
Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2011, Article ID 454587, 13 pages
doi:10.1155/2011/454587

Research Article

Language and Cognition Interaction Neural Mechanisms

Leonid Perlovsky

Harvard University and Air Force Research Laboratory, Harvard University, SEAS, Cambridge, MA 02446, USA

Correspondence should be addressed to Leonid Perlovsky, leonid@seas.harvard.edu

Received 7 May 2011; Accepted 27 June 2011

Academic Editor: Daoqiang Zhang

Copyright © 2011 Leonid Perlovsky. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it
fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language
and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops
mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language
is acquired from surrounding language “ready-made” and therefore can be acquired early in life. This early acquisition of
language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in
culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary
intermediary, a “teacher.” A mathematical model is developed; it overcomes previous difficulties and leads to a computational
theory. This model is consistent with Arbib’s “language prewired brain” built on top of mirror neuron system. It models recent
neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition
are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may
explain specifics of English and Arabic cultures.

1. Linguistics and Mathematical Models

How do language interacts with cognition is unknown. How
they function in thinking? Is language just a communication
device, or is it fundamental in developing thoughts? Do
we think with words and phrases, or do we speak without
thinking? If both abilities are important, how do we learn?
Which words go with which thoughts? To use just 1000
words for 1000 objects, every kid has to learn correct
combinations among 10001000 possible combinations, often
without explicit teaching as has been the case for most
kids around the world for millennia. Learning abstract ideas
is even more difficult. Words and sentences are not used
in small sets combined with objects and events exactly
fitting the intended meanings. Most objects present in every
situation are irrelevant for this situation (say a pattern on
the floor is irrelevant for understanding that this room
is a lecture hall or a dining room). How do we learn to
ignore the irrelevant majority of objects and events and to
account for the relevant context? Which neural mechanisms
of the brain enable learning language and cognition? After
a brief review of existing theories and past difficulties,

fundamental mechanisms of cognition are described with
their mathematical models that enable to overcome past
difficulties.

For long time, logic dominated thinking of mathe-
maticians and the intuitions of psychologists and linguists.
Logical mechanisms are similar for language or cognition;
both are based on logical statements and rules. Deficiencies
of logic established by the fundamental Gödelian results [1]
were not properly accounted for.

Contemporary linguistic interests in the mind mecha-
nisms of language were initiated by Chomsky [2] in the
1950s. He identified “poverty of stimulus” among the first
mysteries about language that science had to resolve the
tremendous amount of knowledge needed to speak and
understand language; it is learned by every child around
the world even in the absence of formal training. It seemed
obvious to Chomsky that surrounding language cultures do
not carry enough information for a child to learn language,
unless specific language learning mechanisms are inborn.
These mechanisms should be specific enough for learning
complex language grammars and still flexible enough so that
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a child of any ethnicity from any part of the world would
learn whichever language is spoken around. This inborn
learning mechanism Chomsky called Universal Grammar
and set out to discover its mechanisms. Chomsky empha-
sized the importance of syntax and thought that language
learning is independent of cognition. The idea of inborn or
innate language mechanisms is called nativism.

Initially the available mathematics of logical rules,
similar to rule systems of artificial intelligence, was used
by Chomsky’s followers. Eventually a new mathematical
paradigm in Chomsky’s linguistics was proposed in [3],
rules and parameters. This was similar to model-based
systems emerging in mathematical studies of cognition.
Universal properties of language grammars were supposed
to be modeled by parametric rules or models, and specific
characteristics of grammar of a particular language were
fixed by parameters, which every kid could learn when
exposed to the surrounding language. A recent fundamental
change of Chomsky’s ideas [4] was called the minimalist
program. It aimed at simplifying the rule structure of the
mind mechanism of language. Language was considered to
be in closer interactions to other mind mechanisms, closer to
the meaning, but stopped at an interface between language
and meaning. Today, Chomsky’s nativism still assumes that
meanings appear independently from language. Logic is the
mathematics of modeling language neural mechanisms.

Many psychological linguists, however, disagreed with
the separation of language and cognition. In the 1970s, cog-
nitive linguistics emerged to unify language and cognition
and to explain the creation of meanings. Chomsky’s idea
about a special module in the mind devoted to language was
rejected. Language and cognition use similar mechanisms.
It is embodied and situated in the environment. Related
research on construction grammar argues that language
is not compositional, and not all phrases are constructed
from words using the same syntax rules and maintaining
the same meanings; metaphors are good examples [5–8].
Neither nativism, nor cognitive linguistics, however, lead to
a computational linguistic theory explaining how cognition
and language are acquired and meanings are created.

Evolutionary linguistics emphasizes an importance of
evolving language and meanings. Language mechanisms are
shaped by transferring from generation to generation [9, 10].
This transferring process was demonstrated to be a “bottle-
neck,” a process mechanism that selected or “formed” com-
positional properties of language and connected language
to meanings [11–13]. The evolutionary linguistic approach
demonstrated mathematically that indeed this bottle-neck
leads to a compositional property of language. A small
number of sounds (phonemes, letters) can be aggregated
into a large number of words. By simulation of societies of
communicating agents [14], evolutionary linguistics demon-
strated the emergence of a compositional language, still the
computationally viable model of interacting language and
cognition has not been developed; existing mathematical
formalisms face combinatorial complexity.

