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Abstract

This work is a study of the application of a theory proposed by J. S. Langer (J.S.

Langer, Statistical Theory of the Decay of Metastable States, Annals of Physics 54,

258-275 (1969)) for the calculation of the decay rate (relaxation rate) of a metastable

state. The theory is set in the context of statistical mechanics, where the dynamics

of a system with a large number of degrees of freedom (order 1023) are reduced

to N degrees of freedom, where N is small, when a steady state or equilibrium

position is maintained by the entire system. In this thesis N equals 1 or 2 degrees

of freedom for a single particle and N equals 4 degrees of freedom for two particles

with interaction. In particular, we are interested in the mathematical details of the

theory when applied to a Single Domain Ferromagnetic Particle in the Intermediate

to High Damping limit, which represents one type of statistical mechanical system

for which Langer’s theory is applicable. We show by example, that the choice of

coordinate system in which the ferromagnetic particle’s energy function is written,

i.e. with 2N conjugate spherical polar coordinates, has a direct bearing on the

successful application of the theory. We elucidate the mathematical details of the

application of Langer’s theory to systems of non-interacting particles in the presence

of zero and non-zero eigenvalues, with examples therein. Finally, we rigorously apply

the theory to a system of interacting ferromagnetic particles.
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Chapter 1

Introduction

1.1 Motivation for this work

Since the pioneering work of Néel [1] and Stoner and Wohlwarth [2] at the end of the

1940’s, magnetic particles have been the subject of considerable interest to scientists

and engineers alike, as the study of their properties has proved to be scientifically

and technologically very challenging [3, 4, 5]. In particular it was recognised that

a tiny particle, of micrometer size and lower, with a specific orientation of the

particle’s magnetic moment, has a remnant magnetization [6, 7]. This marked the

beginning of the manufacture of huge permanent magnets and also of great strides

in the magnetic recording industry. However, despite intense activity during the

last few decades, the difficulties in making nanoparticles of good enough quality has

slowed the advancement of this field [8].

6



As a consequence, for 50 years, engineering and science concentrated on the

application of these particles above and then near the micrometer scale [8]. In

the last decade, this has no longer been the case because of the emergence of new

manufacturing techniques which have led to the possibility of making small objects

with the required structural and chemical qualities [8, 9, 10]. This is leading to a

new understanding of the magnetic behaviour of nanometer scale particles, which is

now very important for the development of new fundamental theories of magnetism

and in modeling new magnetic materials for permanent magnets or high density

recording devices [11].

Fig. (1.1) (taken from [8]) presents a scale of size ranging from macroscopic down

to nanoscopic sizes. The unit of this scale (Ref. Fig.1.1) is the number of magnetic

moments in a magnetic system. At macroscopic sizes, a magnetic system is described

by magnetic domains which are separated by domain walls, known as Bloch walls

[12]. Magnetization reversal occurs when thermal energy is absorbed by the particle

which sets off a kind of reaction, referred to as a nucleation process [13, 14, 15],

within the particle and results in a change of direction of its magnetisation. As well

as the effects of temperature, the shape, size and surface of the magnetic system and

the influence of external fields to which the system may be exposed, will ultimately

determine whether the system’s magnetic moment changes direction.

Single-domain nanoparticles are arrangements of matter which we may assume

are ellipsoidal and have macroscopic dimensions typically of the order 5 to 10
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————————————————————————–

Figure 1.1: Shape and width of domain walls depend on the material of the ferromagnet

[8]. Reversal of the magnetic moment may be accessed via propagation and annihilation

of domain walls (108 < S ≤ 1020), via uniform rotation (103 < S ≤ 108), and quantum

tunneling (1 < S ≤ 103) [8]. N.B. S is the number of spins or magnetic vectors in the

magnetic system which is approximately equal to the number of atoms or molecules in

that system [8].

————————————————————————–

nanometers [16]. They contain approximately 104−105 individual atoms or molecules,

each of which has a magnetic moment [3, 8, 17]. They are sufficiently small that they

may be regarded as particles consisting of a single domain having a north and south

pole. The particles are usually composed of metals, such as iron, chromium, cobalt,

nickel, palladium, and alloys of these [18, 19, 20]. Their size places them above

molecules and nanoclusters, but below so-called micron-particles and permanent

magnets in the hierarchy of magnetic matter. Reversal of the particles magnetisa-

tion vector may be due to thermal fluctuations, referred to as Néel-Brown relaxation

[21, 22, 23], or the reversal may be primarily due to the particles (weak) magnetic

8



anisotropy, referred to as the Stoner-Wohlwarth model [24, 25, 26]. Also, interac-

tions between neighbouring atoms [27, 28] and the presence of external magnetic

fields [29, 30, 31] can contribute to the reversal process.

Smaller particles are magnetically more unstable than larger particles [32], this

fact can be attributed to the fact that surface effects are more pronounced in smaller

particles, since, as their size decreases, their surface to volume ratio increases. So,

the size of a particle itself, that is, the volume it occupies, has a bearing on (i) the

ease with which it may be magnetised (coercivity) [33] (ii) its ability, or otherwise,

to maintain that magnetisation (anisoptropy) [34] and (iii) the mechanism by which

the reaction proceeds, that is, uniform (coherent) or nonuniform (incoherent) mag-

netisation reversal [35]. References [33, 34, 35] emphasise that the size and atomic

structure of some single-domain particles means they are regarded as being suitable

for use in information storage devices since they exhibit long-range stability of the

thermally assisted magnetization reversal and thereby that of the information stored

in recording media. The storage density may be increased by a factor of 10 by using

very small, highly coercive anisotropic particles [36].

So, from one point of view, rather than being a problem, thermally assisted

magnetic relaxation may turn out to be a useful phenomenon. The experimental

evidence for thermally assisted relaxation is well known [37] and these thermal fluc-

tuations have been detected and are measurable [38, 39] using electron microscopic

techniques such as Mössbauer [40, 41] and Lorentz [42, 43, 44] spectroscopies and

9



—————————————————————————————–

Figure 1.2: A magnetic particle’s anisotropy or otherwise may be due to (i) its un-

derlying crystal structure and (ii) its shape. Tiny particles possess a very high degree of

shape anisotropy. The diagram (a) shows an isotropic particle, i.e. the particle has no

preferred direction of magnetisation. A single domain particle is uniformly magnetized

with magnetisation along an easy axis (major axis of the ellipsoid) [6]. The diagram (b)

is of an anisotropic particle, i.e. one with a preferred direction of magnetisation M at an

angle ψ from the easy axis (the major axis of the ellipsoid) of magnetisation. The external

magnetic field H is parallel to the easy axis. For our purposes (ψ = 0), so the easy axis,

the magnetic vector and the external field are parallel.

—————————————————————————————–

also superconducting quantum interference devices (µ−SQUID) [36] based on the

Josephson junction [45]. Magnetisation reversal measurements have been detected

in biological systems [46], they are used in medicine [47] as a diagnostic tool [48] and

a means of cure, and have found applications in chemistry and in electronics [32].

One of the more recent applications is that of high density Magnetic Random Access

Memory (MRAM) elements [11, 49]. MRAM is a type of random access memory
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based on magnetoresistance and developed for use in the computer industry. It is

hoped that MRAM will eventually replace conventional RAM [50]. The small scale

of single-domain ferromagnetic particles indicates that they should assist miniturei-

sation of the components which go into modern computers. Unlike conventional

RAM, MRAM is non-volatile as it does not require a voltage source to maintain it,

which is also of interest to computer manufacturers. Therefore, knowledge of the

thermally assisted magnetization reversal of small particles is of great importance

to the scientific community.

1.1.1 Magnetisation Reversal

With decreasing particle size, different rotation mechanisms dominate the thermally

activated magnetization reversal in ferromagnetic particles [10, 35]. For sufficiently

small system size, the magnetic moments rotate coherently [10], that is, all mo-

ments align themselves simultaneously, which can also be referred to as uniform

rotation or uniform relaxation [24, 51]. At this size and scale, surface effects become

considerable and affect the magnetization relaxation [27, 28, 52].

The model of uniform rotation (coherent relaxation) of magnetization introduced

by Stoner and Wohlfarth [2] and Néel [1, 53, 54] was further developed by Bean

and Livingston [56, 57], and Brown [22, 23]. The so-called Néel-Brown model is

the simplest classical model describing magnetization reversal. It may be further

simplified by considering an assembly of non-interacting particles having energy of
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magnetic anisotropy in one direction only, that is, uniaxial anisotropy [32, 38]. The

original study by Stoner and Wohlfarth [2] also assumed uniaxial shape anisotropy.

Thiaville [55] has generalized the Stoner-Wohlfarth model for an arbitrary effective

anisotropy which includes magnetocrystalline anisotropy and surface anisotropy.

The Néel model considers a particle of an ideal magnetic material where ex-

change energy holds all magnetic moment vectors tightly parallel to each other so

the magnetization magnitude and the exchange energy are constant and play no role

in the energy minimization. Consequently, there is competition only between the

anisotropy energy of the particle and the effect of the applied field [8]. As the par-

ticle size is increased, the magnetic moments can rotate by a mechanism other than

coherent relaxation [8], which for simplicity we will refer to as incoherent relaxation.

1.1.2 Focus of the Thesis

We are primarily concerned with the correct application of a theory, developed by

J.S. Langer (1969) [13], for the calculation of the rate of decay of a metastable state

in the intermediate to high damping (IHD) limit. The single domain ferromagnet,

described above, is a physical system containing a metastable state [13, 15, 32]. The

metastable state may decay, that is, the particle may relax by escaping from that

state to a state of lesser energy and greater stability if it receives enough thermal

energy from it’s surroundings. The system is in contact with a heat bath which is a

source of the required thermal energy.
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Although such a magnetic system has no internal dynamics of it’s own [13],

a single domain particle of sufficiently small size can undergo a type of Brownian

rotation so that the stable magnetic behaviour characteristic of a ferromagnet would

be destroyed [1, 12, 32]. The decay process or relaxation process may then be referred

as a homogenous nucleation [13, 15] as the reversal of the bulk magnetic vector is

initiated at a small region within the bounds of the system itself. In the absence

of the heat bath the system’s configuration remains fixed [13]. The system may

therefore, be regarded as a canonical ensemble [58] and obey’s the laws of statistical

mechanics [59, 60, 61, 62].

The systems (i.e. single domain ferromagnets) we shall analyse within Langer’s

theory, have certain properties which make them of particular interest. Single do-

main ferromagnetic particles possess a non-additive energy function or Hamiltonian

(H) [15, 63], where H is a function of a particle’s position only. That is, the parti-

cle’s energy is expressed as a potential energy function in configuration space. This

is in contrast to the model of Brownian motion for mechanical particles which is a

sum of potential energy and kinetic energy expressed in, for example, phase space.

Such a phase space energy function may be referred to as an additive Hamiltonian

[15, 63] of the form

H = H (p, q) = T (p) + V (q) (1.1)

where p are the generalized momenta, q are the generalised position coordinates, so

T and V are the kinetic and potential energies respectively.
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Magnetic particles, in contrast, have Hamiltonians composed of potential energy

contributions only, i.e.,

H = H (q) = V (q) . (1.2)

The particle’s motion can, nevertheless, be described in terms of 2N canonical vari-

ables just as would be expected from a system possessing an additive Hamiltonian

[15]. This is because, a particle’s momentum p, or rather velocity q̇, can be expressed

in terms of its position coordinates q [64]. This fact allows for the employment of,

in particular, the Boltzmann distribution in the calculation of particle population

numbers [15].

Also, Langer’s theory, as a multi-dimensional theory, lends itself to the analysis

of bi-axial or non-axially symmetric potential energy functions [51] as well as axially

symmetric (uniaxial) potential energy functions [23, 65, 66]. Although it is not

without its limitations as it does not apply to the low damping regime [67, 68] and

requires knowledge of the entire energy landscape, the theory is nevertheless useful

and can be compared to other relaxation calculation methods [69, 70, 71, 72, 73, 74,

75].

So, we look at the strengths of the theory as it is an extension to many dimen-

sions of Kramers’ one dimensional model [76] in phase space (p, x). We also point

out how, due care and diligence must be exercised when applying the theory so

that the appropriate coordinate system is chosen at the outset. This is because,

when necessary adjustments (substitutions) are made to the energy function, vital

14



ingredients must remain, that is, technically necessary criteria must remain intact,

in order that the present application of Langer’s theory be valid and mathematically

correct. We emphasise this point for two reasons:

1. since the Hessian matrices in the Taylor series expansions about the saddle

point and metastable state are not covariant under a non-linear transforma-

tion, and,

2. the energy landscape must possess, at least, a metastable well and a stable

well separated by a saddle point after the necessary non-linear transformation.

A major aim of this thesis therefore is to apply rigourously Langer’s theory to a

topical and technologically interesting problem [10, 24, 51, 77, 78]. Specifically, we

aim to include surface effects in the calculation of the relaxation time of the particle

magnetization [27, 28].

1.2 A Brief History of Relaxation Time

Anyone who has ever dropped an aspirin into a glass of water and watched as it

dissolved, or had a slow puncture in an inflated bicycle tyre, or watched a camera-

flash go off has had first-hand experience of an equation of the type,

Γ = A exp

{
−∆E

kT

}
. (1.3)

This is a decaying exponential, and is characteristic of many physical phenomena.

A is a unitless constant, k is Boltzmann’s constant and T is the temperature in

15



—————————————————————————–

Figure 1.3: Surface effects: The above diagram is a 3-dimensional impression of a bulk

(many domain) particle. The white circles represent individual magnetic moments on the

particles surface. As the particle size decreases, the particle may be considered as having a

single domain but the surface to volume ratio increases. This has a considerable influence

on the mechanism by which reversal of the magnetic moment comes about.

—————————————————————————–

degrees Kelvin. ∆E is the activation energy, i.e. the energy required for the system

under consideration to undergo a physical or chemical change. For example, ∆E

maybe the energy in a chemical bond, or the potential energy of a trapped gas (e.g.

characterized by the pressure exerted by a fixed volume of gas per unit area on the

wall of its container), or the energy stored in a capacitor.

In the context of chemical reactions, Equation (1.3) is known as the Arrhenius

equation, named after the Swedish chemist Svante August Arrhenius (1859− 1927).

The equation was first proposed by the Dutch chemist J. H. van ’t Hoff in 1884 [79].
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But, in 1889 Arrhenius explained the fact that chemical reactions require heat energy

to proceed by formulating the concept of activation energy, an energy threshold or

barrier that must be overcome before two molecules will react. This became known

as Transition State Theory (TST) as the barrier represents an intermediate, highly

volatile, transition state between two states of relative stability. The TST version

of the Arrhenius Equation is,

Γ = ΓTS =
ωA
2π

exp

{
−∆E

kT

}
(1.4)

(where the subscript TS refers to transition state). The formula has the form of an

attempt frequency ωA
2π

, where ωA is the angular frequency, times a Boltzmann factor

exp
{
−∆E

kT

}
, which weighs the escape from the well. The attempt frequency, ωA, is

the angular frequency of a particle performing oscillatory motion at the bottom of

a well. The barrier arises from the potential function of some external force, which

may be electrical, magnetic, gravitational etc. The Arrhenius equation gives the

quantitative basis of the relationship between the activation energy and the rate, Γ,

at which a reaction evolves (otherwise known as the Escape Rate). The formula does

not give a complete description however, as it does not account for interactions with

an external energy source or heat bath. Over the succeeding years, many theories

and methodologies emerged to calculate Γ for many phenomena. We will outline

one such theory in the next section. These theories to which we refer, are based on

the more modern ideas governing random variables [80, 81, 82], probability theory

and stochastic processes [83, 84, 85]. They are referred to now under the umbrella
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term Escape Rate Theory.

In simple terms, Escape Rate Theory is primarily concerned with the calculation

of the activation energy E and the prefactor A in Equation (1.3) [13, 14, 32, 86]. In

fact, it has been shown [87] that, even when the decay is exponential, the prefactor A,

can vary dramatically with changes in the system parameters. Indeed, this seems to

be the case for the systems of interacting and non-interacting ferromagnetic particles

considered in this thesis.

1.2.1 Early Brownian Motion: learning to crawl

Almost all young students of science will be familiar with the term “Brownian Mo-

tion”. The definition is part of most introductory courses in science. Personally,

I can remember it from preparations for my first state examination. “Brownian

Motion is the random movement of tiny particles in a gas or liquid.” At the time,

reciting that definition to myself over and over, gave me cause to think about my

own personal experience and observation. Brownian motion is readily observable,

and was first described in a meticulous series of observations by the botanist Robert

Brown in 1828 [88]. That Jan Ingen-Housz [1730-1799)], a Dutch-born biologist fa-

mous for showing that light was required in photosynthesis, observed and described

Brownian motion even earlier, in 1785, is another illustration of Stiglers Law of

Eponymy [82, 89, 90] which states that no discovery is named after its original dis-

coverer. Ingen-Housz described the irregular movement of coal dust on the surface
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of alcohol and therefore has a claim as discoverer of what came to be known as

Brownian motion.

When looking through a microscope at grains of pollen suspended in water,

Brown noticed that a group of grains always disperses and that individual grains

move around continuously and irregularly. Brown originally thought that he had

discovered the irreducible elements of a vitality common to all life forms [15, 32].

However, upon systematically observing these irregular motions in pollen from live

and dead plants, in pieces of other parts of plants, in pieces of animal tissue, in fos-

silized wood, in ground window glass, various metals, granite, volcanic ash, siliceous

crystals, and even in a fragment of the Sphinx, he gave up the hypothesis that this

motion was in some way a manifestation of life. We now know, as postulated by

Einstein [91] that Brownian motion is a consequence of the atomic theory of matter.

When a particle is suspended in any fluid media, for example air or water, the atoms

or molecules composing the fluid hit the particle from different directions in unequal

numbers during any given interval. While the human eye cannot distinguish the ef-

fect of individual molecular impacts, it can observe the net motion caused by many

impacts over a period of time.

1.2.2 Theoretical Brownian Motion: first steps

A rigourous mathematical treatment of Brownian motion was recognised as an im-

portant research topic by physicists of the early 20th century, and was theoretically
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explained by Einstein in 1905, [91, 92, 93, 94] in terms of a large (Brownian) particle

such as a pollen grain suspended in a colloidal suspension. The Brownian particle

executes a discrete time random walk in the diffusion limit of a very large num-

ber of microscopic steps with the same variance, each taking, on average, the same

microscopic time. Mathematically, it is a consequence of the central limit theorem

of probability theory, the only random variable being the direction of the walker

[15, 32, 63].

Einstein, from this, was able to write down a probability density diffusion equa-

tion in configuration space governing the time evolution of the concentration of the

Brownian particles. Hence, he was able to calculate the mean square displacement

of a Brownian particle regarded as a sphere in terms of the viscous drag (given by

Stokes law) imposed by the surroundings, the absolute temperature and the time

between successive observations of the displacement of the particle. Einstein envis-

aged the motion in physical terms as an inescapable consequence of the second law of

thermodynamics and as incontrovertible evidence for the existence of atoms, as later

(1908) verified experimentally by Perrin [15, 95]. Perrin used Einstein’s formula in

order to determine Avogadro’s number and obtained satisfactory agreement with

the accepted value. Einstein’s theory, which ignores the inertia of the particle, and

its subsequent extensions, which are outlined in the list below, effectively enables

the construction of a classical theory of dissipative phenomena [78].

Now following [32] we list the most significant extensions to Transition State
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Theory that are of physical interest.

• Smoluchowski (1906) [96], who treated the noninertial Brownian motion in an

external potential, such as that due to gravity. Einstein [91] independently

proposed a theory of Brownian motions at roughly the same time.

• Langevin (1908) [97, 98], who proceeded from the Newtonian equation of mo-

tion of the particle augmented by stochastic terms imposed by the surround-

ings, essentially considered the position and momentum of the particle as

random variables. He rederived Einstein’s results (in the non-inertial limit)

and must therefore be regarded as the founder of the stochastic differential

equations [78].

• Debye (1913), following Einstein’s original theory of specific heat, Debye con-

sidered the atoms as oscillating independently about their equilibrium posi-

tions and applied classical statistics to these oscillators. In the words of Coffey

et al [78], Debye considered the non-inertial rotational Brownian motion of a

rigid rotator in the presence of an applied alternating electric field for the pur-

pose of explaining dielectric relaxation of polar molecules at high frequencies.

• Ornstein (1917), who included the inertia of the Brownian particle in the

formula for the mean square displacement.

• Klein (1921), who gave a probability density diffusion equation (Klein-Kramers

equation) for the evolution of the joint probability density function of the
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positions and momenta of an assembly of Brownian particles in phase space in

the presence of an external potential, so that inertial effects could be included

exactly.

• Kramers (1940) [32, 76], who treated noise-activated escape over a potential

barrier due to the Brownian motion.

• Doob (1942) [32, 99], who showed that the proper interpretation of the Langevin

equation was as an integral equation leading inter alia to the Itô and Stratonovich

interpretations of that equation [42]).

• Brinkman (1956) [100], who formulated the Klein-Kramers equation in the

presence of an arbitrary potential as a partial differential recurrence relation

in configuration space.

• Risken [101] who developed effective matrix continued fraction algorithms for

the exact solution of Brinkman’s recurrence relation using matrix methods

based on a Heisenberg-like formulation of the solution of the problem.

