

Language Based Security for Java and JML

Martijn Warnier

ii

Copyright c© 2006 Martijn Warnier
All rights reserved.
ISBN-10: 90-9020922-0
ISBN-13: 978-90-9020922-7
IPA dissertation series 2006-16

Typeset with LATEX2ε
All hypertext links are courtesy of the hyperref package
Cover design by Dries Verbruggen, unfold.be

Printed by Print Partners Ipskamp, Enschede

The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics). The author was employed at
the Radboud University Nijmegen and funded by the NWO project Security Analysis for
Multi-Applet Smart Cards (SAMACS).

http://www.tug.org/applications/hyperref/
unfold.be

Language Based Security for Java and JML

een wetenschapelijke proeve op het gebied
van de Natuurwetenschappen, Wiskunde en Informatica

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen,

op gezag van de Rector Magnificus prof. dr. C.W.P.M. Blom,
volgens besluit van het College van Decanen

in het openbaar te verdedigen op maandag 27 november 2006
des namiddags om 1.30 uur precies

door

Martinus Elisabeth Warnier

geboren op 20 mei 1976
te Heerlen

Promoter:
Prof. dr. B.P.F. Jacobs

Copromotor:
Dr. M.D. Oostdijk

Manuscriptcommissie:
Prof. dr. P.H. Hartel University of Twente
Prof. dr. D. Sands Chalmers University of Technology
Dr. J.R. Kiniry University College Dublin

Preface

The first time I met Bart Jacobs is now five years ago. At the time I was a student in
Utrecht with an interest in Java and its semantics. Jan Bergstra suggested that if I wanted
to pursue this interest I should go to Nijmegen and talk to Bart. It turned out that was
very good suggestion indeed! After first finishing my Masters thesis in Nijmegen (under
Bart’s supervision) I was asked to stay on as a PhD student. The result of which you read
at this moment.

I learned a lot in these last five years and I had a lot of fun along the way. One can
hardly ask for a better atmosphere, both scientifically and socially, as the one at the sixth
flour of the FNWI building in Nijmegen were the SoS group resides. In this preface I want
to thank everybody who helped me with the writing of this thesis.

The first person I want to thank is Bart Jacobs. He gave me the chance to start as a
PhD student in his group. I learned a lot from him about security, theorem proving and
other subjects of which some are encountered in this thesis. I’m grateful to know him,
both as a researcher and as a person.

I also want to thank Martijn Oostdijk who, as my daily supervisor and copromotor,
was always the person who had to read another first draft of a paper or one of the chapters
of this thesis. I do not think that anybody has read so much of my writing as he has. He is
probably also the person who can best judge how this thesis has improved from its infant
state to its current form. These improvements stem in large part from his suggestions
and comments on earlier drafts. Another thing I liked was the teaching we did together.
Preparing and grading all those exercises was annoying at times, but it certainly taught
me a lot about teaching.

Erik Poll also read this entire thesis. His comments are always ‘spot on’. I want to
thank him for all the valuable comments and suggestions he gave me both on this thesis
as well as on other papers and presentations I gave during the years.

My thanks are also due to the members of the reading committee, Pieter Hartel, David
Sands and Joe Kiniry, for their comments that improved the overall quality of this thesis
considerably. Furthermore I want to thank the following people for reading earlier drafts of
chapters of my thesis: Engelbert Hubbers, Christian Haack, Wojciech Mostowski, Wolter
Pieters, Ling Cheung and Ruby Groen for proof reading the Dutch summary.

I’m very thankful for being part of such a talented group of people as the SoS group.
They are thanked for the fun we had during those endless coffee breaks, lunches and beers
we shared. I explicitly want to thank the following (past and present) members of the
SoS group: my ‘roomie’ Cees-Bart Breunesse, Martijn Oostdijk, Bart Jacobs, Erik Poll,
Joachim van den Berg, Jesse Hughes, Ling Cheung, Engelbert Hubbers, Joe Kiniry, Flavio
Garcia, David Galindo, Ichiro Hasuo, Wolter Pieters and Harco Kuppens, for teaching me
everything I ever wanted to know about ‘sugar clumbs ’.

I furthermore want to thank all the PhD students (and others) I met during the years
at various summer schools and conferences. The ‘Marktoberdorf crowd ’, Jeroen Ketema,
Hendrik de Haan, Sander Bruggink and Arthur van Leeuwen, are especially thanked. We
enjoyed ourselves in Marktoberdorf and we had lots of fun later at various evenings in

Groningen, Utrecht and Nijmegen. I furthermore would like to thank Cas Cremers and
Ricardo Corin for organizing, together with myself, the SPAN security workshops. Cas
was also a member of the SAMACS project and we had a lot of nice discussions over the
years (and shared many glass of beer).

I also want to thank Gilles Barthe for letting me visit his group at INRIA Sophia-
Antipolis for the month October in 2004. It was a very nice experience to share my
ideas with others then my own SoS group. Thanks are due to Marieke Huisman, Florian
Kammüller, Tamara Rezk and the other members of the Everest group for the nice time I
had there.

I couldn’t have completed this thesis without my friends which I want to thank here
for all the fun we had over the years. You all made sure that I got some much needed
diversion from my thesis and work in general. I explicitly want to thank: Juriaan Nortier,
Daan Moes, Kees Hordijk & Els Bon, Rosha Atsma, Ruby Groen, Thijs Broersma ánd the
Johnson sisters.

