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Abstract In this paper we study a Langevin approach to modeling of subdiffusion in the
presence of time-dependent external forces. We construct a subordinated Langevin process,
whose probability density function solves the subdiffusive fractional Fokker-Planck equa-
tion. We generalize the results known for the Lévy-stable waiting times to the case of infi-
nitely divisible waiting-time distributions. Our approach provides a complete mathematical
description of subdiffusion with time-dependent forces. Moreover, it allows to study the
trajectories of the constructed process both analytically and numerically via Monte-Carlo
methodology.

Keywords Subdiffusion · Inverse subordinator · First-passage time · Fractional
Fokker-Planck equation · Infinitely divisible distribution

1 Introduction

Recent developments in the area of statistical physics confirm that the classical diffusion
models based on Brownian motion fail to provide satisfactory description of many complex
systems. Therefore, in the last few years one observes a rapid evolution of various alternative
models. Starting with the pioneering papers of Montroll et al., see [18], the physical and
mathematical community has shown a growing interest in the development of models for
anomalous diffusion processes. The notion of anomalous diffusion refers to a wide family of
stochastic processes characterized by certain deviations from the classical Brownian linear
time dependence of second moment [16].

Maybe the most relevant subclass of anomalous diffusion processes constitute subdif-
fusion processes, characterized through the sublinear in time second moment. The list of
systems displaying subdiffusive regime is very extensive. Its presence was empirically con-
firmed in condensed phases, ecology, charge carrier transport in amorphous semiconductors,
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nuclear magnetic resonance, diffusion in percolative and porous systems, transport on frac-
tal geometries and dynamics of a bead in a polymeric network, and protein conformational
dynamics, see [16] and references therein.

A common description of subdiffusive transport is in terms of the fractional Fokker-
Planck equation (FFPE) derived from the continuous-time random walk (CTRW) [1, 16,
17]. The study of subdiffusive dynamics in the presence of time-dependent force field F(t),
giving rise to a modified FFPE, was recently proposed in [22]. The authors of the last paper
have derived the following version of the FFPE

∂w(x, t)

∂t
=

[
−F(t)

∂

∂x
+ 1

2

∂2

∂x2

]
�w(x, t), (1)

w(x,0) = δ(x), F(t) ∈ C([0,∞)) and � is the appropriate integro-differential operator
depending on the waiting-time distribution in the underlying CTRW scenario. Its precise
definition will be given in the next section.

Equation (1) is fundamental for statistical physicists in modelling of subdiffusion in time-
dependent force fields. It describes the evolution in time of the probability density function
(PDF) w(x, t) of some non-Markov stochastic process Y (t). The process Y (t) is called the
Langevin process corresponding to FFPE (1), or the stochastic representation of (1).

In this paper we construct rigorously a stochastic process Y (t), whose PDF is a solution
of fractional Fokker-Planck equation (1). Our verification method is based on the exami-
nation of the moments of the constructed process. The obtained results generalize the ones
presented in [12, 13] for Lévy-stable waiting-time distributions. We extend the studies to
the general case of infinitely divisible distributions. In Sect. 2 we introduce all the necessary
mathematical definitions and properties, which will be helpful in our studies. In Sect. 3 we
construct a subordinated Langevin process Y (t) and prove that its PDF solves (1). Since
the solution of (1) in the explicit form is not known, in the last section we take advantage
of the obtained stochastic representation and introduce a strongly and uniformly convergent
approximation scheme. It allows to simulate numerically trajectories of Y (t) and to approx-
imate solutions of (1) using Monte-Carlo methods.

2 Preliminaries

Let us begin with recalling some basic facts concerning infinitely divisible distributions,
subordinators and their inverses. We say that a nonnegative random variable T is infinitely
divisible, if its Laplace transform takes the form [21]

E
(
e−uT

) = e−�(u),

where �(u) is the so-called Lévy exponent. It can be written as

�(u) = λu +
∫ ∞

0

(
1 − e−ux

)
ν(dx).