1.3 Relaxation Times: Methods of Calculation

1.3.1 Introduction

The last century has seen an evolution in the application of the theoretical Brownian

motion [102]. The theory of Einstein, based on the Smoluchowski equation, and that
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of Langevin, based on Newtonian mechanics, have been formulated as differential

equations and as integral equations [15, 32, 101, 103]. The evolution, in the context

of magnetic and dielectric relaxation [104, 105, 106, 107], has been accompanied by

the development of various methods, both numerical and analytical methods [108,

109, 110, 111], for the solution of those differential and integral equations [112, 113].

Some of the methods have been compared by Coffey [30, 114] and by Cregg et al.

[115] for the classical theoretical and experimental predictions of superparamagnetic

relaxation, see Fig.(1.3.1) below, and by Topaler et al. in the quantum framework

[116]. As with almost all assumption based theories, the methods are valid for

specific damping regimes or values of the equation parameters only [117, 118, 119].

Also the type of energy function, axially symmetric or otherwise, often dictates

the use of a particular numerical method or whether an analytical method can be

applied [115].

Theorists have sought formulae to bridge the gap between the various damping

regimes. Melni’kov and Meshkov [120] have presented a remedy for Kramers’ [76] so

called turnover problem, the region between low damping [121] and intermediate to

high damping. In the context of magnetic particles, McCarthy [122], Déjardin et al.

[123] and Coffey et al. [124, 125] have presented interpolation formula dealing with

the so-called Kramers’ turnover problem for multidimensional magnetic vectors.

The results are in good agreement with the work of Melni’kov and Meshkov for

mechanical particles. In fact, the interpolation formulae (crossover formulae) in
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[122], across all ranges of damping, were found orginally by Coffey et al. [124, 125]

thus solving the Kramers’ turnover problem for magnetic particles. Déjardin et al.

[123] considered the interpolation of uniaxial and biaxial potential energy functions.

Coffey et al. [118, 119, 126] found by numerical methods an exact solution of

Brown’s differential equation for uniaxial anisotropy and an arbitrary applied field

direction. They also derived an asymptotic general solution for the case of large

energy barriers in comparison to the thermal energy kT . This asymptotic solution

is of particular interest for single domain particle measurements, as they behave as

superparamagnets. The results of Coffey et al. [30] are in good agreement with the

work of Vouille et al. [49]. Aharoni [127] also gave numerical solutions to Brown’s

problem which concluded that Brown’s assumption of coherent relaxation is not

necessarily true for very small magnetic particles.

1.3.2 The Klein-Kramers equation: Application to Reaction

Rate Theory

The classical theory of Brownian motion [128] arises via the Langevin equation

and the corresponding evolution equation (as a particular form of the Boltzmann

equation) for the single particle distribution function in phase space. This type

of equation is known as a Fokker-Planck equation (Fokker (1914); Planck (1917)

[129]) and is obtained when the collisions of a Brownian particle such as a pollen

grain with its surroundings are frequent but weak [78]. The Fokker-Planck equation
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——————————————————————————

Figure 1.4: Representation of a bulk magnet; If the particle is large enough, domain

walls are present and the orientation of each magnetic moment is not uniform, rather it is

random. When exposed to a magnetic field of sufficient strength, almost all of the magnetic

moments align themselves in the bulk magnet, this is referred to as superparamagnetism.

If a particle is small enough, the domain walls are not present, referred to as a single

domain ferromagnet, and the particle has the characteristic of a superparamagnet.

——————————————————————————

for the phase space (x, p) probability distribution function f(x, p, t) of a Brownian

particle of mass m (m = 1 in Kramers’ paper [76]) moving in an external potential

V (x) is known as the Klein-Kramers equation,

∂f

∂t
+
p

m

∂f

∂x
− ∂V

∂x

∂f

∂p
=

ζ

m

∂

∂p

(
fp+mkT

∂f

∂p

)
(1.5)

where k is Boltzmann’s constant, T is the temperature and ζ is a dissipation (damp-

ing) parameter. The Klein-Kramers equation may be solved by transforming it, via

appropriate orthogonal expansions of the phase space variables, into a set of differ-
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ential recurrence relations for the decay functions of the system [78, 130]. These may

be represented as matrix continued fractions in the frequency domain [15, 101, 103].

The continued fraction representation has led to many exact solutions, as outlined

in Refs. [15, 101, 103].

The same representation may also be obtained directly from the Langevin equa-

tion

ẋ(t) =
p(t)

m
; ṗ(t) = − d

dx
V (x(t))− ζ

m
p(t) + Ξ(t) (1.6)

by averaging that equation over its realizations in phase space [15]. The Langevin

equation is the Newtonian equation of motion of the particle augmented by a system-

atic frictional force p(t) proportional to the velocity of the particle, superimposed on

which is a rapidly fluctuating random force Ξ(t), with both forces representing the

effect of the heat bath on the particle. The rapid variation of Ξ(t) can be expressed

by,

Ξ(t)Ξ(t′) = 2ζkTδ (t− t′) (1.7)

where the overbar indicates statistical averaging, δ is the Dirac delta function, t

and t′ are two values of the time and 2ζkT , the spectral density [32], is a centered

Gaussian random variable which must obey Isserilis’s theorem [131, 133, 132, 134],

namely, for 2n Ξ(t)’s

Ξ (t1) Ξ (t2) Ξ (t3) . . .Ξ (t2n) =
∑ ∏

ki<kj

Ξ (tki) Ξ
(
tkj
)

(1.8)
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and it is assumed that

Ξ(t) = 0. (1.9)

1.3.3 Brief Discussion of Damping Regimes

Kramers [76] considered two main damping regimes. These were Very Low Damping

(VLD) and Intermediate to High Damping (IHD). An outline of Kramers’ calcula-

tions follows this short discussion. Kramers’ VLD or energy controlled diffusion

regime [78], supposes that the energy trajectories of the Brownian particle in the

well closely approximate the undamped periodic motion in the well, i.e., the energy

of a particle is almost conserved [78]. The trajectories are almost closed ellipses ex-

cept for a particular trajectory with energy corresponding to the saddle point energy

associated with the transition state. Particles on this particular trajectory, known

as the separatrix [32] between the bounded motion in the well and the unbounded

motion outside, may, through the action of thermal fluctuations, either escape the

well or else may be returned to the depths of the well, with equal probability P , i.e.

(P = 0.5) for either eventuality. The VLD regime is then defined by the condition

that the energy loss per cycle of the almost periodic motion of a particle having the

saddle-point energy is much less than the thermal energy kT [15].

Unlike in TST, the escape rate, which is now directly proportional to the friction,

vanishes in the absence of coupling to the heat bath so reconciling reaction rate

theory with the fluctuation-dissipation theorem [78]. Kramers obtained his solution
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for the VLD escape rate by first writing the Klein-Kramers equation in energy/phase

variables. He then eliminated the fast phase variable by averaging along the energy

trajectories, so obtaining a one-dimensional diffusion equation in the slowly diffusing

energy variable, which can be solved for the escape rate. In his derivation, the

coupling between the conservative and diffusion terms in the Klein-Kramers equation

is effectively ignored because the motion is supposed to be almost conservative.

The VHD regime is a limiting case of the IHD regime considered in this thesis.

In the VHD regime it is supposed that the damping is so large that the Maxwell-

Boltzmann distribution has been quickly attained in the well to a high degree of

accuracy. Thus, Kramers was able to derive the Smoluchowski equation which is

an approximate partial differential equation (diffusion equation) for the evolution

of the distribution function in configuration space only. This mechanical particle

model is in contrast to the model of magnetic vector rotation described by a single

space variable FPE, which is an exact equation [125]. Near the barrier top, the

distribution function deviates from the Maxwell-Boltzmann distribution due to the

slow leaking of particles across the barrier and the potential may be approximated

by an inverted parabola. The resulting formula may be used to derive the IHD result

which is of the form of the TST result.

Kramers was, however, unable to find asymptotic solutions valid in the so called

Kramers’ turnover (crossover in [122, 125]) region, where the energy loss per cycle

of a particle having the saddle point energy is of the order of the thermal energy.
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Here, there is coupling between the conservative and dissipative terms in the Klein-

Kramers equation, so that the conservative term may no longer be ignored as was

done in his solution for the very low damping regime. In the words of Coffey et

al. [78], the conservative term vanishes when averaged over the fast variable in the

VLD case by the principle of the conservation of density in phase.

As stated previously, the Kramers’ turnover problem was solved nearly 50 years

later by Mel’nikov and Meshkov [120]. They gave an integral formula bridging the

very low and intermediate damping asymptotic solutions simultaneously, establish-

ing a range of validity for the TST solution. Their solution [120, 123, 125] for the

energy distribution function, which was obtained by the Wiener-Hopf method, was

based on the Green function of an energy/action diffusion representation of the

Klein-Kramers equation in the Kramers turnover region. Mel’nikov and Meshkov

obtained an integral called the depopulation factor, which, when multiplied by the

intermediate damping result, yielded a formula that reduced to the VLD formula as

the friction coefficient tends to zero, so solving the Kramers turnover problem.

Furthermore, Mel’nikov [112, 113] (see also Meshkov and Mel’nikov [120]) estab-

lished, in the context of Kramers’ Brownian motion model of noise assisted escape,

that the TST escape rate is accurate provided the ratio of the thermal energy to

the barrier height ∆E is less than the ratio of the friction coefficient ζ to the saddle

angular frequency ωC , with that ratio in turn much less than unity, thus defining

the various damping regimes. The intermediate damping result is a particular case
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of the IHD formula provided the (barrier height to friction) ratio condition is satis-

fied. In fact, that result constitutes the absolute lower limit of validity of the IHD

solution as a function of friction [78]. Thus, they postulate that a formula valid in

all damping regimes may be given by simply multiplying the general IHD result by

their bridging integral. See [15] for a discussion of the range of validity of Kramers’

formulae.

Comprehensive reviews of applications and developments of Kramers reaction

rate theory have been given by Hänggi et al. [135] Mel’nikov [112], Coffey et al.

[123, 125] and Pollak and Talkner [136]. These review articles provide a detailed

theoretical description of reaction rate theory, a variety of examples of its application

and relevant references.

1.3.4 Langer’s Method

Another approach to the classical nucleation problem, and the one which is central

to this thesis is Langer’s theory [14, 137] (referred to in [78] as Langer’s imaginary

part of the free energy method), which springs from purely thermodynamic equi-

librium concepts [138]. The calculation is a generalisation of Becker and Döring’s

calculation [139, 140] of the rate of condensation of a supersaturated vapour. The

basic mathematical technique for this generalization had been described earlier by

Landauer and Swanson [141]. Langer [13] formulated the multidimensional (IHD)

Kramers’ escape rate, which in his treatment is the classical nucleation rate gov-
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erning the early stage of a first-order phase transition [142, 143, 144]. As explained

earlier, the calculation is more general than that of Kramers’ as the Hamiltonian is

not necessarily separable and additive [78]. Consequently, Langer’s approach is very

useful in thermally activated magnetic relaxation of single domain ferromagnetic

particles, as noted by Kachkachi [27] and Klik and Gunther [145, 146]. In the con-

text of magnetic relaxation, Langer’s formula was derived independently by Brown

[23] and has been used by Braun [24, 51] and Kachkachi [27, 28] for the calculation

of relaxation times in various magnetic reversal problems in the intermediate to high

damping limit.

In Langer’s treatment, the energy of the system is first examined to find points

(states) of stability and metastability. These states occur near the positions of local

minima of the energy function. In passing from one minimum of E to a neighbour-

ing one, the system point is most likely to pass across the lowest intervening saddle

point of the function E. It was argued by Langer in [137], and restated in [14], that

the correct analytical definition of a metastable state requires its free energy to be a

complex number and that the imaginary part of that free energy be proportional to

the escape rate. This quantity is part of the prefactor in the multidimensional TST

formula for the escape rate [78, 138] and is expressed in terms of the Hessians of the

energy function evaluated at the saddle point and the metastable point. The saddle

point Hessian possesses at least one negative eigenvalue which is characteristic of a

saddle point and indicates motion away from that point [13]. We remark that the
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Hessians of the energy function are not covariant under nonlinear transformations

of the coordinate system in which the energy function is expressed. Therefore, we

require that the coordinate system be chosen at the outset and that the necessary

transformations be made before embarking on the calculation of the energy Hes-

sians. The rest of the prefactor is expressed as the (unstable) positive eigenvalue

characterizing the unstable barrier crossing mode of the set of noiseless Langevin

equations of the system linearised about the saddle point. The result is identical to

that yielded by multidimensional TST [15]. Thus, to calculate the escape rate, all

that is necessary is knowledge of the energy landscape of a system, which is in itself,

however, can be a very difficult problem.

1.3.5 The Quantum Treatment of Metastable Decay Rates

One shortcoming, or rather limitation [13] of Langer’s theory is that it is purely

classical and not quantum mechanical. The quantum theory of the decay rate of a

metastable state [147] has been formulated from the string-particle model [78] using

normal mode analysis [135, 148, 149, 150, 151]. The theory is a reformulation of

classical statistical mechanics [152, 153, 154], in which the motion of the particle is

coupled to the degrees of freedom of the heat bath. So it is equivalent to a multi-

dimensional Transition State Theory (TST) rate in which the dissipative motion is

modelled in the complete phase space of the system [78].

The resulting decay rate at a finite temperature, based in part on TST, is not
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valid for very low values of the friction coefficient ζ. It is valid in the Intermediate-to-

High Damping (IHD) Kramers’ rate. In the very high damping (VHD) limit, ζ >> 1,

the same calculation [15] predicts that the escape rate is inversely proportional

to the damping parameter ζ. (The reader is referred to Fig. 1.13.2 of [15] for

a schematic representation of the various asymptotic escape rate regimes). The

Kramers’ turnover problem, based and the quantum Langevin equation [155], has

been tackled from a quantum tunnelling persective in [156, 157]. This forms the basis

of a subject of much interest, is that, the study of the macroscopic Brownian motion

and the interface between the classical and the quantum theories [78, 147, 158].

1.4 A Brief Outline of Kramers’ (1940) Calcula-

tions

1.4.1 Assumptions made by Kramers’

1. The particles are initally trapped near A (which is a source of probability) see

Fig (1.5).

2. The barrier heights are very large compared with kT (Kramers takes k to be

1).

3. In the well, the number of particles with energy between E and E+dE, is pro-

portional to e−E/kTdE, that is a Maxwell-Boltzmann distribution is attained
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in the well.

4. Quantum effects are negligible.

5. The escape of particles over the barrier is very slow so that the disturbance to

the Maxwell Boltzmann distribution is almost negligible at all times.

6. Once a particle escapes over the barrier it practically never returns

7. A typical particle of the reacting system may be modelled by the theory of the

Brownian motion, including the inertia of the particles.

The barrier height should be of the order of 5kT , or greater, in order that the

Boltzmann distribution may be set up and maintained in the well to a high enough

degree of accuracy. Kramers’ goal was to calculate the prefactor µ in,

Γ = µ
ωA
2π

exp

{
−∆E

kt

}
(1.10)

from a microscopic model of the chemical reaction. The fact that a microscopic

model of the reaction system (viz., an assembly of Brownian particles in a poten-

tial well) is taken account of in the calculation of the prefactor µ means that the

prefactor is closely associated both with the stochastic differential equation underly-

ing the Brownian motion process, which is the Langevin equation for the evolution

of the random variables (position and momentum) describing the process, and the

associated probability density diffusion equation describing the time evolution of

the density of the realisations of these random variables in phase space. This is a
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—————————————————————————

Figure 1.5: Single well potential function as the simplest example of escape over a

barrier. Particles are initially trapped in the well near the point A by a high potential

barrier at the point C. Particles at A may gain sufficient thermal energy to escape the

well over the barrier at C, from which they never return. The barrier at C is assumed to

be large enough so the the rate of escape of particles is very small.

—————————————————————————

(Klein-Kramers) Fokker-Planck equation, which like the Boltzmann equation is a

closed equation for the single particle or single system distribution function. We

will use as our staring point, the Klein-Kramers equation and derived in [15],

∂ρ

∂t
+
p

m

∂ρ

∂x
− ∂V

∂x

∂ρ

∂p
=

ζ

m

∂

∂p

(
ρp+mkT

∂ρ

∂p

)
(1.11)

where ζ is a constant, the drag factor in [32]. By supposing that

∂ρ

∂t
≈ 0 (1.12)

in the Klein-Kramers equation, Equation (1.11), i.e. the steady state situation,
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Kramers discovered two asymptotic formulae for the escape rate out of a will for

a system governed by the Langevin equation. The first is the intermediate-to-high

(IHD) formula

Γ =
ωA
2π

[(
1 +

η2

4ω2
C

) 1
2

− η

2ωC

]
e−

∆V
kT (1.13)

where η = ζ/m. In the IHD formula, the corresponding µ in the TST result in

the prefactor of Equation (1.10) is the positive eigenvalue, characteristic of the

unstable direction away from the saddle point, of the Langevin equations, Equation

(1.6). The Langevin equations, in the IHD limit, may be linearized about the

saddle point by approximating V (x, p) by its Taylor series about the saddle point

truncated at the quadratic term. This corresponds in the Klein-Kramers equation to

having coefficients which are linear in the momentum and displacement and such an

equation is called a linearised Klein-Kramers equation[15]. Equation (1.13) formally

holds [125] when the energy loss per unit cycle of the motion of a particle in the

well with energy equal to the barrier energy EC = ∆V , is very much greater than

kT . The energy loss per cycle of the motion of a barrier crossing particle is ηI(EC),

where EC is the energy contour through the saddle point of the potential and I is

the action [125] evaluated at E = EC . This criterion effectively follows from the

Kramers very low damping result (see [15]).

The IHD asymptotic formula, which is of primary interest to this thesis, is derived

by supposing that,

1. the barrier is so high and the dissipative coupling to the bath so strong that
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a Maxwell-Boltzmann distribution always holds to a high degree of accuracy

at the bottom of the well and

2. the Langevin equation may be linearised in the region very close to the summit

of the potential well, meaning all the coefficients in the corresponding Klein-

Kramers equation are linear in the positions and velocities.

If these simplifications can be made, then the Klein-Kramers equation, although it

remains an equation in two phase variables (x, p), may be integrated by introducing

an independent variable which is a linear combination of x and p, namely u = p−ax′

where a is a constant, x′ = x − xC and xC is the value of the position coordinate

at the saddle point. So, the Klein-Kramers equation may be written as an ordinary

differential equation in a single variable.

1.4.2 Very Low Damping (VLD) limit

In this case the coupling to the heat bath is very weak, and the assumption that the

Maxwell-Boltzmann distribution is valid to a high degree of accuracy in the well is

not valid. Hence, Kramers’ [32, 76] devised a different treatment for the calculation

of the escape rate for values of the friction for so called crossover [32, 122], that is,

when ηI(EC) << kT where I is the so called action integral taken around the curve

of constant energy which passes through the saddle point.

I ≡
∮
E=EC

pdx (1.14)
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where EC is the energy at the saddle point barrier. Using Equation (1.5) with

ζ/m = η, we follow the language and logic of Kramers [76]. As usual, a stationary

state of diffusion, i.e. ∂ρ/∂t = 0, with current density q corresponds to

q = −ηIρ+ kTI
∂ρ

∂E
(1.15)

or,

q = −ηkTIe−E/kT ∂

∂E

[
ρeE/kT

]
(1.16)

since the continuity equation in I space is

∂ρ

∂t
= −∂q

∂I
. (1.17)

Integrating with respect to E between two points A (at the bottom of the well) and

B (some point over and far away from the barrier) along the E coordinate yields,

q =
ηkT

[
ρeE/kT

]B
A∫ B

A

1
I
eE/kT dE.

(1.18)

Since a Boltzmann distribution is set up in the well, except for a very small neigh-

bourhood around the barrier, the density ρ = ρ0e
−E/(kT ) is almost constant along

the line of almost constant energy AB . So, Equation (1.18) may be written

q = ηkT

(
ρeE/kT

)
Ã

−
(
ρeE/kT

)
C∫ B

Ã

1
I
eE/kT dE

(1.19)

where Ã means ‘near A’. We must avoid integrating from the point A itself because

at this point E = I = 0 and the integral would diverge. ‘Near A’ means a point
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with an energy value of the order of the thermal energy kT [15], that is, a point in

phase space where the energy is nonzero and the density of states ρ is of the order

of the density at A. So,

q = ηkTρA

[∫ ∆V

kT

I−1eE/(kT ) dE

]−1

. (1.20)

This integral may be approximated by assuming that it is mainly due to energy

values of the order of magnitude kT , so that we may take I to have the value IC ,

hence ∫ ∆V

kT

I−1eE/(kT ) dE ≈ 1

IC
e∆V/(kT )

∫ ∆V

kT

e−(∆V−E)/(kT ) dE (1.21)

Now, let Θ ≡ ∆V −E , so dE = −dΘ. Now take the high barrier limit by integrating

over E from −∞ (very near A) to ∆V so that the above integral governing the

current q now becomes∫ ∆V

kT

I−1eE/(kT ) dE ≈ − 1

IC
e∆V/(kT )

∫ 0

∞
e−Θ/(kT ) dΘ =

kT

IC
e∆V/(kT ) (1.22)

so the current is

q ≈ ηρAICe
−∆V/(kT ). (1.23)

The number of particles trapped in the well near A is

nA = ρA2πkT/ωA, (1.24)

and so, the escape rate is given by,

Γ =
q

nA
= η

I(EC)

kT

ωA
2π
e−EC/(kT ) (1.25)
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where EC = ∆V , since the well is at the origin (Fig. 1.4.1), and

I (EC) =

∮
EC

pdx (1.26)

is the action of the almost periodic motion on the saddle point energy contour [15].

As discussed in [15] this result holds when η is small compared with ωA.