Finally, and foremost, I want to thank my family: Claire Warnier & Dries Verbruggen,
it’s always fun to visit the two of you in Antwerpen. Miriam Warnier & Martijn Schliekel-
mann, thanks for cooking for me all those times. The food is always great, as is the
company. And finally I want to thank my parents, Bart & Ine Warnier, “Bedááinkt veur
alles, en zoeveul mie”.

Martijn Warnier
May 2006
Nijmegen

Contents

Preface v

1 Introduction 1

2 Background and preliminaries 7
2.1 Java Card . 7
2.2 Semantics of programming languages . 8

2.2.1 Semantics of While-like languages 9
2.2.2 Semantics of Java-like languages . 10

2.3 JML . 11
2.4 Java program verification . 14
2.5 Confidentiality as non-interference . 16

2.5.1 Security policies and security lattices 18
2.5.2 Downgrading . 19

2.6 Tools . 20
2.6.1 ESC/Java2 . 20
2.6.2 The LOOP verification framework 20
2.6.3 PVS . 21
2.6.4 Other tools . 22

3 Specification and verification of Java programs 23
3.1 Side-effects . 25
3.2 Data types . 26

3.2.1 Aliasing . 26
3.2.2 Overflow of numeric types . 27
3.2.3 Bitwise operations . 28
3.2.4 Numeric types in specification and implementation 29

3.3 Control flow . 32
3.3.1 Return inside try-catch-finally . 32
3.3.2 Throwing exceptions . 33
3.3.3 Breaking out of a loop . 34
3.3.4 Class invariants and callbacks . 35

3.4 Inheritance . 37

3.4.1 Combining late- and early-binding 37
3.4.2 Inheritance and method overriding 39

3.5 Static initialization . 40
3.5.1 Mutually-dependent static fields . 40

3.6 Conclusions . 42
3.6.1 LOOP & ESC/Java2 . 42

4 Specification and verification of control flow properties 45
4.1 The applet . 47

4.1.1 Requirements . 47
4.1.2 Design . 48
4.1.3 Implementation . 48
4.1.4 The crediting protocol . 50

4.2 Specifying the applet . 51
4.2.1 Modeling the card life cycle . 51
4.2.2 The process method . 55
4.2.3 Global properties of the applet . 56

4.3 Correctness of the applet specification . 58
4.3.1 Verifying the process method . 59
4.3.2 Verification of the two helper methods 59

4.4 Related work . 63
4.5 Conclusions . 64

5 Specification and verification of non-interference in JML 65
5.1 A specification pattern for confidentiality 66
5.2 Applying the specification pattern . 68

5.2.1 A first example . 68
5.2.2 An example involving method calls 68
5.2.3 An example with a loop . 69
5.2.4 A cash register . 70

5.3 Towards termination sensitive non-interference 73
5.4 Related work . 75
5.5 Conclusions . 76

6 Statically checking termination-insensitive non-interference 77
6.1 Preliminaries . 79
6.2 Labeling transition functions . 81
6.3 Correctness of our approach . 84
6.4 Examples . 86
6.5 Possible Extensions . 88

6.5.1 Indistinguishable objects and heaps 88
6.5.2 Exceptions . 89
6.5.3 Method calls . 89

6.5.4 Assertions . 90
6.5.5 Completeness . 90
6.5.6 Aliasing . 91

6.6 Related work . 91
6.7 Conclusions . 91

7 Interactively proving termination-sensitive non-interference 93
7.1 Non-interference through bisimulation . 94

7.1.1 Confidentiality as bisimulations in classes 95
7.2 A relational Hoare logic for WHILE . 95
7.3 Extension to sequential Java . 98

7.3.1 Interlude: Java semantics in the LOOP project 99
7.3.2 Relational Hoare n-tuples . 102
7.3.3 Termination sensitive non-interference as bisimulation 105
7.3.4 JML for relations: JMLrel . 106

7.4 A relational Hoare logic for Java . 107
7.4.1 Composition . 107
7.4.2 If-then-else . 111
7.4.3 Integer division . 112
7.4.4 Throwing exceptions explicitly . 115
7.4.5 Other rules . 116

7.5 Examples . 117
7.5.1 A (partial) semantic proof . 117
7.5.2 An example revisited . 117
7.5.3 Simple arithmetic . 118
7.5.4 Mixed termination modes . 119

7.6 Related work . 119
7.6.1 Relation to the LOOP framework 120

7.7 Conclusions . 121

8 Enforcing time-sensitive non-interference 123
8.1 Language . 125
8.2 Transforming out timing leaks . 126

8.2.1 Problem statement and hypotheses 126
8.2.2 The transformation . 127
8.2.3 Application to non-interference . 128
8.2.4 Enforcing termination-sensitive non-interference 131

8.3 Adding objects, methods and exceptions 131
8.3.1 Language . 131
8.3.2 Problem statement . 132
8.3.3 The transformation . 132
8.3.4 Enforcing termination-sensitive non-interference 135

8.4 Some observations . 135

8.4.1 Total execution time . 135
8.4.2 Time-outs . 135
8.4.3 Termination . 136
8.4.4 Timing model . 136
8.4.5 Preventing code explosion . 137
8.4.6 Optimizing and JIT-compiling . 138
8.4.7 Nested transactions in Java . 138

8.5 Related work . 138
8.6 Conclusions . 139

9 Conclusions 141

Bibliography 147

A Java source code listings 161
A.1 The phone card applet from chapter 4 . 161
A.2 The cash-logger from chapter 5 . 168

B Formal properties of OO 173
B.1 Operational semantics of OO and OO with exceptions 173
B.2 Non-interference for OO . 174

List of Figures 177

Index 178

Samenvatting (Dutch Summary) 181

Chapter 1

Introduction

“If it is provably secure, it is probably not.”