Here, λ ≥ 0 is the drift parameter. It is assumed here for simplicity that λ = 0. The measure
ν(dx) is the appropriate Lévy measure. Some important examples of nonnegative infinitely
divisible distributions are: one-sided Lévy stable, Pareto, gamma, Mittag-Leffler, and tem-
pered stable distributions.
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Given an infinitely divisible random variable T with the Lévy exponent �(u), we intro-
duce the corresponding stochastic process {T�(t)}t≥0 via its Laplace transform

E
(
e−uT�(t)

) = e−t�(u).

T� is called subordinator. It is a strictly increasing Lévy process. Its increments are nonneg-
ative, independent and stationary. Next, the first-passage time process defined as

S�(t) = inf
{
τ > 0 : T�(τ) > t

}
, t ≥ 0, (2)

is called the inverse subordinator. Since limt→∞ T�(t) = ∞ a.s., S� is well defined. Inverse
subordinators have found various applications in probability theory. Their relationship with
local times of some Markov processes is discussed in details in [2]. The connection be-
tween inverse subordinators and the theory of renewal processes can be found in [3, 11, 24].
Applications to finance and physics are discussed in [26] and [9, 14, 15, 23], respectively.

Sample paths of S�(t) are continuous and singular with respect to the Lebesgue measure.
Moreover, for every jump of T�(τ) there is a corresponding flat period of its inverse. The
flat periods of S�(t) are characteristic for the subdiffusive dynamics, since they represent
waiting-times (or the trapping events in which the test particle gets immobilized) in the
underlying CTRW scenario. The function

U(t) = E(S�(t))

is called the renewal function, [2]. In what follows, we make an additional assumption that
there exist a renewal density u(t), i.e. a nonnegative function satisfying U(t) = ∫ t

0 u(s)ds.
FFPE (1) and its solution w(x, t) was constructed in [22] as a limit distribution in the

appropriate CTRW scheme. Its derivation was based on the corresponding generalized mas-
ter equation with two additional physical conditions: the probability conservation in a given
state and under transition between different states. The probability balance for the site k

reads

ṗk(t) = j+
k (t) − j−

k (t).

Here the dot denotes the time derivative and j±
k (t) denote the gain and loss currents for a

site. The probability conservation for transitions between different sites gives the following
relation between the gain current in the state k and loss currents at neighboring sites

j+
k (t) = wk−1,k(t)j

−
k−1(t) + wk+1,k(t)j

−
k+1(t).

Here, wk−1,k(t) and wk+1,k(t) denote the probabilities of going to the right (from site k − 1
to site k) and to the left (from site k + 1 to site k), respectively. Moreover, the considered
here physical system is assumed to be infinite and spatially homogeneous.

Given an infinitely divisible distribution T > 0 (with the Lévy exponent �) represent-
ing the waiting-time distributions in the underlying CTRW scenario, the integro-differential
operator � in (1) is defined as [22]

�f (t) = d

dt

∫ t

0
M(t − y)f (y)dy (3)

for sufficiently smooth function f . Here, the memory kernel M(t) is defined via its Laplace
transform

M̃(u) =
∫ ∞

0
e−utM(t)dt = 1

�(u)
. (4)



766 M. Magdziarz

Note that 1
�(u)

∼ e−�(u)

1−e−�(u) as u ↘ 0, therefore the Laplace transform is also written as

M̃(u) = e−�(u)

1−e−�(u) , [22]. The case of Lévy-stable waiting-times corresponds to �(u) ∝ uα ,
with α ∈ (0,1) being the stability parameter. In such case we have

�f (t) = 1


(α)

d

dt

∫ t

0
(t − y)α−1f (y)dy.

Thus, the operator � is equal to the Riemann-Liouville fractional derivative operator 0D
1−α
t ,

see [20]. This case was discussed in some details in [7, 12, 22] and gave rise to the discovery

two significant theoretical properties of subdiffusion, namely: the death of linear response
and the field-induced dispersion.

The authors of [22] showed the following result

Proposition 1 [22] Let mn(t) = ∫ ∞
−∞ xnw(x, t)dx denote the moments of the distribution

w(x, t) given in (1). Then, mn(t) satisfy the following recursive formula

mn(t) = n

∫ t

0
F(t1)�mn−1(t1)dt1 + n(n − 1)

2

∫ t

0
�mn−2(t1)dt1 (5)

with m0(t) = 1 and m−1(t) = 0.

