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1. Introduction

The study of low-dimensional magnetic systems is at the cen-
tre of current research interest because of their applicability in 
memory and spintronics devices. Various experimental tech-
niques, such as spin-polarized scanning tunneling microscopy 
[1], have made it possible to determine the magnetic structure 
of systems down to the atomic level. Magnetic devices can 
often be successfully modelled by continuum micromagnetic 
methods [2, 3]. Atomistic spin dynamics simulations provide a 
way to theoretically model magnetic systems containing from 
several atoms to a few thousand atoms, on time scales ranging 
from a few femtoseconds to several hundred picoseconds [4]. 
Most of these methods are based on the numerical solution of 
the stochastic Landau–Lifshitz–Gilbert (LLG) equation [5–8], 
where the torque acting on the spin vectors is determined from 
a generalized Heisenberg model with parameters obtained 
from ab initio calculations [9–11].

While in the case of bulk systems, or thin films with at 
least tetragonal symmetry, the construction of the effective 
Hamiltonian is straightforward [11], in small magnetic clus-
ters the reduced symmetry of the system makes this task quite 
complicated. This concerns, in particular, the on-site mag-
netic anisotropy and the off-diagonal matrix elements of the 
exchange tensor. These terms of the effective Hamiltonian are 
related to the relativistic spin–orbit coupling, therefore their 
role is essential in spintronics applications. In order to avoid 
this technical problem of ab initio based spin models, first 
principles spin dynamics has to be used, where the effective 
field driving the motion of the spins is calculated directly from 
density functional theory.

The foundation of first principles spin dynamics in itiner-
ant-electron systems was laid down by Antropov et al [12, 13] 
and was later developed to include Berry phase effects [14] 
and many-body effects in terms of time-dependent spin-den-
sity functional theory [15]. It was pointed out that the adiabatic 
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decoupling of the motion of the magnetization averaged over 
an atomic volume and the electronic degrees of freedom 
results in an equation identical to the Landau–Lifshitz–Gilbert 
equation. The time evolution of the atomic magnetization can 
be treated similarly to the description of the motion of the 
nuclei in molecular dynamics. In molecular dynamics the 
forces are calculated by means of ab initio methods but the 
classical equation of motion is solved. In spin dynamics the 
torque driving the motion of the atomic moments is calculated 
from first principles and it is used to determine the orienta-
tion of the magnetization at the next time step via the classical 
Landau–Lifshitz–Gilbert equation.

One realization of ab initio spin dynamics is based on 
the constrained local moment (CLM) approach proposed by 
Stocks et al [16, 17] following the constrained density func-
tional theory developed by Dederichs et al [18]. In the con-
strained local moment method the Kohn–Sham equations are 
solved in the presence of a constraining field ensuring that the 
local moments point to predefined directions. The opposite 
of this constraining field is the internal effective field which 
rotates the spins, therefore it should be used in the Landau–
Lifshitz–Gilbert equations.

In the present work the effective field is determined relying 
on the magnetic force theorem [10, 19]. By using multiple 
scattering theory, analytic formulas are derived for the deriva-
tives of the band energy with respect to the transverse change 
of the exchange field. The electronic structure of the system is 
determined by applying the embedded cluster method in the 
framework of the fully relativistic Korringa–Kohn–Rostoker 
method [20]. Since the Landau–Lifshitz–Gilbert equations are 
rewritten into a form appropriate for our ab initio calculations, 
a new numerical method was implemented, based on the one 
proposed by Mentink et al [21].

The new numerical scheme is first tested on a model 
Hamiltonian describing a linear chain of atoms with ferro-
magnetic nearest-neighbour Heisenberg coupling. The model 
was chosen since it has an analytic solution [22, 23], there-
fore the numerical results can be compared to exact values. 
Another reason for studying this model is that linear chains of 
atoms are of great interest. Special noncollinear ground states 
were reported experimentally for Fe/Ir(0 0 1) [24] as well as 
theoretically for Mn/Ni(0 0 1) [25]. The magnetism of mon-
atomic Co chains on a Pt(9 9 7) surface has been studied in 
detail in [26, 27]. Ab initio calculations were performed for 
free-standing infinite Co chains [28, 29] as well as for those 
supported by Pt or Cu surfaces [30] or embedded in carbon 
nanotubes [31]. It was found by Hong et al [32] that, although 
the system is always ferromagnetic, the anisotropy prefers the 
chain direction in the supported Co/Cu(0 0 1) case and the per-
pendicular direction in the free-standing case. It was shown by 
Tung et al [33] and later by Töws et al [34] that this system 
does not have a spin spiral ground state, contrary to V, Mn 
and Fe chains, where the spiral ordering is the consequence of 
frustrated exchange interactions. Finite chains have also been 
studied by ab initio calculations [35–38].

In section 2 the calculation of the effective field appearing 
in the Landau–Lifshitz–Gilbert equation is detailed. In sec-
tion 3 three numerical integration schemes are described for 

solving the dynamical equations in the local coordinate sys-
tem. Based on model calculations described in section 4, it 
is concluded that the so-called one-step scheme has the most 
advantageous properties out of the three integration schemes. 
In section 5 the ab initio method is applied to a linear chain 
of ten Co atoms deposited on Au(0 0 1) and it is compared to 
a model Hamiltonian containing Heisenberg exchange inter-
actions and uniaxial magnetic anisotropy. It is found that the 
system is ferromagnetic and the magnetic anisotropy prefers 
the chain direction, in agreement with earlier calculations car-
ried out for a Cu(0 0 1) surface [30, 32]. On the other hand, 
due to the Dzyaloshinsky–Moriya interactions [39, 40] the 
ground state of the system turned out to resemble a spin spiral 
state. It was found that the temperature-dependent energy and 
magnetization curves are well described by a nearest-neigh-
bour Heisenberg model, while the simulated switching time 
between the degenerate ground states can also be satisfacto-
rily reproduced in terms of the simple spin model containing 
additional on-site anisotropy terms.

2. Calculating the effective field in the stochastic 
Landau–Lifshitz–Gilbert equation

In case of atomistic simulations, the stochastic Landau–
Lifshitz–Gilbert equation has the form

γ αγ∂
∂

= − ′ × + − ′ × × +M
M B B

M
M M B B

t
( ) [ ( )],i

i i i
i

i i i i
eff th eff th (1)

σ
= − ∂

∂
= − ∂

∂
B

M M
E E1

,i
i i i

eff (2)

η ηα
γ

= ∘ = ∘B D
k T

M
2

2
,i i i

i
i

th B
 (3)

where Mi = Miσi stands for the localized magnetic moment 

(spin) at site i, α is the Gilbert damping, γ γ
α

′ =
+1 2

 with the 

gyromagnetic factor γ
μ

=
ℏ

= e

m

2 B . For the stochastic part (3), 

T denotes the temperature and ηi is the white noise. The ∘  
symbol denotes that the Stratonovich interpretation of the sto-
chastic differential equation was used, which is necessary to 
preserve the magnitude Mi of the spin during the time evolu-
tion [21], as well as to satisfy the correct thermal equilibrium 
distribution for the spins [41]. This quasiclassical approach 
may provide a suitable description of the time evolution of the 
spins if the electronic processes are considerably faster than 
the motion of the localized moments [42].

