
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Language and Framework Support for Reviewably-Secure Software Systems

Permalink
https://escholarship.org/uc/item/8ng213vq

Author
Mettler, Adrian Matthew

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8ng213vq
https://escholarship.org
http://www.cdlib.org/


Language and Framework Support for Reviewably-Secure Software Systems

by

Adrian Matthew Mettler

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:
Professor David Wagner, Chair
Professor Deirdre Mulligan

Professor Dawn Song

Fall 2012



Language and Framework Support for Reviewably-Secure Software Systems

Copyright 2012
by

Adrian Matthew Mettler



1

Abstract

Language and Framework Support for Reviewably-Secure Software Systems

by

Adrian Matthew Mettler
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Wagner, Chair

My thesis is that languages and frameworks can and should be designed to make it easier
for programmers to write reviewably secure systems. A system is reviewably secure if its
security is easy for an experienced programmer to verify, given access to the source code.
A security reviewer should be able, with a reasonable amount of effort, to gain confidence
that such a system meets its stated security goals. This dissertation includes work on on
language subsetting and web application framework design.

It presents Joe-E, a subset of the Java programming language designed to enforce object-
capability security, simplifying the task of verifying a variety of security properties by en-
abling sound, local reasoning. Joe-E also enforces determinism-by-default, which permits
functionally-pure methods to be identified by their signature. Functional purity is a useful
property that can greatly simplify the task of correctly implementing and reasoning about
application code. A number of applications of the Joe-E language are presented and evalu-
ated.

The second part of this dissertation presents tool and framework enhancements for
improving the security of web applications. I present techniques for retrofitting existing web
applications to use template systems effectively to prevent cross-site scripting and content
injection vulnerabilities while preserving functionality. I also show how HTML templates
can be rewritten to normalize their output, improving the assurance of security provided by
automatic escaping and other static analyses.

These two applications of my thesis demonstrate that practical enhancements to lan-
guages and frameworks can support developers in creating more secure software that is easier
to review. Continued improvement in language and framework support for reviewability is
a promising approach toward improving the security provided by modern software.



i

To everyone who has believed in me, especially my family.



ii

Contents

List of Figures vii

List of Tables ix

Acknowledgements x

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Security Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Programming Languages and Abstractions . . . . . . . . . . . . . . . 3
1.1.3 Web Templating Languages . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Joe-E: A Security-Oriented Subset of Java . . . . . . . . . . . . . . . 6
1.2.2 Improving Security of Template-Based Web Applications . . . . . . . 9

2 Joe-E: An Object-Capability Subset of Java 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Goals and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Supporting secure software . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Supporting security code review . . . . . . . . . . . . . . . . . . . . . 19

2.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Subsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Design of Joe-E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Memory Safety and Encapsulation . . . . . . . . . . . . . . . . . . . 22
2.4.2 Removing Ambient Authority . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Exceptions and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Programming Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Reachability and Object Graph analysis . . . . . . . . . . . . . . . . 28
2.5.2 Leveraging Static Typing . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.3 Defensive Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.4 Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Contents iii

2.5.5 Attenuation of Authority . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.6 Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Verifiable Functional Purity in Joe-E 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Untrusted code execution . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.4 Building robust systems . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.5 Bug reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.6 Assertions and Specifications . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Side-effect freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Equivalence of reference lists . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Pure methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.1 Side effects and Nondeterminism . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.3 Verifying Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Evaluation and Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7.1 AES library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.7.2 Voting machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.3 HTML parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.4 Summary of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.5 Waterken Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Joe-E’s Overlay Type System and Marker Interfaces 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Overlay Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Marker Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Formalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Ensuring Final Means Final . . . . . . . . . . . . . . . . . . . . . . . 73



Contents iv

4.4 Identity-based Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Power and Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Powerless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Selfless and Equatable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7 Appendix: Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.2 Non-circularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Applications of Joe-E 85

5.1 Waterken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.1 Consistent Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2 Cache Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.3 Remote capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Capsules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Related Work: Joe-E 99

6.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.1 Object-Capability Languages . . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 Privilege Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Security for Java and Related Languages . . . . . . . . . . . . . . . . . . . . 100
6.3 Functional Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.2 Functionally Pure Languages . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Overlay Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Retrofitting Web Applications for Security Review of Cross-Site Scripting

Resistance 106

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.1 Mitigation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4.2 Strict Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.5.1 Context-sensitive autoescaping . . . . . . . . . . . . . . . . . . . . . . 116
7.5.2 Marked strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.3 Escaping rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.4 Database integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



Contents v

7.5.5 Programmatic templating . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5.6 Library patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.5.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.6.2 Adlibre TMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.6.3 Douglas Miranda’s site . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.6.4 Fabio Souto’s blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6.5 Pinax Forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.6.6 GoDjango . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.6.7 JQChat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6.8 NiftyURLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6.9 PythonKC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6.10 Yume Blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6.11 Zinnia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6.12 Django CMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Normalization of Web Templates for Reliable Inference of HTML Con-

texts 135

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2.1 Basic HTML Normalization . . . . . . . . . . . . . . . . . . . . . . . 139
8.2.2 Control Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2.3 Template Inheritance and Inclusion . . . . . . . . . . . . . . . . . . . 140
8.2.4 Deployability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3.1 HTML Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3.2 Template Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3.3 Template Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.3.4 Template Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.5.1 Correctness Argument . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.5.3 Manual intervention details . . . . . . . . . . . . . . . . . . . . . . . 156
8.5.4 Changes made to the templates . . . . . . . . . . . . . . . . . . . . . 157

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



Contents vi

9 Related Work: Web Templating 159

9.1 Web Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.2 Autoescaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.3 HTML Parsing Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.4 Other Cross-Site Scripting Defenses . . . . . . . . . . . . . . . . . . . . . . . 161

10 Conclusion 163

Bibliography 164



vii

List of Figures

2.1 An append-only logging facility and extension. . . . . . . . . . . . . . . . . . . . 14
2.2 An untrusted image decoder might implement this interface. . . . . . . . . . . . 14
2.3 A secure abstraction that supports flexible use of currencies. . . . . . . . . . . . 16
2.4 Overview of restrictions that Joe-E imposes to enforce capability security. . . . . 22
2.5 finalize() can violate object invariants, subverting encapsulation. . . . . . . . 23
2.6 There is a security risk, if exceptions can contain capabilities. . . . . . . . . . . 27
2.7 Transformation to avoid the use of the finally keyword. . . . . . . . . . . . . . 28
2.8 A classic Java vulnerability, prevented with use of immutable types. . . . . . . . 32
2.9 Java queue interface and attenuated facet. . . . . . . . . . . . . . . . . . . . . . 34
2.10 The Joe-E Verifier for Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 An example of an object graph and corresponding Java class definitions. . . . . 47
3.2 Nondeterministic methods in the Java library. . . . . . . . . . . . . . . . . . . . 50
3.3 Nondeterminism due to Object.hashCode(). . . . . . . . . . . . . . . . . . . . 51
3.4 Nondeterminism due to string interning. . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Nondeterminism due to catching VirtualMachineError. . . . . . . . . . . . . . 52
3.6 finally clauses expose nondeterminism. . . . . . . . . . . . . . . . . . . . . . . 52
3.7 A typical use of the Parser class. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Simple formulations of Java’s type system and our overlay type system. . . . . . 68
4.2 A locked box class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 A method that violates the intuitive expectation that String is a value type. . . 78
4.4 The bug in Figure 4.3 might not be detected by testing. . . . . . . . . . . . . . 79

5.1 Overall architecture of a Capsules application. . . . . . . . . . . . . . . . . . . . 90
5.2 Our authentication scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 A graph of the heap of our running application. . . . . . . . . . . . . . . . . . . 96

7.1 An incorrect opt-out allowing cross-site scripting in NiftyURLs. . . . . . . . . . 111
7.2 An incorrect opt-out allowing cross-site scripting in Pinax Forum. . . . . . . . . 112
7.3 A template for displaying a post in a simple Django blog application. . . . . . . 115
7.4 Models for posts of the blogging example in Fig. 7.3 . . . . . . . . . . . . . . . . 119
7.5 Transformation of programmatic templates to a safe-by-construction form. . . . 121



List of Figures viii

8.1 A template with a hole of indeterminate parse context. . . . . . . . . . . . . . . 136
8.2 A template with multiple interpolation contexts. . . . . . . . . . . . . . . . . . . 137
8.3 Control flow resulting in varying parse context. . . . . . . . . . . . . . . . . . . 139
8.4 Normalization invariants enforced by our rewriter. . . . . . . . . . . . . . . . . . 141
8.5 Problematic constructs for our normalizer. . . . . . . . . . . . . . . . . . . . . . 157



ix

List of Tables

3.1 Code metrics for the libraries evaluated, before and after refactoring. . . . . 54
3.2 Pure and impure methods in Waterken. . . . . . . . . . . . . . . . . . . . . . 60

7.1 Applications retrofitted to use secure context-sensitive autoescaping. . . . . . 123

8.1 Experimental results for template normalization. . . . . . . . . . . . . . . . . 155



x

Acknowledgements

First and foremost, I thank my advisor, David Wagner, for his enthusiasm, encourage-
ment, and sage advice. It has been a pleasure and a privilege working with such a dedicated,
perceptive, and supportive mentor. I would also like to thank thesis committee members
Dawn Song and Deirdre Mulligan, as well as qualifying exam committe member Koushik
Sen, for their helpful comments and suggestions.

Mark Miller, Marc Stiegler, and Tyler Close provided inspiration and invaluable advice
in the philosophy and design of Joe-E, and I owe them a debt of gratitude.

I wish to give special thanks to the coauthors of my thesis research: Naveen Sastry,
Matt Finifter, Tyler Close, Akshay Krishnamurthy, and David Wagner. This dissertation
would not be what it is today without their contributions.

I have had the opportunity to work with several talented undergraduates over the course
of my graduate studies, including Matt Finifter, Kanav Arora, Akshay Krishnamurthy, Anne
Edmundson, Brian Holtkamp, and Emanuel Rivera. I would like to thank all of them for
their hard work and active engagement.

Several chapters in this dissertation have benefited from the generous efforts of colleages
providing feedback on earlier drafts. I thank David Molnar, Karl Chen, Arel Cordero, Tyler
Close, Toby Murray, Sandro Magi, Mike Samuel, Erika Chin, Cynthia Sturton, Adrienne
Felt, Devdatta Akhawe, Matt Finifter, Prateek Saxena, Blaine Nelson, and others I have
unfortunately forgotten for providing feedback on papers and presentations in progress. I also
thank shepherds Sriram Rajamani, Úlfar Erlingsson, and Todd Millstein, and anonymous
conference reviewers for their helpful feedback on submitted papers.

I would like to thank the Siebel Scholars Foundation for the fellowship support as well
as their informative, stimulating conferences and other events. I also thank the National
Science Foundation for research grants that have supported my graduate studies.

La Shana Porlaris, Christopher Hunn, Angie Abbatecola, and Willa Walker have done
a great job helping me navigate the Berkeley bureaucracy, and I want to thank them for
making the experience as painless as possible.

I would like to thank the CSGSA folks, the poker night gang, and others including
Devdatta Akhawe, Norm Aleks, Dominic Antonelli, Marco Barreno, Peter and Zuska Bodik,
Karl Chen, Kuang Chen, Erika Chin, Arel Cordero, Alex Fabrikant, Drew Fisher, Lisa
Fowler, Jon Kuroda, Todd Kosloff, Robert Letzler, Prateek Mittal, Blaine Nelson, Matt
Piotrowski, Mariana Raykova, Charles Reiss, Barret Rhoden, Justin Samuel, Jeremy Schiff,



Acknowledgements xi

Rusty and Dara Sears, Justine Sherry, Alex Simma, Isabelle Stanton, Mao Taketani, David
Zhu, and probably a lot more I’ve accidentally left out, for their conversation and comradery
during my time here at Berkeley. It’s been great getting to know and spend time with all of
you.

Finally, I thank my family for their support, especially my mother, without whose gentle
nudging I would likey have taken even longer to finish.



1

Chapter 1

Introduction

My thesis is that languages and frameworks can and should be designed to make it
easier for programmers to write reviewably secure systems. A system is reviewably secure
if it meets its security goals in a way that facilitates security review. A security reviewer
should be able, with a reasonable amount of effort, to gain confidence that such a system
meets its stated security goals.

This goal can be accomplished in two main ways. The first is through the use of abstrac-
tions that remove hazards that can lead to insecure software. The second is by enabling and
encouraging implementation patterns that facilitate reasoning about the security properties
of the resulting system. This approach allows programmers to identify security properties
and write their code to ensure these properties in a way that can be confidently verified in
a security code review.

1.1 Background

Central to this dissertation is the ability to improve application security through the
building of applications that support security review. A major way to do this is the creation
and use of safe abstractions that enable reasoning about security at a high level and relieve
the programmer and security reviewer of the burden of considering errors made in low-
level details and obscure edge cases. In addition to firming up abstractions for general-
purpose programming languages, this dissertation also introduces abstractions specific to
web application development.

1.1.1 Security Review

Security bugs pose a substantial cost to users of software, and can also be harmful to
the reputation of software companies.1 While bugs are often found and patched, we have no

1Since they are so hard to avoid or predict, no software company wants to risk liability for buggy software,
and thus it is routine to disclaim liability for misbehaving software, placing the burden of failure on the



Section 1.1. Background 2

assurance that there are not many more yet to be discovered. The worst case scenario from
a security perspective is vulnerabilities that are not yet publicly known being exploited by
stealthy attackers.

Many security bugs can be used to completely compromise the integrity of a computer
system. The presence of these bugs necessitates frequent patching of systems and sometimes
implementation of workarounds or disabling of features until such patches can be applied.
Many systems are left vulnerable until a convenient time for patch application, making
stealth exploits of the vulnerabilities (or others not yet disclosed) a constant risk. For those
with strict security requirements, current commodity software in its standard configuration
is not a reasonable option.

Unlike in other engineering disciplines, it is difficult to “over-engineer” software to avoid
catastrophic failure. When building a bridge or building, one can compensate for possible
inaccuracy in one’s calculations by adding a “safety factor,” intentionally making the struc-
ture (for example) 50% stronger than the calculated necessary strength. While there are
occasions where unexpected stresses have led to failure of such structures (e.g. the Tacoma
Narrows Bridge), for the most part the set of failure modes is well-known and understood.
While some security threats such as brute-force attacks against encryption or passwords can
be quantified, most are qualitative rather than quantitative. Bugs are notoriously difficult
to predict.

Additionally, architectural structures are built with redundancy – if a handful of bolts
or welds on a bridge turn out to be faulty, it will not fall down. The weight is simply shifted
to adjacent bolts, which are provisioned to support the extra weight. The added expense
of a few extra fasteners is well justified by the substantial increase in safety and expected
longevity of the structure. This kind of redundancy is very rarely built into software. The
cost of creating multiple independent implementations of the same software component is
generally seen as cost-prohibitive.

In architecture, novel or complex designs for which well-established rules of thumb do
not exist can be tested for strength and durability. If one wants to make sure that a bridge
can carry ten tons of live load, one can put fifteen tons on it and monitor the structure to
verify that it is bearing the load without damage. Testing is less effective for software. It
can be useful in evaluating performance and reliability for non-malicious inputs (e.g. a trace
or random data). Unfortunately, simple testing does little to demonstrate security, since the
failure case may be very unlikely and hard to determine without examining the program.
Directed testing techniques do a much better job in finding deeper security bugs, but no
matter how many bugs are found via testing, there is very little assurance more bugs do not
remain.

The only reliable way to be sure that a program has no exploitable bugs is to prove the
program’s correctness with respect to a security policy. Such a proof is not easy to construct,
especially if the program is written in a commodity language. Such languages are generally
not designed to make formal verification easy.

consumer.



Section 1.1. Background 3

As an alternative to formal verification, security reviews with access to source code can
be helpful in finding and eliminating security bugs in software systems. Most such reviews,
however, are necessarily limited in scope. They aim to find bugs, or perhaps to eliminate
certain types of bugs in a portion of the code, as generally software systems are large and
complex enough that it is not possible to address all possible security flaws in a reasonable
amount of time. Like testing, reviews can greatly improve the security of software, but rarely
are able provide assurance that no flaws remain.

1.1.2 Programming Languages and Abstractions

Historically, programming languages have become progressively more high-level, ab-
stracting away details exposed by their predecessors. In a new language, additional details
are handled by the language infrastructure, where code generated by a well-tested compiler
or a single carefully-written library implementation replaces application code to perform the
same function. In general, this trend is beneficial for programmer productivity, software
reliability, code readability and maintainability, and security. Each such advance has come
at some cost in flexibility and performance relative to a carefully-tuned custom implementa-
tion provided by an expert programmer. However, over time a number of abstractions have
become standard, seen as well worth these costs.

The very first stored-program computers required programmers to code in machine
language. The earliest programming languages were assembly languages, in which operations
are just mnemonics for machine code instruction sequences.2 Even such a basic language is
much easier to use than numeric opcodes, as the assembly instructions are easier to interpret
and remember. Additionally, assembly languages allow locations in memory to be given
names, making it easier to remember what data is stored where, and allowing labels to be
given to jump targets. This may result in reduced errors, as the assembler will ensure that
the mnemonic opcodes are valid and have the right number of parameters, and that labels
used will be properly defined. The hazard of accidentally typing the wrong numeric opcode
or address is greatly reduced. Assembly language provides a higher level of abstraction over
machine code, as the mnemonic opcodes replace their corresponding bit sequences and labels
replace memory addresses. The advantage of the abstraction is that assembly code is much
easier to read and understand than machine code.

A major development in raising the level of languages was the creation of memory-safe
and type-safe languages, with automatic memory management and compiler checks to ensure
that in-memory data structures are accessed in a consistent manner. Such languages remove
expressivity in the form of programmer control over memory management, but avoid a whole
class of memory-management bugs. They also reduce the possible damage of a number of
bugs that can still occur: an out-of-bounds array access, for example, will halt the program
or propagate to an exception handler instead of corrupting the program’s state. This change

2Initially, the task of “assembling” from a human-readable program in assembler to machine code was
considered not worth the computer’s time, and was performed by hand; but once such a rote task became
cost-effective to perform by machine, the benefits of doing so were widely recognized.



Section 1.1. Background 4

is a big win for security: low-level memory management bugs, which are easy to introduce
in older languages, often have devastating consequences for security.

Object-oriented languages add yet another level of abstraction. Each type of object
can hide some of its implementation details from clients, providing a custom abstraction by
way of its public interface. Users of such objects are limited in expressivity compared to
having direct access to the object’s internals. The advantage is that the designer of a class
can, by providing an appropriate interface, defend against accidental or malicious misuse by
the class’s clients. If these abstraction boundaries are properly enforced, they can provide a
secure mechanism for objects belonging to different parties to interact, without either having
to fully trust the other.

Object encapsulation means that libraries can raise the level of abstraction for program-
mers without making changes to the language. This allows new abstractions to be introduced
more easily than with a new language, as existing compilers and other tools can continue to
be used. Libraries can introduce new concepts and higher-level interfaces that allow their
users to operate at a higher level of abstraction and avoid errors that might be made using
lower-level constructs. A popular example is the string class in C++. The base language
includes character arrays from C, an error-prone construct as it is easy to run off the end of
a character array, reading or writing other variables in memory. Strings, however, provide
an abstraction of a sequence of characters of known length, and ensure that all operations
stay within the bounds of the string.

Encapsulation has traditionally been seen primarily as a tool to guard against accidental
misuse. It has been used for information hiding, modularity, and improving reliability.
In this dissertation, I explore the use of object encapsulation to be capable of defending
against intentional as well as accidental misuse. Encapsulation has the potential to establish
well-defined boundaries inside an application that can benefit security and reviewability.
Establishing this stronger notion of encapsulation requires some language support, which is
a contribution of this dissertation and is described later in the introduction.

1.1.3 Web Templating Languages

As web applications have grown in popularity and importance to our daily lives, lan-
guages and frameworks geared specifically toward web development have proliferated. A
common component of such frameworks is support for web templating languages, which are
designed specifically for building the output logic of a website. These outputs are in HTML
(hypertext markup language), the language used to specify the structure and content of web
pages.

Web templating languages combine snippets of HTML markup and output logic code
into a single template. The template is essentially a document with “holes” in the form
of variables or code snippets. When receiving a request for the template’s URL, the web
server fills in the holes by printing the corresponding variables or executing the code. Web
templates are a popular mechanism for developing the presentation component of a web
application. Popular templating languages include PHP, JSP, and ASP, as well as a number



Section 1.2. Summary 5

of templating frameworks for Python and Ruby.
The manner in which templating languages combine trusted, developer-authored HTML

with potentially untrusted content leads to a significant security concern: the possibility of
injecting unwanted HTML content into the output document. Cross-site scripting (XSS) is
the most dangerous type of HTML injection attack and involves the insertion of malicious
JavaScript code. Malicious script can force users to invisibly perform actions that enrich
the attacker, such as performing click fraud or transferring money to the attacker’s bank
account. They can also steal users’ session credentials, allowing the attacker to co-opt their
session.

In general, injection of any kind of unintended content into a website can be problematic.
Even just the ability of an attacker to compromise the visual layout of a site can be sufficient
for vandalism attacks. A more damaging attack that can also be carried out with a limited
injection is the ability to spoof the trusted parts of the site’s UI and fool users into entering
their credentials into a malicious form that is submitted to a server controlled by the attacker.

HTML injection attacks can be prevented by properly sanitizing or escaping untrusted
inputs before including them in web templates. Web template languages provide mechanisms
for defending against these attacks. The earliest template languages, such as JSP, ASP, and
PHP, alternate static content with snippets of a highly expressive language, which can be
used to specify sanitization and escaping logic if necessary. Most recent template languages
are more restrictive, designed to encourage greater separation between display and business
logic. In these languages dynamic content is inserted via variable inclusions, which can
specify escaping filters. These filters, usually standard ones provided by the language, can
safely escape content for various HTML contexts.

It is not uncommon for more recent template languages to provide support for automatic
escaping, in which the default behavior for a variable interpolation is to be escaped using an
escape function in order to prevent injection of HTML markup or JavaScript. Systems that
perform automatic escaping with a single escape function provide partial but not complete
defense against injection attacks. This is because documents can include untrusted content
in a number of distinct contexts, only some of which can be handled using any single escaping
function. More sophisticated automatic escaping systems are context-aware, and thus can
escape variables appropriately for the context in which they are used.

1.2 Summary

My thesis work improves the security of software by designing a language and enhancing
a web application framework to facilitate reasoning about security. This makes it easier for
programmers to design their systems to be secure in such a way that a security reviewer can
verify the software’s security.

My thesis work can be divided into two main parts: Joe-E and work on improving the
security and auditability properties of templating languages used in web applications.



Section 1.2. Summary 6

1.2.1 Joe-E: A Security-Oriented Subset of Java

In Chapters 2–6, I present Joe-E, a language designed to facilitate the building of secure
software systems. By reliably enforcing memory-safety and reference-propagation rules, it
provides a basis for reasoning about the behavior of programs. This can be used to make it
easier to review software for security.

To be sure that a program is completely free of bugs, it would be necessary to formally
verify the correctness of the entire program against a specification of its intended behavior.
This is a very difficult task, and one that generally requires a lot of manual work, as the proof
of correctness at a minimum mirrors the complexity of the program. In practice, writing a
proof is often much more difficult than simply understanding the program’s operation; code
must usually be carefully written and extensively annotated to facilitate formal verification.
This approach is not studied further in this dissertation.

If we are concerned with specific security or compliance requirements, a partial form of
verification should be sufficient. Instead of requiring that the entire program is correct, we
can instead identify the security properties we wish the system to provide and verify that
these are maintained by the program. These properties will be application-specific; they can
include integrity requirements on critical data structures, rules for the use of various system
resources, and confidentiality requirements on information. Ideally, verifying such a property
would only require reviewing the code that implements the functionality clearly relevant to
that property. Unfortunately, current languages in popular use make verifying even such
limited program correctness properties very difficult. This can often be traced to a lack of
reliable isolation between components of a program. Without isolation, reviewers must take
the whole program into consideration when verifying a security property.

In some languages, it is always necessary to verify the whole program because the
language allows any line of code to read and write any variable defined elsewhere in the
program. This means that the effective trusted code base for any security property is the
entire program, resulting in “TCB explosion”. Such explosion is the case for languages
such as C or C++ that do not enforce memory-safety, allowing access to arbitrary memory
addresses. More subtly, memory-safe languages can also make objects more available than
might be expected. This can occur, for example, if there is a facility to rewrite the base
classes of the language (as in JavaScript or Ruby) or if security-relevant objects can be
reached from global variables. If an object relevant to a security property is addressable by
code that has not been verified to maintain that property, we can no longer be confident of
security.

In this thesis, I describe Joe-E, a language designed to address these challenges, facil-
itating security review of just the parts of a program that actually participate in enforcing
a security property. Joe-E is based on Java and inherits the abstractions it provides for
modularity and encapsulation.

As a memory-safe language, Java ensures that references can only be created from
scratch by constructing a new object and that existing references can only spread by reference
copying (e.g. by passing one as an argument). Joe-E, which is based on Java, inherits its



Section 1.2. Summary 7

memory-safety. Java allows native methods, however, that are executed as machine code
and thus are not guaranteed to preserve the language’s memory-safety properties. Joe-E
forbids application code from defining native methods. While Java allows arbitrary objects
to be stored in global variables, potentially exposing state that is sensitive or should not be
modified, in Joe-E the global scope only contains immutable (non-modifiable) objects that
are essentially constants. This helps Joe-E programs avoid TCB explosion.

Another important aspect of a language designed for code review is support for encap-
sulation. For security-sensitive objects that must be shared, it is still possible to maintain
security guarantees if there is a way to enforce strong object encapsulation. Encapsulated
objects do not expose their internal state, and instead provide a limited interface to the rest
of the program. Such objects can hide their internal state and maintain security invariants
on this state. Unfortunately, many languages provide ways to bypass encapsulation. Even
if these features are rarely used, their presence means that it is not possible to verify an
object’s security in isolation: one must also check all users of the object to ensure that it
they do not bypass the encapsulation.

Unlike Java, Joe-E provides support for strong object encapsulation. In Java, encapsu-
lation is provided by private fields, which can be accessed by code within the object but are
hidden outside it. However, Java’s Reflection API (application programming interface) can
be used to override this protection. To prevent breaches of encapsulation, Joe-E disables
this part of the Reflection API.

Object isolation and encapsulation serve to ensure that objects can be appropriately
protected from access that could violate their security properties. However, isolation and
encapsulation are not enough to enforce security restrictions on resources external to the
program. Most languages provide library methods that allow any part of the program to
affect any external resource it likes. This makes it very hard for a part of a program to, for
example, enforce an invariant about a file in the file system: the programmer would have to
check all of the rest of the program and ensure that it does not access the same file.

In Joe-E, all external resources are represented as objects, each of which provides the
ability to interact with an underlying operating system resource. Such objects can only
be constructed given a capability that grants the ability to do so. This allows the same
memory-safety properties that facilitate reasoning about in-memory objects to be applicable
to other system resources such as files and network connections. By reasoning about refer-
ence propagation in Joe-E programs, it is possible to check security restrictions on external
resources.

Joe-E provides a simplified model for reasoning about the security of a program: all
authority (ability to observe any state or perform any action) is represented by references
to objects, also known as capabilities. Code can always perform computation using objects
it creates itself and the constant values available in the global scope. When it’s done, it
can return a result to its caller. Anything else, such as interacting with the outside world,
requires an additional, explicit capability. Due to this, one can reason about what code can
and cannot do based on which capabilities it can and cannot obtain. This reasoning is useful
for verifying security properties of Joe-E programs.



Section 1.2. Summary 8

Joe-E supports two basic forms of reasoning: what code can do, based on the capabilities
that it has; and what can be done to an object or resource, based on which portions of the
program can obtain a capability to the object or resource (directly or indirectly).

The first type of reasoning can be used to restrict untrusted or partially-trusted code.
This permits securely combining code from a number of sources. Today, installing a plugin
for an application is a dangerous operation. Generally, plugins are trusted with the full
authority of the program they extend. Joe-E provides a way to solve this problem. Since
Joe-E provides object isolation by default and secure encapsulation, plugins can be provided
with a narrower interface that securely limits the damage they can do, reducing the risks of
installing them.

One specific and powerful instance of this type of reasoning is the way that Joe-E
enables the verification of methods as functionally pure. Functionally pure methods perform
computations that depend only their arguments and have no side effects, like evaluating a
mathematical function. Joe-E makes it easy to verify that a method has these properties.
In particular, any Joe-E method all of whose arguments are immutable will be functionally
pure. The method will be deterministic since the behavior of a method in Joe-E depends
only on the objects it can observe, and the only observable state aside from the method’s
arguments will be constant global state. The method can have no side effects because it
cannot obtain any capabilities to external objects, and thus cannot modify them. Any
two invocations to a functionally pure method with equivalent arguments, even on different
instances of the program running on different machines, will yield the same result. This
property has a number of useful applications for security, as described in Chapter 5.

The second form of reasoning is useful for verifying security properties that relate to
a particular resource (object). Joe-E makes it possible to track down the places where
a reference to the object of interest can propagate to. If the use of the object in all of
these locations is verified to maintain the object’s security invariants in the face of arbitrary
behavior of the rest of the code base, a security reviewer can be confident that security is
maintained without having to look at the rest of the code. This approach is feasible because
the arbitrary, unknown behavior of the rest of the program is still limited by the properties
Joe-E enforces: if the object of concern is never handed to unreviewed code directly, but is
always encapsulated in a defensively-programmed wrapper, reviewing the wrapper obviates
the need to review the rest of the code.

Implementing a new language is only a productive exercise if the language is used.
To encourage adoption of a new language, it is beneficial to leverage existing tools and
programmer experience. Joe-E is designed to be attractive to programmers due to the fact
that it is a subset of the well-known Java language. This means that every Joe-E program
is just a Java program that has been verified to belong to the Joe-E subset. Joe-E programs
run on an unmodified Java virtual machine in exactly the same way as Java programs,
because they are Java programs. Joe-E provides a set of libraries that can be used by Joe-E
programs, but these libraries are just normal Java libraries, and do not require any special
support from the Java infrastructure.

Familiarity to Java programmers is furthered by making Joe-E as large a subset as



Section 1.2. Summary 9

possible while preserving the object-capability language properties. Most of the features of
the Java language are included in Joe-E, so programmers can use these features when writing
Joe-E programs. Features are only left out when they are inherently incompatible with the
security properties Joe-E achieves.

1.2.2 Improving Security of Template-Based Web Applications

The second main portion of my dissertation (Chapters 7–9) concerns improving the
security and auditability of web applications, in particular those built using web templating
languages. I address two problems in the area of defending against content injection in web
templates. The first is the problem of retrofitting existing code to make use of contextual
automatic escaping in a way that protects against attacks while also preserving application
functionality. The second is work on improving the soundness of contextual autoescaping
and other defenses against content injection performed on the server.

Web frameworks are an increasingly popular tool for building web applications. They
have been successful in introducing abstractions that can cut developer time as well as reduce
the opportunity for bugs, with a corresponding increase in security. I identify web framework
enhancements and automated tools that significantly simplify the task of converting existing
applications to effectively use context-sensitive escaping. By reducing the number of trusted
but error-prone exemptions from automatic escaping, these techniques can improve the level
of security delivered by applications.

My approach has two modes of operation that provide a trade-off between retrofit effort
and the security guarantee provided. In mitigation mode, it provides defense limited to cross-
site scripting, but without requiring any modifications to the target application. In strict
mode, it defends against all server-side content injection attacks, and reduce the need for
manual opt-outs from automatic escaping by supporting common patterns for constructing
safe HTML. Specifically, my system integrates with the web application framework’s object-
relational mapper to handle trusted HTML stored in its database. It also recognizes code
patterns that build up HTML programmatically and provides an automatic rewriting tool
to support it in a safe way.

I demonstrate my approach on a version of the Django template system that I have
modified to dynamically enforce context-sensitive escaping of template variables. In my
evaluation of eleven real-world open-source Django applications, I show that my approach is
applicable to a variety of applications and helps make them reviewably secure from cross-site
scripting with little effort.

The second problem is the important soundness issue of correctly inferring HTML parse
contexts in templates. Contextual autoescaping fundamentally depends on the server being
able to reliably determine how a client’s browser will parse the output of the template. The
automatic escaper must be able to predict how the document will be parsed in order to
escape untrusted inputs correctly. If the browser parses the document differently from what
is expected, malicious inputs may be incorrectly escaped and thus still able to attack the
user. I describe a technique to substantially increase assurance that browsers will parse the



Section 1.2. Summary 10

document as predicted by server-side automatic escaping.
In order to handle variation in document parsing between browsers, I present a way

to statically normalize templates, so that the HTML they generate will be predictably and
unambiguously parsed by browsers. By appropriate normalization of a template, this guar-
antee is provided for every one of that template’s infinite number of possible outputs. This
task is complicated by template language features such as conditionals, template inclusion,
and template extension. My approach adjusts the placement of a template’s directives as
well as modifying its HTML content to be as unambiguous as possible.

I aim to support all browsers in common use, including older ones that are not compliant
with the latest HTML5 specification. This work provides a more solid foundation for defenses
against cross-site scripting and other security analyses that rely on inferring how HTML
documents will be parsed by browsers. I apply our methods to a collection of templates from
real-life open-source web applications and demonstrate that their output can be normalized
with reasonable developer effort.

I hope that my work in improving reviewability by language subsetting and leveraging
web frameworks will encourage programmers to write secure software in a way that is practi-
cal for others to gain confidence in. I suggest that designers of future languages and systems
consider reviewability for security in their designs and work to enable programmers to build
systems that reliably achieve their security goals in a reviewable way.



11

Chapter 2

Joe-E: An Object-Capability Subset

of Java

This chapter is based on a paper [41] coauthored with David Wagner and Tyler Close,
presented at the Internet Society’s 17th Annual Network and Distributed System Security
Symposium in March 2010.

2.1 Introduction

This chapter describes the design and implementation of a programming language, called
Joe-E, that supports development of secure systems. Joe-E improves upon today’s languages
in two important dimensions. First, Joe-E makes software more robust by reducing the num-
ber and impact of inadvertent bugs and security vulnerabilities in benign software. Second,
Joe-E provides flexible mechanisms to reduce a program’s vulnerability to software compo-
nents and allow the safe usage of untrusted code. Both characteristics help to make code
more amenable to code review and security audits, an important property when we place
trust in computer systems’ correct operation and attack resilience. In particular, Joe-E
supports construction of systems following a “secure by design” approach, where security
is designed in from the start, as well as “design for review”, where the code is architected
and written specifically to make it as easy as possible for code reviewers to verify that the
application meets its security goals.

Joe-E is based upon the Java programming language. We show that a relatively small
number of simple restrictions suffice to define a subset of Java that provides the security
properties of an object-capability language. (In an object-capability language, all program
state is contained in objects that cannot be read or written without a reference, which serves
as an unforgeable capability. All external resources are also represented as objects. Objects
encapsulate their internal state, providing reference holders access only through prescribed
interfaces.)

A major contribution of our work is that we bring the security benefits of object-



Section 2.1. Introduction 12

capability systems to a popular language. Additionally, we show how Java’s static type
system can be used to simplify the assurance of security properties statically, as opposed to
via runtime checks used by the dynamically-typed object-capability languages found in prior
work.

Memory-safe languages like Java make it much easier to design robust systems and
reason about their security properties than non-memory-safe languages, but in Java it is still
difficult to reason about higher-level security properties, particularly when composing code
with varying levels of trust or when auditing the security of a program. With Joe-E we are
able to support richer ways of combining code entrusted to varying degrees while reviewably
maintaining security properties.

Providing secure encapsulation. Consider Fig. 2.1(a), which illustrates how one might
build an append-only log facility. Provided that the rest of the program is written in Joe-E,
a code reviewer can be confident that log entries can only be added, and cannot be modified
or removed. This review is practical because it requires only inspection of the Log class, and
does not require review of any other code. Consequently, verifying this property requires
only local reasoning about the logging code.

Perhaps surprisingly, Java does not support this kind of local reasoning. Because Java
allows the definition of native methods which can have arbitrary behavior and violate Java’s
safety properties, all bets are off unless one is sure that the program does not use any such
methods. Even if the program uses no native methods, the append-only property of the
above code is not guaranteed. Java’s reflection framework includes the ability to ignore
the visibility specifier on a field, which would allow a reference-holder of the Log object to
retrieve the StringBuilder contained within as if its field were declared to be public. This
would violate the append-only property, as it would then be possible to perform arbitrary
operations on the StringBuilder. While we might intuitively expect that the rest of the
program would be unlikely to exploit these weaknesses, we would have to read all of the code
of the entire application to be sure.

Joe-E removes these and other encapsulation-breaking features from Java in order to
support building and reasoning about secure systems. This makes building sound, self-
contained application reference monitors possible. Because these reference monitors are
written as part of the application software itself, this provides a powerful mechanism for
enforcing security policies: the programmer has the full power of the Joe-E programming
language for expressing these security properties, and does not need to learn a new secu-
rity specification language to specify them. We anticipate that this will aid developers in
implementing custom security abstractions.

Reliable, auditable behaviors such as this logging system can be valuable not only for
security but also in enforcing compliance with specifications and regulations. A tamper-
proof logging subsystem can provide greater assurance that transactions are recorded in
compliance with Sarbanes-Oxley and HIPAA record-keeping requirements.



Section 2.1. Introduction 13

Capabilities and least privilege. In the example above, only the parts of the program
that have access to an instance of the log object will be able to add log entries; the rest of the
program will be unable to affect that log instance. In particular, a reference to a Log object
is a capability to append entries to that log. We can control which parts of the program
receive the power to append to the log by controlling who receives a reference to the log
object. The rules for propagation of these capabilities are exactly the rules for propagation
of references in a type-safe language, which should already be familiar to the programmer;
we expect this will make it easier for programmers to reason about capability propagation.

For instance, we might have an application where it is critical that every incoming
network request be logged. We could provide the component that dispatches incoming
requests a capability to the log, so it can log every incoming request. By examining the
dispatcher component, we can verify that every incoming request is logged using only local
reasoning. If required, we could also verify that no other log entries are added, by checking
that no other component can receive a reference to the log.

As another example, a device capable of radio communication may need to be limited to
certain frequencies via software in order to receive FCC certification. Even if the hardware
interface exposed by the device driver would permit communication on disallowed frequen-
cies, in a language like Joe-E it is possible to build a wrapper that reliably limits how the
radio is used. In Joe-E, it would be necessary to review only the interface that such a wrap-
per presents to the rest of the application, as there is no way for Joe-E code to violate the
wrapper’s encapsulation of the dangerous radio capability.

Capabilities also support least privilege. Code can only write to the log if it has a
capability to the log object. Code that is not explicitly passed this capability has no access
to it, which means that by default the overwhelming majority of code is verifiably incapable
of writing to the log. Our experience is that this encourages a style of programming where
only the code that legitimately needs the power to append to the log receives a capability
to do so.

Analysis of who has access to an object and the principle of least privilege are both
subverted when capabilities are stored in global variables and thus are potentially readable
by any part of the program. Once an object is globally available, it is no longer possible to
limit the scope of analysis: access to the object is a privilege that cannot be withheld from
any code in the program. Joe-E avoids these problems by verifying that the global scope
contains no capabilities, only immutable data.

The Java standard library also provides a large number of capabilities to all Java code,
for example, the ability to write to any file that the JVM has access to. In the context of
our example, this would include the file where the log is ultimately output. For this reason,
Joe-E allows access to only a safe subset of the standard Java libraries.

Modular security abstractions. Suppose we want to provide a software subsystem the
ability to append entries to the log, but we want to ensure that those entries can be attributed
to that subsystem. Fig. 2.1(b) shows a solution. We can construct an AttributedLogger



Section 2.1. Introduction 14

public final class Log {

private final StringBuilder content;

public Log() {

content = new StringBuilder();

}

public void write(String s) {

content.append(s);

}

}

public class AttributedLogger {

private final Log log;

private final String id;

public AttributedLogger(Log log, String id) {

this.log = log; this.id = id;

}

public void write(String message) {

// prevents message spoofing via newlines

for (String line : message.split("\n")) {

log.write(id + ": " + line + "\n");

}

}

}

Figure 2.1: (a) On the left, an append-only logging facility. (b) On the right, an extension
that associates each line in the log with an assigned name or other identifier.

public interface Decoder extends Immutable {

/** Returns a bitmap; retval[x][y][c] is the value

at position (x,y) of color channel c. */

byte[][][] decode(byte[] imagedata);

}

Figure 2.2: An untrusted image decoder might implement this interface.

object, specifying a name that will identify the subsystem, and pass it to the subsystem.
Log entries written through this interface will then have the specified name prepended to
them. In this way we can provide logging services to multiple subsystems in a program,
while preventing them from impersonating each other. In this example, we have built a new
security abstraction (the AttributedLogWriter) on top of an existing security abstraction
(the append-only Log). The ability to layer security abstractions in this way is important
for modularity.

Untrusted code and extensibility. Joe-E also allows applications to safely execute and
interact with untrusted code. This safety is a result of the fact that Joe-E objects spring
to life with no capabilities other than the ones passed to them when they were constructed.
They can only acquire additional capabilities that they are explicitly passed. As a result,
Joe-E is well suited to execution of untrusted code, since untrusted code written in Joe-E
cannot harm anyone if it is not passed any dangerous capabilities. Partially trusted code
can be granted only capabilities appropriate to its function and the level of trust placed in
it.

This aspect of Joe-E provides support for secure extensibility. For instance, consider a



Section 2.1. Introduction 15

graphics viewer program that can be extended with plugins for various file formats. We’d like
to be able to download a plugin that interprets new image files, without exposing ourselves
to attack from malicious code. We want to ensure that the worst a malicious plugin could do
is incorrectly decode an image, but for instance it must not be able to send network packets,
write to the filesystem, or interfere with decoding of other images.

In Joe-E, we could enforce this by requiring plugins to be written in Joe-E and to
implement the interface in Fig. 2.2. For instance, a JPEG decoder could implement this
interface, interpreting the data passed to it as a JPEG image and converting the result
to a bitmap to be displayed. If the plugin is only invoked through this interface, Joe-E
guarantees the following remarkable security property: multiple invocations of this method
will be independent, and no state can be retained or leaked from invocation to invocation.
This ensures both confidentiality (because information about a confidential image cannot
leak into other images, even if the plugin is buggy) as well as integrity (even if the plugin
contains bugs that can be exploited, say, by a maliciously constructed image, these exploits
cannot interfere with the decoding of other images or otherwise harm the rest of the system,
except by decoding the malicious image to an unexpected bitmap).

The Immutable interface, defined by the Joe-E library, is treated specially by the lan-
guage: the Joe-E verifier checks that every object implementing this interface will be (deeply)
immutable, and raises a compile-time error if this cannot be automatically verified. Since the
Decoder interface extends Immutable, decoding plugins will necessarily be stateless. Also,
because only byte arrays can flow across this interface, it is easy to verify (thanks to the
static type system) that plugins will never receive a capability that allows them to interact
with any other system component.

Reviewable, rich behavioral properties. Joe-E can be used to enforce rich, application-
specific behavioral security properties. Fig. 2.3 defines a currency system. If used, for
instance, in an online game, it would be easy to verify that trades between players cannot
generate money from nothing. A Currency object provides the power to mint new money
in the corresponding currency; it is impossible to do so without a reference to this object. A
Purse can be used to hold and transfer money in a particular currency, but does not grant
the power to mint new money.

Note that this API is general enough to support multiple currencies, and can easily be
audited for correctness, even in the presence of multiple mutually-distrusting and potentially
malicious clients. In particular, to verify that the currency API cannot be abused, one only
need examine the code of the Currency and Purse classes—nothing more. From this code
we can deduce, for instance, that it is only possible to create money in a currency if one
has a reference to the corresponding Currency object. This kind of local reasoning is made
possible because Joe-E enforces encapsulation boundaries that follow the program’s lexical
scoping structure.

Joe-E enables us to concentrate trust in a small, comprehensively reviewable portion of
the code, which serves as the trusted computing base (TCB) for a specific security property.



Section 2.1. Introduction 16

public final class Currency { }

public final class Purse {

private final Currency currency;

private long balance;

/** Create a new purse with newly minted money,

given the Currency capability. */

public Purse(Currency currency, long balance) {

this.currency = currency;

this.balance = balance;

}

/** Create an empty purse with the same currency

as an existing purse. */

public Purse(Purse p) {

currency = p.currency; balance = 0;

}

/** Transfer money into this purse from another. */

public void takeFrom(Purse src, long amount) {

if (currency != src.currency

|| amount < 0 || amount > src.balance

|| amount + balance < 0) {

throw new IllegalArgumentException();

}

src.balance -= amount;

balance += amount;

}

public long getBalance() {

return balance;

}

}

Figure 2.3: A secure abstraction that supports flexible use of currencies.



Section 2.2. Goals and Overview 17

Here the Purse only needs to be trusted to correctly enforce the security properties asso-
ciated with the currency, and not for other purposes. This pattern encourages architecting
a program so that for each desired security property, we can identify a small TCB for that
property. Such a software architecture can, in turn, significantly reduce the cost of verifying
security properties of the application.

2.2 Goals and Overview

We have three primary design goals for the Joe-E language. First, we want Joe-E to be
usable by programmers. Second, we want Joe-E to support construction of secure systems.
Third, we want to make it easier to verify that the resulting systems meet their security
requirements, and ease the task of security code reviews. We elaborate on these goals below,
and sketch Joe-E’s approach to each of those goals.

2.2.1 Ease of use

To minimize barriers to adoption of Joe-E and reduce the learning curve for new Joe-E
programmers, the language should be as familiar as possible for programmers. Joe-E should
minimize as much as possible the requirement to learn new concepts or idiosyncratic syntax.
To address this goal, the Joe-E programming language is based upon Java (§ 2.3.1).

Also, as much as possible, Joe-E programmers should be able to use existing development
tools, build on existing libraries, and integrate with legacy systems. We partially support
this goal by designing Joe-E as a subset of Java (§ 2.3.1) and exposing a capability-secure
subset of the Java class libraries (§ 2.4.2).