It turns out that the above formula will play a crucial role in the proof of our main result
presented in the next section.

3 Langevin Picture

In this section, we solve the problem of stochastic representation of FFPE (1) with time-
dependent force F(t). Recall the definition of S�(t) in (2). Let us introduce the following
subordinated Langevin process

Y (t) = X(S�(t)), (6)

where {X(τ)}τ≥0 is the solution of the Langevin equation

dX(τ) = F(T�(τ))dτ + dB(τ), X(0) = 0. (7)

Here, B(τ) is the standard Brownian motion, independent of the subordinator T�(τ) and its
inverse S�(t). We will prove that the PDF of the subordinated Langevin process Y (t) solves
FFPE (1). But first, let us discuss the structure of Y (t) = X(S�(t)). The inverse subordi-
nator S�(t) is related to the operator � in FFPE (1), whereas the Langevin process X(τ)

is related to the Fokker-Planck operator (the operator in square brackets in (1)). Processes
X and S� are not independent. We stress the role of the process T�(τ), which must appear
in (7) in order to fulfill the physical requirement that the time-dependent force F(t) should
vary in the real time t . Indeed, since T�(τ) is inverse to S�(t), it cancels the effect of the in-
verse subordinator on the force F . Therefore, S�(t) subordinates the process X(τ) without
subordinating the time-dependent force.

The process Y (t) is non-Markov, due to the fact that the inverse subordinator S�(t) is
a local time of some Markov process [2]. Since FFPE (1) describes only one-dimensional
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distributions, the stochastic representation process (6) gives a complete mathematical picture
of subdiffusion. For the case of Markov Lévy driven Langevin systems see [5].

Using the fact that {S�(t) ≤ τ } = {T�(τ) ≥ t}, and by the standard method of compli-
cating the form of force F(t), one can show that the process Y (t) defined in (6) has the
following equivalent representation

Y (t) =
∫ t

0
F(y)dS�(y) + B(S�(t)). (8)

Here, the integral on the right side of (6) is interpreted pathwise as the Lebesgue-Stieltjes
integral. The above formula is very useful from the point of view of the stochastic analysis
of trajectories of Y (t) as well as its numerical simulation.

The next theorem is the main result of the paper:

Theorem 1 Let B(τ) be the standard Brownian motion and let S�(t) be the inverse subor-
dinator independent of B(τ). Then, the PDF of the process

Y (t) = X(S�(t)),

where X(τ) is defined by the stochastic differential equation (7), is the solution of the
FFPE (1).

Proof Using (8) we get that the moments of Y (t) can be written as

rn(t) = E(Y n(t)) = E

((∫ t

0
F(u)dS�(u) + B(S�(t))

)n)
,

n ∈ N. We prove in the Appendix that rn(t) satisfy the recursive formula

rn(t) = n

∫ t

0
F(t1)�rn−1(t1)dt1 + n(n − 1)

2

∫ t

0
�rn−2(t1)dt1, (9)

with r0(t) = 1 and r−1(t) = 0. Then, from (5) we get that moments mn(t) and rn(t) coincide.
Moreover, for fixed t0 > 0 we have

r2n(t0) = E
(
Y 2n(t0)

) ≤ 4nE

((∫ t0

0
F(u)dS�(u)

)2n
)

+ 4nE
(
B2n(S�(t0))

)

≤ 4nM2nE
(
S2n

� (t0)
) + 4nE

(
Sn

�(t0)
)
E

(
B2n(1)

)

≤ 4nM2n et0(2n − 1)!
�2n(1)

+ 4n et0(2n)!
�n(1)2n

,

where M = sup0≤s ≤t0
|F(s)|. Here, we have used the fact that

E(Sn
�(t0)) =

∫ ∞

0
xn−1

P(S�(t0) > x)dx =
∫ ∞

0
xn−1

P
(
e−T�(x) > e−t0

)
dx

≤
∫ ∞

0
xn−1et0e−x�(1)dx ≤ et0
(n)

�n(1)
.

