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ABSTRACT

The problem is posed and solved for the oceanic surface boundary layer in the presence of wind stress, stable

density stratification, equilibrium wind-waves, and remotely generated swell-waves. The addition of swell

causes an amplification of the Lagrangian-mean current and rotation toward the swell-wave direction, a fat-

tening of the Ekman velocity spiral and associated vertical Reynolds stress profile, an amplification of the

inertial current response, an enhancement of turbulent variance and buoyancy entrainment rate from the

pycnocline, and—for very large swell—an upscaling of the coherent Langmuir circulation patterns. Implica-

tions are discussed for the parameterization of Langmuir turbulence influences on the mean current profile and

the material entrainment rate in oceanic circulation models. In particular, even though the turbulent kinetic

energy monotonically increases with wave amplitude inversely expressed by the turbulent Langmuir number

La, the Lagrangian shear eddy viscosity profile kL(z) is a nonmonotonic function of La, first increasing with

increasing wave amplitude up to approximately the wind-wave equilibrium level, then decreasing with ad-

ditional swell-wave amplitude. In contrast, the pycnocline entrainment rate is a monotonic function ;La22.

1. Introduction

The wind blows and the waves rise and roll on. This is

the regime of Langmuir turbulence in the oceanic sur-

face boundary layer (BL), so-called because Langmuir

circulations (often recognized by the windrows in the

surfactants they cause) are the primary turbulent eddies

whose vertical momentum and buoyancy fluxes main-

tain the mean ageostrophic current and density stratifi-

cation. Langmuir circulations arise from the instability

of wind-driven boundary layer shear in the presence of

Stokes drift (Craik and Leibovich 1976; McWilliams

et al. 1997). Alternatively expressed, this regime is a

wind-driven Ekman layer with stable interior density

stratification and surface gravity waves that induce

wave-averaged vortex and Coriolis forces and buoyancy

advection due to the Lagrangian-mean Stokes drift

velocity. Langmuir turbulence is common in nature

(Belcher 2012).

The physics of this regime is now well understood,

primarily on the basis of many large eddy simulation

(LES) studies of the wind-wave equilibrium state [e.g.,

the review in Sullivan and McWilliams (2010)]. How-

ever, in nature the wind is rarely in equilibrium with the

waves (Young 1999; Sullivan et al. 2008; Hanley et al.

2010). Often this is due to transient wind changes or

limited fetch, when the waves have not yet evolved into

a fully developed equilibrium but are headed there over

an interval of hours or over an offshore distance of

tens of kilometers. Disequilibrium also occurs when

swell-waves with a large amplitude and long wavelength

propagate thousands of kilometers away from their

generation in an earlier strong storm to a place with

weaker local wind whose wind-waves are weaker and

shorter. During their propagation, swell waves exhibit

slow decay and slow evolution through dispersion and

four-wave resonant interaction, and they have weak

nonlinear interactions with the wind-waves encountered

en route as long as there is significant separation in

wavelength and/or direction (Masson 1993; Zakharov

2005; Depley et al. 2010). Under these conditions, a local

quasi-equilibrium state of linearly superimposed swell-

and wind-waves can persist for a day or more if the wind
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is steady. These circumstances are especially common in

the tropics and subtropics in both hemispheres, with

swell-waves coming from higher-latitude winter storms

(Alves 2006; Hanley et al. 2010). Also, they can occur

anywhere in the lull after a storm.

Several idealizations of persistent disequilibrium have

been examined with LES. Commonly, the wave spectrum

is simplified to a monochromatic wave at the spectrum

peak (McWilliams et al. 1997), thewind-wave Stokes drift

is multiplied by a factor (usually less than one, implying

weaker waves with a turbulent Langmuir number La $

0.3, its equilibrium value; see section 2) (Harcourt and

D’Asaro 2008; Grant and Belcher 2009), or the wind-

wave Stokes drift direction is rotated relative to wind

alignment (Van Roekel et al. 2012). All of these formu-

lations are ad hoc compared to realistic persistent wind

regimes where the wind-sea evolves toward equilibrium.

On the other hand, the general formulation of wind-wave

disequilibrium is daunting in the complexity of possible

transient histories. In contrast, the case of equilibrium

wind-waves with added steady swell-waves with well-

separated spectrum peak wavenumbers (hence La, 0.3)

is an apt idealization of realistic persistent situations.

Because the remote swell-generating storm and the local

wind are independent, the added swell component can

have an arbitrary orientation and amplitude relative to

the local wind-sea. This is the problem addressed here.

2. Formulation

The LES code solves the wave-averaged dynamical

equations in Sullivan and McWilliams (2010). These

are incompressible, rotating Boussinesq fluid dynamics

with a prognostic turbulent kinetic energy equation for

subgrid-scale fluxes. Both model components have sur-

face wave effects that include Stokes drift Coriolis and

vortex forces and scalar advection, augmented pres-

sure head, and subgrid Stokes drift energy production

and advection. The ‘‘wind’’ forcing is by parameterized

breakers that inject a body force A and subgrid work

W; for simplicity in the present paper, ensemble-mean

breaker forcing profiles hAi(z) and hWi(z) are used,

rather than stochastic individual impulses. (Angle brack-

ets indicate a horizontal and temporal average, and z is

the vertical coordinate.) The same dynamical formulation

is used in McWilliams et al. (2012) for the wavy Ekman

layer with uniform density and equilibrium wind-waves.

In particular, in that paper the differences between en-

semble and stochastic breaker forcing are analyzed, as

well as their differences compared with a conventional

surface stress forcing with an equivalent integral effect

(i.e.,
Ð

hAidz5 t/ro 5 u2* in wind-wave equilibrium, where

t is stress, ro is the mean density, and u* is the oceanic

friction velocity). Apart from the level of turbulent en-

ergy and differences in the profiles of mean current and

Reynolds stress very near the surface, this distinction

in the representation of the breakers is not important

for the topics of this paper. In this paper, t and its as-

sociated hAi(z) are calculated from the near-surface

wind speed Ua with a bulk drag law;1 that is, t5

raCDU
2
a , with ra 5 1 kgm23 and CD 5 1.3 for the cases

here with Ua # 10m s21.

The LES model is spun up from rest and approxi-

mately equilibrates over a period of a day or so, while

retaining inertial oscillations that slowly decay over

many days. In the present problem, an initial mean

temperature stratification T(z) is included. It initially

has a well-mixed layer in the top 33m and an interior

gradient of 0.18Cm21 (implying a buoyancy frequency

of N5 0.014 s21). Turbulent entrainment develops, and

the boundary layer deepens. Because this N value is

rather large, the boundary layer depth h(t) only slowly

deepens while the averagemixed layer temperatureT(t)

cools in the absence of a surface heat flux. The Coriolis

frequency f is 1024 s21 (corresponding to a latitude of

458N) and is assumed to be spatially uniform over the

small spatial scale of the domain. With the traditional

approximation that neglects the horizontal projection

of Earth’s rotation vector, the solutions are symmetric

with respect to wind direction; hence, without loss of

generality, the wind direction is chosen as x̂ [east (E)]

and held steady. The wind-sea spectrum is in equilib-

rium with the wind according to the prescription of

Alves et al. (2003). The associated profiles for the

Stokes drift velocity uwst(z) and breaker forcings are

calculated as in Sullivan et al. (2007). The uwst is aligned

with the wind direction.

The preceding formulation yields familiar solution

behaviors that are described in several papers cited

above. The novel aspect here is an added swell-wave

component to the Stokes drift, which is modeled as

usst 5Us exp
h z

Ds

i

û
s (1)

for z # 0 where mean sea level is z 5 0. Because swell-

wave spectra are narrow, the swell is represented as

a linear, monochromatic surface gravity wave with period

P, wavelength l, and amplitude a. The dispersion rela-

tion in deep water is P5
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl/g
p

(g is gravitational ac-

celeration). The associated Stokes drift has a depth

scaleDs
5 gP2/8p2 and a surface velocityUs

5 8p3a2/gP3.