By using the energy of the system E from ab initio calcula-
tions, the effective field Bi

eff is determined in the local coor-
dinate system, which transforms along with the spin vectors 
σi. Introducing the unit vectors e1i, e2i, as well as the angles 
describing the infinitesimal rotations around these vectors β1i, 
β2i as in figure 1 and making use of the identities

σ σ= = =e e e e 0,i i i i i i1 2 1 2 (4)

σ σ× = − × =e e e e, ,i i i i i i1 2 2 1
 (5)
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β βσ = − +e ed d d ,i i i i i1 2 2 1 (6)
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the stochastic Landau–Lifshitz–Gilbert equations transform into
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with dWi the infinitesimal form of the Wiener process with the 
usual properties [43]: an almost surely continuous Gaussian sto-
chastic process, starting from =W (0) 0i

r  with first and second 
moments =W t( ) 0i

r  and δ δ〈 ′ 〉 = ′′
′W t W t t t( ) ( ) min{ , }i

r
j
r

ij rr , 
where the r and r′ indices denote Descartes components. It 
should be noted that the vector equation (1) was replaced by 
two scalar equations (8) and (9), since the rotation of the spin 
vector is always perpendicular to the direction of the spin.

During the numerical solution of equations (8) and (9), 
the spins are rotated in sufficiently small time steps, and the  

components of the effective field 
β β

∂
∂

∂
∂

E E
,

i i1 2

 are recalculated  

in the new spin configuration. For the calculation of these  
derivatives, the band energy Eband from density functional the-
ory was used, defined as the single-particle grand canonical 
potential at zero temperature,

∫∑ε ε ε ε= − = −
ε

−∞
E N N( )d ,

i

i Fband

F

 (10)

where the sum goes over the occupied Kohn–Sham states  

and ∫ε ε ε= ′ ′
ε

−∞
N n( ) ( )d  is the integrated density of states.  

According to the magnetic force theorem [10, 19], Eband  
is a suitable alternative for the total energy if the energy dif-
ferences are only calculated in lowest order of the rotation 
angles. The Lloyd formula [44] connects the integrated density 

of states and the matrix of the scattering path operator (SPO) 
τ(ε) within the Korringa–Kohn–Rostoker method as

ε ε ε= + ΔN N N( ) ( ) ( ),0 (11)

ε
π

ετΔ =N( )
1

Im ln det  ( ) , (12)

where N0(ε) is the integrated density of states of a reference 
system, which is independent of the spin variables. For the 
band energy this leads to the expression

∫
∫

π
τ ε ε

π
τ ε ε

Δ = −

= −

ε

ε
−∞

−∞

E
1

Im ln det ( )d

1
Im Tr ln ( )d .

band

F

F

 
(13)

The Kohn–Sham effective potential VKS and the exchange 
field Bxc of the system are determined by solving the Kohn–
Sham-Dirac equation [45, 46] of density functional theory in the 
local spin density approximation (LSDA) and using the atomic 
sphere approximation (ASA). In order to find the magnetic 
ground state the method described in [47] has been applied.

Within the LSDA and the ASA, the  exchange-correlation 
field Bi, xc at site i and the corresponding spin magnetic 
moment Mi,

∫ ∫ Σ
π

β ε ε= −
ε

−∞
M r r rG

1
Im Tr [ ( , , )]d d ,i

icell

3
F

 (14)

are parallel in the ground state. In (14) G(ε, r, r) denotes the 
Green's function, β and Σ are the usual 4  ×  4 Dirac matrices, 
while εF is the Fermi energy [46]. During the spin dynamics 
simulations, the effective potentials and fields were kept fixed at 
their ground state values, while the direction of Bi, xc was identi-
fied with σi, instead of using the actual magnetic moments Mi 
in their place. Although they do not remain parallel out of the 
ground state, we supposed that the angle between Bi, xc and Mi 
remains small throughout the simulations. Also, it is known that 
the Landau–Lifshitz–Gilbert equations conserve the length of 
the spin vectors |σi| = 1, while the magnitude of the spin moments 
Mi may change during the simulations. These longitudinal fluc-
tuations were also neglected in our calculations, since they were 
expected to be small in the case of stable magnetic moments. 
The validity of these assumptions will be verified in section 5.

Up to second order in the angle variables, the single-site 
scattering matrix at site i, ti, changes by [11]

β β βΔ =
ℏ

−
ℏ

− −
′ ′

−⎡⎣ ⎤⎦e J e J e Jt
i

t t( ) [ , ( ) ]
1

2
, [ , ( ) ] ,i

qi qi
i

qi qi q i q i
i1 1

2
1

 

(15)

when Bi, xc is rotated around axis eqi by angle βqi(q  =  1, 2, 
see figure 1). Here J denotes the matrix of the total angular 
momentum operator, [A, B] denotes the commutator of matri-
ces A and B, and a sum over the same indices (q, q′) has to 
be performed. Using the Lloyd formula, the first and second 
derivatives of the band energy with respect to the angle vari-
ables can be expressed as [11]

∫β π
τ ε∂

∂
=

ℏ

ε

−∞

−{ }e J
E i

t
1

Im Tr [ , ( ) ] d ,
qi

qi
i iiband 1F 

(16)

Figure 1. Sketch of the spin vector σi, the unit vectors e1i, e2i and 
the angle variables β1i, β2i as introduced in the text. The vector σ′

i 
represents the spin after an infinitesimal rotation.
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(17)

The first derivative appears explicitly in the Landau–
Lifshitz–Gilbert equations (8) and (9), when using a local 
coordinate system. The second derivatives will be used in the 
one-step numerical integration scheme detailed in the next 
section. It is worth mentioning that the second derivatives for 
a ferromagnetic configuration are related to the exchange cou-
pling tensor and (17) simplifies to the Liechtenstein formula 
[10] in the nonrelativistic case.

3. Numerical integration algorithms

Equations (8) and (9) describe the motion of the spins in 
the local coordinate system. As in each time step the calcu-
lation of the effective field is quite demanding, a numerical 
integration scheme is needed to solve the system of stochas-
tic differential equations which can be used with a relatively 
large time step. Three numerical integration schemes were 
employed for calculating the next spin configuration σi(tn+1) 
at time tn+1 = tn+Δt from the current spin configuration σi(tn), 
using small rotations Δ β1i, Δ β2i and the derivatives (16) and 
(17). The computational details of these integration schemes 
are given in section A.1 in the appendix, here only the basic 
features of the algorithms are summarized.