–Lars Knudsen on block ciphers [And01]

As recently as 10 years ago, computer security was of importance to only a few insiders –
typically in domains such as banking, the military or intelligence. Nowadays it is of interest
to the general public: newspapers open with computer security headlines1 and individual
users of computers are plagued by spam, (computer) viruses and phishing attacks.

Computer security is also important to society at large. A recent trend –at least in
the Netherlands– is the centralization of electronic databases. For example, in the medical
field, where insurance companies, hospitals and family doctors share patient data or in the
judicial systems, where the court shares (sensitive) information with the police but also with
organizations such as child protection and social services. Many other electronic databases
contain security sensitive information. Examples range from credit card numbers, stored
by online stores, to biometric data such as digital fingerprints, required for the new Dutch
passport and planned to be stored in a central database. All of these databases form
attractive targets for attackers and thus need adequate (computer security) protection
mechanisms. Clearly computer security is an important subject, from a popular as well as
a scientific point of view.

The main subject of this thesis is language based security. In this field, the object of
study is security on the level of programming languages. Such programming languages
are studied on a semantical level and the typical goal is to (formally) prove that certain
security properties hold for classes of programs. The field of program verification is closely
related to language based security. However, in program verification the typical goal is
to prove certain (possibly security related) properties for specific programs. In practice

1E.g., the opening headline of the Dutch national newspaper the NRC on Saturday the 7th of January
2006 was: “Cybercrime intensifies – PC viruses are mainly the work of organized crime” [translation by
the author].

2 Introduction

the distinction between language based security and program verification is somewhat
arbitrary. Indeed, in this thesis we will study both: the first part of the thesis (Chapters 3
through 5) deals primarily with program verification while the second part (Chapters 6
through 8) studies language based security techniques.

In theoretical computer science, security is usually thought of as a battle against an
(implicit) attacker, who has more resources than a user. An example is the Dolev-Yao
attacker [DY83], used in the study of security protocols, who has complete control of
a (computer) network. A system is deemed secure if, in such an attacker model, the
attacker cannot reach his malicious goal, such as learning a secret key or altering the
balance of a bank account. Typically, in theoretical computer science, this will also mean
that one abstracts away from certain low-level details. One of the goals of the research
performed in this thesis is to reduce this abstraction level by looking directly at the level
of the programming language. Obviously, there are still numerous implicit assumptions,
for instance, about the computer hardware, the compiler and the end-user of a program.

Thesis outline

Below we summarize the contents of each chapter. We also indicate the original publication
associated with each chapter and credit co-authors.

Chapter 2: Background and preliminaries

In this chapter we give an introduction to several topics that serve as background for this
thesis. The subjects presented here give the bare minimal background that is needed to
understand the remainder of the thesis.

The study of programming languages is central to this thesis. Concretely we look at Java
and especially the version of Java tailored to smart cards called Java Card. In this thesis we
have formalized a number of verification frameworks that try to enforce security properties
like confidentiality at the level of the programming language. Obviously, in practice the
results of such analysis methods need to be integrated with security mechanisms on other
levels such as hardware, access control or communication protocols. However, in this thesis
we focus on the level of programming languages –hence the focus on language based security
in the title.

Since not all analysis methods have been worked out for full sequential Java (and
also for presentation purposes) we first define a semantics for a simple while-like [NN92]
programming language. We use this simpler language to explain the basic ideas behind
the proposed verification techniques. Giving a complete semantics of sequential Java lies
outside the scope of this thesis. We restrict ourselves to giving some highlights of the LOOP
semantics developed in Nijmegen [JP04] and refer to two earlier PhD theses [Hui01, Bre06]
in our group for more details on the LOOP verification framework. A brief overview of
other research on Java semantics is also given in this chapter. The Java Modeling Language
(JML [LBR99b]) is used as specification language throughout the first part of this thesis.

3

Program verification techniques form one of the main subjects of this thesis. They
originated in the late 60’s with the work of Floyd [Flo67] and Hoare [Hoa69]. Over the
years a lot of work has been performed in this area, although it is usually only applied
to small (toy) examples and programming languages. Languages like Java Card—which
are complex enough to be used in practice, yet simple enough for application of formal
methods– have boosted the work on verification techniques considerably. Contacts with
the smart card industry during the Verificard project [Ver] already showed a clear interest
in program verification techniques and, at the time of writing, even industry giants like
Microsoft appear to be applying program verification techniques [BRLS05] to (parts of)
commercial projects.

The (relative) success of program verification techniques together with a political cli-
mate that is favorable towards funding of security-related research boosted computer se-
curity research in recent years. Confidentiality (for programs) or secure information flow
has been studied since the late seventies [Den76]. The idea is that we want a (provably
sound) analysis technique that enforces a secure information flow policy for a program.
Such a policy typically specifies what information –processed by the program– is secret
and what information is publicly available. A standard solution for this problem is the use
of access control modifiers, such as Java’s public, private and package modifiers. But
access control modifiers do not guarantee secure information flow of a whole program. We
explain the concept of confidentiality in terms of non-interference, give an overview of the
field and place our own research in the broader context of language based information flow
security [SM03].