Joe-E should support construction of new modules, written from scratch with security
and Joe-E in mind. To receive the full benefits of Joe-E, software must be structured in a
way that is compatible with good capability design principles. We do not aim to add security
to existing Java code. Legacy Java code will most likely not be valid Joe-E, and even if it
were, legacy code often fails to be structured in a way that respects capability principles. It
is explicitly not a goal of this work to make it easy to transform arbitrary existing Java code
into Joe-E; Joe-E is intended for newly written code.

While existing Java code may not transform easily to Joe-E, Java code can easily make
use of modules written in Joe-E. For example, an existing Java application may add support
for plugins implemented in Joe-E, thereby limiting the damage that plugin authors can cause
to the main application. Similarly, a large Java application may be incrementally migrated
to Joe-E by rewriting its component modules. Because any Java component of a combined
application is unrestricted in privilege, it must be considered part of the trusted computing
base. This Java component has the potential to, via the abstraction-breaking features of
Java, violate the security properties of Joe-E code, and so requires the same level of careful
review required for an all-Java application. Use of Joe-E components neither facilitates nor



Section 2.2. Goals and Overview 18

complicates review of Java code; the benefit is a reduction of the amount of Java code to be
reviewed.

Additionally, we desire Joe-E to have the expressivity and scalability to support large,
real-world systems. We do not want our abstractions or implementation to place restrictions
on the scale or complexity of applications that can be written in the language.

2.2.2 Supporting secure software

To facilitate construction of secure systems, Joe-E should:

1. Encourage least privilege. Joe-E is intended to help programmers achieve the principle
of least privilege, at a fine level of granularity in their program, so that each subsystem,
module, and object receives only the minimum privilege it needs to accomplish its task.
Joe-E should minimize barriers to least-privilege design of software.

Joe-E supports this goal through safe defaults: by default, each block of code has no
privileges to access system resources, and can acquire such privilege only if some other
entity passes it an appropriate capability (§ 3.4). In comparison, the default in most
other software platforms is that code runs with all of the privileges of the user who
invoked it, and must explicitly drop privileges if that is desired; Joe-E reverses this pre-
sumption (§ 2.4.2). Joe-E’s libraries provide a capability interface to system resources
(e.g., the filesystem and network). Also, applications written in Joe-E can devise their
own security abstractions that divide up privileges into smaller pieces appropriate to
the application domain (§ 2.5.5), further supporting least-privilege programming. We
expect that systems built in this way will be more robustly secure, because the effect
of bugs and vulnerabilities is limited: the fewer privileges a component has, the less
harm it can do if it misbehaves or runs amok.

2. Isolate untrusted code. We want programs to be able to run untrusted or mobile code
safely. Moreover, we want programs to be able to interact usefully and efficiently with
the untrusted code—and in particular, we want to be able to run untrusted code in the
same JVM as trusted code. This implies that simple isolation is not enough; programs
must be able to “poke holes in the sandbox” to enable controlled sharing. We would
like the trusted program and untrusted program to be able to share access to common
data structures, and we want cross-domain calls to be as efficient as a method call.

Because Joe-E code receives, by default, no capabilities, it is safe to execute untrusted
code that is written in Joe-E (§ 3.4). We can limit what the untrusted code can do, by
limiting what capabilities we provide to it; and conversely, we can grant the untrusted
code limited powers by passing it appropriate capabilities. For instance, we can enable
the untrusted code to write to a single file on the filesystem, by passing it a capability
for that file. In Joe-E, data structures can be shared between components simply by
passing a reference to the data structure, and cross-domain calls are a method call.



Section 2.2. Goals and Overview 19

3. Enable safe cooperation. As a generalization of the previous point, we also want to
enable mutually distrusting subsystems to interact safely. Each party should be able
to limit its exposure, should the counter-party be malicious. Joe-E helps with this goal
by supporting strong encapsulation, down to the object granularity. Each object can
be written to enforce its invariants while protecting itself from code that makes use of
it (§ 2.5.3).

2.2.3 Supporting security code review

Joe-E should help programmers follow a “design for review” philosophy, where the
software architecture and implementation are carefully chosen to facilitate security code
review. Joe-E should:

1. Enable reasoning about privileges. It is not enough for Joe-E to enable least privilege
and isolation; it should also be feasible for reviewers to verify that these security
goals are achieved. Accordingly, Joe-E should help reviewers upper-bound the set of
capabilities a particular block of code might ever gain access to, or upper-bound the
portions of the program that might ever gain access to a particular capability. Joe-
E should also make it possible to write code so that these upper bounds are precise
and easily verifiable. To help with this, Joe-E is designed to enable several powerful
patterns of reasoning about the flow of capabilities in the program (§ 3.7.4).

2. Support modular reasoning. Joe-E should make it easier to reason about security
properties. If the program is written appropriately, it should be feasible to verify a
security property by examining a small fraction of the code. If the object O implements
some security abstraction, it should be possible to reason about the security properties
of this abstraction (e.g., the invariants maintained by O) just by looking at the source
code for O and the objects O relies upon. In particular, if client objects C1, . . . , Cn

make use of O, we should be able to verify the correctness of O without examining
the code of any client Ci. We call this modular analysis. Modular analysis is critical if
security code review is to scale to large programs.

Joe-E’s strategy for supporting modular reasoning about security relies heavily on
flexible support for isolation of untrusted code (§ 2.5.3). Also, many of our restrictions
on Joe-E code support modular reasoning: the more we restrict what Joe-E code can
do, the more we can restrict the possible behaviors of each client Ci, which makes it
easier to ensure that they do not violate O’s invariants.

3. Support reasoning about mutability. Shared mutable state is a headache for reasoning
about security, because it introduces the potential for race conditions, time-of-check-
to-time-of-use vulnerabilities, and surprising consequences of aliasing. Joe-E should
help programmers avoid these risks by providing first-class support for reasoning about
mutability and immutability. In particular, Joe-E should make it easy for programmers
to build data structures that are transitively immutable, should provide support for



Section 2.3. Approach 20

static verification of this fact, and should reflect these immutability properties in the
static type system. Joe-E addresses this by extending the Java type system with
immutability annotations (§ 2.5.4), by providing library support for programming with
immutable data, and by forbidding mutable global variables (§ 2.4.2, § 2.5.2).

2.3 Approach

Our approach to improving language security is through the use of an object-capability
language. Such languages permit a default-deny, least-privilege approach to the authority
granted to parts of a program as it executes.

The central feature of object-capability languages is that they use object references
(pointers to objects) to represent all of the privileges that can be used by a program. In
the simplest case, these simply point to encapsulated memory-resident objects. Having a
pointer to such an object grants the ability to interact with it via its public interface. Since
access to the object is limited to the interface, the object can be designed to maintain the
privacy and integrity of its internal state even when passed to untrusted code.

For many purposes, a system that can only operate on in-memory objects is not enough.
Most programs need to interface with other resources on the system or network. In object-
capability languages, these resources are represented as objects defined by special library
classes. Reference to such an object allows interaction with the external resource via a
library-defined public interface. In this way, files on disk and network connections are natu-
rally represented as objects.

Access to all references in an object-capability language is governed by program scope.
At any point in time, the program can only make use of the capabilities that are reachable
from its in-scope references. For such an approach to be sound, the language must be
memory-safe: it must be impossible to “forge” a pointer to an object, such as by performing
a type cast operation on a memory address.

To get the most benefit from this approach, we want the minimal set of privileges we
can bestow on part of a program to be as small as possible. We’d like the “default state”
for running code to be one in which no harm can be done unless we explicitly trust it with
a reference. For this to be the case, the global scope (which is available everywhere in the
program) should not allow access to any authority we would want to deny to completely-
untrusted code.

Ideally, we want code to be unable to do anything unless we have granted it a capability
to do so. In real systems, we may need to relax this slightly for practical reasons; it may be
easy to limit access to in-memory objects and external resources, but too difficult to prevent
code from consuming CPU cycles or memory, or failing to return in a timely manner. Our
approach is to place no limits on the purely computational power of untrusted code, limiting
only its access to data and external resources. If the global scope grants no access to privileges
of concern, one can enforce least privilege on a fine-grained basis by ensuring that each scope
in the program’s execution only has access to the capabilities it needs. More importantly,



Section 2.4. Design of Joe-E 21

it is possible to reason about the authority with which different parts of the program are
trusted. Every component of the program has only the capabilities that have been passed
to it.

In contrast with most other object-capability languages, which use dynamic typing, in
Joe-E we can leverage the Java type system to place static restrictions on how capabilities
can propagate as a program executes. With this approach we are able to restrict the flow
of capabilities while reducing the need for reference monitors and explicit dynamic checks in
order to guarantee security properties.

2.3.1 Subsetting

Many new languages have been proposed over the years, but relatively few have seen
widespread adoption. Programmers have large amounts of experience with and code in
existing languages, and thus are reluctant to invest in switching to a new language.

A number of new languages have been defined as extensions to existing languages. This
has the advantage of leveraging developer experience and preserving a greater degree of
familiarity than defining a new language from scratch. Unfortunately, programs written in
the extended language become incompatible with tools (debuggers, interpreters, profilers,
IDEs) designed for the original language. Developers are wary of becoming locked into such
extended languages, as they are not guaranteed to maintain the same level of support as the
base language going forward.

We take a different approach: we define the Joe-E language as a subset of Java. Every
Joe-E program is simply a Java program that satisfies additional language restrictions that
are verified by the Joe-E verifier. We avoid adding new features to Java or making changes
to Java’s semantics; instead, we impose restrictions on the source code that every valid Joe-E
program must satisfy (see Fig. 2.4 and § 2.4). The Joe-E verifier checks that these restric-
tions are met, but not does not transform the program in any way. This approach allows
use of the standard Java tools, compiler, and runtime, as well as allowing Joe-E programs to
coexist with Java code and libraries.1 More importantly, this allows us to leverage program-
mers’ experience with the Java language, while introducing security-oriented programming
patterns. Joe-E can be thought of as simply an idiomatic way to write Java code, using
conventions that facilitate a style of reasoning. The Joe-E verifier ensures that all checked
code conforms to these conventions.

2.4 Design of Joe-E

The Joe-E language restrictions are chosen so it will be intuitive and predictable to
the programmer which programs will pass the Joe-E verifier. We avoid sophisticated pro-
gram analysis, instead favoring programming rules that are simple to state. For similar

1There is also no need to present formal semantics for the Joe-E language, as they are identical to those
of Java.



Section 2.4. Design of Joe-E 22

Enforce reference unforgeability
• prohibit defining native methods

Prevent unexpected reference propagation
• require all throwables to be immutable

Remove ambient authority
• tame Java APIs that provide access to the outside world without an
explicit capability
• require all static fields to be final and of an immutable type

Enforce secure encapsulation
• prohibit overriding finalize()

• tame Java reflection API
• prevent catching Errors
• prohibit finally keyword

Figure 2.4: Overview of restrictions that Joe-E imposes to enforce capability security.

reasons, we avoid whole-program analysis. Instead, the Joe-E verifier analyzes each source
file individually. This file-at-a-time approach also helps scalability and lets us support open-
world extensibility: new code can be added to the system, without invalidating the analysis
previously performed on files that have not changed.

2.4.1 Memory Safety and Encapsulation

Memory-safe languages like Java provide the foundation for sound object-capability
languages, as they ensure object references cannot be forged. In Java, references cannot be
created by pointer arithmetic or casting integers to pointers, but rather can only be obtained
by copying existing references. The site at which an object is created using the new operator
is initially the sole holder of a reference to the new object and has control over how the object
is shared. This memory safety property can be broken through the use of native methods,
so Joe-E prevents the definition of such methods.

The access modifier private allows an object to encapsulate a reference to another
object in such a way that it can only be accessed via the enclosing object’s methods. The
public interface of the enclosing class then dictates the policy for use of the wrapped object.
Capability-secure programming relies crucially on the security of this encapsulation property.
Java’s reflection API provides a facility for disabling access checks on methods and fields,
allowing malicious clients to bypass object encapsulation. To ensure that encapsulation
cannot be broken, we do not expose this facility to Joe-E code.

Another Java feature with surprising consequences is the ability to define custom fi-
nalization behavior, by overriding the finalize() method. The garbage collector invokes
user-defined finalize() code when an otherwise dead object is collected. This can violate



Section 2.4. Design of Joe-E 23

public class OddInt {

final int content;

public OddInt(int content) {

if ((content % 2) == 0)

throw new IllegalArgumentException();

this.content = content;

}

}

class EvilOuterClass {

OddInt stash;

class NotReallyOddInt extends OddInt {

NotReallyOddInt() {

super(0);

}

void finalize() {

stash = this;

}

}

}

Figure 2.5: finalize() can violate object invariants, subverting encapsulation. In this
example, stash can contain an object whose content field is uninitialized and thus has the
value of zero.

object invariants that could be crucial to security, breaking encapsulation. See Fig. 2.5,
which illustrates how malicious code (EvilOuterClass) could construct an OddInt instance
that holds an even integer, subverting the checks in the OddInt constructor. Joe-E pre-
vents these encapsulation-breaking attacks by prohibiting Joe-E code from defining custom
finalizers.

2.4.2 Removing Ambient Authority

The privileges provided by Joe-E’s global scope are strictly limited. We prevent Joe-E
code from reading or modifying any mutable state or external resource without an explicit
capability to do so.

This is perhaps our most significant and visible departure from Java’s architecture. In
Java, even code that starts out without any references has essentially all the privileges of
the program; its lack of references does little to contain it. The authority that it needs to
perform these tasks is available as an “ambient” property of the process: it is available to all
code, in every scope. In Joe-E, no authority is ambiently available, so the resources needed
by Joe-E code must be explicitly provided, typically as constructor arguments. This design
refactoring is the same as that done for “dependency injection”, where code that depends on
a resource is provided with a reference to the resource, instead of constructing or accessing
the resource directly. In dependency injection, this refactoring is done to better support



Section 2.4. Design of Joe-E 24

the configuration and testing of software. In Joe-E, this refactoring additionally supports
security review of software.

Taming the Java class library

The Java library defines many static methods that have side effects on the outside world,
as well as many constructors that create objects permitting similar effects. This is a major
source of ambient authority in Java. For example, File has a constructor that will take a
string and return an object representing the file with that name. The resulting object can
be used to read, write, or delete the named file. Absent explicit access control by the Java
security manager or the operating system, this allows any Java code full control over the
filesystem. In Joe-E, we wish to ensure that code can only have access to a file if a capability
for the file (or a superdirectory) is within that code’s dynamic scope. Consequently, we must
not allow the aforementioned File constructor in Joe-E’s global scope.

We define a subset of the Java libraries that includes only those constructors, methods,
and fields that are compatible with the principle that all privileges must be granted via
a capability. We call this activity taming, because it turns an unruly class library into a
capability-secure subset. The Joe-E verifier allows Joe-E programs to mention only classes,
constructors, methods, and fields in this tamed subset. If the source code mentions anything
outside of this subset, the Joe-E verifier flags this as an error.

Taming helps eliminate ambient authority, because it ensures library methods that pro-
vide ambient authority are not accessible to Joe-E programs. We also use taming to expose
only that subset of the Java library that provides capability discipline. Intuitively, we’d ex-
pect that a reference to a File object would provide access to the file that the object repre-
sents (or, in case it represents a directory, access to the directory and all files/subdirectories
within that subtree of the filesystem hierarchy), and nothing more. Unfortunately, the
getParentFile() method on File violates this expectation: it can be used to walk up the
directory hierarchy to obtain a capability for the root directory, so access to any one File

would grant access to the entire filesystem. This prevents fine-grained control over delegation
of file capabilities, so we exclude methods, such as getParentFile(), that violate capability
discipline.

In some cases, due to the design of the Java libraries, there are methods with important
functionality that are not safe to expose. For instance, consider the File(File dir, String

child) constructor. This constructor gives a way to access a file with a specified name within
a specified directory. This pattern of obtaining a specified subfile is a capability-compatible
method for attenuating existing authority, but Java happens to specify this constructor to
have additional behavior that is not compatible with our security model: if the dir argument
is null, the constructor treats the child argument as an absolute rather than relative path.
This means that new File(null, path) can be used to access any file on the filesystem,
so this constructor must not be exposed to Joe-E code. Joe-E programmers still need some
way to traverse the directory hierarchy, and unfortunately there is no other constructor in
the Java library that provides this important functionality. While we can’t allow Joe-E code



Section 2.4. Design of Joe-E 25

to call the unsafe constructor directly, we provide a wrapper method in the Joe-E library
with the desired functionality. The wrapper checks at runtime that the dir argument is non-
null before invoking the original constructor2. In general, our strategy is to tame away all
unsafe methods from the Java libraries, then add wrappers to the Joe-E library if important
functionality has been lost.

Taming a library is unfortunately a time-consuming and difficult task, and a place
where a mistake could violate soundness of our security goals. The security review of the
DarpaBrowser, which included a review of the taming database provided by the E language,
found that a number of methods violating capability discipline had been inadvertently al-
lowed [73]. While we have attempted to be more conservative when taming Joe-E code,
checking each method for safety before enabling it and erring on the side of caution when
unsure, it is possible that we also enabled some method that we should not have. We consider
the difficult and critical nature of this process to be a substantial weakness in our approach,
and an area in which there is substantial room for improvement in future work. In particular,
tools to validate or safely automate taming decisions would be very helpful. (We anticipate
that a relatively small fraction of classes in a typical Java classpath implementation are valid
Joe-E in their current form, but those that are would be safe to permit.)

Mutable state

In addition to being able to observe or affect external state outside the JVM, ambient
authority to modify program state can also be problematic. Untrusted extensions could
corrupt critical internal data structures if the global scope provides the ability to do so.
For the purposes of security audits, such exposure means that every line of code in the
program must be examined to ensure that security properties on globally accessible state are
maintained.

In Java, this risk arises with fields declared static, since these fields are not associated
with an object instance and thus access is not governed by a capability. For this reason,
Joe-E requires all static state to be transitively immutable. In particular, all static fields
declared in Joe-E code must be of a type that is statically known not to provide access to any
mutable objects: the object itself and all objects it transitively points to must be immutable.

To facilitate this goal, we provide a marker interface, org.joe e.Immutable, to identify
classes claimed to be transitively immutable. The Joe-E verifier checks that any class that
is a subtype of Immutable satisfies the following rule: all instance fields must be final and
their declared type must be either a primitive type or a reference type that also implements
Immutable. All other classes are assumed to be potentially mutable.

We make no attempt to infer immutability types. Joe-E’s philosophy is to require
programmers to explicitly declare the properties of their code. The Joe-E verifier is respon-
sible solely for verifying these properties, and performs no inference. This design decision

2Portions of the Joe-E library are written in unrestricted Java rather than Joe-E and thus can call
arbitrary Java methods. This gives us the ability to write such wrappers.



Section 2.4. Design of Joe-E 26

is intended to make the behavior of the Joe-E verifier more intuitive and predictable for
programmers.

Some classes from the Java library, like String, are immutable but we cannot rewrite
them to implement the Immutable interface, because we do not modify the Java libraries.
The verifier treats these classes as if they implement the interface.

2.4.3 Exceptions and Errors

Exceptions introduce a number of complications for an object-capability language. They
provide a potentially unexpected means of transferring control and references between ob-
jects. In particular, objects reachable from the exception itself are implicitly passed up the
stack from where the exception is thrown to where the exception is caught. If the exception
contains a capability, this can lead to propagation of privileges that a developer might not
expect, which might introduce unexpected security vulnerabilities.

To see how this can cause unpleasant surprises, suppose Alice calls Bob. Bob has some
special capability that she lacks, and Bob wants to avoid leaking this to her. At some
point, Bob might need to invoke Chuck to perform some operation, passing this capability
to Chuck. If (unbeknownst to Bob) Chuck can throw an exception that Bob doesn’t catch,
this exception might propagate to Alice. If this exception contains Bob’s precious capability,
this might cause the capability to leak to Alice, against Bob’s wishes and despite Chuck’s
good intentions. See Fig. 2.6 for an example.

The problem is that it is hard to tell, just by looking at the code of Bob, that Bob’s
private capability can leak to the caller of m(). This is a barrier to local reasoning about the
flow of capabilities. To avoid these kinds of problems, Joe-E requires all exception types to
be immutable.3 This prevents storing capabilities in exceptions, precluding attacks like the
one described above.

An important guarantee provided by Joe-E is that no code is able to execute once an
error is thrown. This is necessary for two reasons. First, the behavior of the JVM after a
VirtualMachineError is technically undefined [36, §6.3]. Second, continuing to execute after
an error has been thrown can have hard-to-predict consequences. For example, an object’s
invariants can be violated if an error (such as running out of memory) is encountered during
execution right when the object is in a temporarily inconsistent state. In many cases, these
errors can be intentionally triggered by the invoking software component, for example by
allocating a lot of memory or recursing deeply to use up stack space before invoking the
object under attack. If a malicious caller could catch such an error, the caller would be well-
positioned to exploit the violated invariant. Preventing Joe-E code from executing after any
error is thrown prevents such attacks. Without such a guarantee, it would be unreasonably
difficult to build secure abstractions and maintain object invariants in the face of attack.

We prohibit Joe-E code from including any catch block that could catch an error: for

3The Throwable class provides a little-used facility to rewrite the stack trace in an exception, preventing
exceptions from being truly immutable. This facility is disabled in Joe-E via the taming mechanism.



Section 2.4. Design of Joe-E 27

class E extends RuntimeException {

public Object o;

public E(Object o) { this.o = o; }

}

class Bob {

// cap was intended to be closely held

private Capability cap;

void m() {

new Chuck().f(cap);

}

}

class Chuck {

void f(Capability cap) {

... do some work ...

throw new E(cap);

}

}

class Alice {

void attack() {

Bob bob = ...;

try {

bob.m();

} catch (E e) {

Capability stolen = (Capability) e.o;

doSomethingEvil(stolen);

}

}

}

Figure 2.6: There is a security risk, if exceptions can contain capabilities.



Section 2.5. Programming Patterns 28

InputStream in = ...

try {

// use the stream

} finally {

in.close();

}

InputStream in = ...

Exception e = null;

try {

// use the stream

} catch (Exception e2) {

e = e2;

}

in.close();

if (e != null) { throw e; }

InputStream in = ...

try {

// use the stream

} catch (Exception e) {

try { in.close(); }

catch (Exception e2) {}

throw e;

}

in.close();

Figure 2.7: Transformation to avoid the use of the finally keyword. On the left is Java
code that uses finally. The middle shows a transformed version with the same semantics
that can be used in Joe-E. The right shows an alternative, with different semantics, that we
have found useful in our experience.

the syntactic construct catch (T e) { ... }, we check that the type T is not Throwable,
Error, or any subtype of Error.

In addition, we prohibit finally clauses, as code in a finally clause can execute after
an error is thrown. The finally clause could exploit the inconsistent state directly, or it
could throw its own exception that masks the pending error, effectively catching and sup-
pressing the error. Technically, the lack of finally clauses does not limit expressivity, as one
can explicitly catch Exception to ensure that an action takes place whenever any non-error
throwable disrupts normal control flow. See the middle of Fig. 2.7 for an example4. In our
experience writing Joe-E code for the Waterken server, the prohibition on finally clauses
was not a serious problem, and in retrospect the replacement code used in Waterken (shown
on the right side of Fig. 2.7) is arguably better anyway, as it avoids masking the original
exception in case the finally clause throws its own exception. The Joe-E specification [39,
§4.8] contains further discussion and analysis of these workarounds.

2.5 Programming Patterns

To facilitate our goal of “design for review”, Joe-E was designed specifically to enable
several powerful patterns of reasoning about security.

2.5.1 Reachability and Object Graph analysis

The basic rule for reasoning in capability systems is that a capability can only be
accessed from dynamic scopes to which it was passed. In order to bound the possible risk
posed by bugs or malicious behavior in any given part of the program, we can consider the
graph of objects reachable from the scope at that program point. This can be determined

4Elaborations on this idiom can handle more complex use cases, e.g., where the original code also contains
one or more catch blocks, and when the original exception signature must be maintained. This idiom does
not require duplicating code.



Section 2.5. Programming Patterns 29

by constructing a graph with a node for each object in the program, and an edge for each
field pointer. The authority of a point of execution is bounded by the subset of the graph
reachable from the variables in scope at the time.

The graph generated by this technique is very conservative, as it ignores the behavior
of classes on the path from the variables in scope to the capabilities reachable from them.
A substantial advantage of object-capability languages over basic capability systems is the
ability to attenuate authorities via encapsulated reference monitors, which allow only partial
access to the ultimate capability. In practice, programmers can incrementally refine the crude
bounds obtained through naive reachability analysis by taking into account the behavior of
classes along this path. We have found that, in well-designed systems, this style of reasoning
is effective at enabling code reviewers to focus their attention on a small fraction of the
code at a time. We made use of it during a security review of Waterken when checking the
capabilities the infrastructure makes available to application code.

2.5.2 Leveraging Static Typing

Type safety, as provided by Java and other statically type-safe languages, can also be of
use in reasoning about programs and the distribution of authorities to parts of a program.

Because the capabilities granted to a method are specified by its arguments (including
any associated instance or enclosing object), the signature of a method serves as a security
policy. Since the method can be invoked only with capabilities that satisfy its method signa-
ture, it can subsequently obtain access only to capabilities reachable from these arguments,
or new objects it can create through public constructors and static methods. Hence, the
set of methods exposed by an interface or class can serve as a complete security policy for
the objects that implement it, provided that other components of the system are verified
to interact with the object solely through this interface. The image decoding example in
Fig. 2.2 is an example of this type of reasoning.

When analyzing code of a class to verify it meets its security goals, it is necessary not
only to examine the textual code of the class itself, but also to understand the behavior
of any external methods that it invokes. This often requires identifying what classes those
method invocations might resolve to. Static method calls are easy: static methods cannot
be overridden, so it each static method maps directly to a specific implementation. The
static method’s documentation can be consulted and its source code can be examined. In
comparison, instance methods are more difficult, as they can be overridden. There are
two basic approaches to justify trust placed in instance methods: based on the object’s
provenance, or based on its type.

1. Provenance. In the first approach, we justify relying upon the behavior of methods of
an external object based on the external object’s provenance or origin. For example,
an object that the code constructs itself is known to have behavior consistent with its
known concrete type. Provenance-based reasoning can also arise from transitive trust
relationships. For example, consider an object O that calls a method on object P that



Section 2.5. Programming Patterns 30

it trusts to return an object Q with specified behavior. The provenance of Q then
makes it safe for O to invoke its methods regardless of its type.

2. Type. If we know the declared type of the external object, then in some cases this
typing information makes it possible to rely upon the behavior of that object.

The simplest example of using trusted types to ensure desired behavior is calling an
instance method on an object belonging to a final class. Like static methods, it is in
this case possible to map the method called to a single implementation that can be
reviewed. Regardless of the origin of the object, the code being executed is known to
come from the declared class. For example, because the String class is final, code that
uses strings can rely on String objects to fulfill their specified contracts; it does not
need to defend against some maliciously-defined object that impersonates a String

but misbehaves in a devious way to violate security or privacy.

Instance methods from non-final classes are trickier. In general, it is not possible to
guarantee behavioral properties of methods belonging to such a class C, as one could
be dealing with an arbitrary subclass which may fail to meet the documented semantics
of the original declarer of the method. In order to avoid this risk, it is necessary to
prevent arbitrary subclassing of C. One way to achieve this in Java is to define C

and its subtypes to have only package-scope constructors, but no public constructors.
To allow instantiation by code outside the package, these classes can provide public
factory methods. This ensures that C can only be subclassed by the bounded set of
classes in its own package, permitting reasoning about the behavior of objects with
declared type C, even if their origin is not trusted.

If the programmer adopts a particular style of programming, called capability discipline,
Joe-E supports reasoning about the privileges granted by an object based upon that object’s
declared type. Capability discipline proposes that the documentation for each type should
specify the authority that may be granted by instances of that type. For instance, Joe-E’s
File object conveys authority to a single file on the filesystem (or, in the case of directories,
a subtree of the directory hierarchy); passing a File to another party will enable them to
access the specified file, but not (say) send network packets or erase the entire hard drive.
When a type T is non-final, the documentation for the type T should specify an upper
bound on the authority granted by instances of T or any of its subtypes. If code reviewers
check that subclasses of T never yield more authority than this, then we can use the type
system to upper-bound the authority passed across an interface: if a method m() accepts
a parameter of declared type T , we can conclude that this parameter will not yield more
authority than that specified in T ’s documentation. Similarly, if a method has return type
T , we can conclude that this method’s return value will not yield more authority than that
specified in T ’s documentation. We follow this pattern in the Waterken server and have
found that it is helpful for reasoning about the authority that a type can convey.



Section 2.5. Programming Patterns 31

2.5.3 Defensive Consistency

Reasoning about the security of a program is difficult if understanding its security prop-
erties requires comprehending the entire program all at once. The task is greatly simplified
if it is possible to analyze the program in a modular fashion, one piece at a time. The easiest
way to do this is to decompose the program into a number of trust domains, and for each
domain determine what invariants it aims to maintain, and which invariants it relies on from
other classes. In Joe-E, a trust domain would normally correspond to a single object, or
perhaps a small collection of objects. Normally, domains interact following a client-server
metaphor: domain D might provide service to clients C1, . . . , Cn. The standard approach to
modular analysis in the program verification literature suggests we verify that (1) D provides
correct service to its clients, assuming that all its clients meet D’s documented preconditions;
(2) each client Ci establishes D’s documented preconditions. This allows us to analyze the
code of D on its own, then separately analyze the code of each client Ci on its own, without
having to mentally consider all possible interactions between them. However, this approach
requires us to verify that every client Ci meets D’s preconditions, which may not be possible
in an open world or where some clients may be malicious.

Defensive consistency is a relaxation of this concept [43, §5.6]. To show that D is
defensively consistent, we must show that D provides correct service to every client that
meets D’s documented preconditions. Note that if one of D’s clients, say C1, fails to meet
D’s preconditions, then D is under no obligation to provide correct or useful service to
C1, but D must still provide correct and consistent service to its other clients C2, . . . , Cn

(assuming they do meet D’s preconditions). Thus, D must maintain its own invariants,
even if one of its clients behaves maliciously. A defensively consistent domain can be safely
used in contexts where some of its clients may be malicious: its non-malicious clients will be
protected from the misbehavior of malicious clients.

Defensive consistency confines the malign influence that a single malicious or com-
promised component can have. Without defensive consistency, verifying security becomes
harder: if domain C acts as a client of a non-defensively consistent abstraction A, then ver-
ifying the correctness of C requires us to verify that no other client of A is malicious, which
may be difficult and may require reviewing a great deal of additional code. Thus, defensively
consistent components support least privilege and reasoning about security.

2.5.4 Immutability

Joe-E’s support for immutable types (§ 2.4.2) facilitates defensively consistent program-
ming. When immutable objects are passed between trust domains, immutability provides
guarantees both to the sender and recipient domains. The sender is assured that the re-
cipient cannot modify the passed object, and thus the sender can continue to use the same
object internally without having to make a defensive copy to guard against corruption of its
internal state. Also, passing an immutable object conveys no capabilities aside from the data
contained in the passed object, which helps the sender avoid inadvertent capability leakage.



Section 2.5. Programming Patterns 32

class C {

private Object signers[];

public Object[] getSigners() {

return signers;

}

}

class C {

private ImmutableArray<Object> signers;

public ImmutableArray<Object> getSigners() {

return signers;

}

}

Figure 2.8: At left, an example of a classic Java vulnerability: a malicious caller to
getSigners() could mutate the internal state of the class, due to the failure to make a
defensive copy of its signers array. At right, a natural way to write this code in Joe-E is
secure without defensive copies, thanks to the use of immutable types.

The recipient is also protected from unexpected mutation: it can store the immutable object
as part of its internal state without fear of interference from modifications performed by any
other code that has access to the same object. Thus, Joe-E’s immutable types eliminate the
need for defensive copying at the sender or the receiver. For instance, Fig. 2.8 shows a classic
Java vulnerability and how Joe-E’s immutable types eliminate the vulnerability pattern.

2.5.5 Attenuation of Authority

In order to achieve least privilege, it is helpful to be able to easily attenuate the authority
provided by a capability. This refers to being able to take a capability to a resource and derive
from it a less-powerful capability to the resource that has only a subset of the privileges of the
initial capability. One example of this would be a new object that wraps the old object and
acts as a reference monitor on operations performed on the encapsulated object. While this
is supported in a general-purpose and flexible way by defining classes that act as reference
monitors, we suggest that class libraries and type hierarchies be designed to facilitate easier
use of common attenuation patterns.

For example, in Joe-E a file object represents the ability to access a particular file, or
if it is a directory, any of its subdirectories and their files. Joe-E directory objects provide
a method to obtain a capability to any of the files or directories contained within them.
This allows one to create an attenuated capability that allows access to a smaller part of the
filesystem; a program can be given a capability to a large directory, but have the ability to
delegate only a portion of this authority to other, less trusted parts of the program. This
makes it easy to follow the principle of least privilege. An important requirement to correctly
implementing attenuable authority in tree structures like the file system is to avoid methods
that retrieve the parent of a node, as such methods would make any node actually give the
authority to access the entire tree.

2.5.6 Facets

A client can always create an attenuated version of a capability by defining a wrapper
object; however, this places an implementation burden on the author of the client code



Section 2.6. Implementation 33

that discourages the practice of the principle of least privilege. Where the author of an
interface can anticipate a useful attenuation of authority, providing it as part of the interface
encourages better capability hygiene by all clients.

For instance, Fig. 2.9 shows a typical Java queue interface, followed by a Joe-E queue
interface that predefines the attenuated authority to add elements to the queue. The im-
plementation technique for this attenuated authority is called a “facet”. A facet defines an
additional interface for manipulating state that can also be manipulated via another inter-
face. Whereas a typical object has a single public interface that governs access to its state,
an object with facets has many such interfaces. Each of these facets is designed to provide a
least privilege interface for a particular kind of client. In this case, the enqueue facet provides
permission to add elements to the queue, without the permission to remove elements or to
access elements added by other clients of the queue.

Using the facet technique, the author of an object can implement an attenuated capa-
bility more economically than a client could, since the state protected by the facet is already
within the lexical scope where the facet is defined. This economy of expression makes the
facet technique useful even in cases where the attenuation is only of use to one client.

2.6 Implementation

We implemented a source-code verifier for Joe-E as a plugin for Eclipse 3.x. The plug-
in supports the development of Joe-E code alongside the use of unrestricted Java. A Java
package annotation @IsJoeE is used to indicate that a package is written in Joe-E. The plug-
in checks every class belonging to such packages and flags any violations of Joe-E restrictions
in a manner similar to compilation errors. This package annotation, which is retained at
runtime, allows our system to recognize Joe-E code during verification and at runtime via
the reflection API.

We perform checks on the Java source code rather than on Java class files since the
Java runtime subjects bytecode to only a limited set of validation checks, allowing bytecode
to do a number of things that Java programs cannot. The expanded semantics afforded to
bytecode but not specified by the Java language are unfamiliar and not clearly defined, and
thus much harder for a programmer or auditor to reason about.

Working with source code has disadvantages. Since Java source code is higher level
than Java bytecode, the verifier must correctly handle a larger number of features, raising
the likelihood that an implementation bug in the Joe-E verifier could allow an attacker to
sneak something by the verifier. For example, the Joe-E verifier must reason about code
implicitly generated by the Java compiler, such as default constructors, string conversions,
and enhanced for loops. Our verifier infers the presence of these implicit calls, and checks
that only permitted methods and constructors are called. Another complication is that
generic type parameters are not type-safe. This complicates inference of which toString()

method will be invoked by implicit string conversions. While the Joe-E language permits full
use of Java generics, our verifier implements a more conservative type check than the Java



Section 2.6. Implementation 34

class Queue {

public Object dequeue() {

...

}

public void enqueue(Object o) {

...

}

}

class Queue {

public Object dequeue() {

...

}

public void enqueue(Object o) {

...

}

public Receiver enqueuer() {

return new Receiver() {

public void receive(Object x) {

enqueue(x);

}

};

}

}

Figure 2.9: Above, an example of a typical Java queue interface. Below, a Joe-E queue
interface that defines an attenuated facet that only supports adding elements to the queue.
Easy access to this facet encourages clients to practice the principle of least privilege by
delegating only the permission to enqueue, not the permission to dequeue, to those objects
that do not need full access to the queue.



Section 2.6. Implementation 35

Figure 2.10: The Joe-E Verifier for Eclipse



Section 2.7. Conclusions 36

compiler to ensure that tamed-away toString() methods will not be invoked [39, § 4.10].
We have tamed a subset of the Java libraries that is small, but sufficient for writing

useful programs. It would be useful to increase the set of tamed classes, as much of Java’s
utility derives from its rich class library. While it is possible for Joe-E application developers
to add additional classes and enabled methods to the taming database, determining whether
classes are capability-safe is unfortunately a high-risk process that requires careful attention
and awareness of possible pitfalls. There is an opportunity for future work in tools that
simplify and improve the safety of this process.

As mentioned above (§ 2.4.2), some important functionality cannot be made safe by tam-
ing alone. Joe-E provides safe wrappers for the filesystem, for Java reflection and proxying
APIs, and for locale-independent character encoding and decoding routines.

The Java language only includes mutable arrays. Joe-E also provides read-only array
types for use as collections of data: ConstArray<T> is a read-only array of possibly-mutable
objects, and ImmutableArray<T> is a read-only array of immutable objects. We need mul-
tiple classes because generic type parameters are not type-safe in Java: for instance, an
object of type ConstArray<String> isn’t guaranteed to actually contain strings, and thus
might not really be immutable. A runtime check at creation ensures that all elements in an
ImmutableArray are in fact immutable. One alternative we considered was to use a type
annotation to distinguish between mutable and immutable arrays in Joe-E source code, and
enforce the annotation in the Joe-E verifier. While this approach might work for simple
cases, the lack of runtime information would greatly complicate serialization and probably
make reflection infeasible for immutable arrays.

The Joe-E verifier and libraries are released as an open-source project, available at
http://www.joe-e.org. To increase our assurance in the implementation’s correctness, we
have implemented a suite of over 300 unit tests, including several for each of the Joe-E
language restrictions, covering as many corner cases as we could devise.

2.7 Conclusions

Object capabilities are a promising approach to building software systems that pro-
vide reliable security properties and are easier to audit and safely extend. In this work, we
have shown that the advantages of object-capability systems can be achieved with moderate
changes to a popular type-safe object-oriented language. Defining a subset allows one to rea-
son about sophisticated security properties of a program in a familiar language, obtaining the
benefit of stronger guarantees about what a program is able to do while leveraging existing
tools and programmer expertise. We anticipate that these techniques will be useful for de-
veloping security-critical and other software, as the industry moves beyond ad-hoc responses
to specific attacks toward the construction of verifiably robust, trustworthy software.

http://www.joe-e.org


37

Chapter 3

Verifiable Functional Purity in Joe-E

This chapter is based on a paper [21] coauthored with Matthew Finifter, Naveen Sastry,
and David Wagner, presented at 15th ACM Conference on Computer and Communications
Security in October 2008.

3.1 Introduction

Critical real-world programs often have high-level security and privacy requirements
expressed in terms of reproducibility, invertibility, non-interference, or containment of un-
trusted code. We would like to verify these properties given the programs’ source code, but
this task is difficult in the languages commonly used to write real-world programs. These
imperative languages permit side effects and data dependencies that are difficult to reason
about. Purely functional languages, in which methods obey the semantics of mathematical
functions, make reasoning about effects and information flow easier, but have not gained
the popularity and code base of more traditional imperative languages. We present a tech-
nique for implementing verifiably functionally pure methods in imperative languages. To be
functionally pure, a method must satisfy two critical properties1:

First, it must have no side effects. For a computational method to be free of side effects,
its execution must not have any visible effect other than to generate a result. A method
that modifies its arguments or global variables, or that causes an external effect like writing
to disk or printing to the console, is not side-effect free.

The second property is functional determinism: the method’s behavior must depend
only on the arguments provided to the method. The method must return the same answer
every time it is invoked on equivalent arguments, even across different executions of the
program. A simple example would be a method to upper-case a string: every time it is given
a string containing the word “foo”, it will return a string containing “FOO”. Many methods
do not satisfy this criterion, including ones whose behavior depends on the time of day, the
amount of free memory, or whether a specific flag was present on the command line.

1More formal definitions of these two properties are provided in Section 3.3.



Section 3.1. Introduction 38

Electronic voting machines are one important application with a number of security
requirements amenable to enforcement using functional purity. These machines are single-
purpose computers running custom software designed to allow the voter to select his or her
preferred candidates and to record the selections. Given the importance of these machines
to our democracy and concerns over their trustworthiness, it would be useful if we could
prove aspects of their operation correct.

For example, we argue that voting machines should be designed to ensure that each
voter’s voting experience will be a deterministic function of the ballot definition and that
voter’s actions. For a particular set of voter actions, the system should always present the
same screens and record the same selections, independent of previous voters’ interactions
with the voting machine. Leaking any information about previous sessions could violate
earlier voters’ privacy and could create a conduit for a malicious voter to interfere with
subsequent voters. Also, voting sessions should have no side effects; their only legitimate
effect should be to return the voted ballot. Functional purity can help verify these security
properties.

As another example, voting machines must serialize and possibly encrypt the voter’s
selections when writing them to stable storage. This data will be read and tallied at a future
date, likely on a different machine. In order for the voter’s choices to be counted as they were
cast, we must be certain that the reconstituted votes will match the originals. We propose
a fail-stop check on the encoding process: the machine writing the data should decode the
serialized output and verify that it matches the original vote selection data structure. If the
decode method is deterministic, this check ensures that this data structure will be correctly
reconstructed later when the votes are counted. If the serialization and deserialization rou-
tines are also side-effect free, they can be removed from the trusted computing base, as the
check verifies their correctness as needed.

In general, verifying that a computation will be deterministic and free of side effects
is a difficult task that typically requires careful examination of a program’s entire source
code. Verifying side-effect freeness requires verifying that the computation does not modify
the state of any parameters or global state and does not affect the outside world in any
observable way (e.g., writing to an I/O device). Verifying determinism requires ensuring that
the method does not read any information that may differ between different calls. Checking
the latter property first requires ensuring that anything that is read by the method isn’t
changed elsewhere in the program. Also, we must ensure that any value read by the method
doesn’t depend on environmental factors that could differ between executions of the program.

We can see that the concepts of determinism and side-effect freeness are related, in that
they both restrict access to state created outside the method. We use a unified approach to
achieving both goals, based on object capabilities [43]. Specifically, we introduce and define
the concept of deterministic object-capability languages, in which the ability to cause side
effects and to observe data that varies between executions is conveyed by explicit object
references that are propagated only by explicit program statements.

A key advantage of our approach is that it supports modular reasoning about purity,
side effects, and determinism. In particular, a programmer can tell whether a particular



Section 3.2. Applications 39

method is pure simply by looking at its type signature. In our system, if all parameter
types are immutable, then the method can be guaranteed to be pure. This allows purity
specifications to be part of the contract of a method and simplifies the task of reasoning about
program behavior. The body of a pure method has no additional constraints, permitting wide
flexibility in how it is implemented. In particular, pure methods can call impure methods,
and vice versa. In short, pure and impure code can easily be mixed; the majority of a
program can be imperative, with purity still being enforced where needed.

We briefly describe how the Joe-E subset of Java satisfies the requirements of a deter-
ministic object-capability language, and how it can be used to write methods that can be
easily recognized as verifiably pure. In order to evaluate our approach to verifiable purity,
we ported three legacy libraries (an AES implementation, serialization logic from an exper-
imental voting machine implementation, and an HTML parser) to the Joe-E subset, and
refactored them so that their top-level methods could be verified as pure.

As Joe-E was not explicitly designed to ease migration of legacy code, we found that the
task of modifying existing code to satisfy the Joe-E restrictions was at times difficult. Certain
recurring patterns account for much of this difficulty; code that avoids these patterns is much
easier to port. Refactoring methods so they could be verified pure was generally harder than
just porting to the Joe-E subset, and sometimes required changes to data structures and
interfaces. We therefore recommend our approach primarily for use with new code that is
designed with this approach to purity in mind.

We view the contributions of this work as follows:

• We enumerate several applications where the ability to verify that particular blocks of
code are pure makes it easy to verify interesting high-level application-specific proper-
ties.
• We describe a class of imperative programming languages in which it is easy to verify
purity.
• We introduce Joe-E’s enforcement of determinism and we show how this enables veri-
fiable purity in Java.
• We share our experience refactoring legacy codebases so that they can be verified as
pure, thus attaining useful security guarantees.
• Based on this practical experience, we identify programming patterns that are well-
suited to writing verifiably pure systems as well as anti-patterns that make this task
difficult.

3.2 Applications

We argue that functional purity has many applications in security and reliability. Purity
is a helpful tool for building more modular programs that are easier to reason about, and
this makes it easier to verify many kinds of security properties. Languages and programming
idioms that make this property easy to achieve and verify may be of benefit to programmers,
especially those aiming to write maintainable, auditable, and understandable code.



Section 3.2. Applications 40

3.2.1 Reproducibility

Consider the following scenario, inspired by [2]: Mallory generates a PDF file containing
a contract for Alice to electronically sign. Mallory constructs this PDF file so that its
displayed content depends on the system date. When viewed in January, the contract says
that Mallory will pay Alice $100; in any other month, the contract says that Alice will pay
Mallory $1,000. Suppose Alice reads and electronically signs the contract on January 1, and
returns the signed contract to Mallory. On February 1, Mallory presents the signed contract
to a judge, and the judge orders Alice to pay Mallory $1,000.

The problem is that the computation that renders the text is not deterministic. The
behavior of the PDF viewer depends on other factors aside from its input, the bits of the
document file. This attack could not succeed if the PDF viewer’s computation was a pure
function of the input file. If we could verify the purity of the viewer, we would be assured
that Mallory’s attack will fail.

This is an example of a TOCTTOU vulnerability. Whenever we compute a result that
is checked, and then recompute it later when it is used, we must be careful to ensure that
the computation is reproducible. Pure functions are useful for this, because determinism
ensures reproducibility and makes explicit the inputs a computation may depend upon.

