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Abstract—Approximating ideal program outputs is a common
technique for solving computationally difficult problems, for ad-
hering to processing or timing constraints, and for performance
optimization in situations where perfect precision is not necessary.
To this end, programmers often use approximation algorithms,
iterative methods, data resampling, and other heuristics.
However, programming such variable accuracy algorithms
presents difficult challenges since the optimal algorithms and
parameters may change with different accuracy requirements
and usage environments. This problem is further compounded
when multiple variable accuracy algorithms are nested together
due to the complex way that accuracy requirements can
propagate across algorithms and because of the size of the set of
allowable compositions. As a result, programmers often deal with
this issue in an ad-hoc manner that can sometimes violate sound
programming practices such as maintaining library abstractions.

In this paper, we propose language extensions that expose
trade-offs between time and accuracy to the compiler. The
compiler performs fully automatic compile-time and install-
time autotuning and analyses in order to construct optimized
algorithms to achieve any given target accuracy. We present novel
compiler techniques and a structured genetic tuning algorithm
to search the space of candidate algorithms and accuracies
in the presence of recursion and sub-calls to other variable
accuracy code. These techniques benefit both the library writer,
by providing an easy way to describe and search the parameter
and algorithmic choice space, and the library user, by allowing
high level specification of accuracy requirements which are then
met automatically without the need for the user to understand
any algorithm-specific parameters. Additionally, we present a
new suite of benchmarks, written in our language, to examine
the efficacy of our techniques. Our experimental results show
that by relaxing accuracy requirements, we can easily obtain
performance improvements ranging from 1.1x to orders of
magnitude of speedup.

I. INTRODUCTION

Traditionally, language designers and compiler writers have
operated under the assumption that programs require a fixed,
strongly defined behavior; however, this is not always the case
in practice. For certain classes of applications, such as NP-
hard problems or problems with tight computation or timing
constraints, programmers are often willing to sacrifice some
level of accuracy for faster performance. In this paper, we
broadly define these types of programs as variable accuracy
algorithms. There are many different classes of variable
accuracy algorithms spanning many different fields.

One class of variable accuracy algorithms are approximation
algorithms in the area of soft computing [1]. Approximation

algorithms are used to find approximate solutions to computa-
tionally difficult tasks with results that have provable quality.
For many computationally hard problems, it is possible to
find such approximate solutions asymptotically faster than it
is to find an optimal solution. A good example of this is
BINPACKING. Solving the BINPACKING problem is NP-hard,
yet arbitrarily accurate solutions may be found in polynomial
time [2]. Like many soft computing problems, BINPACKING
has many different approximation algorithms, and the best
choice often depends on the level of accuracy desired.

Another class of variable accuracy algorithms are iterative
algorithms used extensively in the field of applied math-
ematics. These algorithms iteratively compute approximate
values that converge toward an optimal solution. Often, the
rate of convergence slows dramatically as one approaches
the solution, and in some cases a perfect solution cannot be
obtained without an infinite number of iterations [3]. Because
of this, many programmers create convergence criteria to
decide when to stop iterating. However, deciding on a
convergence criteria can be difficult when writing modular
software because the appropriate criteria may not be known
to the programmer ahead of time.

A third class of variable accuracy algorithms are algorithms
in the signal processing domain. In this domain, the accuracy
of an algorithm can be directly determined from the problem
specification. For example, when designing digital signal
processing (DSP) filters, the type and order of the filter can
be determined directly from the desired sizes of the stop,
transition and pass-bands as well as the required filtering
tolerance bounds in the stop and pass-bands. When these
specifications change, the optimal filter type may also change.
Since many options exist, determining the best approach is
often difficult, especially if the exact requirements of the
system are not known ahead of time.

A key challenge when writing and using variable accu-
racy code arises from maintaining the abstraction boundary
between the library writer and the library user1. The library
writer understands the algorithm and the various choices and
parameters affecting accuracy, but does not know the accuracy
requirements for each use case. Because special-casing an
algorithm for each foreseeable accuracy requirement can be

1We use the term library loosely to mean any abstraction



extremely tedious and error-prone, library writers often follow
the practice of exposing many internal algorithmic parameters
to the interface of their library, potentially breaking any useful
abstractions in the variable accuracy library. Unfortunately,
while the library user knows the application’s requirements,
he/she may not know how the exposed implementation-
specific parameters and algorithmic choices of the library
impact these accuracy requirements.

This practice is exemplified by the fmincon() function
in Matlab, which attempts to find the minimum of a user-
specified nonlinear multivariate function subject to a set
of specified constraints. fmincon() takes accuracy and
optimization options specified by an options structure.
This structure contains 42 fields that the user can set to
specify various options such as which of three algorithms
to use, how many iterations to run, and what tolerances
to use. Additionally, there are a number of options specific
to each of the three algorithms, some of which further
affect additional algorithmic choices. For example, the value
specified in the PrecondBandWidth option used by the
trust-region-reflective algorithm will indirectly af-
fect both the number of preconditioning iterations performed,
as well as the type of factorization algorithm used during the
preconditioning phase. This option can have a dramatic effect
on the performance and accuracy of the solver.

Yet another challenge arises when a program is constructed
by composing multiple variable accuracy modules, or by
recursively calling variable accuracy functions. In this type of
program, the best top-level performance and accuracy may be
obtained by using higher or lower accuracies for intermediate
components of the algorithm. For example, at each recursive
level of a multigrid solver, it may be possible to solve to a
lower accuracy while still meeting the accuracy requirement of
the final solution. Manually determining what accuracy level
to use at each recursive step can be extremely onerous because
of the inter-dependencies between accuracy choices.

In this paper we propose a novel set of language extensions
and an accuracy-aware compiler to address the challenges in
writing variable accuracy code. With our extensions, accuracy
time trade-offs are made visible to the compiler, enabling it
to perform empirical autotuning to build optimized algorithms
for each accuracy level required by a user. As we will show,
these extensions simplify writing variable accuracy code both
for the library writer and for the library user.