The final part of this introductory chapter discusses the tools that have been used in
this thesis: ESC/Java2, the LOOP verification framework and the theorem prover PVS.
Some other tools are also briefly discussed.

Chapter 3: Specification and verification of Java programs

This chapter shows some of the challenges one encounters when program (fragments) writ-
ten in Java need to be formally verified. We aim to give a canonical set of examples for
(Java) program verification methods, but the emphasis lies more on the underlying seman-
tical issues than on verification. All examples are specified in JML and verified with both
the LOOP verification framework and the ESC/Java2 tool. We comment on significant
differences between the two.

The chapter is based on the “Java Program Verification Challenges” [JKW03] by Bart
Jacobs, Joseph Kiniry and the author. While the main content stayed the same as in the
paper, all examples have been rechecked in the latest version of ESC/Java2. Furthermore,
several specifications have been refined, and one additional example has been added (in
Section 3.3.2).

4 Introduction

Chapter 4: Specification and verification of control flow properties

The chapter discusses a case study in the design, development and formal verification of
secure smart card applications. An elementary Java Card electronic purse applet is pre-
sented, whose specification can be simply formulated as ‘in normal operation, the applet’s
balance field may only be decreased, never increased’. The applet features a challenge-
response mechanism that permits legitimate terminals to increase the balance by setting
the applet into a special operation mode.

A systematic approach is introduced to guarantee a secure flow of control within the
applet: appropriate transition properties are first formalized as a finite state machine, then
incorporated in the specification, and finally formally verified using the Loop verification
framework together with the PVS theorem prover.

This chapter originally appeared as “Source Code Verification of a Secure Payment Ap-
plet” [JOW04] by Bart Jacobs, Martijn Oostdijk and the author. The contents have been
completely revised and updated to the latest insights in this research area.

Chapter 5: Specification and verification of non-interference in
JML

This short chapter serves as a bridge between the previously mentioned program verifi-
cation-based chapters and the subsequent non-interference-based ones. It deals with the
specification and verification of non-interference properties, in particular confidentiality, in
JML.

The notion of a specification pattern for JML is introduced and it is shown how such
patterns can be used to specify non-interference properties such as confidentiality and
integrity. The resulting specifications can be verified using any of the JML tools.

This chapter has not been published before and appears here for the first time in print.
The work discussed here originated in discussions with Bart Jacobs and Erik Poll.

Chapter 6: Statically checking termination-insensitive
non-interference

This chapter presents a new approach for verifying confidentiality for programs, based on
abstract interpretation. The notion of confidentiality that is analyzed in this chapter is the
one most commonly found in the literature: termination insensitive non-interference, which
means that confidentiality is only guaranteed in case the program terminates normally.

The framework is formally developed in the theorem prover PVS. Dynamic labeling
functions are used to abstractly interpret programs via modification of security levels of
variables. Our approach is sound and compositional and results in an algorithm for stati-
cally checking confidentiality. The working of the algorithm is illustrated on some examples
and we briefly discuss how to extend this algorithm to check confidentiality for full Java
(and which difficulties might arise there).

5

The main advantage of the proposed approach is that, while it is still sound and au-
tomatic, it is less restrictive, i.e., rejects fewer non-interfering programs, than standard
type-checking based approaches. The chapter is based on “Statically checking confiden-
tiality via dynamic labels” [JPW05] together with Bart Jacobs and Wolter Pieters.

Chapter 7: Interactively proving termination-sensitive
non-interference

This chapter discusses a new approach for checking the stronger confidentiality property
–termination sensitive non-interference– that is assured for all termination modes of a
program. A programming language such as Java has three termination modes: the program
can terminate normally, or it can terminate abruptly via an exception, or it can fail to
terminate at all (diverges)2. Bisimulations for Java classes are used to formally define non-
interference, which can be proved using a relational Hoare logic. This relational Hoare logic
has been specified on top of the LOOP semantics. These rules are realized as (provable)
lemmas in LOOP’s Java semantics in PVS.

The main contribution of this chapter is a new verification framework for proving
a strong form of confidentiality for sequential Java. The framework is both sound and
complete. It uses a mix of reasoning on a syntactic level, with the relational Hoare logic,
and direct reasoning at a semantical level. The price we pay for completeness of our
approach is that the proofs now need to be provided by a (human) user. Interactive
reasoning in PVS is necessary to obtain these proofs, though powerful tactics allow the
user to only concentrate on the complicated parts.

The research presented in this chapter has not been published before and appears here
for the first time in print. The work discussed here originated in discussions with Bart
Jacobs.

Chapter 8: Enforcing time-sensitive non-interference

Timing channels constitute one form of covert channels through which programs may be
leaking information about the confidential data they manipulate. Such timing channels
are typically eliminated by design, employing ad-hoc techniques to avoid information leaks
through execution time, or by program transformation techniques, that transform programs
which satisfy some form of non-interference property into programs that are time-sensitive
termination-sensitive non-interfering. However, existing program transformations for this
purpose are confined to simple languages without objects or exceptions.