Conserving the length of the spin vectors is an important 
symmetry of the equations, since during the calculation of the 
effective field the spin vectors are supposed to be normalized. 
Unfortunately, the Heun method, which is the most widely 
used numerical scheme to solve the stochastic Landau–
Lifshitz–Gilbert equation [9, 41], does not fulfill this require-
ment. Recently Mentink et al [21] have proposed a method 
which does conserve the magnitude of the spins. Modified for 
the local coordinate system, this algorithm can be sketched as

β β β β
σ σ σ→ ∂

∂
∂
∂

→ → ∂
∂

∂
∂

→∼
∼ ∼ +t

E E
t

E E
t( ) , ( ) , ( ),i n

i i

i n

i i

i n

1 2 1 2

1 (18)

where σ∼ t( )i n  is a first approximation for σ + +t t(
1

2
( ))i n n 1 . This  

is a two-step numerical integration scheme, since the deriva-
tives have to be calculated for two different spin configura-
tions, σi(tn) and σ∼ t( )i n . Since the most time consuming part 
of the ab initio simulation is the calculation of the scattering 
path operator τ, a more preferable method would calculate the 
effective fields only once per time step, but should have similar 
stability and convergence properties to the above solver.

Therefore, we propose the one-step scheme with the 
algorithm

β β β
σ σ→ ∂

∂
∂
∂ ∂

→
′

+t
E E

t( ) , ( ),i n
qi qi q j

i n

2
band

1
 (19)

where it is necessary to evaluate the second derivatives of the 
energy. Here the determination of the new configuration from 
the derivatives is more complex than in the two-step scheme, 
see section A.1 in the appendix. Nevertheless, the computa-
tional time of a time step for the one-step scheme is still much 
smaller than for the two-step scheme.

We also examined the simplified one-step scheme with the 
algorithm

β β
σ σ→ ∂

∂
∂
∂

→ +t
E E

t( ) , ( ),i n

i i

i n

1 2

1 (20)

which is based on the Euler method. This method exhibits 
the beneficial properties of both the one-step and two-step 
schemes: the effective fields have to be calculated only once 
for each time step and the calculation of the new spin configu-
ration from the effective field has a simpler form than in the 
one-step scheme.

As given in section A.1 in the appendix, all three methods 
have weak order of convergence δ = 1, but they have different 
stability properties. In section 4 it will be demonstrated that the 
simplified one-step scheme is much less stable than the other 
two methods, therefore a significantly smaller time step is neces-
sary, which considerably increases the length of the simulation.

4. Applications to a one-dimensional 
Heisenberg chain

Before implementing the numerical solver in the embedded 
cluster Korringa–Kohn–Rostoker method [20], the different 
schemes discussed in section 3 were compared for the case of 
a one-dimensional classical Heisenberg chain, described by 
the Hamiltonian

∑σ σ=
=

−

+E J ,
i

N

i i

1

1

1 (21)

where N is the number of spins, ferromagnetic coupling J < 0 
was considered between the nearest neighbours and free bound-
ary conditions were used. The expectation value of the energy 
as a function of temperature can be explicitly given as [22, 23]

〈 〉 = −E T N JL
J

k T
( ) ( 1) ,

B

⎛
⎝
⎜

⎞
⎠
⎟ (22)

where = −L x
x

x( )
1

coth( ) is the Langevin function multiplied 

by −1. The average of the square of the magnetization can be 
calculated as [23]

∑

μ
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=
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−
−
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J

k T

J
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J
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J
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2
B

2
B

B
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B

 

(23)

where μ is the size of the atomic magnetic moment. For the 
model Hamiltonian (21) μ = 1, while a value of μ≠ 1 will be 
fitted to the ab initio results in section 5.
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Since in this case the energy is known as a function of the 
spin vectors in the global coordinate system, the global two-
step scheme proposed in [21] can be compared to the methods 
applied in the local coordinate system. Explicit expressions 
for the first and second derivatives of the energy in the local 
coordinate system are given in section A.2 in the appendix.

For the simulations a ferromagnetic system with J  =  −1 
was chosen, and the mean energy was calculated as a function 
of temperature for each of the numerical schemes. As can be 
seen in figure 2, all the proposed methods give results which 
are in relatively good agreement with the analytic solution. In 
order to reach appropriately low error values, the simplified 
one-step scheme requires a much smaller time step than the 
other methods. This can also be seen in figure 3, where the 
mean energy is depicted at a given temperature, as a func-
tion of the size of the time step. The one-step and two-step 
methods have similar stability properties, both of them being 
in agreement with the analytic result for the expectation value 
of the energy up to time steps dt  ≈ 0.1. On the other hand, 
the simplified one-step scheme requires an about 100 times 
smaller time step. The most efficient method in this case is the 
two-step scheme compiled in the global coordinate system, 
where one can use about 5 times larger time steps than in the 
one-step and two-step schemes using the local coordinate sys-
tem. However, this approach does not fit the requirements of 
the embedded cluster Korringa–Kohn–Rostoker method.

We thus conclude that the most effective numerical method 
for the ab initio calculations is the one-step scheme, as it 
has the same stability properties as the two-step scheme, but 
requires less computational capacity since at each time step 

the derivatives have to be calculated only for a single spin 
 configuration as discussed in section 3.

In order to implement the one-step method in ab initio 
calculations an appropriate time scale for the magnetic pro-
cesses must be determined. In the case of a simple Heisenberg 
model, the only parameter is the exchange coupling J with the 
corresponding time scale 1/|J|. As is demonstrated in figure 3 
the one-step scheme remains stable up to time steps as large 
as 5–10% of this time scale. In the ab initio calculations, the 
magnitudes of the atomic magnetic moments, the interactions 
between the spins and the effect of the underlying lattice all 
influence the time scales of the system. Therefore, it is impor-
tant to determine them before starting the simulations.

For the simulations in section 5, the appropriate time 
scales were determined from the ωk frequencies of the nor-
mal modes of the spin system without damping, close to the 
ground state. The method for determining these frequencies 
is given in section A.4 in the appendix. The largest frequency 
corresponds to the smallest characteristic time period, which 
in turn determines the correct time step in the simulation. On 
the other hand, the smallest frequency related to the largest 
time scale helps in determining the length of the simulation. 
For example, the angular frequencies for a simple Heisenberg 
chain with periodic boundary conditions will be distributed  

between 0 and 4|J|, with ω π= − −⎜ ⎟
⎛
⎝

⎞
⎠J

k

N
2 1 cos 2k  for k = 0, ⋅ ⋅ ⋅,  

N − 1. Comparing this to figure 3, we can conclude that the 
one-step scheme remains stable up to time steps ωΔ ≈ −t 0.4 max

1 . 
The relaxation processes due to the damping α also influence 
the time scales, but in the case of α≪ 1 which is usually a 
good assumption for stable magnetic moments, the relaxation 
processes are significantly slower than the oscillations.