Many aspects of interacting language and cognition
cannot be modeled by existing mathematical techniques.
Existing theories of language and cognition do not explain

many salient aspects of the unknown human neural
mechanisms, remaining mysterious. These mechanisms are
addressed here. The proposed model resolves some long-
standing language-cognition issues. How the mind learns
correct associations between words and objects among an
astronomical number of possible associations; why kids can
talk about almost everything but cannot act like adults; what
exactly are the brain-mind differences? Why animals do not
talk and think like people? How language and cognition
participate in thinking? Recent brain imaging experiments
indicate support for the proposed model.

2. Cognition: A Mathematical Model

2.1. Top-Down and Bottom-Up Neural Signals. Important
properties of perception and cognition are revealed by a
simple experiment, properties ignored by most theories
[15]. Imagine an object in front of you with closed eyes.
Imagination is vague not as crisp and clear as with opened
eyes. When eyes are opened, the object becomes crisp and
clear. It seems to occur momentarily, but actually it takes
about 1/5th of a second. This is a very long time for
neural brain mechanisms, hundreds of thousands of neural
interactions. Let us also note with opened eyes that, we are
not conscious about the initially vague imagination, we are
not conscious of the entire 1/5th of a second, and we are
conscious only about the end of this process: a crisp, clear
object in front of our eyes. This experiment has become easy
to explain after many years of research.

Explaining this experiment requires understanding
mechanisms of instincts, emotions, and mental represen-
tations. Perception and understanding of the world is
due to mechanism of mental representations or concepts.
Concept representations are like mental models of objects
and situations; this analogy is quite literal, for example,
during visual perception, a mental model of the object stored
in memory projects an image (top-down signals) onto the
visual cortex, which is matched there to an image projected
from retina (bottom-up signal; for more details see [16]).

Mental representations are an evolutionary recent mech-
anism. It evolved for satisfaction of more ancient mech-
anisms of instincts. Here, “instinct” is a simple inborn,
nonadaptive mechanism described in [17]. Instinct is a
mechanism similar to the internal “sensor,” which measures
vital body parameters, such as blood pressure, and indicates
to the brain when these parameters are out of safe range.
(More details could be found in [18] and references therein.)
An organism have dozens of such sensors, measuring sugar
level in blood, body temperature, pressure of various fluids,
and so forth.

Instinctual-emotional theory of Grossberg-Levine [17]
suggests that communicating satisfaction or dissatisfaction
of instinctual needs from instinctual parts of the brain
to decision-making parts of the brain is performed by
emotional neural signals. Emotion refers to several neural
mechanisms in the brain [19]; here, it always refers to
the mechanism connecting conceptual and instinctual brain
regions. Perception and understanding of the mental models,
corresponding to objects or situations that can potentially
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satisfy instinctual needs, receive preferential attention and
processing resources in the mind.

Top-down neural signals projected from a mental model
to the visual cortex make visual neurons to be more recep-
tive to matching bottom-up signals, or “primes” neurons.
This projection produces the imagination that we perceive
with closed eyes, as in the close-open eye experiment.
Conscious perception occurs, as mentioned, after top-down
and bottom-up signals match. For a while, the process of
matching presented difficulties to mathematical modeling, as
discussed below.

2.2. Logic and Computational Complexity . Computer intelli-
gence cannot compete with animals [20]. Specific mathemat-
ical difficulty of models of perception and cognition during
the last 60 years was understood as combinatorial complexity
(CC) [21–24]. Learning requires training, and algorithms
have to learn objects in their multiple variabilities but also
in context. Context is a combination of many objects; these
combinations lead to incomputable number of operations.
Combinations of 100 objects are 100100, a number larger than
all elementary particle interactions in the entire history of the
Universe.

CC difficulties have been related to Gödelian limitations
of logic; they are manifestations of logic inconsistency in
finite systems [25–27]. Approaches designed specifically to
overcome logic limitations, such as fuzzy logic and neural
networks, encountered logical steps in their operations:
Training requires logical procedures (e.g., “this is a chair”).

Dynamic logic (DL) was proposed to overcome limita-
tions of logic [21, 25, 28–31]. The mathematical description
of DL is given later; here, we describe it conceptually [32].
Classical logic is static (e.g., “this is a chair”), and DL is a
process “from vague-to-crisp”, from a vague representation,
model, statement, decision, and plan, to crisp ones. DL could
be viewed as fuzzy logic that automatically sets a degree
of fuzziness corresponding to the accuracy of the learned
models.