This chapter introduces a program transformation that uses a transaction mechanism
to prevent timing leaks in sequential object-oriented programs. Under some strong but rea-
sonable hypotheses, the transformation preserves the semantics of programs and yields, for

2This only describes the situation as can be observed from the outside. Internally Java programs can
also terminate abruptly via a return or a (labeled or unlabeled) break or continue statement. Also see
Section 7.3.1.

6 Introduction

every termination-sensitive non-interfering program, a time-sensitive termination-sensitive
non-interfering program. It is based on “Preventing timing leaks through transactional
branching instructions” [BRW06] by Gilles Barthe and Tamara Rezk and the author.

Chapter 9: Conclusions

This chapter revisits the conclusions of each individual chapter and places them in a broader
context. Some general conclusions of the thesis will be drawn here and we end with
suggestions for future work.

We have chosen to make each of the main chapters (Chapter 3 through Chapter 8), where
possible, self-contained. In particular each chapter has the same setup: it starts with an
introduction of the topic at hand, then presents the main research contribution and ends
the chapter with (closely) related work, conclusions and suggestions for future work. As a
result of this choice, there is some overlap between the different chapters.

Chapter 2

Background and preliminaries

This chapter serves as an introduction to the different concepts, tools and theories used
in this thesis. While far from complete, it hopefully gives the reader enough background
to appreciate the complexities involved. The chapter furthermore gives a general overview
of related work. Subsequent individual chapters will also have a section on more closely
related work.

We start with some context, in particular we give a general description of the Java

Card programming language and associated framework. Section 2.2 briefly discusses the
topic of semantics of programming languages, with a focus on Java (card). Section 2.3
introduces the specification language JML and Section 2.4 gives some background on pro-
gram verification techniques, again focusing on Java (card). Section 2.5 introduces the
notion of confidentiality as non-interference and this chapter ends with a discussion of the
(main) tools that were used in the research discussed in this thesis.

2.1 Java Card

The Java Card [Che00] programming language is a Java-like language that is specifically
tailored for writing applications (called applets) for smart cards. Smart cards are small
computers, usually without an independent power supply, and with a limited interface
to the outside world. Typical examples of smart cards are SIMs in mobile phones and
electronic wallets –like the Dutch Chipknip [Chi] or the Belgian Proton [Pro] systems.

Since smart cards are typically used to store sensitive information it is important that
the cards are tamper resistant [RE00]. This usually means that it is hard to obtain secret
information from a card (confidentiality is maintained) and that it is hard to change sensi-
tive information on a card or forge a card (integrity is maintained). In this context ‘hard’
can mean a lot of things. One of the more useful criteria in this context is economical
feasibility : if the economic costs for an attacker to break a smart card are higher than the
economic gains then the smart card is deemed economically secure. Of course it is possible
that an attacker has another motive for breaking the system, either because of a certain
ideology or simply out of curiosity. We refer to [And01, Sch00] for an extensive discussion

8 Background and preliminaries

on this subject.
In the Java Card framework all communication between a card and a client occurs

by exchanging Application Protocol Data Units (APDUs). The international ISO7816
standard (part 4) [ISO] describes the structure of APDUs. In a Java Card applet these
are represented as simple byte arrays with little more structure than a header containing
instructions as to which method should be called, information about the length of the data
and some simple (optional) parameters.

Since APDUs provide a low level way of communication, a lot of the effort in program-
ming Java Card applets and clients is spent on finding the correct translation from the
high level Java (card) method calls to low level APDUs and vice-versa. Since version 2.2,
the Java Card standard also allows the use of remote method calls using the Java Card

remote method invocation (JCRMI) framework [OW03].
Java Card-enabled smart cards contain a small operating system which includes a Java

virtual machine (JVM [LY99]). The Java Card language forms a superset of a subset of
Java. Java Card is a subset in the sense that it supports only single-threaded programs
and some larger integral data types (such as long, float and double) are omitted. It is a
superset because there are some Java Card-specific constructs such as an applet firewall
mechanism, which ensures that multiple Java Card applets can be loaded safely on a card
without compromising security, and a dedicated cryptographic API.

Another difference between Java and Java Card is that the latter distinguishes be-
tween two kinds of memory: transient and persistent memory. Transient memory has a
temporary nature (that is guaranteed by the underlying hardware), its contents is lost after
a card tear. In contrast, persistent memory preserves its contents even if the card has no
power. Determining which kind of memory to use in what situation forms one of the –low
level– challenges in the implementation of Java Card applets. Performance and security
typically need to be balanced here. Persistent memory – implemented in EEPROM– is a
lot slower then the fast volatile memory that is used to realize transient memory, but in
some situations security sensitive information, e.g., an encryption key, needs to be available
for many sessions. Such low level details make reasoning about Java Card both interesting
and non-trivial.

Java Card is also ideal for application of formal methods, since the language is small
enough to be actually feasible for study from a formal perspective, yet it is used in real
world applications.

2.2 Semantics of programming languages

This thesis has the ambition to (formally) reason about properties for full sequential Java.
However, in the next section we first introduce a relatively simple imperative programming
language that does not have any object-oriented features. The reason for introducing this
language is twofold:

i. For presentation purposes it is better to first explain a new verification technique for
a simpler programming language. Once the reader is familiar with the basic ideas

2.2 Semantics of programming languages 9

behind such a new verification technique, the simple programming language can be
extended with more esoteric features.

ii. It is not feasible to extend all the verification techniques presented in this thesis to
full sequential Java within the limited time associated with a PhD project. We have
chosen to work out some techniques (e.g., in Chapter 7 and Chapter 8), extend other
verification frameworks only with such things as method calls and abrupt termination
and to briefly discuss how possible extensions towards a language such as Java might
be formalized –without going into all the technical details.