Another application is in transactional systems. Suppose we take periodic checkpoints
of an application and log all its inputs. If the application is deterministic, then we can
recover from crashes: reincarnating the application and replaying from an old snapshot
and input trace will always reproduce the same behavior that the previous incarnation of
the application followed. This eliminates the need to checkpoint every intermediate state. It
also allows a replicated system to transparently fail over to a backup system that is receiving
the same stream of input events.

3.2.2 Invertibility

The serialization example given in the introduction is representative of a class of ap-
plications that have a matched pair of algorithms (Encode, Decode) for which it is intended
that Decode is an inverse of Encode. Specifically, the inverse property should hold: for all
x, Decode(Encode(x)) should yield some output x′ that is functionally equivalent to x. To
ensure the original x will be recoverable in the future, this has to hold even if the invocation
of Decode takes place at some later time on a different machine.

Purity helps support fail-stop enforcement of this property, in which errors are detected
at runtime but before any harmful consequences have taken place. One can test Encode(x)
at runtime to ensure that it will be decoded correctly by Decode:

y := Encode(x)

abort if x != Decode(y)

If Decode is purely functional, its determinism ensures that the check can be performed at
any time and will accurately reflect whether the message can be correctly decoded in the



Section 3.2. Applications 41

future. Also, if Decode is side-effect free, adding this check to existing code won’t break the
program.

This approach applies to, e.g., serialization and deserialization, encryption and decryp-
tion, and compression and decompression. In many such applications, it is better to fail and
warn the user than it is to proceed and lose data. If this pattern is used to ensure that all
data that is encoded can be recovered, neither the encoder nor decoder need to be trusted
correct in order to establish the property that data is never lost or corrupted.

Formally verifying the correctness of serialization and deserialization with static analysis
is a difficult task. Serialization and deserialization typically involve walking a (potentially
cyclic) object graph, and thus inevitably implicate complex aliasing issues, which is known
to make static analysis difficult. Therefore, purity seems better-suited to this task than
classical approaches.

Deterministic functions can also be used for enforcement of more complex functional
relations than invertibility. The exokernel Xok’s stable storage system uses what the authors
call a UDF (untrusted deterministic function) for each type of metadata disk block (e.g.,
inodes) to translate the set of blocks referenced by the metadata into a form recognized by
the kernel [30]. The determinism of this function allows Xok to verify that metadata can
only claim ownership of the correct set of disk blocks. This is done by verifying, when the
metadata is updated, that the set of blocks claimed by the new metadata is the same as the
set claimed by the old metadata with the intended change applied. This mechanism is only
sound if the metadata decoding function is known to be deterministic.

3.2.3 Untrusted code execution

Purity gives us a way to execute untrusted code safely: we first verify that the untrusted
code is pure, and then many useful privacy and security properties will follow. In particu-
lar, the lack of side effects means that the pure, untrusted computation cannot violate the
integrity of the rest of the program it interacts with2, so pure code inherently executes in a
sandbox.

Purity can also be used to structure programs in a way that reduces our reliance upon
the correctness of some subset of the code. If we use a pure method to process (possibly
malicious) data from an untrusted source, and if the output from the pure method is no
more trusted than its input, the method doesn’t need to be trusted to defend itself from
malicious data successfully. Even if a malicious input is able to somehow subvert the proper
operation of that method, at worst it can only influence the result of the pure computation;
it cannot harm the proper operation of the rest of the program.

Bernstein’s discussion of address-extraction code in sendmail [6] illustrates these ideas
well. The address-extraction code is responsible for parsing an email message and extracting
an email address from a particular header. At one point, this code contained a remotely

2Untrusted code can still deplete resources or fail to terminate. Limits on resource usage or looping would
be needed if denial of service is a concern [57], but that is beyond the scope of this work.



Section 3.2. Applications 42

exploitable vulnerability that allowed an attacker to gain root by taking control of sendmail.
Bernstein proposed an alternate architecture:

Suppose that the same address-extraction code is run under an interpreter enforcing
two simple data-flow rules:

• the only way that the code can see the rest of the system is by reading this mail
message;

• the only way that the code can affect the rest of the system is by printing one
string determined by that mail message.

The code is then incapable of violating the user’s security requirements. An attacker

who supplies a message that seizes complete control of the code can control the address

printed by the code—but the attacker could have done this anyway without exploiting

any bugs in the code.

We note that Bernstein’s two conditions are exactly determinism and side-effect-freeness,
so implementing the address-extraction code as a pure method would provide the desired
security benefits.

Determinism allows us to bound what information a pure method can read—in partic-
ular, the method can only observe the value of objects that are reachable from one of its
arguments, but cannot gain any information about any other data in the program. Moreover,
deterministic code cannot listen on covert channels: for instance, any differences in behavior
due to timing information or resource limits would violate the determinism properties. This
ensures that the untrusted method cannot spy on any sensitive program state that was not
explicitly provided to it.

Purity also limits the untrusted code’s ability to leak sensitive information to others
through overt channels. It can communicate to others only through its return value (or
thrown exceptions) and its resource consumption. However, it can transmit over a timing-
or resource-based covert channel to a receiver that is not pure. For instance, we might
download an untrusted tax calculator and verify that it is pure before executing it. Then
even if we type our salary into it, it cannot leak our salary to others directly, though it may
be able to leak our salary through a covert channel.

Purity may also be useful for application extensions and plugins. For example, consider
an image viewer that, out of the box, supports only a handful of image formats. It might
allow installation of a plugin for viewing images in a different format only if that plugin
is written as a verifiably pure function that, given the contents of an image file, returns a
bitmap to be displayed by the image viewer. Once verified as pure, any such plug-in could
be downloaded and executed safely; it cannot gain any information about other private
information stored on the system, nor can it corrupt the state of any other part of the
program.3

3It should be noted that purity does not eliminate all threats that the plugin could pose to the program.
The invoker of a pure plugin method must still ensure that only appropriate data is passed to the plugin
and defend against unexpected return values from the plugin.



Section 3.2. Applications 43

3.2.4 Building robust systems

Pure methods are also helpful for writing trustworthy security-critical code that medi-
ates between untrusted components.

For the purposes of preserving application integrity, pure methods are always safe to
expose to untrusted code. Their functionality could always be duplicated by the untrusted
code itself, so they cannot pose an additional threat. Pure methods may still be part of the
TCB, but only if their behavior is trusted for semantic correctness, not because the method
is granted privileged access to program internal state. This is a consequence of the lack of
side effects. It is possible, however, that specific instances of immutable objects, and thus
their associated pure methods, might convey confidential or malicious information. One
must still be careful about data flow.

A pure method is automatically “defensively consistent” [43, § 5.6], provided that in
the absence of malice it provides correct service to individual clients and provided that each
invocation of the pure method processes information from only a single client. (An object
that serves multiple clients with independent interests is defensively consistent if, even when
one client violates its preconditions, it continues to comply with its specification for other
clients that satisfy its preconditions.) Defensive consistency ensures that one malicious client
cannot attack other clients who may rely upon the same pure method.

Bernstein presents an example in which a pure jpegtopnm converter receives a JPEG
image from the network, decompresses it, and outputs a raw bitmap of the image to a
user [6]. The “client” here is the sender of the image, who as an arbitrary remote party, is
untrustworthy and may wish to corrupt or disrupt processing of images from other sources.
A defensively consistent implementation would thwart such attacks by continuing to provide
correct conversion of all images originating from other senders, even if one sender sends mal-
formed data with the intent to exploit the converter. The purity of the converter ensures
defensive consistency because it allows one to know that each image is converted indepen-
dently from any others, preventing a malformed image from affecting the processing of other
images.

3.2.5 Bug reduction

Pure functions can help us eliminate certain classes of bugs. Of course, anything that
reduces the number of bugs in security-critical code helps security.

A pure computation is automatically thread-safe, requiring no locks, and can always be
run in parallel with other computations without risk of interference. Determinism guarantees
that concurrent operations cannot disrupt its correct execution, and the lack of side effects
means that it cannot disrupt other computations.

Reproducibility is particularly useful when debugging and testing applications. It is
often the case with modern applications that bugs are discovered in the wild rather than
during testing, due to novel configurations that were not considered during testing. In many
cases, it can be difficult to reproduce the bug as there are a number of hidden variables that



Section 3.2. Applications 44

cause the behavior of a program to differ between runs. If a method is pure, any failure of
the method will be reproducible given the same well-defined, bounded set of inputs. This
known set of data can be collected and used to reproduce the bug for the developer, who
can then fix the program.

Deterministic functions can also make testing more effective. If the computation is
deterministic, we only need to cover any particular input once; on the other hand, if the
computation is nondeterministic, it may conceal bugs that trigger nondeterministically, so
it is difficult to know whether we have tested all possible behaviors. For instance, Bernstein
cites dealing with nondeterministically triggered error cases as one challenge in testing qmail,
and proposes that testing would have been easier if the code had been structured as a purely
functional computation plus a simple wrapper that interacts with the environment (so that
the wrapper can be easily mocked in testing) [6]. Verifiable purity would enable developers
to check that this discipline was followed correctly and preserve it under maintenance.

3.2.6 Assertions and Specifications

It is widely accepted that assertions should be side-effect free. If evaluating the assertion
condition causes no side effects, a program that always satisfies the assertion will behave the
same way whether the assertion is enabled or disabled. This restriction could be checked by
a lint-type tool that would warn about potentially impure assertions.

In applications where assertions are used for debugging, it is also helpful to know that
the assertion condition is deterministic. If a deterministic assertion succeeds, we know that
it will not fail on another run of the program due to dependence on seemingly unrelated
state or nondeterministic behavior of the underlying platform. Sometimes, programmers use
assertions specifically to check for and abort in the face of incompatible platform configura-
tions. In deterministic languages like Joe-E, however, platform-specific behavior is mostly
hidden from the program, which would reduce the need for this pattern.

Some specification languages allow methods to have pre- and post-conditions that are
defined using the same language as the code, and these conditions may call other methods.
For instance, in JML, a specification language for Java, specifications are only supposed
to call methods that are “pure.” JML’s notion of purity forbids side effects but does not
require determinism and places no restrictions on what state the method’s behavior may
depend upon [34]. Since JML specifications can be compiled to assertions and checked at
runtime [13], the purity requirement is intended to ensure that these assertions do not change
the program’s semantics.

We argue that pre-conditions, post-conditions, and object invariants should be deter-
ministic as well as side-effect free. When methods are used in specifications, the specification
cannot be considered fully defined unless the method is deterministic. In particular, if the
requirements on the method are predicated on external state whose value changes from in-
vocation to invocation, it will not be possible to statically verify that the method satisfies
its contract. While JML’s restrictions on side effects in specifications may suffice to prevent
runtime enforcement from changing the semantics of the program, static checking is more



Section 3.3. Definitions 45

difficult than it would be if specifications were functionally pure.
We have not implemented a tool for checking the purity of assertions, but verifying

the purity of some assertions would be a straightforward extension of our techniques for
methods. There are some common patterns for assertions and specifications (such as those
that require executing methods on non-immutable objects) for which our approach may not
be applicable.

3.3 Definitions

Our definition of functional purity derives from the concept of a mathematical function,
a well-defined one-to-one mapping from inputs to outputs. We consider a method in a
program to be functionally pure if and only if it is both side-effect free and deterministic.

3.3.1 Side-effect freeness

A method is side-effect free if the only objects that the method ever modifies are created
as part of the execution of the method. This definition permits the method to create and
modify new objects, any subset of which may be reachable from its return value, but does
not permit it to make any change that would be observable from outside the method.

In addition to this linguistic notion of side-effect freeness, we also require that a pure
method not cause any side effects outside the language environment, with the exception of
resource consumption (memory and CPU cycles). For example, it must not write to files,
communicate over the network, or print to the console. This is necessary to soundly constrain
the effects of untrusted code.

3.3.2 Determinism

A mathematical relation is considered a function if each distinct input is associated
with a single specific output. Any two evaluations of a mathematical function with the same
inputs will give the same result. This result depends deterministically on the inputs, and
nothing else. Our determinism requirement for functions in a program is analogous. We
want any two calls with equivalent arguments to a pure function to give the same result.
The result must depend only on the arguments and not on other global or thread-local state
such as the current time or the stack trace.

For numbers and other mathematical constructs, there is a well-accepted canonical defi-
nition of what it means for two sets of function inputs to be the same, namely mathematical
equality for each argument. We need a similarly precise definition for equivalence of argu-
ments in programs. Element-by-element equality works for value types, but pointers and
references raise questions. Should two calls of a method be equivalent if their arguments
have the same numeric values but different aliasing relationships? If they have the same
aliasing but reside at different addresses in memory?



Section 3.4. Approach 46

There is not a single obviously right answer to these questions. Determinism is thus
a parameterized property: given a definition of what it means for arguments to be equiva-
lent, a method is deterministic if all calls with equivalent arguments return results that are
indistinguishable from within the language. The determinism guarantee is only useful for
calls whose arguments are equivalent according to the definition of equivalence. The def-
inition should make semantically equivalent invocations (those that look equivalent to the
programmer or auditor) have equivalent arguments.

If the criteria for equivalence include memory layout information such as the concrete
addresses of pointers, invocations will essentially never be equivalent, and the determinism
guarantee will be meaningless. For types that serve purely as collections of immutable data,
we can avoid addresses completely by comparing purely by value, not by reference. This
prevents pointer aliasing from causing seemingly equivalent invocations to be distinct. For
example, consider a Java method that concatenates two strings. If aliasing information is
included, concat(str, str) will not be equivalent to concat(str, str.clone()) because
in the first case both arguments refer to the same object, and in the second case they refer
to different objects. For other types (e.g., graph nodes) that are generally compared by
reference, aliasing information may be important to include. Our equality definition (§3.4.1)
excludes memory layout details but includes aliasing relationships for types where identity
provides the semantic notion of equality.

3.4 Approach

Our approach to purity is based on leveraging the properties of a deterministic object-
capability language, i.e., an object-capability language that (a) has no nondeterministic lan-
guage primitives and (b) requires a restricted capability for any access to nondeterminism.

An object-capability language [43] is one with the following properties:

• all state that can be communicated between methods is stored in objects
• all objects can only be accessed by references
• references can only propagate by being passed as arguments or being stored in a shared
object
• references are unforgeable (for instance, the language must be memory-safe, and it
must not permit unsafe casts)
• access to references is strictly limited by lexical scoping of variables and transitive
reachability of references

In such a language, references serve as capabilities, and capabilities can be granted only
by explicitly passing references. For these properties to be effective in restricting code’s
effects, the global scope must not contain any capabilities to affect program state or the
outside world. In other words, using methods and objects in the global scope it must not be
possible to have any effect on mutable program state or external effects aside from resource
consumption.



Section 3.4. Approach 47

"#$%!&! '()*!+,,!-)$!../! -)$!+0! )1''!

2)$34-5!

6789:7!

;((<=!

>-5?$! ?%@()A!

;((<"!

6! :!
78B:7!

;((!

C#7()*!

"4D!

B4)()-@4'!E4'1%!F(A%?!

$G-?!

945!

"45!

C#34-5!

C#9#$%!

public class Foo {

public static byte b;

public static IntPair p;

private long myLong;

private byte myByte;

public void foo(Bar bar, Baz baz) {

// ...

}

}

public class Bar {

private IntPair myPair;

// ...

}

public class IntPair {

public int first, second;

}

Figure 3.1: An example of an object graph and corresponding Java class definitions.

In a deterministic object-capability language, the observable global state must never
change and must be the same on every execution. Any data returned from global methods
is considered to be part of the observable global state. This means, for example, that no
globally accessible methods can provide the time of day or state of the filesystem, even
though this data is not explicitly stored anywhere in the global scope. A method’s view of
global state will thus be the same every time it is invoked, so globals can effectively hold only
compile-time constants. Then, since the only variables in a method’s scope are globals and
arguments, any variation in the method’s behavior can always be attributed to differences
in its arguments.

From §3.3.2, we must specify when function arguments are equivalent. We do so in the
following section, in which the concrete arguments to a method invocation are considered a
set of named references. For an instance method, the implicit reference to the target object
is treated as an argument named “this”.

3.4.1 Equivalence of reference lists

At a high level, we consider two sets of named references equivalent if their reachable
object graphs (including values, types, and aliasing relationships) are isomorphic. Figure 3.1
gives an example; the rules for its construction follow.

Many object-oriented languages include both reference types and value types. Objects
of reference type have an identity distinct from their value. The language distinguishes
between references that point to the same object and those pointing to different objects with



Section 3.4. Approach 48

identical contents. Any type with mutable fields is by necessity a reference type, as changes
to one instance will not affect another, but immutable objects can also be reference types
if the language provides a way to test for object identity (such as Java’s == operator). In
contrast, value types can be compared only by value; there is no other notion of identity for
these types. In Java, the primitive types (boolean, char, and the integer and floating point
types) are value types, whereas Object and all its subtypes (including arrays) are reference
types.

For simplicity in the following formal definition, values are represented in the object
graph as references to canonical instances. One such instance exists for each distinct value
of each value type. Similarly, we treat null pointers as references to a single canonical null
object that belongs to every non-primitive type.

Let G be the set of named global (static) variables in the program. Let A be a set of
named object references (such as the arguments to a method). We then define the reachable
object set A∗ corresponding to the set A as the transitive closure of objects reachable by
following references from all fields of the objects pointed to by A ∪ G. (The global state of
the program will be the same across all executions, so the set of objects reachable from G

won’t change. This portion of the graph is only included in order to represent all observable
aliasing relationships.)

The object graph for the reference set A is then constructed as follows: We create special
nodes labeled Global and Local. We construct a canonical node for each primitive value in
the program, in addition to a canonical node for null. For each reference-type object in A∗,
we construct a node labeled with its concrete type. For variables in G or A, we add edges
originating in Global and Local respectively. These edges point to the node representing the
object pointed to by the variable and are labeled with the variable’s name. For each field of
each object in A∗, we draw a directed edge from the node holding the reference to the node
representing the referenced object (or canonical value), labeled with the field name.

Two sets of object references are considered equivalent if they result in identical object
graphs (nodes and edges with the same labels). Note that the object graph reflects all
aliasing relationships between non-value objects reachable from the set A and from global
variables.

3.4.2 Immutability

We also need the language to provide support for types that are verifiably immutable.
An object is immutable if its state, and the state of all objects reachable from it, can
never change during its lifetime. Immutability is transitive: all objects reachable from an
immutable object must themselves be immutable. To statically verify purity, we need the
language to provide some way to verify that a type T is immutable, i.e., that every instance
of T will be immutable.

Objects that represent a capability to affect or observe external state must not be
considered immutable, even if their explicit state in the language is immutable.



Section 3.5. Pure methods 49

3.5 Pure methods

Languages that meet our requirements (§ 3.4) make verification of purity easy. The
condition is simple: If all parameters to a method (including the implicit this parameter)
are statically declared to be of an immutable type, then the method is pure.

A pure method cannot cause any side effects, because it will never be able to obtain a
reference to a shared mutable object. The only mutable objects it can access are those that
it creates itself, but any changes it makes to them are not side effects since they will not be
visible outside the method’s execution. The method is also prevented from causing any effects
external to the language runtime, as all such effects would require an appropriate capability.
Such capabilities are not considered immutable and thus are unavailable to methods with
only immutable arguments.

The only state observable to the method is that in the global scope and reachable from
its arguments. Since the global scope is constant (essentially determined at compile time),
the only varying state it can observe is from its arguments. As immutable arguments cannot
provide a view of external state, the only observable state that immutable arguments can
provide is captured in the definition of reference-list equivalence above (§ 3.4.1). For a
language without any inherently nondeterministic constructs, ensuring that two invocations
of a method start in indistinguishable states is sufficient to ensure that they will terminate
identically.

In our approach, purity is part of the contract of a method: we can verify that a
method is pure simply by examining its type signature. This is powerful, because it means
that we do not need to inspect the implementation of the method or of other code that it
might call. Internally, it may make use of mutating operations and impure methods. Any
operation expressible in the language, no matter how much internal mutation it contains,
can be verifiably pure if a wrapper method is written with a pure interface. We do not
need an automated tool to identify for us which methods are pure; instead, programmers
can recognize pure methods from their type signatures. An annotation may be used on
such methods in order to ensure that they remain pure under maintenance, i.e., that their
argument types remain immutable in later versions of the program.

3.6 Implementation

Joe-E is a subset of Java; the Joe-E verifier, implemented as an Eclipse 3.2 plug-in,
checks Java source code to confirm that it falls within the Joe-E subset. Any Java program
that is accepted by the verifier is also a Joe-E program with the same semantics, but not all
Java programs pass the verifier.



Section 3.6. Implementation 50

Integer.getInteger(SYSTEM_PROPERTY)

System.identityHashCode(new String())

string.intern() == string

Integer.newInteger(integer) == integer

Figure 3.2: Several methods from the Java library are nondeterministic and callable by all
Java code. These are not exposed to Joe-E code.

3.6.1 Side effects and Nondeterminism

The restrictions on globally-available side effects and nondeterminism are accomplished
by exposing only a subset of the fields and methods defined in the Java libraries to Joe-E
code. The Joe-E language defines a whitelist of fields and methods from the Java libraries
that Joe-E code is allowed to use; the Joe-E verifier will reject programs that make reference
to any field or method not on the list. We use this mechanism to prevent Joe-E code from
calling any method that exposes the ability to observe or modify the environment outside
the JVM, provides access to nondeterminism, or allows reading or writing of global mutable
state. See Figure 3.2 for examples.

Object identity

In Java, objects have identity: conceptually, they have an “address”, and we can
compare whether two object references point to the same “address” using the == opera-
tor. This notion of object identity can expose nondeterminism. As depicted in Figure 3.3,
Object.hashCode() exposes nondeterminism, which is incompatible with reasoning about
the purity of a method solely by examining its type signature. We have the Joe-E verifier
forbid calls to methods such as hashCode() that expose nondeterministic representations of
object identity.

Also, String.intern()’s static object cache contains global mutable state that is visible
to Java code as a result of object identity (see Figure 3.4). For some types, such as String, we
sidestep the problems caused by object identity and simplify reasoning by making the type a
value type in Joe-E. This is accomplished by prohibiting Java’s object identity comparisons
on these types: e.g., Joe-E code is not allowed to use the == operator on Strings or other
value types. This makes our determinism guarantees more meaningful and more useful, as
the programmer does not need to worry about aliasing relationships between variables of
these types. Otherwise, a pure method could act differently on two invocations that the
programmer might see as identical, but that differed only in aliasing relationships. For
example, a string upper-casing method could behave differently if its argument aliases a
global variable. In Joe-E, most immutable types are also value types, allowing more intuitive
reasoning about equivalence of invocations.



Section 3.6. Implementation 51

boolean randomBit() {

return (new Object().hashCode() % 2) == 1;

}

Figure 3.3: This Java method is not deterministic. It is not legal Joe-E code, because Joe-E
forbids calls to Object.hashCode().

boolean previouslyInterned(String s) {

String t = new String(s);

return t.intern() != t;

}

Figure 3.4: This Java method’s return value is not a deterministic function of its in-
put. previouslyInterned("foo") returns true iff some other code has previously called
s.intern() on a string s such that s.equals("foo"). This is not legal Joe-E code, because
Joe-E does not allow using != on Strings.

Exceptions

We treat a thrown exception as a form of return value from a method, since the caller
can catch and obtain a reference to the thrown object. This makes it challenging to reason
about determinism in Java, for two reasons.

First, every Throwable object contains a stack trace generated when the throwable is
constructed. This operation is not deterministic in the arguments to the throwable’s con-
structor, because the stack trace stored in the throwable depends on the calling context,
which is not a function of the constructor’s arguments. Any construction of an excep-
tion (which can happen implicitly) thus results in an object which in Java would be a
source of nondeterminism. We solve this problem by preventing programmatic access to
the stack trace. Specifically, Joe-E code is not allowed to call the getStackTrace() and
printStackTrace() methods.

Second, the Java Virtual Machine exposes true nondeterminism when it encounters a
condition that causes a VirtualMachineError to be thrown. This occurs under a number of
exceptional conditions, some of which (like running out of memory) can be triggered by the
application. Consequently, virtual machine errors are a source of nondeterministic behavior;
see, e.g., Figure 3.5.

This limits the guarantees we can provide: we cannot promise that whether or not
a method terminates successfully will be a deterministic function of its arguments, since
other conditions (e.g., the amount of free memory) might influence whether it aborts with
a VirtualMachineError. Instead, we provide the following guarantee: any two calls to a
method with equivalent sets of arguments will yield equivalent results, as long as neither
method aborts with a VirtualMachineError. On the other hand, if one or both calls throw
a VirtualMachineError, then we promise nothing.



Section 3.6. Implementation 52

int estimateAvailStackSpace() {

try { return estimateAvailStackSpace() + 1; }

catch (VirtualMachineError e) { return 1; }

}

Figure 3.5: The JVM throws a StackOverflowError when the available stack space is
exhausted, so this recursive method’s return value is nondeterministic.

class IntException extends Exception {

final int data;

IntException(int data) { this.data = data; }

}

int nondet() {

try { freemem(); return 0; }

catch (IntException ie) { return ie.data; }

}

void freemem() throws IntException {

int shift;

try {

for (shift = 0; ; ++shift) {

new double[1 << shift];

}

} finally { throw new IntException(shift); }

}

Figure 3.6: finally clauses expose nondeterminism.

We mitigate this shortcoming by ensuring that the program will terminate immediately
when the JVM throws a VirtualMachineError—the error will propagate to the top level
and no Joe-E code will execute after the error occurs. To enforce this property, the Joe-E
verifier prohibits catching Error or any subtype of Error. In addition, Joe-E must also
prohibit the use of finally clauses, as they allow code to execute after (and in response to)
a VirtualMachineError.

Figure 3.6 shows how to return a nondeterministic value without explicitly catching an
Error by using a finally clause instead. The freemem() method tries to allocate larger and
larger arrays of doubles until triggering an OutOfMemoryError. This causes the finally

clause to execute, which then throws an IntException that hides the pending Error. The
IntException contains nondeterministic state (how many arrays could be allocated before
running out of memory), which is extracted from the exception and returned by nondet().

Fortunately, Joe-E’s prohibition of the use of finally does not reduce expressivity: Joe-
E code can explicitly catch Exception, which allows the catching and appropriate handling
of any non-Error throwable in the Java library.



Section 3.6. Implementation 53

3.6.2 Immutability

To support reasoning about purity, we want to allow the programmer to write user-
defined classes that are verifiably immutable. The programmer can communicate to the
Joe-E verifier that class C is intended to be immutable by declaring it to implement the
interface org.joe e.Immutable. The verifier then confirms that C truly is immutable by
checking that all its fields are final and have a static type that is a primitive or immutable.

Unfortunately, this is not quite sufficient. In Java, code that has access to a partially
constructed object O can read final fields of O before they have been initialized, so reading the
same object’s fields twice might yield two different answers. To prevent this anomaly, Joe-E
places several restrictions on all constructors to ensure that a reference to the object being
constructed cannot escape from the constructor [39]. The most relevant is that constructors
are prohibited from calling instance methods on the object being constructed.

Some reference types in the Java library, such as strings, are observationally immutable
but are not declared to implement the Immutable interface. The Joe-E verifier handles these
classes specially, treating them as if they did implement Immutable.

Java arrays are mutable, but are often used in situations where their mutability is
not useful or desirable, as they are the simplest representation of a collection of objects.
Therefore, Joe-E introduces a class, ImmutableArray, for storing an immutable sequence of
immutable objects. Specialized subtypes are provided for holding primitive values without
having to “box” them into objects; e.g., ByteArray holds an immutable sequence of bytes.

3.6.3 Verifying Purity

With our extensions, Joe-E makes it easy to reason about purity. In particular, in a
Joe-E program, if all of the parameters to a method (including the implicit this parameter)
are immutable, then the method is pure. For instance, suppose that we are decompressing a
compressed file from an untrusted source. We might design the decompression interface as
follows:

ByteArray decompress(ByteArray compressed)

This function will be pure, so even if the decompression code is buggy or insecure, a malicious
compressed file cannot cause it to corrupt other application data structures. This allows us
to contain the effect of any security holes in the decompression code.

As another example, suppose that we are building election tabulation software, which
reads the contents of memory cards from the voting machines in the field, parses that data,
accumulates the votes, and produces a report summarizing the tallies and winners. The pars-
ing, accumulation, and report-generation code might be implemented following this interface:

String tabulate(ImmutableArray<CardData> cards)

If CardData is an immutable data structure holding the data read from a single memory card,
this function will be pure. Hence we can be confident tabulation will be deterministically



Section 3.7. Evaluation and Experience 54

Source lines of code Num. classes Num. methods

Before After Before After Before After
AES 319 276 1 1 9 9
Voting 688 692 25 25 80 79
HTML 12,652 10,848 94 99 965 947

Table 3.1: Basic code metrics for the three libraries used for evaluation, as measured both
before and after refactoring.

repeatable, and that the tabulation operation cannot (even if it is buggy or insecure) corrupt
other election data.

Some caveats apply. The soundness of our determinism guarantee depends on consis-
tent behavior from the portion of the Java libraries that Joe-E programs are allowed to call.
While it is straightforward to block truly nondeterministic library methods, the semantics of
some methods differs between Java library releases, including useful methods that are fully
deterministic within a particular version. For example, the behavior of many string and
character routines has changed between versions to reflect characters added to the Unicode
specification. For this reason, our implementation only guarantees reproducibility between
executions using the same library version. Since Joe-E does not currently require all asser-
tions to be pure, our determinism guarantee is also predicated on whether or not assertions
are enabled. In Java, results of floating point operations may differ between JVMs, which
may cause code to have platform-dependent behavior.

3.7 Evaluation and Experience

Our approach is intended primarily for programmers developing new code in Joe-E
with verifiable purity in mind. Since Joe-E is intended to be as familiar as possible to Java
programmers, we wanted to understand to what extent our approach would require Java
programmers to change the coding style they are used to. We chose three Java libraries and
retrofitted them (a) to pass the Joe-E verifier and (b) to have verifiably pure methods and
resulting security properties. The refactoring was performed by a programmer who had no
prior experience using Joe-E or any other object-capability language.

We give a detailed account of our experience, for three purposes: (1) to give the reader
a sense of the type and magnitude of changes that were necessary, (2) to understand the
programming patterns that could potentially act as a barrier to the adoption of our system,
and (3) to evaluate the strengths and limitations of our approach to verifiable purity. See
Table 3.1 for the three applications we analyze. (We used the Eclipse Metrics Plugin [63] for
all code metrics.)



Section 3.7. Evaluation and Experience 55

3.7.1 AES library

Motivation

We started with an open-source AES implementation written in Java [10]. We sought to
prove that the encrypt and decrypt methods are pure. This would then enable us to check
at runtime that these methods satisfy the inverse property, as described in Section 3.2.2.

Changes to the codebase

First, we refactored the code to pass the Joe-E verifier. The AES library initially
contained mutable static state: it used static variables of array type to hold the S-box
tables. We replaced these with ImmutableArrays, to meet Joe-E’s requirement that all
static variables be immutable.

Second, we refactored the class to provide verifiably pure methods. Originally, the AES
library’s interface had this type signature:

public AES()

public void setKey(byte[] key)

public byte[] encrypt(byte[] plain)

public byte[] decrypt(byte[] cipher)

After refactoring, the signatures for the relevant methods and constructors became:

public AES(ByteArray key)

public ByteArray encrypt(ByteArray plain)

public ByteArray decrypt(ByteArray cipher)

Method signatures for encrypt and decrypt were changed so that all parameters would
have an immutable type, thus making the methods verifiably pure. This was accomplished
by replacing each byte[] array with a ByteArray. Also, because encrypt and decrypt

are instance methods on the AES class, we had to make the AES class immutable. As an
immutable class, it can no longer have its key specified using a setter method that mutates
its state. Instead, the key is specified as an argument to the constructor. Immutability of
AES also required making all instance variables final and immutable. To accomplish this,
we had to remove debugging trace information from the class. In a case where preserving
such information is important, a suitable solution would be to return from the top-level
methods an object containing both the original return value and the debugging trace for
that method call.

Notice that we also changed the return type of the encrypt and decrypt methods to an
immutable type. This was not strictly necessary for verifying the purity of the AES library,
but it helps clients of the AES library write their own pure methods that manipulate data
returned from the AES library. In general, returning an immutable data structure helps
verify purity of other parts of the code.

After our refactoring, clients of the AES library are able to check that decryption is the
inverse of encryption by inserting



Section 3.7. Evaluation and Experience 56

\texttt{k.check(x);

before every call to k.encrypt(x), where instance k is of type AES. The check method can
be defined as follows:

public void check(ByteArray x) {

assert(decrypt(encrypt(x)).equals(x));

}

Since this method is pure, inserting the call to check cannot change the program’s behavior.
Moreover, this call ensures that encrypt and decrypt satisfy the inverse property for every
value x that is ever encrypted by any client of the AES library.

3.7.2 Voting machine

Motivation

Next, we examined the serialization and deserialization code of an experimental voting
machine implementation [62]. We refactored the code to make serialization and deseri-
alization pure. Our goal was to confirm at runtime that deserialization is the inverse of
serialization, following the pattern described in Section 3.2.2. This ensures that all votes
that are successfully recorded will be read back correctly during vote tallying.

Changes to the codebase

Nearly all changes made were simply replacing standard Java arrays with Joe-E im-
mutable arrays. Another common change was adding the Immutable interface to classes
that were already observationally immutable. (This required nothing more than adding
“implements Immutable” to the class declaration.)

Another modification involved the use of a monotonically increasing serial number to
filter out duplicate ballots. The last received serial number was stored as a static field inside
the
BallotMessage class. Inside the deserialization method, the serial number of the ballot was
compared with the static value of the most recently received serial number; if the serial
number was already received, the deserialization method would return null. With detection
of duplicate ballots written in this way, the deserialization is not deterministic. To fix this,
we separated the deserialization functionality from duplicate ballot suppression.

The only other significant change necessary was to require that a Ballot received all
of its Races upon construction. Prior to refactoring, the Ballot class exposed a method
addRace(Race r). This method had to be removed in order to make the Ballot class
immutable.

The method that we wished to make verifiably pure serves to check the serialization.
The method is called after the object has been serialized to an array of bytes, and tests that
the serialized form deserializes to match the original ballot. Its signature was initially:



Section 3.7. Evaluation and Experience 57

public static boolean deserializesTo (byte[] serialized, BallotMessage bm)

After refactoring, the method was changed to use a ByteArray instead of byte[]. The
actual deserialization, which is performed by a constructor that takes a ByteArray, is also
verifiably pure.

3.7.3 HTML parser

Our third application, an HTML parser [50], was a much larger and more instructive
undertaking. Since our modifications to this library were significant, we ensured that it
retained its functionality by verifying that our modified version and the original version
produced the same results when run on a corpus of HTML test cases [26].

Motivation

Our primary goal was to refactor the code to make the top-level parse method pure.
From a security perspective, a pure parse method is valuable for any system in which parses
need to be performed on behalf of different users or using data from different sources. An
example of this is on a web forum, where posts to the forum must be sanitized to prevent
cross-site scripting attacks. A pure parse method together with a pure sanitization routine
ensures that there can be no accidental data contamination between different posts, and that
no private information about a user can be accidentally leaked into another post or to another
user. Additionally, a pure parse method guarantees that a given parse is reproducible on
any machine under virtually any circumstances.

Before refactoring, the top-level method signature, which resides in the Parser class,
was the following:

public NodeList parse (NodeFilter filter)

throws ParserException

Originally, neither the Parser class nor the NodeFilter class was immutable, and hence
this method was not verifiably pure.

Mutable static state

We removed several instances of mutable static state from the HTML library, so that
the code would pass the Joe-E verifier. For example, originally the only way to pass options
to the parser was to set a global flag, parse, and then restore the flag, as follows:

boolean oldValue = SomeClass.SOMEFLAG;

SomeClass.SOMEFLAG = true;

try { parser.parse(); }

finally { SomeClass.SOMEFLAG = oldValue; }



Section 3.7. Evaluation and Experience 58

String html = getHtmlStringFromSomewhere();

Parser p = new Parser(html);

NodeList list = p.parse(null); // null NodeFilter

// do something with the parse "tree" in list

Figure 3.7: A typical use of the Parser class. The HTML document is supplied to the con-
structor as a string. Then, the parse method is called with a NodeFilter as a parameter. A
NodeList is returned, which contains a list of the top-level nodes from the HTML document.

This pattern seems to have been used to avoid propagating a configuration parameter through
several levels in the call hierarchy. However, this use of global variables makes it harder to
see how the flag is specified, renders the code thread-unsafe, and violates Joe-E’s prohibition
on shared mutable state.

We eliminated this pattern by augmenting the API with a top-level parse method that
takes an extra argument and passes it as necessary to other parts of the program. The
original top-level parse method remains, using a default value for the flag.

The original codebase also violated Joe-E restrictions by printing to System.out for
debugging and reading the default locale using java.util.Locale.getDefault(). Using
Locale objects in Joe-E code is not problematic, but the default locale is system-dependent
and therefore non-deterministic. We instead modified the API to require that a Locale be
passed as a parameter to objects needing access to the locale.

Instance method calls in constructors

We found many constructors that called other instance methods during their execu-
tion. As discussed earlier, Joe-E prohibits this (see § 3.6.2), so we had to eliminate all calls
to instance methods from within constructors. This was bothersome—it was one of the
few changes we had to make that did not reflect poor or nonstandard style in the original
code—but fortunately we were able to work around the problem in every case by inlining
the instance method, replacing the instance method with a static method, or using a factory
method instead of a constructor. Nonetheless, this experience suggests that the restriction
on calling instance methods from constructors may place an undue burden on Joe-E pro-
grammers. We are currently considering less restrictive alternatives for future Joe-E releases.

Immutable classes

Once the HTML parser’s code passed the Joe-E verifier, we refactored the Parser and
NodeFilter classes to be immutable.

The original Parser class contained a Lexer as an instance variable. In order to make
the Parser class immutable, this instance variable had to be removed due to the fact that
a Lexer is inherently mutable. We refactored the code to construct and use a Lexer inside
the top-level parse method. A typical use of the Parser class can be seen in Figure 3.7.



Section 3.7. Evaluation and Experience 59

Making the classes that implement the NodeFilter interface immutable was straight-
forward, except for the IsEqualFilter class. This required significant effort due to the fact
that this class, which tests whether two nodes are equivalent to each other, contained an
instance variable of type Node. As a result, all classes that implemented the Node interface
had to be made immutable, which necessitated removing all setter methods from any Node

subclass and requiring that all fields were set upon construction of any subclass of Node.
Refactoring the Node subclasses to be immutable proved difficult due to a nonstandard

construction pattern. The library used a prototype construction pattern to support the
creation of custom parsers that recognize varying sets of HTML tags4: before parsing, the
caller could register a set of Node prototypes. When the Lexer needed to construct a new
Node, it would clone a prototype and then overwrite the relevant fields of the clone using
setter methods.

We refactored the code to use a more standard construction pattern in which Nodes are
constructed using a constructor that takes an argument for each instance field that needs to
be set. Minor functionality was lost with this change, as it is no longer possible to create
a custom NodeFactory (without creating a custom class implementing the NodeFactory

interface) to recognize a different set of nodes.
Also, to make Nodes immutable, we had to split the Page class into two classes. Before

refactoring, the Page class conflated two distinct purposes. It was used by both the Lexer and
by the Node classes. The Lexer used a Page instance during lexing to maintain information
about the current position of the cursor in the page and to get and unget characters. This
inherently requires a mutable class. On the other hand, the Node classes only used the
Page object for finding out the line and column numbers for characters in the page. This
information is fixed and will never change after construction of a Node. To reflect this fact,
we created an immutable class called PageInfo to hold this information and extracted it
from the mutable Page class. Now, when the Lexer creates a Node, it obtains the PageInfo
from the Page and passes it to the Node’s constructor.

As illustrated above, immutability is a property that necessarily spreads through related
classes. We noticed similarities between these immutable data structures and those used in
functional programming. For instance, immutable data structures must be constructed from
the bottom up and hence are necessarily acyclic.

We also refactored the parse method to make the parse tree it returns be immutable.
This is not necessary for the purity of the parse method, but it aids the creation of other
pure methods that use the data structure returned by the parse method, since callers of
the parse method can directly pass the parse tree it returns as a parameter to other pure
methods.

4For example, one could create a parser that recognizes only img tags, and treats all other tags as generic
tags with no hierarchical structure.



Section 3.7. Evaluation and Experience 60

Pure Total % pure

Methods 89 524 17%
Constructors 37 128 29%

Table 3.2: The number of pure and impure methods and constructors in the Waterken Server.

3.7.4 Summary of patterns

Using a strictly-functional style throughout a program is the most reliable pattern for
attaining verifiable purity, as it ensures that every method will be pure. Such a strict
approach is generally not necessary to achieve useful purity guarantees. None of the three
applications that we refactored were written in an exclusively functional style, either before
or after our modifications. Our approach to purity requires only that immutable types (and
thus functional programming style) be used for the interface of a pure function, allowing its
internal algorithms to be written in an imperative fashion if the programmer so desires.

Objects that have cycles (for example, a tree with parent pointers or a doubly-linked
list) pose a challenge for our approach. A cyclic object graph, even if it is observationally
immutable once fully constructed, cannot be statically verified as immutable in our system.
We may therefore be unable to verify purity for methods that use such objects.

Joe-E required us to eliminate the use of mutable static state and pass parameters
explicitly as arguments instead of using mutable global variables. We found that this brought
our code closer to a functional style and had benefits of its own.

We believe that new code can take better advantage of Joe-E’s guarantees if the class
hierarchy is designed with immutability in mind. If part of a class is immutable but the rest
of the class is not, the entire class must be treated as mutable. Consequently, if a concept has
separable mutable and immutable aspects, it may be helpful to represent it as two separate
classes.

3.7.5 Waterken Server

The Waterken server is an extensible web server designed for building distributed web
services [14]. Waterken is implemented in a mixture of Joe-E and Java. The Joe-E code
was not retrofitted from Java to Joe-E, as in our previous examples, but was designed
and implemented following object-capability principles. The Joe-E portion is substantial,
comprising 8,246 source lines of code and 132 classes.

We counted the number of pure methods in the Waterken Joe-E code. (See Table 3.2.)
Our results are somewhat surprising: a large fraction of methods (17%) and an even larger
fraction of constructors (29%) are verifiably pure. While the code was written in an object-
capability style, verifiable purity was not an explicit goal. This suggests that verifiable purity
can (and does) occur as a natural consequence of object-capability discipline.



Section 3.8. Discussion 61

3.8 Discussion

One advantage of our approach is that it can facilitate reasoning about side-effects and
data dependencies for methods even if they do not strictly meet our requirements to be
functionally pure. Since the accessible data and possible effects of a method are limited to
objects reachable from its arguments, these effects are still bounded even if some arguments
are mutable. In particular, the method can only mutate objects that are reachable from
its non-immutable arguments. Typing and capability reasoning can limit this set to a small
portion of the in-memory objects in the program, e.g., the values in a single array of ints,
or the private instance fields of an object.

One can sometimes use these bounded effects to achieve purity properties from methods
that are not individually pure. For instance, consider the following set of operations on a
non-immutable object o:

T o = new T(a);

o.f(b); o.g(c);

... // do something with o

If the constructor is pure and the arguments a, b, and c are all immutable, then the state
of o after this sequence of operations will be a deterministic function of a, b, and c and no
other side effects will occur. We will refer to a sequence of invocations with this property as
a functionally pure sequence.

If all of the inputs are known in advance, the sequence above can be written as a single
verifiably pure function; for this example, we would have:

T pure(A a, B b, C c) {

T o = new T(a);

o.f(b); o.g(c);

return o;

}

The more interesting case is where the inputs are not known in advance, such as if some
of them come from interactions with a user. In this case, some of the inputs depend on
information received from the program, e.g., return values from invocations on o. This case
can be expressed as a sequence of verifiably pure method calls if it is refactored to use a
purely functional style. Specifically, we would refactor T to be immutable and replace each
mutating instance method of T with one that returns both the original return value and a
new object that has the modifications applied.

For cases in which making T immutable is impractical or cumbersome, we need a new
set of rules sufficient to verify such a sequence is functionally pure. It is safe to add return
values to the first scenario above, as long as they do not enable modifications to the object’s
internal state. This limitation can easily be verified by requiring the return values to be
immutable. (Thrown exceptions would also be a concern, but Joe-E already requires all
throwables to be immutable). This set of restrictions is not as trivial to check as the ones



Section 3.9. Conclusions 62

needed for individual methods to be verifiably pure, but it allows for reasoning about useful
properties of non-immutable objects.

The pattern allows for purity to be demonstrated in event-based interactive systems,
such as a voting machine. Each voter’s actions constitute a stream of events that should be
interpreted as they arrive to produce the voted ballot. Pure sequences can allow us to verify
that the voted ballot and behavior of the voting machine are a deterministic function of the
sequence of input events.

Functionally pure sequences also occur in Waterken’s implementation of deterministic
server processes that react to input events. Each event causes mutations in the internal
state of a handler object dedicated to that event’s connection. Because these mutations
are local to the per-connection object, the behavior of each server process is a deterministic
function of the sequence of input events it receives, even though each individual call to the
event-processing method is not verifiably pure.

3.9 Conclusions

Verifiable purity is useful for verifying many kinds of high-level security properties. A
language with appropriate characteristics can greatly simplify the task of writing verifiably
pure code. By combining determinism with object-capabilities, we describe a new class
of languages that allow purity to be achieved in largely imperative programs. As such a
language, Joe-E allows programmers to flexibly leverage verifiable purity while still using
imperative algorithms in a familiar language.



63

Chapter 4

Joe-E’s Overlay Type System and

Marker Interfaces

This chapter includes material from a short paper [40] coauthored with David Wagner,
presented at ACM SIGPLAN’s 5th Workshop on Programming Languages and Analysis for
Security in June 2010.

4.1 Introduction

In designing code for security review, it can be helpful to be able to characterize the
properties of objects in a program. A sufficiently rich type system can help with this goal:
programmers can document the properties of objects through their declared type, and an
appropriately constructed static code verifier can check these properties for all instances of
a particular type. In this way, implementing one of these types serves as an annotation
to indicate that certain properties of the class hold. Once the desired property has been
statically verified for all instances of a particular type, a code reviewer can use this property
in reasoning about the structure or behavior of the associated type.