DL models the open-close eye experiment: Initial states
of the models are vague. Recent brain imaging experiments
measured many details of this process. Bar et al. [33] used
functional Magnetic Resonance Imaging (fMRI) to obtain
high-spatial resolution of processes in the brain, combined
with magnetoencephalography (MEG), measurements of the
magnetic field next to head, to provide a high temporal
resolution of the brain activity. The experimenters were
able to measure high resolution of cognitive processes in
space and time. Bar et al. concentrated on three brain areas:
early visual cortex, object recognition area (fusiform gyrus),
and object-information semantic processing area (OFC).
They demonstrated that OFC is activated 130 ms after the
visual cortex but 50 ms before object recognition area. This
suggests that OFC represents the cortical source of top-
down facilitation in visual object recognition. This top-down
facilitation was unconscious. In addition, they demonstrated
that the imagined perception generated by the top-down
signals facilitated from OFC to the cortex is vague, similar
to the close-open-eye experiment. Conscious perception
of an object occurs when vague projections become crisp

and match a crisp image from the retina; next, an object
recognition area is activated.

2.3. Neural Modeling Field Theory. The mind has an approx-
imately hierarchical structure from sensory signals at the
bottom to representations of the highest concepts at top
[16, 34]. Here, we describe interaction between two adjacent
layers in the hierarchy. We give a simplified description, as if
eye retina. Matching mental models in memory to bottom-
up signals coming from eyes is necessary for perception;
otherwise, an organism will not be able to perceive the
surroundings and will not be able to survive. Therefore,
humans and high animals have an inborn drive to fit top-
down and bottom-up signals, the instinct for knowledge
[22, 24, 27].

The knowledge instinct (KI) is similar to other instincts
in that the mind has a sensor-like mechanism, which mea-
sures a similarity between top-down and bottom-up signals,
between concept-models and sensory signals, and maximizes
this similarity. Brain areas participating in KI were discussed
in [35]. That publication discussed similar mechanisms con-
sidered by biologists since the 1950s; without a mathematical
formulation, however, its fundamental role in cognition was
difficult to discern. All learning algorithms have some models
of this instinct, maximizing correspondence between sensory
input and an algorithm internal structure (knowledge in
a wide sense). According to the Grossberg and Levine
instinct-emotion theory [17], satisfaction or dissatisfaction
of every instinct is communicated to other brain areas by
emotional neural signals. Emotional signals associated with
the knowledge instinct are felt as harmony or disharmony
between our knowledge models and the world [36]. At
lower layers of the mind hierarchy, at the level of everyday
object recognition, these emotions are usually below the level
of consciousness; at higher layers of abstract and general
concepts, this feeling of harmony or disharmony could be
conscious; as discussed in [19, 21, 37–39], it is a foundation
of our higher mental abilities; experimental demonstration
of these emotions associated with knowledge is discussed
in [40]. A mathematical theory combining the discussed
mechanisms of cognition as interaction between top-down
and bottom-up signals is summarized below following [21,
41].

In a single layer of the mental hierarchy, neurons are
enumerated by index n = 1, . . . , N. These neurons receive
bottom-up input signals, X(n), from lower layers in the mind
hierarchy. X(n) is a field of bottom-up neuronal synapse
activations, coming from neurons at a lower layer. Top-down
or priming signals to these neurons are sent by concept
models, Mm(Sm,n); we enumerate these models by index
m = 1, . . . , M. Each model is characterized by its parameters,
Sm. The models represent signals in the following sense. Say,
signal X(n) is coming from sensory neurons activated by
object m, characterized by parameters Sm. These parameters
may include position, orientation, or lighting of an object
m. Model Mm(Sm,n) predicts a value X(n) of a signal at
neuron n. For example, during visual perception, a neuron
n in the visual cortex receives a signal X(n) from the retina
and a priming signal Mm(Sm,n) from an object-concept
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model m. A neuron n is activated if both a bottom-up
signal from lower-layer input and a top-down priming signal
are strong. Various models compete for evidence in the
bottom-up signals, while adapting their parameters for better
match as described below. This is a simplified description of
perception. Models Mm specify a field of primed neurons
{n}; hence, the name for this modeling architecture is
modeling fields [25].

A mathematical model of the knowledge instinct is
maximization of a similarity between top-down and bottom-
up signals,

L =
∏

n∈N

∑

h∈H

r(m)l(n | m). (1)

Here, l(n | m) is a conditional similarity between a
bottom-up signal in pixel (sensor cell) n and top-down
concept representation m, given that signal n originated
from concept-model m; the functional shape of l(n | m)
often can be taken as a Gaussian function of X(n) with
the mean Mm(Sm,n). Conditional similarities are normalized
on objects (or concepts) m being definitely present, and
coefficients r(m) estimate a probability of objects actually
being present. Similarity L accounts for all combinations of
signals n coming from any model m, hence, the huge number
of items MN in (1); this is a basic reason for combinatorial
complexity of most algorithms. A system could form a new
model; alternatively, old models are sometimes merged or
eliminated. This requires a modification of the similarity
measure (1); the reason is that more models always result in a
better fit between the models and data. Therefore, similarity
(1) has to be multiplied by a “skeptic penalty function,”
p(N ,M) that grows with the number of parameters in
models M, and the growth is steeper for smaller N.