Kramers roughly approximates the action of the almost periodic motion at the

saddle point by,

IC = 2πEC/ωA (1.27)

so Equation (1.25) can be written

Γ = η
∆V

kT
e−∆V/(kT ) (1.28)

which can also be written in the form,

Γ =
∆E

kT

ωA
2π
e−∆V/(kT ) (1.29)

where,

∆E = ηI (EC) << kT (1.30)

is the energy loss per cycle per cycle at the saddle point [32].

1.4.3 Applications of Kramers’ Theory

Kramers (1940) [76] based his calculations from the standpoint of non-equilibrium

statistical mechanics and also building on the stochastic methods of Langevin [97],
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was able to describe much of what is known today of escape rate theory [32, 83, 88].

A full description of Kramers work, the subsequent improvements on it, and the

development of escape rate theory, including that for mechanical particles (Brownian

motion) can be found in [135] and [32].

From the molecular theory of gases to the movement of electrons in the con-

duction bands of metals and more recently to define the properties of fullerene

(so-called carbon nanotubes, C60) and to develop queuing theory. So today, the

theory of Brownian motion is part of the repertoire of most theorists. A full de-

scription of Kramers work, the subsequent improvements on it, and the development

of escape rate theory, including that for mechanical particles (Brownian motion) can

be found in [135] and [32]. The following list [32, 102] indicates the broad range of

applicability of the theory of Brownian Motion (or escape rate theory) [32].

1. The current-voltage characteristic of the Josephson tunnelling junction [32].

2. Dielectic and Kerr-effect relaxation of an assembly of dipolar molecules, in-

cluding inertial effects and dipole-dipole interactions [32, 159, 160].

3. The mobility of superionic conductors.

4. Linewidths in nuclear magnetic resonance.

5. Incoherent scattering of slow neutrons.

6. Cycle slips in second-order phase-locked loops [32].
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7. Quantum noise in ring laser gyroscopes [161, 162].

8. Thermalisation of neutrons in a heavy gas moderator [163, 164, 165].

9. The photoelectromotive force in semiconductors.

10. Escape of particles over potential barriers [76, 122].

11. The analytical evaluation of the line shape of single mode semiconductor lasers

[166, 167].

12. Motion of single domain charge-density wave-systems [168].

13. Light scattering from macromolecules.

14. Magnetic relaxation of single domain ferromagnetic particles [137].

15. Ferrofluids [169, 170] and plasmas [171, 172].

16. Queueing theory [175].

17. The statistical physics of spin glass [173, 174]

This thesis is primarily concerned with items 10 and 14 in the above list. All

of these phenomena in one way or another depend on the nucleation and growth

of some characteristic disturbance within a metastable system, for example, con-

densation of a saturated vapour is initiated by the formation of a sufficiently large

droplet of the liquid [13, 78]. If this droplet is big enough it will be more likely
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to grow than to dissipate and will bring about condensation of the entire sample.

Kramers [76] used as his model of a chemical reaction, a classical particle moving in

a one-dimensional potential. The particle is embedded in a heat bath, the source of

thermal energy. This is essentially a model of Brownian motion. The heat bath is in

perpetual thermal equilibrium at temperature T and it represents all the remaining

degrees of freedom of the system [15]. In Kramers’ model, the particle coordinate

x represents the reaction coordinate, the distance between two fragments of a dis-

sociated molecule. The value of this coordinate at x = xA, the first minimum of

the potential, represents the reaction state. The value x = xC , at the saddle point,

represents the transition state.

1.4.4 Escape rate in the IHD limit

We write down the Klein-Kramers equation, and follow the summary of Kramers’

theory in [15]

∂ρ

∂t
=
∂V

∂x

∂ρ

∂p
− p

m

∂ρ

∂x
+ η

∂

∂p

(
ρp+mkT

∂ρ

∂p

)
(1.31)

where,

V = −ω2
C (x− xC)2 /2 (1.32)

is the Taylor series expansion of V (x) about the saddle point xC , with V (xC) = 0

taken as the top of the barrier. Considering the process to be quasi-stationary,

i.e. very slow diffusion over the barrier, ∂ρ
∂t
≈ 0, made possible by the condition
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∆V >> kT , where the barrier height ∆V is given by V (xC)− V (xA), the Equation

(1.31) reduces to the stationary equation,

ω2
Cx
′∂ρ

∂p
+ p

∂ρ

∂x′
− η ∂

∂p

(
ρp+ kT

∂ρ

∂p

)
= 0 (1.33)

where x′ = x− xC and we have taken m = 1. Now, we make the substitution

ρ ≡ ζ (x′, p) e−(p2−ω2
Cx
′2)/(2kT ) (1.34)

and Equation (1.33) becomes,

ω2
Cx
′∂ζ

∂p
+ p

∂ζ

∂x′
+ ηp

∂ζ

∂p
− βkT ∂

2ζ

∂p2
= 0. (1.35)

Here ζ (x′, p), referred to a crossover function [15, 125], is a rapidly varying function

which takes on the value zero in the well (x = xA = 0), and 1 over the barrier

(x = xc). This leads to the boundary conditions thus; when

x = 0, ζ = 1 (1.36)

which is the condition in the well, and as

x→∞, ζ → 0 (1.37)

is the condition over the barrier. By inspection we see that, in general, ζ = constant

is a solution of Equation (1.33). This yields a Maxwell Boltzmann distribution.

Another solution can be obtained [15, 125] if we assume that the crossover function

satisfies the condition

ζ = ζ(u), (1.38)
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where u ≡ p− ax′ and a is a constant. Substituting Equation (1.38) into Equation

(1.33) leads to

(
ω2
Cx
′ − (a− η) p

) ∂ζ
∂u
− ηkT ∂

2ζ

∂u2
= 0 (1.39)

Equation (1.39) can be written as in a single variable u if

(a− η)

[
p− ω2

C

(a− η)

]
= λu (1.40)

where λ = a− η is a scaling factor which forces,

ω2
C = a (a− η) , (1.41)

that is,

a =
η

2
±
√
ω2
C +

η2

4
. (1.42)

Equation (1.39) is an ordinary differential equation in u;

ηkTζ ′′ + (a− η)uζ ′ = 0 (1.43)

which has as its solution,

ζ = C ′
∫
u

e−
(a−η)u′2

2ηkT du′, (1.44)

where C ′ is a constant of integration. We take the positive square root in Equation

(1.42) to get,

λ+ = a− η = −η
2

+

√
ω2
C +

η2

4
, (1.45)

45



which is positive so the solution for ζ, Equation (1.44), represents a diffusion of

particles over the barrier at C. The quantity λ+ then corresponds to the unique

positive eigenvalue of the Langevin equations (Equation 1.6) linearised about C with

the white noise term omitted and characterises the unstable barrier crossing mode.

Now we apply the boundary conditions (Equations 1.36 and 1.37) to find the limits

of integration in Equation (1.44), in u-space these transform as,

ζ → 0 as u→ −∞, (1.46)

to the right of the barrier in Fig. 1.4.1 and extending the upper limit, that is to the

left of the barrier, in the depths of the well, we may extend the upper limit of the

integration in Equation (1.44) to +∞ to get,

ζ = C ′

√
2πηkT

(a− η)
(1.47)

since,

∫ ∞
−∞

e−αx
2

dx =

√
π

α
(1.48)

where α is a positive constant. Now the escape rate Γ is

Γ =
q

nA
(1.49)

where q is the number of particles passing over the barrier top in unit time and nA

is the number of particles in the well and is given by the integral

nA =

∫ ∫
ρ (x, p) dx dp (1.50)
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where ρ (x, p) is the density of states in phase space. Near the bottom of the well,

x ≈ xA = 0 in line with Kramers convention, the potential V (x) is approximated by

V (x) = −∆V + ω2
Ax

2/2 (1.51)

where ∆V = Vsaddle − Vmin and Vsaddle = 0 as per Fig. 1.5, again in lines with

Kramers convention, so,

nA = C ′

√
2πηkT

a− η

∫ ∞
−∞

∫ ∞
−∞

e−
p2+ω2x2

2kT dp dx (1.52)

nA = C ′
2πkT

ωA

√
2πηkT

a− η
e

∆V
kT . (1.53)

The value of q is obtained [15, 125] by evaluating the integral

q =

∫ ∞
−∞

ρp dp (1.54)

i.e.

q = C ′
∫ ∞
−∞

pe
p2

2ηkT

∫ p

−∞
e

(a−η)p′2
2ηkT dp′dp. (1.55)

We evaluate this integral by the method of integration by parts. Thus,

q = C ′
(
−kT exp

{
− p2

2kT

}∫ p

−∞
exp

{
−a− η

2ηkT
s′2
}
ds′ ]∞p=−∞+

kT

∫ ∞
−∞

exp

{
− p2

2kT

}
exp

{
a− η
2ηkT

p2

}
dp

)
(1.56)

= C ′kT

∫ ∞
−∞

exp

{
−
(

η

2ηkT
+
a− η
2ηkT

)
p2

}
dp (1.57)
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= C ′kt

∫ ∞
−∞

exp

{
− a

2ηkT
p2

}
dp (1.58)

= C ′kT

√
2πηkT

a
(1.59)

q = C ′kT
√

2πηkT/a. (1.60)

So, putting the Equations (1.49),(1.53) and (1.60) together we have,

Γ =
ωA
2π

√
1− η/ae−

∆V
kT (1.61)

and substituting the value of a in Equation (1.42) into Equation (1.61) to get,

Γ =
ωA

2πωC

(√
η2/4 + ω2

C − η/2
)
e−∆V/kT . (1.62)

This result applies in the IHD limit only as it relies [15, 125] of the assumption

that the friction is large enough to ensure that the particles approaching the barrier

from the depths of the well are in thermal equilibrium. If the friction coefficient

becomes too small, this condition is violated and the IHD solution is no longer valid

because the space interval in which the non-equilibrium behaviour prevails exceeds

that where an inverted parabola approximation to the potential is valid.

Kramers theory may be verified numerically for large potential barrier heights

by calculating the smallest non-zero eigenvalue of the Klein-Kramers equation [125].

This procedure is possible because of the exponential nature of the escape rate, so

that, in effect, the smallest eigenvalue of the Fokker-Planck equation is very much

smaller than all the higher order eigenvalues, which are associated with the fast
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motion in the well. Thus the Kramers escape rate is approximately given by the

smallest non-zero eigenvalue if the barrier height is sufficiently large, > 5kT . This

method has been extensively used to verify the Kramers theory, in particular the

application of the theory to magnetic relaxation of single domain ferromagnetic

particles.

1.4.5 Range of Validity of Kramers’ Formulae

In the limit η → 0 the IHD escape rate approaches the TST result [176], Equation

(1.63)

Γ = ΓTS =
ωA
2π

exp

{
−∆E

kT

}
(1.63)

It is explained in [15] that the taking of that limit is inconsistent with the derivation

of the IHD result, Equation (1.62). This is because [15], in the limit of vanishing

friction, the variation of x is not the same as the variation of u. So, the correct for-

mula to use in that limit is the one we have derived for very low damping, Equation

(1.25), i.e.,

Γ =
q

nA
=

η

kT
I(EC)

ωA
2π
e−EC/(kT ) (1.64)

where,

ηI (EC) << kT. (1.65)

The barrier height ∆V appears in the prefactor as well as the exponent, so in the

VLD limit, Equation (1.64), is useful for obtaining a criterion in terms of the barrier
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height for the ranges of friction in which the VLD and IHD Kramers formulae are

valid. Kramers was unable to extend the VLD result to values of η which were not

small compared with 2ωA, that is the region were the particle undergoes aperiodic

damping, referred to as the crossover region between the VLD and the IHD. Coffey

et al. [15] define the crossover region as

α
∆V

kT
≈ 1 (1.66)

where α = 2πη
ωA

is a dimensionless friction parameter.

1.4.6 A Note on the Kramers’ Turnover Problem

“The classical Kramers turnover problem may be considered as solved

despite some open questions remaining [136].”

The classical formula of Mel’nikov and Meshkov [120] provides an accurate approxi-

mation to the exact rate for all values of damping, including the VHD, VLD, and the

Kramers turnover regions and has been repeatedly verified theoretically (see, e.g.,

Ref. [177, 178, 179, 180], and [71, 181, 182]). Furthermore, Coffey et al. [125] have

extended the Mel’nikov method to the magnetization relaxation of single-domain

ferromagnetic particles. The calculation of the longest relaxation time for various

magnetocrystalline anisotropies has been accomplished in Ref. [65, 183, 184, 185].

According to [78], in spite of very good overall agreement between numerical re-

sults and the universal turnover formula, a marked difference of the order of 20%
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between numerical and analytical results in the VLD region at moderate barriers

exists [177, 178, 179, 180, 182]. In order to improve the accuracy of the universal

turnover formula in this region, Mel’nikov [186, 187] suggested a systematic way of

accounting for finite-barrier corrections. If such a correction is included, the accu-

racy of the universal formula is considerably improved (see, e.g., Ref. [70]). We shall

now briefly summarize the extension of the Kramers theory to many dimensions due

to Langer [13].

1.4.7 A Note on the Applicability of Langer’s Theory

The theoretical approach to the nucleation phenomenon developed by Langer [13, 14]

is a generalisation of the earlier works of Landauer and Swanson [141], and Cahn and

Hilliard [188]. In Langer’s work [13, 14], the prefactor A of Equation 1.3 is shown

to be a product of the dynamical prefactor κ and the statistical prefactor Ω0, and

both prefactors are determined explicitly in the theory. The dynamical prefactor is

related to the growth rate of the critical cluster, and the statistical prefactor is a

measure of the phase space volume available for the nucleation. Since the beginning

of 1970’s, Langer’s theory has been applied to describe first order phase transition

in various systems including the vapor condensation [189, 190], nucleation in binary

fluids [129], solidification of the melt [142], and hadronisation of the quark-gluon

plasma [143, 172], produced in heavy-ion collisions.

Langer’s theory, as presented here, is applicable only when the reaction rate
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is slow, as it requires the system to be in a state of equilibrium or very close to

equilibrium at all times. It is applicable only with the damping is sufficient to allow

a Maxwell-Boltzmann distribution to built up and to a high degree of accuracy,

maintained in the well except to within the region very near to the saddle point

barrier. But it wasn’t until H.B. Braun’s 1994 paper [51], that Langer’s theory was

used in the context of the relaxation of a magnetic particle in a uniform external

magnetic field. Subsequently, in 2001, Coffey, Garanin and McCarthy [125] showed

that Kramers’ [76] famous expression for the Escape Rate of mechanical particles in

a harmonic oscillator potential with N = 1 in the Intermediate to High Damping

(IHD) limit followed as a special case of Langer’s formula [13]. The same paper [125]

goes on to derive an IHD formula for magnetic spins with two degrees of freedom.

This thesis borrows on the calculation for magnetic spins in [125], improves upon

it by allowing for the existence of zero eigenvalues in the Energy Hessian matrix,

and applies the results to three different models for a single domain ferromagnetic

particle.

1.5 The Layout of this Thesis

In Chapter 2, we describe Langer’s Theory and the assumptions therein for the

process of magnetic relaxation for a single domain ferromagnet in the intermediate

to high damping limit. In Chapter 3, we highlight problems and pitfalls associated
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with applying the theory in our calculations, in particular the existence of zero

eigenvalues in the Hessian matrix for the energy function of the magnetic particle,

and we give the mathematical details of a calculation which leads to a modified

version of Langer’s formula for the escape rate. Also in Chapter 3, we emphasize

how the choice of coordinate system, spherical polar coordinates (1, θ, φ), impacts

on the subsequent calculation of the prefactor A in the Escape Rate, due to the fact

that the Hessian Matrices, which occur in the approximation of the energy E, are

not covariant under nonlinear coordinate transformations. Such a transformation is

required for our model for a single domain ferromagnetic particle to fit into Langer’s

formula for the escape rate, Γ. So, as a consequence of the non-covariance of the

Hessian matrix, a coordinate system is setup a priori and that coordinate system is

used throughout the calculations which lead to an expression for Γ.

In Chapter 4, we analyse the energy function for a system of two interacting

ferromagnetic particles in a parallel external field with four degrees of freedom.

We find that the energy landscape or energy profile (the maxima, minima and

saddle points) varies depending on the values of the parameters h, h ∈ [0, 1) and j,

j ∈ (0,∞), the reduced external field and the interaction coefficient respectively. We

interpret the results of the analysis on the energy function and set about applying

Langer’s theory to the system. We give an expression for the Escape Rate for

values of the interaction coefficient j, when j > 2. We also give the total escape

rate when j ∈ (1, 2), which is the sum of three escape rates. Our analysis is not
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exhaustive however because, as we can show, the energy profile becomes complicated

by a system of fourth order polynomials when j ∈ (0, 1], which is solvable, but the

solutions are complicated in the extreme. Finally, in Chapter 5 we propose some

material which could be the subject of further study. Amongst other questions, we

present the quartic equations mentioned above, the solutions to which may lead to

an expression for the escape rate when j ∈ (0, 1].
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Chapter 2

Langer’s Method in the IHD limit

with Non-zero Eigenvalues

2.1 Introduction

The theory and method employed by J.S. Langer [13][14] for the calculation of the

Escape Rate is set in the context of statistical mechanics. In the two papers cited

above, Langer proposes a theory for the decay of a metastable state, a problem

which he says “is an old one, (yet) one of the more important outstanding prob-

lems in statistical mechanics.” In particular, central to the working of the theory is

the (classical) Maxwell-Boltzmann distribution function and the equipartition the-

orem, which is often discussed in books on the subject of Statistical Mechanics and

Thermodynamics [58][59][60], and has been described as the pinnacle of Statistical
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Mechanics [152] since everything else in the subject is either a climb up to, or a slide

down from that pinnacle. We embark on one possible slide down. The Maxwell-

Boltzmann distribution function for the density of states ρ (η) is,

ρ ({ηi}) =
1

Z
exp {−βE ({η})} (2.1)

where, β = 1
kBT

and kB is the Boltzmann constant. T is the absolute temperature.

E is the total energy. η = ηi, i = 1, 2, . . . , N are usually taken to be functions of

the coordinates, they may or may not be the actual coordinates themselves and ηi,

i = N + 1, N + 2, . . . , 2N are the conjugate momenta repectively. The density of

states ρ = ρ {η} is a function the finite set of variables η where,

{η} = η1, η2, . . . ηN , ηN+1 . . . η2N (2.2)

In this thesis, the first N are functions of the spacial coordinates x, y and z, and

the second N are the corresponding time derivatives. Frequently, we will take the

{η} to be the unit sphere coordinates (1, θ, φ), see Fig 2.1, where

x = sin θ cosφ

y = sin θ sinφ

z = cos θ

(2.3)

Even when E depends solely on the coordinates, as opposed to both the coordi-

nates and the momenta, the equipartition theorem holds, as discussed on page 23

of [32]. The right-hand side of Equation (2.1) is the density of states for all states
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ηi, i = 1, 2, . . . , 2N . On normalising the density of states in Equation (2.1),

∫ ∞
−∞

ρ ({ηi}) dη = 1 (2.4)

where dη = dη1dη2 . . . dη2N the partition function may be written,

Z =

∫ ∞
∞
· · ·
∫ ∞
∞

exp {−βE ({η})} dη1 · · · dη2N . (2.5)

Combining Equations (2.1), (2.3) and (2.4) yields,

∫ ∞
−∞

ρ ({η}) dη =
1

Z

∫ 2π

0

∫ π

0

exp {−βE (θ, φ)} sin θdθdφ = 1 (2.6)

when N = 2. In order to apply Langer’s method we make the substitution p = cos θ

in Equation (2.6) to get

∫ ∞
−∞

ρ ({η}) dη =
1

Z

∫ 2π

0

∫ 1

−1

exp {−βE (p, φ)} dp dφ. (2.7)

The systems under consideration, such as the rotation of the magnetic vector of

a single domain ferromagnetic particle, may have a number of degrees of freedom

of the order 1023 and the problems associated with such systems are therefore, in

practice, intractable. Kramers’ and Langer’s theories treat the collection of particles

as an ensemble and so certain assumptions are made in that context. In this sense,

statistical averaging is employed and is just one of the assumptions of the theory. The

theory is concerned with the phenomenon of so called “metastable state” decay. A

metastable state may be defined as a state of relative stability. That is, a metastable

state is a state that is unstable, but the instability is so small as to be negligible to
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—————————————————————————

Figure 2.1: Spherical Polar Co-ordinate System: This is the coordinate system used in

the application of Langer’s method to systems of single domain ferromagnets. It can be

simplified by making r =const=1. This reduces the number of variables to 2 without loss

of generality, since we are interested in the direction of the particle’s magnetic moment

only and not it’s magnitude, which we assume is constant.

—————————————————————————

a high degree of accuracy. The decay of the metastable state is a type of diffusion

process but since the metastable state itself is relatively stable the diffusion process

is very slow.

The internal dynamics of the system follow the Gilbert equation,

∂M

∂t
= γ

(
∂E

∂M
+ αγ

∂E

∂M
×M + Ξ

)
×M (2.8)

where, M is the magnetic vector, E is the energy, α and γ are positive constants
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and Ξ is the random force. The random force Ξ satisfies the equations [125]

Ξi(t) = 0

Ξi(t)Ξj(t′) = 2αkBT
v

δijδ(t− t′)
(2.9)

where the overbar denotes statistical averaging, v is the particle volume, δij is the

kronecker delta, and δ(t) is the Dirac delta function.