1Amore accurate drag law should include the influence of swell

waves on CD for low wind speed (Sullivan et al. 2008).
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The term û
s is the unit direction vector for swell-wave

propagation. The total Stokes drift is the sum of the wind-

sea and swell contributions assuming no nonlinear in-

teraction between their spectral components; that is,

ust(z)5 uwst(z)1 usst(z) . (2)

Wavemeasurements are routinely made from oceanic

buoys, and an extensive compendium is available from

the Coastal Data Information Program (CDIP; www.

cdip.ucsd.edu). Data and plots are presented in terms of

P (or f 5 1/P5v/2p) and significant wave height Hs

(5 2
ffiffiffi

2
p

a for a monochromatic wave with sea level am-

plitude a). In some analyses waves with a spectrum peak

P longer than 10 s are categorized as swell-waves, al-

though they are wind-waves in the midst of high winds;

this ambiguity is rarer at subtropical and tropical sites

with fewer big storms. Climatological histograms for

individual sites are presented for the joint distribution of

P and Hs. Events with Hs . 10m or P . 20 s are found,

although the bulk of the swell-wave events are not so

extreme. These imply possible ranges of Us up to

0.4m s21 and Ds up to 50m, both of which are much

larger than the amplitude and depth scale for Stokes drift

in a moderate wind-sea. No restriction is placed on the

swell-wave direction. Figure 1 shows a particular example

of mixed wind- and swell-waves with large Hs.

LES solutions are calculated in a vertical domainH5

100m thick and a horizontally periodic domain (of width

L5 300m, except where otherwise stated). The vertical

grid is stretched with a smallest spacing of 0.3m near the

surface. The horizontal grid is uniform with a spacing of

2m. These grids encompass the boundary layer turbu-

lence down to the resolution limit where the subgrid

parameterization regularizes the flow.

The influence of swell-waves is explored through its

parameters Us, Ds, and ûs (Table 1). In the parameter

survey case sets, these are varied independently; how-

ever, in nature Us and Ds tend to be anticorrelated be-

cause of their inverse dependencies on powers of the

period P [see just below (1)]. The LES results are non-

dimensionalized by u
*

and by h diagnosed from the

solution averaged over the statistical analysis period t5

0.55 2 1.18 3 105 s (i.e., one inertial period, 2p/f, with

a Coriolis frequency f 5 1024 s21). The term h(t) is de-

fined as the depth at which the mean thermal gradient

›zhTi(z) becomes as large as 0.058Cm21 just below the

well-mixed layer. Initially, h(0) 5 33m in all cases.

An important parameter for Langmuir turbulence is

the so-called Langmuir number:

FIG. 1. Wave spectra during mixed wind and swell-wave conditions at the Harvest buoy (near Point Conception,

California) from CDIP at 0030 UTC 5 Dec 2007. (left) Azimuthally integrated frequency spectrum for sea surface

elevation F(v), and (right) normalized directional spectrum D(v,f)5G(v,f)/F(v), where G is the directional

spectrum (note that its f integral is unity for each v). The v (rad s21) is the wave frequency, and f is the wave

propagation direction. The simultaneousUa is 12m s21 in the direction of the black arrow, measured at the closest

NationalData BuoyCenter station 46054. Thewind-sea has a peakP of about 4.5 s to the SE, and the swell wave has

a P of 19 s to the E. The Hs is 6.9m.
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La5

�

u*
just(0)j

�1/2

(3)

[sometimes called the turbulent La to distinguish it from

the laminar La defined for viscously controlled flows;

Leibovich (1983)]. Small La is associated with large

waves, especially large swell waves. Here, the surface

value of ust is evaluated at the first grid level of z 5

20.15m. The value of La is weakly grid dependent be-

cause there is a logarithmic singularity in uwst , as z / 0

arising from the high-frequency tail in the wind-sea

spectrumofAlves et al. (2003) withF( f ) } f24. However,

Romero and Melville (2010) show that the tail steepens

to F } f25 at sufficiently large f because of saturation,

thus regularizing uwst(0) on a vertical scale finer than re-

solved here. The swell-wave usst in (1) is smooth as z/ 0.

Notice that a vector misalignment between swell- and

wind-waves causes a reduction in just(0)j, hence an in-

crease in La, compared to alignment. Depending on the

swell amplitude and orientation, La may or may not be

increased compared to the case of only wind-waves.

3. Analytic Ekman–Stokes model

A partial interpretation of the LES results in sections 4

and 5 comes from an analytic solution of a wave-modified

extension of the classic Ekman layer model, which is now

called the Ekman–Stokesmodel. It represents a horizontal

and time average of the horizontal momentum balance

(14) with three simplifying assumptions: constant density

ro, constant eddy viscosity ko, and surface wind stress t

instead of breaker impulse A:

f ẑ3 (hui1 ust)5 k
o
›2zhui , (4)

with a surface boundary condition of ko›zhui(0)5 t/ro 5

u2* and a lower boundary condition of u/ 0 as z/ 2‘.

As is commonly done for analytic convenience, this is

rewritten as a scalar equation for the complex velocity

U5 hui1 ihyi:

if (U1Ust)5 ko›
2
zU , (5)

with boundary conditions of ko›zU(0)5 T [ (tx 1 ity)/

ro and U(2‘) 5 0. The problem is further simplified by

assuming that the Stokes drift (2) has a monochromatic

wind-wave component (identified with the wind-wave

spectrum peak), structurally analogous to the swell-

wave component (1), so that

Ust [ust1 iyst5Uw exp
h z

Dw

i

1Us exp[ius] exp
h z

Ds

i

.

(6)

To match the problem posed in section 2, T, Uw, and Us

are taken to be real and positive. Also, assume that f . 0

(Northern Hemisphere).

Using simple analytic techniques, the Ekman–Stokes

solution is derived:

U5U
e
exp

�

(11 i)z

he

�

1
ifUw

k
o
/Dw22 if

exp
h z

Dw

i

1
ifUs exp[ius]

ko/D
s22 if

exp
h z

Ds

i

, (7)

with Ekman depth he 5
ffiffiffiffiffiffiffiffiffiffiffi

2ko/f
p

and amplitude coefficient

Ue5
12 i
ffiffiffiffiffiffiffiffiffiffi

2fko
p

(

T 2
ik

o
fUw

Dw(ko/D
w22 if )

2
ik

o
fUs exp[ius]

Ds(ko/D
s22 if )

)

.

(8)

The transport integrals are

ð0

2‘

U dz52
iT
f
2DwUw

2DsUs exp[ius],

ð0

2‘

Ust dz5DwUw
1DsUs exp[ius], and

ð0

2‘

UL dz52
iT
f
, (9)

where the complex Lagrangian velocity is UL
5 U 1 Ust

(i. e. , uL 5 hui1 ust in vector notation). The Lagrangian

transport is rotated 908 to the right of the wind stress, while

the Eulerian transport also has anti-Stokes components.

For the usual large swell situation of Us
. Uw and

Ds
. Dw, these solutions indicate that a sufficient con-

dition for the local wind-wave influence to be relatively

unimportant in the boundary layer flow profile is for

UsDs�UwDw. All of the cases in Table 1 withUs 6¼ 0 are

in this regime.

TABLE 1. Case sets analyzed in this paper. In all cases uwst and

(A, W ) are in equilibrium with the eastward wind. For these case

sets, the La values are 0.14–0.24 (Us1), 0.13–0.29 (Us2), 0.16 (Ds),

0.16–0.49 (Qs), 0.11–0.16 (Ua), and 0.11 (Lh). In addition, there is

a comparison case NB (i.e., No Stokes drift velocity and ensemble-

mean Breaker forcing) with Ua 5 10m s21 and ust 5 0 (La 5 ‘).

Case set Wind and swell-wave parameters

Us1 Ua 5 10m s21; Ds5 16m; us5 0; Us 5 0–0.4m s21

Us2 Ua 5 5m s21; Ds5 16m; us5 0; Us 5 0–0.25m s21

Ds Ua 5 10m s21; Ds5 4–24m (P 5 6–14 s); us 5 0;

Us5 0.25m s21

Qs Ua 5 10m s21; Ds5 16m; us 5 2p 2 1p;

Us 5 0.25m s21

Ua Ua 5 2.5–10m s21; Ds 5 16m; us 5 0;

Us
5 0.25m s21

Lh Ua5 2.5m s21; Ds 5 16m; us 5 0; Us 5 0.25m s21;

L 5 300–1200m
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The solutions (7) and (8) have a left–right symmetry

with respect to the swell direction us relative to the wind

direction (here E). Define Û as the solution without

swell (i.e., for Us
5 0). Then for Us 6¼ 0 and general us,

the difference fields Vus 5Uus 2 Û are equivalent when

rotated by the horizontal angle 2us; that is,

V
us
5 exp[i2us]V

2us
. (10)

The same rotational symmetry holds for 2ko›zU , which
is the Ekman–Stokes equivalent of Reynolds stressminus

the upward-integrated breaker forcing [i.e.,R(z) in (15)].

