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The normal phase diffusion problem in magnetic resonance imaging �MRI� is treated by means of the

Langevin equation for the phase variable using only the properties of the characteristic function of Gaussian

random variables. The calculation may be simply extended to anomalous diffusion using a fractional gener-

alization of the Langevin equation proposed by Lutz �E. Lutz, Phys. Rev. E 64, 051106 �2001�� pertaining to

the fractional Brownian motion of a free particle coupled to a fractal heat bath. The results compare favorably

with diffusion-weighted experiments acquired in human neuronal tissue using a 3 T MRI scanner.

DOI: 10.1103/PhysRevE.80.061102 PACS number�s�: 05.40.�a, 87.19.lf, 82.56.Pp, 05.45.Df

I. INTRODUCTION

During signal acquisition in magnetic resonance imaging

�MRI�, nuclear magnetic moments are manipulated via a

combination of static, gradient, and radiofrequency magnetic

fields. These fields and their relative timing �or pulse se-

quences� can be varied in many ways in order to create im-

age contrast based on characteristics of the medium, tissue,

or pathology. In addition to varying the tissue contrast, flow-

ing, diffusing, and perfusing spins can be encoded in the

image signal. The clinical applications of diffusion MRI are

numerous, and changes in water diffusion in neuronal tissues

have been associated with alterations in physiological and

pathological states. These include the early detection of acute

stroke �1�, functional brain imaging �2�, white matter fiber

tracking �3�, the detection of multiple sclerosis �4�, and tu-

mors �5�.
The precession and relaxation of the net magnetization, as

a result of the spin manipulation, is described by the phe-

nomenological Bloch equations �6�. In liquids, however, the

positions of the molecules fluctuate due to Brownian motion,

so that the Larmor precession is affected, causing dephasing

of the resonance signal. In other words, the magnetic field is

not constant in space, but has a field gradient G defining the

magnitude of the field at the site of a nucleus given by the

position vector r, which is now a stochastic process causing

phase fluctuations,

���t� = �
0

t

��t��dt� = ��
0

t

r�t�� · G�t��dt�, �1�

where � is the gyromagnetic ratio. Dephasing due to random

modulation of the Larmor frequency ��t� was first observed

by Hahn �7�, who noted the attenuation of the observed tran-

sient signals in NMR experiments due to the self-diffusion of

“spin-containing liquid molecules.”

The Bloch equations as originally formulated �6� ignore

the Brownian motion of the liquid nuclei. Consequently, nu-

merous attempts to incorporate it have been made �7,8�, e.g.,

that of Carr and Purcell �9�. Their treatment �effectively Ein-

stein’s theory �10,11� adapted to the phase fluctuations� as-

sumes that a nucleus in a liquid executes a discrete-time

random walk, due to the cumulative effect of very large num-

bers of impacts of the surrounding particles, so that the phase

is a sum of random variables each having arbitrary distribu-

tions. The only random variable is the orientation of the

walker, i.e., the direction of the jump-length vector �11� as it

has finite variance and the waiting time between jumps has

finite mean. The problem is always to find the probability

that the walker will be in state n at some time t given that it

was in a state m at some earlier time, giving rise in general to

a difference equation �12–14�. However, by the central limit

theorem �11� the dephasing effect may be calculated explic-

itly in the continuum limit of extremely small mean-square

displacements in infinitesimally short times. The above

analysis was later much simplified by Torrey �15�. He

avoided the problem of explicitly passing to the continuum

limit by simply adding �adapting a method of Einstein; see

Ref. �11�, Chap. 1� a magnetization diffusion term to the

transverse magnetization in the Bloch equations, resulting in

a partial differential equation, now called the Bloch-Torrey

equation �15,16�. Moreover, by the introduction of appropri-

ate boundary conditions, this equation is ideally suited to

describing restricted diffusion in a confining domain �17�.
The Bloch-Torrey equation may be easily solved for nuclei

diffusing freely in an infinite reservoir. Thus, Torrey obtained

for the dephasing following the application of a step gradient

of magnitude G in a liquid characterized by a diffusion

coefficient D,

�ei��� = A�t�/A�0� = e−D�2G2t3/3. �2�

Moreover, for a simple bipolar gradient echo experiment

with gradients of strength G and duration �,

�ei���GE = A�2��/A�0� = e−2D�2G2�3
/3. �3�

The spin-echo diffusion experiment case is slightly different

�18� and the calculations are considerably more involved

than in the gradient echo one where the second gradient

pulse has the effect of resetting the dephasing caused by the

first pulse. By applying the 180° pulse in the spin-echo ex-

periment, the phase is reset by double the extent to which it

was advanced �18�, so that
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�ei���SE = e−D�2G2�2��−�/3� = e−bD. �4�

In Eq. �4� � is the gradient spacing and � is the time interval

from the starting time of the first gradient to the starting time

of the rephasing gradient. The notation b=�2G2�2��−� /3� is

traditionally used as in Eq. �4� for the simplification and the

degree of diffusion weighting in an MRI acquisition is set

using a b value. The diffusion weighting �or b-value� is in-

creased, typically by increasing the strength of the diffusion-

weighting gradient G.

Now Eqs. �2�–�4� describe precisely the signal loss due to

the translational motion of the magnetic moments in unre-

stricted �free� water in a magnetic resonance experiment.

However, difficulties arise when these equations are applied

in vivo because these simple single exponential equations fail

to describe the diffusion of water in tissue. An empirical

approach to this problem has been to assume that fast and

slow diffusion components exist �19�, so that the decay may

be described by the simple equation

A�t�/A�0� = V1e−bD1 + V2e−bD2. �5�

Here, V1 and V2 are considered as the volume fractions of

protons in intracellular and extracellular spaces in neuronal

structures with the distinct diffusion coefficients D1 and D2.