In Langer’s theory a local minimum is the metastable state, and a minimum of

lower energy is the “stable” state. There will be some leakage from the stable state

back to the metastable state, but for simplicity we take this to be so small as to

be negligible. So, the number of magnetic vectors in each of the minima is more

or less constant. That is to say, the stable states are, to a close approximation,

in equilibrium in terms of their populations, which follow a Maxwell-Boltzmann

distribution. This is an important consideration for the successful application of the

theory as it ensures that the process is almost stationary. This almost stationary

situation is achieved in practice by making the barrier height sufficiently large. The

stable states are separated from one another by one or more local maxima, in one-

dimension, or by a saddle point or points in two or more dimensions. The saddle

points are regarded as energy barriers and there should be only one direction, say

η1 in which the particles may escape the well as this is characteristic of a nucleating

process [13]. So, in order for the magnetic vector to change its direction by π radians,

that is, to fully switch its direction, it must escape from a well (metastable state)

and cross over a potential barrier. If there is more than one barrier the particle will
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traverse the lower or lowest of these, provided the difference in heights is large. If

there is more than one barrier of the same low energy, the total escape rate will be

the sum of the escape rates over each barrier. In order to overcome the barrier(s)

the magnetic vector has to receive energy from an external source. The required

energy source is present in the heat of the surroundings which acts as a heat bath.

The calculation of the escape rate may be summarised as follows; First, choose a

suitable coordinate system. Write down the Hamiltonian (total energy function) E

in the chosen coordinate system. By taking the first (partial) derivative of E with

respect to each of the variables of E, identify the turning points of E. Next, identify

the nature of each of the turning points, that is whether they are a maximum

or a minimum or a saddle point. Then identify the metastable and stable states

by calculating the difference in energy between these states and the saddle point

or points. The difference in energy between the saddle point (top of the barrier)

and the metastable state is less than that of the barrier and the stable state as in

Fig.1.1. Then, based on the following assumptions, calculate the number of particles

(magnetic vectors) in the metastable well (NA) and the current of particles over the

barrier q. The escape rate Γ is,

Γ =
q

NA

(2.10)
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2.2 Assumptions in Langer’s Model

Langer makes the following assumptions about systems for which the theory applies;

1. The entire system may be treated as an ensemble and its random field satisfies

Equations (2.9).

2. The time development of the entire system obeys a second order differential

equation (the Fokker-Planck equation).

3. The energy function E may be approximated by a Taylor series expansion

truncated at the second order term.

4. In the metastable well ρ({η}) = ρeq({η}) to a high degree of accuracy except

in a small region near the barrier top.

5. At the barrier we assume that ρ({η}) can be written as ρ({η}) = ζ({η})ρeq({η}).

6. Beyond the barrier (point C in Fig.1.1) ρ({η}) = 0.

where ρeq({η}) is the density of states at equilbrium and ζ is a so-called crossover

function [76].

When the system is in equilibrium

ρ = ρeq (2.11)

where,

ρeq({η}) =
1

Z
exp {−βE({η})} . (2.12)
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It is assumed that ζ can be written as a function of a single variable u [125], where

u is a linear combination of the {η}

u =
2N∑
i=1

Ui(ηi − η̃si ) (2.13)

where η̃si is the coordinate of the saddle point and a stationary point of E, and

the Ui are constants which in practice can be chosen to suit the conditions of the

problem. Also, it can be shown [125] that ζ has the form of the error function,

ζ ({η}) = ζ(u) =
1√

2πkT

∫ ∞
u

exp

{
−βz

2

2

}
dz. (2.14)

2.3 Langer’s Theory and Method

Langer [13] considers a system possessing N degrees of freedom and described by

a set of 2N classical variables ηi, i = 1, 2, 3 . . . 2N . The first N elements of {η},

{η1, η2 . . . . . . ηN} being functions of the coordinates and ηi+N being the conjugate

momentum to ηi.

Let ρ({η} , t) be the probability density of states for the 2N states as a function

of time and the set of state variables {η}. Then the system evolves according to the

second order partial differential equation,

∂ρ({η} , t)
∂t

=
2N∑
i=1

2N∑
j=1

∂

∂ηi
Mij

[
∂E

∂ηj
+ kT

∂

∂ηj

]
ρ({η} , t). (2.15)
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—————————————————————————————–

Figure 2.2: Typical Energy profile for systems which may be considered in Langer’s

theory have a barrier separating two wells. ∆E is the energy required to escape the well

at A and traverse the barrier at C. The particle again comes to rest in the lower energy

well at B.

—————————————————————————————–

Equation (2.15) is known as a Fokker-Planck equation (FPE) [32].

Mij is a real N -square matrix referred to as the transport matrix, for simplicity it

is taken to be constant. M has a symmetric part referred to as the diffusion matrix

D,

D =
1

2
(M + Mt), (2.16)

and an anti-symmetric part A, referred to as the transport matrix,

A =
1

2
(M−Mt). (2.17)
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That is,

M = A + D. (2.18)

(This is slightly different to the way Langer defines the matrix M but here we follow

the definition in [125] so the negative eigenvalue κ in [13] is the positive eigenvalue

λ+ in [125]). The internal dynamics of the system follow Hamiltons equations,

η̇i = −
∑

Aij
∂E

∂ηj
. (2.19)

If Aij identically zero, the motion is conservative and Dij satisfies [135]

Ė = −
∑
i,j

∂E

∂ηi
Dij

∂E

∂ηj
≤ 0. (2.20)

In reference [13], Langer refers to the following two scenarios; if the interaction with

the heat bath is much more rapid than the internal dynamics of the system, the

diffusion process is dominant and the matrix Aij can be neglected from Equation

(2.18), and if the fluctuation rate is very slow, as is the case here, the matrix Dij

may be neglected in Equation (2.18) as the system is approaching equilibrium. Also,

an important assumption in Langer’s theory [13][14] is that we may assume E({ηi})

i = 1, 2 . . . 2N the total energy of the system, may be approximated by its Taylor

series expansion about the barrier top and also the metastable minimum viz.,

E(η) ≈ E(0) +
1

2

[∑
i,j

∂2E

∂ηi∂ηj

∣∣∣∣
˜{η}

(ηi − η̃i)(ηj − η̃j)

]
(2.21)

where {η̃} are the coordinates of the metastable minimum or saddle point. E(0) is

the zeroth order energy at a turning point, that is, E(0) is the energy evaluated at
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the turning point of interest. The FPE may be linearised at the saddle point by

substituting Equation (2.21) into Equation (2.15) to get

∂ρ

∂t
=

2N∑
i,j

Mij
∂

∂ηj

[∑
i,j

eij
2

∂(ηi − η̃si )(ηj − η̃sj )
∂ηi

+ kT
∂

∂ηj

]
ρ({η}) (2.22)

where,
{
η̃si
}

is the ith coordinate of the saddle point. And the coefficients eij are

the second order partial derivatives of E evaluated at
{
η̃si
}

. After performing the

partial differentiation Equation (2.22) becomes,

∂ρ

∂t
=

2N∑
i,j

Mij
∂

∂ηi

[∑
k

ejk(ηk − η̃k) + kT
∂

∂ηj

]
ρ({η}). (2.23)

The FPE and may be interpreted as a continuity equation in η space,

∂ρ({η} , t)
∂t

= −
∑
i

∂Ji
∂ηi

(2.24)

where the 2N -dimensional probability current density is

Ji({η} , t) = −
2N∑
j=1

Mij

[
∂E

∂ηj
+ kT

∂

∂ηj

]
ρ({η} , t). (2.25)

At or near equilibrium,

∂ρ({η} , t)
∂t

≈ 0. (2.26)

We have two possible solutions to Equation (2.24)

Ji({η} , t) = 0 (2.27)

which is the situation in the well, or

Ji({η} , t) = k (2.28)
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where k is a nonzero constant vector, which is the situation at the barrier.

The last term in Equation (2.21) may be written in matrix notation as

(
η̄1, η̄2, · · · , ¯η2N

)


Eη1η1 Eη1η2 · · · Eη1η2N

...
...

Eη2Nη1 Eη2Nη2 · · · Eη2Nη2N





η̄1

η̄2

...

¯η2N


(2.29)

where η̄i = ηi − η̃si i = 1, . . . , 2N . The matrix
(
Eηiηj

)2N 2N

j=1 i=1
is made up of the

second order partial derivatives of E. That is, E is the Hessian matrix. Here the

Hessian matrix is evaluated at {η̃}, where {η̃} is either
{
η̃s
}

or
{
η̃A
}

. We will

denote the Hessian matrix at the barrier saddle point
{
η̃s
}

by Es and at the well

minimum
{
η̃A
}

by EA. Calculation of the escape rate involves finding Hessians, i.e.

the determinants of EA and Es. If one or both determinants is zero, calculation of

the escape rate is facilitated by the matrices Es and EA being diagonalised to find

their eigenvalues λi, i = 1, 2, ..., 2N . The diagonalisation may be accomplished via

an orthogonal transformation of the η̄i coordinates, thus

ηj − η̃j ≡
∑
j

Sijxj. (2.30)

where, the column vector, x = (xj) is linear combination of the {η} by the intro-

duction of the diagonalisation matrix Sij which has the property,

(Sij)
−1 = (Sij)

t (2.31)
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So,

∑
i,j

[
δi,j
∑
k,l

S−1
ik EηkηlSlj

]
= λl (2.32)

where δi,j is the kronecker delta. The matrix Sij = S diagonalises the Hessian

matrix
(
Eηiηj

)
and the columns of Sij are the eigenvectors x, or a constant times

the eigenvectors x which makes,

det S = 1 (2.33)

We will follow the notation of [125] in as far as is possible. We remark that Langer’s

assertion that there should be one and only one negative eigenvalue in the saddle

point Hessian is not necessarily true for the magnetic particles with interaction

considered in this thesis. The saddle point’s negative eigenvalues indicate flow away

from the saddle point towards the stable state and the corresponding eigenvectors

indicate the direction of the flow. In our calculations we find that there maybe more

than one negative eigenvalue at the saddle point, however, the eigenvalues are equal,

indicating equal likelihood of flow in those directions.

In the case of a zero eigenvalue occurring in the diagonalised Hessian matrix, the

formula for Langer’s Escape Rate in [125] breaks down and requires a modification.

This problem is commented upon by Langer and he accounts for it in his formula

for the escape rate with the factor V [13], where V is the volume of the sub-space

corresponding to the zero eigenvalue. In his paper [13], Langer refers to this as the

particle volume. He goes on to comment that the zeros, if any, are model dependent
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and (by) “dealing with the resulting integrals separately” the problem can be fixed

up. The problem of zero eigenvalues in the Hessian matrix will be dealt with in the

next chapter.

2.4 Calculation of the Escape Rate

The escape rate Γ is [125]

Γ =
q

NA

(2.34)

where NA is the population in the metastable well and q is the current or flux over

the barrier (see Fig. 1.1).

q =
∑
i

∫
u=0

Ji ({η}) dη. (2.35)

We wish to solve Equation (2.23) when the system is in a steady state (equilibrium

position), i.e.

∂ρ

∂t
= 0. (2.36)

After a lengthy calculation (see Appendix B) we can write q as,

q =
λ+

2π

∣∣∣∣det

[
Es

2πkT

]∣∣∣∣− 1
2

Z−1 exp {−βEc} . (2.37)

Note that the calculation in Appendix B is merely a modification of the calculation

in reference [125] (page 600) to cater for more than one negative direction indicating

motion away from the saddle point to a lower energy position. This is necessary for
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certain values of the coefficients j and h in the interacting particle problem which

is the subject of Chapter 4. We note that Langer states there should be one and

only one negative direction at the saddle point if the process is to be a (so-called)

nucleating one. However, we see in Chapter 4, there are two negative and equal

directions, indicating two possible directions of motion, each of equal probability.

From [125] (and reproduced here in Appendix C) we have the expression for NA,

the population in the well

NA =
{

det
[
(2πkBT )−1 EA

]}− 1
2 Z−1. (2.38)

So,

Γ =
λ+

2π

[
det
{

(2πkBT )−1EA
}

|det {(2πkBT )−1Es|}

]1/2

exp {−βEc} (2.39)

Γ =
λ+

2π

[
det EA

|det Es|

]1/2

e−β∆E (2.40)

where, ∆E is the barrier height and λ+ is the positive eigenvalue in the Landau-

Lifshitz equations, (cf. Appendix A).

As in [27][28] and using Equation (2.5) the Escape Rate may be written in terms

of the partition functions as,

Γ =
λ+

2π

Zm
Zs

(2.41)

where Zs is the partition function with Energy E = Es expanded about the barrier

saddle point, and Zm is the partition function with Energy E = Em expanded about

the metastable minimum.
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2.4.1 Kramers’ formula as a special case of Langer’s formula

As a partial justification of Langer’s method, we shall use the method to derive

the IHD result of Kramers. To recover the Kramers formula, Equation (1.62), by

Langer’s method, we take N = 1, thus the state variables are the position and

momentum, so that,

η1 = x ; η2 = p (2.42)

So, the noiseless Langevin equations are,

dx

dt
=

p

m
;

dp

dt
= − ζ

m
p− dV

dx
(2.43)

where, V denotes the potential energy and ζ is the dissipation (friction) coefficient.

Now in this case the energy is additive, i.e.

E =
p2

2m
± V (x) (2.44)

where the ± sign is included to emphasise the fact that we have to make the as-

sumption that the potential is an inverted parabola near the saddle point (with

potential −V (x)) so the energy profile conforms to the situation in Fig. (1.4.1).

The Hamilton equations for the problem are,

∂E

∂p
=

p

m
;

∂E

∂x
=
∂V

∂x
, (2.45)

and,

η̇1 =
p

m
=
∂E

∂p
=
∂E

∂p
; η̇2 = −ζ p

m
− dV

dx
= −ζ ∂E

∂η2

− ∂E

∂η1

. (2.46)
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Hence, the equations of motion in terms of the state variables (η1, η2) of the general

case of Langer’s method above, as, η̇1

η̇2

 =

 0 1

−1 −ζ


 ∂E

∂η1

∂E
∂η2

 . (2.47)

and so the transport matrix (Mij) is the negative of the matrix in Equation (2.47),

namely,

M = Mij =

 0 −1

1 ζ

 , (2.48)

whence,

M̃ ≡ −Mt =

 0 −1

1 −ζ

 . (2.49)

Here we can take the saddle point as the origin so

η
S

1 = 0. (2.50)

The momentum of a particle just escaping over the saddle point is almost zero, so,

η
S

2 ≈ 0 (2.51)

The Taylor series approximation of the energy function about the saddle point is

E = EC −
1

2

∑
i,j

eij
(
ηi − ηSi

) (
ηj − ηSj

)
(2.52)

which, if we regard the momentum as a constant, is essentially an inverted parabola

at the saddle point, which can be seen clearly if we write,

E =
p2

2m
− 1

2
mω2

Cx
2, (2.53)
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or

E =
1

2m

(
η2 − ηS2

)2 − 1

2
mω2

C

(
η1 − ηS1

)2
(2.54)

puts the equation in the required form with EC = 0,

e11 = mω2
C , e12 = e21 = 0 e22 = − 1

m
(2.55)

are the elements of the saddle point Hessian matrix, i.e.,

E
S

=

 mω2
C 0

0 − 1
m

 (2.56)

Similarly, the energy in the well about the minimum point is approximated as

E = EA +
1

2

∑
i,j

eij
(
ηi − ηAi

) (
ηj − ηAj

)
(2.57)

so the energy Hessian matrix is

E
A

=

 mω2
A 0

0 1
m

 (2.58)

The Hessians are

det

{
E
S

2πkT

}
= − ω2

C

2πkT
; det

{
E

A

2πkT

}
=

ω2
A

2πkT
(2.59)

So, √√√√√ det
{

E
A

2πkT

}
∣∣∣det

{
ES

2πkT

}∣∣∣ =
ωA
ωC

(2.60)
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Now we determine λ+. We have the linearised noiseless Langevin equation η̇1

η̇2

 =

 0 1

−1 −ζ


 ∂E

S

∂η1

∂E
S

∂η2

 . (2.61)

Now, linearise these equations by substituting Equation (2.54) η̇1

η̇2

 =

 0 1

−1 −ζ


 −mω2

Cη1

1
m
η2

 , (2.62)

which can be written as η̇1

η̇2

 =

 0 1

−1 −ζ


 −mω2

C 0

0 1
m


 η1

η2

 (2.63)

 η̇1

η̇2

 =

 0 1
m

mω2
C − ζ

m


 η1

η2

 (2.64)

or, with A denoting the transition matrix

η̇ = Aη (2.65)

with eigenvalue problem,

det (A− λI) = 0 (2.66)

λ (λ+ κ)− ω2
C = 0, (2.67)

where κ = ζ
m

(β in [15])

λ± = ±
√
ω2
C +

κ2

4
− κ

2
(2.68)
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We pick the positive root so that the solution (which is now always positive) corre-

sponds to the unstable barrier crossing mode, hence

λ+ =

√
ω2
C +

κ2

4
− κ

2
(2.69)

So the escape rate is,

Γ =
λ+ωA
2πωC

e−∆V (kT ) =
ωA
2π

[√
1 +

κ2

4ω2
C

− κ

2ωC

]
e−∆V (kT ). (2.70)

Equation (2.70) is Kramers’ IHD Equation (1.62) with κ = η.

2.5 Hessian Matrices and Coordinate Systems

In Subsection 1.4.3, we saw that the original IHD treatment of Kramers dealt with

a mechanical system of one degree of freedom specified by the coordinate x with

additive Hamiltonian H = p2/2m + V (x). Thus, the motion is separable and de-

scribed by a two dimensional phase space with state variables (x, p). However, this

may not always be the case. That is, the motion of the magnetic moment in a single

domain ferromagnetic particle is governed by a Hamiltonian which is non-additive

and is simply the magnetocrystalline anisotropy energy of the particle.

So, we find it necessary to emphasize a point that lacks emphasis in Langer’s

work. The coordinate system {η} is chosen a priori by Langer, and all work is

carried out in this coordinate system. If we were to use different coordinate systems

at the minimum and at the saddle point, we would need the Hessian to be coordinate

invariant [i.e. the Hessian would need to be a covariant tensor].
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This section demonstrates by counter-example that the Hessian is not coordinate

invariant under a non-linear transformation of the coordinate system or part of

the coordinate system. The Hessian matrix is formed by the coefficients of the ηi

variables in the second order term of the Taylor series expansion, i.e. the matrix

Eηiηj in Equation (2.29). Obviously, these coefficients will be different for different

energy functions. What is not obvious is that the coefficients are dependent on the

coordinate system in which the energy function is expressed. For this reason one

coordinate system must be chosen at the outset and used throughout the calculation

of the escape rate, Γ. To demonstrate this we consider a function f

{
f : <2 → < | (x, y)→ x2 + y2 − 2x+ 1

}
. (2.71)

f has a turning point at (x, y) = (1, 0). The Taylor series expansion of f about (1, 0)

is

f (x, y) ≈ f(x, y)|(1,0) +
1

2

[
∂2f

∂x2

∣∣∣∣
(1,0)

(x− 1)2 +
∂2f

∂y2

∣∣∣∣
(1,0)

(y − 0)2

]
(2.72)

f (x, y) ≈ 1

2

[
2(x− 1)2 + 2y2

]
. (2.73)

Written in terms of matrix notation we have

f (x, y) =
1

2
(x− 1, y)

 2 0

0 2


 x− 1

y

 (2.74)

where  2 0

0 2

 (2.75)
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is the Hessian matrix. Now,

∆ = 4 (2.76)

where ∆ denotes the Hessian. Now consider the non-linear transformation

x = u2 ; y = v2 (2.77)

which gives rise to a function g(u, v) such that

g = u4 + v4 − 2u2 + 1. (2.78)

The Hessian matrix for g is,  12u2 − 4 0

0 12v

 (2.79)

and,

∆ = 12
(
12u2 − 4

)
v2 (2.80)

and clearly, in general

12
(
12u2 − 4

)
v2 6= 4 (2.81)

Conclusion

We have seen that Hessians are not coordinate invariant under non-linear transfor-

mations. And therefore we must adhere strictly to the one coordinate system in all

calculations for the Escape Rate.
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Chapter 3

Zero Eigenvalues in Langer’s

Method

3.1 Introduction

Langer’s method provides a powerful method for the calculation of the escape rate,

for amongst others, systems of magnetic particles. However, the correct application

of the method requires that the most appropriate coordinate system geometry be

chosen in which to analyse the statics and dynamics of the system under consider-

ation. Now, according to Langer [14],

“The evaluation (of the escape rate) is perfectly feasible; the only rea-

son that it has not been written out explicitly here is that the precise

integrations required are model dependent. In particular, some of the
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λ′s (eigenvalues) always will turn out to be zero because of symmetry

properties of the system, and the associated integrals must be handled

separately.”

In other words, the occurrence of zero eigenvalues depends on the geometry of the

model, which is chosen at the outset. The eigenvalues in question occur in the en-

ergy Hessian matrix which is part of the energy approximation of Equation (2.21).

Therefore, they will appear in the exponent of Equation (2.7). Perhaps we should

clear up the details of how one might handle these integrals involving zero eigenval-

ues. We assume the energy barrier is a high one, i.e. ∆E >> kBT . Researchers [87]

have estimated that models similar to that in [22] and therefore comparable to the

parallel field model given here, are valid when ∆E is of the order 40kBT .

3.2 The Zero Eigenvalue Problem

The problem arises when one or more of the eigenvalues of the Hessian of the energy

function approximation is zero. This can arise from two distinct cases.

1. The energy function is not a function of one of the variables, e.g. spherical

symmetry, cylindrical symmetry etc.