For the library writer, our compiler automates the otherwise
tedious search over both the algorithmic search space and the
parameter space to find algorithms with the best performance
that meet each required level of accuracy. This is done without
forcing the library writer to sacrifice control over how the
algorithm operates or how accuracy is achieved. For the
library user, our extensions allow the specification of top-
level accuracy requirements without the library user needing
to understand any parameters and choices that are specific to
the implementation details of the algorithm. This helps create
a better abstraction barrier that separates the details of the
algorithms in a library from the requirements of the library

user.
We have implemented our language extensions in the

context of the PetaBricks programming language and com-
piler [4], [5], [6]. PetaBricks is a programming language
that allows algorithmic choice to be expressed at the
language level. PetaBricks automatically selects and constructs
algorithms optimized for each target architecture using
empirical autotuning methods. More background on the
PetaBricks language and compiler is provided in Section II.

A. Contributions

We make the following contributions:
• We have introduced a novel programming language that

incorporates algorithmic accuracy choices. This includes
support for multiple accuracy metrics, which provide a
general-purpose way for users to define arbitrary accuracy
requirements in any domain.

• We have developed a technique for mapping variable
accuracy code so that it can be efficiently autotuned
without the search space growing prohibitively large.

• We have implemented a language, compiler, and runtime
system to demonstrate the effectiveness of our techniques.

• We have implemented a suite of six benchmarks,
representative of commonly used algorithms with variable
accuracy requirements.

• We demonstrate the importance of algorithmic choice by
showing that for different accuracy levels our autotuner
chooses different algorithmic techniques.

• We show that by using variable accuracy one can get a
speedup up to four orders of magnitude over using the
highest accuracy code.

II. PETABRICKS LANGUAGE BACKGROUND

The PetaBricks language provides a framework for the
programmer to describe multiple ways of solving a problem
while allowing the autotuner to determine which of those ways
is best for the user’s situation [4]. It provides both algorithmic
flexibility (multiple algorithmic choices) as well as coarse-
grained code generation flexibility (synthesized outer control
flow).

At the highest level, the programmer can specify a
transform, which takes some number of inputs and produces
some number of outputs. In this respect, the PetaBricks
transform is like a function call in a procedural language. The
major difference is that we allow the programmer to specify
multiple pathways to convert the inputs to the outputs for each
transform. Pathways are specified in a dataflow manner using a
number of smaller building blocks called rules, which encode
both the data dependencies of the rule and C++-like code that
converts the rule’s inputs to outputs.

Figure 1 presents an example PetaBricks program, kmeans.
This kmeans program groups the input Points into a number
of clusters and writes each points cluster to the output
Assignments. Internally the program uses the intermediate
data Centroids to keep track of the current center of each
cluster. The transform header declares each of these data



1 transform kmeans
2 from P o i n t s [ n , 2 ] / / Array o f p o i n t s ( each column
3 / / s t o r e s x and y c o o r d i n a t e s )
4 through C e n t r o i d s [ s q r t ( n ) , 2 ]
5 to Ass ignmen t s [ n ]
6 {
7 / / Ru le 1 :
8 / / One p o s s i b l e i n i t i a l c o n d i t i o n : Random
9 / / s e t o f p o i n t s

10 to ( C e n t r o i d s . column ( i ) c ) from ( P o i n t s p ) {
11 c=p . column ( r and ( 0 , n ) )
12 }
13
14 / / Ru le 2 :
15 / / Ano ther i n i t i a l c o n d i t i o n : C e n t e r p l u s i n i t i a l
16 / / c e n t e r s ( kmeans++)
17 to ( C e n t r o i d s c ) from ( P o i n t s p ) {
18 C e n t e r P l u s ( c , p ) ;
19 }
20
21 / / Ru le 3 :
22 / / The kmeans i t e r a t i v e a l g o r i t h m
23 to ( Ass ignmen t s a ) from ( P o i n t s p , C e n t r o i d s c ) {
24 whi le ( t r u e ) {
25 i n t change ;
26 A s s i g n C l u s t e r s ( a , change , p , c , a ) ;
27 i f ( change ==0) re turn ; / / Reached f i x e d p o i n t
28 N e w C l u s t e r L o c a t i o n s ( c , p , a ) ;
29 }
30 }
31 }

Fig. 1. Pseudocode for kmeans

Fig. 2. Dependency graph for kmeans example. The rules are the vertices
while each edge represents the dependencies of each rule. Each edge color
corresponds to each named data dependence in the pseudocode.

structures as its inputs (Points), outputs (Assignments),
and intermediate or “through” data structures (Centroids).
The rules contained in the body of the transform define the
various pathways to construct the Assignments data from
the initial Points data. The transform can be depicted using
the dependence graph shown in Figure 2, which indicates the
dependencies of each of the three rules.

The first two rules specify two different ways to initialize
the Centroids data needed by the iterative kmeans solver in the
third rule. Both of these rules require the Points input data.
The third rule specifies how to produce the output Assignments
using both the input Points and intermediate Centroids. Note
that since the third rule depends on the output of either the
first or second rule, the third rule will not be executed until
the intermediate data structure Centroids has been computed
by one of the first two rules. Additionally, the first rule
provides an example of how the autotuner can synthesize outer
control flow. Instead of explicitly looping over every column of
Centroids 2D array, the programmer can specify a computation

1 transform kmeans
2 accuracy metr ic kmeansaccuracy
3 a c c u r a c y v a r i a b l e k
4 from P o i n t s [ n , 2 ] / / Array o f p o i n t s ( each column
5 / / s t o r e s x and y c o o r d i n a t e s )
6 through C e n t r o i d s [ k , 2 ]
7 to Ass ignmen t s [ n ]
8 {

... (Rules 1 and 2 same as in Figure 1) ...

23 / / Ru le 3 :
24 / / The kmeans i t e r a t i v e a l g o r i t h m
25 to ( Ass ignmen t s a ) from ( P o i n t s p , C e n t r o i d s c ) {
26 for enough {
27 i n t change ;
28 A s s i g n C l u s t e r s ( a , change , p , c , a ) ;
29 i f ( change ==0) re turn ; / / Reached f i x e d p o i n t
30 N e w C l u s t e r L o c a t i o n s ( c , p , a ) ;
31 }
32 }
33 }
34
35 transform kmeansaccuracy
36 from Ass ignmen t s [ n ] , P o i n t s [ n , 2 ]
37 to Accuracy
38 {
39 Accuracy from ( Ass ignmen t s a , P o i n t s p ){
40 re turn s q r t (2∗n / S u m C l u s t e r D i s t a n c e S q u a r e d ( a , p ) ) ;
41 }
42 }

Fig. 3. Pseudocode for variable accuracy kmeans. The new variable accuracy
code is highlighted in light blue.

that is done for each column of the output (using the “column”
keyword). The order over which these columns are iterated,
and the amount of parallelism to use, is then synthesized and
tuned by the compiler and autotuner.