Figure 2. Statistical average of the energy of a linear chain of 
N = 50 spins as a function of the temperature obtained using 
different numerical schemes. The units of J = −1 and kB = 1 are 
used, with the damping value α = 0.05. The expectation value is 
calculated by running the simulation for 500 000 time units, and 
averaging the value of the energy at the last time step over 200 
different realizations, that is different seeds of the random number 
generator. The (very small) error bars denote the 95% confidence 
intervals, see section A.3 in the appendix. The time step was 
dt = 0.05 for the first three schemes, and dt = 0.001 in the case of 
the simplified one-step scheme.
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Figure 3. Statistical average of the energy of a linear chain of 
N = 50 spins as a function of the time step obtained using the 
different numerical schemes. The units of J = −1 and kB = 1 are 
used and the temperature was fixed to T = 0.1, with the damping 
value α = 0.05. The expectation value is calculated by running the 
simulation for 500 000 time units, and averaging the value of the 
energy at the last time step over 200 different realizations (different 
seeds of the random number generator). The small error bars denote 
the 95% confidence intervals.
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5. Application to Co/Au(0 0 1)

For the ab initio simulations we chose a linear chain of Co 
atoms deposited in the hollow positions above Au(0 0 1) sur-
face, see figure 4. Lattice relaxations were not included in 
the calculations, that is both the Au surface layers and the 
deposited Co atoms preserved the positions of the Au bulk fcc 
lattice. The magnetic ground state configuration and the cor-
responding effective potentials and exchange fields have been 
determined self-consistently by using the method described 
in [47]. The obtained ground state spin-configuration is also 
depicted in figure 4. As mentioned before, the effective poten-
tial obtained for the ground state is kept constant during the 
simulations, while only the direction of the exchange field is 
changed according to the Landau–Lifshitz–Gilbert equations.

If the system can be described by a model Hamiltonian 
(21), then the J exchange interaction can be calculated from 
the second derivatives (17) in the ground state, by using equa-
tions (A.43)–(A.46) in section A.2 in the appendix. Due to 
relativistic effects, in particular spin-orbit coupling, the sec-
ond derivatives (A.43)–(A.46) give different J values even for 
the same pair of atoms, therefore we averaged them to obtain 
a reasonable estimate for the scalar coupling. The calculated 
nearest-neighbour exchange parameters took values between 
−3.16 and −4.47  mRyd, being enhanced at the ends of the 
cluster, with an average value of Jav  =  −3.58  mRyd. These 
values are remarkably smaller than the ones reported by Tung 
et al [33] (−11.5 mRyd) and by Töws et al [34](≈ −13 mRyd 
at T = 0) for free-standing chains. The main reason for this dif-
ference is that the intersite distance in the free-standing chains 
is smaller than that determined by the lattice constant of the 
fcc lattice of Au we used in our calculations.

The interactions between the next-nearest neighbours 
appeared to be ferromagnetic, but about ten times smaller than 
for the nearest neighbours, while between the third-nearest 
neighbours an antiferromagnetic coupling was found, all of 
these in good agreement with earlier results [33, 34]. Contrary 
to the ferromagnetic state reported in these works [33, 34], we 
obtained a ground state resembling a spin spiral, which we 
attribute to the appearance of Dzyaloshinsky–Moriya interac-
tions. Since the system has a mirror symmetry with respect 
to the x − z plane, as shown in figure 4, it can be shown [40] 
that the Dzyaloshinsky–Moriya vectors are parallel to the y 
axis, leading to a spin spiral in the x − z plane. Note that the 
Dzyaloshinsky–Moriya interactions only arise due to break-
ing of inversion symmetry in the presence of the substrate: 
they do not, therefore, appear for infinite free-standing chains 
[33, 34]. It can also be inferred from figure 4 that the chain 
direction (x) is an easy magnetization axis, just as was found 
for Cu(0 0 1) surface [30, 32].

Firstly the thermal behaviour of the spin system was com-
pared to the model Hamiltonian (21). In figure 5 the mean 
value of the energy and the magnetic moment of the system,  

defined as = 〈 〉MM 2  with ∑=
=

M M
N

1
i

N

i
1

, are shown as  

a function of temperature. The mean value for the energy  
was fitted using the analytic expression (22), yielding the 
value J = −3.64 ± 0.24 mRyd, which is close to the average 

value of the scalar coupling coefficients between the spins, 
Jav = −3.58 mRyd, calculated directly before. Using the previ-
ously fitted exchange coupling J, the mean magnetic moment 
from the simulation results in figure 5 was fitted using (23), 
resulting in the value μ = 1.694 ± 0.006 μB. The ab initio cal-
culations (equation (14)) yielded magnetic moments between 
1.656 μB and 1.689 μB, with the average value of μav = 1.670 
μB, in agreement with the above fitted value.

Ignoring chirality effects due to the Dzyaloshinsky–Moriya 
interactions, the magnetic anisotropy prefers all spins pointing 
parallel to the x direction. Since the system is invariant under 
time reversal, it has two degenerate ground states, namely all 
spins pointing towards either the positive or the negative x direc-
tion. Due to the energy barrier between these two states, the 
system freezes in one of these ground states at T = 0. However, 
at a finite temperature, the system will be continuously switch-
ing between these degenerate states. Such a switching process 
is presented in figure 6 showing the temporal variation of the x 
component of the average spin of the Co chain at T = 78.8 K.

During the switching process the spin system gets rela-
tively far from the ground state configuration, therefore it was 
tempting to verify the assumption made at the end of section 
2, namely that the deviation between the directions of the 
exchange fields and the magnetic moments remains small. In 
each time step the direction of the exchange field {σi} was 
compared to the orientation of the calculated spin magnetic 
moment and it was found that the angle between Bi, xc and 
Mi was never larger than 3°. Moreover, the magnitudes of 
Mi fluctuated within just a ±2% wide range around the cor-
responding ground state value, occasionally reaching values 
up to ±5% . Consequently, we concluded that, at least in case 
of stable magnetic moments, the magnetic force theorem can 
be applied in ab initio spin dynamics simulations.

Calculating the switching time between the two ground 
states gives information about the anisotropy energy of the 
system. It is expected that the switching time, τsw, follows the 
Arrhenius–Néel law [48] as the function of temperature,

τ τ=
Δ

e ,sw

E
k T0 B (24)

where τ0 and ΔE are appropriate constants.
The switching time from the simulations was determined 

by starting the simulation from the +x direction and taking 
the first time when 〈Mx〉< −1.0, which is relatively close to 

Figure 4. Top view of ten cobalt atoms (blue circles) forming a 
linear chain above Au(0 0 1) surface (gold circles). The ground 
state configuration of the spin vectors of the cobalt atoms is 
also sketched.
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the state when the spins point towards the −x direction as can 
be inferred from figure 6. Performing simulations for sev-
eral different realizations of the noise, the median value of 
the switching times, τmedian, was taken at a given temperature, 
since calculating τmedian instead of the average of the switching 
times requires less computation time: one has to take the mid-
dle value of the flipping times, so the maximal simulation time 
corresponds to the time interval for which half of the realiza-
tions displays a flipping. It was assumed that the switching 
time has an exponential distribution with expectation value 

τsw, and in this case the simple proportionality τmedian = ln2τsw 
holds, therefore τmedian also follows (24), only with a differ-

ent τ0. It can be seen in figure 7 that this is indeed the case: 

lnτmedian is approximately a linear function of 
k T

1

B

. 