2. The Hessian determinant turns out to be zero at either the saddle point or the

metastable minimum.

These two cases require slightly different treatment.
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3.2.1 Two Cases of Vanishing Eigenvalues

Case 1

We examine the integration over the variable ηi say where E 6= E(ηi) in the evalua-

tion of q (the current of particles) and NA (the population in the well) in [125] where

E is the energy function. Usually, in the case of a variable where the corresponding

eigenvalue is non-zero, we have an integral of the type∫
exp

{
− |µi| η2

i

}
dηi µi 6= 0 (3.1)

and we can integrate over ηi from −∞ to +∞ if necessary i.e. depending on the

domain of the ηi. However if µi = 0 we have an integral of the type∫
dηi (3.2)

which is an entirely different type of integral. Nonetheless, this integral will appear

in the numerator and the denominator of Langer’s method and will cancel, subject

of course to a limiting process being carried out in the domain of ηi where necessary

or appropriate. The Escape Rate then, in the case of the energy not depending on

exactly k of the variables is

Γ =
λ+

2π

det
′
(

EA

2πkBT

)
∣∣∣det

′ Es

2πkBT

∣∣∣
1/2

exp {−β∆E} (3.3)

where ∆E is the barrier height and det
′

means omitting the k rows and columns

corresponding to the zero eigenvalues in taking the determinant of the Hessian ma-

trix.
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Case 2

Case 2 looks at he situation where the zero eigenvalue occurs at either the saddle

point or the metastable minimum. In this case we can only deal with the case where

the set of values of ηi is finite. We deal in this thesis with the case where the zero

eigenvalues occur at the saddle point, extension to the case where they occur at the

metastable minimum is obvious.

Consider the integration over ηi. In Langer’s method we get the term

∫
ηi

dηi

∫ +∞

−∞
exp {ikUi (ηi − ηsi )} dk =

∫
ηi

∫ +∞

−∞
exp {ikUi (ηi − ηsi )} dkdηi . (3.4)

Now we can pick Ui = 0 so the term {ikUi (ηi − ηsi )} contributes zero to the exponent

exp {ikUi (ηi − ηsi )} and can be ignored. So we have

∫
ηi

dηi . (3.5)

If the domain of ηi is finite we get a finite value for this integral which simply

contributes to the final pre-factor in the expression for the escape rate.

So we must modify the factor√√√√√ det
(

EA

2πkBT

)
∣∣∣det

(
Es

2πkBT

)∣∣∣ (3.6)

in Equation (2.39). If we have a non-zero eigenvalue say µ1 the multiplicative factor

in the exponent is

exp

{
− µ1

2kBT
η2

1

}
(3.7)
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which, when integrated we get
√

2πkT
µ1

. However if the eigenvalue µ1 is zero, as

before, we get an integral ∫
dη1 = ηf − ηi (3.8)

where ηf and ηi are the bounding values of the coordinate η1. (For example, the

azimuthal angle φ ranges from 0 to 2π, so the definite integral is
∫ 2π

0
dφ = 2π.)

If we have k zero eigenvalues from among 2N eigenvalues, we will have a factor√
(2πkT )2N−k

µn1µn2 . . . µn2N−k

(3.9)

where

µn1 , µn2 . . . µn2N−k (3.10)

are the absolute values of the nonzero eigenvalues. Now, we see that in a case where

we have k such zero eigenvalues, we will have a factor∫
dηl1

∫
dηl2 . . .

∫
dηlk (3.11)

in the integration. We refer to this as v, the volume of the k-dimensional subspace

corresponding to the variables ηl1 , . . . , ηli , . . . , ηlk where ηli is the ith such variable

corresponding to a zero eigenvalue of Es. So the factor in Equation (3.6) becomes,

v

2N−k∏
l=1

√
2πkBT

µnl
(3.12)

or

v

√
(2πkBT )2N−k∏2N−k

l=1 µnl
. (3.13)
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We will show later, in Chapter 4 that the variable corresponding to the zero eigen-

value of Es in the interacting particle case is p1+p2√
2

with subspace volume 2, where

p = cos θ and θ is the polar angle of the spherical polar coordinate system in Fig.

2.1. So, in the case of k zero eigenvalues at the saddle point we find the escape rate

is,

Γ =
λ+

2π
v

√
det

(
EA

2πkBT

)√
(2πkBT )2N−k∏2N−k

l=1 µnl
e−β∆E. (3.14)

3.3 Coordinate Systems in Langer’s Method

One very useful coordinate system in problems exhibiting spherical symmetry is that

of spherical polar coordinates (1, θ, φ) as in Fig.1.3 where,

x = sin θ cosφ

y = sin θ sinφ

z = cos θ.

(3.15)

This choice can lead to integrals of the type

∫ π

0

exp
{
−c1θ

2
}

sin θ dθ (3.16)

as in Equation (2.6). We now must make a suitable substitution such that the

above integral may be transformed into an integral of the type in Equation (3.1),

thus making it suitable for use in Langer’s method. One possible substitution is

p = cos θ (3.17)
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where p ∈ [−1, 1], since θ ∈ [0, π].

It is necessary to point out that Langer’s Theory requires that we include the con-

jugate momenta in the list of variables. In the case of spherical polar coordinates,

(p, φ) where p = cos θ, it can be shown [125] that p and φ can act as each others

conjugate momentum, as in Hamilton’s equations viz.,

φ̇ = γ
Ms

∂E
∂p
,

ṗ = − γ
Ms

∂E
∂φ

(3.18)

where, γ and Ms are constants. See Appendix A for the derivation of the equations

as they apply to the single domain ferromagnetic particles considered in this thesis.

Hence, while it is not necessary to use conjugate momenta for p and φ explicitly,

it is necessary to include both p and φ in the list of variables, even if one of them

is absent from the list of variables on which the energy depends, necessitating the

application of Case 1 in Subsection 3.2.1 above.

3.3.1 A Problem with Langer’s Method

This concerns the application of Langer’s theory to a single particle in a parallel

external magnetic field and the need for the substitution p = cos θ in the energy

function in spherical polar coordinates. Consider the energy function for a single

particle in a parallel external field,

E(θ) = −K(cos2 θ + 2h cos θ) (3.19)
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where the z-axis is the easy axis of magnetisation, K > 0 and h ∈ [0, 1). This is

similar to the function considered in (the often cited) [23][22].

To find the turning points, we let

dE

dθ
= 0 (3.20)

and find E(θ) has a metastable minimum at θ = π a stable minimum at θ = 0 and

a maximum at cos θ = −h. Now, substituting p = cos θ we have

E(p) = −K(p2 + 2hp). (3.21)

Now, Equation (3.21) has one turning point, a maximum at p = −h. In other

words, we have lost the roots of

dθ

dp
= 0 (3.22)

in

dE

dp
=
dE

dθ

dθ

dp
= 0. (3.23)

This means that the minima, which are solutions of the equation

dθ

dp
= sin θ = 0 (3.24)

are not in a form that can be used in Langer’s method, and so potentials of the type

in Equation (3.21) are not suitable or cannot be considered within Langer’s theory.

84



———————————————————————————–

Figure 3.1: The substitution p = cos θ in certain energy functions can result in a

concave downwards quadratic potential in ‘p’ space which has no well or metastable state

as defined in Langer’s theory.

——————————————————————————————

3.4 Example Illustrating Case 1: The Quartic Po-

tential

3.4.1 Introduction

A typical generalised quartic equation or fourth order polynomial will possess three

turning points. In this section we have constructed such a quartic in powers of p,
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p = cos θ, to have a maximum at p = −h, a metastable state at p = −1 and a stable

state at p = 1 (since h ∈ [0, 1)). This example is used here as a demonstration of

Case 1 above, when the total energy is a function of one variable only.

3.4.2 The Quartic Potential

Consider the potential energy function,

E(θ) = K

[
1

4
cos4 θ +

h

3
cos3 θ − 1

2
cos2 θ − h cos θ + ac

]
(3.25)

where 0 ≤ h < 1, K > 0, and ac is a constant, since only the derivatives of E(θ) are

important, without loss of generality we can take ac = 0.

Let p = cos θ,

E(p) = K

(
1

4
p4 +

h

3
p3 − 1

2
p2 − hp

)
. (3.26)

Now,

dE

dp
= K

(
p3 + hp2 − p− h

)
= K(p+ h)(p2 − 1). (3.27)

The turning points are the zeros of the RHS of Equation (3.27). The second deriva-

tive of E is,

d2E

dp2
= K

(
3p2 + 2hp− 1

)
. (3.28)

Now, the second derivative test shows,

d2E

dp2

∣∣∣∣
p=−h

= K
(
h2 − 1

)
= −K

(
1− h2

)
< 0 (3.29)

86



so, p = −h is a maximum with energy E(−h) = K
2
h2
(
1− 1

6
h2
)
. Similarly, p = −1 is

a metastable minimum with energy E(−1) = −K
(

1
4
− 2

3
h
)
, and p = 1 is a minimum

with energy E(1) = −K
(

1
4

+ 2
3
h
)
. The energy difference between the well and the

barrier is ∆E,

∆E =
K

12

(
3− 8h+ 6h2 − h4

)
. (3.30)

The Hessian at the barrier is Es,

Es =

 −K (1− h2) 0

0 0

 . (3.31)

Removing the zero eigenvalue (indicated by the prime), we have,

|det ′Es| = K
(
1− h2

)
. (3.32)

The energy approximation at the maximum p = −h is

E = Es ≈ K

2
h2(1− 1

6
h2)− K

2
(1− h2)p2. (3.33)

The Hessian at the metastable well is EA,

EA =

 K (1− h) 0

0 0

 (3.34)

Again, removing the zero eigenvalue, we have,

det ′EA = K (1− h) . (3.35)
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Using Equation (3.3) the escape rate is,

Γ =
λ+

2π


(
K(1−h)
2πkBT

)
(
K(1−h2)
2πkBT

)
1/2

exp {−β∆E} . (3.36)

The positive eigenvalue λ+ is obtained from the equations of motion, the Landau-

Lifshitz equations [c.f. Appendix A with E = Es, a=α, p = −h and φ = 0], which

are,

ṗ = −αK (1− h2)
2

(p+ h)

φ̇ = bK (1− h2) (p+ h)

(3.37)

which we write in matrix form to get, ṗ

φ̇

 =

 −αK (1− h2)
2

0

bK (1− h2) 0


 p+ h

φ

 . (3.38)

So, the transition matrix is, −αK (1− h2)
2

0

bK (1− h2) 0

 (3.39)

and its eigenvalues are λ− = 0 and λ+ = αK(1− h2)2. So the escape rate Γ is,

Γ =
αK(1− h2)2

2π

1√
1 + h

exp {−β∆E} (3.40)
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3.5 Example Illustrating Case 2: Single Particle

in a Parallel External Field

3.5.1 Introduction

In this section we consider the energy function for a single domain ferromagnet in a

parallel external field. The energy function is written as a function of two variables

E = E(p, φ). The choice of the x-axis as the easy axis of magnetisation avoids the

problem of lost roots encountered in Subsection 3.3.1 above. In this example, which

demonstrates Case 2 above, a zero eigenvalue appears in the Energy Hessian for the

saddle point over the ‘p’ variable.

3.5.2 Parallel External Field Energy Function

Consider the equation,

E (θ, φ) = −K
[
sin2 θ cos2 φ+ 2h sin θ cosφ

]
(3.41)

where we have chosen x = sin θ cosφ to be the easy axis of magnetisation. Let

p = cos θ and the equation for the potential energy becomes,

E (p, φ) = −K
[(

1− p2
)

cos2 φ+ 2h
√

1− p2 cosφ
]
. (3.42)

The partial derivatives of E are

∂E

∂p
= 2K

[
p cos2 φ+

hp√
1− p2

cosφ

]
(3.43)
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and

∂E

∂φ
= 2K

[
(1− p2) cosφ sinφ+ h

√
1− p2 sinφ

]
. (3.44)

3.5.3 Turning Points of E in the case of a Parallel Field

Again, the turning points of E occur when the partial derivatives are simultaneously

zero. So, when ∂E
∂p

= 0 we get,

φ =
π

2
,
3π

2
, p = 0,

√
1− p2 cosφ = −h (3.45)

where the solution
√

1− p2 cosφ = −h [i.e. x = −h] is a plane which intersects the

sphere in Fig. 2.1. The result of this intersection is a circle of equipotential, referred

to in [27] as a saddle circle. This circle does not present a (mathematical) problem

however, as we view the magnetic vector as a rigid rotor which remains in one plane

as it changes direction. We choose this plane to be p = 0, or cos θ = π/2 as in [30],

[i.e. the xy plane].

When ∂E
∂φ

= 0 we get

φ = 0, π, p = 0,
√

1− p2 cosφ = −h (3.46)

which leads to the turning points (p, φ)

{(0, 0), (0, π), (0, cosφ = −h)} . (3.47)

The nature of these points is determined using the second derivative test for a

function of two variables, see Ref. [197]. And we see that the motion from A to B
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via C as in Fig. 1.1 is

A = (0, π)→ C = (0, cosφ = −h)→ B = (0, 0) (3.48)

where (0, π) is a metastable minimum with energy −K(1− 2h), (0, cosφ = −h) is a

saddle point on the saddle circle with energy Kh2, and (0, 0) is a stable minimum

of energy −K(1 + 2h). The second order partial derivatives (below) become infinite

for stationary points involving p = ±1 and so are ruled out of the following analysis.

The second order partial derivatives of E are,

∂2E

∂p2
= 2K

[
cos2 φ+

h cosφ

(1− p2)3/2

]
(3.49)

∂2E

∂φ2
= 2K

[
(1− p2)(cos2 φ− sin2 φ) + h

√
1− p2 cosφ

]
(3.50)

∂2E

∂p∂φ
= −2K

[
2p cosφ sinφ+

hp√
1− p2

sinφ

]
(3.51)

The energy approximation at the metastable minimum is

Em ≈ E(0)
m +K(1− h)p2 +K(1− h)Φ2

m (3.52)

where Φm = φ − π, and E
(0)
m = −K(1 − 2h). The energy Hessian matrix at the

metastable state is,

EA =

 K(1− h) 0

0 K(1− h)

 (3.53)

and

det EA = K2(1− h)2 (3.54)
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Point ∂Epp ∂Eφφ Type Energy

(0, 0) 2K(1 + h) > 0 2K(1 + h) > 0 min −K(1 + 2h)

(0, π) 2K(1− h) > 0 2K(1− h) > 0 min −K(1− 2h)

(0, cosφ = −h) 0 −K(1− h2) < 0 saddle Kh2

Table 3.1: The table lists the relevant critical points of E for a parallel field. There are

two minima of equal energy separated by one saddle point. The points involving p = ±1

are not considered as they lead to infinities in the energy Hessian.

—————————————————————————————–

The energy approximation at the saddle point is

Es ≈ E(0)
s −K(1− h2)Φs (3.55)

where Φs = φ− φ̃, with cos φ̃ = −h, and E
(0)
s = Kh2. So, the Hessian matrix at the

saddle point is,

Es =

 −K(1− h2) 0

0 0

 (3.56)

and,

|det ′Es| = K(1− h2) (3.57)

where the prime indicates that the zero eigenvalue has been removed from the Hes-

sian. Also, in Equation (3.55), the coefficient over the ‘p’ coordinate is 0, yielding a

subspace volume v = 2, since ∫ 1

−1

dp = 2. (3.58)
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So, plugging the following values into Equation (3.14), (the equation for the escape

rate in the presence of k zero eigenvalues) with k = 1 and N = 1, the only non-zero

eigenvalue at the saddle point is

µnl = |det ′Es| = K(1− h2), (3.59)

the Hessian at the metastable minimum is

EA = K2 (1− h)2 , (3.60)

and the barrier height is

∆E = K (1− h)2 (3.61)

so, the escape rate for a parallel field is Γ||

Γ|| =
λ+

π

√
1− h
1 + h

√
βK

π
exp

{
−βK(1− h)2

}
(3.62)

where, λ+ is the positive eigenvalue of the Landau-Lifshitz equations. Again, to

calculate λ+, we linearise the Landau Lifshitz equations (A.21)(A.22) (cf. Appendix

A) by replacing E with Es so, using Equation (3.55)

∂E

∂φ
=
∂Es
∂φ

= −2K(1− h2)(φ− φ̃)2 (3.63)

and the equations of motion for p and φ are,

ṗ = −2K(1− h2)φ

φ̇ = 2αK(1− h2)φ

(3.64)
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where α > 0 is a damping parameter. We write the equations for ṗ and φ̇ in matrix

notation, so  ṗ

φ̇

 =

 0 −2K(1− h2)

0 2αK(1− h2)


 p

φ

 . (3.65)

The eigenvalues of the matrix in Equation (3.65) are λ = 2αK(1− h2) or λ = 0 so,

λ+ = 2αK(1− h2).

In terms of h and K, we find that the escape rate, Γ||, is

Γ|| =
αK

π
(1− h)3/2(1 + h)1/2

√
βK

π
exp

{
−βK(1− h)2

}
. (3.66)

Equation (3.66) is the result for the escape rate of a single noninteracting particle

in a parallel external field where a zero appears in the energy Hessian matrix at the

saddle point barrier.
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Chapter 4

Two Particle Interaction

4.1 Introduction

We consider a system which is composed of two single domain ferromagnetic par-

ticles, and modeled by two magnetic vectors. The total potential energy of the

particles consists of three terms [27][28], one involving the anisotropy K, one in-

volving external field H and one involving the exchange interaction J [174]. The

exchange interaction is isotropic but the external field is in the direction of the

x-axis, which we have chosen as the easy axis of magnetisation. So, the model is

similar to and may be thought of as a system of two single domain particles, as

it were, “glued” together in a parallel external field, as in Section 3.5. An extra

term in the energy function accounts for the so-called glue or interaction between

the two magnetic vectors. The particle is viewed as having two unit vectors ~m1 and
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~m2 where ~mi = Mi

M0
, i = 1, 2. Mi is the ith particle’s magnetic vector (and M0 is

its magnitude). Again, we assume as in [30] that the saddle point, the metastable

minimum and the stable minimum lie in the plane θ = π/2 or p = cos θ = 0.

Depending on the value of the exchange-interaction coefficient, j = J
2K

, j ∈

(0,∞), and the reduced field, h = HM0

2K
, h ∈ [0, 1), the particles reside in a metastable

state and cross a potential barrier to come to rest in a stable state. The particles

are ferromagnetic, so we assume ~m1 and ~m2 begin and end the rotation in the same

state or orientation and remain together (more or less throughout the rotation and)

as they traverse a saddle point barrier, this is referred to as coherent relaxation. Co-

herent relaxation occurs when j > 2, but may also be the process of relaxation when

j ∈ (1, 2]. When j ∈ (1, 2] there is another, alternative or preferred, (depending on

the energy height difference between the saddle point and the metastable minimum)

barrier to the coherent relaxation barrier mentioned above. We will discuss this in

greater detail later. If the exchange interaction is weak enough j ∈ (0, 1] the parti-

cles’ magnetic vectors can oppose each other and can fall into an antiferromagnetic

‘trap’ if a certain condition is met, that is if j < 1 − h2. Also, when j ∈ (0, 1] and

j > 1− h2 we find there is the possibility of another turning point or points which

are zeros of a fourth order polynomial.
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4.2 Two Interacting Magnetic Particles

As usual we begin our study with a potential energy function E = E (p, φ). Our

task is to find a full description of the energy profile (critical points or possible

energy states) for the two particles, then we identify which critical points are wells

and which are barriers. Then, based on this knowledge, we identify the possible

relaxation processes (paths) and apply Langer’s method. Since the model involves

two particles with four degrees of freedom (p1, p2, φ1, φ2), the energy Hessian will

be a 4 × 4 matrix. In general, this fact will make difficult the identification of the

nature of the turning points. The nature of the points can be indicated (if not

determined) by evaluating the energy function E at a particular critical point, say

A, we will label this particular value of E as E|A, and comparing this to the energy

at a point near the critical point in question to get the value of E, which we will

label as E|A+∆A, for each of the degrees of freedom.

In general, to determine the nature of a particular point, say the pointA(p1, p2, φ1, φ2)

we need to move away from A in one of the directions, p1, p2, φ1, φ2 at a time, keep-

ing all others constant. If all directions are decreasing, that is, if E|A+∆A − E|A

is negative everywhere, then the value of E|A+∆A is less than the value of E|A ev-

erywhere, so A is a maximum. But if E|A+∆A − E|A is somewhere positive and

somewhere negative near A, then A is a saddle point. If the value of E|A+∆A is

everywhere greater than E|A, then A is a minimum. This is a laborious task, but

we are fortunate, as it turns out, because the Hessian matrices at the turning points
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turn out to be sparse 4× 4 matrices.

Hessian Matrices in the Interaction Particle Problem

The Hessian matrix at a turning point (say A) can, whether diagonalised or not,

yield valuable information about the nature of turning point under consideration.