To summarize, when our transform is executed, the cluster
centroids are initialized either by the first rule, which
performs random initialization on a per-column basis with
synthesized outer control flow, or the second rule, which calls
the CenterPlus algorithm. Once Centroids is generated, the
iterative step in the third rule is called.

III. PETABRICKS LANGUAGE EXTENSIONS FOR VARIABLE
ACCURACY

At a high level, our language extensions extend the idea
of algorithmic choice to include choices between different
accuracies. The extensions also allow the user to specify
how accuracy should be measured. Our new accuracy-aware
autotuner then searches to optimize for both time and accuracy.
The result is code that probabilistically meets users’ accuracy
needs. Optionally, users can request hard guarantees that
utilize runtime checking of accuracy.

Figure 3 presents our kmeans example with our new variable
accuracy extensions. The updates to the code are highlighted
in light blue. The example uses three of our new variable
accuracy features.

First the accuracy_metric, on line 2, defines an
additional transform, kmeansaccuracy, which computes the
accuracy of a given input/output pair to kmeans. PetaBricks
uses this transform during autotuning and sometimes at



runtime to test the accuracy of a given configuration of the
kmeans transform. The accuracy metric transform computes
the

√
2n∑
D2

i

, where Di is the Euclidean distance between the

i-th data point and its cluster center. This metric penalizes
clusters that are sparse and is therefore useful for determining
the quality of the computed clusters. Accuracy metric
transforms such as this one might typically be written anyway
for correctness or quality testing, even when programming
without variable accuracy in mind.

The accuracy_variable k, on line 3 controls the
number of clusters the algorithm generates by changing the
size of the array Centroids. The variable k can take
different values for different input sizes and different accuracy
levels. The compiler will automatically find an assignment of
this variable during training that meets each required accuracy
level.

The for_enough loop on line 26 is a loop where the
compiler can pick the number of iterations needed for each
accuracy level and input size. During training the compiler
will explore different assignments of k, algorithmic choices
of how to initialize the Centroids, and iteration counts for
the for_enough loop to try to find optimal algorithms for
each required accuracy.

The next section goes on to explain each new variable
accuracy feature in more detail.

A. Variable Accuracy Extensions

In order to support variable accuracy we made the following
extensions to PetaBricks:

The accuracy_metric keyword in the transform
header allows the programmer to specify the name of
another user-defined transform to compute accuracy from an
input/output pair. This allows the compiler to test the accuracy
of different candidate algorithms during training. It also allows
the user to specify a domain specific accuracy metric of
interest to them.

The accuracy_variable keyword in the transform
header allows the user to define one or more algorithm-
specific parameters that influence the accuracy of the program.
These variables are set automatically during training and are
assigned different values for different input sizes. The compiler
explores different values of these variables to create candidate
algorithms that meet accuracy requirements while minimizing
execution time.

The accuracy_bins keyword in the transform
header allows the user to define the range of accuracies that
should be trained for and special accuracy values of interest
that should receive additional training. This field is optional
and the compiler can add such values of interest automatically
based on how a transform is used. If not specified, the default
range of accuracies is 0 to 1.0.

The for_enough statement defines a loop with a
compiler-set number of iterations. This is useful for defining
iterative algorithms. This is syntactic sugar for adding an
accuracy_variable to specify the number of iterations
of a traditional loop.

The semantics for calling variable accuracy transforms
is also extended. When a variable accuracy transform calls
another variable accuracy transform (including recursively),
the required sub-accuracy level is determined automatically by
the compiler. This is handled by expanding each sub-call into
an either ... or statement which allows the compiler
to call the variable accuracy transform with different sub-
accuracies.

The keyword verify_accuracy in the rule body directs
the compiler to insert a runtime check for the level of accuracy
attained. If this check fails the algorithm can be retried with the
next higher level of accuracy or the user can provide custom
code to handle this case. This keyword can be used when strict
accuracy guarantees, rather than probabilistic guarantees, are
desired for all program inputs.

B. Accuracy Guarantees

PetaBricks supports the following three types of accuracy
guarantees:

Statistical guarantees are the most common technique
used, and the default behavior of our system. They work by
performing off-line testing of accuracy using a set of program
inputs to determine statistical bounds on an accuracy metric
to within a desired level of confidence.

Runtime checking can provide a hard guarantee of accuracy
by testing accuracy at runtime and performing additional work
if accuracy requirements are not met. Runtime checking can
be inserted using the verify_accuracy keyword. This
technique is most useful when the accuracy of an algorithm
can be tested with low cost and may be more desirable in case
where statistical guarantees are not sufficient.

Domain specific guarantees are available for many types of
algorithms. In these cases, a programmer may have additional
knowledge, such as a lower bound accuracy proof or a proof
that the accuracy of an algorithm is independent of data, that
can reduce or eliminate the cost of runtime checking without
sacrificing strong guarantees on accuracy.

As with variable accuracy code written without language
support, deciding which of these techniques to use with what
accuracy metrics is a decision left to the programmer.

IV. PETABRICKS COMPILER INFRASTRUCTURE
BACKGROUND

Figure 4 displays the general flow for the compilation
of a PetaBricks transform. Compilation is split into two
representations. The first representation operates at the rule
level, and is similar to a traditional high level sequential inter-
mediate representation. The second representation operates at
the transform level, and is responsible for managing choices
and for code synthesis.

The main transform level representation is the choice
dependency graph, which is the primary way that choices are
represented in PetaBricks. At a high level, the information
contained in the choice dependency graph is similar to
the dependency graph shown for our example program in
Figure 2, however, the data is represented as an “inverse”
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Fig. 4. Flow for the compilation of a PetaBricks program with a single
transform. (Additional transforms would cause the center part of the diagram
to be duplicated.)