For flows impulsively started from rest, the preceding

steady solution U(z) is augmented by an inertial oscil-

lation U in(z, t) such that their sum is zero at t 5 0 at all

depths. With an additional acceleration term ›tU in (5),

the homogeneous solutions are the eigenmodes

U in } exp[2ift2 k
o
k2t] cos[kz], k$ 0, (11)

which imply vertical oscillation with wavenumber k,

anticyclonic temporal rotation of the current direction at

an inertial frequency f, and amplitude decay at a rate

kok
2. The longer-lasting components have smaller k, and

hence a larger vertical scale. So an estimate of the initial

inertial current amplitude is made with the steady velocity

averaged over the boundary layer, that is, the transport

magnitude divided by the Ekman depth scale

Uin 05
1

h
e

�

�

�

�

ð0

2‘

U dz

�

�

�

�

, (12)

using (9) to evaluate the integral.

For comparison with the LES results below, the

Ekman–Stokes solution is normalized by u* for velocity,

he for depth, and u
2
* for the equivalent of Reynolds stress

(i.e., 2ko›zU or 2ko›zu). As will be shown, the matches

of the Ekman–Stokes solutions to the LES results are not

precise in their vertical profile structure, as is to be ex-

pected with the strong simplifications of uniform density

and eddy viscosity (cf. Fig. 6, described in greater detail

below) and a monochromatic wind-sea profile for uwst(z)

(cf. Fig. 2). The Ekman–Stokes parameters are chosen,

first, by exactly matching u
*
,Us, us, andDswith their LES

values. Second, the measured LES boundary layer depth

h (which is limited by stable stratification rather than
ffiffiffiffiffiffiffiffiffiffiffi

2ko/f
p

for he) is used for its normalizations of z and

Reynolds stress. Third, for the remaining Ekman–Stokes

parameters—Uw,Dw, and ko—the simple profile assump-

tions for the wind-sea Stokes drift velocity and diagnosed

FIG. 2. (left) Eastward and (right) northward velocities for two cases in the case set Us1: wind-wave equilibrium

(black) and with an added swell withUs
5 0.25m s21,Ds

5 16m, and a wind-aligned us5 0 (red). The solid lines are

the mean velocity, and the dashed lines are the Stokes drift ust.
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eddy viscosity do not correspond to the more complex

profiles in the LES solution. Therefore, the Ekman–

Stokes parameter values are chosen—0.125ms21, 1.25m,

and 0.025m2 s21, respectively—to give the best visual

comparisons below in Figs. 3–5. These parameter values

are not ill matched to the more complex uwst(z) and k(z)

profiles in Figs. 2 and 6, respectively. Furthermore, the

normalized Ekman–Stokes profile shapes are not highly

sensitive to these parameter choices. At best, the Ekman–

Stokes model is a simple explanation for some of the usst

dependencies exhibited in the more complete LES solu-

tions, and by this standard it proves to be useful.

4. Mean current and Reynolds stress

From a larger-scale perspective, the most important

outcomes for the boundary layer are the quasi-steady

mean horizontal current and slowly eroding density strat-

ification after an initial spinup period of about a day. After

filtering out the inertial current that arises from the

FIG. 3. Hodographs of Lagrangian-mean velocity, uL(z) in (13), for the case sets (left) Us1 and (right)Qs. The dots

along the spirals indicate depths of 2z/h 5 (0.1, 0.3, 0.6, 0.9). The arrow indicates increasing La from the largest

(outer spiral) to no swell (inner spiral) (left). The us values are labeled by their compass directions, and, for clarity, the

us $ 0 are separated from the us # 0 cases (right). The insets show the equivalent spirals from the Ekman–Stokes

model, with the us 5 6p (W) profile having very small uL(z) values at all depths.

FIG. 4. Hodographs of the Reynolds stress plus breaker impulse,R(z) in (15), for the case sets (left) Us1 and (right)

Qs. The format is the same as in Fig. 3. For the insets, the comparable quantity in the Ekman–Stokes model is2ko›su(z):

R(0)52u2* at the surface, and R/ 0 at depth.
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impulsive start to the boundary layer flow, the mean cur-

rent profile hui(z) in Fig. 2 is a combination of a clockwise-

rotating Ekman spiral in uL and an anti-Stokes Eulerian

flow with hui opposing ust, as in the Ekman–Stokes solu-

tion (7).Both features are familiar attributes of equilibrium

Langmuir turbulence (e.g., McWilliams et al. 1997); for

example, if ust 5 0 (as in case NB defined in Table 1; not

shown), the Eulerian hui . 0 near the surface because

there is no anti-Stokes effect. With an added swell aligned

with the wind, the Stokes drift velocity is stronger and

deeper. The wind-aligned mean velocity is increasingly

upwind, the crosswind velocity is more nearly linear in its

profile and reverses near the boundary layer base, and

both components extend somewhat deeper because h is

a bit larger through enhanced entrainment (section 6).

Although such large swell has not been examined be-

fore, these behaviors are not surprising for Langmuir

turbulence solutions.

The anti-Stokes effect is partly canceled in the

Lagrangian-mean flow profile

uL(z)5 hui1 ust . (13)

In the Ekman–Stokes model the cancellation is com-

plete in the transport (9), as is also true in the LES that

satisfies the same transport relation (16).When the swell

amplitudeUs increases for wind-aligned swell (i.e., us5 0;

Fig. 3, left), the surface maximum in uL is larger, and

the Ekman spiral is fatter; that is, the flow in the bulk of

FIG. 5. Inertial current amplitudeUin 0 averaged over the boundary layer (2h# z# 0) as a function of (top, left) La

for case sets Us1 (black), Us2 (red), and Ua (blue); as a function of (top, right) us for case setQs; and as a function of

(bottom) Ds for case set Ds. The insets show the equivalent results from the Ekman–Stokes model using (12).
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the boundary layer is stronger. Compared to case NB

without Stokes drift (defined in Table 1; not shown),

these wave-influenced cases have a stronger surface uL

and a fatter Ekman. The same qualitative trend with La

occurs in the Ekman–Stokes solution for analogous

parameter values (section 3), which is plotted in the in-

set. When the swell direction us varies away from wind

alignment to the east (Fig. 3, right), uL at the surface

weakens and rotates toward the swell, but only over a

limited azimuthal range. In the interior of the boundary

FIG. 6. Hodographs of the eddy viscosity vector, kL 5 (kLk ,k
L
?) in (18) normalized by u*h, for the case sets (left) Us1, (right) Qs, and

(bottom)Ds. The format is similar to Fig. 3. (top, left) The cases are forUs
5 0 (blue), 0.1 (red), 0.25 (black), and 0.4m s21 (green), plus the

case NB with ust5 0 (defined in Table 1; black dashed); the curved arrow indicates the direction of increasing La. The loops are traversed

counterclockwise with depth from the origin out to amiddepthmax and back to the origin. The Ekman–Stokesmodel (section 3) would be

represented as a point on the abscissa at (ko, 0)/u*
he, and the standardK-profile parameterization (KPP) scheme (Large et al. 1994) would

be a line traversed by (K(z), 0)/u
*
h, with K(z) a convex positive function of z that starts and ends near the origin.
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layer, the upwind velocity component is strongest—the

Ekman spiral is fattest—in the us range from southeast

(SE) to northeast (NE) and is much weaker over the rest

of the compass range. Again, these behaviors are similar

to those in the Ekman–Stokes model (shown as insets in

Figs. 3, 4, and 5). In Fig. 3, there is a rough left–right

symmetry with a sign reversal in us [e.g., north (N) versus

south (S)]. The dependency of uL(z) on the swell depth

scaleDs (i.e., in the case set Ds) is rather slight and is not

shown; with a smaller Ds, uL(z) is slightly more surface

intensified. Of course, the anti-Stokes aspect in hui is

larger and reaches deeper with larger Ds, as in (7).