This equation, which is useful in practice �20�, has a simple

theoretical explanation, namely, the signal from two separate

compartments is the sum of the signals from each compart-

ment although this statement should be regarded as approxi-

mate because of the presence of a boundary. Yet another

approach is that of Bennett et al. �21� who used the

stretched-exponential expression or Kohlrausch-Williams-

Watts form �11�

A�t�/A�0� = e−�bDDC��
, �6�

where ��1 is the stretch parameter and DDC is the distrib-

uted diffusion coefficient arising from fitting Eq. �6� to data.

The parameter � could be used to measure the heterogeneity

of the dephasing process in tissue, which appears to exhibit

anomalous diffusion behavior, signified by a mean-square

displacement of the form t�. In general the motion can be

either subdiffusive ��	1�, which signifies a slow relaxation

process, or superdiffusive ��
1�, which leads to turbulence.

As far as one possible explanation of Eq. �6� based on the

microscopic origins of anomalous diffusion is concerned, we

remark that the finite jump-length variance and the finite

average jump time, in the theory of the normal Brownian

motion, define a physical length scale and a physical time

scale �22,23� so that the central limit theorem applies. In

anomalous diffusion, however, either the second moment of

the jump-length distribution or the first moment of the jump

time distribution diverges or indeed both of them. Such mo-

tions are invariably characterized by heavy tailed probability

distributions �i.e., power-law tails� so that the central limit

theorem no longer applies �24,25�. They are known by the

generic title of continuous-time random walks �CTRWs�
�26�. Examples are the Lévy stable motion for which the

mean-square displacement diverges due to the occurrence of

very long jumps �27�, and the specialized CTRW with a

long-tailed waiting time probability distribution where the

walker may remain in a given configuration for an arbitrarily
long period before undertaking a jump of finite mean-square
length, so that the mean waiting time diverges. Here, � is
�22,23� the fractal dimension of the set of waiting times,
which is the scaling of the waiting time segments in the
random walk with magnification. Hence, it is impossible to
attribute underlying physical scales to such processes. For
example, the origin of the divergent first moment of the jump
times may be due to a random distribution of impurities
within a matrix, so that a spatial disorder corresponding to
an energetic disorder will give rise to a temporal disorder
resulting in anomalous diffusion. Yet another microscopic
explanation �the one which will be used in this paper� is that
the anomalous behavior simply arises from the inclusion of
memory effects �11� in the normal Brownian motion, so de-
stroying its Markovian character.

The use of anomalous diffusion to describe relaxation be-
havior is very well established in many fields of physics,

including biophysics and physics in medicine �23,27,28�. In

the particular case of subdiffusive transport, for example, we

mention such diverse phenomena as charge carrier transport

in amorphous semiconductors, diffusion in percolative or po-

rous systems, transport in fractal geometries, as well as pro-

tein conformational dynamics �24,29–33�. In the NMR con-

text the anomalous diffusion approach was expanded upon

by Magin et al. �34�, where the Bloch-Torrey equation was

converted to fractional form.

However, in using random-walk models in the context of

microscopic explanations, it should be noted that diffusion in

tissue is restricted or hindered; that is, it does not take place

in an infinite reservoir and so may lead to very different

signal attenuations �17�. For instance, Robertson �35� de-

scribed the motional narrowing long-time regime for diffu-

sion between parallel planes when the signal decays expo-

nentially in time, unlike t3 as it is for unrestricted diffusion.

Stejskal and Tanner �36� showed that the signal has oscilla-

tory behavior for narrow gradient pulses and the related

diffusion-diffraction patterns were observed by Callaghan et

al. �37�. The localization regime predicted by Stoller et al.

�38� exhibits a stretched-exponential behavior. In these and

many other cases �17,39�, diffusion may be considered as

normal, and it is a geometrical restriction alone that may lead

to deviations from the classical unrestricted diffusion.

Hitherto virtually all the microscopic approaches to

anomalous diffusion in the context of resonant imaging ulti-

mately rely on the probability distribution of the phase, a

notable exception being that of Widom and Chen �32� who

used a frequency domain analysis based on the spectral func-

tion characterizing fractal Brownian motion. However, since

the underlying stochastic process is the position of a nucleus,

it appears that a much more transparent treatment of the

phase diffusion could be achieved by means of the Langevin

equation. For normal diffusion, this is simply the Newtonian

equation of motion of the nucleus, augmented by a system-

atic frictional force proportional to the velocity, superim-

posed on which is a very rapidly fluctuating random force,

both representing the effect of the surrounding heat bath on

the nucleus. Here, we outline how the normal phase diffusion

problem may be treated by means of the Langevin equation

using simply the properties of the characteristic function of
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Gaussian random variables. Moreover, in order to provide a

possible theoretical explanation for the empirical equation

�6�, in terms of the memory effects alluded to above, we

shall show how that treatment may be simply extended to

anomalous diffusion using a fractional generalization of the

Langevin equation proposed by Lutz �33�. This equation per-

tains to the fractional Brownian motion of a free particle

coupled to a fractal heat bath, and so �33� unlike the CTRW

it describes Gaussian transport with the non-Markovian char-

acter being expressed via a memory function. The results

will then be compared with diffusion-weighted experiments,

which were acquired in human brain tissue using a 3 T MRI

scanner.