1 p o p u l a t i o n = [ . . . ]
2 m u t a t o r s = [ . . . ]
3 f o r i n p u t s i z e i n [ 1 , 2 , 4 , 8 , 16 , . . . , N ] :
4 t e s t P o p u l a t i o n ( p o p u l a t i o n , i n p u t s i z e )
5 f o r round i n [ 1 , 2 , 3 , . . . , R ] :
6 randomMuta t ion ( p o p u l a t i o n , m u t a t o r s , i n p u t s i z e )
7 i f a c c u r a c y T a r g e t s N o t R e a c h e d ( p o p u l a t i o n ) :
8 g u i d e d M u t a t i o n ( p o p u l a t i o n , m u t a t o r s , i n p u t s i z e )
9 prune ( p o p u l a t i o n )

Fig. 5. Pseudocode showing the high level flow of our autotuning algorithm.
The individual phases are described in Section V-C.

of that graph: data dependencies (previously represented by
edges) are represented by vertices, while rules (previously
represented by vertices) are represented by graph hyperedges.
Additionally, data may be split into multiple vertices in
the choice dependency graph if the transform contains rules
that operate on just subregions of that data. The PetaBricks
compiler uses this graph to manage code choices and to
synthesize the outer control flow of the rules.

The final phase of compilation generates an output binary
and a training information file containing static analysis
information. These two outputs are used by the autotuner
to search the space of possible algorithmic choices. The
autotuner creates a choice configuration file, which can either
be directly used by the output binary to run with dynamic
switching between choices or fed back into the compiler to
allow additional optimizations.

V. VARIABLE ACCURACY PETABRICKS AUTOTUNER

Figure 5 presents high level pseudocode for our autotuning
algorithm. The autotuner follows a genetic algorithm approach
to search through the available choice and accuracy space.
It maintains a population of candidate algorithms which it
continually expands using a set of mutators to allow the
population to evolve more optimal algorithms. The input sizes
used for testing during this process grow exponentially, which
naturally exploits any optimal substructure inherent to most
programs.

We will now discuss two important building blocks in
our autuner, choice configuration files and mutator functions,
before discussing the individual phases of the autotuner.

A. Choice Configuration Files

The PetaBricks compiler and autotuner represents different
possible candidate algorithms through configuration files
representing an assignment of decisions to all available
choices. Broadly, one can divide the choices contained in the
configuration file into the following categories.
• Decision trees to decide which algorithm to use for each

choice site, accuracy, and input size.
• Cutoffs values. For example, switching points from a

parallel work stealing scheduler to sequential code or the
blocking sizes for data parallel operations.

• Switches. For example, the type of storage for interme-
diate data.

• Synthesized functions. A function from a dynamic input
size to a value. For example, how many iterations in a
for_enough loop, which may be different depending
on the size of data the loop is operating on. The autotuner
sets a fixed number of values of this function and other
values are filled in through interpolation.

• User defined parameters.

B. Mutator Functions

Abstractly, a mutator function creates a new algorithm
configuration from an existing configuration and a current
training input size. The set of mutator functions is different
for each program, and is generated fully automatically with
information from static analysis. The created mutators can be
divided into three categories:
• Decision tree manipulation mutators either add,

remove, or change levels to a specific decision tree
represented in the configuration file. When adding new
levels, the cutoff point is initially set to 3N

4 . This leaves
the behavior for smaller inputs the same, while changing
the behavior for the current set of inputs being tested.
This cutoff point can later be changed, as a log-normal
random scaling mutator is introduced for each active
cutoff value in the decision tree.
Initially decision trees are very simple, set to use just a
single algorithm. At this point, the only mutators that can
be applied simply change this single algorithm or add a
level to the decision tree. As the decision tree becomes
more complex, more and more mutators can legally be
applied and the search space grows.

• Log-normal random scaling mutators scale a configu-
ration value by a random number taken from a log-normal
distribution with scale of 1. This type of mutator is used
to change cutoff values that are compared to data sizes.
For example, blocking sizes, cutoffs in decision trees, and
cutoffs to switch between sequential and parallel code.
The intuition for why a log-normal distribution is
used comes from the observation that small changes
have larger effects on small values than large values.
For example, most readers would expect changing a
blocking size from 5 to 6 to have a much larger
impact that changing a blocking size from 105 to



106. This observation is a general trend that applies
to most configuration values dealing with sizes. We
have confirmed this intuition experimentally by observing
much faster convergence times with this type of scaling.

• Uniform random mutators replace an existing config-
uration value with a new value taken from a discrete
uniform random distribution containing all legal values
for the configuration item. This type of mutator is used
for choices where there are a relatively small number
of possibilities. An example of this is deciding the
scheduling strategy for a specific block of code or
algorithmic choices.

C. Autotuning Phases

1) Population Testing: We represent both time and accuracy
by using least squares to fit a normal distribution to the
observed data of empirical test runs. This fitting allows us to
give statistical bounds (for example with a 95% confidence)
for accuracy and time. When the programmer elects to use
statistical accuracy guarantees, this alone is sufficient to
guarantee accuracy. When the programmer elects to have
runtime verification of accuracy, we use the same approach
for autotuning to find a tuned algorithm that is verified using
a runtime-only check (this check must be disabled during
autotuning to allow exploration of the choice space).

An important decision that must be made is how many times
to test each candidate algorithm. With too few tests, random
deviations may cause non-optimal decisions to be made, while
with too many tests, autotuning will take an unacceptably long
time. Our autotuner dynamically decides how many tests to run
between a configurable upper and lower limit. We first run the
minimum number of tests, then, as candidates are compared
we use the following heuristic to decide when to dynamically
run more tests. When comparing two candidate algorithms, C1

and C2, we perform the following steps:
1) Use statistical hypothesis testing (a t-test) to estimate

the probability P(observed results | C1 = C2). If this
results in a p-value less than 0.05, we consider C1 and
C2 different and stop.2

2) Use least squares to fit a normal distribution to the
percentage difference in the mean performance or
accuracy of the two algorithms. If this distribution
estimates there is a 95% probability of less than a 1%
difference, consider the two algorithms the same and
stop.2

3) If both candidate algorithms have reached the maximum
number of tests, consider the two algorithms the same
and stop.