The mean horizontal momentum balance (averaged

over the inertial oscillation) is

f ẑ3 (hui1 ust)52›zhu
0w0i1 x̂A , (14)

with a surface boundary condition of hu0w0i(0) 5 0 due

to the replacement of wind stress by the mean breaker

momentum impulse A(z) . 0 in a thin layer near the

surface. The velocity on the left side is the Lagrangian-

mean flow uL(z), and one sees the constraint that an

anti-Stokes Eulerian flow hui develops with an in-

creasing Stokes drift ust and fixed momentum forcing

by the wind, with the Reynolds stress profile unlikely

to exceed the surface stress. The right side forcing in

(14) is minus the divergence of the difference between

theReynolds stress and the upward integral of the breaker

impulse:

R(z)5 hu0w0i2 x̂

ðz

2H

Adz0 . (15)

Because of the boundary condition on Reynolds stress

and the normalization for A, this has a surface value of

R(0)52u2*. Thus, the transport integral,

ð0

2H

uL dz52
1

f
ẑ3 x̂

ð0

2H

A(z0) dz0 52ŷ
u2*
f
, (16)

is independent of the swell amplitude [cf. (9)], despite

its evident influence on the profile shape of uL(z)

(Fig. 3).

The Reynolds stress hodograph for R(z) in Fig. 4 be-

comes much fatter when Us is large and us is in the same

quadrant as the wind direction. With large enough Us

(which occurs in the case set Us2, not shown), the mag-

nitude of the crosswind hy0w0i even exceeds the sur-

face wind stress. For swell rotated to the left of the wind

(us. 0), theR(z) hodograph tilts to the left and vice versa

for us , 0; but again, the range in directional tilt is much

less than the range in us. For the quadrants away from

the wind [from south to north through west (W)], the

hodograph becomes quite thin. These dependencies onUs

and us are also present in the Ekman–Stokes model (in-

sets), although the shapes of its hodographs are not the

same, and the left–right symmetry in us is not as visually

apparent, in spite of the fact that it does have the partic-

ular us symmetry (10). Again, theDs dependencies of the

Reynolds stress (not shown) are much smaller than those

for Us and us.

The mean momentum balance (14) may equivalently

be expressed in terms of a Lagrangian eddy viscosity

tensor defined by

2hu0w0i5 kLR � ›zu
L, R5

 

cosuL 2sinuL

sinuL cosuL

!

, (17)

where R(u) is the horizontal rotation matrix represent-

ing the rotation of the shear direction into the opposite

of the Reynolds stress direction. Here, kL(z) is the

positive scalar magnitude, and uL(z) is the rotation an-

gle. A conventional eddy viscosity model has uL[ 0, but

this is not sufficient to characterize an Ekman layer with

surface waves (McWilliams et al. 2012, section 3d). Al-

ternatively, an eddy viscosity vector is defined in terms

of components of the Reynolds stress parallel and per-

pendicular to the mean Lagrangian shear:

kLk (z)5 kL cos[uL]52
›zu

L � hu0w0i
(›zu

L)2
,

kL?(z)5 kL sin[uL]52ẑ �
›zu

L 3 hu0w0i
(›zu

L)2
. (18)

In the conventional model, kLk . 0 and kL? 5 0.

In McWilliams et al. (2012) it is shown that a

Lagrangian eddy viscosity representation has simpler

vertical structure in k(z) and a smaller range of u(z)

variation than a conventional Eulerian one (i.e., defined

with uL replaced by hui in the preceding formulas) for

unstratified, wind-wave equilibrium Langmuir turbu-

lence, especially in the near-surface region where ust is

not small. The same is true in the present stratified cases

with swell-waves.2 The hodograph of the eddy viscosity

vector kL(z)5 (kLk (z), k
L
?(z)) (where the parentheses are

standard math notation for expressing components of

a vector in this type of serial form) in Fig. 6 (left) shows

both the increase in the magnitude of kL in a wind-sea

compared to the absence of waves (case NB; defined in

Table 1) and the ensuing decrease with added swell,

2 Similarly, Harcourt (2013) proposes a local second-moment

turbulence closure model based on Lagrangian-mean shear rather

than Eulerian.
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Us 6¼ 0. This nonmonotonic dependence on La is some-

what surprising, and this is further discussed at the end of

this section. The vertical profile of kL(z) has a middepth

maximumand vanishes at the edges of the boundary layer

in all cases (i.e., the looping curves in the hodograph that

start and end at the origin). Without waves the loop is

very thin, indicating that uL ’ 0, but it is not thin for ei-

ther a wind-sea alone or a wind-sea with added swell. The

wind-sea case with Us
5 0 has uLk , 0 in the Stokes layer

near the surface and uLk . 0 deeper in the interior of the

boundary layer; the same structure occurs in the un-

stratified, wavy Ekman layer (McWilliams et al. 2012).

With increasingUs, the loops shrink and rotate clockwise

in uL, so that uL(z) , 0 at almost all depths with the

largest Us. With variable us (Fig. 6, right), the magnitude

of kL increases with leftward swell rotation up to us5 p/2

(north), then begins to shrink again and uL rotates to the

left. With rightward rotation in us, the magnitude de-

creases to a minimum near us 5 2p/2 (south), and k
L

assumes a distended loop shape for us 5 23p/2 [south-

west (SW)]. This is a very substantial left–right us asym-

metry in the boundary layer response to swell.

The Ekman–Stokes model (section 3) is not apt for

these eddy viscosity behaviors because (ko, 0) is just

a point on the positive abscissa of these hodographs.

This implies that the analytic model is not reliable for

the detailed profile structure of the mean flow and

Reynolds stress, even if it is useful for indicating their

qualitative dependencies on the swell-wave parameters.

In contrast, a ‘‘Lagrangian diffusion’’ Ekman–Stokes

model—analogous to (5) and its boundary conditions

but with the Eulerian diffusive flux ko›zU replaced by

a Lagrangian flux kLo ›zUL—would be isomorphic to

a standard Ekmanmodel without waves; that is, it would

show no dependencies on the added swell and thus have

no explanatory value for Figs. 3 and 4, as well as being

only a point located at (kLo , 0) in Fig. 6.

Finally, there is an appreciable dependency of kL(z)

on Ds in the case set Ds (Fig. 6, bottom), with a larger

eddy viscosity magnitude as Ds is decreased, while main-

taining a roughly similar loop shape as in Fig. 6 (left).

The complexity of the k
L(z) profiles and their varia-

tions with swell-wave parameters in Fig. 6 are chal-

lenging for achieving an accurate boundary layer

parameterization for the shape of hui(z). On the other

hand, there is evident skill shown in the preceding

figure insets for the very simple parameterization used in

the Ekman–Stokes model with a constant ko (section 3).

The implications of this trade-off between accuracy and

simplicity are further discussed in section 8.

It is known from previous work (McWilliams et al.

1997; McWilliams and Sullivan 2000) that the eddy vis-

cosity magnitude increases due to the presence of waves

compared to a shear boundary layer without them (e.g.,

case NB; defined in Table 1). This is a different trend

than the present result that kL decreases with the ad-

dition of an increasing swell-wave amplitude to an

equilibrium wind-wave field. The viscosity magnitude

from (17) is the ratio of Reynolds stress and Lagrangian-

mean shear magnitudes

kL5
jhu0w0ij
j›

z
uLj , (19)

while the mean horizontal momentum balance (14) be-

low the wave-breaking layer implies

j›zu
Lj’ 1

f
j›2zhu0w0ij . (20)

Thus,

kL ’ f
jhu0w0ij
j›2zhu0w0ij . (21)

To explain the trend in kL with decreasing La, for ex-

ample, for wind-aligned waves, one can examine the

trends in the numerators and denominators of (19) or

(21). Both jhu0w0ij and jh›zuLij, hence j›2zhu0w0ij as well,
are decreasing functions of depth, while their ratio kL

has a convex shape with a maximum near the middle of

the boundary layer (Fig. 6). With decreasing La, the

hu0w0i(z) profile shows a systematically increasing mid-

depth numerator. The denominator jh›zuLij first de-

creases with the presence of weak waves, then around

La ’ 1 begins to increase with stronger waves,3 thus

implying the reversing trends in kL. Consistent with (20),

the Reynolds stress profile curvature (i.e., its second

derivative with depth) first diminishes with decreasing

La, then because of the tendency of the hodograph to

fatten (Fig. 4) with added swell, it also increases. The

Ekman–Stokes model with its fixed Eulerian ko, in

contrast, has monotonically increasing numerators and

denominators, and their middepth ratios as La decreases

(not shown). The implication is that, in the LES solution,

changes in the wave field change both the shape of

the Langmuir circulations (section 7) with their signifi-

cant contribution to the momentum flux profile (e.g.,

demonstrated in McWilliams et al. 2012) and the out-

come of the anti-Stokes competition in the Lagrangian

3This result is based on LES solutions with an equilibrium wind-

wave Stokes profiles whose amplitude is artificially reduced to in-

crease La above its equilibriumvalue of 0.3. These solutions are not

shown here explicitly, but both Harcourt and D’Asaro (2008) and

Grant and Belcher (2009) show results for this larger La regime.
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uL(z) profile in seemingly subtle ways that lead to the

diagnosed kL(z) changes with La. A more simplistic

argument is that the numerator is plausibly con-

strained by the wind stress magnitude u2*, while the

denominators are freer to grow with increasing ›zust;

however, this argument does not faithfully capture the

decreasing j›zuLj in the larger La regime.