II. PHASE DIFFUSION DUE TO THERMAL AGITATION

The starting point of our treatment of dephasing is the

work of Bloch �6�. He proposed in his phenomenological

treatment of nuclear induction the differential equation for

the time dependence of the macroscopic nuclear magnetiza-

tion M�t� under the influence of an external field H�t�, viz.,

dM

dt
= �M � H − i

Mx

T2

− j
My

T2

− k
Mz − M0

T1

, �7�

where �=� / I is the gyromagnetic ratio of the nuclei under

consideration with magnetic moment � and spin I and i, j,

and k are the usual triad of unit vectors along the Cartesian

axes. The external field has the form

H�t� = kH0 + H1�t� , �8�

where H0 is strong and constant while H1 is relatively weak

and an arbitrary function of time. M0 is the equilibrium mag-

netization in the field H0 and the establishment of thermal

equilibrium is in Eq. �7� described by two relaxation time

constants T1 and T2—the longitudinal and transverse relax-

ation times, respectively—meaning that in the absence of the

transverse field H1 the x and y components will vanish with

a time constant T2, while the equilibrium magnetization will

be attained with a time constant T1. To study relaxation we

suppose that H1 is zero while H0 is slightly altered in order to

induce relaxation; then the Bloch equations become

d

dt
M = ��iMyH0 − jMxH0� − i

Mx

T2

− j
My

T2

− k
Mz − M0

T1

.

�9�

Clearly the transverse �Mx ,My� and the longitudinal Mz com-

ponents of M decouple in the absence of H1 and forming the

complex variable M��t�=Mx�t�+ iMy�t� we then have

Ṁ� = − i�M�H0 − M�/T2. �10�

The solution of this differential equation following perturba-

tion of the constant field H0 is simply

M��t� = M��0�e−�i�0+1/T2�t, �11�

where �0=�H0 is the Larmor precessional frequency. Equa-

tion �11� represents a decaying oscillation. In practice H0 is

not constant in space and so it has a field gradient defining

the magnitude of the field at the site of a nucleus given by

the position vector r�t�,

H�r,t� = r�t� · �H�z,t� = r�t� · G�z,t� , �12�

so that solution �11� alters to

M��r,t� = M��r,0�exp�− t/T2 − i��
0

t

r�t�� · G�z,t��dt�	 .

�13�

Hence, the transverse magnetization is now a function of the

position of the nucleus. However, Eq. �13� omits the Brown-

ian motion of the particles in the liquid, which carry the

nuclei. This must be taken account of in resonant imaging.

Thus, r is now a stochastic process. Hence, Eq. �10� becomes

the stochastic differential equation,

Ṁ� = − �i�r · G + 1/T2�M�. �14�

Equation �14� now represents the Langevin equation of the

process �11�. We can simplify the problem, so that the damp-

ing term is incorporated into the time derivative, and simply

calculate the dephasing effect. Hence, we see that the

dephasing due to the thermal motion of the nuclei bearing

the magnetic moments is obtained by calculating the mean

value of the functional �ei���, where

�� = − ��
0

t

ṙ�t1��
0

t1

G�t��dt�dt1 �15�

is the dephasing. Equation �15� is obtained by integration by

parts from Eq. �1� by imposing the so-called “rephasing con-

dition” 
0
t G�t��dt�=0. Clearly, the calculation of �ei���

merely amounts to determining the characteristic function of

the centered random variable ��. This is particularly easy

for centered Gaussian processes because then one may write

�6�

�ei��� = e−���2�/2. �16�

Thus, if we regard the particles carrying the nuclei as free

Brownian particles, we can determine the dephasing by

means of Eq. �16�. It should be noted that the treatment

proposed here differs from that of Torrey �15� and Magin et

al. �34�a�� although ultimately leading to the same result as

they started by writing down Eq. �10� and, following Ein-

stein �10�, added a term D�
2M� to account for the average

dephasing, where D is the diffusion coefficient. It follows

that D can then be measured via the amplitude of the echo

signal from nuclear spins subject to an appropriate sequence

of magnetic field pulses.

III. NONINERTIAL DIFFUSION

In order to illustrate the calculation of the dephasing from

the Langevin equation we consider for simplicity the Brown-

ian motion of a free particle along the x axis. We shall first

derive Eq. �2� for the phase diffusion, which corresponds to

the noninertial limit, where the inertia of the particle may be

ignored. Here, the Langevin equation is simply �11�

LANGEVIN EQUATION APPROACH TO DIFFUSION… PHYSICAL REVIEW E 80, 061102 �2009�
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�Ẋ�t� = ��t� . �17�

where X�t� is the coordinate of the Brownian particle; ��t� is

a random force with white noise properties

���t�� = 0, ���t1���t2�� = 2�kT��t1 − t2� ,

with the angular brackets denoting the average over the re-

alizations of ��t�; � is the viscous drag coefficient imposed

on a translating molecule by its surroundings and Stokes’ law

is assumed to apply; �Ẋ�t� represents the average retarding

effect of the heat bath and the noise, ��t�, the extremely rapid

fluctuations about this average value due to molecular colli-

sions; ��t� is the Dirac delta function; k is Boltzmann’s con-

stant; and T is the absolute temperature. Equation �17� fol-

lows from the inertial Langevin equation for the velocity

v�t�= Ẋ�t� of the Brownian particle of mass m, viz.,

mv̇�t� + �v�t� = ��t� , �18�

by neglecting the inertial term.

According to Eq. �15� the noninertial Langevin equation

for the phase ��t� is

�̇�t� = − �Ẋ�t��
0

t

G�t��dt� = − ��−1��t��
0

t

G�t��dt�.