4) Run one additional test on either C1 or C2. Decide
which candidate to test based on the highest expected
reduction in standard error and availability of tests
without exceeding the maximum.

5) Go to step 1.

2 The constants shown here are configurable, and can be changed based on
the needs of the user. We present a typical value for clarity.

This heuristic results in a good balance, where additional
tests are run only where they are needed. It also gives our
autotuner the ability to adapt to variance in the environment.
As an interesting anecdotal experiment, if one begins to rapidly
move the mouse cursor during autotuning, the increased
variance from this I/O activity causes the average number of
trials to approximately triple.

2) Random Mutation: The random mutation phase of
autotuning (line 6 in Figure 5), attempts to add new members
to the population using the mutators for the current algorithm.
Repeatedly (for a configurable number of attempts), it picks a
random candidate algorithm (the parent) from the population
and a random mutator from the mutator pool and uses that
mutator to create a new candidate algorithm (the child). Parent
algorithms remain in the population, and are only removed by
the pruning phase. Upon creation, a child is tested against its
parent. If the child is better than the parent either in time or in
accuracy it is added to the population. Child algorithms may
provide different accuracies than the parent when the mutator
applied makes changes that affect accuracy. This difference
in accuracy is accounted for during pruning as the autotuner
attempts to maintain a variety of algorithms that are optimal
for each level of accuracy.

3) Guided Mutation: Infrequently, the random mutation
process may not produce any candidate algorithms that meet
the accuracy requirements given by the user. This most
commonly happens with the initial population, after only 1
round of random mutation. In this case we use a guided
mutation process process to attempt to create a candidate
algorithm that meets the user’s requirements. The guided
mutation performs hill climbing on the accuracy variables.
If the required accuracy still cannot be attained after guided
mutation, an error is reported to the user.

4) Population Pruning: The pruning phase of autotuning
(line 9 in Figure 5), removes unfit candidates from the
population. For each accuracy bin required by the user, the
pruning keeps the fastest K algorithms that meet the accuracy
requirement, where K is a configurable parameter of the
autotuner. Any algorithms not included in these sets are
removed from the population.

To understand the pruning process, one could imagine an
optimal frontier of algorithms. This optimal frontier is a curve
on a 2D plane where one axis is time and the other is accuracy.
For each possible accuracy, there exists a single algorithm that
provides at least that accuracy in the lowest possible time.
The multiple accuracy bins in our autotuner store a discretized
version of this optimal frontier of algorithms.

Since comparisons between candidates can result in ad-
ditional trials, determining the fastest K algorithms in each
accuracy bin can be expensive. To reduce the number of
comparisons we use a technique similar to partition from quick
sort, where we guess the pivot item based on an rough ordering
using tests that have already been run.



VI. BENCHMARKS

In this section, we describe a number of benchmarks that
we implemented to test the efficacy of our system.

A. Bin Packing

Bin packing is a classic NP-hard problem where the goal
of the algorithm is to find an assignment of items to unit
sized bins such that the number of bins used is minimized, no
bin is above capacity, and all items are assigned to a bin. It
is an interesting problem because, while finding the optimal
assignment is NP-hard, there are a number of polynomial time
approximation algorithms that each provides different levels of
approximation and performance.

The bin packing benchmark demonstrates the ability of
our system to handle a large number of algorithmic choices.
Variable accuracy is attained primarily through using different
algorithms. We implemented 13 well known bin pack-
ing algorithms: AlmostWorstFit, AlmostWorstFitDecreasing,
BestFit, BestFitDecreasing, FirstFit, FirstFitDecreasing, Last-
Fit, LastFitDecreasing, ModifiedFirstFitDecreasing, NextFit,
NextFitDecreasing, WorstFit, and WorstFitDecreasing.

To train this benchmark, we generate training data by
dividing up full bins into a number of items such that
the resulting distribution of item sizes matches that of a
distribution of interest to us. Using this method, we can
construct an accuracy metric that measures the relative
performance of an algorithm to the optimal packing at training
time, without the need for an exponential search. In this
way, we are able to efficiently autotune the benchmark for a
particular distribution of item sizes with an effective accuracy
metric.

B. Clustering

Clustering divides a set of data into clusters based on
similarity. The problem of k-clustering is NP-hard when k
is fixed. Clustering is a common technique for statistical
data analysis in areas including machine learning, pattern
recognition, image segmentation and computational biology.
We implemented a variant of Lloyd’s algorithm for k-means
clustering. Our implementation gives the autotuner multiple
choices for creating initial assignments of clusters, including
random and k-means++ [7].

In our PetaBricks transform, the number of clusters, k, is
the accuracy variable to be determined on training. Several
algorithmic choices are implemented in our version of k-
means clustering: The initial set of k cluster centers are either
chosen randomly among the n data points, or according to the
k-means++ algorithm [7], which chooses subsequent centers
from the remaining data points with probability proportional
to the distance squared to the closest center. Once the initial
cluster centers are computed, the final cluster assignments and
center positions are determined by iterating, either until a fixed
point is reach or in some cases when the compiler decides to
stop early.

The training data is a randomly generated clustered set
of n points in two dimensions. First,

√
n “center” points

are uniformly generated from the region [−250, 250] ×
[−250, 250]. The remaining n−

√
n data points are distributed

evenly to each of the
√
n centers by adding a random

number generated from a standard normal distribution to the
corresponding center point. The optimal value of k =

√
n is

not known to the autotuner.
Rather than assigning a fixed k through a heuristic (such as

the commonly used k =
√
n), we define k as an accuracy

variable and allow the autotuner to set it. This allows the
number of clusters to change based on how compact clusters
the user of the algorithm requests through the accuracy
requirement. The accuracy metric used is

√
2n∑
D2

i

, where Di

is the Euclidean distance between the i-th data point and its
cluster center. The reciprocal is chosen such that a smaller
sum of distance squared will give a higher accuracy.