In the next section we first introduce the syntax and semantics of a simple imperative
programming language called WHILE. The subsequent section briefly discusses the topic
of semantics of Java (card).

2.2.1 Semantics of While-like languages

We introduce the imperative programming language WHILE3 with statements and expres-
sions (with side-effects). The BNF of WHILE is given in Definition 1 below.

Definition 1 (WHILE BNF).

Expressions e ::= n | true | false | e1 == e2 | e1 < e2 |
e1 + e2 | e1 − e2 | e1 × e2 | e++

Statements s ::= v := e | skip | s1; s2 | if-then(e)(s) |
if-then-else(e)(s1)(s2) | while(e)(s)

with v ∈ Var and n ∈ Z.

The language WHILE supports side effects in expressions (via the ++ operator), as well
as the usual language constructs assignment, composition, branching and repetition. This
language will be the starting point for the new verification techniques proposed in the
second half of this thesis.

The semantics of the language is rather standard. In Figure 2.1 we give the natural
semantics of WHILE. In what follows we denote the state (or memory) with M. The
syntactic expression [[e]]M denotes the result value of evaluating expression e in memory M.
The remainder of the semantics of expressions is completely standard and omitted (see for
example [NN92, Sch86]). As mentioned before, we will use WHILE to explain the main idea
and prove some basic properties of new verification techniques. Since our ultimate goal is
to cover full (sequential) Java, WHILE will be extended with features such as method calls,
abrupt termination modes and object-oriented aspects.

3Except for the fact that our language supports side-effects in expressions, WHILE is the same as the
language with the same name used in [NN92]

10 Background and preliminaries

〈v := e,M〉 ❀ M[v 7→ [[e]]M] 〈skip,M〉 ❀ M

〈s1,M〉 ❀ M′ 〈s2,M
′〉 ❀ M′′

〈s1; s2,M〉 ❀ M′′

[[e]]M = true 〈e,M〉 ❀ M′ 〈s,M′〉 ❀ M′′

〈if-then(e)(s),M〉 ❀ M′′

[[e]]M = false 〈e,M〉 ❀ M′

〈if-then(e)(s),M〉 ❀ M′

[[e]]M = true 〈e,M〉 ❀ M′ 〈s1,M
′〉 ❀ M′′

〈if-then-else(e)(s1)(s2),M〉 ❀ M′′

[[e]]M = false 〈e,M〉 ❀ M′ 〈s2,M
′〉 ❀ M′′

〈if-then-else(e)(s1)(s2),M〉 ❀ M′′

[[e]]M = true 〈e,M〉 ❀ M′ 〈s,M′〉 ❀ M′′ 〈while(e)(s),M′′〉 ❀ M′′′

〈while(e)(s),M〉 ❀ M′′′

[[e]]M = false 〈e,M〉 ❀ M′

〈while(e)(s),M〉 ❀ M′

Figure 2.1: Natural semantics for WHILE.

2.2.2 Semantics of Java-like languages

Obviously, a proper semantics of an object-oriented language –and in particular Java–
is more complicated then the semantics of the simple language described above. These
complications stem from, amongst others, the following language features:

– method calls Method calls form an essential abstraction mechanism that is present
in any practical programming language.

– data types Java supports several native data types for integers and floating point
data types. Pointers to objects form another crucial language concept.

– multiple termination modes Java statements can hang, terminate normally or
terminate abruptly. Abrupt termination is further refined in exceptional termination

2.3 JML 11

or termination via a return, break or continue statement.

– inheritance Field hiding, method overriding and late binding are all mechanisms
that (should) enhance modularization and re-usability of Java programs. These fea-
tures also complicate the semantics of Java considerably.

– parallelism Threaded execution complicates Java’s semantics even further. Dead-
lock and live locks and race conditions are among the difficulties involved here. In
this thesis we will not discuss this matter further and will only look at the sequen-
tial part of Java. A classical reference in this context is [CKRW99], later works
include [RM02, MBRS04].

Giving a (formal) description of Java’s semantics is infeasible in the context of this thesis.
Instead we refer to [AF99] for an introduction to a formal semantics of Java and Java

Card. Another issue is that Java is a language that still changes considerably, thus its
semantics also changes. See e.g., [MP05] for a discussion of the memory model in Java’s
latest incarnation (major version J2SE 1.5).

In the remainder of the thesis we shall give the necessary (semantic) background where
relevant, in particular we give a small overview of the Java semantics for sequential Java
developed in the LOOP [JP04] project in Section 7.3.1.

2.3 JML

The Java Modeling Language, JML [LBR99b, JML], is a behavioral interface specification
language designed to specify Java modules. It can be used for classes as a whole, via class
invariants and constraints, and for the individual methods of a class, via method specifi-
cations consisting of pre-, post- and frame-conditions (assignable clauses). In particular,
it is also possible within a method specification to indicate if a particular exception may
occur and which post-condition results in that case. We only describe the JML constructs
that are used in the thesis here and we refer to the JML reference manual [LPC+05] for a
full description of all JML’s features.