�19�

These equations simply express the fact that the only way the

phase can change is via the equation of motion of X�t�. In the

Brownian motion of a free particle, the phase ��t� is a cen-

tered Gaussian random variable with variance �2= ���2�
= ��2� since ���=0 and t0=0. Noting that

�2�t� = 2�
0

t

��t1��̇�t1�dt1, �20�

because we may take ��0�=0, we have for a step field gra-

dient

���2��t� = 2�2�−2�
0

t �
0

t1 �
0

t1

G�t��dt�

��
0

t2

G�t��dt����t1���t2��dt1dt2

= 2D�2�
0

t ��
0

t1

G�t��dt�	2

dt1

=
2

3
D�2G2t3, �21�

where D=kT /� is the diffusion coefficient, which is defined

via the mean-square displacement ��X�t�−X�0��2�=2Dt of

the Brownian particle in a time interval t. Hence, from Eq.

�16� we have the known result �2� for the dephasing �9�
following the application of a step gradient.

The gradient echo result �3� may be obtained in the same

manner. For the spin-echo case Eq. �4� may be obtained by

writing the left-hand side of Eq. �21� in the notation of Ste-

jskal and Tanner �18�

���2��2�� = 2D�2�
0

2�

�F2�t1� + 2�� − 1�f · F�t1� + f2�dt1

�22�

with �=+1 for t	� and �=−1 for t
�, where F�t� is defined

by

F�t� = �
0

t

G�t��dt�

and f=F���, where � is the time of application of the 180°

pulse.

IV. PHASE DIFFUSION INCLUDING THE INERTIA

The analysis given above ignores the inertia of the

Brownian particles. If the inertial effects are included the

translational process, X�t� now possesses two characteristic

times. One characterizes the slow diffusion associated with

the noninertial motion, which we have already analyzed. The

other is the correlation time �
v
=m /� of the velocity correla-

tion function. It is of interest to include these in the phase

diffusion and therefore we show how the calculation just

outlined using the noninertial Langevin equation �Eq. �17��
may be extended for a free particle of mass m. In the inertial

motion of a Brownian particle described by Eq. �18�, an

explicit formula for the displacement X�t� is available from

the Ornstein-Uhlenbeck theory �11,40�. We have from Eq.

�18�, where without loss of generality we may set x0=0 when

t0=0,

Ẋ�t� = v0e−�t +
1

m
�

0

t

e−��t−t����t��dt�, �23�

X�t� =
v0

�
�1 − e−�t� +

1

m�
�

0

t

�1 − e−��t−t�����t��dt�, �24�

where �=� /m. If we now assume a Maxwellian distribution

of velocities for the initial velocity v0, we have �11� from

Eqs. �23� and �24� the Ornstein-Uhlenbeck result �40� for the

mean-square displacement of a Brownian particle including

the inertia

�X2�t�� =
2kT

�2m
��t − 1 + e−�t� , �25�

as well as the velocity correlation function

�Ẋ�t1�Ẋ�t2�� = �kT/m�e−��t1−t2�. �26�

Now for a step field gradient we again have

�̇�t� = − �GtẊ�t�, ��t� = − �G�
0

t

t1Ẋ�t1�dt1.

Hence, using Eqs. �20� and �26�, we can evaluate the mean-

square value of the phase ���2��t� as
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���2��t� = 2�2G2�
0

t �
0

t1

t1t2�Ẋ�t1�Ẋ�t2��dt1dt2

=
�2G2kT

3�4m
�6 + t2�2�2t� − 3� − 6e−�t�1 + t��� ,

�27�

which reduces to the Carr-Purcell-Torrey result �Eq. �21�� for

long times t��1. For short times, t��1, we have the purely

kinematic result

���2��t� �
�2G2kT

4m
t4. �28�

Again �� is a linear transformation of a Gaussian random

variable, so that by the properties of characteristic functions

�ei��� = e−���2�/2.

Hence, Eq. �27� yields the inertia corrected dephasing for a

step gradient. In general an infinity of fast relaxation modes

will be generated due to the double transcendental nature of

this function and one dominant much slower mode, which is

that associated with the slow diffusive motion �c.f. Eq. �2��.
An obvious generalization of the left-hand side of Eq. �27�
for arbitrary gradient shapes defined by

F�t� =� G�t��dt� �29�

is

���2��t� = 2�2�
t

�
t1

�Ẋ�t1�Ẋ�t2��F�t1�F�t2�dt1dt2. �30�

Hence, in order to calculate the dephasing for a Gaussian

process all that is required is a knowledge of the velocity

correlation function and the precise form of the field gradi-

ents. We remark that Eq. �30� was previously derived by

Stepišnik and Callaghan �41–43� in connection with mea-

surement of flow by NMR spectroscopy and long-time tails

of the molecular velocity correlation function in a confined

fluid.

V. FRACTIONAL DIFFUSION

Here, our objective is to provide one of many possible

microscopic explanations for the empirical stretched expo-

nential �6� of Bennett et al. �21�. Our particular hypothesis is

that it may be explained via memory effects giving rise to

fractional Brownian motion �which preserves a few of the

features of the CTRW� and its associated Langevin equation.

Thus, we note that Lutz �33� introduced the following frac-

tional Langevin equation for the translational motion of a

free Brownian particle:

m
d

dt
v�t� + m�� 0Dt

�−1
v�t� = ��t� , �31�

where �� is the friction coefficient and m�� 0Dt
�−1

v�t� and

��t� are, respectively, the generalized frictional and random

forces with the properties

���t�� = 0, ���t����t�� =
mkT��

��1 − ��
�t − t��−�

�� denotes the gamma function�. The Riemann-Liouville

fractional derivative is defined by �44�

0Dt
−�

g�t� =
1

����
�

0

t
g�t��

�t − t��1−�dt�, 0 	 � 	 1 �32�

and has the form of a memory function, so that Eq. �31� may

be regarded as a generalized Langevin equation �11,33�

m
d

dt
v�t� + �

0

t

K��t − t��v�t��dt� = ��t� .