C. 3D Variable-Coefficient Helmholtz Equation

The variable coefficient 3D Helmholtz equation is a partial
differential equation that describes physical systems that vary
through time and space. Examples of its use are in the
modeling of vibration, combustion, wave propagation, and
climate simulation. It can be expressed as:

α(aφ)− β 5 ·(b5 φ) = f,

where α and β are constants, a, b, and f are scalar valued
functions over the area of interest, and φ is the unknown
quantity we are solving for.

As an accuracy metric, we used the ratio between the RMS
error of the initial guess fed into the algorithm and the RMS
error of the guess afterwards. During training, the values of a
and b were taken from the uniform distribution between 0.5
and 1 to ensure the system is positive-definite.

This benchmark utilizes multiple resolution levels, where
each recursive call works on a problem with half as many
points in each dimension. Since this is a three dimensional
problem, every time a recursive call is made, the amount of
data decreases by a factor of eight, possibly changing key
performance parameters such as iteration strategy and number.

Additionally, there is a lot of state data that is transformed
(either averaged down or interpolated up) between levels of
recursion due to the presence of the variable coefficient arrays
a and b. The overhead of making recursive calls influences
the decision of when it is optimal to transition from recursing
further to smaller problem sizes or to stop and solve the
problem as best we can on the current problem size using
a direct or iterative method.

D. Image Compression

Our image compression benchmark performs Singular Value
Decomposition (SVD) on an m × n matrix. SVD is major
component in some image compression algorithms [8]. For
any m × n real matrix A with m ≥ n, the SVD of A is
A = UΣV T . The columns ui of the matrix U , the columns
vi of V , and the diagonal values σi of Σ (singular values)
form the best rank-k approximation of A, given by Ak =∑k

i=1 σiuiv
T
i . Only the first k columns of U and V and the



first k singular values σi need to be stored to reconstruct the
image approximately.

The SVD of a square matrix A can be computed using the
eigenvalues and eigenvectors of the matrix H = [0 AT ;A 0].
The number of singular values, k, to be used in the
approximation is the accuracy variable to be determined by the
PetaBricks autotuner. The transform for matrix approximation
consists of a hybrid algorithm for finding all eigenvalues
and eigenvectors, which combines Divide and Conquer, QR
Iteration, and Bisection method. Another algorithmic choice
exposed is using the Bisection method for only k eigenvalues
and eigenvectors. The accuracy metric used is the ratio
between the RMS error of the initial guess (the zero matrix) to
the RMS error of the output compared with the input matrix
A, converted to log-scale.

E. 2D Poisson’s Equation
The 2D Poisson’s equation is an elliptic partial differential

equation that describes heat transfer, electrostatics, fluid
dynamics, and various other engineering disciplines. The
continuous and discrete versions are:

52φ = f and Tx = b,

where T , x, and b are the finite difference discretization of the
Laplace operator, φ, and f , respectively.

To build an autotuned multigrid solver for Poisson’s
equation, we consider the use of three basic algorithmic
building blocks: one direct (band Cholesky factorization
through LAPACK’s DPBSV routine), one iterative (Red-Black
Successive Over Relaxation), and one recursive (multigrid V-
cycles).

As an accuracy metric, we used the ratio between the RMS
error of the initial guess fed into the algorithm and the RMS
error of the guess afterwards. The metric was defined this way
to yield a higher accuracy value whenever the error is more
greatly reduced. During training, the right hand side vector b
was taken to be uniform over the interval [−231, 231).

Of these three algorithmic choices, only two of them are
variable accuracy, while the third (direct) solves the problem to
machine-precision (assuming reasonably behaved inputs). This
variable accuracy algorithm is one of the more complex of our
benchmarks due to its ability to tune the number of iterations
at each level of recursion thus making varying accuracy
guarantees during each stage of execution. For example, we
may want to iterate many times at a lower recursion level
to obtain a high-fidelity estimate before interpolating up to
the initial problem size to save on expensive operations at the
highest grid resolution. On the other hand, if our final accuracy
requirements are high enough, it may not pay to do many
iterations at a lower recursion level if we are going to have
to do many expensive full resolution iterations either way. It
is this kind of trade-off that our variable accuracy auto-tuner
excels at exploring.

F. Preconditioned Iterative Solvers
Solving a linear system of equations Ax = b is a common

problem in both scientific research and real-world applications

such as cost optimization and asset pricing. Iterative methods
are often used to provide approximate solutions as direct
solvers are usually too slow to produce exact solutions.
Preconditioning is a technique that speeds up the convergence
of an iterative solver.

The convergence of a matrix iteration depends on the
properties of the matrix A, one of which is called the condition
number. A preconditioner P of a matrix A is a matrix that
if well chosen, the condition number of P−1A is smaller
than that of A. Solving the preconditioned system P−1Ax =
P−1b gives the same solution, but the rate of convergence
improves. Achieving a faster convergence rate while keeping
the operation of P−1 simple to compute is the key to finding
a good preconditioner.

Our preconditioner PetaBricks transform implements three
choices of preconditioners and solves the system. The first
choice is the Jacobi preconditioner coupled with Precondi-
toned Conjugate Gradient (PCG). The preconditioner is chosen
to be the diagonal of the matrix P = diag(A). Another choice
is to apply the polynomial preconditioner P−1 = p(A), where
p(A) is an approximation of the inverse of A by using a
few terms of the series expansion of A−1, and solve the
preconditioned system with PCG. We also implemented the
Conjugate Gradient method (CG) which solves the system
without any preconditioning. The accuracy metric is the ratio
between the RMS error of the initial guess Axin to the RMS
error of the output Axout compared to the right hand side
vector b, converted to log-scale.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results for a suite of
new variable accuracy PetaBricks benchmarks. We performed
all tests on a 3.16 GHz 8-core (dual-Xeon X5460) system. All
benchmarks are automatically parallelized by the PetaBricks
compiler and were run and trained using 8 threads.

Figures 6(a)-6(f) show the speedups that are attainable
when a user is in a position to use an accuracy lower
than the maximum accuracies of our benchmarks. On the
largest tested input size, for benchmarks such as Clustering
and Preconditioner speedups range from 1.1 to 9.6x; for
benchmarks such as Helmholtz, Image Compression, and
Poisson speedups range from 1.3 to 34.6x; and for the Bin
Packing benchmark speedups ranged from 1832 to 13789x.
Such dramatic speedups are a result of algorithmic changes
made by our autotuner that can change the asymptotic
performance of the algorithm (O(n) vs O(n2)) when allowed
by a change in desired accuracy level. Because of this, speedup
can become a function of input size and will grow arbitrarily
high for larger and larger inputs. These speedups demonstrate
some of the performance improvement potentials available to
programmers using our system.