Related to the switching process, we compared our results 
from ab initio spin dynamics simulations to that from the sim-
ple model Hamiltonian

∑ ∑σσ σ= +
=

−

+
=

E J K ,
i

N

i i

i

N

ix

1

1

1

1

2 (25)

with N = 10, J = −3.6 mRyd, and in the dynamical equations (8) 
and (9) we used Mi = 1.67 μB at every site. The uniaxial anisot-
ropy supposed in the above model is just an approximation, 
since the symmetry of the system implies in fact biaxial anisot-
ropy. Indeed, ab initio calculations in terms of the magnetic 
force theorem resulted in different energies for  magnetizations 

along the x, y and z directions: − = −
N

E E
1

( ) 0.26x y   mRyd  

and − = −
N

E E
1

( ) 0.17x z   mRyd. It turned out that the value  

K = −0.24 mRyd was the most appropriate for the model calcu-
lations. A comparable value K = −0.09 mRyd was found for an 
infinite Co chain on Cu(001) [30].

By using the spin model (25) the switching times were 
calculated in the same way as in the ab initio simulations. 
The above model parameters ensured a linear dependence of 
lnτmedian on the inverse temperature with parameters coincid-
ing almost precisely with those from the ab initio calculations, 
see table 1. Therefore we conclude that the investigated system 
can be well described by the model Hamiltonian (25). Flipping 
times for the same model Hamiltonian were examined in detail 
in [49], where an asymptotic expression is given for ΔE for the 
cases N ≪ LDW and N ≫ LDW, with =L J K2 /DW  being the 
domain wall width in the chain. With N = 10 and LDW = 7.75, 
our model calculation falls in the intermediate regime.

Figure 5. The mean value of the energy (a) and of the magnetic  
moments (b) of a chain of ten Co atoms on Au(0 0 1) as a function  
of temperature. The circles correspond to the simulation results,  
the solid lines are the fitted curves using equations (22) and  
(23), respectively. The quantity M in panel (b) is calculated as  

= ⟨ ⟩M M 2 . The expectation values are calculated by running  
the simulations for 100 000 time units, and taking the average at  
the last time step over 50 different realizations: that is, different  
seeds of the random number generator. The error bars denote the  

95% confidence intervals. The time unit is 
ℏ =1

Ryd
48.5 as, with  

the time step being 5 time units. The time step was determined by  
calculating the normal modes of the system as discussed in  

section 4, yielding a maximal frequency ω =
ℏ

8.27
mRyd

max . The  

value of the damping parameter was α = 0.05.
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(a)

Figure 6. The mean value of the x component of the average 
magnetic moment as a function of simulation time, when the 
simulation is started from a configuration when all spins point 
towards the positive x axis. The temperature was T = 78.8 K, the 
damping α = 0.05.
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Finally we examined the dependence of the fitting param-
eters on the damping parameter α. The simulations using 
the model Hamiltonian (25) were carried out for the values 
α  =  0.01, 0.02, 0.05 and 0.1, and a linear dependence was 

supposed between ln(τmedian/τunit) and 
k T

1

B

. It was found that 

the slope of the curve ΔE does not depend on α as can be 
expected since this quantity is determined by the free energy 
landscape and it is fairly independent of the dynamical behav-
iour. On the other hand, the intercept value τ0 does depend on 
the damping, with the power law dependence τ0∝αx as indi-
cated in figure 8. The exponent of the power law was found to 
be x = −0.92 ± 0.12, showing an approximate inverse propor-
tionality between the two quantities.

6. Summary and conclusions

We have proposed a new method to study the magnetism of 
small clusters at finite temperature. The method is based on 
the quasiclassical stochastic Landau–Lifshitz–Gilbert dynam-
ics, where the effective field Bi

eff acting on the spin vectors 
is directly determined from ab initio calculations during the 
numerical solution of the dynamical equations instead of using 
an effective spin Hamiltonian. For this purpose we employed 
the torque method as implemented within the embedded cluster 
Korringa–Kohn–Rostoker multiple scattering method. During 
the time evolution the classical spin vectors σi were identified 

with the direction of the exchange-correlation magnetic field 
Bi, xc at a given lattice point, and we assumed that this direction 
remains close to the direction of the spin magnetic moment Mi 
calculated from first principles. Furthermore, it was assumed 
that the magnitude of the stable moments does not vary consid-
erably during the time evolution. In the case of stable magnetic 
moments under investigation, these assumptions were well jus-
tified, since the angle between Bi, xc and Mi remained below 3°, 
while the relative longitudinal fluctuations did not exceed 5%.

Using the above first principles scheme, the stochastic 
Landau–Lifshitz–Gilbert equations have to be solved in the 
local coordinate system (the local z axis is fixed along σi). 
Therefore, an appropriate numerical solver had to be devel-
oped. Based on the semi-implicit method developed by 
Mentink et al [21], we proposed three numerical schemes, 
which were tested for a one-dimensional Heisenberg chain 
with nearest-neighbour interactions. It was found that 
although all three methods are able the reproduce the analytic 
results for the mean energy of the system as a function of tem-
perature, the one-step scheme is the most preferable, since a 
100 times larger time step can be used than in the simplified 
one-step scheme and, at each time step, the derivatives of the 
energy have to be calculated only for a single spin configura-
tion, contrary to the two-step scheme in which they have to be 
calculated for two different spin configurations.