The memory function K��t� is given �in accordance with the

fluctuation dissipation theorem� by the autocorrelation func-

tion K��t�= ���0���t�� / �kT�. Lutz also supposed that the ran-

dom force ��t� is Gaussian; thus, Eq. �31�, which describes

Gaussian transport, is capable of reproducing the stretched-

exponential behavior associated with anomalous diffusion

and has the merit unlike possible CTRW treatments that Eq.

�16� still applies, i.e., a knowledge of the first two moments

is sufficient to calculate all the higher-order moments and so

the characteristic function. Nevertheless, the process de-

scribed by the Langevin equation has a mean-square dis-

placement which is the same as that ensuing from the CTRW

and reproduces some of its features however failing to repro-

duce many others such as weak ergodicity breaking �29�. We

remark that the fractional Langevin equation �31� may also

be used to study both subdiffusion and superdiffusion of a

particle coupled to a fractal heat bath �33�.
The formal exact solution of Eq. �31� may be obtained

using Laplace transforms �33� �c.f. Eq. �11.76� of �11��; we

have

Ẋ�t� = Ẋ�0�E2−�,1�− t2−���� + m−1�
0

t

��t��

�E2−�,1�− �t − t��2−����dt� �33�

and

X�t� = X�0� + �
0

t

Ẋ�t��dt�

= X�0� + Ẋ�0�tE2−�,2�− ��t2−�� + m−1�
0

t �
0

t�

��t��

�E2−�,1�− �t − t��2−����dt�dt�,

where E�,��z� is the generalized Mittag-Leffler function

defined by �11,44–46�

E�,��z� = 
k=0

�
zk

��� + k��
, �,� 
 0.

Here, the Mittag-Leffler function E��z� is E�,1�z�; further-

more,

LANGEVIN EQUATION APPROACH TO DIFFUSION… PHYSICAL REVIEW E 80, 061102 �2009�

061102-5



�
0

t

E2−�,1�− ��t�2−��dt� = tE2−�,2�− ��t2−�� .

Thus, we have from Eq. �33� the velocity correlation func-

tion for fractional Brownian motion

�Ẋ�0�Ẋ�t�� = �kT/m�E2−��− ��t2−�� , �34�

where the Mittag-Leffler function E� interpolates between

the initial stretched-exponential form

E2−��− ��t2−�� � exp�− ��t2−�
/��3 − ��� �35�

and the long-time inverse power-law behavior

���t2−����−1��−1. Thus, the angular velocity correlation

function has initial stretched-exponential behavior accompa-

nied by a slowly decaying long-time tail representing a

memory of the initial conditions. Furthermore, noting that

X2�t� is given by

X2�t� = 2�
0

t

X�t��Ẋ�t��dt�,

�for X�0�=0�, we have �33�

�X2�t�� =
2kT

m
�

0

t �
0

t�

E2−��− ���t� − t��2−��dt�dt�

=
2kT

m
t2E2−�,3�− ��t2−�� �

2kT

m��

t�

��1 + ��
�36�

in the long-time limit �t�1, because for large z the gener-

alized Mittag-Leffler function Ea,b�z� has the inverse power-

law behavior Ea,b�−z���z��b−a��−1 �33�. According to the

definition, the range 0	�	1 corresponds to subdiffusion in

configuration space signifying a slow relaxation process. We

remark that Eq. �34� for the velocity correlation function for

fractional Brownian motion is identical to the velocity corre-

lation function rendered by the diffusion limit of the CTRW

with a power-law distribution of waiting times �11�. Lutz

�33� also showed that these completely different forms of

non-Markovian anomalous diffusion share a few common

characteristics. In particular, they satisfy the same general-

ized Einstein relation and their lowest moments are all equal

with the exception of the second moment of the velocity

�11�.
Again proceeding for a step field gradient and noting Eq.

�27�, we have the mean-square phase,

���2��t� = 2�2G2�
0

t �
0

t1

t1t2�Ẋ�t1�Ẋ�t2��dt1dt2

=
2�2G2kT

m
�

0

t �
0

t1

t1t2E2−��− ���t1 − t2�2−��dt1dt2.

�37�

In the noninertial limit, i.e., at long times, t��1, again not-

ing the asymptotic behavior of the Mittag-Leffler function at

long times, we have

���2��t� �
�2G2kT

m��

2�1 + ��

��3 + ��
t2+�. �38�

In the normal diffusion limit, �→1, Eq. �38� reduces to Eq.

�21�. For short times, t��1, Eq. �37� yields

���2��t� �
�2G2kT

4m
t4�1 −

8��t2−�

�6 − ����5 − ��
+ ¯	 .

�39�

The leading term of expansion �39� coincides with the purely

kinematic result �28�. Moreover, the gradient echo dephasing

�cf. Eqs. �2� and �3�� is simply the r.h.s of Eq. �38�.
The spin-echo dephasing is calculated in a similar man-

ner. However, a step function must be introduced to allow for

the gap between the gradient pulses. Rather than rectangular

gradients, F�t1� and F�t2� now represent arbitrary gradient

shapes, t1 and t2 are arbitrary intervals of integration, and for

convenience we define t2
 t1. For the spin-echo case, these

functions are defined by

F�t1� → F�t1���t1� − 2��t1 − ��F��� , �40�

F�t2� → F�t2���t2� − 2��t2 − ��F��� �41�

�� representing the unit step function� so that

���2��t� =
2kT�2

��m��� − 1�
�

0

t

dt2�
0

t2 F�t1�F�t2�dt1

�t2 − t1�2−� . �42�

This expression is evaluated over all regions of integration

for the spin-echo sequence �Fig. 1�, which employs two posi-

tive diffusion gradients of duration � around the 180° rf

pulse �at t=��, where the second gradient begins at t=�. We

obtain,

���2� =
2�2kT

m��

G2�2

��1 + ��
� 2��

2 + �
+ �� − ���	 . �43�

�See Appendix B for details�. In the normal diffusion limit

��=1� this reduces to the Stejskal-Tanner equation �4�.
The fractional Brownian motion we have just discussed