KI maximizes similarity L over the model parameters
S. DL is a mathematical technique maximizing similarity
L without combinatorial complexity. Its salient property is
matching vagueness or fuzziness of similarity measures to
the uncertainty of the models. DL starts with any unknown
values of parameters S and defines association variables
f (m | n),

f (m | n) =
r(m)l(n | m)

∑

m′∈M
r(m′)l(n | m′)

. (2)

DL determining the Neural Modeling Fields (NMF) dynam-
ics is given by

dSm/dt =
∑

n∈N

f (m | n)

[

∂ ln l(n | m)

∂Mm

]

∂Mm

∂Sm
. (3)

When solving this equation iteratively, f (m | n) is recom-
puted according to (2) after each step using new parameter
values, (3). Parameter values are not known initially, and
uncertainty of conditional similarities (their variances) is
high. So the fuzziness of the association variables is high.
In the process of learning, models become more accurate
and association variables more crisp, and the value of the

similarity increases. The number of models is determined
in the learning process. The system always keeps a store of
dormant models, which are vague, have low r(m), and do
not participate in parameter fitting, except r(m). When r(m)
exceeds a threshold, a model is activated; correspondingly,
an active model is deactivated when its r(m) falls below
the threshold. In modeling interaction between bottom-up
and top-down signals, the NMF-DL is similar to ART [42];
otherwise, it is a very different architecture and algorithm.
In particular, it uses parametric models, and it fits multiple
models in parallel, while associating bottom-up and top-
down signals.

The process of DL always converges [25], it is proven by
demonstrating that at each time step in (3), KI (1) increases;
thus, DL and KI are mathematically equivalent. Cultural
effects of KI are discussed in [43].

2.4. Perception Example. Below in Figure 1, DL is illustrated
with an example described in more details in [44, 45], which
demonstrates that DL can find complex process patterns
below the noise at about 100 times better than previous
algorithms in terms of signal-to-noise ratio [21, 46]. DL
solves problems that were previously considered unsolvable,
and, in many cases DL converges to the best possible solution
of a problem [25, 47–51].

Exact pattern shapes are not known and depend on
unknown parameters these; parameters should be found by
fitting the pattern model to the data. At the same time,
it is not clear which subset of the data points should be
selected for fitting. A previous state-of-the-art algorithm
for this type of problems, multiple hypotheses testing, tries
various subsets [52]. In difficult cases, all combinations of
subsets and models are exhaustively searched, leading to
combinatorial complexity. In the current example, we use
simulated EEG signals of cognitively-related events; as usual,
EEG signals are highly noisy, which makes difficult the
problem of identifying patterns. The searched patterns are
shown in Figure 1 at the bottom row. These events are “phase
cones,” circular events expanding or contracting in time (t,
horizontal direction; in this case two expanding and one
contracting events measured by an array of 64 × 64 sensors
(each image chip)). Direct search through all combinations
of models and data leads to complexity of approximately
MN

= 1010,000, a prohibitive computational complexity.

The models and conditional similarities for this case are
described in details in [45], a uniform model for noise (not
shown), expanding and contracting cones for the cognitive
events. The number of computer operations in this example
was about 1010. Thus, a problem that was not solvable due
to CC becomes solvable using dynamic logic. DL in this
example performs better than the human visual system. This
is possible due to the fact that the human visual system
is optimized for different types of images, not for circular
shapes in noise. I would like to emphasize the importance of
this example for identifying cognitively related process in the
brain EEG. The relevant models used in this example have
been originally developed by Kozma and Freeman [53, 54].
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Iter = 2

Iter = 10

Iter = 20

Iter = 50

Iter = 200

Measured
data

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 1: Dynamic logic operation example, finding cognitively related events in noise, in EEG signals. The searched processes are shown
in Figure 1 at the bottom row. These events are “phase cones,” circular events expanding or contracting in time (horizontal direction t,
each time step is 5 ms); in this case, two expanding and one contracting events are simulated as measured by an array of 64 × 64 sensors.
Direct search through all combinations of models and data leads to complexity of approximately MN

= 1010,000, a prohibitive computational
complexity. The models and conditional similarities for this case are described in details in [44], a uniform model for noise (not shown),
expanding and contracting cones for the cognitive events. The first 5 rows illustrate dynamic logic convergence from a single vague blob at
iteration 2 (row 1, top) to closely estimated cone events at iteration 200 (row 5); we did not attempt to reduce the number of iterations in
this example; the number of computer operations was about 1010. Thus, a problem that was not solvable due to CC becomes solvable using
dynamic logic.

2.5. Cognition Example. Here, we consider a next higher
level in the hierarchy of cognition. At each level of the
hierarchy, bottom-up signals interact with top-down signals.
For concreteness, we consider learning situations composed
of objects. In real brain-mind, learning and recognition of
situations proceed in parallel with perception of objects.
For simplifying presentation, we consider objects being
already recognized. Situations are collections of objects. The
fundamental difficulty of learning and recognizing situations
is that, when looking in any direction, a large number
of objects are perceived. Some combinations of objects
form “situations” important for learning and recognition,
but most combinations of objects are just random sets,
which human mind learns to ignore. The total number of
combinations exceeds by far the number of objects in the
Universe. This is the reason for this problem having not being
solved over the decades [55, 56].