Static verification cannot be separated from types: the static verification process must
take into account the structure of the type system. If the reviewer sees a variable in the
program and wants to reason about the properties of objects stored in that variable, just
checking what verified annotations exist on the declared type of the variable is insufficient.
In languages supporting subtyping, the concrete type of the object stored in the variable may
not match the declared type of the variable; it may be of a subtype instead. One approach
to addressing this risk would be to locate all subclasses of the annotated class and check
them when the annotated class is verified; but this approach fails if the source code of some
subtypes is not available, perhaps because they have not yet been written.

The alternative is to run the verifier on all code, and to verify properties of classes
when any of their supertypes has an annotation declaring that property. In other words, the
annotation used to declare and verify properties of a class must be inherited by subclasses.



Section 4.1. Introduction 64

In Java, this can be accomplished by using interface types as annotations. We define a
marker interface for each semantic property we want to verify. Then, a class may implement
a marker interface to declare that it satisfies the property associated with that interface, and
the verifier checks that the associated properties hold for every class that implements the
marker interface.1

In Joe-E, we define a standard set of marker interfaces that serve to document that a
class has specific properties, such as immutability. Our verifier uses these interfaces to verify
these properties: each marker interface is associated with a static analysis to check that its
properties hold for the classes that implement it.

A challenge with this technique is that pre-existing classes, such as those in the Java
standard library, do not implement any marker interfaces. These classes may satisfy the
properties associated with a marker interface, but cannot be declared to implement it with-
out modifying the library. If we were to modify the library in this way, Joe-E programs
would no longer be compatible with standard Java distributions that include unmodified
libraries. Instead, we chose to leave the library unmodified and maintain a separate, auxil-
iary set of honorary marker-interface subtyping relationships. For instance, we want to treat
java.lang.String as though it implemented the immutable marker interface, even though
it is not declared that way. When these additional subtyping relationships are added to the
base type system as defined by Java, the result is a combined overlay type system used by
our verifier. This extended type system is used when checking the restrictions our verifier
places on code to ensure that it falls within our language subset. Joe-E programs are also
able to test relationships in the overlay type system through library methods we add for this
purpose.

Thus, Joe-E programs are simultaneously well-typed under two different (but related)
type systems. Every Joe-E program is a valid Java program, and thus is well-typed under
the base Java type system. Moreover, our static verifier ensures that every Joe-E program is
also well-typed under Joe-E’s overlay type system. Joe-E programs can dynamically query
typing relationships in both type systems. Of course, to ensure that this is sound, there
must be a strong relationship between the two type systems: the overlay type system must
be a refinement of the base type system. We discuss how this is ensured in Section 4.2.

In Joe-E, we use marker interfaces to verify a number of interesting class-based proper-
ties, generally relating to immutability and object identity. We have identified simple source
code analyses that can be used to verify these properties statically. Of particular interest
are the techniques used to ensure immutability, as Java has a number of corner cases that
must be considered to verify this property reliably.

In the remainder of this chapter, we formally introduce the notion of an overlay type
system and identify conditions that suffice to ensure that the resulting type system will be
complete and consistent. We then describe how we verify class immutability and the addi-
tional restrictions we must impose on Joe-E code to ensure that our immutability guarantees

1Using actual interfaces rather than Java’s inherited annotations provides a number of benefits, as de-
scribed in Section 4.2.1.



Section 4.2. Overlay Type System 65

are reliably enforced. Finally, we describe several other marker interfaces provided by Joe-E,
including their associated class properties and how they are useful for writing reviewably
secure code.

The rest of this chapter is organized as follows:

• We introduce and formalize the concept of an overlay type system. This concept is
useful for a new programming language that is defined as an extension or subset of
some existing language that already has its own type system; it enables us to extend
or refine the base type system provided by the pre-existing language.

• For Java, we identify conditions under which extensions to the base Java type system
yield an overlay type system that is sound and consistent.

• We present the design of a mechanism for statically verifying immutability in the class
granularity in Java. Compared to prior work, our approach is relatively simple and
predictable for programmers, and yet is sufficiently expressive for construction of new
code written with our mechanism in mind.

• We describe several other semantic properties of object-oriented classes relating to
object identity. We specify how to verify that Joe-E code satisfies these properties.

4.2 Overlay Type System

We introduce the notion of an overlay type system, consisting of additional subtyping
relationships layered atop a base type system.

We formalize a type system I as a partial function that generates a subtyping relation
R from a set of typing facts Γ. The resulting subtyping relation R is a transitive binary
“is-a” relation on types, i.e. a set of subtyping judgements of the form Type × Type. The
typing facts Γ represent typing-relevant metadata for a particular language, e.g. the declared
superclass for user-defined classes. These can take different forms for different language’s
type systems (or possibly even different representations of the inputs for the same type
system). For some inputs, a type system can fail to generate a relationship between types.
This occurs when the set of facts fails some correctness criterion, e.g. cycle-freeness.

An overlay type system for a base type system IB is a second type system IO that, when
invoked on the input of IB with additional facts, gives an augmented version of its subtyping
relation. We use the following terminology: ΓB is a set of base typing facts; denote IB(ΓB)
as TB. Let ΓO = ΓB +H; then let RO be IO(ΓO).

An overlay type system is then defined as a type system with the following two proper-
ties, for every ΓB and H such that IO(ΓB ∪H) is defined:

1. Every typing judgement valid in the base type system also holds in the overlay type
system, i.e. RB ⊆ RO



Section 4.2. Overlay Type System 66

2. The typing relationships extant in the overlay type system correspond to a possible set
of relationships derivable in the base system, i.e. there exists a transformation T such
that IB(T (ΓO)) = IO(ΓO).

4.2.1 Marker Interfaces

As mentioned earlier, Joe-E uses marker interfaces to document the security properties
of code. Because interfaces are part of the Java type system, one can declare fields, methods,
and return values to have the marker interface’s type. This allows one to declare that a field
or argument can hold arbitrary objects that implement the marker interface, or that a
method only returns objects that implement the interface.

Marker interfaces used to indicate class-based properties need to satisfy two properties
for our analysis to be sound, due to the fact that a Java object belongs to its runtime type
as well as any supertypes, which may implement fewer marker interfaces.

• Implementing a marker interface must only add, and may not remove, restrictions on
the structure and behavior of a class. This ensures that all classes that implement
a marker interface can be relied upon to have the associated guarantees, even if a
subclass implements additional marker interfaces.

• Implementing a marker interface must only add, and may not remove, ways that such
a class may be validly used. This ensures that one cannot circumvent restrictions on
how an object can be used by upcasting it to a supertype.

For Joe-E, the base type system is defined by the Java language; it defines certain
subtyping relationships. Because standard library classes are not defined to implement our
interfaces, and we did not want to replace the standard library, Joe-E provides a way to
declare a Java library class to honorarily implement a marker interface. These additional
implementation relationships, added to the base subtype relations in the Java type system,
define an augmented overlay subtype relation used by the Joe-E verifier.

All type checking performed as part of the standard Java compilation process and JVM
runtime enforcement uses the base subtyping relation, as required to preserve Java seman-
tics. However, Joe-E’s additional restrictions are defined in terms of the overlay subtype
relation. The verifier thus includes the additional, honorary implementation relationships
when checking Joe-E language restrictions, including properties of code that implements
marker interfaces. Classes that honorarily implement the marker interfaces are generally not
Joe-E code, and so are not subject to the same checks. Instead, we manually review these
classes and ensure that their exposed functionality is consistent with the marker interfaces
we have them honorarily implement. We refer to this process as “deeming” the classes to
satisfy the interface’s restrictions.

The overlay subtype relation is made visible to user code at runtime by means of library
methods that query its runtime representation. We provide analogues to the instanceof

keyword and the Class.isAssignableFrom() method that reflect the same subtyping rela-
tion used by the verifier.



Section 4.2. Overlay Type System 67

4.2.2 Properties

We wish to ensure that the overlay type system is well-defined (e.g., free of cycles)
and consistent in structure with the Java base type system (i.e. has the same subtyping
relationships as the base type system would if the honorary relationships were added to
their respective classes in the base type system).

We use the following notation:

csuper(τ, τ ′) ≡ τ is a class explicitly declared to have superclass τ ′

cimpl(τ, τ ′) ≡ τ is a class explicitly declared to implement the interface τ ′

isuper(τ, τ ′) ≡ τ is an interface that directly extends the interface τ ′

Γ ≡ a set of facts of the form csuper(τ, τ ′), cimpl(τ, τ ′),
isuper(τ, τ ′)

Γ ⊢ τ ⊏ τ ′ ≡ From Γ, it is possible to derive that τ is a strict subtype of
τ ′ (τ 6= τ ′)

In our overlay type system, we augment the Java typing rules with additional interface
implementation relationships, hcimpl and hisuper, with the following meanings:

hcimpl(τ, τ ′) ≡ τ is a class that honorarily implements the interface τ ′

hisuper(τ, τ ′) ≡ τ is an interface that honorarily extends the interface τ ′

The overlay type system adds only new subtyping relationships; it does not add any new
types. We indicate that τ is a strict subtype of τ ′ in the overlay type system (for τ 6= τ ′) by
τ < τ ′.

4.2.3 Formalizations

The simplest formalization for a Java overlay type system with added honorary imple-
mentation relationships is given in Figure 4.1. In this formulation, it is easy to see that the
two correctness criteria for an overlay type system will be satisfied. Given T that leaves the
base facts unchanged and simply maps the honorary facts hcimpl(τ, τ ′) and hisuper(τ, τ ′) to
cimpl(τ, τ ′) and isuper(τ, τ ′), all previously existing relationships will be derivable identially
to in the base type system. For the second correctness criterion, there is a direct isomorphism
between the derivation in the overlay type system and the derivation with the honorary facts
added via T , provided that the added overlay facts would not result in rejection by the base
type system.

In our actual implemenation, we do not perform the full inference implied by the rules
given for the overlay type system in this figure. Instead, we use a simplified set of inference
rules to determine whether a type implements one of our marker interfaces. We then restrict
the kinds of honorary implementation relationships we add in order to ensure that these
weaker inference rules still result in a valid overlay type system.



Section 4.2. Overlay Type System 68

Rules Java Overlay

csuper(τ, τ ′) ∈ Γ

Γ ⊢ τ < τ ′

csuper(τ, τ ′) ∈ Γ

Γ ⊢ τ ⊏ τ ′
cimpl(τ, τ ′) ∈ Γ

Γ ⊢ τ < τ ′

Axioms
cimpl(τ, τ ′) ∈ Γ

Γ ⊢ τ ⊏ τ ′
isuper(τ, τ ′) ∈ Γ

Γ ⊢ τ < τ ′

isuper(τ, τ ′) ∈ Γ

Γ ⊢ τ ⊏ τ ′
hcimpl(τ, τ ′) ∈ Γ

Γ ⊢ τ < τ ′

hisuper(τ, τ ′) ∈ Γ

Γ ⊢ τ < τ ′

Transitivity
Γ ⊢ τ ⊏ τ ′ Γ ⊢ τ ′ ⊏ τ ′′

Γ ⊢ τ ⊏ τ ′′
Γ ⊢ τ < τ ′ Γ ⊢ τ ′ < τ ′′

Γ ⊢ τ < τ ′′

Object
τ 6= Object

Γ ⊢ τ ⊏ Object

τ 6= Object

Γ ⊢ τ < Object

Array
Γ ⊢ τ ⊏ τ ′

Γ ⊢ τ [ ] ⊏ τ ′[ ]

Γ ⊢ τ < τ ′

Γ ⊢ τ [ ] < τ ′[ ]

Figure 4.1: Simple rules for the Java type system’s (strict) subtype relation ⊏ and a small
change that adds additional interface relationships to generate an overlay type system sub-
type relation <.



Section 4.2. Overlay Type System 69

Alternate typing rules for Java. We provide an equivalent formulation of Java’s typing
rules below, to facilitate a correctness proof of our modified overlay type system inference
rules. For a set of facts Γ, the subtyping relation τ ⊏ τ ′ is the least relation satisfying the
following inference rules (where τ, τ ′, τ ′′ range over all valid reference types2):

csuper(τ, τ ′) ∈ Γ

Γ ⊢ τ ⊏1 τ ′
Axiom

cimpl(τ, τ ′) ∈ Γ

Γ ⊢ τ ⊏1 τ ′
Axiom

isuper(τ, τ ′) ∈ Γ

Γ ⊢ τ ⊏1 τ ′
Axiom

Γ ⊢ τ ⊏1 τ
′

Γ ⊢ τ ⊏ τ ′
Promote

Γ ⊢ τ ⊏1 τ
′ Γ ⊢ τ ′ ⊏ τ ′′

Γ ⊢ τ ⊏ τ ′′
Trans

τ 6= Object

Γ ⊢ τ ⊏ Object
Object

Γ ⊢ τ ⊏ τ ′

Γ ⊢ τ [ ] ⊏ τ ′[ ]
Array

Our overlay type system. In our implementation, the relation < is defined as the least
relation satisfying the following inference rules:

hcimpl(τ, τ ′) ∈ Γ

Γ ⊢ τ < τ ′
Axiom

hisuper(τ, τ ′) ∈ Γ

Γ ⊢ τ < τ ′
Axiom

Γ ⊢ τ ⊏ τ ′

Γ ⊢ τ < τ ′
Incl

Γ ⊢ hcimpl(τ, τ ′) τ ′ ⊏ τ ′′

Γ ⊢ τ < τ ′′
Trans

Γ ⊢ hisuper(τ, τ ′) τ ′ ⊏ τ ′′

Γ ⊢ τ < τ ′′
Trans

Γ ⊢ τ < τ ′

Γ ⊢ τ [ ] < τ ′′[ ]
Array

2This model excludes primitive types, such as int and boolean, as they are unrelated to reference types.



Section 4.2. Overlay Type System 70

Constraints on honorary relationships. We impose the following constraints on the
honorary typing relationships hcimpl, hisuper:

1. (τ ⊏1 τ
′) ∧ hcimpl(τ ′, τ ′′)⇒ (τ ⊏ τ ′′) ∨ hcimpl(τ, τ ′′)

2. (τ ⊏1 τ
′) ∧ hisuper(τ ′, τ ′′)⇒ (τ ⊏ τ ′′) ∨ hisuper(τ, τ ′′) ∨ hcimpl(τ, τ ′′)

3. (hcimpl(τ, τ ′) ∨ hisuper(τ, τ ′)) ∧ τ ′ < τ ′′ ⇒ τ ′ ⊏ τ ′′

4. hcimpl(τ, τ ′)⇒ τ 6= Object

The first two constraints are motivated by a desire to simplify the use of the overlay
type system. They are the result of two different requirements, one for newly written Joe-E
classes, and one for the types of honorary relationships we add to pre-existing classes.

It is beneficial for as many classes as possible to implement a marker interface in the
base type system, as opposed to exclusively in the overlay type system. If the subtype
relationship is known to the Java compiler, it is possible to assign the implementing type
to a variable whose declared type is the interface. For this reason, we require new classes
to explicitly implement any interfaces that are honorarily implemented by their superclasses
and superinterfaces. For Joe-E code, this rule is enforced by the Joe-E verifier.

In order to facilitate documentation, we require all existing classes to explicitly honorar-
ily implement any marker interfaces that they would otherwise implicitly inherit from their
supertypes. Our tool that assembles the database of honorary typing relationships verifies
that this is the case.

Restrictions 1 and 2 also have the benefit of allowing us to simplify the logic we use
to determine subtyping relationships in the overlay type system. The typing rules for the
overlay type system above reflect this simplification in that there are only overlay typing
inference rules for scalar types τ that are the subtype in honorary typing facts. (If we did
not have these simplifications, we could more directly translate the rules of the base type
system into the overlay type system, e.g. by simply replacing all ⊏ with < and adding the
additional Axiom rules. The complexity of the proof for the completeness theorem largely
derives from proving that the simplified rules remain complete due to the invariants above.)

The third rule indicates that none of the marker interfaces themselves have any honorary
supertypes. As all marker interfaces are new code, there is no need to make use of the
honorary mechanism when they can extend the supertype in the base type system.

The fourth rule states that we are not so foolish as to add honorary implementation
relationships to the class Object, as this would inevitably result in circularity in the type
system.

Results. With these definitions, we will prove that properties 1 and 2 still hold, i.e. that
the simplified formulation remains a valid overlay type system.

The proof of Property 1 is trivial: Any subtype relation present in the original Java
type system holds in the overlay type system by applying of the Incl rule.



Section 4.2. Overlay Type System 71

Demonstrating Property 2 is more difficult. To accomplish this we must specify a
transformation T resulting in a set of typing relationships equivalent to those derived for our
rules for IO. We establish this property by defining a function T and verifying the following
three facts:

1. Assuming that ΓO satisfies the restrictions 1-4 and that T (ΓO) is a valid input to IB,
then IO(ΓO) ⊆ IB(T (ΓO)).

2. Assuming that ΓO satisfies the restrictions 1-4 and that T (ΓO) is a valid input to IB,
then IB(T (ΓO)) ⊆ IO(ΓO).

3. If ΓO satisfies the restrictions 1-4, then T (ΓO) will be a valid input to IB.

Let T denote the translation from honorary implementation facts into their equivalents
in the base type system by replacing all instances of hcimpl with cimpl and hisuper with
isuper. Given a set of base typing facts ΓB and additional honorary typing facts H, we wish
to prove that every relationship derivable for < using the facts in ΓB ∪H is also derivable
for ⊏ using the facts in T (ΓB ∪H) and vice versa.

Soundness Theorem. Given a set of base typing facts ΓB and additional honorary typing
facts H that satisfy Restrictions 1–4 and such that T (ΓB∪H) is a valid input to IB, ΓB∪H ⊢
τ < τ ′ ⇒ T (ΓB ∪H) ⊢ τ ⊏ τ ′.

Completeness Theorem. Given a set of base typing facts ΓB and additional honorary
typing facts H that satisfy Restrictions 1–4 and such that T (ΓB ∪H) is a valid input to IB,
T (ΓB ∪H) ⊢ τ ⊏ τ ′ ⇒ ΓB ∪H ⊢ τ < τ ′.

We are aware of three reasons why a set of Java classes could fail to compile due to the
presence of additional superinterfaces. These are:

1. An added interface declares a method that is not implemented by a class that newly
implements it

2. A class or interface comes to have the same parameterized superinterface in two dif-
ferent ways with different parameterizations (JLS § 8.1.5)

3. A circularity in the resulting subtype relation (JLS § 8.1.4)

The first problem above is avoided by only adding as honoraries interfaces that declare
no methods, or only declare methods that are present on Object and thus implemented by all
classes. The second is avoided by not honorarily adding implementations of parameterized
interface types.

The way that the overlay type sytem is constructed ensures that it has no cycles, i.e.
∄τ.τ < τ , assuming that the base type system is free of such cycles.

Non-circularity Theorem. Given a set of base subtyping facts A and a set of honorary
subtyping facts H that satisfy Restrictions 1–4, ∄τ.A ⊢ τ ⊏ τ ⇒ ∄τ ′.A ∪H ⊢ τ ′ < τ ′.

Proofs of these theorems may be found in Section 4.7.



Section 4.3. Immutability 72

4.3 Immutability

Joe-E provides support for verification of class immutability: all instances an immutable
class are guaranteed to be immutable. By immutable, we mean that no state reachable from
an immutable object can be observed to change. Any two reads of a field transitively
reachable from such an object will return the same value. Our immutability requirement
is stricter than those previously studied in that we do not exempt a partially-constructed
object that escapes its constructor from the need to satisfy observational immutability. A
client of such an object may be unaware that it is only partially constructed, and thus will
observe a change of its fields if they are later initialized to a non-null, non-zero value.

Immutability is helpful for reasoning about the correctness and robustness of code, for
a number of well-known reasons. One particular reason motivates our strong immutability
requirement: if an object is immutable, code that makes use of it does not need to defend
against modifications to that object by other code in the system. For instance, this eliminates
the possibility of time-of-check-to-time-of-use attacks on those values. Also, immutability
facilitates verification of functional purity (determinism and side-effect freeness) of methods,
as described in Chapter 3.

In contrast with other type systems for immutability such as Immutability Generic Java
[79], in which references to read-only or immutable objects are subjected to additional type
checks, in Joe-E we only support class immutability, i.e., classes with no mutable state.
This is less expressive, but we have found it to be sufficient for new code. Class types that
implement the Immutable marker interface are verified to be immutable, and those that do
not are not.

Joe-E’s static verifier checks that each class that implements the Immutable interface is
indeed immutable by verifying that the class C meets all of the following requirements:

1. Every instance field of C must be both declared final and of a primitive or immutable
type. No such field may be declared transient. (“Every instance field of C” includes
fields of all superclasses, whether accessible to C or not; this includes, for instance, all
private fields of all superclasses.)

2. If C or any of its superclasses is a non-static inner class, every enclosing class must be
immutable.

3. If C is a local class (an inner class defined within a method), all local variables defined
outside C that are observable by C must be immutable.

Any violation of these requirements is a verification-time error.
The third requirement is necessary because local classes in Java can make use of final

local variables in the scope in which they are defined. The Java compiler analyzes the code
of each local class L to see which local variables are used by L. When looking for uses of
local variables, it also scans any related inner classes that L constructs, or that transitively
are constructible via a chain of such class constructions. Any local variable used by L, or by
any related class it could construct, is implicitly included as a field of L.



Section 4.3. Immutability 73

Our verifier duplicates the calculation made by the compiler to determine which local
variables will implicitly be included in each inner class, and uses them when verifying that
such a class is immutable.

Note that immutability of a class C does not place any restrictions on any local variables
of its methods, or imply that classes defined within C must themselves be immutable. It
also says nothing about the mutability of the arguments passed to C’s methods. The checks
performed on C serve only to ensure the immutability of all objects reachable from all of
C’s fields, including implicit fields inserted by the compiler.

4.3.1 Ensuring Final Means Final

In Java, the final keyword does not guarantee that a field’s value will never change. If
a reference to an object escapes before it has been fully initialized, code might observe one
of its fields once at its default value, before the field is initialized, and later observe the field
at a different value, after initialization. This would allow an otherwise-immutable object to
appear to change its value.

To address this problem and ensure that Immutable objects are truly immutable, Joe-E
prevents Joe-E code from reading a field before it has been initialized. We ensure this by
preventing the this pointer from escaping from any constructor3, enforced as follows:

1. Instance initialization must not call any instance methods on the object being con-
structed (including supermethod invocations like super.m()).

2. Initialization of a class C must not call the constructor of any non-static inner class
of C, i.e., any anonymous class or non-static member class that is defined within C

or any of C’s superclasses. (Non-static inner class instances have a reference to their
containing object and thus its fields; this restriction ensures that no code from such an
inner class executes during construction.)

3. Initialization must not reference the this pointer corresponding to the object being
constructed, except as a way to name fields (e.g., a use or definition of the field f

using the expression this.f is permitted). This restriction ensures that this cannot
become aliased. For inner classes, references to enclosing objects’ this pointers are
unrestricted.

For legacy Java code, these restrictions would be too restrictive: a non-trivial amount of
existing code might violate these rules. However, for new code written in Joe-E, we have
found these restrictions to be tolerable.

Java has a similar weakness with static final fields: if there is a circular dependency in
classes’ static initializer logic, it is possible for code executing during static initialization of

3At present we do this for all classes, not just those that are immutable, as they may have an immutable
subclass. This is the simplest approach, but is stricter than necessary, as some classes may inherently
preclude an immutable subclass, e.g., by being final or declaring non-immutable fields.



Section 4.4. Identity-based Authority 74

public final class LockedBox<T> {

private final Token key;

private final T content;

public LockedBox(Token key, T content) {

this.key = key;

this.content = content;

}

public T getContent(Token key) {

if (key == this.key) {

return content;

} else {

throw new IllegalArgumentException();

}

}

}

Figure 4.2: A locked box class. Once the content is stored in the box, it can only be retrieved
again given the key object.

these classes to see uninitialized values for their fields. Joe-E does not currently address this
problem, which does not technically violate our object immutability guarantees, as it only
affects static fields. However, if an immutable object reads a value from a static field when
an instance method is invoked, it may return different results on different invocations, which
appears the same as a change in state, so we would still like to close this loophole.

4.4 Identity-based Authority

One basic pattern of object-capability based reasoning is to consider the evolution of the
object graph as a program executes. This graph has a node for each active stack frame and
in-memory object and directed edges connecting each reference-typed local variable and field
to the object it points to. Given any snapshot of this graph, the set of objects reachable from
each node bounds the authority available to the corresponding object. It is also possible to
bound the possible future propagation of references between objects in the graph.

The coarsest bound on this propagation is bidirectional reachability on the object graph.
A reference can potentially propagate from any node that has a reference to it to any adjacent
node. This simple bound is too imprecise; all live objects will fall into the same component
and thus we would be able to conclude nothing.

We can reason more precisely if we verify and rely on certain behaviors of shared objects
in the reference graph. Consider the locked box class presented in Figure 4.2. (This is



Section 4.4. Identity-based Authority 75

an adaptation of a construction [45, §6] that dates back to 1973.) The box’s constructor
accepts an object to store in the box and a key object. The key must be presented to extract
the object from the box. The class Token is an empty class used here solely for pointer
comparison.

If a locked box is passed to another entity, the recipient cannot retrieve the box’s contents
unless it also obtains access to the key used when the box was constructed. The content
object can only be extracted from the box if some object has a reference to both the box and
the key at the same time. The key acts as an authentication token to permit a holder of the
box to retrieve its contents. In Java, every object is more than its contents; it also has an
identity in that it can be distinguished from other objects of identical type and contents by
the use of the == or != operators. LockedBox uses this identity as an unforgeable credential,
as Joe-E’s memory-safety ensures that there is no way to create an alias of an existing object
from scratch.

Despite having no state and no methods, a token object used as a key conveys authority
to objects that have a reference to it. Without the token, an object with a reference to
a locked box cannot open it; with the token, it can. This pattern of programmatically
presenting a credential to an object to enable additional functionality is known as rights
amplification.

There are a number of alternate patterns that can be used for rights amplification. In-
stead of using an object reference as a token, the box could store a password in a private field,
and only divulge its contents when a lexically-matching password is given as an argument.
It could issue instances of a privately-constructable inner class for use as credentials, using
their unforgeable type to authenticate instead of identity comparison. Using tokens, how-
ever, has the advantage of being based on a simple, fundamental property of object-capability
languages (and of memory-safe languages like Java), unforgeability of object references.

4.4.1 Power and Tokens

Joe-E specifically supports reasoning about rights amplification using unforgeable token
objects. In Joe-E, other ways of implementing rights amplification may still be effective,
but are not provided the same language support. We provide a Token class in the Joe-E
standard library for this purpose, and recommend that Joe-E applications use this Token

class in places where their security relies upon unforgeable object identity. In this way, the
Token class explicitly documents which objects are used for rights amplification on the basis
of their identity. If this idiom is followed, the only objects that will convey authority solely
by their object identity are instances of Token and its subtypes (collectively called tokens).

As another example, consider again the currency system of Figure 2.3. Each Currency

object corresponds to a different currency, and is used to ensure that money is not acciden-
tally transmuted from one currency to another. Additionally, it gives its holder the ability
to mint virtual coins in that currency, even though the class itself has no fields or methods.
A Purse object is used by a client, such as an object representing a player of an online game,
to hold a number of units of a particular currency. If a client wants to transfer some money



Section 4.4. Identity-based Authority 76

to another object, he first constructs a new, empty purse of the same currency using the
unary constructor, then transfers some money into this new purse from his primary purse
using the takeFrom method. The new purse can then be passed to the recipient, who can
add the balance from it to her own main purse also using takeFrom. The Purse class can be
reviewed to verify that currency cannot be created without the use of the Currency token;
this reduces the portion of the program that would have to be reviewed to ensure that there
are no bugs that might allow money to be created from nothing.

Clearly, it would be a problem if the Currency object is passed around indiscriminately;
despite its lack of fields, it is important to audit everywhere in the program that it might be
used. The fact that all tokens extend the same base class makes it easier to identify every
place in the program where these objects might be used.

If developers write their code such that Tokens are the only objects that represent privi-
lege by their object identity, then objects that contain no Tokens cannot convey privileges in
this way. This makes it easier to reason about places that may perform rights amplification
and supports the following pattern of security reasoning:

• Conservatively assume that any authority made available by the object identity of
non-tokens is available everywhere in the program.

• Conservatively assume that all secret data can be guessed or leaked, and are available
everywhere in the program.

• Check that the code never relies upon the unforgeability of object identity of non-
tokens, or the unguessability of data, for authentication or security.

• Perform local checks of all uses of tokens to ensure rights amplification is implemented
properly.

Without this refinement of basic object-capability reasoning, we might conclude that a
Currency object yields no authority and that a Purse object might potentially provide
the authority to mint new money; the first conclusion is wrong, and the second is too con-
servative.

To encourage using tokens solely for their object identity, and not as containers for other
capabilities, the class Token is declared to implement Immutable. Thus, tokens (including
subtypes of Token) cannot contain mutable objects. Token also implements Equatable so
tokens can be compared for identity (see Section 4.5).

4.4.2 Powerless

Joe-E introduces the notion of a powerless type. Objects belonging to such types are im-
mutable and do not contain any tokens, i.e., no tokens are transitively reachable by following
a powerless object’s field pointers.

A powerless object conveys no inherent or identity-based authority and thus can be
excluded from the object reference graph entirely without loss of soundness. Due to its



Section 4.4. Identity-based Authority 77

immutability, it cannot serve as a channel for propagating references, and because it is both
immutable and token-free, it cannot contain any capabilities of concern for the reachability
analysis.

Any authority granted to the holder of a powerless object is solely a product of the
data it contains; this authority could be “forged” by anyone with knowledge of this data
and thus does not reflect a type of capability that can be guarded by our system. (Note
that cryptographic keys fall into this category; our system is not able to reason about
cryptography, because Joe-E does not provide any provision for reasoning about knowledge
or the flow of information—it supports reasoning only about the flow of references.) Any
authority vested in the object identity of a non-Token object is not modeled in our view of
authority and is conservatively assumed to be available to everyone.

An immutable object conveys no authority except for the unforgeable identity of any
tokens it may contain. This potential form of authority distinguishes a powerless object from
one that is merely immutable. (By definition, all powerless objects are also immutable.) In
practice, most immutable objects are likely to also be powerless.

If a class C implements Powerless in the overlay type system, the Joe-E static verifier
checks that C satisfies all of the following restrictions:

1. Every instance field of C must be both declared final and of a primitive or powerless
type. No such field may be declared transient.

2. If C or any of its superclasses is a non-static inner class, every enclosing class must be
powerless.

3. If C is a local class, all local variables defined outside C that are observable by C must
be powerless.

4. C must not be a subclass of Token.

Any violation of these requirements is a verification-time error.
In Joe-E, in order to achieve the principle of least authority, we restrict global (static)

fields to only contain Powerless objects. In addition to ensuring that the global scope
does not contain any mutable state, this ensures authority-bearing tokens are not made
globally available. A bigger concern is accidental escalation or malicious transmission of
privileges due to an exception being thrown and caught. As exceptions are often hard to
predict and reason about when performing a code review, in Joe-E we require all subtypes
of java.lang.Throwable to be powerless in order to ensure that they cannot be used to
transmit authority in unexpected ways 2.4.3. This allows us to limit our examination to the
more explicit mechanisms for reference propagation when reasoning about how objects can
communicate with the rest of a program.



Section 4.5. Selfless and Equatable 78

public class Buggy {

public static boolean isYes(String answer) {

return answer == "yes" || answer == "Yes"

|| answer == "y" || answer == "Y";

}

}

Figure 4.3: A method that violates the intuitive expectation that String is a value type.
This code is probably a bug (and would not be allowed in Joe-E).

4.5 Selfless and Equatable

Java contains a number of library classes that, intuitively, are intended to act as value
types: types where equality is determined by the the object’s contents and whose object
identity should be irrelevant. For instance, two different Strings with the same contents
compare equal, using the equals()method, and intuitively should be essentially interchange-
able. However, Java exposes the object identity of Strings: a client can distinguish two
Strings with the same contents using == or !=. Exposing the object identity of value types
is usually undesirable.

Consider, for instance, Figure 4.3, where a buggy method compares two strings using ==

instead of equals(). This breaks the abstraction that strings should be value types. Java
has no way to enforce that code treats String as a value type; in contrast, Joe-E hides the
object identity of Strings and similar library classes from Joe-E code, making these library
classes true value types. Such abstraction-violating bugs can sometimes be tricky to detect.
For example, in Figure 4.4, testing code that makes use of literal (and thus automatically-
interned) strings will fail to replicate the incorrect behavior of the isYes() method when
called with non-interned strings from user input that have the same contents.

Joe-E also enables programmers to define additional value types, with assurance that
their object identity will be hidden from other Joe-E code. The programmer is responsible
for writing correct equals() and hashCode() methods for each class that is intended to be
a value type. Joe-E ensures that clients possessing references to instances of these classes
cannot observe object identity, by prohibiting use of the == and != operators on these classes.
In addition, Joe-E helps the programmer of these classes avoid inadvertently revealing object
identity (e.g., by calling super.equals() or super.hashCode() and leaking their return
value to clients).

To achieve these goals, we introduce the notion of equatable, selfless, and deep selfless
types. In Joe-E, the == and != operators can only be used on equatable types. It is a
verification error for any type to be simultaneously equatable and selfless; thus, the == and
!= operators cannot be applied to selfless types. Furthermore, Joe-E ensures that selfless
types do not reveal object identity in other ways. A type T is deep selfless if every object
(transitively) reachable from an instance of T (by following fields) is selfless. These notions



Section 4.5. Selfless and Equatable 79

public class Tester {

public static void test() {

if (!Buggy.isYes("yes"))

fail();

}

}

public class Client {

void processInput(StreamTokenizer st) {

// read a parameter using the stream tokenizer

st.nextToken();

if (Buggy.isYes(st.sval))

doSomething();

}

}

Figure 4.4: The bug in Figure 4.3 might not be detected by testing (due to automatic
interning of string literals), but might trigger in practice.

mean that object identity is optional for each type in Joe-E, unlike in Java where all reference
types have object identity.

A class may be marked as being equatable by implementing the Equatable marker
interface. Joe-E code is allowed to compare two references using == and != if at least one
of the references’ declared types is equatable, or if either reference is null. Specifically, we
ensure that, for every use of the binary operators == and !=, the type resolved for at least
one of the two operands must be either the null type, a primitive type, or a reference type
that implements Equatable in the overlay type relation.4 All other uses of == and != are
prohibited.

For instance, the buggy code in Figure 4.3 would not be allowed in Joe-E, because
String is not an equatable type, and thus the use of == found there would result in a
verification-time error.

A class C is selfless if and only if it implements the Selfless interface in the overlay
type system. The Joe-E static verifier checks that each such class C obeys the following
restrictions:

1. All instance fields of C must be final and may not be transient.

2. C must not be equatable.

4Two objects of distinct runtime types are never identical. Joe-E allows programs to determine and
compare the concrete type of objects, and thus does not hide this fact. The result of == only reveals
additional information if its operands are of the same concrete type; therefore it suffices to check that either
operand is equatable.



Section 4.5. Selfless and Equatable 80

3. The object identity of instances of the class must not be visible. This can be satisfied
by one of:

(a) C’s superclass is a selfless type, or

(b) C’s superclass is java.lang.Object, C overrides equals() and hashCode(), and
C doesn’t call super.equals(). (No Joe-E class is allowed to call Object’s version
of hashCode(), even on itself, due to its exposure of nondeterminism.)

Joe-E provides several guarantees about selfless objects:

• The identity of selfless objects is not exposed, even indirectly. Selfless types must over-
ride Object’s default implementation of equals(), which is equivalent to ==. Neither
a selfless type’s version of equals(), nor any other method it defines, can use == or
!= on itself or call Object’s identity-exposing versions of equals() or hashCode() on
itself.

• The hash returned by a selfless object’s hashCode() method will be a deterministic
function of its contents. This follows because a selfless object must provide its own
implementation of hashCode(), and the object’s contents are the only objects observ-
able by this code; the object’s own identity is not visible, not even to its code. As a
result, we can store arbitrary selfless objects in a hash table, without fear that their
hashCode() method will expose nondeterminism.

Selfless classes are useful for constructing serialization code. To serialize a selfless object,
we only need to serialize its contents (and possibly their identity); we do not need to record
its own identity. This makes it easier to ensure that the result of serializing and deserializing
an object is indistinguishable from the original. For instance, the Waterken server 3.7.5 uses
Joe-E’s Selfless interface to ensure the correctness of a performance optimization: when
serializing a non-selfless type, we must maintain a unique serialized version per instance,
whereas for selfless types, it is safe to make multiple copies of a single instance if that
improves performance. f A deep selfless class C must satisfy the requirements for a selfless
class. Also, all instance fields, all local variables of enclosing scopes observable by C, and
all enclosing classes (if C or any superclass is a non-static inner class) must be deep selfless.
Joe-E does not yet implement deep selfless, but it would be a straightforward addition. A
deep selfless class is also powerless (but not necessarily vice versa).

One feature of Joe-E is that it makes it easy to verify when methods are definitely
deterministic (see § 3.3.2). By deterministic, we mean that two successful invocations of
the method with equivalent arguments will always yield equivalent results. The notion of
“equivalence” depends upon the type of the object. If any arguments are not deep selfless,
equivalence must take into account object identity: for instance, two immutable objects
are equivalent if they have equivalent contents as well as the same object identity (or more
generally, the same set of aliasing relationships to other objects in the method’s scope,
including other arguments and global variables). Put another way, if all we know about the



Section 4.6. Conclusions 81

method’s arguments is that they are immutable, then we cannot rule out the possibility that
the method’s behavior and return value might depend upon the identity of its arguments.
This notion of determinism is often weaker than we might prefer.

Selfless types enable us to strengthen the notion of determinism to exclude the possibility
that the method might depend upon the identity of its arguments. When dealing with selfless
arguments, we can refine the notion of equivalence: two selfless objects are equivalent if they
have equivalent contents (regardless of their identity). When all arguments are deep selfless,
then we can rule out the possibility that the method might depend upon their object identity.

For instance, if we have a method whose type signature is

public static boolean isYes(String s);

then (in Joe-E) we can conclude that this method’s behavior and result will depend deter-
ministically only upon the value of the string s, but not on s’s object identity.

Value types in Joe-E also make it possible to verify the correctness of memoization.
Suppose we have a method whose arguments and return value are of value types: their types
are deep selfless, and moreover are known (somehow) to have a correct implementation of
equals(). Then this method can be transparently memoized. We can maintain a hashtable
that maps argument lists to results; before invoking the method on some argument list, we
look up the argument list in the hashtable. If an entry is found, we return the cached result
without invoking the underlying method; otherwise, we invoke the method and add its result
to the hashtable. Thanks to the property of deep selfless types, the memoized version will
be indistinguishable from the original.

We have only limited experience with selfless and deep selfless types. We initially imple-
mented Selfless types primarily to support Waterken’s serialization logic. In retrospect,
deep selfless is probably a more useful concept, but is not currently implemented in Joe-E.

4.6 Conclusions

We have demonstrated a way to extend an existing object-oriented language with new
subtyping relationships for the purpose of analysis, without making modifications of libraries
provided with the base language. This is useful for verifying a number of class-based prop-
erties, as it allows the use of existing library classes without modifying the libraries or
reimplementing library functionality. We have identified a set of conditions under which this
augmentation results in a cycle-free type system with all relationships that would exist if the
library classes had been modified to add the new subtyping relationships.



Section 4.7. Appendix: Proofs of Theorems 82

4.7 Appendix: Proofs of Theorems

4.7.1 Completeness

Lemma. Given a set of base typing facts ΓB and additional honorary typing facts H, if
ΓB ∪ T (H) ⊢ τ ⊏1 τ

′, either ΓB ⊢ τ ⊏1 τ
′, or else one of hcimpl(τ, τ ′) or hsuper(τ, τ ′) must

be a fact in H.
Proof. A derivation for ⊏1 given ΓB ∪ T (H) can only be generated by a single application
of one of the base Axiom rules for a fact in ΓB ∪ T (H). If the fact used is in ΓB, then
ΓB ⊢ τ ⊏1 τ

′, as the same derivation holds without using any facts in T (H). If the fact used
is from T (H), then the corresponding fact hcimpl(τ, τ ′) or hsuper(τ, τ ′) must be in H.

Completeness Theorem. Given a set of base typing facts ΓB and additional honorary
typing facts H that satisfy Restrictions 1–4 and such that T (ΓB ∪H) is a valid input to IB,
T (ΓB ∪H) ⊢ τ ⊏ τ ′ ⇒ ΓB ∪H ⊢ τ < τ ′.
Proof. by induction on the structure of the derivation of T (ΓB ∪H) ⊢ τ ⊏ τ ′. Four rules
can give a derivation of this form:

1. Promote. If τ ⊏ τ ′ derives from a Promote rule, then ΓB ∪ T (H)τ ⊏1 τ
′ must hold.

By Lemma 1, either ΓB ⊢ τ ⊏1 τ ′, hcimpl(τ, τ ′) ∈ H or hsuper(τ, τ ′) ∈ H. In the
first case, ΓB ∪H ⊢ τ ⊏1 τ

′ implies that ΓB ∪H ⊢ τ ⊏ τ ′ by rule Promote, and thus
ΓB ∪H ⊢ τ < τ ′ by rule Trans. In the other cases, application of the matching Axiom

rule for < immediately gives us H ⊢ τ < τ ′.

2. Trans. For a derivation of the Trans rule, we have τ, τ ′, τ ′′ such that ΓB ∪ T (H) ⊢
τ ⊏1 τ

′ and ΓB ∪ T (H) ⊢ τ ′ ⊏ τ ′′. By our induction hypothesis, ΓB ∪H ⊢ τ ′ < τ ′′. By
the lemma, either ΓB ⊢ τ ⊏1 τ

′, or else one of hcimpl(τ, τ ′) or hsuper(τ, τ ′) must be a
fact in H.

If ΓB ⊢ τ ⊏1 τ
′, consider the derivation of ΓB ∪H ⊢ τ ′ < τ ′′. There are four cases:

(a) ΓB∪H ⊢ τ ′ < τ ′′ is derived using the Axiom rule. Then by Property 1 or Property
2, we can derive that ΓB ∪H ⊢ τ < τ ′′ by the use of the Axiom rule or the Incl

rule.

(b) ΓB ∪H ⊢ τ ′ < τ ′′ is derived from the Incl rule. Then ΓB ⊢ τ ′ ⊏ τ ′′, and by the
base Trans rule, we get τ ⊏ τ ′′; the Incl rule can be used to give ΓBτ ⊏ τ ′′.

(c) ΓB ∪H ⊢ τ ′ < τ ′′ is derived from one of the Trans rules. Then there exists some
type τ ∗ ⊏ τ ′′ such that either hcimpl(τ ′, τ ∗) or hisuper(τ ′, τ ∗). By property 1
or 2 respectively, either (a) τ ⊏ τ ∗ in which case τ ⊏ τ ′′ can be derived from
the base type system’s Trans rule, and then τ < τ ′′ follows from Impl, or (b)
hcimpl(τ, τ ∗) or hisuper(τ, τ ∗), and the overlay type system’s Trans rule implies
that τ < τ ′′.



Section 4.7. Appendix: Proofs of Theorems 83

(d) ΓB ∪ H ⊢ τ ′ < τ ′′ is derived from the Array rule. This is not possible because
if this were the case, τ ′ would be an array type, and array types are never the
supertype of a class or interface.

Otherwise, one of hcimpl(τ, τ ′) or hsuper(τ, τ ′) must be a fact in H. Then, by one of
the overlay Trans rules, we directly get ΓB ∪H ⊢ τ < τ ′′.

3. Object. The Object rule is true for every set of facts, so ΓB ∪H ⊢ τ < Object and
the Incl rule can be applied.

4. Array. By our induction hypothesis, if the last rule is of the form ΓB ∪ T (H) ⊢ τ [ ] ⊏
τ ′[ ], we know that ΓB ∪H ⊢ τ < τ ′. Given this, we can apply the Array rule for <,
giving our goal of ΓB ∪H ⊢ τ [ ] < τ ′[ ].

Soundness Theorem. Given a set of base typing facts ΓB and additional honorary typing
facts H that satisfy Restrictions 1–4 and such that T (ΓB∪H) is a valid input to IB, ΓB∪H ⊢
τ < τ ′ ⇒ T (ΓB ∪H) ⊢ τ ⊏ τ ′.
Proof. by induction on the structure of the derivation of ΓB ∪ H ⊢ τ < τ ′. Four types of
rules can give a derivation of this form:

1. Axiom. If τ < τ ′ follows directly from an Axiom rule, the associated hcimpl or
hisuper fact will be converted to a cimpl or isuper fact by T . Applying Axiom and
then the Promote rule to this fact gives T (ΓB ∪H) ⊢⊏< τ ′.

2. Incl. If τ < τ ′ follows by application of the Incl rule, then τ ⊏ τ ′ in the base type
system by the same derivation, as no rules for ⊏ make use of honorary facts.

3. Trans. Either Trans rule in the overlay type system can be replaced with the single
Trans rule in the base type system. For the left subtree, the hcimpl or hisuper fact
is converted to a cimpl or isuper fact by T . The base type system Axiom rule then
yields T (ΓB ∪H) ⊢ τ ⊏1< τ ′. The right-hand subtree is a derivation in the base type
system and is unchanged.

4. Array. By our induction hypothesis, if the last rule is of the form ΓB∪H ⊢ τ [ ] ⊏ τ ′[ ],
we know that T (ΓB ∪ H) ⊢ τ < τ ′. Given this, we can apply the Array rule for ⊏,
giving our goal of T (ΓB ∪H)τ [ ] < τ ′[ ].