assumes that the driving force ��t� is Gaussian so that the

characteristic function �16� still applies as in the normal

Brownian motion. Hence, the decay of the phase remains

�albeit stretched� exponential. Thus, the phase as calculated

from the fractional Brownian motion unlike that resulting

from the diffusion limit of the CTRW, with a power-law

distribution of waiting times, does not exhibit the character-

istic long-time tail often associated with anomalous diffusion

processes, signifying that the diffusion process depends

strongly on the initial conditions. If this phenomenon is in-

cluded it appears no longer possible to treat the dephasing

process using the Langevin equation and a fractional diffu-

sion equation similar to that treated in Refs. �25,30,33,46�
adapted to the phase must be used, rendering the solution

much more complicated.

VI. COMPARISON WITH EXPERIMENT

The aim of the experimental component of this work was

to demonstrate the fractional nature of the diffusion of water
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in tissue using MRI. To this end the customized pulse se-

quence used an increasing duration of the diffusion gradients

to increase the diffusion weighting, instead of the more usual

increase in the field gradient strength, in a similar approach

to that of Latour et al. �47� when the time dependence of

water diffusion was investigated. Image data were collected

with a 3 T Philips Achieva clinical MRI system, with a gra-

dient coil system which could produce linear field gradients

up to 50 mT/m. The rf coil employed was a Philips SENSE

head rf transceiver coil. Diffusion-weighted experiments

were performed on nine healthy volunteers: five males and

four females. They ranged in age from 19 to 29, with a mean

age of 27.

The first experiment employed a customized diffusion-

weighted gradient echo multishot echo-planning imagining

�EPI� sequence, which was carried out on each subject in

order to compare Eq. �38� with experiment. The strength of

the trapezoidal diffusion-weighting gradients was set to 48

mT/m and the duration ranged from 12 to 24 ms in incre-

ments of 1.5 ms. The gradients were applied in the axial

direction only. The second experiment also used a custom-

ized gradient echo EPI sequence; however, the bipolar

diffusion-weighting gradients now had a fixed duration of 24

ms and the gradient strength was varied over eights steps

from 8 to 48 mT/m. For both experiments this would equate

to a maximum b value of 1460 s /mm2 as defined in Eq. �2�.
An image with no diffusion weighting �a b0 image� was ac-

quired at the start of each weighting sequence. A sensitivity

encoding a factor of 2 was applied. The repetition time was 2

s and the echo time was 64.2 ms. Ten 4 mm axial slices with

a field of view of 23�23 cm2 were acquired to encompass

the whole brain. The ten diffusion weightings were repeated

sequentially a total of 30 times for each slice for averaging

purposes. Inversion recovery images of each subject were

also acquired as a map of gray and white matters.

Postprocessing and fitting were performed using IDL 7.0

�ITT Visual Information Solutions, Boulder, CO, USA�. The

experiments were averaged over the 30 repetitions. Small

regions of interest �ROIs�, ranging from 4 to 25 pixels, were

then chosen within gray and white matter regions, as indi-

cated in the inversion recovery images. These regions were

fitted using the gradient echo �38� in the form of the loga-

rithm of the dephasing, namely,

ln�A�t�

A0

	 =
2�2G2Dt2+�

�2 + ����1 + ��
. �44�

The fitting was performed using the Levenberg-Marquardt

algorithm as implemented in IDL to provide values for D, �,

and A0. This algorithm minimizes the cost function

C = 
i=1

n

�yi − f�x�i,a���2, �45�

where yi is the experimental diffusion data of length n and

f�x�i ,a�� is the fitting function to evaluate the variables a�
= �D ,� ,A0�. The A0 term was determined in order to further

validate the accuracy of the fit of the equation to the data.

When the model is accurate, the image created of each of the

A0 values, as calculated for each pixel, should represent a

copy of the image acquired with no diffusion weighting.

We found the fractional model to fit the experimental data

very accurately, with chi-squared values for goodness of fit

of 	1�10−5. Figures 1–3 show decay curves of the image

signal in a region chosen in �a� gray matter and �b� white

FIG. 2. Plots of data �symbol� and fit �solid line� for �a� gray

matter and �b� white matter regions of interest for subject 2.FIG. 1. Plots of data �symbol� and fit �solid line� for �a� gray

matter and �b� white matter regions of interest for subject 1. The

image intensity was normalized by dividing by the b0 image. The

fractional diffusion model �Eq. �44�, solid line� was fitted to the

experimental data to determine D and � �Tables I and II�. The

experimental data are plotted against t3.
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matter tissues of three of three subjects. The graphs illustrate

fits of Eq. �44� to ROIs drawn in the gray and white matters

of three subjects. The values of the fitting parameters D and

� are listed in Table I. The image intensity has been normal-

ized by division with the b0 image. The curves are plotted

versus the time parameter t3, with a fixed parameter G. Plot-

ting the data in this way shows the nonlinearity of the decay

with respect to cubic time and illustrates why the single ex-

ponential �3� does not accurately describe the decay. The

complexity of the tissue structure causes the water diffusion

to change from its free behavior where �=1. The diffusion in

these experiments exhibited subdiffusive behavior character-

ized by the fractional parameter �	1 with �=0.28–0.75.