This example is considered in details in [56]. Here,
we summarize the results. The data available for learning
and recognition situations in this example are illustrated
in Figure 2. Horizontal axes correspond to situations, and
the total number of situations are 16,000. Each situation is
characterized by objects shown along the vertical axes. The
total number of objects is 1000. Objects present in a situation
are shown as white pixels, and absent objects are black.
Figure 2(a) illustrates data sorted by situations (horizontal
axis). In every “important situation”, there are several objects

that are always present in this situation, hence, the white
lines in the left part of the figure. In half of situations, there
are no repeated objects; these random collections of objects
are on the right of Figure 2(a). The same data are shown in
Figure 2(b) with randomized order along horizontal line, as
various situations actually appear in real life.

To solve this problem using a standard algorithm, one
can try to sort horizontal axis until white lines appear,
similar to Figure 2(a). This would take approximately 1040,000

operations, an unsolvable problem. Nevertheless, NMF-
DL solves this problem in few iterations, as illustrated in
Figure 3.

Figure 3(a) illustrates DL iterations beginning with
random association of objects and (arbitrary taken) 20
situations. Figure 3(b) illustrates that errors quickly go to a
small value. The error does not go to 0 for numerical reasons
as discussed in [55]. In the above example, relationships
(such as on-the-left-of or under) have not been explicitly
considered. They can be easily included. Every relation and
object can include a marker, pointing what relates to what.
These markers are learned the same way as objects [56].

The procedure outlined in this section is general in that it
is applicable to all higher layers in the mind hierarchy and to
cognitive as well as language models. For example, at higher
layers, abstract concepts are subsets of lower level ones. The
mathematical procedure outlined above is applicable without
change.
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Figure 2: Learning situations; white dots show present objects, and black dots correspond to absent objects. Vertical axes show 1000 objects,
and horizontal axes show 10 situations each containing 10 relevant objects and 40 ransom one; in addition, there are 5000 “clutter” situations
containing only random objects; (a) shows situations sorted along horizontal axis; hence, there are horizontal lines corresponding to relevant
objects (right half contains only random noise); (b) shows the same situations in random order, which looks like random noise.
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Figure 3: (a) shows DL initiation (random) and the first three iterations; the vertical axis shows objects, and the horizontal axis shows
models (from 1 to 20). The problem is approximately solved by the third iteration. This is illustrated in (b), where the error is shown on the
vertical error. The correct situations are chosen by minimizing the error. The error does not go to 0 for numerical reasons as discussed in
[55].

2.6. Language Learning. The procedure outlined in the
previous section is applicable to learning language in the
entire hierarchy from words up. Phrases are composed of
words, and larger chunks of text from smaller chunks of
texts can be learned similarly to learning above situations
models composed of objects. Grammar rules, syntax, and
morphology are learned using markers as discussed above.
Lower layer models may require continuous parametric
models, like laryngeal models of phonemes [57]. These can
be learned from language sounds using parametric models
[58–69] similar to a preceding section on perception.

3. The Dual Model of Language and Cognition

Do we use phrases to label situations that we already have
understood or the other way around, and do we just talk
with words without understanding any cognitive meanings?
It is obvious that different people have different cognitive
and linguistic abilities and may tend to different poles in
the cognitive-language continuum, while most people are
somewhere in the middle in using cognition to help with
language, and vice versa. What are the neural mechanisms
that enable this flexibility? How do we learn which words
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and objects come together? If there is no specific language
module, as assumed by cognitive linguists, why do kids learn
a language by 5 or 7 but do not think like adults? And why
there is no animals thinking like humans but without human
language?

Little is known about neural mechanisms for integrating
language and cognition. Here, we propose a computational
model that potentially can answer the above questions,
and that is computationally tractable, it does not lead to
combinatorial complexity. Also it implies relatively simple
neural mechanisms, and explains why human language and
human cognition are inextricably linked. It suggests that
human language and cognition have evolved jointly.

3.1. Dual Model. Whereas Chomskyan linguists could not
explain how language and cognition interact, cognitive
linguists could not explain why kids learn language by 5
but cannot think like adults; neither theory can overcome
combinatorial complexity.

Consider first how is it possible to learn which words
correspond to which objects? Contemporary psycholinguists
follow the ancient Locke idea, “associationism”: associations
between words and object are just remembered. But this
is mathematically impossible. The number of combinations
among 100 words and 100 objects is larger than all ele-
mentary particle interactions in the Universe. Combinations
of 30,000 words and objects are practically infinite. No
experience would be sufficient to learn associations. No
mathematical theory of language offers any solution. NMF-
DL solves this problem using the Dual model [70–72].
Every mental representation consists of a pair of models, or
two model aspects, cognitive and language. Mathematically,
every concept model Mm has two parts, linguistic MLm and
cognitive MCm:

Mm = {MLm, MCm}. (4)

This dual-model equation suggests that the connection
between language and cognitive models is inborn. In a
newborn mind, both types of models are vague placeholders
for future cognitive and language contents. An image, say of
a chair, and the sound “chair” do not exist in a newborn
mind. But the neural connections between the two types
of models are inborn; therefore, the brain does not have
to learn associations between words and objects; which
concrete word goes with which concrete object. Models
acquire specific contents in the process of growing up and
learning, and linguistic and cognitive contents are always
staying properly connected. Zillions of combinations need
not be considered. Initial implementations of these ideas lead
to encouraging results [73–78].