Consequently, the series
∑∞

n=1 r2n(t0)z
n/(2n)! is convergent for appropriately small z and

the characteristic function of Y (t) is holomorphic in a neighborhood of zero. Therefore, the
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moments determine the distribution and the PDF of Y (t0) is equal to the solution w(x, t0) of
FFPE (1). �

4 Simulation

In what follows, we propose a strongly and uniformly convergent approximation scheme
of the subordinated Langevin process Y (t) defined in (6). It can be applied to simulate
trajectories of Y (t) and to approximate solutions of (1) using Monte-Carlo methods.

Let δ > 0 be the step length. We define the following approximation S�,δ(t) of the inverse
subordinator S�(t)

S�,δ(t) = (min{n ∈ N : T�(δn) > t} − 1) δ. (10)

Next, we introduce the following approximation of the process Y (t)

Yδ(t) =
∫ t

0
F(u)dS�,δ(u) + B(S�,δ(t)), t ≥ 0. (11)

The next result shows the uniform convergence and verifies the order of convergence of the
above approximations. At this point, we make an additional assumption that the force F is
of bounded variation on every interval [0, t] and continuous. The function

VF (t) = sup
P

n∑
i=1

|F(ti) − F(ti−1)|,

where P = {all partitions of the interval [0, t]}, is called the total variation of F .

Theorem 2 For every T > 0 the introduced approximation processes S�,δ(t) and Yδ(t)

satisfy the following conditions

(i)

sup
0≤s≤T

|S�(s) − S�,δ(s)| ≤ δ a.s.

(ii) Let 0 < q < 1/2. Then, for appropriately small δ > 0

sup
0≤s≤T

|Y (s) − Yδ(s)| ≤ Cδ + δq a.s.,

where C = sup0≤s≤T |F(s)| + 2VF (T ) − F(T ) + F(0).
(iii)

E (|Y (T ) − Yδ(T )|) ≤ C1δ + C2δ
1/2,

where C1 = |F(T )| + 2VF (T ) − F(T ) + F(0) and C2 = E(|B(1)|).

The proof follows the one presented in [12] for the Lévy-stable case.
To evaluate numerically the process S�,δ(t), one must simulate the values T�(δn), n =

1,2, . . . . Since T� is a Lévy process, this can be done by one of the methods presented
in [19]. Some more efficient methods can be used for particular distributions (for the case of
stable distributions see [8, 25], for the geometric stable laws see [10]).
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To evaluate the process Yδ(t) it is enough to note that S�,δ(t) is a scaled renewal process.
Thus, the integral in (11) can be written as

∫ t

0
F(u)dS�,δ(u) = δ

N∑
n=1

F(T�(δn)).

Here, N is an integer number such that T�(δN) < t ≤ T�(δ(N + 1)). Now, the sum on
the right side of the above formula as well as the trajectories of Brownian motion B(τ),
can be easily calculated numerically. Therefore, sample paths of Yδ(t) are simulated very
efficiently.

Acknowledgements The paper was partially supported by the Foundation for Polish Science through the
Domestic Grant for Young Scientists (2009).

Appendix

Proof of formula (9) For the renewal function U(t) = E(S�(t)) we have

U(t) =
∫ ∞

0
P(T�(x) < t)dx =

∫ ∞

0

∫ t

0
fT�(x)(y)dydx,

where fT�(x) is the PDF of the random variable T�(x). Therefore, the Laplace transform of
the renewal density u(t) equals

ũ(s) =
∫ ∞

0

∫ ∞

0
e−stfT�(x)(t)dtdx =

∫ ∞

0
e−x�(s) = 1

�(s)
.

Therefore, the operator � in (1) has the form

�f (t) = d

dt

∫ t

0
u(t − y)f (y)dy. (12)

The above formula gives us the useful link between the operator � and the inverse subordi-
nator S�(t).

Let us now put

an(t) = E

((∫ t

0
F(t1)dS�(t1)

)n)
,

with n ∈ N. We will first show that

an(t) = n

∫ t

0
F(t1)�an−1(t1)dt1. (13)

By iterating the change of variable formula for Lebesque-Stieltjes integral, we get
(∫ t

0
F(t1)dS�(t1)

)n

= n!
∫ t

0

∫ t1

0
. . .