Table II illustrates average values produced for D and � for

all subjects in the study. The results from the gradient

strength varying experiment are shown in Fig. 4. This experi-

ment demonstrates that, for the more typical diffusion-

weighted sequence where the degree of diffusion weighting

is varied by changing the strength of the applied gradients,

the fractional time equation also fits. For this experiment D

=0.52�10−3 mm2 s−1 and �=0.31. Maps of the diffusion

coefficient D, the normalization constant A0, and the fractal

dimension parameter � were obtained for each voxel in the

images. Figure 5 illustrates some examples of these maps for

a selected anatomical slice.

VII. CONCLUDING REMARKS

In this paper we have shown how the magnetization

dephasing in magnetic resonance imaging arising from the

Brownian motion of the nuclei in a reservoir of infinite ex-

tent may be determined by simply writing the Langevin

equation for the phase random variable and then calculating

its characteristic function. The method yields in transparent

fashion, from the properties of the characteristic function of

Gaussian random variables, the classical dephasing results of

Carr and Purcell �9�, Torrey �15�, and Stejskal and Tanner

�18� for normal diffusion, which are based on the diffusion

limit of the discrete-time random walk proposed by Einstein

�10�. Moreover, it is easily generalized to include the inertia

of the nuclei, in which the underlying statistics are governed

by the Ornstein-Uhlenbeck process �40� and to other more

complicated situations where the nuclei move in a field of

force of potential V�r�. Hence, we have a microscopic expla-

nation of the dephasing process in free water, namely, it re-

sults from the nucleus behaving as a random walker execut-

ing a jump of finite mean-square length at uniform time

intervals, so that the only variable is the orientation of the

walker.

The method may also be extended to anomalous diffusion

in a transparent fashion in order to provide a possible micro-

scopic justification for the use of stretched exponentials to

describe the dephasing in tissue. Namely, the anomalous dif-

fusion may ultimately have its origin in memory effects giv-

ing rise to fractional Brownian motion �48�. This process

TABLE I. Values of D and � for Figs. 1–3 as obtained using the

Levenberg-Marquardt algorithm to fit Eq. �44�.

Subject

Gray matter White matter

D�10−3

�mm2 s−1� �

D�10−3

�mm2 s−1� �

1 0.34 0.81 0.16 0.69

2 0.4 0.87 0.11 0.42

3 0.38 0.72 0.25 0.66

TABLE II. Mean values of D and � with their standard

deviations.

D�10−3

�mm2 s−1� �

Gray matter 0.48�0.15 0.77�0.12

White matter 0.19�0.08 0.5�19

FIG. 3. Plots of data �symbol� and fit �solid line� for �a� gray

matter and �b� white matter regions of interest for subject 3.

FIG. 4. The data plotted against diffusion-weighting gradient

strength squared, with the fit overlaid as a solid line. The region of

interest for this plot is chosen from gray matter.
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naturally introduces the fitting parameter �, indicating the

role played by fractional dynamics in the time for the com-

plex diffusion, which is observed in human neuronal tissue.

In normal diffusion, �=1, and we have the classical expres-

sions �9,15,18� once more.

The calculation is accomplished using the fractional

Langevin equation for the translational Brownian motion

proposed by Lutz �33� which supposes that the random force

in that equation is Gaussian, so that the properties of charac-

teristic functions of Gaussian random variables may once

again be used to calculate the dephasing yielding a fractional

generalization of the results of Refs. �9,15,18�. Finally, we

may conclude that the fractional diffusion dephasing �44� fits

experimental data from gray and white matter accurately and

in this complex environment the time dependence of the sig-

nal decay is not cubic but falls in the range of t2.1
→ t2.8. Such

a behavior indicates that one may be observing subdiffusion.

This conclusion must always be tempered, however, by the

fact that other relaxation mechanisms ultimately resulting

from restricted normal diffusion may give rise to seemingly

anomalous behavior �17�.
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APPENDIX A: DIFFUSION EQUATION FOR THE PHASE

The diffusion equation for the evolution of the probability

density function P�x , t �x0 , t0� of the random variable x rep-

resenting the stochastic displacement X�t� in Einstein’s

theory of the Brownian motion is

�P

�t
= D

�
2P

�x2
. �A1�

By means of the transformation �1� and the chain rule the

corresponding diffusion equation for the distribution function

f�� , t� of the phase � is

� f

�t
= D�

�
2f

��2
, �A2�

where � represents the stochastic phase variable ��t� and we

suppose that �� and �t approach zero �extremely small dis-

placements in infinitesimally short times� in such a way that

�11�

D� = lim
�t→0

���2�

2�t
. �A3�

The diffusion coefficient D� in Eq. �A3� is obtained as fol-

lows. The change in the phase � is defined by the Langevin

equation �19�, so that

��t� = − ��−1�
0

t

��t1��
0

t1

G�t��dt�dt1 �A4�

assuming that ��0�=0. In general, taking account of inertia

we would have

��t� = − ��
0

t

Ẋ�t1��
0

t1

G�t��dt�dt1. �A5�

In order to see how Eq. �A4� allows one to evaluate the

diffusion coefficient D� from Eq. �A3�, we consider the

change ��2�t� in a small time �t. According to Eqs. �19�,
�20�, and �A4�, we have

��2�t� � 2��t��̇�t��t

=
2�2

�2 �
0

t �
0

t1

G�t��dt��
0

t

G�t��dt���t1���t�dt1�t .