4.7.2 Non-circularity

Lemma. For all Γ, if Γ ⊢ τ [ ] < τ [ ], then there exists an non-array type τ∗ such that
Γ ⊢ τ ∗ < τ ∗.
Proof. Induction on the structure of the derivation of Γ ⊢ τ [ ] < τ [ ]. Since an array type
τ [ ] cannot be the subtype of a hcimpl or hisuper fact, the only rules that can give rise to
the result Γ ⊢ τ [ ] < τ [ ] are the Incl rule and the Array rule. If the derivation ends with the



Section 4.7. Appendix: Proofs of Theorems 84

Incl rule, then Γ ⊢ τ [ ] ⊏ τ [ ], implying a cycle in the base type system, which we assume
is not the case. If the derivation ends with the Array rule, then it must be the case that
Γ ⊢ τ < τ . If τ is not an array type, then let τ ∗ = τ . If τ is an array type, then we can
apply our induction hypothesis on υ with υ[ ] = τ , to get a non-array type τ ∗ such that
Γ ⊢ τ ∗ < τ ∗.

Non-circularity Theorem. Given a set of base subtyping facts ΓB and a set of honorary
subtyping facts H that satisfy Restrictions 1–4, ∄τ.ΓB ⊢ τ ⊏ τ ⇒ ∄τ ′.ΓB ∪H ⊢ τ ′ < τ ′.
Proof. By the lemma, it is sufficient to restrict our consideration to non-array reference
types, i.e. classes and interfaces. The proof is easily accomplished by dividing the set of
reference types into three kinds:

1. the type Object

2. interfaces that are the supertype in any honorary relationships and their supertypes
aside from Object (which we will collectively refer to as “the marker interfaces”)

3. all other classes and interfaces.

We can then characterize the types of subtyping relationships within and between these
three kinds, and eliminate all possible types of subtyping cycles:

• No cycle includes kind 1. The type Object has no supertypes in the base type
system, and by Property 4, we do not add any in the overlay type system. It thus
cannot be involved in any subtype cycle.

• No cycle includes both kinds 2 and 3. The only subtyping relationships between
kind 2 and kind 3 are ones in which a type of kind 3 is the subtype. These include
subtype relations in the base type system ΓB and also all honorary facts H. As all
such relationships only go one way, there can be no subtype cycles involving members
of both kinds 2 and 3.

• No cycle includes only kind 2. By property 3, no element of kind 2 is the subtype
in any honorary typing fact. This means that there are no honorary relationships
between elements of kind 2. There can thus be no cycles within kind 2, as the only
typing relationships between its members are in the base type system, and we assume
that the base type system is non-circular.

• No cycle includes only kind 3. By definition, kind 3 does not contain any types
that are the supertype of any honorary typing relationship. Therefore, all typing facts
regarding solely types of kind 3 are present in the base type system. The honorary
typing relationships can therefore introduce no cycles within kind 3.



85

Chapter 5

Applications of Joe-E

The greatest challenge in using Joe-E is that attaining many of the security benefits
requires architecting systems following capability design principles, which are unlikely to
be familiar to most programmers. Consequently, using Joe-E effectively will likely require
training in capability concepts. Where it is not practical for every programmer to have these
skills, it may be possible for someone with such expertise to carefully architect a system
being designed as a collection of modules whose interfaces enforce least privilege and thus
minimize trust in the modules. Modules that are no longer critical to the application’s
security properties can then be implemented by programmers with less specialized training,
who must just ensure that their code passes the verifier. For those familiar with capability
design principles, Joe-E appears to be usable; we did not find the restrictions that Joe-E
imposes a serious problem in the programs we have implemented.

Joe-E has been used to build a number of interesting applications. Here, we describe two
systems designed to leverage Joe-E’s support of isolation and least privilege to improve the
security of web applications. First is the Waterken server, which provides secure isolation
and cooperation between mutually distrustful web applications written in Joe-E. Second
is Capsules, a security-enhanced version of the familiar Java servlet architecture that uses
Joe-E to provide isolation between components and users, granting each component only the
privileges it needs to perform its function.

5.1 Waterken

In its standard distribution, Joe-E supports design and review of code that is single-
threaded, transient and local. The Waterken Server [14] extends this scope to code that is
multi-threaded, persistent and networked. Waterken follows the asynchronously communi-
cating event loop model [43]. An event loop is a loop that repeatedly extracts the next event
off a queue and processes it. Each application object is created within a single event loop,
which services all invocations on the object. An event loop and the collection of objects it
services is called a vat. The vat is the unit of concurrency in Waterken: separate vats may



Section 5.1. Waterken 86

process their events concurrently, but each vat is single-threaded, so two events handled by
the same vat cannot be processed concurrently. The vat is also the unit of persistence: after
processing of an event has completed, all changes to the vat’s objects are written to persistent
storage. Vats may communicate through exported references. When a new vat is created, a
reference to one of its objects is exported. The object that created the new vat receives the
exported reference, enabling it to send asynchronous invocations to the referenced object.
An asynchronous invocation is processed by the referenced object’s vat as an event, and the
return value sent to the caller’s vat as an event. The invocation event and return event may
also transport exported references, introducing the callee or caller to objects in either’s vat,
or in another vat.

An instance of the Waterken server can host many vats within a single JVM. An appli-
cation running on the Waterken software consists of application-specific Joe-E code, running
in one or more vats, which may be hosted on a single Waterken server instance or spread
across multiple Waterken instances. The implementation of the Waterken server is crafted to
ensure that security review techniques for single-threaded, transient, local Joe-E code remain
sound when applied to Joe-E application code running on the Waterken platform. To assist
verification of its implementation, the Waterken software itself uses Joe-E to prove certain
properties of its own implementation and to ensure that assumptions about hosted appli-
cation code are valid. The following sections examine some of these properties to highlight
different “design for review” techniques enabled by Joe-E. The Waterken server comprises
about 13K SLOC of Joe-E code and 4K SLOC of Java (excluding blank lines and comments).

5.1.1 Consistent Persistence

Processing of an event by a vat should be like processing of a transaction by a database:
either the vat is transitioned to a new consistent state, or reverted to its state prior to
processing. Put another way, either all mutations that occur during handling of an event
must be persisted, or none of them must be. This consistency is crucial for preserving the
security of Joe-E applications hosted on Waterken. For example, in the currency example
from Fig. 2.3, if some mutations were not persisted, a malicious client could generate money
from nothing by invoking the takeFrom() method during processing of an event that did not
persist changes to the source Purse. Waterken’s persistence engine is designed to prevent
such violations of consistency. After an event is processed, the persistence engine traverses
the graph of all objects that were accessible during processing. Any modified objects are
written to persistent storage. If the modifications can not all be committed, an exception is
raised and processing of a subsequent event begins by reloading the vat’s state from its prior
persistent state.

The correctness of the persistence engine depends upon its ability to find all modifica-
tions made during processing of an event. This goal is met by requiring Waterken applications
to be written in Joe-E. As a result, application code is restricted as follows: static variables
cannot be mutated or refer to mutable objects; Java APIs that provide access to external
resources, such as java.io.File constructors, are not accessible, and thus cannot be used to



Section 5.1. Waterken 87

cause unmonitored side effects; and application code is not able to break the encapsulation
of objects that implement the persistence engine. These restrictions make it easier to review
the persistence engine.

The correctness of the persistence engine also depends upon certain restrictions upon
the code that invokes it. The persistent state of each vat is encapsulated in an object
of type Database. An event, or transaction, is an invocation of the Database’s enter()

method, which takes an argument of type Transaction. The enter() method provides the
Transaction object access to the vat’s objects and returns an object of the Transaction’s
choosing. A faulty Transaction object could violate consistency by storing a reference
to a vat object and modifying it after completion of the enter() invocation, or during a
subsequent invocation. The persistence engine would then fail to detect the modification
since it didn’t expect the late modification, or didn’t know that a subsequent event had
access to the object. A reference to a vat object could similarly escape if used as the return
value from a transaction. We use Joe-E to prevent the escape of mutable vat objects by
declaring both the Transaction type and the return type of enter() to implement Joe-E’s
Immutable marker interface. The Joe-E verifier can thus be used to ensure that clients of
the persistence engine do not have these faults. All clients of the persistence engine in the
Waterken software pass the Joe-E verifier.

In defensive programming, an object implementation normally has sole responsibility
for maintaining its invariants. The object’s clients are assumed to be buggy or even mali-
cious. In the above example, Joe-E’s Immutable interface is used to relax this constraint,
enabling the Database object to depend upon particular client behavior that the Joe-E ver-
ifier automatically enforces. Through clever use of a Joe-E-verified property, a design which
previously required review of all client code can instead be made defensively consistent, so
that we don’t need to review the client code.

5.1.2 Cache Coherence

Exported references are accessed remotely using HTTP. An HTTP GET request results
in an invocation of a getter method on an object in some vat. The request response contains a
representation of the return value from the getter method. To support caching, the Waterken
server includes an ETag header in the response. The value of the ETag header is a secure
hash of the current application code and all vat state accessed during invocation of the getter
method. All GET requests are processed in a Waterken transactional event that aborts if
any modifications are made, ensuring that there are no side effects and that the request can
be served from cache.

Cache coherence is crucial to application correctness for the same reasons as persistence
consistency: either may break code or invalidate security reasoning due to the use of partially
stale state. For caching of Waterken server responses to be coherent, the ETag value must
fully identify the response text: two responses with the same ETag must yield the same text.
For performance reasons, it is best to avoid generating the response text at all when there
is a valid cached version. Consequently, the ETag is not simply a hash of the response text.



Section 5.1. Waterken 88

Instead, the Waterken server leverages Joe-E’s support for determinism [21] and so uses the
hash of the inputs to the response text generator. Since Joe-E prevents application code
from accessing sources of non-determinism, the Waterken server can track all state accessed
by the application and thus ensure that any return value is identical to that produced if the
same state is used again.

The ability to track all mutable state, together with the prohibition against reading
sources of non-determinism, makes any Joe-E computation cacheable and ensures that caches
can be made coherent. In the absence of such a systematic approach, caching is often im-
plemented in an ad-hoc fashion specific to a given request. For example, any use of HTTP
caching in a standard Java servlet environment requires careful code review for potential
cache coherence issues. The difficulty of performing this analysis sometimes results in dis-
abling of caching. Joe-E enables the Waterken server to reliably ensure cache coherency,
allowing caching to be enabled for every application.

5.1.3 Remote capabilities

Many of the security arguments that can be made about Joe-E code rely on the capabil-
ity nature of local object references. Object state can only be accessed via a corresponding
object reference. Since object references are unforgeable, encapsulation boundaries can be
used to control access to references. Since a reference cannot be represented as data, clients
cannot delegate a reference by invoking a method that accepts only data arguments, such
as a String.

Supporting remote references necessarily requires a representation of an object refer-
ence that can be passed as data over a network. The Waterken software enables application
code to use remote references that retain the security properties of local object references,
by ensuring that data representation of such references is never visible to application code.
When processing an invocation event, the Waterken server deserializes the received data into
a target object reference, method name and argument list. Any remote reference representa-
tion contained in the received data is deserialized to a java.lang.reflect.Proxy instance
that contains the remote reference data and a reference to the outbound message queue.
An invocation on the proxy object enqueues an outbound message, using the remote refer-
ence data. The serialization of an invocation ensures a message will only contain a remote
reference representation if a corresponding proxy is being sent as an argument. The Joe-E
verifier ensures that a proxy object is afforded the same protections as any other object;
so a client cannot access the contained remote reference data, nor the outbound message
queue. Without access to the outbound message queue, an application cannot construct a
working remote reference even if it somehow gained knowledge of the remote reference data.
Consequently, a security review can reason about an application’s access to remote objects
using the same logic applied for local objects. In particular, an application can only access
the network if it has received a remote reference; and then only to invoke methods on the
referenced object.

By default, the permission tracking enabled by Joe-E does not support tracking of secret



Section 5.2. Capsules 89

data, like strings or integers. The underlying data can be communicated via any method
argument, unrestricted by the type system. By encapsulating each such secret in an object,
we enable Joe-E style reasoning about the flow of such secrets in a program. In the above
example, remote reference data is encapsulated in a Proxy object which allows Joe-E code
to refer to the data and delegate it, without ever having direct access to the data. This
pattern can extend the scope of Joe-E verification to a wide range of data-centric programs,
such as those that perform cryptographic operations or generate markup, as the Waterken
server does.

5.2 Capsules

The Capsules system [32] is an architecture that uses Joe-E to build a security-enhanced
version of the Java Servlet API. It aims to enable programmers to build real-life web appli-
cations with high-level security properties that can be easily verified by security review. It
aims to make it feasible to conclude with confidence that application security goals are met
while providing a model in which programmers can efficiently build real applications.

Concretely, Capsules is designed to support the principle of least privilege for each servlet
in the application, provide reliable isolation between user sessions and between servlets.
These properties simplify reasoning about the security of Capsules systems and facilitate
reviewing them for security.

Capsules relies on Joe-E to enforce isolation between web application components and
grant each one a minimal set of privileges appropriate to its functionality. We prevent
application components from interfering with each other and restrict the privileges granted
to each one in accordance with the principle of least privilege [59]. These two properties
serve to prevent vulnerabilities in a web application and limit the consequences of exploiting
remaining ones.

5.2.1 Design

Joe-E can reliably isolate objects from each other, and Capsules uses this ability to sepa-
rate web applications into components which can only interact in proscribed ways, achieving
its component isolation property. Each application component forms a protection domain.
The extent of a protection domain is specified by the set of capabilities assigned to that
component, and by considering which capabilities are shared between domains, we can un-
derstand how components can communicate with each other. If two components have disjoint
sets of capabilities, we immediately know that they are completely isolated.

In this approach, all application state, including capabilities to application-specific re-
sources, is stored in a per-session data store. This architecture facilitates session isolation.
The only way state can be shared between sessions is if shared capabilities are added to the
session by an application’s trusted session initialization code. This trusted code is a small
fraction of the application that must be carefully reviewed. Each application component



Section 5.2. Capsules 90

JVM

Tomcat
App-specific 

session initializer

Dispatcher

Capsules 
Servlet

Capsules 
Servlet

Capsules 
Servlet

Capsules 
Servlet

Figure 5.1: Overall architecture of the Capsules application. The dispatcher exposes a
modified Servlet API to the application-level servlet instances. The dispatcher is part of
the Capsules framework; the application developer writes the servlets and session initializer
code. Typically, servlets are written in Joe-E, and the trusted session initializer is written
in Java.

has a declarative policy governing its access to the per-session data store. This permits re-
view of communication channels between components and limits how they can interfere with
each other. Properly-defined access policies can achieve least privilege and thus facilitate a
security review.

5.2.2 Implementation

We implemented a prototype web framework, called Capsules, atop the Java Servlet
framework. Capsules introduces an additional layer, the dispatcher, between the servlet con-
tainer and Capsules applications; see Figure 5.1. The dispatcher exposes a modified Servlet
API to the application and controls communication between the user and the application,
allowing it to provide additional security features not offered by traditional servlet containers.

Isolation

In the Servlet framework, a single instance of each servlet is created and shared across
all sessions. The instance variables of servlets can be used to store servlet-local state that is
shared across sessions (though this is not a recommended practice), and application develop-
ers may not realize that these shared variables can cause concurrency bugs or leak sensitive
information between users. This violates our session isolation goal. To eliminate this com-



Section 5.2. Capsules 91

munication channel, we require that servlets contain no mutable state, which we enforce
by declaring the JoeEServlet class to implement Joe-E’s Immutable marker interface (see
§ 4.3).

This restriction ensures that all application state is maintained in HTTPSession objects,
which are made available to a servlet when it calls the doGet and doPost methods. Since
servlets cannot maintain state on their own, any objects associated with users must be
reachable from that user’s HTTPSession object. Thus, we can achieve user isolation by
ensuring that every object in the HTTPSession contains only data that should be accessible
to the current user.

Restricted Views

The standard servlet model makes the entire session object and all cookies received
available to every servlet. In this model, it is difficult to pinpoint where session members
and cookies are used, and it is challenging to fully understand the consequences of modifying
or misusing these objects. This lack of documentation complicates security reviews. Cap-
sules provides restricted access to the HTTP session object and cookies in order to reduce
privileges granted to components and facilitate review. Joe-E’s support for strong encapsu-
lation ensures that the session object can only be accessed through the methods provided in
the view. Capsules SessionView and CookieView classes are automatically generated based
on a configuration file, which can be easily audited to ensure that only appropriate session
members are made available to each servlet.

5.2.3 Evaluation

To evaluate the effectiveness of our programming model for building secure web appli-
cations, we built a webmail application as a case study. While our application is simple, we
are able to demonstrate high-level security properties. Our application is implemented as a
collection of servlets, where each servlet corresponds to a specific application feature. We
wrote 8 servlets for creating user accounts, authenticating and logging out of the application,
and for reading, writing, and deleting emails. Each of these servlets defines a SessionView

and a CookieView that we use to restrict the capabilities provided to that component. Users’
mail is stored in the file system, in the form of a mailbox directory for each user following the
Maildir specification. A top-level users directory contains all the user directories. We use
Postfix to accept incoming email on port 25 and deliver it to the user’s mailbox directory.

We identify two critical application-specific security properties that we want our webmail
service to achieve:

1. Integrity. If Alice is a user of the webmail service, an attacker who does not know
Alice’s password is unable to use the webmail service to affect (directly or indirectly)
the contents of Alice’s mailbox, except by using the webmail service’s defined interface
to send Alice an email.



Section 5.2. Capsules 92

2. Privacy. If Alice is a user of the webmail service, an attacker who does not know
Alice’s password is unable to use the webmail service to gain any new information on
the content of messages in Alice’s mailbox through any overt channel.

We assume that the attacker controls a malicious web client. We allow for the possibility that
the attacker might be colluding with the programmers who wrote the webmail servlets (so we
do not exclude malicious code from our threat model). However, we assume that the system
administrator and platform code (e.g., Tomcat, Postfix) are trusted and not malicious. The
privacy property makes no promises about information that might be leaked through covert
channels.

To evaluate how effectively Capsules facilitates security reviews, we conducted a security
review of our webmail application to verify the two critical security properties listed above.
Unlike many security reviews, which often consist of a best-effort search for bugs starting
with the most likely places, we instead aimed to convince ourselves that our two critical
security properties hold. We constructed an explicit argument that each property holds and
then checked that the code satisfies each of the assumptions made by that argument. Due
to the isolation and privilege separation properties of the framework, it sufficed to manually
review only a portion of the code in order to check each property: we were able to identify
a subset of the code that was critical to enforcing each property and then informally reason
about these subset.

Verifying Integrity

To convince ourselves that our webmail application achieves the integrity property
above, we first identified all application components that have the ability to directly modify
the contents of Alice’s mailbox by finding all components that can obtain a capability to
any file in Alice’s mail directory. We found that only the session initialization module and
DeleteServlet can acquire a capability to modify any such file, the latter only when it ex-
ecutes within Alice’s session. We also verify that each session is associated with at most one
user of the webmail service and that the authentication logic prevents logging into a session
as Alice without knowledge of Alice’s password. Therefore, no one else can gain control of a
session belonging to Alice and directly violate her integrity.

Next, we check that the attacker cannot indirectly affect the contents of Alice’s mailbox.
The only way this could happen is if some other session were able to influence the execution
of code running in Alice’s session, causing that code to modify Alice’s mailbox in a way she
did not request. Here our basic strategy is to show that the set of heap objects reachable
from the attacker’s session is disjoint from the set of heap objects reachable from Alice’s
sessions and then argue that this prevents an attacker from influencing the behavior of code
running on Alice’s behalf.

Session Initialization We reviewed the application’s session initialization code and con-
firmed that it doesn’t use unsafe Java features to violate the isolation properties that Joe-E



Section 5.2. Capsules 93

guarantees for the application code. This enables us to soundly reason about the propagation
of capabilities.

The session initialization module is the only application code that can create file capa-
bilities from scratch. We verified that it only uses this power to construct an Auth capability,
giving it a reference to the users directory. The Auth capability is then stored in the session
object.

Authentication When a user successfully authenticates and logs into the webmail ap-
plication, the application populates her session object (that of the session in which the
successful authentication occurred) with capabilities to her mailbox files; before then, the
session object does not contain any mailbox file capabilities. See Figure 5.2, which shows
the application state before and after successfully authenticating a user.

In our framework, the only way capabilities can become available to application code
processing a request is if they are stored in the session. Since application code cannot
construct new capabilities to the outside world, all external capabilities must derive from
the ones initially placed in the session by the session initializer. Therefore, the only way for
code to access Alice’s mailbox is if its session’s initial capabilities gave access to her directory.
Due to the immutability of session objects and Joe-E’s prohibition on mutable static fields,
there is no way to “smuggle” Alice’s data or a capability to her mailbox from a previous
session.

In our application, there are several capabilities initially stored in the session, but only
two can be used to access the users directory and thus potentially read or modify Alice’s
mail: namely, a reference to the Auth class, which authenticates a user and retrieves her
mailbox, and a reference to the CreateAccount class, which can be used to add new users
to the system.

In reviewing the CreateAccount class, we confirmed it can only create and initialize an
account that does not already exist at creation time. It appropriately restricts the user name
via a whitelist of valid characters, chosen to avoid creation of multiple names that the Postfix
mail transfer agent will map to the same user mailbox directory. It then invokes Postfix to
create and initialize the new mailbox directory and updates the Postfix configuration to
recognize this username. As a CreateAccount object cannot be used to gain access to an
existing mailbox, we do not need to review it further to establish the integrity property.

The Auth class has a single method which accepts a username and password and returns
the user’s mailbox directory. We reviewed the implementation of this method and verified
that it requires a correct password before returning a capability to the user’s mailbox files.
Before returning, the Auth capability invalidates itself by clearing a boolean flag. This
operation is atomic because our framework serializes all requests per session by default. This
means that each Auth object can only be used for at most one successful authentication. As
the session initialization code adds only a single Auth object to the session, there is no way
for that session to gain a reference to any other Auth object. The Auth object encapsulates
a capability for the user’s mailbox files and releases this capability only upon successful



Section 5.2. Capsules 94

(a): an unauthenticated session:

 Session

 - create

 - auth

 - readmail

 - deletemail

 - name

Create 
Account

Auth

  File System
      users
          Alice
          Bob
          Carol
     

NULL

CreateAccount.SessionView
GetCreate()

Login.SessionView
GetAuth()

SetMaildir()
SetName()

(b): an authenticated session:

 Session

 - create

 - auth

 - readmail

 - deletemail

 - name

Create 
Account

Auth

  File System
      users
          Alice
          Bob
          Carol
     

ReadOnly
File

Read.SessionView
GetReadmail()

GetName()

Delete.SessionView
GetName()

GetDeletemail()

"Carol"

DeleteMailInbox.SessionView
GetName()

GetReadmail()

Figure 5.2: Our authentication scheme. A fresh session is preloaded with capabilities that
can be used to create a new user account or authenticate a user. However, once a user is
authenticated, the Auth capability is invalidated.



Section 5.2. Capsules 95

authentication. There is no other way to gain a capability to a user’s mailbox. Thus, during
the lifetime of any one session, the session can contain capabilities for at most a single user’s
mailbox files.

It follows that a web client who does not know Alice’s password cannot obtain a session
with access to her mailbox.

User Isolation We verified a user isolation property: the execution of a request on behalf
of one user (say, the attacker) cannot influence the execution of code running on Alice’s
behalf in a way that would affect the contents of Alice’s mailbox, except for authorized
transmission of e-mail messages to Alice. We verified this in two phases: first, we ruled
out influence via overt channels by reasoning about all possible overt channels between two
sessions; then, we ruled out unwanted influence via covert channels by examining the code
running on Alice’s behalf.

We eliminated the possibility of unwanted influence via overt channels by reasoning
about the possible runtime heap graphs of our application. In particular, the heap graph
separates into mostly-disjoint regions. Each region corresponds to a distinct user: the region
contains all of the objects transitively reachable from any session associated with that user,
except that we prune the transitive traversal at certain bridge objects. In addition, there is
a set of shared resources that are not associated with any particular region. See Figure 5.3
for an example. Bridge objects are objects that have a capability to a shared resource, an
external resource, or an external communication channel. Bridge objects enable a potential
communication channel between regions and as such must be reviewed to verify that they
do not violate user isolation.

In our application, the bridge objects are the CreateAccount, Auth, and MTA classes.
We reviewed their code to confirm that they do not permit unintended communication.
CreateAccount and Auth could in principle be used by servlets to communicate across
sessions, but we verified that the servlets do not in fact use this potential channel to com-
municate in a way that would violate integrity. No servlet listens on this communication
channel and uses the message received to influence its modifications to mailbox contents.
DeleteServlet does not query the existence or non-existence of other accounts or allow
their existence to affect the modifications it makes to Alice’s mailbox. LoginServlet does
not use its capability to the mailbox files to modify the contents of any mailbox. No other
servlet ever receives a capability to modify the contents of any mailbox file.

Mail transport can also be used to communicate across sessions, but it cannnot violate
the recipient’s integrity because the DeleteServlet does not look at the contents of any
mail message before deciding which one to delete.

Since servlets are immutable, they cannot be used as a communication channel between
users. Therefore, they are not bridge objects and need not be reviewed when verifying
user isolation. As part of the Framework, the dispatcher is assumed not to violate servlet
isolation.



Section 5.2. Capsules 96

Dispatcher

Session 
View

Cookie 
View

HTTP 
Session 1

HTTP 
Session 2 HTTP 

Session 3

Session 
View

Cookie 
View

Session 
View

Cookie 
View

Session 
View

Cookie 
View

"Alice" "Carol"

auth

createAccount

CarolBobAlice

Users

MTAMTA

Login.doPost() Inbox.doGet() Login.doPost() Inbox.doGet()

createAccount createAccount

Figure 5.3: A graph of the heap of our running application. Isolation can be verified by
examining a limited number of trusted components (shaded) that bridge isolation domains.



Section 5.2. Capsules 97

Verifying Privacy

To ensure that the privacy of Alice’s messages is preserved, we reviewed all application
code that can potentially read the contents of Alice’s messages. For each such class, we
verified that it does not send information about the messages to anyone other than Alice.
We check that (a) it does not send this information to other connected web users or out via
outgoing email, and (b) it does not communicate any of this sensitive information to other
classes, e.g., by storing it in the session. If condition (b) did not hold, we would also have
to review any additional code that could read that data.

Immediately after session initialization, with no user logged in, only the CreateAccount
and Auth capabilities grant any access to the user mailboxes in the filesystem. The logic
implementing the CreateAccount capability ensures that it does not leak sensitive informa-
tion. It invokes the MTA to add a user for mail delivery and then sends a welcome mail
to that user. It reads data from the filesystem only when it checks that a user does not
already exist, so it does not reveal any information about the content of messages in Alice’s
mailbox. Use of this capability is guarded by a lock to eliminate possible race conditions
from concurrent creations of the same user name. The Auth capability itself never looks at
the contents of a user’s directory, so it does not reveal any information about the content
of the user’s messages. Additionally, our prior review of the Auth capability showed that it
returns a capability to a user mailbox only when supplied with the appropriate password, so
an attacker who does not know Alice’s password cannot use it to gain a capability to Alice’s
mailbox.

The only remaining way that Alice’s privacy might be compromised is if servlets running
on behalf of Alice read her email and leak information about it to the attacker. After
authentication, the objects in the session that provide access to her mailbox include the
CreateAccount capability and the ReadOnlyFile and DeleteMail wrappers pointing to her
mailbox directory. Of these, only the ReadOnlyFile is actually able to read the contents
of Alice’s mail. We therefore need to review only the servlets that are allowed to get this
capabiltity, as specified by the policy file.

The policy file specifies that only the Read and Inbox servlets have access to the
ReadOnlyFile capability used to read Alice’s mail. The Inbox reads in the file names of
Alice’s messages and reads the content of these files in order to get their subject lines. The
file names are used for URLs that point to the Read servlet; as web browsers do not reliably
protect the URLs of pages, these are potentially readable by a malicious website acting in
concert with the attacker. While these file names contain timing information used to gener-
ate a unique identifier by the local mail transfer agent, they do not reveal any information
about the content of the message. The subject line, on the other hand, is included only in
the response to Alice as part of a text block in the HTML page sent to Alice. Unlike the
URL of a page, the browser’s same-origin policy is assumed to reliably protect the content of
a page from being read by script originating from other domains. Our webmail application
is hosted on its own server, so we do not need to verify any script belonging to other appli-
cations. In our current implementation, our application does not have any script content, so



Section 5.2. Capsules 98

we do not need to worry about other servlets being able to read the content output by the
Inbox servlet. If our application had used JavaScript, we would have to review the scripts
to ensure that they do not allow other servlets to read sensitive information from the Inbox
servlet.

The Read servlet reads the contents of a file from the user’s mailbox directory, with the
filename specified by a GET parameter, and simply outputs the file’s contents as a single
DOM text node in the response to be sent back to Alice. We assume that the browser
does not leak this text to any other domain; that should be prevented by the same-origin
policy. If we had JavaScript in our application, we would have to verify that it does not read
and exfiltrate the private information output by this servlet, but at present our webmail
application does not use any scripts. The Read servlet does not make any other overt use of
the contents of the email message, and thus does not violate Alice’s privacy.



99

Chapter 6

Related Work: Joe-E

6.1 Capabilities

Capabilities have a long history as an approach for securing systems [35]. Early multi-
user capability systems were based upon hardware support for capabilities, where each capa-
bility indicated a resource and a set of access rights. These systems were sometimes criticized
for the performance overhead imposed by the special hardware, and for the extra complexity
of managing capabilities separately. Joe-E minimizes performance overhead by performing
security checks at compile time as part of static verification, rather than at runtime. In
Joe-E, references used to designate resources also carry the authorization to access those
resources, eliminating the need to separately manage privileges.

While hardware support for capabilities is no longer commercially available, capability-
based operating systems are still found in research and some commercially-available high-
assurance systems, including the GNOSIS kernel from TymShare, KeyKOS [24], EROS [65],
and derivatives. We share the view of capabilities as programmatically invokable references,
but integrate them into the language.

6.1.1 Object-Capability Languages

There has been a great deal of work on object-capability languages. As far back as 1973,
Morris described how a programming language can provide protection features that enable
composition of code from multiple sources and support local reasoning about security [45].
W7 implemented these features in a Scheme environment and provided an early example
of language support for capabilities [55]. Joe-E was heavily influenced and inspired by E,
a seminal object-capability language [43]; Joe-E brings many of the novel security features
of E to a modern language (Java) that might be more familiar to programmers, and shows
how a static type system can support these security goals. We have also drawn on work
in the E language community on recognizing and defining the object-capability approach
and identifying patterns for secure programming. Our work is closely related to Oz-E [67],



Section 6.2. Security for Java and Related Languages 100

an object-capability variant of Oz, and Emily [68], an object-capability subset of OCaml
concurrently developed with Joe-E that follows similar design principles.

Object-capability principles have also been applied to the web. The Caja project [44]
provides a way to incorporate untrusted content into a web page, introducing an object-
capability subset of Javascript called Cajita as well as support for legacy Javascript code
by translating it to Cajita. ADsafe [15] is a more restrictive object-capability subset of
JavaScript, designed to support advertisements whose security can be checked without re-
quiring code rewriting. Emily, Cajita, ADsafe, and Joe-E can all be considered examples of
semantically-enhanced library languages [69]: they subset a base language, then augment its
functionality by adding libraries.

6.1.2 Privilege Separation

Privilege separation is the process of breaking a legacy application into two or more
components that can execute at different levels of operating system privilege. A prototypi-
cal architecture involves a trusted, high-privilege master process that does most of its work
via less-privileged slaves [52]. The privman library [31] factors out much of the logic of
implementing a privilege-separated program. The Wedge toolkit [8] aims to facilitate the
process of privilege separating legacy software by creating appropriate primitives and pro-
viding a runtime profiling tool that identifies the resources used by the components to be
separated. We share the goal of architecting systems for security. However, operating system
approaches seem best-suited to coarse-grained protection domains; Joe-E provides language
support for separating an architecture into many fine-grained protection domains.

6.2 Security for Java and Related Languages

The Java language incorporates mechanisms for access control and protection, based
on the security manager, which is invoked when sensitive operations are performed. It can
make use of stack inspection and code source information to determine whether to allow
such operations [22]. This mechanism provides central enforcement of a security policy,
which is usually specified centrally and separately from the code to which it applies. In
contrast, Joe-E enforces security polices implemented by the program itself in the form of
capability delegation and reference monitors defined by encapsulating objects. This provides
an expressive mechanism for supporting a wide variety of policies, including fine-grained and
dynamic policies that may be difficult to enforce in Java. It also allows modularity and
separation of concerns for policy enforcement, because each part of the security policy can
be enforced at the point in the code where it is relevant. We expect Java’s mechanisms to be
better-suited to enforcing security on legacy code, but for new code, Joe-E may help enforce
and verify richer, domain-specific security properties.

Scala [49] is an object-oriented language that compiles to Java bytecode and provides
interoperability with Java. It offers better support for functional programming, supporting



Section 6.3. Functional Purity 101

immutable data structures and event-based Actor concurrency. While we find some of the
spirit of Scala in line with the patterns for effective Joe-E programming, it does not provide
security properties comparable to Joe-E. Scala syntactically prohibits static fields and meth-
ods, replacing them with instance fields on singleton classes. While syntactically cleaner,
this approach can still provide capabilities in the global scope.

Another way to enforce application-specific security properties is by restricting informa-
tion flow between designated security principals or labels. The Asbestos [18] and HiStar [78]
operating systems enforce information-flow policies at a per-process granularity.

Like Joe-E, Jif [46] is based upon Java, leveraging programmer familiarity with Java.
Jif implements information flow restrictions at a finer granularity, enabling each variable
to receive its own label and providing a way to check many of these restrictions statically
at compile time. Variable declarations are annotated with labels that indicate an owning
principal and a policy for data stored in the variable. The policy can specify (a) the principals
whose data the variable may depend on and (b) those whose data are allowed to affect the
information stored in the variable. These restrictions are enforced statically, in cases where
it is possible to statically guarantee that the policy is followed, and dynamically, in cases
where it is not. Information flow techniques seem most suitable when the security policy
is concerned with the flow of data throughout the system; in contrast, capability languages
seem most relevant when we are primarily concerned with controlling the side effects that a
system can have.

As a special case, it is possible in Jif to specify data flow restrictions that ensure that
a particular method is pure. In contrast, while our approach does not allow for the rich
policies expressible in Jif, obtaining purity in Joe-E does not require the explicit specification
of principals or policies.

6.3 Functional Purity

A number of previous languages, including object-capability languages, have addressed
functional purity. Most of these languages are more functional in style than the Joe-E
subset of Java, making it easier to limit side effects. In the E language, the Functional

auditor examines an object to check that “every method on the object has no side effects and
produces an immutable result depending solely on its arguments” [77]. The auditor verifies
this property using runtime introspection on an object; in contrast, we verify it statically
for individual methods. In this work, we specifically build upon Joe-E, but we expect that
many of our techniques could be applied to many other object-capability languages as well.

We were inspired by the notion of “environment-freeness” [62], which is essentially
the determinism portion of our notion of purity. Environment-freeness was used to verify
determinism of a decoding operation and for fail-stop enforcement of the inverse property
described in Section 3.2.2.



Section 6.3. Functional Purity 102

6.3.1 Side Effects

Most previous work on purity in imperative languages has focused on side-effect freeness
and paid little attention to determinism. The definition of side-effect free used has gener-
ally been weaker than ours, as it has included only objects in memory and has excluded
state external to the program. For legacy code, Rountev [56] and Salcianu and Rinard [58]
provide pointer-based analyses that recognize side-effect free methods. Both address only
in-language side effects; neither mentions any special treatment for native methods, which
can cause external side effects. Analysis-based approaches have the advantage of being di-
rectly applicable to legacy code. Language-based approaches, on the other hand, provide
more guidance for programmers in writing side-effect free methods.

In Joe-E, we make use of class immutability both in enforcement of determinism and
for side-effect freeness. Specific classes in the standard Java type system are considered
immutable; standard Java type safety and final field enforcement ensures that objects of
such classes are never mutated after construction. An alternative is to use an extended
type system that treats some references or instances as read-only while allowing others to
be mutated. The C++ const qualifier for pointers is the most well-known example of
this. It is a compilation error to assign the fields of, or invoke a non-const method on, a
const reference. Its use in preventing side effects is limited because the restrictions are not
transitive; it is possible to modify an object contained in a field reached via a const pointer.
A transitive analogue of this was introduced by the KeyKOS operating system [24] as a
“sensory key”; such a key prohibits writes and also causes all keys retrieved through it to be
sensory. This concept is also found in the type system of a few programming languages to
improve reasoning about immutability and side effects. Such types allow for documentation
and modular checking of effect restrictions on a per-function basis.

Ieurusalimschy and Rodriguez [27] use such a qualified type to enforce side-effect freeness
in the SmallTalk-like language School. Methods annotated to be side-effect free are type-
checked with all arguments and the instance pointer implicitly marked with an old qualifier.
This qualifier prevents writes to the fields of old objects. The type checker only allows
invocations of side-effect free methods on old objects, and treats the return values from all
such invocations as old. This ensures that the only non-old (and thus mutable) objects that
can be used by the method are ones it creates itself. The paper makes no mention of rules
for dealing with mutable objects in the global scope or external side effects; their emphasis
on soundness would suggest that School has neither. The Javari [71] type system provides
similar qualifiers for Java, but instead of having a side-effect free annotation, Javari uses
explicit readonly qualifiers as a transitive, sound version of C++’s const. Like C++, Javari
provides a way for fields of a class to be declared as exempt from the readonly restrictions.

In addition to a sound, transitive version of const with no escape clauses for mutable
fields, the D language [9] provides an instance-immutability qualifier invariant that can
be used to achieve functional purity. Functions marked with the pure keyword must have
only invariant arguments, can only read invariant global state, and can only call other
pure methods. Their compiler restricts invariant variables in the global scope to constant



Section 6.3. Functional Purity 103

values that can be computed by the compiler1, ensuring determinism. While this approach
avoids the need to eliminate mutable state and determinism from the global scope, there
is a substantial cost in expressivity as it prevents pure functions from making any use of
impure functions and methods. The result is essentially of a partition of the program into
imperative and purely functional portions, whereas our approach allows pure functions to
make full use of the rest of the program, limited only by the references they hold.

The increased convenience of reference immutability (const or readonly) over class
immutability is attractive, as one can just use the type qualifier with existing classes rather
than modifying the type hierarchy. However, class or instance immutability is necessary
to ensure determinism in a concurrent program, as otherwise a mutable alias can be used
to concurrently modify the object. For non-concurrent programs, reference immutability
would be adequate provided that the global scope can only store immutable references.
As a general mechanism for defensive programming, reference immutability can only serve
to protect the originator of a reference from unwanted modifications; the recipient of an
immutable reference may still need to make a defensive copy.

Instance immutability, like provided in D, is an interesting alternative to class im-
mutability that deserves further exploration. For Java, however, the lack of type safety for
generics is likely to be an issue. For immutable classes, we perform runtime checks to en-
sure that the elements placed in an ImmutableArray are actually immutable; this would not
be possible with a purely compile-time invariant type qualifier as would be required to
preserve full compatibility with Java.

Spec# [5] and JML [11, 34] are extensions to C# and Java that allow the programmer
to specify invariants on functions and classes. They follow Bertrand Meyer’s suggestion
that classes and methods should have a contract specified by invariants [34]. They support
annotating methods with the pure attribute, but purity as defined for JML includes only
side-effect freeness and not determinism.

6.3.2 Functionally Pure Languages

In strictly functional languages, like Haskell, nearly all functions are pure. Monads
can be defined to allow writing in a more imperative style, in which each operation takes
an input state and returns a monad instance that wraps the result along with auxiliary
information such as side effects [72]. The monad type defines an operator for sequencing
such invocations to obtain a final result; syntactic sugar makes this look like a sequence
of imperative statements. While some monads provide a way to retrieve a sequence’s final
result integrated with any auxiliary information, other monads do not. They are “one-way”:
once a value is wrapped with the monad, it never comes out. The I/O monad is an example.
All functions that potentially expose nondeterminism or cause external side effects use this
monad, which allows them to be recognized as potentially nondeterministic. All functions

1The D compiler can perform a substantial amount of computation to determine these values, unlike
Java’s, which only pre-assigns literal constants.



Section 6.4. Overlay Type Systems 104

whose return type does not mention the IO monad are functionally pure. While monads
provide a means to use effects in Haskell, the language is primarily oriented at the functional
style. In contrast to a mechanism for imperative patterns in a functional language, our
approach is focused on being able to recognize pure methods in an otherwise imperative
language. This reduces the changes needed to existing code and programming patterns.

Other systems have mixed imperative and functional programming styles to varying
degrees. The Eiffel language [42] separates what it calls commands and queries. Commands
may have side effects, while queries are supposed to be side-effect free. This is, however,
only a convention; it is not enforced in any way. Similarly, both Euclid [33] and Spark [4]
define two distinct constructs for routines: procedures can have side effects, while functions
are only able to compute a value (and thus are guaranteed to be free of side effects). In
Euclid, functions can only import variables read-only, which prevents side effects and ensures
determinism if the imported variables (which may be modified elsewhere) are treated as
additional arguments. In Spark, annotations on procedures specify exactly which variables
can be modified by the procedure, and which variables their modifications are derived from.
This and other information flow policies are verified by the Spark Verifier.

6.4 Overlay Type Systems

Our use of an augmented overlay type system follows E [43], which also provides a
mechanism for indicating that Java classes “honorarily” satisfy similar object properties,
though unlike our approach, in E these properties are not represented by types in the Java
type system. The work that most closely resembles our use of marker interfaces is the
Auditors framework for E, which uses runtime introspection of an object’s AST to verify
annotated properties such as immutability and selflessness [77]. In contrast to that work, we
verify similar semantic properties on a per-class basis in a class-based language.

In Joe-E, marker interfaces’ semantic restrictions apply on a per-type basis. For exam-
ple, specific classes in the Java type system are considered immutable; standard Java type
safety and final field enforcement ensures that objects of such classes are never mutated after
construction. An alternative, at least for immutability, is to use an extended type system
that treats some references or instances as read-only while allowing others to be mutated.
The C++ const qualifier for pointers is the most well-known example of this. It is a com-
pilation error to assign the fields of, or invoke a non-const method on, a const reference.
Its use in preventing side effects is limited because the restrictions are not transitive; it is
possible to modify an object contained in a field reached via a const pointer. A transitive
analogue of this was introduced by the KeyKOS operating system [24] as a “sensory key”;
such a key prohibits writes and also causes all keys retrieved through it to be sensory. This
concept is also found in the type system of a few programming languages to improve reason-
ing about immutability and side effects. Such types allow for documentation and modular
checking of effect restrictions on a per-function basis.

The Javari [71] type system provides similar qualifiers for Java; its readonly qualifier



Section 6.4. Overlay Type Systems 105

serves as a transitive, sound version of C++’s const. Like C++, Javari provides a way for
fields of a class to be declared as exempt from the readonly restrictions. This is potentially
problematic where the immutability of an object of untrusted type is necessary to guarantee
a security property. In addition to a sound, transitive version of const with no escape
clauses for mutable fields, the D language [9] provides an instance-immutability qualifier
invariant that can be used to ensure that a specific instance of an object will never be
modified. This has the benefit of allowing the same type to be used in immutable and non-
immutable forms. Immutability-Generic Java [79] supports both transitive-const (ReadOnly)
and instance-immutability (Immutable) annotations, as an extension to the Java type system.
Like Javari, they provide a mechanism for a class to declare fields as exempt from the read-
only restrictions, which we would consider a soundness hole. Also in contrast to our work,
they do not consider the escape of a ReadOnly reference to a partially-constructed object
to be a violation of their immutability property. Pluggable type system frameworks like
JavaCop [1] and the Checker Framework [51] can also be used to define type checks that
enforce semantic properties such as immutability.

Previous work has addressed the problem of partially-constructed objects in the context
of non-null types for instance fields in object-oriented imperative languages such as Java and
C#. A number of papers have presented type systems to properly type partially-constructed
object instances. Raw types [19] indicate which levels of the type hierarchy have not yet
performed their share of an object’s initialization. Delayed types [20] are associated with
a lexical scope in which the object is not fully initialized, but ensure that all associated
objects are fully initialized before the scope is exited. Masked types [53] explicitly specify
which fields of an object have not yet been initialized, and thus cannot yet be used. These
approaches would provide a more precise way to address the use case of wanting to pass
a reference to an object under construction to other objects, allowing for more complex
initialization patterns, e.g., creation of circular verifiably-immutable data structures.



106

Chapter 7

Retrofitting Web Applications for

Security Review of Cross-Site

Scripting Resistance

7.1 Introduction

Web vulnerabilities such as cross-site scripting (XSS) are a matter of increasing concern,
as web applications are adopting a more prominent role in our lives. Attacks that exploit
these vulnerabilities can do significant harm to a site’s users and reputation. Web frameworks
are an increasingly popular tool for creating web applications. They have been successful in
introducing abstractions that can cut development time as well as reducing the opportunity
for bugs, with a corresponding increase in security. For example, object-relational mapping
systems relieve the programmer from the need to write explicit SQL code, providing effective
defense against SQL injection attacks. Framework support for automatically inserting and
checking CSRF tokens protects applications from cross-site request forgery attacks.

A number of frameworks also incorporate defenses against cross-site scripting. Web
template systems, which fill in templates with provided data, are a natural place for these
defenses to be implemented. Automatic escaping (autoescape) implementations escape this
data by default, in order to prevent inserted content from affecting document structure.
However, traditional autoescape systems use a single escaping function for all data, which
adequately protects data in some HTML contexts but is insufficient for others. Consequently,
traditional autoescape systems are error-prone and require non-trivial manual effort to use
securely [75].

Context-sensitive automatic escaping. Context-sensitive autoescape systems improve
upon traditional autoescape systems by choosing an appropriate escaping function based
on the HTML context where data is inserted into the HTML document. Context-sensitive
autoescaping provides a more robust foundation for security, as it can reliably defend against



Section 7.1. Introduction 107

cross-site scripting attacks arising from untrusted data, regardless of context. Context-
sensitive autoescaping is a recent development, and has just started to find adoption in
production template systems. Given its attractive security and usability properties, we
anticipate that more frameworks will support it in the near future.

