed the ability of the algo-
rithm to maintain this accuracy to the temporal averaging
from Kalman filtering and the large flat-plane image used for
all Recti-VioLET tests. The experiments affirm the result that
lane tracking with omnidirectional images is feasible, and is
worth consideration when a system utilizing a minimal num-
ber of sensors is desired.
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