5. Inertial current

As mentioned, the horizontally averaged current ex-

hibits inertial currents generated in the initialization

shock. After adjustment, their vertical structure is ap-

proximately uniform in z over the boundary layer and

weak below. For each LES case, a depth-averaged in-

ertial amplitude Uin 0 is fit during the analysis period

of one inertial period. The dependencies with Us and us

are shown in Fig. 5. The inertial amplitude increases

with Us (decreasing La), and the three case sets with

variable La (Us1, Us2, and Ua) all show a similar

functional shape. The us variations have an inertial

current amplitude dependency with a roughly a 1 b sin

[us] dependency. These behaviors are qualitatively simi-

lar in theEkman–Stokes (12), as is evident by comparison

with the insets in Fig. 5. The Uin 0 also increases approxi-

mately linearly with Ds in the LES (Fig. 5, bottom),

consistent with the prediction in (12); that is,

Uin 0

u*
5

1

u*h

�

�

�

�

iT
f
2DwUw

2DsUs exp[ius]

�

�

�

�

’
DsUs

u*h
(22)

for largeDs andUs. This relation explains the increase in

Uin 0 with decreasing La; that is, asD
s andUs increase, La

decreases. It also explains the dependency on us. When us

is in the NE quadrant, with the minus sign in (22) the

magnitude ofUin 0 increases in the first relation in (22) by

the swell contribution being in between the southward

contribution from wind stress and the westward negative

Stokes drift contribution from the wind-sea. Conversely,

when us is in the SW quadrant, the swell effect subtracts

from the contributions from stress and wind-sea, making

Uin 0 smaller. Overall, large swell amplifies the inertial

response to a sudden wind change.4 Furthermore, com-

pared to case NBwithout Stokes drift (defined in Table 1;

not shown), these wave-influenced cases have a stronger

inertial current response.

6. Turbulent intensity, entrainment rate,

and energy production

Define the turbulent kinetic energy profile as

e(z)5
1

2
(hu02i1 hw2i) . (23)

The prime indicates the subtraction of the horizontally

averaged flow at each time, that is, excluding both the

mean and inertial currents. The e is the isotropic mea-

sure of turbulent intensity, and the vertical velocity

variance hw2i is useful to compare to float measure-

ments in the surface boundary layer (Harcourt and

D’Asaro 2008). These two profile quantities are plotted

in Fig. 7. They show a surface-intensified e(z) and

a shallowmaximum in hw2i(z).With wind-aligned swell,

both e and hw2i increase compared to the wind-sea case;

this is similar to their increase in equilibrium Langmuir

turbulence compared to a boundary layer without the

Stokes vortex force (case NB defined in Table 1; not

shown). Profiles are also shown for us 5 6p/2. For

northward swell, e is as large as with wind alignment,

whereas for southward swell e is much reduced. Both

e(z) and hw2i(z) show some oscillatory complexity in

the northward case, including elevated variances in the

deep interior below the boundary layer (i.e., z , 2h)

that indicate increased internal gravity wave excitation

by the boundary layer turbulence impinging on the top

of the pycnocline (Polton et al. 2008).

This is another asymmetric response to the swell angle

us, and it is in the same sense as the stronger inertial

current response for us. 0 (section 5). However, there is

no temporal correlation of turbulent intensity with the

phase of the inertial current. This implies that the en-

hanced vertical shear at the base of the boundary layer

when the inertial current aligns with the mean current

shear is not an important source of turbulent energy

production [in contrast to the situation of ‘‘inertial res-

onance’’ when the wind rotates in phase with the inertial

current (Price 1981)].

To demonstrate the swell-wave parameter depen-

dencies, Fig. 8 shows e and hw2i after averaging both

within the boundary layer and in the interior layer be-

low. The turbulent intensities increase with smaller

La in both layers, with the one exception of boundary

layer hw2i for the most extreme case of weak winds

in case set Ua. Through an argument that relates tur-

bulent intensity to the efficacy of Stokes production

(i.e., Pst 5 2hu0w0i � ›zust . 0) in the turbulent kinetic

energy balance (Harcourt and D’Asaro 2008; Grant

and Belcher 2009), the scaling prediction is e, hw2i ;
La24/3. This comparison curve is also drawn, and it is

4 In LES cases that go beyond the largestDs value in case set Ds,

the further increases in Ds lead to little change in the turbulent

intensity and fluxes. However, the anti-Stokes component in hui(z)
continues to deepen proportionally, and the amplitude of the in-

ertial response increases. No evident local instability below the

boundary layer arises in association with the deep hui(z) shear.
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roughly consistent with the La dependencies in the

boundary layer for these cases with added swell that

extend to smaller La than previously explored. The

increases in internal-wave variance below the bound-

ary layer are an even steeper function of inverse La,

roughly ;La22.

The swell-wave direction dependencies show the

greatest inertial current and turbulent intensity for us in

the NE quadrant, consistent with Figs. 5 and 7. The us

dependency in Fig. 8 is a roughly symmetric decrease

away from wind alignment for hw2i averaged over the

boundary layer, although the vertical profile comparisons

FIG. 7. Turbulent variance profiles: (left) e(z) and (right) hw2i(z) for the case sets Us1 with Us
5 0 (black) and Qs

with Us
5 0.25m s21 and us oriented toward east (red), north (green), and south (blue).

FIG. 8. Depth-averaged turbulent variances: e (solid) and hw2i (dashed) grouped separately for within the BL (the upper curves;2h#

z# 0) and for the deep layer below (the lower curves;2H# z#2h). (left) A function of La is for the case sets Us1 (black), Us2 (red), and

Ua (blue). For comparison, a scaling curve;La24/3 is also plotted (light black; see text). (right) A function of us is for the case setQs with

the BL averages in blue and the deep averages in red.
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for us 5 6p/2 in Fig. 7 show that this symmetry is not

precise.5 The boundary layer e measures in Figs. 7 and 8

are even farther away from us symmetry than hw2i, with
larger e for us . 0. Below the boundary layer, both e and

hw2i are so asymmetric in us that their maxima occur for

northward swell (similar to the inertial current in Fig. 5).

The Ds dependencies in case set Ds (not shown) are

rather slight, with some evident profile sensitivities in e(z)

and hw2i(z) and a weak tendency for e averaged over the

boundary layer to increase as Ds decreases.

Langmuir turbulence is known to increase the en-

trainment rate in a stratification-limited boundary layer

(McWilliams et al. 1997) as a consequence of Langmuir

circulations penetrating into the stable stratification and

scooping colder water into the boundary layer. This is

the process that causes h(t) to increase in the present

solutions.

The entrainment rate is associated with the negative

minimum in the vertical temperature flux profile of

hwTi(z). This temperature flux extremum is rescaled by

its contribution to the change in potential energy PE

associated with mixed layer deepening into a uniformly

stratified interior and cooling of its average temperature

T(t); that is,

›tPE[2
agh2

2
›tT52

agh

2
minz[hwTi(z)] , (24)

and then normalized by the scaling estimate for the rate

of wind work acting to increase the kinetic energy u3*;

that is, hwTi is normalized by a combined factor of

2u3*/agh, with a as the thermal expansion coefficient.

Figure 9 shows that added swell further enhances the

entrainment rate, which increases as La decreases with

a dependency that can be fit approximately as a linear

function of La22. The entrainment rate is largest

when the swell is aligned with the wind-sea, with a sim-

ilar us dependency as found for turbulent intensity e (i.e.,

larger for us . 0 than for us , 0; Fig. 8). Consistent with

the e change withDs remarked on above, there is a weak

tendency for the minimum in hwTi to decrease in mag-

nitude as Ds decreases. Both e and hw2i are larger with

Stokes drift than without it (case NB defined in Table 1;

not shown). Thus, stronger Langmuir turbulence has

stronger entrainment.