This method was applied to a linear chain of ten Co atoms 
deposited on an Au(0 0 1) surface. In agreement with recent 
results on infinite Co chains, either free-standing or sup-
ported by Cu(0 0 1) [30, 32–34], we found that this system 
is governed by strong ferromagnetic exchange couplings 
with an easy magnetization axis along the chain direction. 
Nonetheless, due to the presence of Dzyaloshinsky–Moriya 
interactions, we obtained a ground state with slightly tilted 
spins, resembling a spin spiral. Performing finite-temperature 

Figure 7. The median value of the switching time as a function of 
the inverse temperature (open circles), along with the fitted linear 
curve (solid line). The time unit is τunit = 48.5 as. The median 
value τmedian was obtained from 50 independent runs at a given 
temperature. The value of the damping parameter was α = 0.05.
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Figure 8. The dependence of the parameter τ0 in (24) on the Gilbert 
damping constant α. Open circles represent the intercept values 
of the curves fitted to the simulation results as in figure 7, but for 
different values of α, while the error bars show the error of these 
fitting parameters. The solid line displays a best fit linear function to 
ln(τ0/τunit) as a function of ln(α), indicating a power law dependence 
of τ0 on α.
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Table 1. The parameters of a linear function fitted to the  

ln(τmedian/τunit) data versus 
k T

1

B

 as obtained from the ab initio  

simulations, see figure 7, and from the spin model, equation (25),  
with J = −3.6 mRyd and K = −0.24 mRyd.

ab initio Model

ln(τ0/τunit) 11.30 ± 0.24 11.26 ± 0.18
ΔE (mRyd) 1.42 ± 0.11 1.46 ± 0.08
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simulations we found that the mean energy and the mean 
magnetization can be approximated with a high accuracy by 
using a ferromagnetic Heisenberg model with suitable param-
eters. We demonstrated that the switching process between the 
degenerate ground states, with the spins pointing towards the 
+x or the −x directions, can be well described by adding an 
on-site anisotropy term to the model Hamiltonian.

We plan to apply the method to systems with more com-
plex geometry, where the design of an appropriate spin model 
is less obvious. Special attention should be devoted to the 
study of nanomagnets, where higher order interactions may 
take place between the spins [50]. Furthermore, it is also 
worthwhile to extend the method by including induced mag-
netic moments in the calculations, although the stable spin 
description is not suitable for these types of atoms. Another 
possible extension of the method includes longitudinal spin-
fluctuations by recalculating the potentials and effective fields 
at every temperature according to finite-temperature density 
functional theory [51, 52], since this may strongly influence 
the spin-interactions in an ab initio based spin Hamiltonian, 
especially at higher temperatures as shown in [34] and [53].
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Appendix

A.1. Numerical integration schemes

For a thorough description of the type and order of conver-
gence of stochastic numerical integration techniques the 
reader is referred to the handbook on stochastic numerical 
schemes [43]. Here only the schemes used in this paper are 
described. A stochastic diffusion differential equation in one 
dimension has the form

= + ∘X t a X t t t b X t td ( ) ( ( ), )d ( ( ), ) dW(t), (A.1)

=X t X( ) ,0 0 (A.2)

written in the Stratonovich form.
During the numerical procedure the exact solution X(t) is 

approximated on the time interval [0, T] by a process YΔt(t), 
which is only defined at certain discrete points in time, and 
the largest difference between the discrete time points is Δt. 
Physical quantities, like the energy and magnetization of 
the system discussed in the paper, correspond to averages or 
expectation values over the trajectories. If only the expecta-
tion value of some function g(X (t)) of the exact solution X(t) 
has to be approximated, the weak convergence criterion can 

be applied: YΔt(t) converges to the solution X(t) weakly with 
order δ>0, if there exists a constant C such that

|〈 〉−〈 〉|≤ Δ δΔg X T g Y T C t( ( )) ( ( )) ,t (A.3)

for a given set of test functions g(x), where 〈〉 denotes sto-
chastic expectation value. Numerical integration schemes can 
be constructed by using the stochastic Taylor expansion of the 
exact solution. For a theorem on calculating the weak order of 
convergence of a given numerical method, see p 474 of [43].

An important property of the numerical integration 
schemes for the stochastic Landau–Lifshitz–Gilbert equation 
considered in this paper is the conservation of the length of 
the spin vectors, which should be reflected in the numerical 
solver as suggested in [21]. If the spin vectors are known at 
time tn, their value one time step later at tn+1 can be evaluated 
by combining (5) and (6),

β βσ σ σ σ= + Δ × + Δ ×+ e et t t t( ) ( ) ( ) ( ).i n i n i i i n i i i n1 1 1 2 2 (A.4)

Replacing σi(tn) by σ σ+ +t t
1

2
( ( ) ( ))i n i n 1  on the right hand 

side leads to

β

β

σ σ σ σ

σ σ

= + Δ × +

+ Δ × +

+ +

+

e

e

t t t t

t t

( ) ( )
1

2
[ ( ) ( )]

1

2
[ ( ) ( )],

i n i n i i i n i n

i i i n i n

1 1 1 1

2 2 1

 
(A.5)

where it is straightforward to see that the vectors σi(tn+1)−σi(tn) 
and σi(tn+1)+σi(tn) are orthogonal, therefore the magnitude of 
the spin remains constant after the time step: σ σ=+t t( ) ( )i n i n

2
1

2

. This method is called semi-implicit in [21] because in order 
to calculate the value of σi(tn+1), a linear equation has to be 
solved; however, the solution of this equation is remarkably 
simpler than in the case where Δβ1i and Δβ2i also depend on 
σi(tn+1), which would be the truly implicit scheme.

The semi-implicit method proposed by Mentink et al [21] 
can be rewritten in the local coordinate system with the posi-
tive z axis pointing along σi(tn). This method is referenced as 
the two-step scheme in the paper. It has the form

β γ
β

α γ
β

γ

αγ

Δ = ′ ∂
∂

Δ − ′ ∂
∂

Δ + ′ Δ

+ ′ Δ

∼
e W

e W

M

E
t

M

E
t D

D

2

2 ,

i
i i i i

i i i

i i i

2
1 2

2

1

 

(A.6)
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α γ
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E
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(A.7)
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β β= − Δ + Δ∼ ∼B e e
1

2
( ),i i i i i1 1 2 2 (A.13)

σ σ= + ×A Bt t( ) ( ) ,i i n i n i (A.14)

σ = + × + ++
−A A B A B B Bt( ) [ ( ) ] (1 ) ,i n i i i i i i i1

2 1 (A.15)

where we explicitly provided the solutions of the linear equa-
tions needed in the semi-implicit calculation.

Similar to the Heun scheme [41], the above procedure is 
a predictor-corrector method; however, the predictor scheme  

gives a first approximation to σ + +t t(
1

2
( ))i n n 1  instead of  

σi(tn+1), therefore in the first step only a smaller rotation hap-

pens with the angles β βΔ Δ∼ ∼1

2
,

1

2i i1 2 . The random variables  

ΔWi
r, where r denotes Descartes components, are calculated  

from independent, identically distributed standard normal  
 random variables ξi

r as ξΔ = ΔW ti
r

i
r, where Δt = tn+1−tn is the  

time step, being fixed during the simulation. This method con-
verges weakly to the solution of the equation with order δ = 1, 
just like the Heun method. However, it was demonstrated in 
[21] that it remains more stable than the Heun method when 
increasing the time step.