3.2. Dual Hierarchy. Consider language hierarchy higher up
from words, Figure 4. Phrases are made up from words
similar to situations made up from objects. Because of linear
structure, language actually is simpler than situations; rules
of syntax can be learned similar to learning objects and
relations using markers, as described in the previous section.

The reason computers do not talk English used to be the
fundamental problem of combinatorial complexity.

Now, that the fundamental problem is solved, learning
language will be solved in due course. Practically, significant
effort will be required to build machines learning language.
However, the principal difficulty has been solved in the
previous section. Mathematical model of learning situations,
considered in the previous section, is similar to learning how
phrases are composed from words. Syntax can be learned
similar to relations between objects [55, 71, 79].

The next step beyond current mathematical linguistics is
modeling interaction between language and cognition. It is
fundamental because cognition cannot be learned without
language. Consider a widely held belief that cognition can
be learned from experience in the world. This belief is naı̈ve
and mathematically untenable. The reason is that abstract
concepts representations consist of a set of relevant bottom-
up signals, which should be learned among practically
infinite number of possible random subsets (as discussed
larger than the Universe). No amount of experience would
be sufficient for learning useful subsets from random ones.
The previous section overcame combinatorial complexity of
learning, given that the sufficient information is present.
However, mathematical linguistic theories offer no explana-
tion where this information would come from.

NMF-DL with Dual model and dual hierarchy suggests
that information is coming from language. This is the reason
why no animal without human-type language can achieve
human-level cognition. This is the reason why humans
learn language early in life, but learning cognition (making
cognitive representations models as crisp and conscious as
language ones) takes a lifetime. Information for learning
language is coming from the surrounding language at all
levels of the hierarchy. Language model representations
exist in the surrounding language “ready-made.” Learning
language is thus grounded in the surrounding language.

For this reason, language models become less vague
and more specific by 5 years of age, much faster than the
corresponding cognitive models for the reason that they are
acquired ready-made from the surrounding language. This is
especially true about the contents of abstract models, which
cannot be directly perceived by the senses, such as “law,”
“abstractness,” and “rationality,”. While language models
are acquired ready-made from the surrounding language,
cognitive models remain vague and gradually acquire more
concrete contents throughout life guided by experience and
language. According to the Dual model, this is an important
aspect of the mechanism of what is colloquially called
“acquiring experience.”

Human learning of cognitive models continues through
the lifetime and is guided by language models. If we imagine
a familiar object with closed eyes, this imagination is not
as clear and conscious as perception with opened eyes.
With opened eyes, it is virtually impossible to remember
imaginations. Language plays a role of eyes for abstract
thoughts. On one hand, abstract thoughts are only possible
due to language, on the other, language “blinds” our mind
to vagueness of abstract thoughts. When talking about an
abstract topic, one might think that the thought is clear and
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Figure 4: Parallel hierarchies of language and cognition consist of lower-level concepts (like situations consist of objects). A set of objects
(or lower-level concepts) relevant to a situation (or higher-level concept) should be learned among practically infinite number of possible
random subsets (as discussed, larger than the Universe). No amount of experience would be sufficient for learning useful subsets from
random ones. The previous section overcame combinatorial complexity of learning, given that the sufficient information is present. However,
theories of mathematical linguistics offer no explanation where this information would come from.

conscious in the mind. But the above discussion suggests
that we are conscious about the language models of the dual
hierarchy. The cognitive models in most cases may remain
vague and unconscious. During conversation and thinking,
the mind smoothly glides among language and cognitive
models, using those that are crisper and more conscious
“more available.” Scientists, engineers, and creative people
in general are trained to differentiate between their own
thoughts and what they read in a book or paper, but usually
people do not consciously notice if they use representations
deeply thought through, acquired from personal experience,
or what they have read or heard from teachers or peers. The
higher up in the hierarchy, the vaguer are the contents of
abstract cognitive representations, while due to crispness of
language models, we may remain convinced that these are
our own clear conscious thoughts.

Animal vocalizations are inseparable from instinctual
needs and emotional functioning. The Dual model has
enabled separation of semantic and emotional contents,
which made possible deliberate thinking. Yet operations
of the Dual model, connecting sounds and meanings,
require motivation. Motivation in language is carried by
sounds [80]. Future research will have to address remaining
emotionality of human languages, mechanisms involved,
emotional differences among languages, and effects of lan-
guage emotionalities on cultures.

Evolution of the language ability required rewiring of
human brain. Animal brains cannot develop ability for
deliberate discussions because conceptual representations,
emotional evaluations, and behavior including vocalization
are unified, undifferentiated states of the mind. Language
required freeing vocalization from emotions, at least par-
tially [80, 81]. This process led to evolution of ability for

music [81, 81–83]; this is a separate research direction not
addressed in this paper.