On taking expectation values, remembering that G�t� is not a

stochastic variable and using the properties of the white

noise force ��t�, we obtain,

(a) (b) (c) (d)
(e)

FIG. 5. �Color online� These images illustrate the success of the fit of the fractional model to the experimental in vivo data, for each voxel

in a selected slice. �a� The image acquired with no diffusion weighting, or the b0 image. �b�–�d� show maps of the fitting parameters A0, D,

and � respectively, for each voxel in a given anatomical slice. �b� The representation of each A0 produced during a fit of each voxel is the

predicted b0 image from the fit. �e� This image is an example of an inversion recovery image, which was used to select the regions of interest

in gray and white matters for fitting.
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���2� =
4�kT�2

�2 �
0

t �
0

t1

G�t��dt��
0

t

G�t��dt���t − t1�dt1�t

= 2D�2��
0

t

G�t��dt��2

�t .

Hence, the desired result is

D� = ���2�/�2�t� = D�2��
0

t

G�t��dt��2

.

APPENDIX B: SPIN-ECHO CALCULATION

The most significant difference between the spin and

simple bipolar pulse sequences is the timing gap between the

first and second rectangular gradients. We follow the Stejskal

and Tanner method �18� and with the notation of Eqs.

�2�–�4�,

dA

dt
= − �2D�F�t���t� − 2��t − ��F����2A , �B1�

where F�t�=
0
t G�t��dt� and ��t� is the unit step function. The

180° refocusing pulse is placed midway between the two

gradient pulses at t=�. Each of the gradient functions has

duration � and the second pulse begins at t=�. The solution

of Eq. �B1� is

A�t� = A�0�exp�− �
0

t

g�t��dt�	 , �B2�

where

�
0

��

g�t��dt� = − �2D��
0

��

F2�t��dt� − 4F����
0

��

F�t��dt�

+ 4��� − ��F2���	 . �B3�

The fractional evaluation becomes more complicated, as we

must integrate over two arbitrary time intervals t1 and t2 and,

therefore, must define the two gradient integrals, F�t1� and

F�t2�, viz.,

F�t1� → F�t1���t1� − 2��t1 − ��F��� ,

F�t2� → F�t2���t2� − 2��t2 − ��F��� .

Recalling Eq. �42�, we have

���2��t� =
2kT�2

��m��� − 1�
�

0

t

dt2�
0

t2 F�t1�F�t2�

�t2 − t1�2−�dt1.

�B4�

Here, the product of F�t1� and F�t2� can be presented as

F�t1�F�t2� = �F�t1���t1� − 2��t1 − ��F����

��F�t2���t2� − 2��t2 − ��F����

= F�t1�F�t2���t1���t2� − 2F���F�t2���t2���t1 − ��

− 2F�t1�F�����t1���t2 − �� + 4F2���

���t1 − ����t2 − �� . �B5�

The evaluation of integrals in Eq. �B4� can then be per-

formed in piecewise fashion provided we can write F�t� ex-

plicitly in four intervals of integration, viz.,

�0,��,��,��,��,� + ��,�� + �,2�� .

The contribution of each term of Eq. �B5� in Eq. �B4� must

be evaluated separately for all intervals of integration.

We take, as an example, the first term only, viz.,

F�t1�F�t2���t1���t2�; other terms can be evaluated likewise.

The first interval of integration �0,�� in Eq. �B4� falls over

the first rectangular gradient pulse and, therefore,

F�t1�F�t2���t1���t2� = G2t1t2��t1���t2� . �B6�

Inserting Eq. �B4� into Eq. �B6� and performing the integra-

tions yields

���2��t��1�1� =
2kT�2

m����� − 1�
�

0

�

dt2�
0

t2 G2t1t2

�t2 − t1�2−�dt1

=
2kT�2G2�2+�

m���2 + ����1 + ��
. �B7�

During the second time interval from � to �, G=0 and thus

F�t1� and F�t2� remain constant, so that F�t1�F�t2���t1���t2�
=G2�2��t1���t2� and

���2��t��1�2� =
2kT�2

m����� − 1�
�

�

�

dt2�
�

t2 G2�2

�t2 − t1�2−�dt1

=
2kT�2G2�2

m����1 + ��
�� − ���. �B8�

The third time interval includes the second gradient pulse,

from � to �+�. Here,

F�t1�F�t2���t1���t2� = �Gt1 − G� + G���Gt2 − G�

+ G����t1���t2�

and

���2��t��1�3� =
2kT�2G2

m����� − 1�
�

�

�+�

��t2 − � + ��dt2�
�

t2 �t1 − � + ��

�t2 − t1�2−� dt1

=
2kT�2G2�5 + 2��

m���2 + ����1 + ��
�2+�. �B9�

Finally, in the interval from the end of the second gradient at

t=�+� to 2�, G=0 and F�t1� and F�t2� are constant, so that

F�t1�F�t2���t1���t2�=4G2�2��t1���t2� and
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���2��t��1�4� =
2kT�2

m����� − 1�
�

�+�

2�

dt2�
�+�

t2 �2G��2

�t2 − t1�2−�dt1

=
8kT�2G2�2

m����1 + ��
�2� − � − ���. �B10�

The sum of Eqs. �B7�–�B10� yields the contribution of the

first term,

���2��t��1 =
2kT�2G2�2

m����1 + ��

��2�3 + ��

2 + �
�� + �� − ��� + 4�2� − � − ���� .

Each of the remaining three terms in Eq. �B7� must be

treated similarly, however, only in the range from � to 2�, as

they are zero for t	�. The results are, respectively,

���2��t��2 = ���2��t��3

= −
4kT�2G2�2

m����1 + ��

�� �1 + 2����

1 + �
+ �� − ��� + 2�2� − � − ���	 ,

���2��t��4 =
8kT�2G2�2

m����1 + ��
��� + �� − ��� + �2� − � − ���� .

When all of them have been evaluated and summed, the

resulting equation for the fractional diffusion spin-echo ex-

periment is given by Eq. �43�.
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