JML annotations are to be understood as predicates or relations (on the memory M),
which should hold for the associated Java code. These annotations are included in the
Java source files as special comments indicated by //@, or enclosed between /*@ and
*/. They are recognised by special tools like the JML run-time checker [CL02a], the
LOOP compiler [BJ01], the static checker ESC/Java [FLL+02] or the Krakatoa verification
condition generator [CDF+04], see [BCC+05] for an overview of JML tools.

Class invariants and constraints are written as follows:

JML

/*@ /*@

@ invariant <predicate> @ constraint <relation>

@*/ @*/

12 Background and preliminaries

An invariant must hold after termination of constructors, and also after termination (both
normal and exceptional) of methods, provided it holds before. Thus, invariants are implic-
itly added to postconditions of methods and constructors, and to preconditions of normal
(non-constructor) methods. A constraint is a relation between two states, expressing what
should hold about the pre-state and post-state of all methods. In this thesis we use a con-
straint in Chapter 4, and invariants in Section 3.3.4 and again in Chapter 4. In practice
they contain important information, and make explicit what a programmer had in the back
of his/her mind when writing a program.

Next we give an example JML method specification of some method m().

JML

/*@ behavior

@ requires <precondition>;

@ assignable <items that can be modified>;

@ ensures <normal postcondition>;

@ signals (E) <exceptional postcondition>;

@*/

public void m();

Such method specifications may be understood as an extension of correctness triples
{P}m{Q} used in classical Hoare logic [Hoa69], because they allow both normal and
exceptional termination. Moreover, the postconditions in JML are relations, because the
pre-state, indicated by \old(--), can be referred to in postconditions . We shall see many
method specifications below.

In JML it is not necessary to specify behavior completely. JML allows a specification
style where a user only specifies what interests him. This is called a lightweight speci-
fication. In this case other behaviors are simply ignored. In contrast, in a heavyweight
specification case, JML requires that the user is fully aware of the defaults involved. In a
heavyweight specification case, JML expects that a user only omits parts of a specification
when the user believes that the default is satisfactory [LPC+05, §2.3]. These default values
are true for all the clauses except for the diverges clause (for which the default is false)
and the assignable clause (for which the default is \everything). Heavyweight specifi-
cations also use appropriate behavior keywords –normal behavior if a method must ter-
minate normally4, exceptional behavior if a method must terminate with an exception5

and simply behavior in all other cases. Throughout this thesis we will use heavyweight
JML specifications.

JML is intended to be usable by Java programmers. Its syntax is therefore very much
like Java’s. However, it has a few additional keywords, such as ==> (for implication), \old
(for evaluation in the pre-state), \result (for the return value of a method, if any), and
\forall and \exists (for quantification).

4The signals and diverges clauses have the value false in this case.
5The ensures and diverges clauses have the value false in this case.

2.3 JML 13

This thesis will not pay much attention to the semantics of JML (interested readers
should read [LPC+05] for more details). Hopefully, most of the JML assertions are self-
explanatory. However, there are three points that we would like to mention explicitly:

– In principle, expressions within assertions (such as an array access a[i]) may throw
exceptions. The JML approach, see [LPC+05], is to turn such exceptions into arbi-
trary values. E.g., the expression a[i] == 0 can have any truth value –true or false–
if array a is null. Of course, one should try to avoid such exceptions by includ-
ing appropriate requirements. For instance, for the expression a[i] one should add
a != null && i >= 0 && i < a.length, in case this is not already clear from the
context. This is what we shall always do. Also see [CR05] for a proposal to change
the defaults in JML to obtain these specification cases ‘for free’.

– JML uses the behavioral subtype semantics for inheritance [LW94]. This means that
overriding methods in subclasses must satisfy the specifications of the overridden
ancestors in superclasses. This is a non-trivial restriction, but one which is essential
in reasoning about methods in an object-oriented setting. The specification of such an
overridden method and its ancestor can contain JML keywords \typeof and \type,
referring to the dynamic type of an object and type of a class respectively. These
keywords are used to specify which parts of the assertion is relevant in a certain
context6 (see, for instance, Section 3.4).

– JML method specifications yield proof obligations. But they can also, once proved,
be used as facts in correctness proofs of other methods. In that case one first has
to establish the precondition and invariant of the method that is called, and subse-
quently one can use the postcondition in the remainder of the verification.

An alternative approach is to reason not on the basis of the specification, but on the
basis of the implementation of the method that is called7. Basically, this means that
the body of the called method gets substituted at the appropriate place. However,
this may lead to duplication of verification work, and makes proofs more vulnerable
to implementation changes. In general, if no specification is available, one is forced
to reason with the implementation.

In the remainder of this thesis we shall see illustrations of both alternative approaches.

JML also supports so-called model fields [BP03]. A model field is a field that is not
accessible by the Java code, i.e., a specification-only field. It should be thought of as the
abstraction of one or more concrete fields [CLSE05]. Model fields are related to concrete
fields via JML’s depends clause, which indicates on which concrete fields a model field
depends, and a represents clause, which specifies exactly how a model field is related to
concrete fields.

6Thereby basically circumventing behavioral subtyping in specifications.
7This only works if one actually knows the run-time type of the object on which the method is called.

14 Background and preliminaries

Finally, the ghost keyword indicates another specification-only field in JML. Values of
ghost fields are not determined by represents clauses; instead, they are assigned directly
using the JML keyword set. Values of ghost fields can be changed in assertions inside the
body of a method. A consequence of the use of ghost fields is that assertions have state.