The Hessian matrices are sparse since the entries

∂2E

∂piφj

∣∣∣∣
A

= 0 i, j = 1, 2 (4.1)

and it turns out we can modify the usual second derivative test for a function of

two variables, as used in the single particle model, to take account of the increased

number of variables. The Hessian matrices encountered in this model are of the

form,

H =



e11 e12 0 0

e21 e22 0 0

0 0 e33 e34

0 0 e43 e44


. (4.2)

The determinant of a matrix in this form can be found by considering two separate

2× 2 matrices, where the product of the determinants of the smaller matrices equal

the determinant of the 4 × 4 matrix. This can be used to reduce the amount of

computations required to analyze a turning point of interest. To do this we form
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the matrices,

Hp =

 e11 e12

e21 e22

 ; Hφ =

 e33 e34

e43 e44

 . (4.3)

Now (cf. Appendix D),

det H = det Hp det Hφ (4.4)

where the entries elm l,m = 1, . . . , 4 in matrix Hp are the coefficients of the variables

pipj i, j = 1, 2, and those in the matrix Hφ are the coefficients of the φiφj i, j = 1, 2

in the Taylor series expansion of the energy function E (p1, p2, φ1, φ2) about the

turning point A.

eij =
∂2E

∂pi∂pj

∣∣∣∣
A

i, j = 1, 2 (4.5)

and,

elm =
∂2E

∂φi∂φj

∣∣∣∣
A

i, j = 1, 2. l,m = 3, 4. (4.6)

Now, if

det H < 0 (4.7)

then A is a saddle point, otherwise

det H ≥ 0 (4.8)

and we must look at the determinants of Hp and Hφ. Now, if

det Hp < 0 and/or det Hφ < 0 (4.9)
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then the point A is a saddle (the case where H = 0 has been discussed in Chapter

3). We remark that the result in Equation (4.9), altough is theoretically possible,

may contravene Langer’s idea that there should be one and only one escape direction

[13]. And, if

det Hp > 0 and det Hφ > 0 (4.10)

then A is either a maximum or a minimum and we must examine one diagonal entry

in each of Hp and Hφ. Now, say we look at the diagonal entries

e11 =
∂2E

∂2p1

∣∣∣∣
A

(4.11)

in Hp, and

e33 =
∂2E

∂2φ1

∣∣∣∣
A

(4.12)

in Hφ, then, if the condition in Equation (4.10) is satisfied and

e11 < 0 and e33 < 0 (4.13)

then A is a maximum, or if the condition in Equation (4.10) is satisfied and

e11 > 0 and e33 > 0 (4.14)

then A is a minimum. If any of the elm, l,m = 1, 2, 3, 4 are zero we would have a zero

eigenvalue in the Hessian and would have to deal with that situation separately as

in [13], and explained here in Chapter 3. Thus, we may perform a second derivative

100



test (or tests) on the matrices Hp and Hφ in a similar manner to the usual second

derivative test with the single particle model. The test, when performed on Hp

indicates the nature of the critical point in the pi i = 1, 2 directions, whereas when

performed on Hφ indicates the nature of the critical point in the φi i = 1, 2 directions.

Also, the eij are real and since the order of differentiation in the mixed derivatives

is not important, then H is a real square symmetric matrix, therefore we can find a

matrix S = Sij (which diagonalises H) such that,

StHS = S−1HS (4.15)

is a diagonal matrix whose diagonal elements are the eigenvalues of H, and

detSij = 1 (4.16)

since the columns of Sij are vectors which form an orthogonal basis for H. Equations

(4.15) and (4.16) are standard results in linear algebra [198][199].

In summary, the (simple) interacting particle system considered here gives rise

to 4× 4 Hessian matrices at the turning points. If the Hessian at a particular point

is positive we can draw no conclusion about the nature of that point. More analysis

is required. If we go ahead and diagonalise the 4 × 4 matrix H then, if all the

eigenvalues are strictly positive, the point is an absolute minimum. If there is a

mixture of positive and negative signs, say two positive and two negative signs in

the eigenvalues themselves, then H > 0, but we have a saddle point. Finally, if all

eigenvalues are strictly negative, the point is an absolute maximum.
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Owing to the symmetry in the energy function (the existence of zero eigenvalues)

and the fact that it is a function of the parameters j and h, there is no one definitive

method of determining whether a point is a maximum, a minimum or a saddle.

Indeed the nature of a point may change for certain values of the parameters. So to

determine the reversal method (or escape path) followed by the particle, we must

find all the turning points for all values of j and h. Also, the analysis can be

made lengthy by the existence of equal eigenvalues or eigenvalues which are surd

conjugates of each other, as we find with the interaction energy function considered

here.

4.2.1 The Energy Function E for a System of Interacting

Ferromagnetic Particles

We write the energy function for the interaction between two ferromagnetic particles

as in [27].

E = −j
2

(x1x2 + y1y2 + z1z2)− 1

2

(
x2

1 + x2
2

)
− h (x1 + x2) (4.17)

where the term − j
2

(x1x2 + y1y2 + z1z2) is the part of the total potential energy due

to the interaction between the particles 1 and 2. Interaction is isotropic, that is,

it acts equally in all directions. J is the magnitude of the interaction, j = J
2K

and

j > 0. As before h = HM0

2K
and 0 ≤ h < 1 is the ‘reduced’ field, H is the magnitude

of the external field, M0 is the magnitude of the magnetic vector and K > 0 is the
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magnitude of the anisotropy. We chose the coordinate system as Equation (3.15),

that is, spherical polar coordinates, (1, θ, φ)

x = sin θ cosφ

y = sin θ sinφ

z = cos θ.

(4.18)

So, rewriting the equation for E in this system we have,

E = −j
2

[sin θ1 sin θ2 cos (φ1 − φ2) + cos θ1 cos θ2]

− 1

2

[
sin2 θ1 cos2 φ1 + sin2 θ2 cos2 φ2

]
− h [sin θ1 cosφ1 + sin θ2 cosφ2] .(4.19)

Now, in order to apply Langer’s method we again make the substitution p = cos θ,

so the equation becomes,

E = − j
2

[√
1− p2

1

√
1− p2

2 cos (φ1 − φ2) + p1p2

]
− 1

2
[(1− p2

1) cos2 φ1 + (1− p2
2) cos2 φ2]

− h
[√

1− p2
1 cosφ1 +

√
1− p2

2 cosφ2

]
.

(4.20)

4.2.2 Partial Derivatives of E

∂E

∂p1

= −j
2

[
p2 −

p1

√
1− p2

2√
1− p2

1

cos (φ1 − φ2)

]
+ p1 cos2 φ1 + h

p1√
1− p2

1

cosφ1 (4.21)

∂E

∂p2

= −j
2

[
p1 −

p2

√
1− p2

1√
1− p2

2

cos (φ1 − φ2)

]
+ p2 cos2 φ2 + h

p2√
1− p2

2

cosφ2 (4.22)

∂E

∂φ1

=
j

2

√
1− p2

1

√
1− p2

2 sin (φ1 − φ2) +
(
1− p2

1

)
cosφ1 sinφ1 +

+h
√

1− p2
1 sinφ1 (4.23)
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∂E

∂φ2

= −j
2

√
1− p2

1

√
1− p2

2 sin (φ1 − φ2) +
(
1− p2

2

)
cosφ2 sinφ2 +

+h
√

1− p2
2 sinφ2 (4.24)

4.3 Analysis of the Energy Function E

4.3.1 Energy Profile 1: The turning points of E

Again, we assume (following [30]) the rotating particles will remain in one plane

throughout the rotation. By inspection, we see that the plane

p1 = p2 = 0 (4.25)

forces

∂E

∂p1

= 0 (4.26)

and

∂E

∂p2

= 0. (4.27)

We then have the two equations,

∂E

∂φ1

=
j

2
sin (φ1 − φ2) + cosφ1 sinφ1 + h sinφ1 (4.28)

∂E

∂φ2

= −j
2

sin (φ1 − φ2) + cosφ2 sinφ2 + h sinφ2. (4.29)

Now, setting

∂E

∂φ1

= 0, (4.30)
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with p1 = p2 = 0 yields,

sin (φ2 − φ1) =

[
2

j
sinφ1 (cosφ1 + h)

]
(4.31)

or,

φ2 = φ1 + sin−1

[
2

j
sinφ1 (cosφ1 + h)

]
. (4.32)

And setting,

∂E

∂φ2

= 0, (4.33)

with p1 = p2 = 0 yields,

sin (φ1 − φ2) =

[
2

j
sinφ2 (cosφ2 + h)

]
(4.34)

or,

φ1 = φ2 + sin−1

[
2

j
sinφ2 (cosφ2 + h)

]
. (4.35)

Equations (4.32) and (4.35) show that the solutions we seek (for φ1 and φ2) depend

on each other. That is, we can solve for one, only if we know the other and vice

versa. This interdependence doesn’t seem very helpful in finding useful zeros to the

partial differentials of E (i.e. Equations (4.23) and (4.24)). However, consider the

following analysis:

the RHS of Equations (4.31) and (4.34) lie in the interval [-1, 1], since that is the

range of the sine function. Also we have

φi ∈ [0, 2π] i = 1, 2. (4.36)
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So, if

(φ1 − φ2) ∈ [0, π] (4.37)

then

sin(φ1 − φ2) ∈ [0, 1], (4.38)

and if

(φ1 − φ2) ∈ [π, 2π] (4.39)

then

sin(φ1 − φ2) ∈ [−1, 0]. (4.40)

In order to find (useful) solutions to Equations (4.31) and (4.34) we will fix the

difference between the azimuthal angles φ1 and φ2. Let

φ1 − φ2 = C. (4.41)

Now, when the difference is zero, C = 0 and hence sin C = 0, so Equations (4.31)

and (4.34) reduce to,

2

j
sinφi(cosφi + h) = 0 i = 1, 2. (4.42)

So,

φi = 0 or π or cos−1(−h) i = 1, 2. (4.43)
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So, we have the following solutions (p1, p2, φ1, φ2) to the partial differential equations;

(0, 0, 0, 0) , (0, 0, π, π) , (0, 0, π, 0) , (0, 0, 0, π) ,
(
0, 0, cos−1 (−h) , cos−1 (−h)

)
.(4.44)

If the difference is non-zero, we have φ1 − φ2 = C, (but C 6= 0). Now, let sin C = c

so, c ∈ [−1, 0) or c ∈ (0, 1],

c = 2
j

sinφ2 (cosφ2 + h)

−c = 2
j

sinφ1 (cosφ1 + h) .

(4.45)

Squaring both sides of the above two equations yields two (equivalent) quartic equa-

tions in powers of q1 = cosφ1 and q2 = cosφ2,

(jc)2

4
=
(
1− q2

1

)
(q1 + h)2 (4.46)

and

(jc)2

4
=
(
1− q2

2

)
(q2 + h)2 (4.47)

or

q4
i + 2hq3

i − (1− h2)q2
i − 2hqi − h2 +

(jc)2

4
= 0 (4.48)

where qi = cosφi i = 1, 2. The quartic equation, Equation (4.48), can be solved for

various values of c ∈ [−1, 1]. This is not dealt with in this thesis, but the reader is

referred to [27] and [28] for a discussion on how this case is implicated in a multi-step

process for the rotation of the particle when the exchange interaction is less than a

critical value, that is when j < 1− h2 and,

c = ±

√
j − (1− h2)

j − 1
. (4.49)
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We will restrict ourselves to dealing with the following turning points of E, (p1, p2, φ1, φ2)

in (4.44), again they are

(0, 0, 0, 0), (0, 0, π, π), (0, 0, π, 0), (0, 0, 0, π), (0, 0, φ̃1, φ̃2) (4.50)

where, φ̃i = cos−1(−h), i = 1, 2.

4.3.2 The Second Order Partial Derivatives of E

The second derivatives of E are,

∂2E

∂p2
1

=
j

2
cos (φ1 − φ2)

√
1− p2

2

(1− p2
1)3

+ cos2 φ1 + h
cosφ1√
(1− p2

1)3
(4.51)

∂2E

∂p2
2

=
j

2
cos (φ1 − φ2)

√
1− p2

1

(1− p2
2)3

+ cos2 φ2 + h
cosφ2√
(1− p2

2)3
(4.52)

∂2E

∂φ2
1

=
j

2

√
(1− p2

1)(1− p2
2) cos(φ1 − φ2) + (4.53)

+(1− p2
1)(cos2 φ1 − sin2 φ1) + h

√
1− p2

1 cosφ1

∂2E

∂φ2
2

=
j

2

√
(1− p2

1)(1− p2
2) cos(φ1 − φ2) + (4.54)

+(1− p2
2)(cos2 φ2 − sin2 φ2) + h

√
1− p2

2 cosφ2

∂2E

∂p1∂p2

= −j
2

[
1 +

p1p2√
(1− p2

1)(1− p2
2)

cos(φ1 − φ2)

]
(4.55)

∂2E

∂φ1∂φ2

= −j
2

√
(1− p2

1)(1− p2
2) cos(φ1 − φ2) (4.56)
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∂2E

∂p1∂φ1

= −j
2
p1 sin(φ1 − φ2)

√
1− p2

2

1− p2
1

− 2p1 cosφ1 sinφ1 − h sinφ1
p1√

1− p2
1

(4.57)

∂2E

∂p1∂φ2

=
j

2
p1

√
1− p2

2

1− p2
1

sin(φ1 − φ2) (4.58)

∂2E

∂p2∂φ1

= −j
2
p2

√
1− p2

1

1− p2
2

sin(φ1 − φ2) (4.59)

∂2E

∂p2∂φ2

= −j
2
p2 sin(φ1 − φ2)

√
1− p2

1

1− p2
2

− 2p2 cosφ2 sinφ2 − h sinφ2
p2√

1− p2
2

(4.60)

Note: since p1 = p2 = 0, the right hand sides of Equations (4.57) to (4.60) are

exactly 0.

4.3.3 Energy Profile 2: Analysis of the Turning Points of E

In order to determine the true identity of the turning points of E, and thus describe

the so-called “energy landscape” of E we must examine each of the points by the

process described above. Such an analysis shows that the eigenvalues of the energy

Hessian at the point (0, 0, 0, 0) are strictly positive everywhere for all values of the

parameters j and h. The energy at (0, 0, 0, 0) is E(0) = − j
2
− 1− 2h and the Hessian

matrix is, 

j
2

+ 1 + h − j
2

0 0

− j
2

j
2

+ 1 + h 0 0

0 0 j
2

+ 1 + h − j
2

0 0 − j
2

j
2

+ 1 + h


(4.61)
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with eigenvalues,

{j + 1 + h, 1 + h, j + 1 + h, 1 + h} (4.62)

which are all strictly positive. So, (0, 0, 0, 0) is a minimum, and as we will see next

it is a stable state of the system.

The energy at (0, 0, π, π) is E(0) = − j
2
− 1 + 2h and the Hessian matrix is,

j + 1− h 0 0 0

0 1− h 0 0

0 0 j + 1− h 0

0 0 0 1− h


(4.63)

with eigenvalues,

{j + 1− h, 1− h, j + 1− h, 1− h} . (4.64)

These are also always positive for all values of the parameters j and h, so (0, 0, π, π)

is a minimum, but the point is at a higher energy than (0, 0, 0, 0) so it is a metastable

state of the system.

Now, we turn our attention to the possible saddle points and first examine the

point (0, 0, cosφ1 = −h, cosφ2 = −h), which has energy

E = −j
2

+ h2 (4.65)
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and a Hessian matrix,

− j
2

j
2

0 0

j
2
− j

2
0 0

0 0 j
2

+ 1− h2 − j
2

0 0 − j
2

j
2

+ 1− h2


(4.66)

with eigenvalues,

{
0, j, j − (1− h2),−(1− h2)

}
. (4.67)

So, the point (0, 0, cosφ1 = −h, cosφ2 = −h) has at least one negative direction for

all values of j and h, and at least one positive direction, therefore it is a saddle

point. This point can assume a second negative eigenvalue j − (1 − h2) when j <

(1− h2) (i.e. j ∈ (0, 1] but, of course, this bound on j is not absolute assurance of

a negative eigenvalue j − (1− h2)). Lastly, this eigenvalue is strictly positive when

j > (1− h2). We see later that the eigenvalue j − (1− h2) is always positive when

the barrier (0, 0, cosφ1 = −h, cosφ2 = −h) is active. Also, we note that Langer says

there should be one and only one negative eigenvalue at the saddle so that the

process can be described as a ‘nucleating’ one [13]. Next, we can examine either of

the points (0, 0, π, 0) or (0, 0, 0, π) as their Hessian matrices have a common structure

and the same eigenvalues. Both these points have energy

E =
j

2
− 1. (4.68)
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The Hessian matrices are,

H(π,0) =



− j
2
− h+ 1 − j

2
0 0

− j
2

− j
2

+ h+ 1 0 0

0 0 − j
2
− h+ 1 j

2

0 0 j
2

− j
2

+ h+ 1


(4.69)

and,

H(0,π) =



− j
2

+ h+ 1 − j
2

0 0

− j
2

− j
2
− h+ 1 0 0

0 0 − j
2

+ h+ 1 j
2

0 0 j
2

− j
2
− h+ 1


(4.70)

where H0,π is the Hessian at (0, 0, π, 0) and Hπ,0 is that at (0, 0, 0, π).

Now, examining the matrix H(0,π) we can consider the two, 2× 2 matrices,

Hp =

 − j
2

+ h+ 1 − j
2

− j
2

− j
2
− h+ 1

 ,Hφ =

 − j
2

+ h+ 1 j
2

j
2

− j
2
− h+ 1

 (4.71)

both of which have identical eigenvalues, thus further reducing the analysis, which

are, {
−j + 2 +

√
4h2 + j2

2
,
−j + 2−

√
4h2 + j2

2

}
, (4.72)

where the eigenvalue
−j+2+

√
4h2+j2

2
occurs twice and the eigenvalue

−j+2−
√

4h2+j2

2

occurs twice in each of Equations (4.70) and (4.69) making in all four eigenvalues in
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either of two states (0, 0, π, 0) or (0, 0, 0, π). Also,

det Hp = det Hφ = −j +
(
1− h2

)
. (4.73)

Now, we seek bounds on j which determine the nature of all possible saddle points

and when they may be involved in any resulting switching process. First, we remark

that the points (0, 0, π, 0) or (0, 0, 0, π) will be involved in an escape rate calculation

when the energy barrier they present is equal to or lower than the energy barrier

of the point (0, 0, cosφ1 = −h, cosφ2 = −h) only (see Equations (4.65) and (4.68)),

that is iff,

j

2
− 1 ≤ −j

2
+ h2 (4.74)

or

j ≤ 1 + h2 (4.75)

which is possible as long as

1 ≤ j < 2 (4.76)

since, in our set-up,

0 ≤ h < 1

j > 0.

(4.77)

So, the barrier (0, 0, cosφ1 = −h, cosφ2 = −h) will be the only barrier coming

into play when j > 1+h2. The eigenvalues of H(0,π) and of H(π,0) are simultaneously
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positive when,

j < 1− h2 and
∣∣∣√4h2 + j2

∣∣∣ < 2− j, (4.78)

The points (0, 0, π, 0), (0, 0, 0, π) are minima when, 0 < j < 1, which is the region

where j < 1− h2. They are simultaneously negative when,

j < 1− h2 and
∣∣∣√4h2 + j2

∣∣∣ < j − 2, (4.79)

but the inequalities in (4.79) are (obviously) incompatible in the region 0 < j < 1,

so we can conclude that the points never represent a maximum. See Appendix E for

further confirmation of these results. The results for all turning points (p1, p2, φ1, φ2)

are summarized in the below table (cf. Table 4.1). The eigenvalues can be of

alternate sign and therefore the points represent a saddle point when

j > 1− h2, (4.80)

which is possible when 0 < j ≤ 1 and strictly true when j > 1. Also, we remark

that the nature of these points is indeterminate when,

j = 1− h2. (4.81)

4.4 Conclusion: Particle Rotation

The above analysis indicates at least two possible ways in which the particle or

magnetic moment can reverse its magnetisation from its starting point (0, 0, π, π) to
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—————————————————————————–

Point Type j Bound Energy

(0, 0, 0, 0) min j > 0 − j
2
− 1− 2h

(0, 0, π, π) min j > 0 − j
2
− 1 + 2h

min/sad 0 < j < 1

min if j < 1− h2 E = j
2
− 1 but

(0, 0, π, 0) sad if j > 1− h2 used iff

saddle 1 < j <∞ j < 1 + h2

indet j = 1− h2

min/sad Same as

(0, 0, 0, π) saddle the point j
2
− 1

indet (0, 0, π, 0)

(0, 0, φ̃, φ̃) saddle j > 0 − j
2

+ h2

Table 4.1: The different turning points of E

———————————————————————————-

the position (0, 0, 0, 0) depending on the values of j and h. The first, which we shall

refer to as ferromagnetic ordering, is

A = (0, 0, π, π)→ C = (0, 0, cosφ1 = −h, cosφ2 = −h)→ B = (0, 0, 0, 0) (4.82)

where we have labeled the points to comply with Fig. 1.1. This rotation mechanism

or path is followed strictly when j > 2 but is also possible when 1 ≤ j < 2 and

j ≥ 1+h2. The second rotation mechanism, referred to as antiferromagnetic ordering
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is,

A = (0, 0, π, π)→ C1 = (0, 0, 0, π)→ B = (0, 0, 0, 0)

or

A = (0, 0, π, π)→ C2 = (0, 0, π, 0)→ B = (0, 0, 0, 0)

(4.83)

which is the preferred path when (1 − h2) < j < (1 + h2), (so 0 < j < 2), that

is, when C1 and C2 are saddle points and the energy barrier is lower than that of

C. We note that when C1 and C2 are saddle points they each have two equal and

negative eigenvalues which is not as Langer proposed but can be catered for in the

theory and we have modified the calculation of q, the flux of particles (j in [125]),

to allow for saddle points with more than one negative direction (cf. Appendix B).

Also, when j = 2 the particle will (have the choice to) cross one of two barriers C

or C1 = C2, but when 0 < j < 1 and j < 1− h2, C1 and C2 are minima, and the

particle can get ‘stuck’ in one of two potential wells, which are metastable states.