As expected, there is a strong correlation between

entrainment rate and the increased value of h averaged

over the analysis period. Because of the strong ther-

mocline, the changes in h are modest, ranging from only

a slight increase over the initial h(0) 5 33m in case NB

up to a value of 36m for the wind-aligned case in case set

Us1 with the strongest wind and swell. Yet again, theDs

dependencies for hwTi and h(t) are modest, although

there are small increases with Ds.

FIG. 9. Entrainment-layer temperature flux extremum in z, normalized by 2u3*/agh (with thermal expansion coefficient a 5 2 3

1024
8C21), as a function of (left) La for case sets Us1 (black), Us2 (red), and Ua (blue) and as a function of (right) us for case set Qs.

A comparison curve ;La22 (light gray) is drawn through the data end points (left).

5Van Roekel et al. (2012, their Fig. 8) shows a monotonic de-

crease in hw2i(z) as a function of the Langmuir cell orientation

angle, which is ’ us/2 for their misaligned cases. See section 7 for

further comparative remarks.

882 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 44



How can the us asymmetry in Figs. 8–10 be explained?

The ust profiles are symmetric with respect to the sign

of us, as part of the symmetry of the hui profiles in the

Ekman–Stokes model (section 3). The answer must lie in

an asymmetry in the turbulent dynamics (cf. the constant

ko assumption in Ekman–Stokes). A plausible cause is

the difference in Eulerian-mean velocity hui(z) between
positive and negative us. They are composed of anEkman

spiral in the southern quadrants to the right of the wind

plus an anti-Stokes component opposite to ust(z). For

northward swell (us . 0), the southward anti-Stokes

component broadly reinforces the Ekman flow, whereas

for southward swell, the anti-Stokes component is op-

posing. Therefore, hui is stronger for northward swell

waves. We conjecture that this implies a greater growth

rate for its linear shear instability that generates the

turbulence.6 Support for this conjecture is provided in

Table 2, which has the normalized and depth-integrated

values for the rates of mean shear and Stokes turbulent

kinetic energy production [(7) inMcWilliams et al. (2012)]:

FIG. 10. Vertical profiles of the orientation angle of Langmuir circulations (left) uLC(z) and their ellipticity (right)

«LC(z) (ratio of major to minor axis) determined from fitting an ellipse to the horizontal correlation functionCw for

w(x, y) at a fixed z in (27). These are for the cases from the case sets Us1 with Us
5 0 (black) and Qs with Us

5

0.25m s21 and us oriented toward east (red), north (green), and south (blue).

6To be specific we have in mind a calculation for given 1D

profiles of hui(z), ustz, and hTi(z), with or without background

eddy viscosity and diffusivity profiles. These would be specified

from themean state of LES solutions of the type presented here. In

the case of nonrotating, unstratified flow, Craik and Leibovich

(1976) and subsequent papers show that the Stokes vortex force

enables a new shear instability mode as a paradigm for the emer-

gence of Langmuir circulations. Such a calculation has not yet been

performed for the conditions relevant here.
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P
u
(z)52hu0w0i � ›

z
hui

Pst(z)52hu0w0i � ›zust . (25)

The mean shear production rate Pu, in particular, is

much larger for northward swell for a given value of jusj,
so that the total production rate is also larger. In almost

all cases, Pu , Pst, with westward swell as the only ex-

ception (where total production is small). Thus, stronger

hui is associated with a stronger turbulent production

rate, stronger turbulent intensity, and stronger entrain-

ment, and even with a fatter Reynolds stress profile

(Fig. 4), albeit only to a modest degree.

The total kinetic energy production (25) can alterna-

tively be written using (17) and (19)–(21) as

P[Pu 1Pst 52hu0w0i � ›zhu
Li

5 kLj›zu
Lj cos[uL]5 1

f
jhu0w0ij j›2zhu0w0ij cos[uL] . (26)

Thus, the energy production is positive if cos[uL]. 0, as

it is at all depths in Fig. 6, and it is proportional to the

product of the Reynolds stress and its profile curvature.

As discussed at the end of section 4, both of these factors

are increasing as La decreases in the swell regime (i.e.,

La# 0.3). This is consistent with energy production and

velocity variance strongly increasing (Fig. 8), even while

their ratio kL in (21) is decreasing (Fig. 6). Even for

weak waves with La . 1, the decrease in j›zuLj is more

than countered by the increase in jhu0w0ij (i.e., kL in-

creases), so that P also increases with decreasing La in

this regime. The increasing P is the plausible cause for

the increasing e and entrainment as La decreases across

its entire range.

Finally, it can be remarked that Langmuir turbulence

differs from shear turbulence in that the negative feed-

back between the turbulent kinetic energy production and

the mean shear is not as tight: Pu is proportional to ›zhui,
which in the absence of waves will be reduced if e and

momentummixing increase, whereasPst is proportional to

›zust, which is not as directly reduced by changes in the

boundary layer turbulence, but would be so only if the

feedback on the wave field, here neglected, were strong

enough. This is a partial explanation for the strong inverse

dependence of e on La in Langmuir turbulence.

7. Langmuir circulations

Langmuir circulations in a nonrotating, unstratified

surface layer have an idealized shape of closely packed,

longitudinal roll cells, orienting with the surface stress

and wind-sea and extending vertically throughout the

boundary layer (Leibovich 1983). In equilibriumLangmuir

turbulence (McWilliams et al. 1997), they have more

fragmented shapes but still retain appreciable horizontal

anisotropy; they are rotated to the right of the wind-sea

increasingly with depth. At sea they are most easily vi-

sualized by buoyant debris trapped in surface conver-

gence lines, and inLES solutions the horizontal pattern of

w (especially w, 0) is a comparably useful visualization.

Statistical measures of the intensity and entrainment

efficacy of Langmuir circulations show strong depen-

dencies on swell-wave amplitude and orientation (sec-

tion 6). How does their spatial structure change with

swell? To analyze the horizontal structure of the

Langmuir circulations, a spatial correlation function7

is calculated from w(x, y) at each height z:

Cw(j,h, z)5
hw(x1 j, y1h, z, t)w(x, y, z, t)i

hw(x, y, z, t)2i
, (27)

where again the angle brackets denote an average over

all (x, y, and t). Langmuir circulations have horizontally

elongated patterns, which are expressed in Cw as ap-

proximately elliptical contours decreasing away from

the central extremum where Cw (0, 0, z)5 1. Therefore,

an ellipse is fit to an intermediate contour of Cw in the

(j, h) plane (e.g.,Cw 5 0.4 for Fig. 10).8 The direction of

its major axis is designated as uLC(z) and the ratio of

its major and minor axes as «LC(z). Respectively, these

quantities measure the mean orientation angle and degree

of elongation (anisotropy) of the Langmuir circulations.

The resulting profiles of these measures are shown in

Fig. 10 for several cases in case sets Us1 and Qs. For

TABLE 2. Turbulent kinetic energy production rates of (25),

depth-integrated and normalized by u3*. They are grouped by us

magnitude for the case set Qs.

Case Pu Pst Pu 1 Pst

Us1: Us
5 0 (no swell) 1.5 13.2 14.7

Qs: us 5 0 (E) 3.2 21.3 24.5

Qs: us 5 p/4 (NE) 5.6 16.7 22.3

Qs: us 5 2p/4 (SE) 1.3 19.5 20.8

Qs: us 5 p/2 (N) 6.1 9.5 15.6

Qs: us 5 2p/2 (S) 0.8 12.9 13.7

Qs: us 5 3p/4 (NW) 8.5 3.3 11.8

Qs: us 5 23p/4 (SW) 2.7 7.5 10.2

Qs: us 5 6p (W) 7.7 3.1 10.8

7An alternative statistical measure of Langmuir circulation

orientation is the direction determined by a peak in the distribution

function for tan21(vy/vx), wherev is the vorticity vector (see, e.g.,

VanRoekel et al. 2012). This gives similar results to the correlation

function method used here, but with somewhat greater estimation

noise.
8The elliptical fit parameters are only weakly dependent on the

Cw value as long as «LC is not too close to 1.
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swell aligned with the wind-sea, uLC(z) is nearly wind

aligned at the surface and progressively rotates clock-

wise with depth, while «LC(z) is largest at the surface and

decreases with depth down to near isotropy at the bot-

tom of the boundary layer. Neither of these behaviors is

very different due to the presence of swell. However,

when the swell is misaligned with the wind-sea, the

Langmuir circulations rotate in the direction of the swell

by a small amount near the surface. Below the surface,

the behavior of uLC(z) is very different for us 5 6p/2: it

rotates clockwise evenmore rapidly for southward swell,

and it is nearly independent of depth for northward

swell. Additionally, for northward swell, the circulation

anisotropy is very much enhanced in the middle of the

layer, compared to the surface and compared to the

other us orientations.