A. Analysis

This section provides more detailed analysis of the impact of
accuracy on algorithmic choice and of programmability. Due
to space constraints we provide analysis for only a subset of
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Fig. 6. Speedups for each accuracy level and input size, compared to the highest accuracy level for each benchmark. Run on an 8-way (2 × 4-core
Xeon X5460) system.

Fig. 7. Best algorithm for each accuracy and input size in the Bin Packing
benchmark. By best we mean on the optimal frontier (there exists no algorithm
with better performance and accuracy for a given input size on average).
Accuracy is defined as the number of bins over the optimal number of bins
achievable. Lower numbers represents a higher accuracy.

our benchmarks. We observed similar behaviours for the other
benchmarks.

1) Bin Packing: Figure 7 depicts the results of autotuning
the Bin Packing benchmark for various desired accuracy
levels (average number of bins used over the optimal).
For any desired accuracy between 1 and 1.5, the figure
indicates the approximation algorithm that performs fastest on
average, for input data sizes between 8 and 220 generated

by our training data generator. The results show that each
of the 13 approximation algorithms used by the benchmark
perform fastest for some areas of the accuracy/data size space.
This presents a major challenge to developers seeking high
performance when using today’s programming languages since
there exists no clear winner among the algorithms. Instead,
the best choice will depend on the desired accuracy and input
size. Thus, when writing a Bin Packing library, today’s high
performance programmers have the option of either producing
a brittle special-casing of the algorithmic choices manually
(which would be very tedious given the number of well
performing choices), or break the algorithm’s abstraction to
let the user specify which choice to go with. Either of the two
options are undesirable.

It is also interesting to note the relatively poor performance
of ModifiedFirstFitDecreasing, despite the fact that
it has the best provable accuracy bounds out of the set
algorithms. It is best in only three small areas in the
accuracy/data size space. Additionally, despite the fact that it
is provably guaranteed to be within 71/60 ( 1.18×) of optimal,
it is never the best performing algorithm when a probabilistic
bound of worse than 1.07× accuracy is desired. This result
highlights the advantages of using a empirical approach to
determining optimal algorithms when probabilistic guarantees
on accuracy are permissible.

2) Clustering: Figure 8 illustrates the results of autotuning
our k-means benchmark on our sample input of size n =
2048. The results show interesting algorithmic choices and
number of clusters k chosen by the autotuner. For example, at
accuracies greater than 0.2, the autotuned algorithm correctly



Data Size

64

32

16

8

4

1 3 5 7 9

Required Accuracy (orders of magnitude of accuracy improvement)

Fig. 9. Resulting cycle shapes for Helmholtz after tuning for different input data sizes and required accuracies. The solid arrows at the bottom of the cycles
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Accuracy k Initial Center Iteration Algorithm
0.10 4 random once
0.20 38 k-means++ 25% stabilize
0.50 43 k-means++ once
0.75 45 k-means++ once
0.95 46 k-means++ 100% stabilize

Fig. 8. Algorithm selection and initial k value results for autotuned k-means
benchmark for various accuracy levels with n=2048 and k source= 45

uses the accuracy metric (based on Euclidean distances
between data points and cluster centers) to construct an
algorithm that picks a k value that is close to 45, which is
the number of clusters generated by our training data (which
is not known to the autotuner).

At accuracy 0.1, the autotuner determines 4 to be the
best choice of k and chooses to start with a random cluster
assignment with only one level of iteration. While this is a very
rough estimate of k and a very rough cluster assignment policy,
it is sufficient to achieve the desired low level of accuracy. To
achieve accuracy 0.2, the autotuner uses 38 clusters, which
is slightly less than the predetermined value. Our autotuned
algorithm determines the initial cluster centers by k-means++,
and iterates until no more than 25% of the cluster assignments
change. For accuracy 0.5 and 0.75, the ks picked by the
autotuner algorithm are 43 and 45 respectively, which are only
slightly smaller or equal to the predetermined k. The initial
centers are decided by k-means++ and only one iteration is
used. By successfully finding a number of clusters that is close
to the predetermined k and picking good initial centers, only
one iteration is needed on average during training to achieve a
high level of accuracy. Finally, to achieve the highest accuracy
of 0.95, the algorithm uses k value of 46. Initial centers are
determined by k-means++ and iterations are performed until a
fixed point is reached. It is interesting to note that on average,
the autotuner finds that a value of k that is one higher than

the k used to generate the data, is best to minimize the user
specified accuracy metric,

3) 3D Variable-Coefficient Helmholtz Equation: Figure 9
presents the multigrid cycle shapes chosen by our autotuner for
the Helmholtz algorithm. The shapes depict execution traces
of the algorithm for varying accuracy levels and input sizes.
The results show that compiler is able to do a good job
searching the space of possible cycle shapes despite having
to make difficult time-accuracy trade-offs at every stage of
the recursion.

The asymmetry in some of the figures are due to a property
of the algorithm that allows for an estimation phase, during
which work is done to converge towards the solution at
smaller problem sizes before work is expended at the largest
problem size. This is done to provide the Helmholtz solver
with an initial guess closer to the optimal solution, which in
some cases can pay for itself in saved iterations at the most
expensive level.

We found that in most cases with a large enough input, the
accuracy levels used for recursive calls could be well below the
desired accuracy of the final output given enough repetitions
of the recursive call. Further, the depth of the V-cycles can
be truncated by substituting the traditional deep V-cycle shape
with a shallow V-cycle with an iterative bottom solve. This
performance enhancing substitution is made possible by the
autotuner’s awareness of the different algorithmic choices
available to achieve each desired accuracy level.