To present the one-step scheme we introduce the shorthand 
notations

γ
β

α γ
β

= ′ ∂
∂

− ′ ∂
∂

x
M

E

M

E
,i

i i i i

2

1 2
 (A.16)

γ
β

α γ
β

= − ′ ∂
∂

− ′ ∂
∂

x
M

E

M

E
,i

i i i i

1

2 1
 (A.17)

γ
β β

α γ
β β

= ′ ∂
∂ ∂

− ′ ∂
∂ ∂

x
M

E

M

E
,j i

i j i i j i

2 2

2

2 1

2

2 2
 (A.18)

γ
β β

α γ
β β

= ′ ∂
∂ ∂

− ′ ∂
∂ ∂

x
M

E

M

E
,j i

i j i i j i

1 2

2

1 1

2

1 2
 (A.19)

γ
β β

α γ
β β

= − ′ ∂
∂ ∂

− ′ ∂
∂ ∂

x
M

E

M

E
,j i

i j i i j i

2 1

2

2 2

2

2 1
 (A.20)

γ
β β

α γ
β β

= − ′ ∂
∂ ∂

− ′ ∂
∂ ∂

x
M

E

M

E
,j i

i j i i j i

1 1

2

1 2

2

1 1
 (A.21)

γ α= ′ +s D e e2 ( ),i
r

i i
r

i
r

2 2 1 (A.22)

γ α= ′ −s D e e2 ( ),i
r

i i
r

i
r

1 1 2 (A.23)

αγ σ= = − ′s s D2 ,i i
r

i i
r

i i
r

2 2 1 1 (A.24)

γ σ= − = ′s s D2 ,i i
r

i i
r

i i
r

1 2 2 1 (A.25)

and the approximate Stratonovich integrals

= ΔJ t,(0)̂ (A.26)

ξ= Δ = ΔJ W t ,ir i
r

i
r

( ) 1̂ (A.27)

= Δ
J

t

2
,(0,0)

2
̂ (A.28)

= Δ
J

W( )

2
,ir ir

i
r

( , )

2
̂ (A.29)

ξ ξ= Δ −
⎛
⎝
⎜

⎞
⎠
⎟̂J t

1

2

1

3
,ir i

r
i

r
(0, )

3
2 1 2 (A.30)

ξ ξ= Δ +
⎛
⎝
⎜

⎞
⎠
⎟̂J t

1

2

1

3
,ir i

r
i

r
( ,0)

3
2 1 2 (A.31)

̂ ξ ξ ξ ξ= Δ + > ′′ ′ ′J t r r
1

2
( ) if ,ir ir i

r
i

r
i

r
i

r
( , ) 1 1 3 3 (A.32)

ξ ξ ξ ξ= Δ − > ′′ ′ ′J t r r
1

2
( ) if ,ir ir i

r
i

r
i

r
i

r
( , ) 1 1 3 3
̂ (A.33)

where the ξ ξ,ir i
r

1 2  and ξ i
r
3  random variables are standard normally 

distributed and independent for different indices 1, 2, 3, lattice 
points i, Descartes components r and time steps. For compari-
son, in the two-step scheme only the Stratonovich integrals  

= ΔJ t(0)̂  and ξ= Δ = ΔJ W tir i
r

i
r

( )̂  have to be calculated.
With the above notations, the one-step numerical scheme 

used by us to solve equations (8) and (9) has the form

∑ ∑

∑ ∑

∑

βΔ = + + +

+ + + +

+ +
′

′ ′ ′

x J s J x x x x J

s x s x J x s x s J

s s s s J

ˆ ˆ ( ) ˆ

( ) ˆ ( ) ˆ

( ) ˆ ,

i i
r

i
r

ir
j

j j i j j i

j r
j

r
j i j

r
j i jr

r
i i i

r
i i i

r
ir

r r
i i

r
i

r
i i

r
i

r
ir ir

2 2 (0) 2 ( ) 2 2 2 1 1 2 (0,0)

,
2 2 2 1 1 2 ( ,0) 2 2 2 1 1 2 (0, )

,
2 2 2 1 2 1 ( , )

 

(A.34)
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∑ ∑

∑ ∑

∑

βΔ = + + +

+ + + +

+ +
′

′ ′ ′

x J s J x x x x J

s x s x J x s x s J

s s s s J

( )

( ) ( )

( ) ,

i i
r

i
r

ir
j

j j i j j i

j r
j

r
j i j

r
j i jr

r
i i i

r
i i i

r
ir

r r
i i

r
i

r
i i

r
i

r
ir ir

1 1 (0) 1 ( ) 2 2 1 1 1 1 (0,0)

,
2 2 1 1 1 1 ( ,0) 2 2 1 1 1 1 (0, )

,
2 1 2 1 1 1 ( , )

̂ ̂ ̂

̂ ̂

̂

 

(A.35)

⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟

⎫
⎬
⎭

⎡
⎣⎢

⎤
⎦⎥

β β β β

β β

σ σ= − Δ − Δ + Δ −Δ

× + Δ + Δ

+

−

e et t( ) 1
1

4

1

4
( )

1
1

4

1

4
.

i n i i i n i i i i

i i

1 1
2

2
2

2 1 1 2

1
2

2
2

1 

(A.36)

When calculating the values of the spins at the next time 
step, the same algorithm was used with the vector products as 
before, thereby conserving the length of the spins. The sec-
ond derivatives of the energy functional (x2j2i, x2j1i, x1j2i, x1j1i) 
were taken from (17). As noted in section 3, the calculation of 
these quantities from first principles takes less time since the 
scattering path operator needed for the first and second deriva-
tives of the energy must be determined for only one magnetic 
configuration. In the deterministic limit, that is at T = 0, this 
method is a second-order scheme, just like the deterministic 
Heun scheme or the semi-implicit two-step scheme. At finite 
temperatures the one-step scheme also has a weak order of 
convergence δ = 1.

The simplified one-step scheme has the form

β γ
β

α γ
β

γ

αγ

Δ = ′ ∂
∂

Δ − ′ ∂
∂

Δ + ′ Δ

+ ′ Δ

e W

e W

M

E
t

M

E
t D

D

2

2 ,

i
i i i i

i i i

i i i

2
1 2

2

1

 

(A.37)

β γ
β

α γ
β

γ

αγ

Δ = − ′ ∂
∂

Δ − ′ ∂
∂

Δ + ′ Δ

− ′ Δ

e W

e W

M

E
t

M

E
t D

D

2

2 ,

i
i i i i

i i i

i i i

1
2 1

1

2

 

(A.38)

β β β β

β β

σ σ= − Δ − Δ + Δ −Δ

× + Δ + Δ

+

−

⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟

⎫
⎬
⎭

⎡
⎣⎢

⎤
⎦⎥

e et t( ) 1
1

4

1

4
( )

1
1

4

1

4
,

i n i i i n i i i i

i i

1 1
2

2
2

2 1 1 2

1
2

2
2

1
 

(A.39)

where ξΔ = ΔW ti
r

i
r, with the same quantities as in the two-

step scheme. Importantly, equation (A.39) conserves the 
magnitude of the spin vectors. A simple Euler method using 
the coefficients from the Stratonovich form of the equation 
is not convergent at all [41, 43], but this modification com-
pounds the error and also has weak order of convergence 
δ = 1. On the other hand, the earlier two methods are in a cer-
tain sense much ‘closer’ to a second-order scheme than the 
one based on the Euler method, since the deterministic limit 
of those methods has second order of convergence, while the 
deterministic Euler method is only of first order. Probably 
this is the reason why the simplified scheme requires a 100 
times smaller time step than the other two schemes as shown 
in section 4.