Retrofitting existing code. We are interested in the problem of retrofitting existing web
applications to reliably protect them from cross-site scripting attacks by use of context-
sensitive autoescaping. There is a substantial body of code written that already uses tem-
plates, and is thus a candidate for migration to context-sensitive automatic escaping. While
in principle it may appear straightforward to adopt automatic escaping, in practice doing so
is more difficult, even for code that was previously written to target a traditional (context-
insensitive) legacy escaping system.

The primary technical challenge is to avoid breaking application functionality, while
ensuring that every untrusted value is adequately escaped. If we were to modify the template
engine to escape all data that is inserted into the output document, many unmodified legacy
applications will break due to over-escaping. Due in part to the inflexibility of traditional
(context-insensitive) escaping, legacy applications frequently use “opt-out” mechanisms to
turn off autoescaping for some variables. In these cases, programmers use manual sanitization
or knowledge about data provenance for protection from content injection. If we blindly
apply context-sensitive autoescaping to all data, then these variables will be escaped (or
double-escaped) unnecessarily, breaking the application’s functionality. On the other hand,
exempting these variables from autoescaping and inserting them into the output as is would
frequently result in vulnerabilities, since programmatic sanitization and use of opt-outs is
often buggy. In short, we must find a way to identify which variables should be autoescaped
and which ones should be exempted.

In this paper, we devise framework enhancements and refactoring tools to address these
challenges. Our approach uses a combination of lightweight static analysis and runtime
mechanisms to identify which variables do and don’t need to be autoescaped. We implement
these strategies in a prototype context-sensitive escaping mode for Django, and evaluate
their effectiveness in enhancing security assurance and reducing developer effort.

In this work, we make the following contributions:

• We propose an alternative approach to context-sensitive autoescaping that allows a
basic level of cross-site scripting protection for many applications, without any code
changes or annotations.
• To support trusted content stored in databases, we present a strategy for coordinat-
ing context-sensitive autoescaping with a framework’s object-relational mapper. This
supports common web programming idioms without needing explicit trusted casts or
other escape hatches.
• We design a mechanism for building up HTML code programmatically, with context-
sensitive autoescaping applied. Our design makes it easy for an automated refactoring
tool to rewrite existing code to use this mechanism. The resultant code gains the



Section 7.2. Background 108

security benefits of context-sensitive autoescaped templates.
• We include the above enhancements in a prototype implementation of context-sensitive
autoescaping for the Django web framework.
• We use our implementation to retrofit eleven open-source Django web applications and
demonstrate that the approach is effective at protecting against cross-site scripting
attacks with modest developer effort, while simplifying security code review.

In the rest of this paper, we first provide some background on template systems and
automatic escaping. We then identify a number of challenges to retrofitting existing appli-
cations to use autoescape and our approach toward addressing them. Next we describe our
prototype implementation for the Django web framework, followed by an evaluation centered
on the results of applying this system to open-source applications. Finally, we compare to
related work and offer our conclusions.

7.2 Background

Template systems. A template system is an interpreter for a restricted language: the
template language. The template engine interprets a template to generate an output docu-
ment (in this paper, an HTML document). A template consists of snippets of HTML code
alternating with various template directives. The most basic kind of template directive is
variable interpolation, which inserts content from the template’s arguments into the output
document. Template directives also include control constructs such as conditionals, loops,
and inclusions of other templates.

A web application is thus a combination of a set of templates (written in the template
language) and some code (written in a general-purpose programming language). The code
handles an incoming request by computing values and then passing them as arguments to a
template that it selects and renders as a response.

Autoescaping. Variable interpolation is a vector for cross-site scripting attacks. Conse-
quently, many template languages provide some kind of support for escaping the contents of
a variable before it is output. To prevent the error of forgetting to escape variables, many
template systems perform automatic escaping (autoescaping), automatically applying an es-
caping filter to all variables. This helps prevent XSS attacks. Filters generally strip certain
characters with syntactic significance in HTML or replace them with harmless alternatives
(e.g., < is converted to &lt;).

Filtering outputs correctly is nontrivial due to the broad variety of parse contexts in
HTML [75]. There are several policies that are appropriate for escaping input strings in
HTML, depending on the context in which they are found. Contexts include body text,
attribute values, URLs and parts of URLs, and contexts within JavaScript and CSS. For
example, a string starting with javascript: is harmless in the text of an HTML document,
but if used in a URL can cause attacker-provided JavaScript code to execute.



Section 7.2. Background 109

Traditionally, frameworks that support autoescaping use one standard escaping function
for all variable interpolations. Generally this function is sufficient for HTML text and quoted
plain-text attribute values, but not for other contexts such as URLs or JavaScript code.
This provides incomplete protection and can give web applications developers a false sense
of security. A template author using untrusted content in a context not handled by the
default escaping function needs to be aware of this limitation and must explicitly invoke
a different escaping function. The author may also need to explicitly disable the default
escaping function to avoid incompatible escaping.

More recently, a few frameworks have adopted context-sensitive escaping, where the
template engine identifies the parse context where untrusted data is being inserted and
applies an appropriate escaping function for that context. To determine the parsing contexts,
such frameworks parse the document to identify where tags, and script and style blocks are.
This is a significant gain for security, providing complete mediation for all HTML contexts.
It is also good for developers, who no longer have to manually escape data for contexts not
handled by default in a context-insensitive system.

Opt-outs. Autoescaping is only appropriate where the data being inserted is intended to
act as plain text. Escaping functions, by their nature, disable all HTML markup. In real-
world templates, many template inputs are not plain text, and are instead HTML markup
that the developer wants to insert intact into the template. Automatic escaping of such
data would break the application by over-escaping. For this reason, practical autoescaping
frameworks provide mechanisms to disable the automatic escaping operation.

This opt-out can be specified in two different ways. The most direct way is to indicate
in the template that automatic escaping should not be applied at a specific variable interpo-
lation point. While convenient for the developer, this is error-prone as there may be multiple
sources for the data appearing in a particular template, and some may be more trusted than
others. To review such an annotation, it is necessary to identify all places that the template
is invoked and verify that the inputs are trustworthy.

An alternative is to have a way of marking a string in application code to be “safe”
from automatic escaping when it is used in templates. This is easier to review, as it allows
the policy decision to trust the string to be made nearer to the code that justifies this trust
(e.g. by the input’s provenance or manual sanitization performed on it). Older autoescape
frameworks provide a single “safe” marker that disables automatic escaping, but does not
indicate the HTML context that the value is intended for use in. This requires auditing
not only that the trust designation is justified, but that marked data is subsequently used
in an appropriate context. When context-sensitive autoescape frameworks provide similar
functions, they are associated with specific HTML contexts. Once a local audit verifies that
the marked string is safe for use in its assigned context, there is no need to check where it
is used in templates, as the autoescape framework will detect mismatched contexts.



Section 7.3. Problem 110

7.3 Problem

Goals. We aim to take existing programs written in a web framework by authors who are
not expert in security and retrofit them for use in a template engine with context-sensitive
autoescaping. This process should result in an application that is verifiably secure against
cross-site scripting, without breaking or disabling application functionality.

We expect that typically, the developer will have a limited budget or patience for manu-
ally modifying code that is currently “working”. Therefore, we want to minimize the amount
of manual effort and the number of manual changes that the developer must make; our goal
is to automate the process as much as possible. Also, to make it easy for the developer to
review and approve the changes recommended by the automated refactoring tool, we want
these changes to be as small as possible.

In this work, we focus only on server-side cross-site scripting. We make no attempt to
defend against client-side XSS; we leave that problem to others.

Assumptions. We assume the legacy web application makes use of a template system for
the dynamic HTML pages that it serves. For strict mode (see Section 7.4.2), we additionally
assume that an object-relational mapper is used for all database access. Our approach has
no further dependencies on the choice of web framework used, and so is compatible with any
framework that provides these features, such as Ruby on Rails, CakePHP, or Struts, and for
extension code in sufficiently-featured standalone CMSes such as Joomla.

We assume that the developer is not malicious, but do not assume security expertise.
Specifically, we assume that HTML markup found in templates and source code is benign,
but we make no assumptions about the application’s ability to secure itself against malicious
user input, as XSS bugs are prevalent in legacy applications.

Challenge: determining what to escape. If all templates took in solely untrusted,
plain-text input, adopting context-sensitive autoescaping would be easy: we could simply
instrument the existing template engine to keep track of the parse state of its output and
perform appropriate escaping for the current parse state on each variable. Everything in the
template itself would be trusted, all arguments passed in would be correctly escaped, and
we would be done.

Unfortunately, it is not so easy. In practice, template arguments are not limited to
plain text; some arguments contain HTML fragments that must be output unchanged to
preserve application functionality. The code may have built up these HTML fragments
programmatically in a way that is safe by construction, or they may have originated from a
trusted source.

In templating languages without autoescaping, places where trusted HTML is used
cannot be easily distinguished from untrusted inputs where the developer forgot to specify an
escaping function. Additionally, even when an escaping or sanitization function is specified,
it is possible that it is inappropriate or insufficient for the parse context.



Section 7.3. Problem 111

The variable entry.teaser contains data parsed from an RSS feed.

Excerpt from the template:

{{ entry.teaser|removetags:"script"|safe }}

Figure 7.1: An incorrect opt-out allowing cross-site scripting in NiftyURLs. The safe an-
notation instructs Django to disable autoescaping for this value.

In autoescaping template systems, the problem of forgetting to escape inputs entirely
is avoided, as inputs are escaped by default. However, when we identify a variable where
the application has disabled autoescaping, it is not clear what to do: if we automatically
escape it, we risk breaking application functionality, but if we don’t escape it, we risk security
problems.

Challenge: we cannot trust existing sanitization or opt-outs. In our experience
examining legacy Django applications, we found that it is not unusual for them to contain
insufficient sanitization. This complicates the retrofitting task. We list two representative
examples below, found in the NiftyURLs and Pinax Forum Django applications.

In NiftyURLs, the application code attempts to sanitize content retrieved from an RSS
feed by passing it through a special filter to remove all tags of type <script> (see Figure 7.1).
This is insufficient to remove all scripts because JavaScript can also be invoked through
event handler attributes and JavaScript URLs, and both of these would pass unchanged
through this filter. After programmatically (and incorrectly) sanitizing the RSS content,
NiftyURLs disables Django’s context-insensitive autoescaping mechanism for this data. If
our retrofitting tool preserved this opt-out, the vulnerability would remain present in the
retrofitted code.

In Pinax Forum, we found a more subtle bug (Figure 7.2). The forum allows users to post
messages using the Markdown library, which converts sequences such as “one *fine* day”
to HTML like “one <em>fine</em> day”. Hyperlinks can also be generated, with syntax
like “[Example](http://example.com)”. Because Markdown will only generate a specific
set of HTML tags (and not, e.g., script tags), one might expect that the output of the Mark-
down processor will be safe for inclusion into the document and free of scripts.1 However,
this expectation is false: because the Markdown library does not limit the URLs that may
appear in hyperlinks, the Pinax Forum code can be abused2 to add a Javascript URL to
the page, which will execute script if a visitor to the forum clicks on it. Thus, this opt-
out is erroneous as well. If our retrofitting tool trusted this opt-out and preserved it, the
vulnerability would remain.

When retrofitting legacy applications, we want to be sure to fix all such vulnerabilities,
so that the retrofitted application will no longer be vulnerable.

1 In its default mode, Markdown allows HTML tags present in its input to pass through unchanged. Pinax
Forum HTML-escapes posts before passing them to Markdown, which serves to remove all such HTML.

2e.g., “[Example](javascript:alert%28%22xss%22%29)”



Section 7.4. Approach 112

Excerpt from the Python code:

def save(self, force_insert=False, force_update=False):

...

self.body_html = markdown(escape(self.body))

...

Excerpt from the template:

{{ post.body_html|safe }}

Figure 7.2: An incorrect opt-out allowing cross-site scripting in Pinax Forum. While one
might expect that output from the Markdown library is safe for inclusion in the output
document without further escaping, in fact there is a subtle bug.

As these examples illustrate, the not-infrequent need for opt-outs from traditional au-
toescaping systems leads non-expert developers to sometimes opt out from autoescaping
inappropriately. Our evaluation includes seven Django applications that make use of un-
trusted inputs. Of those seven, at least two are vulnerable to cross-site scripting by way of
template variables marked as exempt from automatic escaping (see Figures 7.1 and 7.2). We
also saw several instances of opt-outs that appeared to be unnecessary, possibly indicating
confusion as to where opt-outs are required or a willingness to add them preemptively.

For these reasons, we cannot trust existing opt-outs in the code we are retrofitting. Ide-
ally, our retrofitted version would not require any trusted opt-outs from the new, context-
sensitive autoescaping system. In cases where opt-outs cannot be eliminated, their number
should be minimized. Any that remain would ideally be verifiable as correct with straight-
forward, local code review at a limited number of easily identified audit points. We wish
to be able justify the safety of all HTML that is output, so that we can confidently declare
the resulting application to be secure from cross-site scripting and other HTML injection
attacks.

7.4 Approach

We propose two different ways to defend applications from content injection attacks,
mitigation mode and strict mode. These two modes present a tradeoff between retrofit effort
and the security guarantees provided.

Mitigation mode defends against cross-site scripting, but does not prevent other injection
attacks, such as user-interface spoofing or site defacement. For many existing applications,
however, it can defend against cross-site scripting without requiring any annotations or code
changes.

Strict mode defends against content injection more generally, maintaining the guarantee
of autoescape template systems that all HTML markup in the output derives from the tem-
plate or another trustworthy source. This is sufficient to prevent spoofing of trusted UI and



Section 7.4. Approach 113

defacement attacks that add unauthorized HTML markup to a site. It may require additional
annotation and rewriting effort to preserve application functionality while guaranteeing this
safety property.

7.4.1 Mitigation Mode

Standard context-sensitive autoescaping not only protects against cross-site scripting,
but also against injection of any HTML markup through untrusted channels. If we focus
only on cross-site scripting, however, it is possible to be more permissive when handling
untrusted template inputs that are marked as exempt from escaping. In a template for a
non-autoescaping template language, all variables are effectively opted out from escaping.
Instead of escaping all HTML, we can allow some markup while still blocking XSS. Such
permissiveness cannot make the site any more vulnerable to content injection attacks than
it was originally, as the input value was already opted out from escaping.

The benefit of being more permissive here is that the autoescape system does not need
to be as precise in determining what inputs are trustworthy for use without escaping. With
a permissive enough policy (provided it still defends against XSS), we have found that it is
possible to ensure safety against XSS while preserving much or even all of sites’ functionality
with no code changes or annotations. A highly-permissive policy that is still believed to block
cross-site scripting is the one recommended by OWASP for HTML sanitization. This consists
of a whitelist of tags, attributes, and protocols that are generally believed to not execute
JavaScript.

We implement this policy as a “mitigation mode” for legacy code that defends against
cross-site scripting attacks with no retrofit effort. Do to its weaker security guarantees,
we only suggest the use of this mode when protection is desired with no modifications
made to application code. Mitigation mode can have false positives, breaking application
functionality when template variables contain inline JavaScript, but these situations appear
to be rare.

In mitigation mode, we preserve any escaping performed by the existing template engine
on variable interpolations. For each template variable occurring in a context where HTML
tags can appear, we parse its value at runtime and apply the OWASP sanitizer to any HTML
it contains. Using this approach, non-script HTML content from template arguments will
be preserved if it was allowed by the original template engine.

7.4.2 Strict Mode

In strict mode, we preserve the invariant that all markup displayed to the user is au-
thorized by the site administrator, or constructed by trusted code written by the developer.
This prevents a broad class of HTML content injection attacks including site defacement,
content spoofing for phishing attacks, and link spamming.

Conceptually, strict mode identifies which variables can soundly be output without
further escaping and which need to be escaped. It then escapes only the variables that need



Section 7.4. Approach 114

escaping. To identify the variables that should not be escaped, we make use of existing
opt-out directives without placing trust in them. Opt-outs indicate locations where the
programmer most likely intends for some non-plain-text content to be present, and where
the existing code will preserve HTML markup. In the event that we can safely honor opt-
outs, we should do so, as otherwise we are breaking the application for no security benefit.
For templates in non-autoescaping template languages, all variables should be treated as
opted-out, to be escaped only when it is determined necessary for security.

As we do not trust the existing opt-out annotations, we must make our own decisions
regarding which inputs if any are trusted for outputting in the current context. In the
cases where a value is opted-out for escaping, but we do not identify it as trustworthy for
outputting in the current context, we modify the output in order to defend against content
injection attacks. This is both the primary opportunity that the new template system has
to improve the security of the web application, and also the most likely case for it to break
intended application functionality.

When a variable’s value must be modified to prevent a possible attack, there are often
multiple ways to do so. Existing automatic escape systems operate by applying an escaping
filter to all untrusted content. This runs the risk of double-escaping content, particularly if
one is modifying the behavior of an existing application in a way that its developer did not
anticipate.

For this reason, when escaping opted-out variables, we use an idempotent escaping
function when one is available. (An easy way to build an idempotent escaping function is
to first unescape the value, then escape it.) This will avoid double-escaping in the event
that the input has already been escaped. In this way, idempotent escaping simultaneously
preserves functionality and defends against injection attacks, whereas standard automatic
escaping can only do one or the other.

Database support

In frameworks with an object-relational mapper (ORM) layer, we have a strategy that
can help preserve functionality without trusting opt-outs in templates. One major source
of opt-outs from automatic escaping is the retrieval of trusted data from a database. It
is common for applications to maintain the invariant that particular columns of tables are
trusted to contain HTML that is safe to display to the user. (Every application we studied in
our evaluation that supported persistent formatted text stored trusted HTML markup in the
database.) This invariant usually holds for one of two reasons: either (a) that column is only
populated with trusted input, e.g., from the site administrator; or (b) its HTML content is
programmatically built up by templates or trusted code. Provided that the invariant holds,
data retrieved from such a column is safe to output as HTML without any further escaping
or sanitization.

In web frameworks that include an ORM (object-relational mapper) layer, the schema
for storing persistent data in a database is defined explicitly within the framework, e.g. with a
model class declaration. Objects are used to represent instances of the model, corresponding



Section 7.4. Approach 115

<html><head><title>{{post.title}}</title></head><body>

<h2>{{post.title}}</h2>

<p>{{post.contents|safe}}</p>

<ul>

{% for comment in post.comments %}

<li><a href="{{comment.site}}">{{comment.name}}</a>:

{{comment.body}}</li>

{% endfor %}

</ul>

</body></html>

Figure 7.3: A template for displaying a post in a simple Django blog application. Trusted
posts and untrusted user comments are retrieved from the database.

to database rows. Fields on such objects generally correspond to database columns; certain
fields can contain trusted contents.

We propose that trust annotations be associated with fields in the object-relational
model. Applications’ implicit trust relationship with database fields can thus be made ex-
plicit, where framework code can be aware of these trust relationships.

For example, in a blog, posts can be created and modified only by the site adminis-
trator. These posts can be stored in a database model that labels their content field as
containing trusted HTML. When retrieved from the database, the content of this field can
be automatically cast to a marker type that indicates that it should be trusted by the new
autoescaper to contain HTML. This would be sufficient to avoid over-escaping in the simple
blog application in Figure 7.3.

In order to maintain the invariant that all data in a particular field is in fact trustworthy
HTML that is safe to display without escaping, we propose interceding on all writes to the
database initiated via the ORM system. When persisting data for a trusted field, we verify
that the data being written is appropriately trusted. In the blog example, any writes to a
blog post must be verified to belong to the trusted HTML marker type. If an untrusted
value is seen when persisting a trusted field, it will be escaped before being written to the
database.

In order to preserve the ability of the administrator to insert trusted content into the
database, we propose exempting any administrative interface provided by the application
from the write-time check. Trusted content that is suitable for storage in such fields can also
be generated as the output of a template. Enforcing this check on writes closes the loop and
allows us to soundly treat output from trusted fields as HTML that can be trusted by the
new template system.

Programmatic template construction

Even when written in a web framework, applications do not always use the template
system when constructing HTML content. Using the template system is preferable for au-



Section 7.5. Implementation 116

ditability as with contextual autoescaping it is secure by default against cross-site scripting.
In the applications we looked at, however, string operations were used fairly frequently to
construct HTML. Most such string-based HTML construction was fairly small and self-
contained, essentially consisting of a “pseudo-template” where all HTML in the output is
derived from string constants in the code.

To handle this case, literal string constants in code that contain trusted HTML can
be rewritten to include a cast to the trusted HTML type used by the autoescaper. String
operations can be provided as necessary for the building up of HTML in a “bottom-up”
fashion. If properly implemented, such code changes can be automated by a static code
rewriting tool. The particular set of operations necessary will depend on the language used
and its idioms for building up strings. Python, for example, makes heavy use of the %

operator, which performs printf-style interpolation of arguments into a format string. The
result of the rewriting will be code that makes use of trustworthy library calls to build up
HTML in a safe way. The output of these calls can be automatically cast to the appropriate
trusted type used by the context-sensitive autoescaping code, preventing over-escaping.

7.5 Implementation

Our implementation operates on applications written for Django, a Python-based web
application framework. Django’s standard template language provides context-insensitive,
non-idempotent automatic escaping of variables in templates. Specifically, a conditional
escaping function is called on the value of each variable in the template. The conditional
escaping function checks to see if the value has been “marked safe”, and if it has not, it
replaces the characters <, >, ’, ", and & with encoded HTML entities. This function is
sufficient to sanitize values inserted between HTML tags (except within a special tag such
as script or style) or within quoted, plain-text attribute values (i.e., those without special
semantics such as URLs, event handlers, or inline styles). The developer can disable Django’s
autoescaping for a particular variable in a template by using the safe filter.

Our implementation combines runtime mechanisms (including typed anti-taint markers
on trusted strings, context-sensitive autoescaping in the template engine, support for inline
templates, and integration with Django’s ORM layer) with static analysis (tools to analyze
and rewrite legacy code). These mechanisms are detailed below.

7.5.1 Context-sensitive autoescaping

We modify the Django template engine to apply context-sensitive autoescaping. Our
template engine dynamically parses the output of a template as it is evaluated, keeping track
of the current HTML context. When a variable is output, we apply an appropriate escaping
rule, dependent upon the HTML parse context and how the variable’s value has been marked
(see below).



Section 7.5. Implementation 117

7.5.2 Marked strings

Django uses runtime tracking to identify strings that should not be automatically es-
caped. Django considers a value “marked safe” if it belongs to a special marker class defined
by the Django library (SafeString and SafeUnicode, both subclasses of SafeData). These
classes are subtypes of the corresponding standard string classes and act like normal strings.
Concatenating two objects of one such type yields a result of the same type. Otherwise,
there is no special effort made to avoid loss of the “safe” designation. For instance, the
marked-safe annotation is lost when a marked-safe string is indexed, joined or truncated
using string library functions, or used in printf-style string-formatting expressions using
Python’s % operator.

Marked-safe values can be created using the constructors for the corresponding classes
or, more commonly, by calling the utility function mark_safe on an existing string. Django
templates provide a standard filter safe that can be applied to variables, with the same
effect as the mark_safe method. The Django template engine exempts values that have
been marked safe from its automatic escaping.

Our scheme also uses runtime tracking to identify strings that may not need to be
automatically escaped by the context-sensitive autoescaper. Since we do not trust the opt-
outs in the legacy code, we cannot reuse Django’s marked-safe annotations; instead, we
define our own marker classes. Our marker classes indicate the HTML parse context where
a value can be safely inserted. The HTMLString class is for trusted HTML, and it has an
attribute that includes the HTML parse context into which the HTML snippet can be safely
inserted. The most common case is content that can be inserted in a PCDATA context, i.e.,
formatted textual content such as found between tags. We also provide a HTMLAttribString
class for strings containing attribute=value pairs, as this is a data type we see commonly in
Django code that programmatically constructs HTML markup.

Rarely, application code will rely on strings to satisfy application-specific security invari-
ants that are stricter than ensuring that a string is safe for use in a particular HTML context.
To facilitate security review of these applications, we provide an AdminString marker class
for such trusted strings. The AdminString marker type indicates that the string’s value was
input directly by the administrator or was explicitly cast to the type by trusted invocation
of the AdminString constructor.

Our types are orthogonal to the Django’s marked-safe annotation: it is possible for con-
tent to be marked as safe but not trusted using our markers, or vice versa (e.g., a string might
be marked using our HTMLString class, but not marked safe using Django’s mark_safe).
This orthogonality facilitates preserving existing behavior when porting applications to our
context-sensitive escaping version of Django’s template engine.

7.5.3 Escaping rules

When a value is interpolated into a template, it may be handled in a number of different
ways, depending on its type:



Section 7.5. Implementation 118

• If it has not been marked safe, it is escaped with Django’s standard escaping filter.
If this filter is not sufficient, such as for a URL, additional escaping or sanitization is
performed as needed.
• If the string is marked safe and is also of type HTMLString with a starting context
compatible with the output context, it is output without any escaping.
• If it is marked safe, but is not of type HTMLString, the output is escaped with an
idempotent escape function. This rule helps avoid over-escaping: if the string happens
to be already escaped and thus safe for its context, this idempotent escaping does not
result in double-escaping, unlike Django’s default autoescaping.
• Regardless of type, data interpolated into a context that our prototype does not support
is escaped as it would be in Django’s unmodified template system and a warning is
printed.

With these rules, we use the existing marked-safe annotation as a hint whether or not the
programmer believes additional escaping is needed, but we don’t trust it. If the program-
mer has marked a value with mark_safe, indicating that she believes no further escaping
is needed, and if we can verify that the string is already adequately escaped (i.e., if our
idempotent escaping function leaves this string unchanged, or if we have previously marked
it with HTMLString), then we can use the string as-is, preserving application semantics and
functionality.

7.5.4 Database integration

Django’s interactions with databases are mediated by its sophisticated object-relational
mapper (ORM) layer. The structure of database-persisted objects is defined by model classes
written in Python, which specify the names and types of data stored in the model as well
as the relationships between models. Instances of a model class represent persistent objects
that can be read from and written to the database. The model class defines typed fields that
hold persistent objects’ attributes. The object-relational mapper layer translates models to
database tables, fields to database columns, and model instance objects to database rows.

We extend Django’s ORM so the developer can introduce trust annotations on data
stored in the database. We define a custom field type, HTMLField, that is used to store
data consisting of trusted HTML. By changing a field declaration in the model class from
TextField to HTMLField, the developer can annotate that a field is used for storing trusted
HTML content. We only support trusted HTML snippets that begin and end in the HTML
PCDATA parse context; we have not seen need for anything more. An example of this
annotation is provided in Figure 7.4.

When data is read from an HTMLField, our augmented ORM layer automatically casts
it to the trusted HTMLString type in the PCDATA context. It also verifies that all data
written to that field of a model instance is of the HTMLString type and is labeled to start in
the PCDATA context; if it is not, it calls an idempotent escaping function on it first.

We wish to retain the ability for the administrator to change the value of HTML fields



Section 7.5. Implementation 119

Code defining the original model for blog posts:

class Post(Model):

title = models.CharField(max_length=255)

contents = models.TextField()

comments = models.ManyToManyField(Comment)

Annotated version indicating that post contents contain trusted HTML:

class Post(Model):

title = models.CharField(max_length=255)

contents = HTMLField()

comments = models.ManyToManyField(Comment)

Figure 7.4: Original and annotated model for posts of the blogging application example from
Figure 7.3.

using Django’s administrative interface. In order to achieve this, we apply a runtime patch
to the administrative code that casts inputs to these fields to the annotated type before
saving the field.

We provide similar support for fields that contain content marked as derived from ad-
ministrator input. When data is read from an AdminField, we automatically cast it to the
AdminString type. Writes to such a field are replaced by a empty string if the value being
written is not an AdminString.

7.5.5 Programmatic templating

Web applications sometimes build up HTML using string operations instead of using
templates. Our HTMLString type supports construction of HTML by concatenation, and
supports the combination of trusted HTML components of type HTMLString and untrusted
strings that do not belong to this type. We implement this by overloading the + operator on
strings to generate a HTMLString as output when we can verify that it is safe to do so. When
concatenating two HTMLStrings, we verify that the labeled starting parse context of the
second string is compatible with the ending parse context of the first. When adding a regular
string to an HTMLString, our current implementation checks to see that the regular string
is appropriately escaped for the PCDATA context and that the HTMLString is consistent
with this context. If this check fails, the result of the concatenation is demoted to a regular
Unicode string. A more sophisticated approach that performed idempotent autoescaping on
just the untrusted portion would also be possible, but we did not find it necessary to do so
for the applications we tested.

Code that builds up programmatically commonly uses Python’s % operator to per-
form printf-style substitution into template-like format strings. We define a new class,
HTMLTemplate, to allow such string interpolation to be safely performed on HTML content.
Objects of this type are treated as HTML source code with holes that are filled in using



Section 7.5. Implementation 120

the same context-sensitive automatic escaping system that we use on templates. To preserve
compatibility with the existing semantics of Python string interpolation, which does not per-
form any escaping, we treat all interpolation points as implicitly “marked safe”. Escaping is
only applied where our implementation does not recognize the substituted values as HTML
trusted for their parse contexts.

The result of this interpolation operation is a trusted-safe HTMLString. This is a sound
pattern when the template string is a source-code literal and thus trusted, as the inputs are
either verified to be trusted strings used in the correct context, or are rendered harmless via
escaping.

Another common idiom calling the join method on a separator string to assemble a
programmatically-assembled list of HTML snippets into a single string of HTML markup.
We provide a replacement for this method that returns a HTMLString as output when it is
safe to do so. The method takes the separator and pieces to join, verifying that each one is
either marked as safe HTML for the context in which it is used, or is a string that does not
change when escaped.

We provide a tool for refactoring existing code to use HTMLTemplate, HTMLString, and
html_join. We implement it this tool using lib2to3, which is a refactoring framework in
the Python standard library originally designed to facilitate translating Python 2 code to
Python 3 code. It is convenient for our purposes because it has a high-fidelity Python parser
that preserves spacing and comments, and supports pattern matching against parsed ASTs.

We look at the literal values of strings to recognize probable HTML belonging to two
contexts: PCDATA (HTML-formatted text markup) and HTML attribute-value sequences
such as type="submit" id="submit-button". We require such attribute-value sequences to
start with whitespace, as this seems to be the common idiom in Django code. (This practice
arises from a desire to have clean output when there are no such attributes specified, for
example with templates such as <div%s>.)

Strings that match either of the above patterns and contain a formatting conversion
specifier are recognized as the corresponding template types instead. We replace calls to join
with equivalent calls to html_join if they are directly wrapped in calls to mark_safe or if the
method they are found in contains calls to the HTMLString or HTMLTemplate constructors.
An example of input to and output from our refactoring tool is provided in Figure 7.5.

We additionally provide a library routine to perform safe regular expression substitution
on HTMLStrings. This is a substitute for the sub method provided in the standard Python
re library. Our safe version extracts the portions that are preserved by the substitution from
the original HTMLString, treating them as new HTMLStrings with starting context consistent
with their original parsing. The substitute values are then inserted between these pieces,
performing the same type checks as if string concatenation or html_join were applied to
the bits. Provided that the replacement value in the regular expression contains no special
characters or is an appropriately-typed HTMLString, the end result will remain tagged as
safe HTML.



Section 7.5. Implementation 121

Original code that builds up HTML programmatically:

def render_list(elements):

output = ["<ul>"]

for element in elements:

output.append("<li>%s</option>" % escape(element))

output.append("</ul>")

return mark_safe("\n".join(output))

Version that builds up HTML in a verifiably safe way, as automatically rewritten
by our static analysis:

def render_list(elements):

output = [HTMLString("<ul>")]

for element in elements:

output.append(HTMLTemplate("<li>%s</option>") % escape(element))

output.append(HTMLString("</ul>"))

return mark_safe(html_join("\n", output))

Figure 7.5: Example of the transformation of programmatic templates to a safe-by-
construction form as automated by our static analysis tool.

7.5.6 Library patching

For templates to render correctly without over-escaping, all sources of trusted markup
used by web applications must be marked as such using our new marker types. For cases
where this markup derives from templates, database fields, or programmatic micro-templates
that we have rewritten, it will be properly marked and thus will not be over-escaped.

Another source of HTML commonly encountered in Django applications is libraries used
by web applications. A number of the Django standard libraries create HTML programmat-
ically and many mark the output as “safe”.

In our implementation, we perform runtime patching of some standard Django li-
braries so that methods that return programmatically generated HTML return values of the
HTMLString type. The libraries patched include the Forms module (which includes methods
used for rendering form widgets) and the Django administrative interface code. The main
changes here are to code used for rendering form controls used in user-facing Django appli-
cations and in the Django administrative interface. For these we wrap return values in the
trusted HTMLString type.

We also rewrite a utility class in the forms module that takes a dictionary mapping
attributes to values and constructs a string containing a sequence of HTML attribute-value
pairs. We modify the method to perform safety checks so that the method cannot be used for
creating attributes or attribute values that cause JavaScript to execute unless these inputs
are marked as trusted. We change the output of this method to be marked as trusted for
the HTML attribute-name context.

After rewriting the forms and administration modules, we found that the Django trans-
lation system could lose trust markings on strings. The translation system contains a dictio-



Section 7.6. Evaluation 122

nary of translations of strings from a initial language, used in the source code, to potentially
a large number of other languages. To support this system, the developer wraps each user-
facing literal string in the program with a call to the translation routine ugetttext (often
rebound to _). This causes the string to be looked up in the translation table for the version
in the user’s language.

These translations are sometimes applied to strings containing HTML formatting, and
thus belonging to our HTMLString type. We modify the translation method to preserve the
HTML string trust annotation when a string is translated. Unfortunately, this means that
the translation strings must be trusted as well as the literal HTML text in the program, but
there is no clear way around this if translations are provided for HTML strings. (HTML is
used in translations to reflect differences in sentence structure between languages.)

7.5.7 Limitations

We currently only fully support safe escaping into HTML contexts, not JavaScript or
stylesheet contexts, as we have not implemented a state-exposing parser for these languages.
We instead emit a warning when any string is interpolated into contexts that are not yet
supported. These contexts have been handled in prior systems [66], and we could support
them in our implementation as well with additional engineering work.

Our implementation currently tracks HTML contexts in HTMLStrings and template
outputs in a fully dynamic fashion. While this offers maximal flexibility, one can achieve
better performance with a static approach [61]. Our contributions are largely orthogonal to
this design decision.

7.6 Evaluation

We ported eleven open-source Django applications to our modified version of Django
that performs context-sensitive autoescaping. For each one, we tested its functionality in
mitigation mode and also retrofitted it to work properly in strict mode. The first ten appli-
cations were selected from the open-source Django web sites listed on django-sites.org. They
are the first ten that we were able to get up and running successfully on a stock Django 1.3.1
installation (without any of our custom code). Django CMS was additionally selected as a
complex, popular open-source Django application. The applications we examined totaled
23,405 source lines of Python code (40,849 including third-party Django-aware libraries) and
6,278 (10,007) lines of HTML template code3, as detailed in Table 7.1.

We sought to answer the following questions:

3Source lines of code were measured using David A. Wheeler’s SLOCCount [76] for Python, with test
code excluded. For templates, we counted physical lines of files in template directories with extensions .htm
and .html.



Section 7.6. Evaluation 123

A
p
p
li
ca
ti
on

L
O
C

L
ib
ra
ry

L
O
C

A
u
d
it
P
ts
.
M
it
ig
.
S
tr
ic
t
M
o
d
e
R
et
ro
fi
t
E
ff
or
t

A
u
d
it
P
ts
.

N
am

e
P
y
th
on

T
em

p
l.

P
y
th
on

T
em

p
l.

B
ef
or
e

M
o
d
e

D
B

A
n
n
.

A
u
to
.

M
an

.
A
ft
er

A
d
li
b
re

T
M
S

2,
60
6

18
7

4,
84
1

17
0

12
N
o

0
37

0
0

D
ou

gl
as

M
ir
an

d
a

36
1

34
1

2,
69
7

3,
50
7

21
Y
es
*

1
6

3
0

F
ab

io
S
ou

to
31
4

50
4

0
0

5
Y
es
*

2
0

5
2

P
in
ax

F
or
u
m

55
6

26
9

0
0

17
Y
es

1*
2

2
1

G
oD

ja
n
go

30
5

25
5

0
0

1
Y
es
*

1
0

0
0

J
Q
C
h
at

45
4

30
0

0
0

7
Y
es

1
3

0
0

N
if
ty
U
R
L
s

20
7

14
9

0
0

2
Y
es

0*
0

2
1

P
y
th
on

K
C

12
2

19
3

0
0

5
Y
es

0*
0

2
1

Y
u
m
e
B
lo
g

69
4

25
0

22
0

0
9

Y
es
*

5
0

0
0

Z
in
n
ia

4,
17
2

1,
93
3

0
0

36
Y
es
*

1
22

8
4

D
ja
n
go

C
M
S

13
,6
14

1,
89
7

9,
68
6

52
14
1

Y
es
*

2
3

12
2

T
ab

le
7.
1:

A
p
p
li
ca
ti
on

s
w
e
re
tr
ofi

tt
ed

to
u
se

ou
r
co
n
te
x
t-
se
n
si
ti
ve

au
to
es
ca
p
e
im

p
le
m
en
ta
ti
on

.



Section 7.6. Evaluation 124

How effective is mitigation mode at preserving functionality of the application?

To answer this question, we tested whether running the applications in our mitigation mode
caused any functionality loss. We consider this effort successful if all functionality appeared
to be preserved in a manual exploration of the site that aimed to test all features. Mitigation
mode preserves most markup, but blocks all JavaScript and certain nonstandard tags such
as <blink> when they originate from sources other than templates. For some applications,
the only way for this content to occur and get blocked by mitigation mode is for it to be
provided explicitly by the administrator. These applications are marked with an asterisk in
the table’s Mitigation Mode column.

How much developer effort is needed to retrofit applications to strict mode using

our techniques? As a quantitative estimate, we counted the number of fields annotated
and code changes needed to enable all application functionality we tested in strict mode. (If
it is practical to adopt, this mode is preferable because of its stronger security guarantees.)
Numbers for code changes are total lines of code added, removed, or replaced, including
import statements. They are broken down by changes that are automatically suggested by
our refactoring tool and those that needed to be manually determined by the developer. All
automated changes are safe by nature, as HTMLString and HTMLAttributeString are only
applied to source code literals, and the runtime logic for the other method calls ensures that
the all markup in the output derives from HTMLStrings. Numbers with asterisks indicate
the cost after the security bug we found is fixed or, for PythonKC, once a generic HTML
sanitizer is used. Qualitatively, we describe the changes in the following section. More details
are also given in the sections for each application.

How difficult is it to verify that the retrofitted application is secure? We describe
the reasoning needed and code that must be audited for a reviewer to gain confidence that
the application is safe from cross-site scripting. We briefly compare to the auditing effort one
would incur to verify correctness using a contextual autoescaper that trusted the pre-existing
opt-outs. We have counted the number of locations in the retrofitted code that require local
auditing to ensure correctness, which can be compared to the approximate number of audit
points in the original application. Performing a security audit on the original application
may be more difficult than the numbers suggest, however, as we discuss below.

Unfortunately, our verification of security for these applications is subject to the lim-
itations of our infrastructure. As mentioned above, our prototype cannot prevent script
injection arising from interpolation into JavaScript or stylesheet contexts. A few of the
applications do make use of these contexts, but most do not.

7.6.1 Results

Functionality in mitigation mode. We found that running in our mitigation mode
preserved the functionality of all but one of our applications. In the one application that



Section 7.6. Evaluation 125

failed, output from a template containing trusted JavaScript is at one point subjected to
string operations that result in loss of its HTMLString type, leading to subsequent over-
escaping. Fortunately, this application could be retrofitted to full functionality in strict
mode by our automated code rewriting alone.

In six of the remaining applications, mitigation mode’s behavior of blocking all scripts
in content that does not derive directly from a template invocation results in the possibility
of false positives if administrator-written HTML contains script tags. Five of the six were
blogs or similar applications, in which the trusted content takes the form of posts or de-
scriptions. The use of scripts in blog posts is likely to be uncommon, but is supported by
the applications when running on the regular Django template engine. The only application
where we anticipate mitigation mode causing problems is Django CMS. Here, JavaScript
could be more common, as CMS pages are likely to include a broader, more general class of
web content than blog posts.

Developer effort in mitigation mode. In our experiments, we found that developer
effort to adopt strict mode was modest but nonzero, with most applications requiring at
least one database annotation. We believe that these database annotations will be fairly
easy for developers to add; they only require identifying which fields can contain HTML.
We considered writing a tool to aid in detecting such fields automatically based on database
contents, but we think that this task will usually be easy enough that such a tool would be
of little benefit.

Four of our applications required no manual changes aside from database annotations,
and no application required more than twelve lines of manual code modifications. One appli-
cation required additional changes due to building up programmatic HTML with code that
our purely token-level static analysis was not able to rewrite, but a straightforward intrapro-
cedural data flow analysis would be able to handle. We manually added in the missing casts
to HTMLTemplate, which all occurred in close proximity to changes automatically suggested
by our static analysis tool.

Three applications required a single cast to the trusted HTML type at the point where
a library HTML generation or sanitization function was called. One application invokes
Markdown on user input. In sanitization mode, the Markdown code is designed to generate
safe HTML from untrusted inputs. Two other applications loaded HTML content from an
external website or XSS feed and displayed it to the user. Doing this in a secure fashion
requires the use of an HTML sanitizer, such as the sanitizing parsing mode of html5lib. A
cast to the safe HTML type is then required at the point where the HTML generation or
sanitization method is called.

Other code patterns that resulted a the need for manual instrumentation were more
varied. In one case, an HTML calendar was built using standard library code, which our
rewriter could not modify as it was not application code. The same application used custom
logic to add a form to the administrative interface in such a way that our implementation
did not recognize it as admin-exclusive code. We thus had to manually verify that it was



Section 7.6. Evaluation 126

only accessible to the administrator in order to mark the inputs as trusted.
Fabio Souto’s blog stores trusted content in the database, but it is not interpreted as just

HTML. As additional constraints must be enforced on this data to ensure safety from cross-
site scripting, it is not appropriate to use a HTML-based trust type with it. We instead use
AdminFields for this data; the AdminString type is checked before the data is transformed
into its final form and cast to the HTML type for output.

Django CMS requires the use of AdminString for one field potentially containing trusted
non-HTML content. Django CMS also defines a limited pseudo-template language which
extends HTML in a limited fashion. Fortunately, HTMLField suffices for this field, as the
interpreter is easily implemented using safe regular expression replacement on HTMLStrings.

Security review effort. To estimate the cost of security review for the original applica-
tions running on unmodified Django, we count the number of points that must be audited to
verify security. These include opt-outs from automatic escaping as well as database writes
for applications that store trusted values in the database.

Not only do legacy Django applications have a large number of opt-outs, but the cost of
verifying the correctness of these opt-outs may be more difficult than their numbers suggest.
In a legacy automatic escaping system, verifying that an opt-out is correct is not easy. It
is necessary to determine both where the data is coming from and where it is being used in
the output document in order to verify that the opt-out is appropriate. One or the other
of these is often nontrivial to determine. For opt-outs in code located near data sources,
it is easy to determine the origin of the data. Unfortunately, the auditor must then track
down the locations where this data is actually output in order to verify that it is used in
an appropriate context. For opt-outs in templates, on the other hand, it can be fairly easy
to determine the output parse context. However, it is then necessary to figure out where
in the code the template is invoked, what arguments can be passed to it, and where these
arguments come from.

In a context-sensitive system in which trusted HTML strings are typed with their in-
tended output context, these complexities are avoided. When manual casts are necessary,
data can be programmatically marked with its context at its origin, and the type-checking
done by the template engine will ensure that there is not a context mismatch when the data
is used in a template.

Making use of trusted data stored in the database is hard to verify without the auto-
matic enforcement of database trust annotations provided by our ORM integration. While
our system automatically checks all writes to trusted fields of the database, verifying the cor-
rectness of similar reasoning for code running on the standard Django platform would require
a code audit of writes to sensitive fields. Absent database instrumentation, uses of save,
create, get_or_create, and possibly other library functions that can modify the database
must be verified. Calls to these functions therefore become audit points for applications
running on the legacy Django platform.

No security audits are needed to ensure security from cross-site scripting in mitigation



Section 7.6. Evaluation 127

mode. In strict mode, only explicit manual casts to our trusted HTML types require review
for security assurance. Database annotations are untrusted, as the invariant that the inputs
are safe for use in HTML is maintained on writes. Our automated code modifications are
safe by construction as they only mark static strings in the program as safe HTML, which
then only combine with untrusted inputs in a safe way.

Five of the applications were retrofitted to full functionality in strict mode without any
trusted casts, and as such are safe without requiring security review. For the remaining
applications, it is necessary to justify all trusted casts in order to gain security assurance.
The applications making use of libraries that provide safe HTML generation or sanitization
are easy to review once the libraries used have been verified to be correct. In a production
system, it may be appropriate to provide standard wrappers for such libraries that perform
the cast to a trusted type automatically, eliminating the need to audit such trusted casts.
The remaining trusted casts in our retrofitted applications can also be justified with local
code review. The functions that perform the trusted casts are easily seen to first verify that
the input is of a trusted type or that the invoking user is an authorized administrator.

7.6.2 Adlibre TMS

Adlibre TMS is a timesheet and expense-tracking web application. It has screens for
data entry and various reports on the entered data. Entry of some kinds of data (such as
names of employees and suppliers) is entered using the administrative interface. It stores
only plain-text strings and numeric data in its database.

Adlibre TMS was the only application that did not work correctly in mitigation mode.
Some custom widgets in this application include inline JavaScript. This code is contained
in a template, and thus is marked as trusted, but the output of the template is subject to
additional string operations before being returned to the form-drawing code, resulting in loss
of the HTMLString type on the template output.

Fortunately, the application was easily retrofitted to preserve full functionality in strict
mode. Because there is no trusted HTML data stored in the database, no database anno-
tations were required. Adlibre TMS defines custom HTML code for data entry widgets it
defines, and a library it includes (uni_form) does as well. Our rewriter was able to auto-
matically change all necessary code to use HTMLString and HTMLTemplate.