Beyond these statistical measures, the Langmuir cir-

culation patterns are displayed in Fig. 11 for visual as-

sessment. Near the surface (z 5 21m) the patterns are

only moderately different for different values of Us and

us, although some variations in w amplitude and an-

isotropy direction are discernible. By the middle of the

layer (z 5210m), however, the pattern differences are

quite large. Besides simple amplitude dependencies for

w—larger w both for larger Us and for us in the range

from SE toN—the nonmonotonic dependency of uLC on

us and the highly variable degrees of pattern complexity

are notable. For Us
5 0, the pattern is a familiar one

from previous studies of equilibrium Langmuir turbu-

lence. For an opposing swell (us 5 p), the Langmuir

circulations are regular roll cells with nearly uniform

spacing and a north–south orientation perpendicular to

both thewind-sea and the swell-sea. But with the swell in

the SE–N sector, there are multiple Langmuir circula-

tion orientations and scales and complicated branching

patterns from a dominantw extremum. It is clear that no

simple conception of the structure of Langmuir circu-

lations holds across the range of swell conditions.

In Van Roekel et al. (2012), considerable attention is

given to the near-surface orientation angle of Langmuir

circulations uLC as the misalignment angle between an

equilibrium wind-sea and the wind stress is varied over

a range from um 5 0 to13p/4. The principal motivation

is to interpret the dependency of hw2i on the wave pa-

rameters (further discussed in section 8). Their result is

that uLC monotonically increases with um (their Figs. 2

and 7). In that paper several statistical predictors of uLC

are assessed, with varying degrees of skill, and mostly

uLC is about half way between the wind and wave angles

for this set of cases. In Fig. 10, the sign of uLC near the

surface is the same as the sign of us, but its magnitude is

much less than us/2. In the boundary layer interior, the

uLC(z) profile shapes are quite different in the north

and south cases. Furthermore, the Langmuir circula-

tion pattern complexity in Fig. 11 is not always well

characterized by only a single angle, even at a fixed

depth. Therefore, uLC does not seem to be a robust

property of Langmuir turbulence with different swell-

wave orientations.

The Langmuir circulation pattern dependencies are

not strong with Ds variations in case set Ds (again not

shown), except for a moderate enhancement of the w

magnitudes near the surface in the case with the smallest

Ds value of 4m (i.e., a steep swell wave due to its short

wavelength of l 5 50m).

A further structural oddity emerges in the limit of

large swell and weak wind (i.e., in the case set Ua for the

smallest Ua value of 2.5m s21; Fig. 12). The Langmuir

circulations become much larger in scale, both in their

along-axis extent and in the spacing between neighbor-

ing circulations. In this case, they are bundles of aniso-

tropic overturning cells rather than individual isolated

cells. Within the bundles are multiple spatial scales

and orientation angles. A primary orientation—roughly

northwest (NW)–SE at both depths shown in the figure—

characterizes the long axis of the bundle, but different

orientations arise on a finer scale within the bundles—

moreE–Wnear the surface andmoreN–S in the boundary

layer interior. This is certainly a highly organized turbu-

lent coherent structure, but it is a long way from an ide-

alized roll cell. For the smallest La values in Fig. 9, some

sort of regime transition is occurring, with a break from

the;La24/3 scaling growth of hw2i in the boundary layer,
while the scaling growth of hw2i below the boundary layer

continues, as does the growth of hwTi (Fig. 9). Any

changes in the growth of e are less clear.

Comparison of the statistics and patterns among the

cases in set Lh indicate that there is only a weak de-

pendency on the domain widthL, with the widest domain

(L 5 1200m) large enough to encompass several of the

large-scale Langmuir circulations, suggesting a conver-

gence of the LES solutions with this essentially compu-

tational parameter. If solutions were sought with even

smaller La values (e.g., even weaker winds), it is likely

that the Langmuir circulation size would grow even

larger, requiring larger L. Malecha et al. (2013) have

proposed amultiscale asymptotic treatment in the limit of

La/ 0 as an aid to computational efficiency; it is an open

question whether this is a viable approach to dealing with

the complex bundle structures evident in Fig. 12.

8. Summary and discussion

The presence of remotely generated swell waves sig-

nificantly alters the Langmuir turbulence of an equilib-

rium wind-sea. The Lagrangian-mean flow profile uL(z)
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FIG. 11. Thew(x, y) snapshots at z5 (top)21 and (bottom)210m, normalized by

u
*
. In the center is the case from the set Us1 with no swell (Us

5 0), and around the

edge are the cases in setQs (Us
5 0.25m s21,Ds

5 16m) located in their appropriate

compass positions.
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has a larger surface value and a fatter Ekman spiral

throughout the boundary layer with increasing swell

magnitude Us. With misaligned wind and swell, uL ro-

tates toward the swell direction, but only within a limited

angular range that is almost equal to6308. The Eulerian-

mean flow hui(z) exhibits an anti-Stokes component that

becomes large when Us is large, but this cancellation is

not so complete as to leave uL unaltered with added

swell-waves. The Reynolds stress profile R(z) also has

a fatter Ekman spiral with strong swell, and with mis-

alignment it rotates to a moderate degree toward the

swell direction within the boundary layer interior. For

a given swell magnitude, the orientation of opposing

wind- and swell-seas (i.e., us 5 6p) yields the weakest

uL and thinnest Ekman spiral. All of these behaviors are

similar to the analytic Ekman–Stokes model solutions

with constant density and eddy viscosity (section 3).

Turbulent intensity, e and hw2i, and entrainment rate

hwTi are inverse functions of Langmuir number La.

Within the boundary layer the intensity measures

scale roughly as La24/3, consistent with an argument based

on Stokes production as the dominant source of Langmuir

turbulence, while for the inertial current, entrainment

rate, and fluctuation variances below the boundary layer,

the dependencies are even steeper, perhaps ;La22 (as

predicted for Uin 0 by the Ekman–Stokes model).

The Ekman–Stokes model predicts a reflection sym-

metry in the swell direction (i.e., independence of the

sign of us) for the mean boundary layer, but this does not

hold in the LES solutions. While uL(z) is approximately

symmetric in its weakening and rotation for positive and

negative us (Fig. 3, right), most other boundary layer

properties are asymmetric. This is strongly so for inertial

current amplitude, turbulent intensity, and entrainment

rate, all of which are much stronger with leftward (us. 0;

counterclockwise, anticyclonic, and northward) swell

misalignment than with rightward misalignment. The

Langmuir circulation patterns are similarly asymmetric

with us, with stronger, more vertically aligned, and more

elongated eddies when us . 0.9 As La decreases with

larger swell, the Langmuir circulation patterns become

more complex and multiscale; at the smallest value of

La ’ 0.1 included here, the outermost longitudinal and

transverse correlation scales become very large com-

pared to the boundary layer depth (Fig. 12).

Even with a large added swell, however, the general

characteristics of Langmuir turbulence are similar to

what occurs in the equilibrium wind-sea regime, but the

quantitative differences are not small. In the swell-wave

parameter space of (Us, us, Ds), the most important pa-

rameter is La in (3). With aligned swell, as Us increases

and La decreases, the Lagrangian-mean flow, turbulent

intensity both within the boundary layer and below, and

entrainment rate all increase. As us varies away from

wind alignment, La in (3) increases due to swell- and

FIG. 12. The w(x, y) snapshots at z 5 (top) 21 and (bottom)

210m for the case set Lh (i.e., Ua 5 2.5m s21, Us 5 0.25m s21,

us5 0,Ds
5 16m, and variable L) with La5 0.11. The full panel is

for the quadrupled horizontal domain case with L 5 1200m, and

the lower-left inset is for the standard domain withL5 300m at an

uncorrelated time.