A.2. The model Hamiltonian

Considering the simple spin model

∑ ∑ σσ σ= +
=

−

+
=

( )E J K ,
i

N

i i

i

N

i
x

1

1

1

1

2
 (A.40)

the first and second derivatives of the energy in the local coor-
dinate system can be given as

∑
β

σσ∂
∂

= +
= ±

e
E

J Ke2 ,
i j i

i j i
x

i
x

2 1

1 1 (A.41)

∑
β

σσ∂
∂

= − −
= ±

e
E

J Ke2 ,
i j i

i j i
x

i
x

1 1

2 2 (A.42)

and

β β
∂

∂ ∂
= = ±e e

E
J j iif 1,

j i
i j

2

2 2
1 1 (A.43)

β β
∂

∂ ∂
= − = ±e e

E
J j iif 1,

j i
i j

2

2 1
2 1 (A.44)

β β
∂

∂ ∂
= − = ±e e

E
J j iif 1,

j i
i j

2

1 2
1 2 (A.45)

β β
∂

∂ ∂
= = ±e e

E
J j iif 1,

j i
i j

2

1 1
2 2 (A.46)

∑
β

σσ σ∂
∂

= − − +
= ±

E
J K K e2 ( ) 2 ( ) ,

i j i

i j i
x

i
x

2

2
2

1

2
1

2 (A.47)

∑
β

σσ σ∂
∂

= − − +
= ±

E
J K K e2 ( ) 2 ( ) ,

i j i

i j i
x

i
x

2

1
2

1

2
2

2 (A.48)

β β β β
∂

∂ ∂
= ∂

∂ ∂
= −E E

Ke e2 .
i i i i

i
x

i
x

2

1 2

2

2 1

1 2 (A.49)

The above quantities are necessary in the model calcu-
lations testing the stability of the numerical integration 
schemes in section 4 and in calculating the flipping times in 
section 5. Moreover, if the second derivatives of the energy 
are calculated from the ab initio method, see (17), expres-
sions (A.43)–(A.49) provide possible alternatives to deter-
mine the exchange coefficient J and the anisotropy constant 
K for a suitable model Hamiltonian. Clearly, this procedure 
is ambiguous, therefore in section 5 we took an average of 
the J and K values obtained from different types of second 
derivatives.

A.3. Approximating the error of the simulations

Let X be a physical quantity that has to be determined from the 
simulations. After running the simulations N times and taking 
the values of X at the end (Xi, i = 1, ⋅ ⋅ ⋅, N) the average value

∑=X
N

X
1

i

iav (A.50)
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as well as the empirical variance

∑=
−

−X
N

X XVar( )
1

1
( )

i

i av
2

 (A.51)

are calculated. If N is large enough, it can be assumed that Xav  

is of Gaussian distribution with variance 
N

X
1

Var( ). Therefore  

the expectation value 〈X〉 falls into a confidence interval  
around Xav,

〈 〉∈ − +X X
N

X X
N

X1.96
1

Var( ) , 1.96
1

Var( )av av

⎛

⎝
⎜

⎞

⎠
⎟ (A.52)

with probability 0.95.

A.4. Determining the normal modes of the system

Here we give a general scheme to find the normal modes of 
an arbitrary spin system described by the Landau–Lifshitz–
Gilbert equations. Equations (8) and (9) without thermal noise 
and damping have the form

β
γ

β
∂
∂

= ∂
∂

M
t

E
,i

i

i

2

1

 (A.53)

β
γ

β
∂
∂

= − ∂
∂

M
t

E
,i

i

i

1

2

 (A.54)

which is analogous to the canonical equations in Hamiltonian  

mechanics. Introducing 
γ

β=p
M

i
i

i1  standing for a  generalized  

momentum and 
γ

β=q
M

i
i

i2  for the corresponding  generalized  

coordinate, the energy can be expanded up to second order  
terms close to the ground state in these generalized coordi-
nates and momenta as

∑= + + + +E E A p p B p q B p q C q q
1

2
( ),

i j

ij i j ij i j ji j i ij i j0

,
 (A.55)

 
where

γ
β β

= ∂
∂ ∂

= ∂
∂ ∂

A
E

p p MM

E
,ij

i j i j i j

2 2

1 1
 (A.56)

γ
β β

= ∂
∂ ∂

= ∂
∂ ∂

B
E

p q MM

E
,ij

i j i j i j

2 2

1 2
 (A.57)

γ
β β

= ∂
∂ ∂

= ∂
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C
E

q q MM

E
.ij

i j i j i j

2 2

2 2
 (A.58)

The equations of motion can then be derived from equations 
(A.53) and (A.54),

∑

∑

= +

= − +

( )

( )

q A p B q

p B p C q

˙ ,

˙ .

i
j

ij j ij j

i
j

ji j ij j
 

(A.59)

Equations (A.55) and (A.59) can be rewritten using matrix 
notation, (p, q) = ({pi }, {qi }), as

= +    q p C B
B A

q
pE E

1

2
,T T

T

0
⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (A.60)

=
− −

 
q
p

B A
C B

q
p

.

. .T

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (A.61)

Assuming the form q(t), p(t) ∝ qk, pk eiωkt for the normal 
modes, the equation of motion (A.61) simplifies to the eigen-
value equation,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ω σ= − =

q
p

C B
B A

q
p H

q
p

0 i
i 0k

k

k

T k

k
y

k

k
 (A.62)

where ωk is the eigenvalue of the matrix σy H, with the Pauli 
matrix σy and the matrix H appearing on the right-hand side 
of (A.60). H is a positive definite matrix if the ground state 
corresponds to an energy minimum, therefore H

1
2 exists, it 

is invertible, and σy H has the same eigenvalues as σH Hy
1
2

1
2. 

Since the latter one is a self-adjoint matrix, all the ωk eigenval-
ues are real numbers, thus they represent the normal modes of 
the system. On the other hand, since the purely imaginary iωk 
is an eigenvalue of the real valued matrix appearing in (A.61), 
−iωk must also be an eigenvalue, therefore the normal modes 
always appear in ±ωk pairs.

The calculation does not change considerably if the matrix 
H has zero eigenvalues. In this case σy H also has zero eigen-
values with the same eigenvectors as H, and one can deter-
mine the nonzero eigenvalues on the subspace where H is 
strictly positive definite, using the algorithm given above.

A similar method for calculating the normal modes (mag-
non spectrum) of a layered system with discrete translational 
invariance in the plane is given in [54], where the quantum 
mechanical equation of motion was used instead of equations 
(A.53) and (A.54).
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