Another mystery of human cognition, which is not
addressed by current mathematical linguistics, is basic
human irrationality. This has been widely discussed and
experimentally demonstrated following discoveries of Tver-
sky and Kahneman [84], leading to the 2002 Nobel Prize.
According to NMF-DL, the “irrationality” originates from
the discussed dichotomy between cognition and language.
Language is crisp and conscious in the human brain,
while cognition might be vague. Yet, collective wisdom
accumulated in language may not be properly adapted to
one’s personal circumstances and, therefore, be irrational in
a concrete situation. In the 12th c., Maimonides wrote that
Adam was expelled from paradise because he refused original
thinking using his own cognitive models but ate from the tree
of knowledge and acquired collective wisdom of language
[35].

The Dual model also suggests that the inborn neural con-
nection between cognitive brain modules and language brain
modules is sufficient to set humans on an evolutionary path
separating us from the animal kingdom. Neural connections
between these parts of cortex existed millions of years ago
due to mirror neuron system, what Arbib called “language
prewired brain” [85].

The combination of NMF-DL and the dual hierarchy
introduces new mechanisms of language and its interaction
with cognition. These mechanisms suggest solutions to a
number of psycholinguistic mysteries, which have not been
addressed by existing theories. These include fundamen-
tal cognitive interaction between cognition and language;
similarities and differences between these two mechanisms;
word-object associations; why children learn language early
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in life, but cognition is acquired much later; why animals
without human language cannot think like humans. These
mechanisms also connected language cognition dichotomy
to “irrationality” of the mind discovered by Tversky-
Kahneman and to the story of the Fall and Original sin.

The mathematical mechanisms of NMF-DL-Dual model
are relatively simple ((2) through (4), also see details in the
given references). These mathematical mechanisms corre-
spond to the known structure and experimental data about
the brain-mind. In addition to conceptual mechanisms of
cognition, they also describe emotional mechanisms and
their fundamental role in cognition and world understand-
ing, including role of aesthetic emotions, beautiful, sublime,
and musical emotions [80, 82, 83].

3.3. Experimental Data. An experimental indication in
support of the Dual model has appeared in [86]. That
publication has demonstrated that the categorical perception
of color in prelinguistic infants is based in the right brain
hemisphere. When language is learned and access to lexical
color codes becomes more automatic, categorical perception
of color moves to the left hemisphere (between two and five
years), and adult’s categorical perception of color is only
based in the left hemisphere.

This provides evidence for neural connections between
perception and language, a foundation of the Dual model.
It supports another aspect of the Dual model: The crisp
and conscious language part of the model hides from
our consciousness, the vaguer cognitive part of the model.
This is similar to what we observed in the close-open eye
experiment: With opened eyes, we are not conscious about
vague imaginations.

Another experimental evidence for the Dual model is
Mirror Neuron System (MNS) [87]. In humans, primates,
and some other social animals, there are neurons that are
excited when manipulating objects, and the same neurons
are excited, when observing another animal making similar
gestures. MNS involves areas of brain near Broca area, where
today resides human language ability. Arbib suggested that
language system was built on top of the MNS; he called
it “language prewired brain” [88, 89]. The Dual model
proposed here models this hypothesis: Before language
evolves, there are already connections between language and
perception/cognition brain areas.

4. Language Emotionality, Grammar, and
Cultural Evolution

Every complex functioning neural mechanism requires moti-
vation, correspondingly, functioning of the Dual model, and
requires motivations or emotions, connecting language and
cognitive sides of the Dual model, as illustrated in Figure 5.

Emotionality of languages resides in their sounds, like
the sound of music moves us emotionally. Animal voicing
is fused with emotions; animals lack volunteer control over
voice muscles and therefore cannot develop language. Evo-
lution of language required rewiring the brain, so that auto-
matic connection of voice and emotions severed. Language
and voice started separating from ancient emotional centers

possibly millions of years ago. Nevertheless, emotions are
present in language. Most of these emotions originate in
cortex and are controllable aesthetic emotions. Emotional
centers in cortex are neurally connected to old emotional
limbic centers, so both influences, new and old, are present.
Emotionality of languages is carried in language sounds,
what linguists call prosody or melody of speech. This ability
of human voice to affect us emotionally is most pronounced
in songs [81]

Emotionality of everyday speech is low, unless affectivity
is specifically intended. We may not notice emotionality
of everyday “nonaffective” speech. Nevertheless, “the right
level” of emotionality is crucial for developing cognitive parts
of models. If language parts of models were highly emotional,
any discourse would immediately resort to fights and there
would be no room for language development (as among
primates). If language parts of models were nonemotional
at all, there would be no motivational force to engage into
conversations, to develop the Dual model. Dual model is
fundamental for developing representations of situations and
higher cognition [22, 37, 55, 56, 70]. The motivation for
developing higher cognitive models would be reduced.