Additionally, it is interesting to notice the effect of the
desired accuracy on the shape of the cycles. For the lowest
accuracy requirement, we find that the result of the estimate
phase (the non-symmetric, leftmost part of the cycle shape) is
sufficiently accurate to meet the accuracy requirement. When
solving for 3 orders of magnitude of accuracy improvement,
the algorithm begins to rely more on the solve phase. At 5 and
7 orders of magnitude of accuracy improvement, the algorithm
decides not to perform any estimation at all the majority of the



time. This result stands in contrast to the results at 9 orders
of magnitude of accuracy improvement, where for data sizes
equal to and greater than 16, the algorithm performs extensive
estimation through multiple SOR relaxations at different levels
of recursion. Additionally, for this accuracy at input size 8, it
is also interesting to see that the algorithm abandons the use
of recursion completely, opting instead to solve the problem
with the ideal direct solver.

4) Programmability: While determining the programmer
productivity of a new language can be quite challenging, our
anecdotal experience has shown that our extensions greatly
simplify the task of programming variable accuracy code. We
have written a variable accuracy version of the 2D Poisson’s
equation solver benchmark in the PetaBricks language [5] both
before and after we added our new variable accuracy language
constructs. We found that our new language features greatly
simplified the benchmark, resulting in a 15.6x reduction in
code size.

In the original PetaBricks language, we were able to lever-
age the language’s autotuner to perform the search through the
accuracy performance space. However, unlike in the new code,
much of the heavy lifting during the training stage had to be
performed by code written by the programmer. For example,
the original code contained specialized transforms used only
during training that predetermined the levels of accuracy
required at each recursive step in the multigrid algorithm.
These transforms stored this information in a file which was
used during subsequent non-training runs. Additionally, we
were able to eliminate a substantial amount of code duplication
because we were able to represent variable accuracy directly
instead of being forced to represent it as algorithmic choices.
Finally, we should note that had the original code been written
in a language without autotuning support, the code would have
no doubt been even more complex if it were to not expose the
numerous choices in the multigrid solver to the user.

The amount of time spent training is heavily dependent on
both the configuration used for the autotuner and the time
complexity of the application being tuned. The configuration
used for the autotuner determines the number of times the
program will be run to measure performance and accuracy
metrics for different parameter values. A larger number of
runs will be chosen automatically in cases where the timing
or accuracy of the result has larger variance – this is highly
benchmark dependent. Total training times for the various
benchmark configurations shown in Figure 5 ranged from
fifteen minutes to two hours per benchmark, where the
longest training times resulted from running our most complex
benchmarks on very large inputs.

VIII. RELATED WORK

Techniques such as Loop Perforation [10], Code Per-
foration [11], and Task Skipping [12], [13] automatically
transform existing computations and/or programs to achieve
higher performance. The resulting new computations may skip
subcomputations (for example loop iterations or tasks) that
may not be needed to achieve a certain level of accuracy.

The computation may perform less computational work and
therefore execute more quickly and/or consume less energy.
While this approach can be performed robustly in many
cases, it is not sound and therefore may require additional
programmer time to verify the correctness of the perforated
code (should such verification be needed or desired). In
contrast, our system provides a new language and compiler
that enables programmers to safely write programs with
variable accuracy in mind right from the start. In addition
to altering loop iterations, our language allows programmers
to specify entirely different algorithmic choices and data
representations that may be optimal for different accuracies.

PowerDail [14] is a system that converts static configuration
parameters that already exist in a program into dynamic knobs
that can be tuned at runtime. Their system can then change
these knobs at runtime to make the program meet performance
and power usage goals. They use an application wide quality
of service metric to measure the loss or gain in accuracy.

Our work also bears similarities to the Green system [15],
whose primary goal is to lower the power requirements
of programs. Green uses pragma-like annotations to allow
multiple versions of a function that have different power
requirements and resulting accuracies. Green uses a global
quality of service metric to monitor the impact of running the
various approximate versions of the code. PetaBricks differs
from Green in that it supports multiple accuracy metrics per
program, allows the definition of a much larger class of
algorithmic choices, has parallelism integrated with its choice
model, and contains a robust genetic autotuner.

Finally, there exists a large variety of work related to
PetaBrick’s autotuning approach of optimizing programs. For
example, a number of empirical autotuning frameworks have
been developed for building efficient, portable libraries in
specific domains. PHiPAC [16] is an autotuning system
for dense matrix multiply. ATLAS [17] utilizes empirical
autotuning to produce a cache-contained matrix multiply.
FFTW [18] uses empirical autotuning to combine solvers for
FFTs. A system by Kessler et al. [19], [20] automatically
composes algorithms using emperical techniques. Other
autotuning systems include SPARSITY [21] for sparse matrix
computations, SPIRAL [22], [23], [24] for digital signal
processing, UHFFT [25] for FFT on multicore systems, and
OSKI [26] for sparse matrix kernels. ActiveHarmony [27],
[28] provides a general framework for tuning configurable
libraries and exploring different compiler optimizations. In
addition to these systems, various performance models and
tuning techniques [29], [30], [31], [32] have been proposed to
evaluate and guide automatic performance tuning.

IX. CONCLUSIONS

We have presented a new programming model where trade-
offs between time and accuracy are exposed at the language
level to the compiler. To the best of our knowledge, this is the
first programming language that incorporates a comprehensive
solution for choices relating to algorithmic accuracy. We
have developed novel techniques to automatically search



the space of algorithms and parameters to construct an
optimized algorithm for each accuracy level required. We have
implemented a suite of 6 benchmarks that are representative
of commonly used algorithms that leverage variable accuracy.
Using these benchmarks, we have provided evidence of the
importance of exposing accuracy and algorithmic choices to
the compiler when autotuning variable accuracy programs.

Using our new programming model, library writers are
able to hide the implementation details of their variable
accuracy algorithms without limiting the user’s choice of
desired accuracy and the resulting performance. Moreover,
library users do not need to burden themselves with learning
the implementation specific parameters that would otherwise
have been exposed. Additionally, our extensions allow variable
accuracy algorithms to adapt to new environments not
known to the original programmer. These new environments
include new architectures, where different relative costs of
operations may change the accuracy/performance trade-offs of
the underlying choices. In addition, our system allows variable
accuracy algorithms to adapt to changes in required accuracy
and accuracy metrics. This ability to adapt extends the lifetime
of programs, since the program can automatically change to
meet the needs of future generations of users.
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