Even though this application does not make use of our support for trusted database
fields, our approach still simplifies security review. No manual security review is required
using our framework. Without our infrastructure, one would need to manually vet the use
of mark_safe in the five custom widgets defined in the Adlibre TMS code as well as in the
libraries used to get similar security assurance.

7.6.3 Douglas Miranda’s site

Douglas Miranda’s site contains a blog and a list of open-source projects he participates
in. Data for both of these sections is added and edited solely by means of the administrative



Section 7.6. Evaluation 128

interface. The site has a single trusted HTML field which contains the HTML source code
of blog posts. No filtering is done on posts.

The site works correctly with no changes in mitigation mode, with the exception of
posts containing inline JavaScript, which is escaped when posts are displayed.

In strict mode, the post content field must be annotated as containing HTML to avoid
breaking formatting in blog posts. No other changes are needed to any other Python code
in order for correct functioning of the user-facing site.

The administrative interface is not so straightforward. In the filebrowser library,
a custom widget for selecting files to upload to the website makes use of a programmatic
template. In addition to several automated changes, there are three string templates of the
form ’%s %s’ that give no intrinsic indication that HTML markup is being composed. We
had to rewrite these to HTMLTemplate("%s %s") manually as part of the retrofit process.
Fortunately, these were all in functions where other strings were detected as HTML and were
automatically rewritten. We anticipate that a person reviewing the diffs would easily infer
that the additional changes would be necessary.

While the application itself does not use mark_safe and has only one use of safe in its
templates, the third-party libraries it uses have 6 instances of mark_safe and 13 uses of safe
in templates. To verify that untrusted content never makes it into the HTML content field
of an article object, one must also verify that the single call to save does not take untrusted
input. This is straightforward because it occurs in a subclass’ override of the save method.

7.6.4 Fabio Souto’s blog

Fabio Souto’s blog is a simple blog with posts authored in the administrative interface.
Posts are authored in HTML directly, or optionally using Markdown, with the output of
the Markdown compiler being pre-computed and stored in the database along with the
Markdown source code. No filtering is done on Markdown input or output or on directly-
entered HTML. HTML <code> blocks in posts are automatically syntax-highlighted, but
only when the posts are displayed.

As above, the site works in mitigation mode, except for posts containing JavaScript,
which is saved to the database, but escaped on display. Unfortunately, this application is
not as easily handled in strict mode.

The conversion from Markdown to HTML takes place in the post model’s save method.
It checks if the body field is empty, and if so, populates it with the result of invoking mark-
down on body_markdown. Code syntax highlighting is implemented as a custom template
filter render, used when the HTML version of a post is output on a web page. This filter
parses the post with BeautifulSoup and performs syntax highlighting on <code> blocks in the
post using pygments. Along the way, it also runs the post through Markdown (potentially
for a second time!), with any code blocks removed so as to avoid it rewriting them.

As a result of these transformations, code modifications are needed to preserve func-
tionality in strict mode, even if both fields are marked as containing trusted HTML. Another
problem with using the HTMLString type for these fields is that it does not sufficiently re-



Section 7.6. Evaluation 129

strict their contents to prevent cross-site scripting. As markdown can introduce JavaScript
to documents which do not already contain it when parsed as HTML, it is insufficient to
verify that the inputs to the render filter are of type HTMLString. For this reason, we
annotate body and body_markdown as AdminFields.

We modified the code that invokes Markdown on the contents of body_markdown to
check that its input is of the AdminString type and to cast its output to the same type.
We also changed the render filter to check that its input is an AdminString, and to cast
its output to HTMLString for display. Each of these two methods introduces a trusted cast,
which can be verified in a security review of that method. The burden of security review for
this application is thus still reasonable.

To verify security without database annotations, it would be necessary to gain confidence
that untrusted content cannot be injected into either of these fields. In this case, that task
is not too onerous due to the small scale of the application. The entire code base contains
no calls to create or save aside from the one in the Post model’s custom save function.
The application contains four uses of safe in templates, which would also require audit.

7.6.5 Pinax Forum

The package forum-pinax defines a simple web forum, compatible with the naming
conventions used by pinax, a system for composable Django components. It makes use of
one trusted database field, which stores HTML generated by Markdown.

The code attempts to avoid cross-site scripting by escaping the user’s post before it
is sent to the Markdown interpreter, but this is insufficient, as in its default mode Mark-
down can introduce JavaScript URLs even if its input does not contain any HTML special
characters.

This application works in mitigation mode with no changes or loss of functionality
(except for fixing the cross-site scripting vulnerability). However, in this mode, XSS attacks
are persisted to the database and only cleaned on display.

In strict mode, with no code changes we over-escape all messages because the output
of the Markdown interpreter is not recognized as trusted HTML. Python Markdown has an
option that is intended to ensure safety for untrusted input. After enabling this option to fix
the cross-site scripting bug, we can regain program functionality by marking the output of
the Markdown call as an HTMLString. This is then the only program point requiring security
audit.

There are four uses of safe in templates, one of which is for the forum posts’ HTML
contents. The remaining are for explanatory text used in forms; in two of the three cases,
this text actually contains HTML. There are 13 invocations of save.

7.6.6 GoDjango

This is a simple application for showcasing a collection of videos. Its only data entry is
by way of the administrative interface.



Section 7.6. Evaluation 130

It works in mitigation mode without any code changes, but disallows JavaScript that
would otherwise be allowed in video descriptions.

In strict mode, it is necessary to annotate the video description field as trusted to avoid
over-escaping. Once this field is annotated, the application requires no more changes for
functionality or auditing for security using our framework.

7.6.7 JQChat

JQChat is a JQuery-based chat system. Chat messages are stored in a database and
are retrieved by JQuery (JavaScript) code on the client using JSON.

The application makes use of a single field that is trusted to contain HTML markup
that is transmitted to clients. The application writes to this field using code that explicitly
builds up HTML markup. Because the core functionality of the app takes place over JSON,
for which we do not have a parser and thus do not run our modified template engine, the
application’s user-facing functionality works with no changes in both mitigation and strict
mode. The administrative interface, in which the history of chat messages is displayed on
the page for each room, over-escapes by default in strict mode but not mitigation mode.

To avoid this over-escaping in strict mode (and for aid in auditing security of the full
system), the field containing HTML can be marked as a HTMLField. The code that writes
to the field can be automatically refactored to use HTMLTemplate, ensuring that only safe
HTML is written to the database.

JQChat does not use mark_safe and has only one usage of safe in HTML code. This
is in a template that is implicitly invoked by admin code, and is fairly easy to audit. There
are six uses of save to verify, although none are especially difficult.

(We have not evaluated whether the application correctly guarantees correct JSON, and
therefore whether it may be vulnerable to a JSON-based script injection attack. Our system
could defend against this attack if we included a JavaScript parser, whereas one based on
the existing context-insensitive mark_safe could not be made to do so.)

7.6.8 NiftyURLs

NiftyURLs is a site that displays headlines from a variety of other aggregator sites. It
scrapes HTML-based RSS feeds from these sites and re-displays their contents. It does not
make any use of a database, loading the content anew on each page request. As described
in Section 7.3, it is vulnerable to cross-site scripting.

Running this application in our framework’s mitigation mode protects against this at-
tack, and does not break any of the site’s functionality. Mitigation mode’s HTML sanitization
approach is a good fit for this application.

The vulnerability can be fixed by replacing the striptags filter in used in the two
templates with one that adequately defends against arbitrary untrusted HTML, such as the
html5lib sanitizer. The site then works correctly in strict mode if the filter is modified to
mark its output as a trusted HTMLString.



Section 7.6. Evaluation 131

7.6.9 PythonKC

PythonKC is the website of the Kansas City Python Meetup group. The site consists
primarily of data related to upcoming and past meetings retrieved via the Meetup API. Data
from Meetup is retrieved via the use of a custom library. This library queries meetup.com
with appropriate parameters, expecting a JSON result which it parses and uses to construct
objects with retrieved data stored in appropriate fields. The Meetup query API does not
do any filtering of the data returned from meetup.com, which can contain HTML in certain
fields.

Presumably to avoid any dependencies on Django, the Meetup-data retrieval library
does not mark its outputs as safe. Instead, templates use the safe filter when outputting
potentially-HTML data from Meetup.

In mitigation mode, the site appears to work correctly with no changes. Meetup itself is
likely to prohibit most content that a XSS sanitizer would filter out, so we don’t anticipate
any content being broken.

To implement the site in strict mode, it would either be necessary to use a HTML
sanitizing filter and mark the output of the filter as trusted, or to commit to fully trusting
content from Meetup. This could be done by creating a modified or wrapped version of the
Meetup library that marks the fields containing HTML as being of trusted type HTMLString.
Auditing would focus on verifying that the Meetup API gets data from the right source, and
the justification for the trust relationship between the site and Meetup. For the numbers in
the table, we assume that an HTML sanitizer library is used, providing a location where a
cast to HTMLString can be added.

To audit the original PythonKC code for security with standard Django, it would be
necessary to justify its five uses of safe in its templates. This would involve verifying that
the Meetup library code only downloads trusted content, and that the display template is
only invoked with data derived from this library.

7.6.10 Yume Blog

Yume Blog is the open-source code for Hicro Kee’s personal blog. It supports blog
posts with summaries as well as undated content pages. All content can only be created and
modified through the administrative interface. It includes a comment system that supports
plain-text comments.

The site works in mitigation mode, except for posts containing JavaScript, which is
saved to the database, but escaped on display. To support JavaScript, field annotations are
needed, which are sufficient for the site to work correctly in strict mode as well.

Yume Blog stores trusted HTML in five database fields, divided across three models
(post summary, post contents, page contents, site info displayed on main page, and site-wide
copyright block). In strict mode it is necessary to annotate these trusted fields. After doing
so, the site works securely without any code modifications.

An audit based on Django’s safe strings and manual verification that only trusted data



Section 7.6. Evaluation 132

is stored in the database would need to audit one use of mark_safe, seven uses of safe, and
one use of save.

7.6.11 Zinnia

Zinnia is another blog framework. It supports the MetaWeblog XML-RPC API for
management by compatible publishing tools. It uses Django’s standard comment module to
support plain-text comments. It stores trusted HTML in a single field, the contents of blog
posts. These posts are edited solely though the administrative interface.

The entire site works in mitigation mode without any source code modifications or
annotations. Posts containing JavaScript cannot be displayed, and have the JavaScript
escaped on output.

Marking the single field with HTML content as containing trusted HTML is sufficient
for the user-facing code of the site to work as intended, with the exception of a calendar
display. This calendar is built by extending an HTML-calendar construction class in the
Python standard library to display links to blog posts for each date. Because some of the
content construction is still performed by the library code, which does not use our marker
types for strings, the output is not marked as safe. (We would be able to automatically
rewrite all of this code if it was not in the library.) We thus had to add an explicit cast to
HTMLString in the application code that requires manual review to validate.

Zinnia provides a form for quickly adding blog posts from the main screen of its ad-
ministrative interface. This uses a general-purpose form rather than the type of form used
only for the administrative interface. Our framework was therefore unable to automatically
infer that the content was safe for storage in the HTML-trusted database field. By adding
an explicit cast to HTMLString for the data submitted via this form, we restored applica-
tion functionality. A similar situation applies to the inputs received via the application’s
XML-RPC interface to add and update blog posts.

To review Zinnia under standard Django, we would have to audit 14 uses of the safe

filter. Excluding test code, there are seven calls to save and approximately fifteen to create
and get_or_create that would also require security review.

7.6.12 Django CMS

The Django CMS (content management system) allows a developer to create a website
skeleton that can then have content added and edited by way of a web interface. It defines
a plugin framework and comes with a set of standard plugins for handling features such as
site navigation, images, and Google Maps. A site consists of a hierarchy of pages, each of
which is based on a Django template that defines static content and locations in which CMS
plugins can be placed. Both the Django admin interface and an in-page JavaScript toolbar
can be used to modify and configure the plugins in each template location.

Each plugin defines a subclass of CMSPluginBase. This class specifies the plugins
database model, which stores data for its instances. It also specifies a template to use



Section 7.6. Evaluation 133

for rendering the plugin, and a render method that returns a dictionary of variables to pass
as arguments to this template.

Running Django CMS in our framework in mitigation mode preserves application func-
tionality, with the exception of plugin contents that contain JavaScript. The standard plugins
do not appear to contain inline JavaScript, but the Snippet plugin allows the site designer
to specify an arbitrary snippet of HTML, which could include JavaScript. Fortunately,
this plugin is, according to documentation, designed primarily for prototyping and not for
production use.

As a content management system, the majority of the data Django CMS processes is
trusted content specified by the site developer. Perhaps for this reason, it does a number
of unusual and risky things with this input which our framework does not handle in an
automated fashion. Considering this, the manual changes needed to preserve functionality
for strict mode are not unreasonable.

Most plugins (including images, file download links, and Google Maps) store data in
their database model that is not HTML markup, and thus does not need to be trusted.
These plugins work correctly under in strict mode with no modifications.

The Snippet plugin can be used for a literal snippet of HTML, which can optionally be
filtered through a specified template. Actually, as an undocumented feature, if a template is
not specified, the input itself is rendered as a Django template, and passed two variables that
are not obviously useful. The functionality of rendering Snippet’s input as a template means
that using an HTMLField may not be sufficient to prevent content injection. We instead used
an AdminField for this input. In the case that a template is specified, we cast the content
of input field to an HTMLString and pass it in as the appropriate argument to this template.
If the input is to be itself treated as a template, we wrap the Template constructed from it
in a SafeTemplate (the type used by our modified template engine), so that its output will
be trusted HTML and thus not over-escaped.

The Text plugin allows the specification of HTML markup along with inline insertions
of other plugins. This appears to be the primary method intended for Django-CMS users to
build up site content. There are two different conventions used to represent the location of
plugins in Text objects. When stored in the database, the location of plugins is indicated
by a string that resembles a Django variable (e.g., {{ plugin_object 1 }}). These are
converted to image tags depicting placeholder icons in the administrative interface’s editor;
and when the Text object is saved, image tags of this form are converted back to the database
representation. Both conversions take place by way of regular expression replacements, and
were easily manually rewritten to use our safe regular expression replacement method. When
the Text object is rendered, its contents are parsed, with inline plugins being rendered
recursively. Our safe regular expression replacement support is able to handle this case as
well.

Auditing the security of Django CMS without our platform changes would require vali-
dating uses of mark_safe and the safe template filter, as well as all writes to the database.
There are 24 instances of mark_safe in the Django CMS code, and 8 uses of the safe filter
in its templates. There are 89 uses of save and 15 of create in the code base, though it



Section 7.7. Conclusions 134

may be possible to exclude some of these if they belong to code that would never be invoked
for the specific Django CMS site being reviewed.

7.7 Conclusions

Contextual automatic escaping is an attractive tool for reliably defending web applica-
tions from cross-site scripting vulnerabilities. Unfortunately, programmer-specified exemp-
tions from automatic escaping are common and provide ample opportunities for cross-site
scripting vulnerabilities in web applications. Validating such exemptions through code review
is laborious with current implementations. Explicitly annotating trust placed in database
contents helps to reduce the need for such error-prone, trusted opt-outs. For HTML content
built programmatically, we show that framework-provided functions can support patterns
that provide similar safety to explicit templates. Retrofitting existing code to use these
functions is often easy to automate with simple parse-tree-level source code analysis. With
these innovations, reviewable security against cross-site scripting and content injection is
practically achievable for many applications.



135

Chapter 8

Normalization of Web Templates for

Reliable Inference of HTML Contexts

8.1 Introduction

The web platform has become a popular way to host sophisticated applications, yet also
a major target for attack. As more information is managed by web applications, web vul-
nerabilities pose an increasing threat to users. Cross-site scripting (XSS) and other attacks
that inject undesired HTML content persistently account for a significant fraction of these
vulnerabilities.

Web templating languages are a popular mechanism for creating the HTML output of
dynamic websites, and thus are a logical place to introduce security mechanisms for defending
against content injection attacks. For instance, context-sensitive automatic escaping systems
parse the HTML found in the template to identify the parse context of each dynamic variable,
and then automatically escape such values at runtime in a way that is appropriate for these
parse contexts.

By their nature, such schemes depend on having a reliable parse of the template’s
HTML. The security of the scheme rests upon the correctness of the parse: if the security
tool parses the HTML differently than the browser will, then the security tool might apply
the wrong escaping function, possibly leading to a security breach.

As a server-side mechanism, context-sensitive autoescaping requires accurate parsing of
the HTML output by templates without help from the client’s browser. This is challenging
for a number of reasons:

• First, browsers accept syntactically invalid HTML, and web designers often unknow-
ingly include HTML with syntax errors in their templates. The parser must parse even
invalid HTML in the same way as browsers will.
• Second, different browsers will sometimes parse the same HTML document differently.
This is especially common for HTML documents containing invalid HTML. As the
automatic-escaping system operates at the web server, it has to commit to an interpre-



Section 8.1. Introduction 136

<script><!-- document.write("fred@foo" + ".com");

// hide email from scrapers </script>

{{name}} <script src="widget.js"></script>

Figure 8.1: A template with a hole of indeterminate parse context. With Firefox 3.6, the
name string could end up being treated as either JavaScript or as HTML, depending upon
its value at runtime.

tation of the document independently of the browser. This situation appears to create
an impossible dilemma for such a system.
• Third, templates interleave HTML with template directives, and the HTML that is
produced by a template may depend upon the value of runtime variables. For in-
stance, a template can contain conditionals (if-then-else statements), where a snippet
of HTML is conditionally introduced, depending upon the value of a particular vari-
able at runtime. Thus, a single template could potentially generate many different
HTML documents, each with its own parse structure. We seek to infer contexts for
the template statically, which means that we must anticipate the parse structure of all
possible HTML documents that could be generated by the template. A template can
have an exponential number of possible paths to consider.

These challenges apply not only to any compile-time system for context-sensitive autoescap-
ing, but also any other system that attempts to parse templates in advance and make security
judgements or introduce appropriate security mechanisms. For instance, the same challenges
apply to static analysis of web templates.

In this chapter, we demonstrate how to address these challenges. Our approach is based
upon normalization. We transform the original template into a normalized template that
preserves the functionality of the original but makes it easier to reason about the parsing
of its outputs. Our normalization corrects syntax errors in the HTML, ensuring that the
output conforms to a subset of HTML more likely to be consistently parsed by all browsers,
thereby addressing the first two challenges. Our normalization also modifies the template
so all template conditionals will respect the HTML parse structure in a clean way, making
it possible to anticipate the parse structure of all possible outputs from the template and
thereby addressing the third challenge. Our solution provides a principled foundation for
static analysis of web templates, and increases the security assurance that can be provided
by compile-time context-sensitive autoescaping systems.

Without normalization, the server’s and client’s view of the document structure may
fail to match. One example of this is given in Figure 8.1. According to the HTML5 specifi-
cation, {{name}} is in the HTML body context. An automatic-escaping system based on an
HTML5 parser will infer this context for this location, and will apply an escaping function
appropriate for the context. Replacing less-than signs and ampersands with their HTML
entities is sufficient to sanitize untrusted inputs in this context, and thus would appear to
be sufficient escaping for this variable. Unfortunately, it is insufficient in this case as some



Section 8.1. Introduction 137

<h2>{{users.uid.name}}’s Profile</h2>

<img alt="{{users.uid.image_description}}" src="{{users.uid.image}}">

<a href={{uid}}/posts>Posts</a>

Figure 8.2: A template with multiple interpolation contexts having different sanitization
requirements. This example is difficult for autoescaping systems to handle safely, in general,
because of the challenges in escaping unquoted attributes. Our approach solves this problem
by normalizing the template to avoid such tricky cases.

browsers can be tricked into parsing the document differently. Given an attack string such as
alert(’xss’); // -->, which will pass unchanged through the proposed escaping function,
Firefox 3.6 and earlier will interpret the script block as ending at the second </script> tag
instead of the first. This causes the {{name}} variable to be treated as JavaScript source
code instead of HTML body text. As the extra </script> and <script> are preceded by
JavaScript comments, the injected JavaScript will parse and run successfully.

In addition, some contexts are hard to sanitize with confidence without rewriting. The
{{uid}} variable in Figure 8.2 appears in an unquoted attribute, which is a particularly
difficult context to sanitize safely. One might think that escaping single quotes, double
quotes, and whitespace characters would be sufficient, but this turns out to be not the case.
An attack string like ‘‘onclick=alert(1) can break out of an attribute and define an
additional attribute-value pair in Internet Explorer. IE treats the backquote character ‘ as
an additional quoting character, and allows spaces to be omitted after a quoted attribute.
Thus, this obscure feature of Internet Explorer can be used for cross-site scripting attacks if
the template in Figure 8.2 is not handled very carefully. In some browsers, other characters
may also terminate an unquoted attribute value. This makes it very challenging to devise
an escaping function that will make it safe to interpolate data into an unquoted attribute.
Instead, a better solution is to rewrite the template to avoid difficult cases like this. That is
the approach we follow: we normalize the template so that (for instance) all attribute values
are quoted.

These examples illustrate the challenges of inferring how browsers will parse an HTML
document produced by a template. Being able to infer the parse context of variable inclusion
reliably at the server is crucial for a number of security analyses and applications. Normal-
ization of templates is necessary to ensure that parse contexts where dynamic values are
inserted into the template are accurately characterized. This is the problem we solve in this
paper.

The contributions of this work are:

• We propose a well-formedness property for HTML that to our knowledge ensures con-
sistent, predictable parsing across all browsers in common use, including pre-HTML5
versions.
• We identify a strategy for subsetting template languages that ensures that all possible
HTML documents generated from templates will satisfy the well-formedness property



Section 8.2. Problem 138

mentioned above.
• We develop methods to transform existing template code so that it falls within the
above subset.
• We implement our methods and evaluate their applicability to real-world open-source
Django templates.

8.2 Problem

In this paper, we focus on the problem of static analysis of web templates to determine
how content in the template will be parsed. In particular, we want to, given a set of web
templates, normalize them into a form that preserves the content output by the template,
while allowing the parse contexts in the template to be reliably determined by the server.
Specifically, given a normalized template, it should be easy to determine, for every variable
in the template, the parse context in which that variable’s value will be interpreted by the
browser.

We can formalize the problem as follows. A template T can be considered as a function
that accepts a set of runtime inputs I and produces an HTML document T (I). We wish to
find a normalization algorithm N and a simple, efficient static analysis S that satisfy the
following properties. Given a template T , let T ′ = N(T ) denote its normalization under
our normalization algorithm. We define the static analysis S so that S(T ′) predicts a parse
context for every fragment of T ′. We want the static analysis to be both sound and complete.
By sound, we mean that for every possible template input I and every possible prefix P of
the HTML document T ′(I), we want the parse context after the browser parses P to be
as predicted by S(T ′). By complete, we mean that the static analysis S predicts a parse
context for every point within T ′. These guarantees are only required to hold for normalized
templates T ′ output by the normalization algorithm N .

Our motivation comes from context-sensitive automatic escaping. Context-sensitive
autoescaping is a powerful tool for defending web applications from cross-site scripting and
content injection attacks. A static context-sensitive automatic escaping system must select,
for every variable interpolation within the template, a suitable escaping function to apply
to that variable at runtime. The escaping function needs to be chosen so it will remove any
character sequences that will be interpreted by the browser as contributing to the syntactic
structure of the document. In order to determine the correct escaping function to apply,
the autoescaping system needs to be able to predict how the document will be parsed by
the end-user’s browser. In other words, we need a way to predict the parse context in
which each variable will be parsed, when its value is inserted at runtime. Moreover, if the
escaping function is selected at compile-time (before the values of the variables are known),
the prediction must be correct for every possible invocation of the template (i.e., for all
possible values of the variables). Thus, any robust static autoescaping system needs to solve
the problem we have articulated above.

Dually, autoescaping supports static analysis of templates. We assume in this work that



Section 8.2. Problem 139

<html><head><title>Parent template</title></head>

<body>

{% if foo %}<script>{% endif %}

{{content.possiblyscript}}

{% if foo %}</script>{% endif %}

</body></html>

Figure 8.3: The control directives in this template mean that the parse context of the variable
{{content.possiblyscript}} varies, depending on the value of foo.

the runtime values of all template variables are escaped appropriately for the parse context
into which they are interpolated. This assumption can be discharged by use of a context-
sensitive autoescaping system. (Without this assumption, it would be impossible to predict
the parse state immediately after any template variable.)

8.2.1 Basic HTML Normalization

The simplest possible kind of template consists solely of static HTML content: no
dynamic content, no variable interpolations, and no template directives. The problem is
already non-trivial even in this simplest case. Because different browsers may parse the
same HTML document differently, it is not always possible to predict the parse context
for every point within the document. This is particularly common for malformed HTML
documents, as different browsers employ different strategies in guessing what the document
author meant. For historical reasons, sometimes browsers employ these strategies even on
well-formed standards-compliant documents.

8.2.2 Control Directives

Full-featured web templates pose a number of additional challenges beyond normal-
ization. Control-flow directives, such as if-then blocks, are an important feature of many
template languages. Each branch of an if directive corresponds to a different path through
the template (a different sequence of static content and variable interpolations). In the gen-
eral case, which of the two paths are taken at the location of the if can affect the context
for variables in the template that follow the if block, as in Figure 8.3. This is problematic
as would prevent us from uniquely identifying the parse context of that variable.

Control-flow directives are also challenging because they can cause exponential growth.
A template with n if-then blocks can potentially have 2n different paths, each of which may
correspond to a slightly different parse structure. Thus, it is not feasible to exhaustively
enumerate all possible paths: we need a general algorithm that scales better.



Section 8.3. Approach 140

8.2.3 Template Inheritance and Inclusion

In addition to control statements, a number of templating systems include constructs
that permit reuse of template code. For example, template inheritance allows for a template
to be extended by child templates. A template can define named blocks and child templates
can override those blocks. When the child template is invoked, the parent template is
first loaded, but with the child’s versions of any named blocks replacing those of the parent.
Child templates can extend templates that are themselves children, resulting in a tree-shaped
inheritance hierarchy. Many languages also support template inclusion, in which specified
locations in a template are filled in with the output of another specified template.

As a result, the parse context for variables in a particular template file can potentially
vary from invocation to invocation, if its code has been included or overridden by other
templates.

8.2.4 Deployability

Our techniques should be applicable to legacy code: we envision the normalizer would
be applied to existing templates to produce a diff, and developers would be asked to apply
the normalizer’s suggested changes. For developer acceptance, normalization should avoid
unnecessary changes to the templates. Thus, the number of changes made by the normalizer
is an important metric by which we evaluate our scheme.

8.3 Approach

Our approach is based on normalization of both HTML and templates. We identify a
conservative, well-understood subset of HTML that we believe will be consistently parsed
across browsers (Section 8.3.1). Additionally, we identify a set of syntactic locations in
HTML where appropriately-constructed content can be inserted without changing the state
of the parser. In order to ensure that template constructs preserve the ability to unambigu-
ously parse documents statically, we aim to rewrite existing templates into the subset of the
template language in which control constructs appear only at these locations and the HTML
content in each branch returns the parser to its initial state before the branch. This ensures
that template directives are “well-nested” with respect to the document’s parse structure.
Normalization also ensures that the output document is in our HTML subset, that all tags
are properly nested, and that all open tags are closed in the proper order.

8.3.1 HTML Normalization

We normalize HTML to ensure that the document will be syntactically well-formed
with respect to the HTML4 and HTML5 specifications. In particular, it is well-formed
SGML that falls within the subset identified in the HTML4 spec as supported in practice by
browsers, and can be parsed by HTML5 parsers without triggering a parse error. While this



Section 8.3. Approach 141

• all tags are properly opened and closed (except for established self-closing tags)
• all tags are properly nested
• all attributes values are quoted with standard single or double quotes
• all attributes are separated by at least one character of whitespace
• all less-than and greater-than signs in the body of the document are HTML entity-escaped,

including in attribute values
• all entity escapes are correctly formed
• all comments begin with <!--, end with -->, and have no intervening sequences of two

consecutive hyphens, ensuring that they are valid and end at the same character under all
versions of HTML and SGML

• a warning is issued if an IE conditional comment is seen
• script blocks do not contain any comments, nor the sequence </ in their bodies

Figure 8.4: Normalization invariants enforced by our rewriter.

normalization falls short of full validation, it should be sufficient to avoid confusion about
the intended document structure for any parser written to implement either the HTML4 or
HTML5 specification. We perform additional normalization to account for known deviations
in the parsing of well-formed input by popular browsers.

The HTML subset that our normalizer rewrites documents to is summarized in Fig-
ure 8.4. We describe how we rewrite existing documents to this form below.

Our basic approach is to parse the HTML following the HTML5 standard to generate
a DOM. Then, we serialize the DOM to an HTML document. This step gets us most, but
not all, of the way to ensuring that the result is well-formed.

The HTML5 specification performs a number of transformations to a document in the
process of parsing it into a DOM tree, and serializing it back out to HTML. The output of
this process is is a document that should be treated the same as the original by an HTML5-
compliant browser, and which additionally satisfies a number of well-formedness properties:

• All tags will be closed: they will have an explicit matching closing tag, except for
self-closing tags such as img that do not require one.
• Tags will be properly nested. (This means that there are no interleaved tags such as
<b>bold<i>bolditalic</b>italic</i>.)
• Content in invalid locations may be foster-parented and relocated in accordance to the
HTML5 spec.
• “Bogus comments” of the form <!foo bar> are converted to well-formed comments
(<!--foo bar-->).
• Less-than signs that do not start tags (but are found in contexts where tags could
exist) are converted to &lt;.
• Attribute values that contain whitespace and certain other characters will be quoted.

We invoke the HTML5 reference parser with carefully-selected options to increase the
degree of normalization it provides. This ensures the following additional properties:



Section 8.3. Approach 142

• All “optional” tags that were implicitly added to the DOM will be explicitly included
in the output.1

• All attribute values are quoted with single or double quotes.
• Less-than signs are escaped in attribute values.

Standards before HTML5 have strictly limited the set of characters that are allowed in
unquoted attribute values and suggest that all attributes be quoted for maximum compati-
bility. Handling of unquoted attribute values that contain characters not on the list was not
standardized and varies substantially among older browsers. While HTML5 provides more
detailed rules for parsing unquoted attributes, but they are not necessarily consistent with
all legacy browsers. In order to ensure that the output is correctly parsed by pre-HTML5
parsers, we specify the parser option that ensures that all attributes are quoted with stan-
dard quoting characters (’ or "), including where the default behavior would be to leave
them unquoted.

Certain tags, such as <noframes> and <noscript> are traditionally not parsed when
the associated condition is not met (e.g., by a client that supports frames and has scripting
enabled). Instead, a simple textual search is made for the matching close tag. In order to
avoid the possible ambiguity posed by this parsing inconsistency, our normalization process
aims to ensure that the string </ only occurs in properly matched closing tags. We enable
an option that esapes less-than signs even in quoted attribute values, where the default is to
leave them in, to eliminate the sequence </ in these locations. We also modify the parser to
escape greater-than signs in attribute values, as recommended in the HTML4 specification
to avoid any confusion in older browsers as to where tags end.

The HTML5 specification defines three classes of HTML documents: valid, invalid but
free of parse errors, and documents with parse errors. While the specification describes
rules for parsing all possible documents, it specifies that HTML5 parsers are permitted to
abort and refuse to process a document when a parse error is encountered. We would like
to ensure that the document does not have any parse errors. Even with the options we
specified, parsing an HTML document with the HTML5 parser does not guarantee that the
resultant DOM structure, or its serialization, is free of parse errors.

For instance, tag names containing invalid characters are preserved, even though they
could confuse some parsers. Tags may still appear in invalid locations that would continue
to result in inconsistent parsing. An absence of reported parse errors is unfortunately insuf-
ficient to ensure normalization. As our output is generated by serializing an HTML5 DOM
tree, in order to ensure that it is well-formed at the tokenization level, it is necessary to
ensure that tag and attribute names only contain valid characters. For some malformed
documents, the reference implementation will generate DOM trees with tag and attribute
names containing invalid characters. We modify the HTML5 reference parser to strip invalid
characters appearing in these locations.

1We modify the parser to avoid inserting <tbody> tags. This tag was introduced relatively recently in
HTML4, and is usually omitted by developers.



Section 8.3. Approach 143

Skipped Blocks

For consistency with legacy browsers, the HTML5 parsing rules do not interpret the
contents of <iframe>, <noembed>, <noframes> and <noscript> blocks, their contents being
treated as a blob of “raw text” terminated by the appropriate closing tag. This shortcut of
not actually parsing the content of such blocks can lead to documents whose structure will
be different if the block is parsed, e.g. if scripting is disabled. This occurs because strings
like </noscript> can occur in HTML without necessarily closing the current noscript tag.
This can occur when it appears in a comment, quoted attribute value, or unparsed context
such as JavaScript or inline CSS. Additionally, a document could have nested noscript

blocks, causing the first end tag found by a simple string search to be the wrong one. If the
content of the noscript block is treated as raw text, as in the HTML5 spec, serializing the
parsed DOM will not resolve this type of ambiguity. (The HTML 5 spec seems to assume
that all browsers support frames, providing no rules for parsing a document if frames cannot
be supported. While this is a reasonable assumption for current and future desktop browsers,
some mobile browsers lack frame support. Browsers that do not support frames are likely
to support the existing, well-established noframes tag as a way to display appropriate error
messages or links to alternative content, in contrast to the HTML5 spec that indicates that
the tag’s contents should not be interpreted.)

Our modified HTML5 parser parses the contents of such blocks and ensures that they
are normalized in the same fashion as the rest of the document. We additionally check that,
in the retrofitted output, nothing within such blocks looks like a possible closing tag for the
block. This ensures that the legacy parsing behavior of a simple textual search for a closing
tag will end the block at the same point as parsing its contents.

Comments

Comments are another case in which real browser implementations (which are not all
HTML5-compliant) are likely to differ in their parsing behavior. HTML comments have
historically been poorly specified. They are based on SGML comments, which until HTML5
served as the closest thing to a thorough specification. In the simplest case, comments start
with <!-- and end with -->, but the SGML spec has counterintuitive rules that permit just
a greater-than sign to end the comment depending on how many -- sequences precede it.
None of the early browsers implemented this full specification. Most just searched for the
sequence -->, or the first > after at least one --, as currently mandated by HTML5. When
Opera and Mozilla tried to follow the SGML spec more accurately, it broke many sites,
and had no benefit since essentially no web authors were aware of or made use of SGML
comments in their full generality. For comments that are in a standard HTML context, i.e.
where HTML tags and displayed text can appear, we ensure that comments are in the most
standard form: they start with <!--, end with -->, and contain no intervening sequences
of two consecutive hyphens. This matches the examples of well-formed comments in the
HTML 4 specification [54, §3.2.4], though the specification also permits whitespace between



Section 8.3. Approach 144

the -- and > of the end of the comment. It does not explicitly prohibit hyphens within
the comment but suggests that two or more adjacent hyphens inside comments should be
avoided.

Comments in script blocks are particularly challenging to parse, as browsers use com-
plicated heuristics to determine the end of the block while allowing the string </script> to
occur in certain places in the script code. The HTML4 spec implies that browsers do not
need to support script blocks that contain even the two-character sequence </, but actual
browsers attempt to handle HTML markup, including closing tags, in script blocks. This
markup occurs primarily in JavaScript strings representing HTML that is dynamically writ-
ten to the document. Most browsers support matching <script>/</script> pairs within a
script block, at least within a comment. (It is traditional to place all of a script block’s code
inside a comment in order to prevent it being rendered as visible text in ancient browsers that
do not recognize the script tag.) This means that simply searching for the string </script>

is insufficient to determine the end of a script block.
HTML5 specifies that </script> should not be interpreted to end a script block as it

normally would under certain circumstances. Essentially, it does not end the block when it
is inside a comment and follows something that looks like an opening <script> tag with no
intervening </script>. This is a rule adopted in the belief that it closely resembles the rules
of mainstream browsers, but differs at least from Firefox in certain corner cases. In contrast
to this rule, the pre-HTML5 parser in Firefox appears to allow an unbounded number of
</script> sequences within a comment, provided that the comment can be parsed and is
followed by a valid </script> tag.

We avoid this inconsistent behavior by ensuring that there are no comments and no
occurrences of the character sequence </ within JavaScript blocks. We accomplish the former
by stripping any <!-- that occurs at the beginning of a script block (possibly with intervening
whitespace) as well as any --> that occurs at the end of a script block. The sequence <!--
detected elsewhere in the script block will cause our retrofitting tool to fail. In order to
remove the sequence </, we replace it with <\/, which preserves functionality in the likely
case that the sequence occurs within a JavaScript string. In the uncommon case that the
sequence </ occurs within a regular expression literal, e.g. /</, this heuristic will break the
regular expression. Such a regular expression can be manually rewritten by replacing the <

character with the unary group [<].

IE Conditional Blocks

Internet Explorer supports a nonstandard conditional block construct that allows tests
against parameters of the browser environment, such as the IE version number. These
blocks are defined to be HTML comments, and other browsers usually interpret them as a
regular comment, having the effect of never displaying their content. They start with the
sequence <!--[ and end with ]-->. These are potentially unsafe to ignore when normalizing
documents, as they can open or close tags, leaving the browser in a different parsing context
(at least in terms of which tags are open) than if they are skipped. We warn if any such



Section 8.3. Approach 145

comments are encountered, but do not currently attempt to handle these further.
IE also supports “downlevel-revealed” conditionals, in which the start and end delimiters

for the conditional are “bogus comments” that start with<![if some test]> and end with
<![endif]>. These are also problematic because this type of comment is not valid HTML
and thus may not be treated the same by all browsers. Most browsers treat them as the
HTML5 spec does, namely treating it as a comment that terminates at the first >. Even
if all other browsers treated these comments identically, however, IE will skip the contents
between the start and end conditional delimiters if the condition is not satisfied. We covert
these to standard comments in the process of normalization, which preserves the behavior
of standards-compliant browsers but has the possibility of breaking IE.

XHTML Features

Web pages can be served as HTML with the text/html MIME type, or as XHTML,
as indicated by the application/xhtml+xml MIME type. XHTML documents can also be
served as text/html, provided they can be correctly parsed as HTML. Not all XHTML
documents can be parsed correctly as HTML. Some will be parsed incorrectly if served with
an HTML MIME type, due to use of features present in XML but not HTML.

In XML (and thus XHTML), any opening tag can be converted into a self-closing tag by
including a / before the > that ends the tag. In HTML4, such trailing slashes are traditionally
ignored by browsers, making the self-closing form “work” for tags that are automatically self-
closing in HTML such as img. Technically, however, they inherit a different meaning from
SGML, the “NET shorttag” syntax, whereby markup of the form <foo/bar/ is equivalent to
<foo>bar</foo>, and a tag like <hr /> would result in an extraneous visible > being added
to the document. For backward compatibility with existing documents and browsers, the
HTML5 parser ignores self-closing slashes. This means that in HTML, the only self-closing
tags that are correctly parsed are those with no closing tag such as <img>. While XHTML
documents commonly include other self-closing tags such as <div clear="all" />, such
tags will not be treated as self-closing if served with an HTML MIME type. The HTML5
reference parser, which is designed under the constraint of attempting to reconstruct the
behavior of non-XML-aware browsers, interprets such tags as (likely unmatched) opening
tags. Since we are rewriting the document, we can and do correctly interpret such intended
self-closing tags when reading in documents. (When serialized as HTML, they become an
open tag immediately followed by a close tag.) This modification can make it easier to
normalize the document, as it reduces the number of erroneous unclosed open tags present
that could lead to failure of our rewriting algorithms.

Unlike HTML, XHTML also supports XML CDATA sections. These are sections of
the document that are treated as unparsed text, allowing formatting characters like < to
appear without resulting in XML markup. The HTML5 spec supports CDATA sections
as well, but only in embedded XML contexts such as MathML. Some HTML parsers may
support CDATA sections elsewhere, even in HTML rather than XHTML documents. In
HTML contexts and JavaScript blocks, the HTML5 parser sees CDATA sections as “bogus



Section 8.3. Approach 146

comments” and converts them to standard comments, avoiding this ambiguity. It does not
make any changes to such sections in <style> blocks; our modified parser flags a fatal error
if we see CDATA in this location.

Additional Fixes

In addition to these parser modifications, we perform some additional modifications
on the DOM tree to increase the number of documents we can successfully retrofit to a
normalized form.

We move any content that was encountered after the close of the HTML <body> tag
into the body. The HTML5 spec directs browsers to render this content as part of the body,
but to preserve its original location in the DOM representation (resulting in a DOM not
possible from a valid document), apparently in order to emulate legacy browser behavior.
By moving the content into the body, we preserve the rendering of such documents in the
majority of browsers while potentially being able to normalize them to be valid.

While we cannot prove that is normalization suffices to ensure consistent parsing across
all browsers, we argue that it substantially advances this goal in Section 8.5.1.

While we address a number of cases where malformed documents can lead to a DOM
that serializes to a document that still causes parse errors, there are additional cases that
we do not normalize. In order to ensure that all documents output by our normalizer can be
interpreted by an HTML5 browser without any parse errors, we add a sanity check. Before
returning the DOM tree from a parser invocation, we serialize the DOM we have generated
and reparse it. We verify that this second parse does not raise any HTML5 parse errors
(other than ones related to its DOCTYPE).

8.3.2 Template Normalization

Normalizing a template is more difficult than a static HTML document as its content is
dynamically generated, with an unlimited number of different possible outputs. Fortunately,
we can take advantage of the limited expressivity of a templating language in order to reason
about the form that the possible outputs of a given template can take.

Hole Filling.

The simplest case is that of a “straight-line” template that consists only of a static
skeleton and holes (template variables) that are filled in at runtime. We assume that the
value of these variables will be escaped or sanitized appropriately at runtime. In particular,
we consider the escaping appropriate if it ensures that the remainder of the document will
be parsed in the same way as if the hole had filled with an empty string.

This formulation gives us a natural way to extend our HTML parser so it can parse
templates containing static HTML and variables. We replace each variable interpolation
with a “magic string”: a marker that uniquely identifies the original interpolation but does



Section 8.3. Approach 147

not affect the parsing of the document (i.e., does not change the parse context). This magic
string needs to take on different forms depending on where it occurs in the document. In
most HTML contexts, white space is ignored and is thus it is safe to replace the hole with
a sequence of whitespace characters. In other locations, such as unquoted attribute values,
replacing a hole with whitespace could change the parsing of the document.

While we do not have access to the document’s HTML parse when magic strings are cho-
sen, it suffices to examine the immediately preceding characters in order to tell which type of
magic string to use. If the hole is immediately preceded by a non-whitespace character other
than >, we consider it safe to use alphanumerics to represent the magic string.2 Otherwise,
we use whitespace characters, unless the hole is preceded by an = and optional whitespace,
in which case we use alphanumerics in order to keep the hole attached to a possible adja-
cent unquoted attribute value. In both cases, the magic string starts with a pseudorandom
sequence in order to avoid collision with any string occuring in a real document.

After replacing holes with magic strings, we pass the resulting template through the
normalizing HTML parser described in Section 8.3.1. Thanks to the markers, we are able to
identify where each variable interpolation occurs in the parse tree and infer its parse context.

Path exploration.

The problem becomes more complicated once conditional branching constructs such as
ifs and loops are added to the template. There is no longer a single unique “skeleton” for
the template’s output. Instead, there is a potentially-exponential number of straight-line
templates to consider.

The conceptually simplest approach would be to explore all possible paths through the
template, analyzing each one separately. One could then take the resulting set of normalized
straight-line templates and (1) identify the full set of possible contexts for each hole in
the original source template and (2) infer a combined template that reinserts branching
constructs in appropriate places. Unfortunately, the number of paths can grow exponentially,
rendering this approach impractical. Additionally, it may be very complex to reconstruct a
single template that merges a large number of paths simultaneously. Therefore, we take a
different approach.

We devise a traversal-based divide-and-conquer approach that both reduces the number
of paths we must explore and makes merging manageable. In order to eliminate the need
to explore every path, we ensure that conditionals are composable, allowing exploration of
a smaller set of paths to be predictive of all possible paths. We achieve this by rewriting
the template to make all conditionals align with the tree structure of the HTML document.
In particular, we ensure that the parse state (including the stack of open elements) after
each branch of a conditional is identical to the parse state before the conditional. This
requirement helps us avoid exponential blowup in possible parse states.

To achieve this property, we limit conditional branching statements to occur in three

2 We test for > because only whitespace is allowable in certain locations in tables, where other text is not.



Section 8.3. Approach 148

possible locations:

• body text (between tags, i.e., PCDATA context)
• within a tag, in place of a tuple of attribute-value pairs
• within attribute values

We do not assume that the conditionals in the input template strictly match these locations;
we instead rewrite each input template to an equivalent one where control statements fall in
such locations, when it is possible to do so.

We use a recursive algorithm to perform this rewriting. Accomplishing this requires
the use of two separate parsers, one for the template language and one for HTML, and
operation on tree structures corresponding to each. The conversion algorithm operates on a
template’s parse tree, recursing down into the structure of the template. On the way back
up the recursion, it builds up a family of conditional-augmented HTML parse trees from the
bottom up, at the top level yeilding an augmented HTML parse tree that can be serialized
into the rewritten template.

A template parses to a tree containing two general categories of nodes, leaf nodes and
interior nodes. Leaf nodes include variable nodes, text nodes, and various other template
directives that do not contain further template content. Interior nodes, such as block nodes
and conditional nodes, contain one or more subsidiary sequences of other nodes such as a
block’s contents or the contents of the true and false branches of a conditional node. If
these lists are explicitly included as vertices in the template parse tree, the graph consists
of alternating levels containing nodes and lists.

Our traversal algorithm can be described as two mutually-recursive routines, Inte-

grate and Summarize, that occur at these two types of alternating levels in the template’s
parse tree.

For the sake of simplicity, we will assume in the algorithm descriptions below that the
HTML DOM tree is a simple multi-way tree consisting only of generic, untyped nodes. Each
node contains some contents val and a list of children ch. Complications that arise from the
fact that an HTML parse tree contains multiple types of nodes are a natural tweak to the
general algorithm for simple graphs.