9The nonequilibrium misalignment cases examined in Van

Roekel et al. (2012) all have nonnegative wave rotation angles

relative to the wind u equal to or greater than zero.
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wind-sea Stokes drift misalignment. This increase in La

accounts partly for the general tendencies for decreases

in the preceding quantities; however, the us dependency

is asymmetric in its sign in the LES (unlike in the

Ekman–Stokes model or in the La definition), and

sometimes the asymmetry is strong enough to overcome

the implied change due to La (e.g., the peak value for

e averaged over the boundary layer occurs at us 5 p/2 in

Fig. 8). The Ds dependencies are mostly rather weak,

although inertial amplitude Uin 0 and diagnosed eddy

viscosity kL(z) are exceptions. This is consistent with the

absence of anyDs influence in the definition of La in (3),

which differs from the alternative definition in Harcourt

and D’Asaro (2008) in this aspect.

In Van Roekel et al. (2012, Fig. 12) functional fits

are presented for hw2i from LES cases as alternative

functions of alternatively defined Langmuir numbers

that combine the influences of Stokes drift magnitude,

direction, and depth scale. The latter alternatives in-

clude different depth weighting for the Stokes drift

magnitude in the denominator [as originally proposed

by Harcourt and D’Asaro (2008) to exclude de-

pendencies on the near-surface wind-sea ust magnitude

and on its extension beyond the boundary layer whenDs
.

h] and different angular projections for the misaligned

swell, wind, and Langmuir circulations. While all of the

fits are somewhat skillful, the skill levels among the al-

ternatives are not sharply distinguished. The swell in-

fluences summarized in the preceding paragraph do not

accurately collapse into a universal function of any of

these alternative Langmuir numbers (not shown). In

particular, the orientation angle uLC is a complex function

of us and depth (Figs. 10 and 11); hence, it is not useful as

an a priori projection angle for a composite La.

Oceanic circulation models require a boundary layer

parameterization because their computational grids are

necessarily too coarse to resolve Langmuir turbulence.

With data inputs about the surface fluxes and gravity

wave field, the desired outcome is accurate profiles of

hui(z) [or uL(z)], hTi(z), and other scalar profiles de-

termined in competition with larger-scale dynamical

influences, while accurate characterizations of turbulent

quantities such as e, hw2i, and k(z) are onlymeans to that

end. In particular, the swell influences demonstrated

here do need to be parameterized.

For uL(z) and the inertial current amplitude, even the

simple Ekman–Stokes model with constant eddy vis-

cosity is fairly skillful (Figs. 3, 4, and 5), even though in

practice the parameterization must also account for the

influence of stratification in limiting the boundary layer

depth and the generally convex shape of the eddy vis-

cosity profile [both of which are parts of the KPP

scheme; Large et al. (1994)]. On the other hand, the

complexity of the swell influences on the eddy viscosity

profile diagnosed from the LES solutions [i.e., kL(z) in

Fig. 6] indicates that neither the constant ko in the

Ekman–Stokesmodel nor the [K(z), 0] in theKPP scheme

would yield a highly accurate uL(z). In particular, the

magnitude of kL increases in equilibrium wind-wave

Langmuir turbulence compared to shear turbulence with-

out waves (McWilliams and Sullivan 2000; McWilliams

et al. 2012), but as La further decreases with swell waves,

the eddy viscosity magnitude decreases (section 4); that is,

jkj must have a maximum at an intermediate value of La

near its wind-sea equilibrium value of 0.3. These results

raise a subtle design issue about the trade-off between

parameterization simplicity (which often correlates with

robustness across regimes) and hui(z) profile accuracy

from the perspective of practical utility in circulation

models. This decrease in jkj for very small La happens even

while e and hw2i continue to increase with decreasing La

because of increasing turbulent kinetic energy production

(section 6); these opposing tendencies contradict the mix-

ing length representation of k;wsh, withws as a turbulent

velocity scale. Our present view is that relatively simple

rules for the dependency of k(z) on the wave parameters

(i.e., simpler thanmanifested inFig. 6)mayprovide a useful

accuracy for hui(z).
For hTi(z) and other material properties, the impor-

tant parameterization target of Langmuir turbulence is

the entrainment rate (Fig. 9). Its dependencies on the

swell parameters are fairly simple, and theymirror those

of the depth-averaged turbulent intensity (Fig. 8). The

entrainment rate, represented in the KPP scheme as the

negative peak in hwTi(z)52Ks(z)›zhTi(z) near the top
of the thermocline, is a sensitive function of the eddy

diffusivity profile near the bottom of the boundary layer,

most importantly how far the diagnosed boundary layer

depth at z52h penetrates into the stable stratification.

The determination of h is represented in the KPP

scheme for the free convection regime by a critical bulk

Richardson number condition where the mean velocity

scale is augmented by a turbulent velocity scaleVt.
10The

10 In present implementations of the KPP scheme in circulation

models, there are two alternative formulations for the critical

Richardson number condition that determines the boundary layer

depth h. One formulation is expressed as a ratio of the bulk dif-

ferences across the boundary layer of buoyancy change and ve-

locity change squared; in this representationV2
t is added toDhu2i in

the denominator (Large et al. 1994, section 3). The other formu-

lation is expressed as a boundary layer integral condition of the

competition between the destabilizing influence of (›zhui)2 and the
stabilizing influence of positive buoyancy stratification ag›zhTi; in
this representation, V2

t /h is added to the vertical integral of the

mean shear variance (Lemarie et al. 2012, section 3). Both for-

mulations have essentially the same dynamical rationale.
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rationale is that entrainment by encroachment into the

thermocline can happen even when the mean shear

is weak, as in convection at low wind speed or as in

Langmuir turbulencewith strongwaves andweakwinds.

To choose Vt, one must specify the desired entrainment

rate that will result from the KPP scheme when Vt is

large enough to dominate themean shear in determining

h. For free convection, the entrainment rule is the peak

value of the pycnocline buoyancy flux, which is a nega-

tive fraction, bT ’ 20.15, of the destabilizing surface

upward buoyancy flux B . 0. For Langmuir turbulence

with swell, the entrainment rule is expressed by the

normalized functional dependencies plotted as the ordi-

nates in Fig. 9, which are denoted as F(Us, us). With these

rules a combined expression can be derived for Vt with

both convection and Langmuir turbulence, following the

arguments in Large et al. (1994, p. 372); namely,

V2
t 5

C
y
Nhw

s

Ricr

"

(2b
T
)w3

*1 2u3*F
w3
s

#1/2

. (28)

The notation is as in that paper: N is the buoyancy fre-

quency just below the boundary layer;ws is the turbulent

velocity scale used in scaling the eddy diffusivity for

material concentrations, Ks(z) ; wsh; Ricr is the critical

value for the bulk Richardson number; w
*
; (Bh)1/3 is

the conventional convective velocity scale determined

from the surface buoyancy flux and boundary layer

depth; and Cy is an empirical coefficient slightly larger

than the one related to the shape of hTi(z) in the en-

trainment layer. The first term in the second numerator

is the previously proposed convective contribution, and

the second term is the new Langmuir contribution. In-

terpreting the result of Fig. 9 (left) as an experimental

scaling relation for the normalized entrainment rate of

F ; La22, the scaling dependency of Vt from (28) in

Langmuir turbulence is

Vt ; (Nhu*)
1/2La21/3 , (29)

assuming that ws ; u* La22/3 (i.e., the scaling curve in

Fig. 8).

The parameterization discussion in the preceding two

paragraphs sketches how the KPP scheme could be

modified to include the important effects of both a wind-

sea and swell in Langmuir turbulence by generalizing Vt

in the condition determining h and by choosing the

turbulent velocity scale ws to have an appropriate de-

pendency on the wave parameters La and us (and per-

haps Ds). However, a complete and implementable

parameterization scheme requires extensive testing, and

that task is beyond the scope of this paper.

In conclusion, the two relevant idealized regimes of

equilibrium Langmuir turbulence in the ocean—with

both wind and waves held steady in time and the tur-

bulence evolving into a stationary state—are for a wind-

sea alone, as previously analyzed in many papers, and

for the addition of a remotely generated swell-sea, as

analyzed here. Beyond these, the relevant regimes are

inherently transient in both the winds and waves, and

often the turbulence as well. Only a few transient situ-

ations have been addressed, for example, spinup from

rest, the passage of a hurricane utilizing a transient,

nonlocal wave model (Sullivan et al. 2012), and com-

bined measurements of variable waves and currents

(Smith 1992, 1998). Therefore, to make further progress

it is of pressing importance to measure andmodel across

a wide range of transient situations to discover how they

differ from equilibrium Langmuir turbulence.
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