∫ tn−1

0
F(t1) . . . F (tn)dS�(tn) . . . dS�(t1). (14)

Now, we introduce the random measure on [0,∞) by putting �((s, t]) = S�(t) − S�(s),
t > s ≥ 0. Next, let {C(t)}t≥0 be the Cox process directed by �. Thus, conditionally on
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� = λ, C(t) is equal in distribution to the inhomogeneous Poisson process with intensity λ.
In such setting C(t) is the renewal process with the renewal function [6]

E(C(t)) = E(S�(t)) = U(t).

Moreover, for the renewal process C(t) the following property holds [4]

E(dC(t1) . . . dC(tn)) =
n∏

i=1

U(dti − ti+1),

where t1 > t2 > · · · > tn > tn+1 = 0. By the fact that the factorial moments of every Cox
process are equal to the ordinary moments of its directing measure, see [4], we get

E(dS�(t1) . . . dS�(tn)) =
n∏

i=1

U(dti − ti+1).

Thus, using (14) with the above result, we have

an(t) = E

(
n!

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
F(t1) . . . F (tn)dS�(tn) . . . dS�(t1)

)

= n!
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0

n∏
i=1

F(ti)u(ti − ti+1)dtn . . . dt1.

Consequently,

an(t) = n

∫ t

0
F(t1)

∫ t1

0
u(t1 − t2)

d

dt2
an−1(t2)dt2dt1

= n

∫ t

0
F(t1)�an−1(t1)dt1.

Next, let us put

bn(t) = E(Bn(S�(t))).

Clearly, for n = 2m − 1, m ∈ N, we have bn(t) = 0. For n = 2m, by conditioning arguments
in combination with (13), we obtain

bn(t) = E(Sm
�(t))E(Bn(1)) = m(n − 1)

∫ t

0
�E(Sm−1

� (t1))E(Bn−2(1))dt1

= n(n − 1)

2

∫ t

0
�bn−2(t1)dt1. (15)

Let us now define

ck,n(t) = E

(
(B(S�(t)))k

(∫ t

0
F(t1)dS�(t1)

)n)
,

with k,n ∈ N. If k = 2m − 1, m ∈ N, then by conditioning ck,n(t) = 0. For k = 2m, m ∈ N,
we will show that

ck,n(t) = n

∫ t

0
F(t1)�ck,n−1(t1)dt1 + k(k − 1)

2

∫ t

0
�ck−2,n(t1)dt1. (16)
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We have

ck,n(t) = E(Bk(1))E

(
S

k/2
� (t)

(∫ t

0
F(t1)dS�(t1)

)n)
.

Integrating by parts and iterating the change of variables formula, we get

S
k/2
� (t)

(∫ t

0
F(t1)dS�(t1)

)n

= n!
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0

n∏
i=1

F(ti)S
k/2
� (t1)dS�(tn) . . . dS�(t1)

+ n!k/2
∫ t

0

∫ t1

0
· · ·

∫ tn

0

n+1∏
i=2

F(ti)S
k/2−1
� (t1)dS�(tn+1) . . . dS�(t1).

Moreover, for every q ∈ N, we have

S
q

�(t1) = q!
∫ t1

0
· · ·

∫ tq

0
dS�(tq+1) . . . dS�(t2).

Now, repeating the arguments from the case an(t) in (13), we get

ck,n(t) = n

∫ t

0
F(t1)

∫ t1

0
u(t1 − t2)

d

dt2
ck,n−1(t2)dt2dt1

+ k(k − 1)

2

∫ t

0

∫ t1

0
u(t1 − t2)

d

dt2
ck−2,n(t2)dt2dt1

= n

∫ t

0
F(t1)�ck,n−1(t1)dt1 + k(k − 1)

2

∫ t

0
�ck−2,n(t1)dt1,

which yields (16).
Finally, using the Newton’s binomial expansion, we get that formula (9) is equivalent to

n∑
k=0

(
n

k

)
ck,n−k(t) = n

n−1∑
k=0

(
n − 1

k

)∫ t

0
F(t1)�ck,n−k−1(t1)dt1

+ n(n − 1)

2

n−2∑
k=0

(
n − 2

k

)∫ t

0
�ck,n−k−2(t1)dt1. (17)

Thus, taking advantage of (13), (15) and (16), we get that (17) and equivalently (9) hold. �
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