This may be caused by weak interaction and/or a weak field. The metastable states

C1 and C2 may form part of the two-step relaxation process, which also involves a

saddle point (or points) which is a solution (or which are solutions) to the quartic

equation, Equation (4.48). For a discussion of the two step relaxation process see

references [27, 28].
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4.5 Energy Approximations

4.5.1 Ferromagnetic Ordering

At the saddle point (0, 0, cosφ1 = −h, cosφ2 = −h), the Taylor series approximation

of the energy E = Es is,

Es ≈ E(0)
s +

1

2

[
j

2
p2

1 + 2

(
−j
2

)
p1p2 +

j

2
p2

2 +

(
j

2
+ h2 − 1

)(
φ1 − φ̃

)2

+ (4.84)

2

(
−j
2

)(
φ1 − φ̃

)(
φ2 − φ̃

)
+

(
j

2
+ h2 − 1

)(
φ2 − φ̃

)2
]

where E
(0)
s = E(0, 0, cosφ1 = −h, cosφ2 = −h) = − j

2
+ h2, φ̃ = cos−1(−h).

Now we follow the notation of Equation (2.29) and write,

E ≈ E(0)
s +

1

2

(
p1, p2,Φ1,Φ2

)


− j
2

j
2 0 0

j
2 − j

2 0 0

0 0 j
2 + 1− h2 − j

2

0 0 − j
2

j
2 + 1− h2





p1

p2

Φ1

Φ2


(4.85)

where Φi = φi− φ̃, i = 1, 2. After some algebraic manipulation, (see Appendix F),

we have the diagonalised Hessian form we seek, which is,

E ≈ E(0)
s +

(
η1, η2, η3, η4

)


0 0 0 0

0 j 0 0

0 0 j − (1− h2) 0

0 0 0 −(1− h2)





η1

η2

η3

η4


(4.86)

where the ηi are the transformation coordinates which diagonalise the Hessian (e.g.

η1 = p1+p2√
2

cf Appendix F). The eigenvalues of the energy Hessian, denoted by the
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µ’s in Chapter 3, are the coefficients of the η variables in the expansion of the energy

near the saddle point. Note that the coefficient of the variable η1 is 0, η1 ∈ [−1, 1],

so this will contribute a factor v = 2 in the numerator of the escape rate formula,

since

∫ 1

−1

dη1 = 2 (4.87)

is the volume of the one dimensional η1 space. The eigenvalues of the energy Hessian

at the saddle point are,

{
0, j, j − (1− h2),−(1− h2)

}
. (4.88)

At the metastable minimum, (0, 0, π, π) the energy approximation is,

Em ≈ E(0)
m +

1

2

[(
j

2
+ 1− h

)
p2

1 + 2

(
−j
2

)
p1p2 +

(
j

2
+ 1− h

)
p2

2+(4.89)(
j

2
+ 1− h

)
(φ1 − π)2 + 2

(
−j
2

)
(φ1 − π)(φ2 − π) +

(
j

2
+ 1− h

)
(φ2 − π)2

]

which, after a similar procedure as in the case of the saddle point we have,

E ≈ E(0)
m +

1

2

[
(j + 1− h)

(
p1 − p2√

2

)2

+ (1− h)

(
p1 + p2√

2

)2

(4.90)

+ (j + 1− h)

(
Φ1 − Φ2√

2

)2

+ (1− h)

(
Φ1 + Φ2√

2

)2
]
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where, Φi = φi − π, i = 1, 2 and the equations (F.5) hold for the transformation to

η space. And the diagonalised form of the energy Hessian matrix is

E ≈ E(0)
m +

(
η1, η2, η3, η4

)


j + 1− h 0 0 0

0 1− h 0 0

0 0 j + 1− h 0

0 0 0 1− h





η1

η2

η3

η4


(4.91)

So, the metastable state eigenvalues are,

{j + 1− h, 1− h, j + 1− h, 1− h} . (4.92)

In both approximations, the Jacobean [125] for the transformation to η space has

determinant 1.

4.5.2 Antiferromagnetic Ordering

The same metastable and stable states apply to this type of rotation as apply to

the ferromagnetic case. We have seen that the Hessian matrices for the points

(0, 0, π, 0), (0, 0, 0, π) are, for our purposes, very similar, so we confine ourselves to

calculating the energy approximation involving H(π,0), thus,

E ≈ E
(0)
AF +

1

2

(
p1, p2,Φ1,Φ2

) − j
2 − h + 1 − j

2 0 0

− j
2 − j

2 + h + 1 0 0

0 0 − j
2 − h + 1 j

2

0 0 j
2 − j

2 + h + 1


 p1

p2

Φ1

Φ2

(4.93)

where E
(0)
AF = j

2
− 1 [see Equation (4.68)] is the energy at the two points (0, 0, 0, π)

and (0, 0, π, 0). The algebraic details of the diagonalisation of this matrix are not
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as simple as for the metastable state of the saddle point above, however the matrix

which diagonalises H(π,0) is given in Appendix G.

4.6 Calculation of the Escape Rates

4.6.1 Ferromagnetic Escape Rate

Using the modified Langer formula derived in Chapter 3, i.e. Equation (3.14), we

have v = 2 and,

det EA = (1− h)2(j + 1− h)2 (4.94)

and

|det ′Es| = j
(
1− h2

) [
j −

(
1− h2

)]
(4.95)

so the escape rate for a two-particle system with interaction and ferromagnetic

ordering, ΓF is,

ΓF =
λ+

F

2π

2√
2πkBT

(1− h)(j + 1− h)√
j (1− h2) (j − (1− h2))

exp

{
−(1− h)2

kBT

}
(4.96)

where λ+
F

= α(1 − h2) is the positive eigenvalue of the Landau-Lifshitz equations

with α = a > 0 and b = 1 (see Appendix A). So,

Γ
F

= A
F

exp

{
−(1− h)2

kBT

}
(4.97)

where,

A
F

=
α

π

1√
2πkBT

(1− h)(j + 1− h)√
j( j

(1−h2)
− 1)

. (4.98)
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Now, there are a number of things to note about this result;

• In the limit j →∞ we regain the escape rate for a single particle in a parallel

external field, Equation (3.66).

• j 6= 0.

• This formula is valid when j > 1 + h2.

• It may also play a part in the calculation of the escape rate when j = 1 + h2.

• The eigenvalue j − (1− h2) is never negative or zero when this escape rate is

effective.

4.6.2 Antiferromagnetic Escape Rate

In this case, there are no identically zero eigenvalues, so we can use Langer’s formula

with nonzero eigenvalues, Equation (2.39) and we have

det EA = (1− h)2(j + 1− h)2 (4.99)

and

|det Es| =
[
j −

(
1− h2

)]2
(4.100)

so the escape rate, ΓAF is,

ΓAF = A
AF

exp

{
−j − 2h

kBT

}
(4.101)
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where,

A
AF

=
Re {λ+AF }

2π

(
(1− h)(j + 1− h)

j − (1− h2)

)
. (4.102)

Note that,

1. this formula is valid when 1−h2 < j < 1 +h2, so the denominator j− (1−h2)

is always positive and non-zero.

2. Re {λ+AF } is the real part of the largest positive eigenvalue of the Landau-

Lifshitz equations with E = EAF .

It turns out that the eigenvalues of the Landau-Lifshitz equations for this case

are complex numbers and are not given here as they are long expressions in the

parameters a, b, j, h (cf. Appendix A). However, the relevant 4×4 matrix is given in

Appendix H from which the eigenvalues are easily calculated on a desktop computer

with a computation software package such as DERIVETM, either symbolically or

numerically to the required precision. Also, this escape rate applies to both of the

points (0, 0, π, 0) and (0, 0, 0, π).

4.6.3 Escape Rate when j = 1 + h2

When j = 1 + h2 the barrier heights for the ferromagnetic case and the antiferro-

magnetic case are equal. So, the total escape rate will be

Γ = Γ
Tot

(4.103)
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where

Γ
Tot

= ΓF + 2ΓAF (4.104)

= (A
F

+ 2A
AF

) exp

{
−(1− h)2

kBT

}
(4.105)

=

(
α
√

1− h4

(1 + h2)
√
πkBT

+
Re {λ+AF }

2πh

)
(1− h)(2− h+ h2)

2h
exp

{
−(1− h)2

kBT

}
(4.106)

This escape rate applies when j = 1 +h2 and involves the three barriers, (0, 0, 0, π),

(0, 0, π, 0) and (0, 0, cosφ1 = −h, cosφ2 = −h).
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Figure 4.1: The rotation processes for different values of the exchange interaction

coefficient. A, B and C represent the metastable, stable and saddle points respectively.

The top diagram relates to the scenario when j > 1 + h2. The particles rotate together,

referred to as coherent relaxation. This happens when the exchange interaction is relatively

strong (j > 2) and the two particles behave as one. The bottom diagram applies when

j < 1 + h2, the particles rotate one after the other, referred to as incoherent relaxation,

due to weak exchange interaction j < 2. Below the threshold j = 1, the point C can form

a metastable well where the particles may become trapped.

—————————————————————————————–
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Chapter 5

Conclusion

We have seen that in the application of Langer’s theory to the model of a single do-

main ferromagnetic particle, the chosen coordinate system necessitates certain sub-

stitutions in the energy function. The use of spherical polar coordinates of Equation

(2.1) leads to the substitution p = cos θ in the single particle problem and pi = cos θi,

i = 1, 2 in the interacting particle problem. This type of substitution is nonlinear

and therefore all subsequent calculations carried out on the energy function in the

context of Langer’s theory must be consistent with this substitution. Any other

choice can lead to integrals of the type in Equation (3.16). In fact, without the sub-

stitution p = cos θ in spherical polar coordinates we cannot apply Langer’s method.

All that is required, after making the substitution is that the energy profile consist

of a metastable well, a stable well and a sufficiently high barrier, or barriers. The

barriers should be sufficiently high to ensure a Maxwell-Boltzmann distribution is
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maintained in the well and the internal dynamics of the system are the dominant

dynamical feature. We have seen that the energy Hessian in the Taylor series expan-

sion of the energy function about the critical points is not covariant under nonlinear

transformation. So, for example, in the interacting particle problem, if we had cho-

sen the z-axis as the easy axis (as in [23] for the single particle), we would have

had

E = −j
2

[cos θ1 cos θ2 + sin θ1 sin θ2 cosϕ]− 1

2

(
cos2 θ1 + cos2 θ2

)
− h (cos θ1 + cos θ2)(5.1)

where ϕ = φ1 − φ2, which in Langer’s theory becomes,

E = −j
2

[
p1p2 +

√
1− p2

1

√
1− p2

2 cosϕ

]
− 1

2

(
p2

1 + p2
2

)
− h (p1 + p2) . (5.2)

which presents some difficulties in implementing the theory, such as the loss of certain

turning points. Also, as in [27, 28], the energy function is reduced to three variables

(p1, p2, ϕ) and thus the number of (zero or non-zero) eigenvalues for the energy

Hessians is 3 instead of 4. But these as just some of the problems associated with

implementing Langer’s theory. The biggest problem is that, as the system becomes

more complicated, the process of finding the turning points becomes more difficult.

The result is that, we can express the turning points, which are the roots of the

partial differential equations for the energy function, as functions of the coordinates

only. We then make certain assumptions and use mathematical devices to reduce

the number of variables in the equations for the turning points.

In the interacting particle problem we assume the particle is a rigid rotor, as
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in [30], which allows us to assume that the particle remains in one plane (p1 =

p2 = 0) throughout the rotation. Then, all the turning points (in this plane) are

solutions of a fourth order polynomial, which can be solved only if we fix the angle

(φ1 − φ2) between the rotors. We have found solutions for the turning points when

the difference (φ1 − φ2) is zero or π, and we have been able to draw some (qualified

but plausible) conclusions about the relaxation process for two interacting particles.

These conclusions are based, partly on our experience of the calculations for the

single particle cases and partly on the assumptions we made during the calculations.

But the picture is still incomplete. We need to build up a better picture of the

turning points by studying the quartic equation in Equation (4.48).

5.1 Further Study

5.1.1 Equation (4.48)

Our calculations for the interacting particle do not apply to all values of the inter-

action coefficient j. When j < 1 − h2 the energy profile or ‘landscape’ acquires a

pair of metastable minima (0, 0, 0, π) and (0, 0, π, 0) (which are saddle points when

j > 1−h2). So, the following question arises. What, if any, barrier does the particle

need to overcome when it is in the state (0, 0, 0, π) or (0, 0, π, 0) and j < (1 − h2)?

Such a barrier would be solutions to the quartic equation, Equation (4.48),

q4
i + 2hq3

i − (1− h2)q2
i − 2hqi − h2 +

(jc)2

4
= 0 (5.3)
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where qi = cosφi i = 1, 2, c = sin C and C = φ1−φ2. We know that this quartic is the

key to describing the energy landscape in the plane p1 = p2 = 0. Maybe the quartic

equation could be solved in general for specific values of c = sin(φ1 − φ2), but the

results are likely to be almost incomprehensible. Perhaps a profile of turning points

could be ‘built up’ by solving the equation for certain values of c = sin(φ1−φ2) and

the coefficients j and h, chosen such that j < 1−h2, j > 1−h2 and j = 1−h2. This

seems to be the most obvious choice and method of investigation as the task could

easily be set-out in an incremental format (increments of c in the interval [−1, 1]).

The results could be then tested as to their nature, in a similar (algorithmic) method

to that used in Chapter 4 (since the Hessian is sparse in the plane p1 = p2 = 0).

This study could be the subject of further investigation and could yield yet more

information, and indeed a completely new theory, about the reversal path of a single

domain ferromagnetic particle for all values of j. Also we have not considered points

outside the plane p1 = p2 = 0.
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[128] A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic

Micro Structures, Springer Verlag, Berlin , 1998.

[129] K. Kawasaki, Growth Rate of Critical Nuclei Near the Critical Point of a Fluid,

J. Stat. Phys. 12, 365, (1975).

[130] L. J. Geoghegan, W. T. Coffey and B. Mulligan, Differential Recurrence Rela-

tions for non-axially symmetric Fokker-Planck Equations Adv. Chem. Phys.

100475 (1997)

[131] W.T.Coffey, On the contribution of multiplicative noise terms to the Langevin

equation for rotational relaxation, J. Chem. Phys. 99, No.4, (1993).

[132] L. Isserlis, On a Formula for the Product-Moment Coefficient of any order of

a Normal Frequency, Biometrika 12, 134, (1918).

[133] M. C. Wang and G.E. Uhlenbeck, On the Theory of the Brownian Motion II

, Rev. Mod Phys. 17, 323, (1945).

[134] G. E. Uhlenbeck and L. S. Ornstein, On the Theory of Brownian Motion,

Phys. Rev. 36 (1930): 82341. This paper also appears in [99].

[135] P. Hänggi, P. Talkner, M. Borkovec, Reaction Rate Theory: Fifty Years After

Kramers, Rev. Mod. Phys., 62, No. 2, (April 1990).

[136] E. Pollak and P. Talkner, Reaction rate theory: What it was, where is it today,

and where is it going? Chaos 15, 026116, (2005).

[137] J. S. Langer, Theory of Condensation Rates, Ann. Phys. (N.Y.), 41, 1, 108,

(1967). Reprint (2000)

[138] U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore, 2nd edn,

1999.
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Appendix A

Derivation of the Landau-Lifshitz

Equations

From the starting point of the noiseless Gilbert equation [32] pg.72 with α = η,

∂M

∂t
= γ

(
∂E

∂M
+ αγ

∂E

∂M
×M

)
×M (A.1)

where M is the magnetisation vector {Mx,My,Mz}, we wish to derive the dynamical

equations which apply in the vicinity of the barrier. These are the Landau-Lifshitz

equations for ṗ and φ̇.

Let m be a unit vector in the direction of M; so M = M0m, and the magnitude

of M is M0. The vector m is on the unit sphere, see Figure 2.1.

Now,

ṁ = ˙̂r (A.2)

and

˙̂r =
∂r̂

∂θ
θ̇ +

∂r̂

∂φ
φ̇+

∂r̂

∂r
ṙ. (A.3)

but

r = 1⇒ ṙ = 0.
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Also,

∂r̂
∂θ

= θ̂

∂r̂
∂φ

= sin θ φ̂

(A.4)

and

θ̂ = −p̂

since p = cos θ decreases as θ increases in the interval [0, π]. So,

˙̂r = θ̇θ̂ + sin θφ̇φ̂. (A.5)

or

∂r̂

∂p
=
∂r̂

∂θ

∂θ

∂p
= − 1

sin θ
θ̂ =

p̂√
1− p2

(A.6)

so,

˙̂r =
ṗ√

1− p2
p̂ + φ̇

√
1− p2φ̂. (A.7)

Also, ∇ in spherical polar coordinates is

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
(A.8)

now ∂E
∂r

= 0 since E 6= E(r), so, since r = |r̂| = 1

∇E =
∂E

∂θ
θ̂ +

1

sinθ

∂E

∂φ
φ̂. (A.9)

With

r̂× θ̂ = φ̂, θ̂ × φ̂ = r̂, φ̂× r̂ = θ̂

and

A×B = −B×A.

We have,

~m×∇E = r̂×
(
∂E

∂θ
θ̂ +

1

sin θ

∂E

∂φ
φ̂

)
(A.10)

147



=
∂E

∂θ
φ̂− 1

sin θ

∂E

∂φ
θ̂ (A.11)

=
∂E

∂p

dp

dθ
φ̂− 1

sin θ

∂E

∂φ
θ̂ (A.12)

= − sin θ
∂E

∂p
φ̂− 1

sin θ

∂E

∂φ
θ̂ (A.13)

that is,

m×∇E =
√

1− p2
∂E

∂p
φ̂+

1√
1− p2

∂E

∂φ
p̂ (A.14)

Also,

{m×∇E} ×m =
∂E

∂θ
θ̂ +

1

sin θ

∂E

∂φ
φ̂ (A.15)

=
∂E

∂θ
θ̂ +

1

sin θ

∂E

∂φ
φ̂ (A.16)

= sin θ
∂E

∂p
p̂ +

1

sin θ

∂E

∂φ
φ̂ (A.17)

{m×∇E} ×m =
√

1− p2
∂E

∂p
p̂ +

1√
1− p2

∂E

∂φ
φ̂ (A.18)

Now, m = M
|M0| , so equation (A.1) becomes,

ṁ = b(m×∇E) + a(m×∇E)×m (A.19)

so

ṗ√
1− p2

p̂ + φ̇
√

1− p2φ̂ =

(
b√

1− p2

∂E

∂φ
+ a
√

1− p2
∂E

∂p

)
p̂ +

(
−b
√

1− p2
∂E

∂p
+

a√
1− p2

∂E

∂φ

)
φ̂ (A.20)
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where b = −γ and a = −αγ. So, putting it all together and equating co-efficients

of p̂ and φ̂ we have the coupled equations

ṗ = b
∂E

∂φ
+ a

(
1− p2

) ∂E
∂p

(A.21)

and,

φ̇ = −b∂E
∂p

+
a

1− p2

∂E

∂φ
(A.22)

which we write in matrix notation, so ṗ

φ̇

 =

 a(1− p2) b

−b a
1−p2


 ∂E

∂p

∂E
∂φ

 . (A.23)

The 2×2 matrix in equation (A.23) is referred to as the transport matrix. In practice

these equations (A.21) and (A.22) are “linearised” at the barrier top by repacing E

with the energy approximation about the barrier for the particular model in question,

and ‘p’ is replaced with the value of p at the barrier. We then solve the resulting

auxiliary equations, referred to as the transition equations, for the eigenvalue λ+,

which will be the largest postive eigenvalue of the transition matrix.
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Appendix B

Calculation of the Flux over the

Barrier, q, for many Negative

Eigenvalues

The following appendix is an extension of appendix IV.II, page 600 of [125] j = q,

to accommodate the presence of more than one negative eigenvalue in the Hessian

Matrix for the saddle point. We start with equation (4.109) of [125]

q =

∫
· · ·
∫ ∑

j

UiJi({η})δ(u)dη1 · · · dη2N (B.1)

q =

√
kBT

2π

∫
· · ·
∫ ∑

j

UiMijUjZ
−1 exp

{
− E

kBT

}
exp

{
−1

2

u2

kBT

}
δ(u)dη1 · · · dη2N(B.2)

where, E = E ({η}). At the barrier point C in Fig.2.2 the energy is

Es ≈ E(0)
s +

1

2

∑
i,j

eij(ηi − η̃i)(ηj − η̃j) +O(η). (B.3)
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q =

√
kBT

2π

∑
i,j UiMijUj

Z

∫
· · ·
∫

exp

{
− E

kBT

}
δ(u)dη1 · · · dη2N . (B.4)

Since

exp

{
−1

2

u2

kBT

}
δ(u) = δ(u) (B.5)

q ≈
√
kBT

2π
λ+

2π
Z−1 exp

{
−E

(0)
s

kBT

}
×

∫
· · ·
∫

exp

−1
2

1
kBT

∑
i,j

eij(ηi − η̃i)(ηj − η̃j) + ik
∑
l

Ul(ηl − η̃l)

 dηdk (B.6)

where we have substituted the energy E = Es about the barrier point {η̃}, and

dη ≡ dη1 · · · dη2N . (B.7)

Now, define the matrix S

S = (Sij) (B.8)

and the vector x = (xj) by the equation

xi ≡
∑
j

Sij (ηj − η̃j) (B.9)

then, we have,

∑
i,j

eij(ηi − η̃i)(ηj − η̃j) =
2N∑
l=1

µlx
2
l (B.10)

where,

µ1 ≤ µ2 ≤ · · · ≤ µm < 0 (B.11)

151



and

µj > 0, m ≤ j ≤ 2N. (B.12)

The entries of S are constants, given by

∂xi
∂ηj

= Sij . (B.13)

Hence the Jacobean of the transformation (B.9) is given by

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂η1

· · · ∂x2N
∂η1

...
. . .