Summarize is invoked on each interior node in the template. It determines the minimal
diff between the HTML parse trees corresponding to the different possible paths through that
interior node. The minimal diff is found by recursing on the list of HTML nodes, winnowing
down the location of the diff by excluding common prefixes and suffixes. The algorithm
proceeds deeper into the HTML parse tree as long as the difference between its inputs can
be reduced to a single node that differs only in its children. Once the minimal diff is found,
it is replaced by a specially-typed BranchNode that contains the alternate HTML content
on the two branches.

Integrate is invoked on the list of template nodes corresponding to one path of an
interior node. It first determines a base HTML document to serve as a common basis for
comparison by taking the default branch through the sequence of nodes. For each conditional



Section 8.3. Approach 149

Algorithm 1 Converting template conditionals to be tree-aligned
function ReplDiff(T1: TreeNode list, T2: TreeNode list)

P, T1, T2 ← RemoveCommonPrefix(T1, T2)
S, T1, T2 ← RemoveCommonSuffix(T1, T2)
if Len(T1) = Len(T2) = 1 and T1[0].val = T2[0].val then

R← TreeNode(T1[0].val, ReplDiff(T1[0].ch, T2[0].ch))
else

R← BranchNode(T1, T2)

return P + R + S

function Summarize(P : string, N : TemplateNode, S: string)
T ← Integrate(P , N.true, S)
F ← Integrate(P , N.false, S)
return ReplDiff(T , F )

function TreeMerge(B: TreeNode list, Λ: TreeNode list)
R← [ ]
while Λ 6= [ ] do

P,B, ℓ ∈ Λ← RemoveCommonPrefix(B, ℓ ∈ Λ)
R← R+ P

Λ′ ←
[

ℓ ∈ Λ |B[0] 6= ℓ[0] and B[0].val = ℓ[0].val
]

if Λ′ 6= ∅ then
R← R+ TreeMerge(B[0], ℓ[0] for ℓ ∈ Λ′)
Λ← [tl ℓ for ℓ ∈ Λ− Λ′]
B ← tl B

else

F ← unique ℓ ∈ Λ | hd ℓ is BranchNode

B,B′,M ← RemoveCommonSuffix(B, F )
R← R+M

Λ← [ℓ−B′ for ℓ ∈ Λ− F ]

return R + B

function Integrate(P : string, L: TemplateNode list, S: string)
B ← TreeParse(P + ChooseDefault(L) + S)
Λ← [ ]
LP ← [ ]
while L 6= [ ] do

ℓ← hd L

L← tl L
if ℓ.ch 6= [ ] then

Λ← Λ + Summarize(P + Print(LP ), N , Print(L) + S)

LP ← LP + ℓ

return Merge(B, Λ)



Section 8.3. Approach 150

node in the node list, it invokes Summarize on that node, and collects the results of these
invocations.

It then performs a depth-first traversal of the base document HTML tree in order to
merge the summarized differences. This consists of repeatedly determining the first location
that any document in the set of summary documents differs from the base document. Once
this location is determined, the common prefix and the summary placeholder are output,
and the portion of the remaining documents corresponding to the placeholder is removed.
Once the list of summaries is exhausted, any content from the base HTML tree is appended
to yield the integrated document.

At top-level, we invoke Integrate on the template nodelist, and get back the HTML
parse tree augmented with variable nodes and branch nodes, representing a normalized
version of the template. Serializing this tree yields the rewritten template.

8.3.3 Template Inclusion

In addition to holes and branching constructs, we also support template inclusion. In
a template system with inclusion, it is necessary to distinguish between templates that are
solely included and those that are used as top-level templates. For our current implementa-
tion, we initially assume that any template that contains the case-insensitive string <html is
a top-level template, and use these as seeds for our traversal. Given a “seed” template, we
retrofit it as above, with any template inclusion points treated as conditional branch points.
We parse the template both with and without the included content, find the minimal diff
between these two trees, and rewrite both the including and included template to reflect this
boundary between the two templates.

If the same template is included in multiple locations (either in the same file or across
different files), we verify that all such rewritten versions are identical. This is necessary to
ensure that the same retrofitted version of the included template can be used in all places
that it is included.

8.3.4 Template Extension

In some template languages, it is possible to define a template that “extends” another
template. Similar to extending a class in an object-oriented language, the new template
inherits the text of the original template, but can override sections of it. This is done
through the use of named blocks. The original template defines inline named blocks in
specific locations that can then be overridden by child templates. Child templates consist of
an extends declaration indicating their parent template, followed by named blocks filled with
new content. To retrofit a child template, it is first necessary to retrofit the parent template.
When we see a template that inherits from another template in our initial enumeration of
the files in an application, we assume that its ultimate ancestor must be a top-level template.
We accordingly traverse that template’s parents up to the top-level ancestor and then retrofit
them in reverse order.



Section 8.4. Implementation 151

When retrofitting a child template, we use its parent template as a base. If the par-
ent template itself extends some other template, we first flatten the sequence of ancestor
templates to an equivalent single template. We then treat all blocks that are overridden in
the child as if they were conditional branching structures between the base template and
the child template. We verify that the diff inferred for such structures is consistent with
the already-retrofitted base template, and rewrite the child template’s version of the block if
necessary. Once all block overrides have been verified in this way, we write out the child tem-
plate with the rewritten blocks substituting for the original blocks in the template. (Blocks
that are defined by the child template but do not exist in the flattened parent template are
stripped, as they are dead code.)

8.4 Implementation

We target Django, a Python-based web application framework. Our implementation
reads in a set of Django templates, which possibly extend and include each other, and
outputs a rewritten version of the templates that satisfy our normalization properties. Any
errors that prevent our tool from working are reported, and the affected files are not output.

Our normalizer is based on a modified version of the Python HTML5 reference parser.
Our modifications mostly serve to preserve additional information that the reference parser
discards because it does not affect the document’s rendering in an HTML5-compliant web
browser. We preserve this data to help us avoid changes to the document unnecessary
for normalization. For instance, we modify the reference parser to preserve the precise
whitespace usage and the order of all attributes so that normalization does not introduce
trivial changes to the template.

The reference parser assumes that the browser supports frames and has JavaScript
enabled and consequently discards the contents of noframes, noscript, and iframe blocks.
We modify it to preserve and parse the contents of these blocks. Also, we modify the reference
parser to parse the contents of noembed blocks, to reflect that their contents may be used by
old browsers in place of an adjacent embedded object if it cannot be loaded (the reference
parser ignores their contents, which is unsafe).

8.5 Evaluation

In this section, we argue for the soundness of our normalization approach and evaluate
the ability of our rewriting tool to normalize real-word templates belonging to open-source
Django applications.

8.5.1 Correctness Argument

We believe that our normalization procedure ensures consistent and predictable parsing
for untrusted content across all browsers in use. Specifically, we believe that the following



Section 8.5. Evaluation 152

two properties hold:

• All browsers will parse the output of the normalized template in the same way, i.e. the
HTML parse context of each location in the template where a variable occurs will be
consistent across all browsers, including pre-HTML5 browsers.
• The HTML parse context at each point in the output can be determined via simple,
straightforward static analysis of the corresponding input templates.

HTML Normalization

In the simplest case, the input template does not contain any holes or template direc-
tives. Here our goal is just to ensure that the output is in a sufficiently canonical form that
all browsers in common use will parse it the same way. We ensure this by outputting a
canonical serialization of a DOM tree rather than directly transforming the input template.
This canonical serialization ensures the normalization properties in Figure 8.4. By restricting
the document to such a straightforward, unambiguous subset of the browser’s input space,
it is much less likely that corner cases triggering inconsistent or unexpected behavior will be
encountered.

The output of our HTML normalization algorithm is a well-formed (free of parse er-
rors) HTML5 document and thus should be parsed consistently by all modern browsers that
conform to the specification. This fact is ensured by our sanity check at the end of the
normalization process (See §8.3.1), except for cases in which browsers deviate from the spec-
ification. Recent versions of Internet Explorer that otherwise follow the HTML5 standard
diverge from it in their support for conditional comments; while we do not interpret and
normalize the contents of such comments, we do print a warning if they are detected.

Our modified interpreter will always descend into and parse the contents of noembed,
noscript, noframes, and iframe blocks. These tags only display their content if some
condition is met, such as JavaScript being disabled, or the browser not supporting frames.
In the case that the condition fails to hold, the HTML5 specification, reflecting common
implementation practice in browsers, has the parser to skip to the end of the block with
a string-based search for the ending tag. For consistency, we must ensure that such an
approach to parsing the block will end it at the same point that we find when parsing its
content like a normal tag. To achieve this, we must ensure that no string is present within
the block that the parser will mistake for the end of the block. (Strings like </noscript,
</noframes, etc., could appear, for example, within attribute values or comments without
ending the block as parsed.) Our rules prevent such a sequence occurring in any HTML
context within the corresponding block. In the HTML body context and within attribute
values, < is escaped as &lt; when it is not part of a opening or closing tag. In <script>

blocks, the two-character combination </ is rewritten as <\/. In <style> blocks, retrofitting
fails if the two character combination </ is present. Retrofitting also fails if any comments
are found within potentially unparsed blocks, or if one potentially unparsed block is nested
within another.



Section 8.5. Evaluation 153

The output of our normalizer is well-formed SGML in addition to being well-formed
HTML5. We also ensure that our output adheres to a subset of SGML that follows the
advice in the HTML4 specification for maximizing compatibility. We do not ensure full
validity to the HTML DTD; for example, we do not type-check attributes or verify cardinality
cardinality constraints on elements. We prevent some elements from appearing in contexts
not permitted by the DTD (e.g. <meta> and <title> in the body of the document rather
than the head), but do not enforce all such “content model” constraints. In general, the
constraints we fail to enforce are higher-level in nature, and we do not believe that they are
likely to affect parsing in such a way as to affect the determination of HTML contexts.

It is rare for a browser to parse a well-formed HTML4 document in a manner inconsistent
with the specification, but we perform additional normalization on the document to avoid the
cases we are aware of where this can happen. Comments in script and style blocks are an
example where the determination of the end of the block may vary between legacy browsers
even if the block’s contents are valid according to the HTML4 specification. Sequences of
double hypens in comments can also lead to parsing inconsistencies, as do Internet Explorer
conditional comments, which have been discussed above.

Straight-line Templates

For straight-line templates, the only added complexity is the presence of holes that
add content to the document. As we are modelling the template as a tree, we must ensure
that the substitution preserves the tree structure in order for the parsing of the rest of the
document to be unaffected. If each input is unambiguously contained within a single tree
node, the state of the parser before and after parsing that input will be the same, as there
is a direct correspondence between a node in the parse tree and the current state of the
parser building up that parse tree. For the normalized template, the context of each hole
can be simply determined by using a parser that treats previous holes as containing the
empty string.

We support template holes in the following contexts:

• body text (between tags, PCDATA context)
• within a tag, in place of a tuple of attribute-value pairs
• within attribute values

For each of these contexts, there exists a set of values that will result in the HTML
parse state being equivalent before and after the template hole. These values correspond to
a properly constructed subtree rooted at the location of the hole. We assume that the inputs
to the template each fall within this set for the appropriate context. This assumption can
be met by applying an appropriate automatic escaping function for each context.

For the PCDATA context, HTML entity escaping will suffice to guarantee this invariant.
The parser will remain within the PCDATA context throughout, and all content will be
inserted into the the body of the same tag. The only difference in parser state will be
the textual content, which does not affect parsing. HTML entity escaping also suffices for



Section 8.5. Evaluation 154

attribute values, and will ensure that the content remains within a single attribute value.
(Using this escaping function here relies on the invariant that all attribute values in our
normalized document are quoted.)

For the attribute context, we must ensure that the input will parse as a list of well-
formed attributes. An input of this type can be verified by a sanitization function that
parses and outputs such values, or by checking that the input is marked as the output of
a trusted function for generating values of this type. Any unmarked inputs can be safely
replaced by the empty string. The entirety of the input will be contained in the tag where
the variable node appears, so the parse state will not change. The only difference is the set
of attributes defined, which does not affect the parser state machine.

For cross-site scripting protection, additional restrictions are required on the contents of
some attribute values to ensure that they do not lead to JavaScript injection. These include
event handler attributes, which are interepreted directly as JavaScript, and URLs, which
can include code if schemas like javascript: are used. In an automatic escaping system, it
is necessary to detect these cases to provide proper defense against cross-site scripting, and
the same is true of static analyses. Our normalization makes it easy to identify the attribute
name associated with each attribute value, as we do not allow variable interpolations to exist
in locations where they could complicate this determination. Specifically, it will always be
the most recent attribute name seen while parsing the document.

Branching Structures

For conditional branching structures and their equivalents, we also wish to show that
the parser state is identical before and after each branch in the normalized document. Again,
the fact that each branching structure corresponds to a subtree of the document will help us
argue that the parser state is the same regardless of which path is chosen for each branch.

We support conditionals in the same locations as template holes. For conditionals, the
content of each branch corresponds to a properly formed subtree of the HTML document,
and so the state of the parser differs between branches only by the characters in the current
state.

We can prove this property using strong induction on the number of conditionals present
in template fragments found in a branch of a conditional. The induction hypothesis is that
the contents of every template branch with fewer than k conditionals (summed over all
branches) satisfy the property that they start and end at the same parse context.

For a branch with zero conditionals, we know that the starting context is one of the
three possible contexts where a conditional can be located. As the contents of the template
branch are a valid subtree for that location in the HTML document, the parse context before
and after the branch are the same. For conditionals located within HTML opening tags
(between or within attribute values), the same reasoning holds as for straight-line templates.
For conditionals located in the PCDATA context, even though tags can be present, all tags
opened are properly closed due to the output being the serialization of a DOM tree. The
ending context will be the same as the start, still in the PCDATA context with the same set



Section 8.5. Evaluation 155

Application Manual Mod. Diff Size Excluding />

Name Templ. Lines Templ. Lines Templ. Lines Templ. Lines
django-admin 24 812 0 0 13 62 2 31
damned-lies 61 2649 6 46 43 233 24 123
ccdb 54 2498 3 4 32 175 16 90
fabiosuoto 11 513 0 0 9 43 5 12
niftyurls 7 153 0 0 4 16 1 1
victims 14 378 2 2 7 15 4 4
yumeblog 4 231 1 2 2 16 2 6

Table 8.1: Experimental results for template normalization. The left section shows the
Django applications we evaluate on. The middle section shows that most templates are
automatically handled by our tool; a small subset require manual intervention. The right
section indicates that normalization makes only relatively modest changes to the templates.
See Section 8.5.2 for detailed explanation of the columns.

of tags opened. The text and elements already seen within the current element do not affect
the behavior of the parser when parsing subsequent elements within that element.

For a branch containing k conditionals, for each conditional at top level, the induction
hypothesis ensures that the branch chosen for that conditional does not affect the parse,
and so nested conditionals can be skipped without changing the parse. Once the nested
conditionals are removed, the same reasoning as used for the base case can be applied to the
branch.

8.5.2 Experiments

We ran our tool on the source code of several open-source Django applications listed on
django-sites.org, as well as templates belonging to the standard administrative interface
distributed with the Django distribution. These applications have between 4 and 79 HTML
templates each, amounting to between 153 and 2,649 source lines of template code. Our
results are summarized in Table 8.1.

The first section of Table 8.1 shows the name of the application, followed by the number
of HTML templates in the application and their total lines of code. We only attempted
to retrofit templates that generated a top-level HTML document, or that extended or were
included by a template that did so. In doing so, we skipped a number of non-HTML templates
such as email message contents and RSS feeds, as well as templates used for inline HTML
such as those used to define custom template tags.

Django-admin is a collection of library code provided by the Django distribution that
provides a web-based interface for viewing and modifying application data. It also includes
prebuilt code and templates for dealing with user authentication and registration. Templates
of other applications can make use of this module by referencing or overriding its templates;
two of the applications we evaluated, damned-lies and ccdb, referenced and overrode tem-



Section 8.5. Evaluation 156

plates from django-admin. When evaluating these applications, we included the templates
from django-admin along with that provided by the application. The numbers in the table
include the django-admin template code for these applications.

The Manual Modifications section of Table 8.1 shows where manual intervention was
required to successfully normalize the templates and quantifies the amount of intervention
needed. The first column lists the number of template files that we had to edit or add in
order for our retrofitting tool to run without fatal errors, and the second column shows the
number of lines we had to change in these files. Several of the applications did not require
any changes.

The Diff Size columns of Table 8.1 quantify the degree of modification our retrofitting
process makes to the original templates. Generally, the number of changes introduced by our
tool is relatively modest. As discussed below, these could be further reduced by reasonable
relaxations to our normalization properties and improvements to our implementation. The
last pair of columns shows the size of the diff given one possible relaxation of our normal-
ization policy, preserving XHTML-style self-closing tag indicators. This would reduce the
number of changes by slightly over one-half.

8.5.3 Manual intervention details

We summarize here the changes we had to make manually. The majority of changes
were simple, such as inserting missing closing tags in locations that our tool could not handle
automatically.

Damned Lies is a web application for managing localization of the open-source Gnome
project. It is the largest application we examined as well as the one that required the largest
amount of manual changes in order for its templates to be successfully rewritten by our
normalizer.

One template used the ifchanged template directive (in two locations) to close and
reopen a <ul> tag to visually group related elements. (See Figure 8.5(a).) We were able to
avoid this by changing the template to use the built-in regroup directive, which is provided
for exactly this purpose and does not introduce unaligned conditionals. In two templates,
code for constructing tables was problematic. For one, it was fairly straightforward to
relocate opening and closing <td> tags so that all conditionals were properly aligned. The
second was more involved, and involved a table similar to the one in Figure 8.5(b). Rewriting
this template to make conditionals and tags nest properly is trickier; we ended up moving
some of the code into a separate, included template (see Figure 8.5(c)).

The remainder of the manual changes required for the programs we evaluated were a
result of buggy HTML that our tool was unable to fix automatically. While our tool is able
to correct many forms of invalid HTML, in some cases our tool was not able to work out the
developer’s intent. Fixing these cases required us to manually make minor changes to the
templates. In CCDB, a misplaced {%endif%} and two erroneously self-closing divs caused
normalization failures. For victims, the ten failed templates were caused by a <div> being
erroneously closed with a </p> and then nested in another <p> tag by its including template.



Section 8.5. Evaluation 157

{% ifchanged rel.status %}

</ul>

<ul class="foot">

{% endifchanged %}

(a)

<table><tr><td colspan="2">

<p>Instructions</p>

{%if option_a_enabled %}

<p>Choice of A or B:</p>

</td></tr><tr><td>

Option A

</td><td>

{% endif %}

Option B

</td></tr></table>

(b)

<table><tr><td colspan="2">

<p>Instructions</p>

{% if option_a_enabled %}

<p>Choice of A or B:</p>

{% else %}

{% include "optionb.html" %}

{% endif %}

</td></tr>

{% if option_a_enabled %}

<tr>

<td>Option A</td>

<td>{% include "optionb.html" %}</td>

</tr>

{% endif %}

</table>

(c)

Figure 8.5: (a) and (b) show problematic constructs that our normalizer could not automat-
ically rewrite, and which required manual modification. (c) shows how we re-wrote (b).

In YumeBlog, our tool broke one template due to its use of a custom looping template tag in
combination with an unclosed <a name> tag. (Our normalizer cannot guarantee soundness
in the case of custom template tags, as we do not understand their semantics.)

8.5.4 Changes made to the templates

Many of the changes our tool makes could be reduced if our tool was more optimized
to reduce the size of the modifications made to the templates. Our tool removes the XML-
style “/” from self-closing HTML tags, as it is not technically valid HTML. However, it is
in widespread use in the web, even for pages served as HTML, and thus all browsers must
be able to handle it. If these changes are excluded (as in the last columns of the table),
the number of changes is reduced significantly. Other common changes include the closing
of unclosed tags. In some cases, conditional constructs were relocated so as to minimize
their extent, e.g. from around a tag to within a tag value. This shortens the document,
but can result in long lines, which may be stylistically less desirable. A more sophisticated
rewriter may be able to preserve the location of such conditionals in order to avoid this
modification. (Conditionals can often be placed in a variety of locations while preserving
our well-formedness property for templates.)

These changes incur a one-time cost for developers. Overall, the evaluation suggests
that our approach and tool do not require undue developer effort and can be applied to real
applications.



Section 8.6. Conclusion 158

8.6 Conclusion

We provide an automated tool for normalizing templates such that contexts can be
reliably determined. Most templates can be retrofitted automatically, and a small number
require additional manual effort. We thus show that it is practical to achieve stronger,
more principled assurance for context-sensitive autoescaping and other applications of static
analysis to web templates.



159

Chapter 9

Related Work: Web Templating

9.1 Web Templates

The earliest dynamic web content consisted of server-side scripts generating HTML
output, often in response to forms submitted from static pages. The dynamic pages were
generally implemented using scripting languages such as Perl, and HTML output was gener-
ated with print statements. Template languages were developed as a way to design dynamic
web pages in a more document-centric way, with invariant portions of the output document
alternating with code to generate the dynamic portions. Template languages, such as JSP,
ASP, and PHP, have traditionally been string-based; literal strings in the template are simply
concatentated with strings generated programmatically.

Several XML-based template languages have introduced a more structured approach to
document assembly. XSLT is an XML-based language used for transforming XML input
documents into XML output documents. As it is designed to operate only on XML inputs,
it is not directly suited to most web templating applications.

TAL [80] and Kid [70] use validated XML documents as templates. String inputs can
be inserted as attribute values, or inside or in place of XML tags. For attribute values, only
strings can be output, which Kid automatically escapes appropriately. While this preserves
the integrity of the template’s parse tree, it does not prevent inclusion of JavaScript or
other dangerous content. The programmer must explicitly impose additional restrictions on
output beyond those required for enforcing the well-formedness of the output and structural
integrity of the template.

Genshi [17] is very much like Kid, but adds some support for policy enforcement on
HTML, in the form of a sanitizing filter. This filter checks a chunk of XML (likely generated
by parsing a user string) for conformance to a policy. Because these frameworks use validated
XML as their template language, there should be no ambiguity over how their templates will
be parsed. They offer the ability to output the interpreted template as XHTML or HTML
and guarantee well-formedness. Unfortunately, they are harder to use for the programmer.
Certain constructs must be implemented in a less straightforward way in order to ensure the



Section 9.2. Autoescaping 160

template is valid XML.
Unlike XML-based templating frameworks, the approaches based on automatic escaping

of string-based templates, such as the ones explored in this dissertation, are more easily
applied to existing template code. A context-sensitive automatic escaping system operating
on sufficiently normalized templates retains the improved parsing consistency guarantees
of structure-aware templating while allowing the more familiar and convenient syntax of
existing template languages.

9.2 Autoescaping

Context-insensitive automatic escaping is supported by many modern templating sys-
tems; it was introduced in ClearSilver in 2006 [37] (allowing a choice of which automatic
filter to use) and Django in 2007 [16]. Context-sensitive templating was first introduced by
Google CTemplate in 2009 [66], which runs a parser on the template’s output as it is being
interpreted in order to determine the current output context.

Samuel et al. [61] provide a type system that can be used to statically determine the
contexts of interpolation points in web templates via type inference. This allows for context-
sensitive autoescaping without the performance cost of determining the HTML context at
runtime that is incurred by dynamic context-sensitive autoescaping systems. They inte-
grate their work into the template compiler for Google Closure Templates [60], and evaluate
the correctness and coverage of their type inference using production templates for various
Google web services. Like any context-sensitive escaping system, this avoids the problems
of incorrect or missing sanitization of untrusted input.

Chapter 7 addresses the orthogonal concern of reducing the number of template inputs
that need to be explicitly marked as trusted. While Samuel et al. identified the existence of
many templates that could be migrated to their system and were correctly handled without
the use of opt-outs from escaping, they did not evaluate the effort required to migrate full
applications to use contextual autoescaping or the number of opt-outs required. Additionally,
in our support for programmatic template rewriting and database trust annotations, we
extend the safety properties provided by context-sensitive escaping beyond the template
system to encompass the entire web application.

All existing context-sensitive autoescaping systems, whether dynamic or static, make
use of a single parser to determine document contexts, and do not normalize document
content. While this works most of the time, proper normalization, as performed in Chapter 8,
provides a sounder basis for defenses based on verifying or automatically placing sanitizers
and escaping functions.

9.3 HTML Parsing Correctness

In order to address the problem of client-side parsing differing from that used on the
server side, a number of papers have proposed adding a mechanism for explicitly annotating



Section 9.4. Other Cross-Site Scripting Defenses 161

untrusted content at the server. This annotation would allow a properly instrumented client
to provide defense in depth, as it could render inoperative any injections present in content
marked as untrusted. The first system to take this approach was BEEP [28], which provides
a way for documents to specify which scripts are authorized to execute on a page. The
policies are written in JavaScript, allowing for a great deal of versatility; as examples, the
paper includes a whitelist-based policy and a policy wherein a custom HTML attribute
identifies regions where scripts should be disabled. Document Structure Integrity [47] and
Noncespaces [23] provide alternate mechanisms for marking trusted and untrusted content
that aim to be more robust in the face of adaptive attacks and inconsistent parsing. Unlike
these systems, a normalization approach does not require any changes on the client side.

Blueprint [38] avoids possible ambiguities in parsing of untrusted content by parsing
it into a DOM tree on the server and transmitting this tree using a custom serialization
mechanism. It avoids any dependency on the client’s parser, instead rebuilding the DOM
structure on the client side by use of custom JavaScript. While this avoids the potential
difficulties of performing correct normalization, it incurs substantial client-side overhead and
makes content inaccessible to clients such as web crawlers that do not execute JavaScript.

9.4 Other Cross-Site Scripting Defenses

A number of other approaches have been proposed for defending against cross-site script-
ing and other content-injection attacks in web applications. Nguyen-Tuong et al. [48] use
dynamic, character-level taint-tracking to prevent PHP variable injection, SQL injection and
cross-site scripting. For XSS prevention, they check that sensitive HTML output (such as
<script> tags) does not contain tainted characters. Violations of this property can are
made safe by escaping appropriate for the context where tainted characters are found. Like
runtime context-sensitive autoescaping, this involves keeping track of the parse state of the
output.

GuardRails [12] provides a more sophisticated taint-tracking system, which allows trans-
formation and access-control policies to be associated with tainted strings. Transformation
policies specify the escaping functions to be used for a string when it is output in differ-
ent parse contexts. This rich policy language is more complex but offers greater flexibility
than the trusted-for-a-particular-context designation used in autoescape systems such as our
work. GuardRails integrates with Rails’ object-relational mapper and uses annotations on
database fields for access control policy specification, but not for transformation policies.
Unlike our work, which annotates trusted database fields, they persist character-level taint
information in the database to guard against stored content injection without over-escaping.
In our evaluation, we show that at least for our template-based applications, we can maintain
functionality while providing more reliable security guarantees and avoiding the overhead of
dynamic taint tracking.

Pixy [29] is a static analysis tool for PHP, designed to detect cross-site scripting and SQL
injection vulnerabilities. It is based on static taint analysis, and warns if it detects a flow



Section 9.4. Other Cross-Site Scripting Defenses 162

of data from an untrusted source, such as a query parameter, to a trusted sink, such as an
echo statement. Invocation of sanitizer functions clears the taint status. This analysis aims
to detect missing sanitization, a bug that is no longer possible with autoescaping template
systems.

Wasserman and Su [74] and the Saner tool [3] both provide more sophisticated static
taint analyses that are also able to reason about the correctness of sanitizer functions. Func-
tions that incompletely sanitize their input and thus still admit script injection can po-
tentially be detected. This work, and other similar work on modeling sanitizers [25], is
complementary to normalization and security review of data-flow paths that disable sani-
tization by the use of opt-outs, but may be helpful in establishing trust in sanitizers and
escape functions.

XSS-Guard [7] aims to defend against XSS attacks by instrumenting the web application
to perform all string operations on a crafted-benign “shadow” input in parallel to those
performed on the actual input. The two documents are then parsed using code extracted
from a real web browser and compared; content from the shadow run instead of the real run
is used in case of a parse-tree mismatch. This approach is essentially equivalent to dynamic
taint-tracking, but used a higher-fidelity browser than previous taint-tracking systems.

ScriptGard [64] is a system designed to detect and fix misplaced sanitizers in large .NET
web applications. Its detection of mismatched sanitizers derives from a path-based analysis
using an instrumented version of the application and a custom web browser. For a given
seed input, the instrumented application tracks “positive” taint information about string
literals as well as the set of sanitizers applied to strings. Based on path exploration with a
test suite and an instrumented browser, it finds the locations in each control-flow path that
are incorrectly sanitized. In addition to use for bug-finding, ScriptGard also has a mode
where it uses this information to correct known mismatched-sanitization bugs at runtime,
with optimizations to achieve low overhead. Like ScriptGard, we use the notion of positive
tainting in our runtime trust annotations in Chapter 7. In contrast to ScriptGard, we aim
to support verifiable correctness for legacy code rather than detection of bugs. In addition
to defending against buggy legacy code like ScriptGard in our mitigation mode, we also aim
to facilitate retrofitting existing code to be verifiably safe from XSS in strict mode.



163

Chapter 10

Conclusion

This dissertation has demonstrated language subsetting as a practical way to bring the
security benefits of object-capabilities to an existing language. Joe-E has enabled enforcing
and verifying a number of properties that are helpful to security review and reasoning about
programs, including privilege separation, secure encapsulation, immutability, and determin-
ism. It has aided in the building of a number of interesting applications and systems whose
security and correctness properties are more easily reviewed due to the features provided
by Joe-E. I hope that these contributions will be helpful as the software industry places a
greater emphasis on building reviewably secure software.

This dissertation also contributes to achieving reliable security for web applications.
I believe that building and facilitating the use of the correct abstractions is essential to
improving the security of this category of software. I hope that this work will inform and
inspire future development of framework-based techniques for the creation of correct and
reviewable web applications.



164

Bibliography

[1] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing
pluggable type systems. In OOPSLA ’06: 21st ACM Conference on Object-Oriented
Programming Systems and Applications, pages 57–74, Portland, Oregon, USA, 2006.

[2] M. Backes, M. Dürmuth, and D. Unruh. Information flow in the peer-reviewing pro-
cess (extended abstract). In IEEE Symposium on Security and Privacy, Proceedings of
SSP’07, pages 187–191, May 2007.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Saner: Composing static and dynamic analysis to validate sanitization in web
applications. In IEEE Symposium on Security and Privacy, May 2008.

[4] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[5] M. Barnett, K. R. Leino, and W. Schulte. The Spec# programming system: An
overview. In Proceedings of Construction and Analysis of Safe, Secure and Interop-
erable Smart Devices (CASSIS), 2004.

[6] D. J. Bernstein. Some thoughts on security after ten years of qmail 1.0. In CSAW ’07:
Proceedings of the 2007 ACM workshop on Computer security architecture, pages 1–10,
New York, NY, USA, 2007. ACM.

[7] P. Bisht and V. Venkatakrishnan. Xss-guard: Precise dynamic prevention of cross-
site scripting attacks. In 5th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment, July 2008.

[8] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: splitting applications into
reduced-privilege compartments. In NSDI’08: Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation, pages 309–322, Berkeley, CA,
USA, 2008. USENIX Association.

[9] W. Bright. D language 2.0. http://www.digitalmars.com/d/2.0/.
[10] L. Brown. AEScalc. http://www.unsw.adfa.edu.au/~lpb/src/AEScalc/AEScalc.

jar.
[11] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. R. Leino, and E. Poll.

An overview of JML tools and applications. International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212–232, June 2005.

[12] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and D. Evans. Guardrails: A data-centric
web application security framework. In 2nd USENIX Conference on Web Application

http://www.digitalmars.com/d/2.0/
http://www.unsw.adfa.edu.au/~lpb/src/AEScalc/AEScalc.jar
http://www.unsw.adfa.edu.au/~lpb/src/AEScalc/AEScalc.jar


Bibliography 165

Development (WebApps 2011), June 2011.
[13] Y. Cheon and G. Leavens. A runtime assertion checker for the Java Modeling Language,

2002.
[14] T. Close and S. Butler. Waterken server. http://waterken.sourceforge.net/.
[15] D. Crockford. ADsafe. http://www.adsafe.org.
[16] Django Software Foundation. AutoEscaping – Django. https://code.djangoproject.

com/wiki/AutoEscaping.
[17] Edgewall Software. Genshi. http://genshi.edgewall.org.
[18] P. Efstathopoulos, M. Krohn, S. Vandebogart, C. Frey, D. Ziegler, E. Kohler,

D. Mazières, F. Kaashoek, and R. Morris. Labels and event processes in the Asbestos
operating system. In In Proc. 20th ACM Symp. on Operating System Principles (SOSP,
pages 17–30, 2005.

[19] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-
oriented language. In OOPSLA ’03: 18th ACM Conference on Object-Oriented Pro-
gramming Systems and Applications, pages 302–312, Anaheim, California, USA, 2003.

[20] M. Fähndrich and S. Xia. Establishing object invariants with delayed types. In OOPSLA
’07: 22nd ACM Conference on Object-Oriented Programming Systems and Applications,
pages 337–350, Montréal, Québec, Canada, 2007.

[21] M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Verifiable functional purity in Java.
In CCS ’08: Proceedings of the 15th ACM Conference on Computer and Communica-
tions Security, pages 161–174, New York, NY, USA, 2008. ACM.

[22] L. Gong, M. Mueller, and H. Prafullch. Going beyond the sandbox: An overview of the
new security architecture in the Java development kit 1.2. In USENIX Symposium on
Internet Technologies and Systems, pages 103–112, 1997.

[23] M. V. Gundy and H. Chen. Noncespaces: Using randomization to enforce informa-
tion flow tracking and thwart cross-site scripting attacks. In 16th Annual Network &
Distributed System Security Symposium, February 2009.

[24] N. Hardy. KeyKOS architecture. SIGOPS Oper. Syst. Rev., 19(4):8–25, 1985.
[25] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast and precise

sanitizer analysis with BEK. In Proceedings of the Usenix Security Symposium, August
2011.

[26] HTML4 Test Suite. http://www.w3.org/MarkUp/Test/HTML401/current/.
[27] R. Ierusalimschy and N. de La Rocque Rodriguez. Side-effect free functions in object-

oriented languages. Comput. Lang., 21(3/4):129–146, 1995.
[28] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with browser-

enforced embedded policies. In 16th International World Wide Web Conference, May
2007.

[29] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting web
application vulnerabilities (short paper). In IEEE Symposium on Security and Privacy,
May 2006.

[30] M. F. Kaashoek, D. R. Engler, G. R. Ganger, n. Hector M. Brice R. Hunt, D. Mazières,
T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie. Application performance and

http://waterken.sourceforge.net/
http://www.adsafe.org
https://code.djangoproject.com/wiki/AutoEscaping
https://code.djangoproject.com/wiki/AutoEscaping
http://genshi.edgewall.org
http://www.w3.org/MarkUp/Test/HTML401/current/


Bibliography 166

flexibility on exokernel systems. In SOSP ’97: Proceedings of the sixteenth ACM sympo-
sium on Operating systems principles, pages 52–65, New York, NY, USA, 1997. ACM.

[31] D. Kilpatrick. Privman: A library for partitioning applications. In USENIX Annual
Technical Conference, FREENIX Track, pages 273–284, 2003.

[32] A. Krishnamurthy, A. Mettler, and D. Wagner. Fine-grained privilege separation for
web applications. In WWW ’10: Proceedings of the 19th International Conference on
the World Wide Web, pages 551–560, 2010.

[33] B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, J. G. Mitchell, G. J.
Popek, and G. J. Popek. Report on the programming language Euclid. SIGPLAN Not.,
12(2):1–79, 1977.

[34] G. Leavens and Y. Cheon. Design by contract with JML, 2003.
[35] H. M. Levy. Capability-based computer systems. Digital Press, Maynard, MA, USA,

1984.
[36] T. Lindholm and F. Yellin. Java(TM) Virtual Machine Specification, The (2nd Edition).

Prentice Hall PTR, April 1999.
[37] B. Long. Clearsilver. http://www.clearsilver.net/.
[38] M. T. Louw and V. Venkatakrishnan. Blueprint: Robust prevention of cross-site script-

ing attacks for existing browsers. In 30th IEEE Symposium on Security and Privacy,
May 2009.

[39] A. Mettler and D. Wagner. The Joe-E language specification, version 1.1, September
18, 2009. http://www.cs.berkeley.edu/~daw/joe-e/spec-20090918.pdf.

[40] A. Mettler and D. Wagner. Class properties for security review in an object-capability
subset of java (short paper). In ACM SIGPLAN 5th Workshop on Programming Lan-
guages and Analysis for Security, June 2010.

[41] A. Mettler, D. Wagner, and T. Close. Joe-e: A security-oriented subset of java. In 17th
Annual Network and Distributed System Security Symposium (NDSS 2010), March 2010.

[42] B. Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, Englewood
Cliffs, NJ, USA, 1992.

[43] M. S. Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006.

[44] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content
in sanitized JavaScript (draft), 2008. http://google-caja.googlecode.com/files/

caja-spec-2008-06-07.pdf.
[45] J. H. Morris, Jr. Protection in programming languages. Commun. ACM, 16(1):15–21,

1973.
[46] A. C. Myers and B. Liskov. A decentralized model for information flow control. In

Symposium on Operating Systems Principles, pages 129–142, 1997.
[47] Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A robust basis for

cross-site scripting defense. In 16th Annual Network & Distributed System Security
Symposium, February 2009.

[48] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically

http://www.clearsilver.net/
http://www.cs.berkeley.edu/~daw/joe-e/spec-20090918.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf


Bibliography 167

hardening web applications using precise tainting. In 20th IFIP International Informa-
tion Security Conference, June 2005.

[49] M. Odersky. The Scala programming language. http://www.scala-lang.org.
[50] D. Oswald, S. Raha, I. Macfarlane, and D. Walters. HTMLParser 1.6. http:

//htmlparser.sourceforge.net/.
[51] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D. Ernst. Practical

pluggable types for java. In ISSTA ’08: 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA, 2008.

[52] N. Provos. Preventing privilege escalation. In Proceedings of the 12th USENIX Security
Symposium, pages 231–242, 2003.

[53] X. Qi and A. C. Myers. Masked types for sound object initialization. In OOPSLA
’09: 24th ACM Conference on Object-oriented Programming Systems and Applications,
pages 53–65, Savannah, Georgia, USA, 2009.

[54] D. Raggett, A. L. Hors, and I. Jacobs. Html 4.01 specification, December 1999. http:
//www.w3.org/TR/html401/.

[55] J. A. Rees. A security kernel based on the lambda-calculus. A. I. Memo 1564, MIT,
1564, 1996.

[56] A. Rountev. Precise identification of side-effect-free methods in java. In ICSM ’04:
Proceedings of the 20th IEEE International Conference on Software Maintenance, pages
82–91, Washington, DC, USA, 2004. IEEE Computer Society.

[57] A. Rudys and D. S. Wallach. Termination in language-based systems. ACM Transac-
tions on Information and System Security, 5(2), May 2002.

[58] A. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs. In
VMCAI, pages 199–215, 2005.

[59] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.
In Communications of the ACM, 1974.

[60] M. Samuel and K. Huang. Closure templates. http://closure-templates.

googlecode.com/.
[61] M. Samuel, P. Saxena, and D. Song. Context-sensitive auto-sanitization in web tem-

plating languages using type qualifiers. In ACM Conference on Computer and Commu-
nications Security, October 2011.

[62] N. K. Sastry. Verifying Security Properties in Electronic Voting Machines. PhD thesis,
University of California at Berkeley, 2007.

[63] F. Sauer. Eclipse metrics plugin 1.3.6. http://metrics.sourceforge.net/.
[64] P. Saxena, D. Molnar, and B. Livshits. Scriptgard: Automatic context-sensitive san-

itization for large-scale legacy applications. In ACM Conference on Computer and
Communications Security, October 2011.

[65] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system. In SOSP
’99: Proceedings of the seventeenth ACM symposium on Operating systems principles,
pages 170–185, New York, NY, USA, 1999. ACM.

[66] C. Silverstein. Ctemplate. http://ctemplate.googlecode.com/.
[67] F. Spiessens and P. V. Roy. The Oz-E project: Design guidelines for a secure mul-

http://www.scala-lang.org
http://htmlparser.sourceforge.net/
http://htmlparser.sourceforge.net/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html401/
http://closure-templates.googlecode.com/
http://closure-templates.googlecode.com/
http://metrics.sourceforge.net/
http://ctemplate.googlecode.com/


Bibliography 168

tiparadigm programming language. In In Multiparadigm Programming in Mozart/Oz:
Extended Proceedings of the Second International Conference MOZ 2004, volume 3389
of Lecture Notes in Computer Science, pages 21–40. Springer-Verlag, 2005.

[68] M. Steigler and M. Miller. How Emily Tamed the Caml. Technical Report HPL-2006-
116, HP Laboratories, August 11, 2006.

[69] B. Stroustrup. A rationale for semantically enhanced library languages. In Proceedings
of the First International Workshop on Library-Centric Software Design (LCSD 05),
pages 44–52, 2005.

[70] R. Tomayko. In search of a Pythonic, XML-based templating language. http:

//tomayko.com/writings/pythonic-xml-based-templating-language.
[71] M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java. In

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2005),
pages 211–230, San Diego, CA, USA, October 18–20, 2005.

[72] P. Wadler. The essence of functional programming. In Conference Record of the Nine-
teenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 1–14, Albequerque, New Mexico, 1992.

[73] D. Wagner and D. Tribble. A security analysis of the Combex DarpaBrowser
architecture, March 4, 2002. http://www.combex.com/papers/darpa-review/

security-review.pdf.
[74] G. Wasserman and Z. Su. Static detection of cross-site scripting vulnerabilities. In

International Conference on Software Engineering, May 2008.
[75] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song. A systematic

analysis of xss sanitization in web application frameworks. In European Symposium on
Research in Computer Security, October 2011.

[76] D. A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/.
[77] K.-P. Yee and M. Miller. Auditors: An extensible, dynamic code verification mechanism,

2003. http://www.erights.org/elang/kernel/auditors/index.html.
[78] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow

explicit in HiStar. In OSDI ’06: Proceedings of the 7th USENIX Symposium on Op-
erating Systems Design and Implementation, pages 19–19, Berkeley, CA, USA, 2006.
USENIX Association.

[79] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D. Ernst. Object and ref-
erence immutability using Java generics. In ESEC/FSE 2007: 11th European Software
Engineering Conference and 15th ACM Symposium on the Foundations of Software En-
gineering, pages 75–84, Dubrovnik, Croatia, September 5–7, 2007.

[80] Zope Foundation. TAL specification 1.4. http://wiki.zope.org/ZPT/

TALSpecification14.

http://tomayko.com/writings/pythonic-xml-based-templating-language
http://tomayko.com/writings/pythonic-xml-based-templating-language
http://www.combex.com/papers/darpa-review/security-review.pdf
http://www.combex.com/papers/darpa-review/security-review.pdf
http://www.dwheeler.com/sloccount/
http://www.erights.org/elang/kernel/auditors/index.html
http://wiki.zope.org/ZPT/TALSpecification14
http://wiki.zope.org/ZPT/TALSpecification14

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Background
	Security Review
	Programming Languages and Abstractions
	Web Templating Languages

	Summary
	Joe-E: A Security-Oriented Subset of Java
	Improving Security of Template-Based Web Applications


	Joe-E: An Object-Capability Subset of Java
	Introduction
	Goals and Overview
	Ease of use
	Supporting secure software
	Supporting security code review

	Approach
	Subsetting

	Design of Joe-E
	Memory Safety and Encapsulation
	Removing Ambient Authority
	Exceptions and Errors

	Programming Patterns
	Reachability and Object Graph analysis
	Leveraging Static Typing
	Defensive Consistency
	Immutability
	Attenuation of Authority
	Facets

	Implementation
	Conclusions

	Verifiable Functional Purity in Joe-E
	Introduction
	Applications
	Reproducibility
	Invertibility
	Untrusted code execution
	Building robust systems
	Bug reduction
	Assertions and Specifications

	Definitions
	Side-effect freeness
	Determinism

	Approach
	Equivalence of reference lists
	Immutability

	Pure methods
	Implementation
	Side effects and Nondeterminism
	Immutability
	Verifying Purity

	Evaluation and Experience
	AES library
	Voting machine
	HTML parser
	Summary of patterns
	Waterken Server

	Discussion
	Conclusions

	Joe-E's Overlay Type System and Marker Interfaces
	Introduction
	Overlay Type System
	Marker Interfaces
	Properties
	Formalizations

	Immutability
	Ensuring Final Means Final

	Identity-based Authority
	Power and Tokens
	Powerless

	Selfless and Equatable
	Conclusions
	Appendix: Proofs of Theorems
	Completeness
	Non-circularity


	Applications of Joe-E
	Waterken
	Consistent Persistence
	Cache Coherence
	Remote capabilities

	Capsules
	Design
	Implementation
	Evaluation


	Related Work: Joe-E
	Capabilities
	Object-Capability Languages
	Privilege Separation

	Security for Java and Related Languages
	Functional Purity
	Side Effects
	Functionally Pure Languages

	Overlay Type Systems

	Retrofitting Web Applications for Security Review of Cross-Site Scripting Resistance
	Introduction
	Background
	Problem
	Approach
	Mitigation Mode
	Strict Mode

	Implementation
	Context-sensitive autoescaping
	Marked strings
	Escaping rules
	Database integration
	Programmatic templating
	Library patching
	Limitations

	Evaluation
	Results
	Adlibre TMS
	Douglas Miranda's site
	Fabio Souto's blog
	Pinax Forum
	GoDjango
	JQChat
	NiftyURLs
	PythonKC
	Yume Blog
	Zinnia
	Django CMS

	Conclusions

	Normalization of Web Templates for Reliable Inference of HTML Contexts
	Introduction
	Problem
	Basic HTML Normalization
	Control Directives
	Template Inheritance and Inclusion
	Deployability

	Approach
	HTML Normalization
	Template Normalization
	Template Inclusion
	Template Extension

	Implementation
	Evaluation
	Correctness Argument
	Experiments
	Manual intervention details
	Changes made to the templates

	Conclusion

	Related Work: Web Templating
	Web Templates
	Autoescaping
	HTML Parsing Correctness
	Other Cross-Site Scripting Defenses

	Conclusion
	Bibliography