Primordial fused language-cognition-emotional mod-
els, as discussed, have been differentiated long ago. The
involuntary connections between voice-emotion-cognition
have dissolved with emergence of language. They have been
replaced with habitual connections. Sounds of all languages
have changed in history, and sound-emotion-meaning con-
nections in languages could have severed. However, if the
sounds of a language change slowly, the connections between
sounds and meanings persist and consequently the emotion-
meaning connections persist. This persistence is a foundation
of meanings because meanings imply motivations. If the
sounds of a language change too fast, the cognitive models
are severed from motivations, and meanings disappear. If
the sounds change too slowly the meanings are nailed
emotionally to the old ways, and culture stagnates.

These arguments suggest that an important step toward
understanding cultural evolution is to identify mechanisms
determining changes of the language sounds. These changes
are controlled by grammar. In inflectional languages, affixes,
endings, fusion, and other inflectional devices are fused with
sounds of word roots. Pronunciation sounds of affixes and
other inflections are controlled by few rules, which persist
over thousands of words. These few rules are manifest in
every phrase. Therefore, every child learns to pronounce
them correctly. Positions of vocal tract and mouth mus-
cles for pronunciation of inflections are fixed throughout
population and are conserved throughout generations. Cor-
respondingly, pronunciation of whole words cannot vary
too much, and language sound changes slowly. Inflections,
therefore, play a role of “tail that wags the dog” as they anchor
language sounds and preserve meanings. This, I think is
what Humboldt [90] and Lehmann [91] meant by “firmness”
of inflectional languages. When inflections disappear, this
anchor is no more and nothing prevents the sounds of
language to become fluid and change with every generation.

This has happened with English language after transition
from Middle English to Modern English [92]; most of
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Figure 5: Developing meanings by connecting language and cognition requires motivation, in other words, emotions. If language
emotionality is too weak, language is disconnected from the world, meanings are lost, and cultures disintegrate. If language emotionality is
too strong, connections could not evolve and cultures stagnate. Is it possible to keep the balance?

inflections have disappeared and sound of the language
started changing within each generation, and this process
continues today. English evolved into a powerful tool of
cognition unencumbered by excessive emotionality. English
language spreads democracy, science, and technology around
the world. This has been made possible by conceptual
differentiation empowered by language, not constrained by
emotional mechanisms. But the loss of emotionality has
also led to ambiguity of meanings and values. Current
English language cultures face internal crises, uncertainty
about meanings and purposes. Many people cannot cope
with diversity of life. Future research in psycholinguistics,
anthropology, history, historical and comparative linguistics,
and cultural studies will examine interactions between lan-
guages and cultures. Initial experimental evidence suggests
emotional differences among languages consistent with this
hypothesis [93, 94].

Semitic languages and in particular Arabic language
are highly inflected. Inflection mechanism called fusion
affects the entire word sounds, and the meaning of the
word changes with changing sounds; also suffixes control
verbs and moods. Therefore, sounds are closely fused with
meanings. This strong connection between sounds and
meanings contributes to beauty and affectivity of Classical
Arabic texts including Quran. On the other hand, creation
of new meanings in Classical Arabic is difficult because of
this strong connections, remaining unchanged for centuries,
and also because of religious restrictions. Arabic language
leads to a culture, where meanings and values are strong,
but conceptual culture development is slow. There are
significant differences between Classical Arabic and street
Arabic languages; however, this topic requires separate study.

Neural mechanisms of grammar, language sound, related
emotions-motivations, and meanings hold a key to connect-
ing neural mechanisms in the individual brains to evolution
of cultures. Studying them experimentally is a challenge for
future research. It is not even so much a challenge, because
experimental methodologies are at hand; they just should
be applied to these issues. The following sections develop
mathematical models based on existing evidence that can
guide this future research.

5. Future Research

The Dual model implies a relatively minimal neural change
from the animal to the human mind. It could emerge
through combined cultural and genetic evolution, and this
cultural evolution might continue today. DL resolves a long-
standing mystery of how human language, thinking, and
culture could have evolved in a seemingly single big step, too
large for an evolutionary mutation, too fast, and involving
too many advances in language, thinking, and culture,
happening almost momentarily around 50,000 years ago [95,
96]. DL along with the Dual model explains how changes,
which seem to involve improbable steps according to logical
intuition, actually occur through continuous dynamics. The
proposed theory provides a mathematical basis for the
concurrent emergence of hierarchical human language and
cognition.

Solutions to several principled mathematical problems
have been suggested, involving combinatorial complexity.
Initial neuroimaging evidence supports the DL mechanism
proposed in this paper, and still much remains unknown. DL
was experimentally demonstrated for the visual perception;
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these experiments should be extended to language and inter-
action of language and cognition. Evolution of languages
can be studied using the developed theory and societies of
intelligent agents [97].

Mathematical models of some of the mechanisms of
evolving languages and cultures have been discussed in [43,
44, 46, 58, 70, 71, 79, 80]. Future research should address
evolutionary separation of cognition from direct emotional-
motivational control and immediate behavioral connections.
Remaining emotionalities of different languages and their
effects on cultural evolution shall be addressed.
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