...

∂x1
∂η2N

· · · ∂x2N
∂η2N

∣∣∣∣∣∣∣∣∣∣∣∣
= det(S). (B.14)

Langer [13] states that this transformation is orthogonal since E is symmetric, so

J = det S = 1 (B.15)

and

S−1
ij = Stij (B.16)

Now changing to x-space we have

q ≈
√
kBT

2π
1
Z

λ+

2π
exp

{
−E

(0)
s

kBT

}
×

∫ ∫
· · ·
∫

exp

−β2 ∑
j

µj

(
x2
j −

2ikUj
β

∑
l

Sjlxl

) Jdx1 · · · dx2Ndk. (B.17)

Let

I =
∫ ∫

· · ·
∫

exp

−β2 ∑
j

µj(x2
j −

2ikUj
β

∑
l

Sjlxl

 Jdx1 · · · dx2Ndk. (B.18)
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So,

q ≈
√
kBT

2π
1
Z

λ+

2π
exp

{
−E

(0)
s

kBT

}
I. (B.19)

Now, separating the first m µ out from the 2N µ we can write the above integral I as,

∫ ∫
· · ·
∫

exp

−β2
 m∑
j=1

µjx
2
j +

2N∑
j=m+1

µjx
2
j −

∑
j

∑
l

2ikUj
β

Sjlxl

 Jdx1 · · · dx2Ndk.

Now,

I = J

∫ ∫
· · ·
∫

exp

−β2
 m∑
j=1

µjx
2
j +

2N∑
m+1

µjx
2
j −

∑
l

2ik
β
Ũlxl

 dxmdx2Ndk (B.20)

where,

Ũl =
∑

j UjSjl

dxm = dx1dx2 · · · dxm

dx2N = dxm+1dxm+2 · · · dx2N

. (B.21)

So,

I = J

∫ ∫ · · · ∫ exp

−β2
m∑
j=1

(
µjx

2
j −

2ik
β
Ũjxj

) dxm ×

∫
· · ·
∫

exp

{
−β

2

2N∑
m+1

(
µjx

2
j −

2ik
β
Ũjxj

)}
dx2N

]
dk (B.22)

= J

∫ ∫ · · · ∫ exp

−β2
m∑
j=1

(
µjx

2
j −

2ikŨj
β

xj

) dxm ×

∫
· · ·
∫

exp

{
−β

2

2N∑
m+1

µj

(
x2
j −

2ik
βµj

Ũjxj +
i2k2Ũ2

j

βµ2
j

)}
dx2N ×

exp

{
−β

2

∑
m+1

2N
k2Ũ2

j

β2µj

}]
dk (B.23)
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= J

∫ ∫ · · · ∫ exp

−β2
m∑
j=1

(
µjx

2
j −

2ikŨj
β

xj

) dxm ×

2N∏
m+1

exp

{
−
k2Ũ2

j

2βµj

}∫
exp

−βµj2

(
xj −

ikŨj
βµj

)2
 dx2N

 dk (B.24)

= J

∫ ∫ · · · ∫ exp

−β2
m∑
j=1

(
µjx

2
j −

2ikŨj
β

xj

) dxm

2N∏
m+1

exp

{
−
k2Ũ2

j

2βµj

}√
2π
βµj

 dk

= J
2N∏

j=m+1

√
2π
βµj

∫
· · ·
∫

exp

−β2
m∑
j=1

(
µjx

2
j

) exp


2N∑
m+1

−
k2Ũ2

j

2βµj
+

m∑
j=1

ikŨjxj

 dk dηm

= J
2N∏
m+1

√
2π
βµj

∫
· · ·
∫

exp

−β2
m∑
j=1

(
µjx

2
j

) exp

−−k2

2β

2N∑
m+1

Ũ2
j

µj
+ ik

m∑
j=1

Ũjxj

 dk dxm

Next, complete the square on k to get,

= J

2N∏
m+1

√
2π
βµj

∫
· · ·
∫

exp

−β2
m∑
j=1

(
µjx

2
j

)×
×

∫
exp

−1
2β

2N∑
m+1

Ũ2
l

µl

k2 −
∑

j 2βiŨjxj(∑2N
m+1

Ũ2
l
µl

)k +
β2i2

∑m
j=1 Ũ

2
j η

2
j(∑2N

m+1
Ũ2
l
µl

)2




× exp

−β2
∑m

j=1 Ũ
2
j x

2
j(∑2N

m+1
Ũ2
l
µl

)
 dk dxm (B.25)

and complete the square on the
∑2N

m+1 µjxj to get

= J

2N∏
m+1

√
2π
βµj

∫
exp

−β2
∑µj +

∑m
j=1 Ũj(∑2N
m+1

Ũ2
l
µl

)2

x2
j

×
∫

exp

−1
2β

2N∑
m+1

Ũ2
l

µl

k − iβ
∑
Ũjxj(∑2N

m+1
Ũ2
l
µl

)2


2 dk dxm (B.26)
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= J
2N∏
m+1

√
2π
βµj

√√√√ 2πβ∑2N
m+1

Ũ2
l
µl

√
2π
β

∑
j

µj +

∑m
j=1 Ũj(∑2N
m+1

Ũ2
l
µl

)2


− 1

2

(B.27)

= J
2N∏
m+1

√
2π
βµj

√√√√ 2πβ∑2N
m+1

Ũ2
l
µl

√
2π

β
∑m

j=1 |µj |

−1 +

∑m
j=1

Ũj
|µj |(∑2N

m+1
Ũ2
l
µl

)2


− 1

2

(B.28)

since µ1 < µ2 < · · · < µm < 0, and µm+1 > µm+2 > · · · > µ2N > 0. So,

I = J
2N∏
j=1

√
2π
β |µj |

√
2πβ

[
2N∑

l=m+1

Ũ2
l

µl

]− 1
2

−1 +

(∑m
j=1

Ũj
|µj |

)
(∑2N

l=m+1
Ũ2
l
µl

)

− 1

2

(B.29)

= J

2N∏
j=1

√
2π
β |µj |

√
2πβ

[
−

2N∑
l=1

Ũ2
l

|µl|

]− 1
2

. (B.30)

So,

q =
λ+

Z

exp
{
−βE(0)

s

}
2π

J

2N∏
j=1

√
2π
β |µj |

√
2πβ

[
−

2N∑
l=1

Ũ2
l

µl

]− 1
2

(B.31)

=
λ+

Z

exp
{
−βE(0)

s

}
2π

J
2N∏
j=1

√
2π
β |µj |

[
−

2N∑
l=1

Ũ2
l

µl

]− 1
2

. (B.32)

Now, let

M =



µ1 0 0 · · · 0

0 µ2 0 · · · 0

0 0 µ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · µ2N


(B.33)

M = StEsS. (B.34)
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Hence,

det M = det Es [det (S)]2 (B.35)

det M = det (Es) J2 (B.36)

det M =
2N∏
j=1

µj (B.37)

for j distinct non-zero eigenvalues µ and so,

2N∏
j=1

√
2π
β |µj |

=
∣∣∣∣det

[
Es

2πkBT

]∣∣∣∣− 1
2
(

1
det S

)
(B.38)

using Equation (B.14)

J
2N∏
j=1

√
2π
β |µj |

=
∣∣∣∣det

[
Es

2πkBT

]∣∣∣∣− 1
2

. (B.39)

Also,

M−1 =



1
µ1

0 0 · · · 0

0 1
µ2

0 · · · 0

0 0 1
µ3
· · · 0

...
...

...
. . .

...

0 0 0 · · · 1
µ2N


(B.40)

M−1 = S−1 (Es)−1 (St)−1 (B.41)

or,

SM−1St = (Es)−1 = (eij)
−1 . (B.42)
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Now,

∑
ij

UieijU
−1
j =

∑
i,j,k,l

UiSikM
−1
kl S

t
ljUj

=
∑
k,l

ŨkM
−1
kl Ũl (B.43)

=
∑
k,l

Ũk
1
µk
δklŨl (B.44)

=
∑
k

Ũk
µk
Ũk (B.45)

=
∑
k

Ũ2
k

µk
. (B.46)

Now, since
∑

i,j Uie
−1
ij Uj < 0 [125], we see

(
−
∑
k

Ũ2
k

µk

)− 1
2

=

∣∣∣∣∣∣
∑
ij

Uie
−1
ij Uj

∣∣∣∣∣∣
− 1

2

(B.47)

and hence,

q =

∑
ij UiMijUj∣∣∣∑ij Uie

−1
ij Uj

∣∣∣ 1
2

1
2π

∣∣∣∣det
Es

2πkBT

∣∣∣∣− 1
2

Z−1 exp
{
−βE(0)

s

}
(B.48)

which is the current of particles (flux) through the plane u = 0 near the barrier and not

parallel to the direction of flow.
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Appendix C

Calculation of the number of

particles in the metastable well NA

NA =
∫
. . .

∫
ρeq dη1 . . . dη2N (C.1)

= Z−1

∫
. . .

∫
exp {−βEA} dη1 . . . dη2N (C.2)

The energy approximation in the well (the point A in Fig.2.2) is,

EA = E
(0)
A +

1
2

∑
ij

aij (ηi − η̃i) (ηj − η̃j) (C.3)

So we substitute the approximate for the energy to get

NA =
1
Z

∫
. . .

∫
e−βE

(0)
A exp

−β2 ∑
ij

aij(ηi − η̃i)(ηj − η̃j)

 dη1 . . . η2N (C.4)

Define the vector x as in Appendix B,

xi =
∑
j

Sij (ηj − η̃j) (C.5)
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So,

1
2

∑
ij

aij (ηi − η̃i) (ηj − η̃j) =
1
2

∑
l

µlx
2
l (C.6)

NA =
1
Z

∫
. . .

∫
e−βE

(0)
A exp

{
−β

2

∑
l

µlx
2
l

}
Jdη1 . . . η2N (C.7)

where

J = det (Sij) = det (S) (C.8)

So,

NA =
1
Z
e−βE

(0)
A J

2N∏
l=1

√
2π
βµl

. (C.9)

Let M be a diagonal matrix of the eigenvalues of EA = (aij)2N
i,j=1

StEAS = M (C.10)

and

det S = 1 (C.11)

since EA is symmetric. So,

[det (S)]2 det
(
EA
)

det (M) =
2N∏
i=1

µi (C.12)

det
(

EA

2πkBT

)
=

2N∏
i=1

βµi
2π

(C.13)

Then,

2N∏
i=1

√
2π
βµi

=
[
det
(

Es

2πkBT

)]−1/2

(C.14)
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So,

NA = Z−1e−βE
(0)
A

2N∏
l=1

√
2π
βµl

(C.15)

= Z−1e−βE
(0)
A

[
det
(

EA

2πkBT

)]−1/2

(C.16)

is the number of particles in the metastable minimum (well).
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Appendix D

Proof of Equation (4.4)

Consider the 4× 4 matrix H, with positive constants a, b, c, d, e, f, g, and h,

H =



a b 0 0

c d 0 0

0 0 e f

0 0 g h


(D.1)

Expand H about the first row,

det H = a

∣∣∣∣∣∣∣∣∣∣∣∣

d 0 0

0 e f

0 g h

∣∣∣∣∣∣∣∣∣∣∣∣
− b

∣∣∣∣∣∣∣∣∣∣∣∣

c 0 0

0 e f

0 g h

∣∣∣∣∣∣∣∣∣∣∣∣
, (D.2)

then,

det H = ad(eh− gf)− bc(eh− gf) (D.3)

i.e.,

det H = (ad− bc)(eh− gf) (D.4)
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det H = det Hp det Hφ (D.5)

which is equation (4.71) where,

Hp =

 a b

c d

 =

 e11 e12

e21 e22

 (D.6)

and,

Hφ =

 e f

g h

 =

 e33 e34

e43 e44

 (D.7)
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Appendix E

The Nature of the Points (0, 0, 0, π)

and (0, 0, π, 0)

The following is a supporting argument of the nature of the points (0, 0, 0, π) and (0, 0, π, 0).

With respect to the matrix

Hp =

 − j
2 + h+ 1 − j

2

− j
2 − j

2 − h+ 1

 , (E.1)

three situations present themselves

1. When det Hp < 0 the points are saddle points.

2. When det Hp > 0, and − j
2 − h+ 1 > 0 the points are minima.

3. When det Hp > 0, and − j
2 − h+ 1 < 0 the points are maxima.

Now

det Hp = −
[
j −

(
1− h2

)]
(E.2)
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and for a maximum

det Hp > 0 (E.3)

that is,

j <
(
1− h2

)
(E.4)

and

j > 2(1− h) (E.5)

which are obviously incompatible.

For a saddle point,

det Hp < 0 (E.6)

or

j > 1− h2 (E.7)

so, (in terms of the bound on j) we are assured of a saddle point when j > 1, and there

is a possibility of a saddle point when 0 < j < 1.

For a minimum we must have,

j < 2(1− h) (E.8)

and

det Hp > 0 (E.9)
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or

j < 1− h2 (E.10)

which can only happen when 0 < j < 1. So, when 0 < j < 1 the points maybe either

saddle points or minima, depending on the direction of the inequality

j >< 1− h2. (E.11)

When

j = 1− h2 (E.12)

the analysis is indeterminate. Also, the eigenvalues of the matrices H(0,π) and H(π,0) are

equal. There are two eigenvalues which occur twice, so in all, there are four eigenvalues,

c1,3 and c2,4 where,

c1,3 = − j
2

+ 1 +
1
2

√
4h2 + j2 (E.13)

and

c2,4 = − j
2

+ 1− 1
2

√
4h2 + j2 (E.14)

Now, we want to find values of j and h which make c1,3 andc2,4 simultaneously positive

or simultaneously negative, in which case the ‘antiferromagnetic’ points C1 and C2 of

equation (4.83) are minima or maxima respectively, so, we write the inequalities

c1,3 < 0

c2,4 < 0
(E.15)
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which is true iff,

−(j − 2) <
√

4h2 + j2 < j − 2 (E.16)

i.e.

∣∣∣√4h2 + j2
∣∣∣ < (j − 2) (E.17)

with j > 2. This is the region where the points (0, 0, 0, π) and (0, 0, π, 0) are maxima.

But again this is inconsistent with equation (E.7), so there can be no maximum at these

points.

To see where they are minima we write,

c1,3 > 0

c2,4 > 0
(E.18)

and this is possible when,

∣∣∣√4h2 + j2
∣∣∣ < (2− j) (E.19)

with 0 < j < 2. This is the region were the points are minima.

To find values of j and h which make the points a saddle we simply multiply the eigenvalues

together and set the result < 0. So,

c1,3 × c2,4 = det Hp = −
[
j −

(
1− h2

)]
(E.20)

or

j > (1− h2) (E.21)

where, j ≥ 1 ensures a saddle point but also 0 < j < 1 is possible since 0 ≤ h < 1, as

before.
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Appendix F

Algebraic Manipulations which

Diagonalise the Hessian Matrix at

the Barrier when j > 2

The following shows the algebraic manipulations which yield the eigenvalues of the energy

Hessian matrix and the coordinates η at the saddle point for the case j > 1 − h2. We

show the calculation for the barrier top (saddle point) only, as the metasable minimum

calculation is very similiar. Also, we give the matrix which diagonalises the hessian, which

is the matrix Sij above, i.e the Jacobean for the transformation into η-space.

Since the Hessian matrix is symmetric, we use the method of completing the square,

so

Es ≈ E(0)
s +

1
2

[
j

2
p2

1 + 2
(
−j
2

)
p1p2 +

j

2
p2

2 +
(
j

2
+ h2 − 1

)(
φ1 − φ̃

)2
+ (F.1)
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2
(
−j
2

)(
φ1 − φ̃

)(
φ2 − φ̃

)
+
(
j

2
+ h2 − 1

)(
φ2 − φ̃

)2
]

where E(0)
s = E(0, 0, cosφ1 = −h, cosφ2 = −h) = − j

2 + h2, φ̃ = cos−1(−h).

Or, on tidying up,

Es ≈ E(0)
s +

1
2

[
j

2
p2

1 − jp1p2 +
j

2
p2

2 +
(
j

2
− 1− h2

2

)
Φ2

1 −
(

1− h2

2

)
Φ2

1+ (F.2)

jΦ1Φ2 +
(
j

2
− 1− h2

2

)
Φ2

2 −
1− h2

2
Φ2

2 − (1− h2)Φ1Φ2 + (1− h2)Φ1Φ2

]
where, Φi = φi − φ̃i i = 1, 2. So, Es can be written,

Es ≈ E(0)
s +

1
2

[
j

2
(p1 − p2)2 +

(
j

2
− 1− h2

2

)
Φ2

1 −
(
j − (1− h2)

)
Φ1Φ2 +(

j

2
− 1− h2

2

)
Φ2

2 −
1− h2

2
Φ2

1 − (1− h2)Φ1Φ2 −
1− h2

2
Φ2

2

]
(F.3)

Or,

Es ≈ E(0)
s + 1

2

[
j
(
p1−p2√

2

)2
+
(
j − (1− h2)

) (
Φ1−Φ2√

2

)2
− (1− h2)

(
Φ1+Φ2√

2

)2
]

(F.4)

where, the variables p1±p2√
2

and Φ1±Φ2√
2

form the Jacobean [125] which diagonalise the

Hessian matrix part of the energy approximation (c.f. Chapter 2).

η1 = p1+p2√
2

η2 = p1−p2√
2

η3 = Φ1+Φ2√
2

η4 = Φ1−Φ2√
2

(F.5)

so,

Sij =
1√
2



1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


. (F.6)
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So, for this saddle point the Equation (B.34) above yields,

M =



0 0 0 0

0 j 0 0

0 0 j − (1− h2) 0

0 0 0 −(1− h2)


. (F.7)

The eigenvalues of the energy Hessian are the diagonal elements of M, or the coefficents

of the ηi, (i = 1, .., 4) variables. At the saddle point these eigenvalues are,

{
0, j, j − (1− h2),−(1− h2)

}
(F.8)

Note that the coefficient of the variable η1 is 0 and the possible range of values of η1 is

[−1, 1], so this will contribute a factor v = 2 in the numerator of the escape rate formula

to account for the volume of the one-dimensional space associated with the variable η1.
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Appendix G

Antiferromagnetic Hessians

The Hessians for the antiferromagnetic states (0, 0, 0, π) and (0, 0, π, 0) are (c.f. Equations

(4.70) and (4.69)),

H(0,π) =



− j
2 + h+ 1 − j

2 0 0

− j
2 − j

2 − h+ 1 0 0

0 0 − j
2 + h+ 1 j

2

0 0 j
2 − j

2 − h+ 1


(G.1)

and,

H(π,0) =



− j
2 − h+ 1 − j

2 0 0

− j
2 − j

2 + h+ 1 0 0

0 0 − j
2 − h+ 1 j

2

0 0 j
2 − j

2 + h+ 1


(G.2)
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There are two non-zero eigenvalues, which occur twice

1− j

2
± 1

2

√
j2 + 4h2 (G.3)

So, in the range 1 < j < 2 there are two negative eigenvalues and two positive, this is

catered for in the calculation of the flux over the barrier in Appendix B.

det H(0,π) = det H(π,0) = (j − (1− h2))2 (G.4)

These are essentially the same in terms of the algebraic treatment so we concentrate on

(G.2) The matrix which diagonalises the Hessian matrix is Sij , i.e. the matrix in equation

(G.5) which appears in equation (B.42), which for the matrix (G.2) is,

−
√
j2+4h2+2h

j 1 0 0

1
√
j2+4h2−2h

j 0 0

0 0 −
√
j2+4h2−2h

j 1

0 0 1
√
j2+4h2+2h

j


(G.5)

The determinant of this matrix is the constant J = 4
j2

(4h2 + j2), This determinant can be

normalised by applying the Gram-Schmidt process [199].
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Appendix H

Calculation of λ+ in equation

(4.102)

To calculate λ+ for the states (0, 0, 0, π) and (0, 0, π, 0) (which are the same) we expand the

energy function of equation (4.20) in a Taylor series about one of the points, say (0, 0, 0, π)

to get the energy approximation,

EAF ≈ E(0)
AF +1

2

[(
− j

2 − h+ 1
)
p2

1 − jp1p2 +
(
− j

2 + h+ 1
)
p2

2+(
− j

2 − h+ 1
)

Φ2
1 + jΦ1Φ2 +

(
− j

2 + h+ 1
)

Φ2
2

] (H.1)

where Φ1 = φ, and Φ2 = φ2 − π. And the equations of dynamics (A.21)(A.22) in matrix

form are

ṗ1

ṗ2

Φ̇2

Φ̇2


=



a
(
−j
2 + 1− h

)
−aj

2 b
(
−j
2 + 1− h

)
bj
2

−aj
2 a

(
−j
2 + 1 + h

)
bj
2 b

(
−j
2 + 1− h

)
b
(
−j
2 + 1− h

)
bj
2 a

(
−j
2 + 1− h

)
aj
2

bj
2 −b

(
−j
2 + 1 + h

)
aj
2 a

(
−j
2 + 1 + h

)





p1

p2

Φ2

Φ2


(H.2)
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where a, b are coefficients of the Landau-Lifschitz equation in Appendix A. We omit the

eigenvalues of the 4 × 4 matrix which are complex numbers and long expressions which

are best left to a computer.
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