For readers unfamiliar with JML, this thesis may hopefully serve as an introduction
via examples. More advanced use of JML in specifying API-components may be found for
instance in [PBJ00]8. We wish to stress that JML is a very active research project and
while the core of JML is relatively stable, more esoteric features are still undergoing major
changes.

2.4 Java program verification

Program verification techniques originated in the late 60s with the work of Floyd [Flo67]
and Hoare [Hoa69]. Over the years a lot of work has been performed in this area, although it
is usually only applied to small (toy) examples and programming languages (such as WHILE

from Definition 1). Classical Hoare logics allow one to reason about simple imperative
languages without side-effects, without different termination modes and without object-
oriented features such as inheritance. While interesting from a theoretical perspective,
verification techniques based on such logics were rarely if ever used on programs used in
‘real world’ applications9.

Java, and especially Java Card,changed all this. Mobile Java programs (applets) which
could be executed on the client side became popular at the dawn of the Internet era. Se-
curity concerns about such programs led to paradigms such as proof carrying code [NL97],
which in turn led to more interest and research in program verification. A parallel devel-
opment was the emergence of security-sensitive Java Card applications. These programs
were so small10 that (formal) verification actually seemed feasible. This perception boosted
the development of logics and tools for applying program verification techniques, both in
academia and industry.

Two kind of approaches for Java program verification can be distinguished: those that
attempt to verify correctness conditions for Java bytecode and approaches for verifying
formal specifications for Java source code. We will focus in this thesis on source code and
refer to [Moo99, Boy03] which give an overview of related work on bytecode verification11.
In what follows we give an overview of what (in our view) are the most important pro-
gram verification approaches and tools for JML-like languages and refer to [HM01] for an
overview of program verification techniques for Java source and bytecode in general.

Perhaps the easiest verification technique12 employed, at least from a users perspective,

8See also on the web at http://www.cs.ru.nl/~erikpoll/publications/jc211_specs.html for a
specification of the Java API for smart cards.

9One notable exception is the verification work on Ada, see e.g., [GMP93].
10In terms of lines of code.
11Note that this refers to program verification on Java bytecode and not the type-checking as preformed

by Java’s standard bytecode verifier.
12Note that this is not verification in the sense of Hoare logics.

http://www.cs.ru.nl/~erikpoll/publications/jc211_specs.html

2.4 Java program verification 15

is what is called runtime assertion checking. Annotations are added to the Java source
code and a dedicated compiler transforms the annotated source code to a program that
includes runtime checks (based on the annotations). If at runtime a check fails the program
will typically throw an exception or error. Java’s own assert construct13 is probably the
best know example of a runtime assertion checking system. Other examples that extend
Java’s primitive assert construct to the design by contract [Mey92] paradigm include the
JML runtime assertion checker [CL02a] (which translates JML specifications in runtime
checks), iContract [Kra98, Ese01] (a runtime assertion checker that uses OCL [RG02] as a
specification language), and Jass [BFMW01, Jas] (another runtime assertion checker that
uses a JML-like syntax for specifications).

The original ESC/Java [FLL+02] tool –developed at the Digital Equipment Corpora-
tion’s Systems Research Lab– uses a subset of JML and tries to check JML specifications
without user interaction. This is accomplished by an executable weakest-precondition cal-
culus [Dij76] for Java that feeds its proof obligations to the automatic theorem prover
Simplify [DNS05]. Though neither sound nor complete, the tool is remarkably useful in
practice. Verification of array bound and (the absence of) null-dereferences are among the
more typical things that ESC/Java excels in. ESC/Java was eventually made open-source
and its successor ESC/Java2 [CK04, ESC] can handle (almost) full JML. In Section 2.6.1
below we discuss ESC/Java2 in more detail. Another tool that follows this approach is the
Boogie tool –developed at Microsoft research– that statically verifies JML-like annotations
written in Spec# [BRLS05] for the C# programming language.

The most precise tools –that, not surprisingly, also require the most user interaction–
are those based on interactive theorem provers. The Jive [MMPH00] tool was originally
developed at the University of Kaiserslautern and is currently a joint project of Kaiser-
slautern and ETH Zurich. A language similar to JML is used as a specification language
and, like ESC/Java, it uses a syntactic Hoare logic for verification of annotated Java pro-
grams. Proof obligations can be fed to the (interactive) theorem provers PVS [ORSH95]
(see Section 2.6.3 below) and Isabelle [Pau94]. A user can then try to prove the correctness
of these proof obligations. The KeY [ABB+04] tool uses a similar approach. Specifications
can be written in JML and OCL. A customized dynamic logic [Bec01] is used to reason
about annotated Java (card) programs and a dedicated interactive theorem prover –the
key prover– can be used to prove the correctness of the annotations. Yet another tool that
follows such an approach is the Krakatoa [CDF+04, The02] tool. It uses JML as annotation
language, the verification condition generator Why [Fil], and the theorem prover of choice
is Coq [Coq]. The LOOP [JP04] verification project, developed at the Radboud University
Nijmegen, uses JML as specification language. The LOOP tool [BJ01] translates anno-
tated Java source files into PVS theories which include the proof obligations. We discuss
the LOOP verification frameworks in more detail in Section 2.6.2 below. A final tool that
can be used for verifying JML annotated Java source code is the Jack tool [BLR02]. The
tool was originally developed at Gemplus research and is currently maintained at INRIA,
Sophia-Antipolis as part of the Everest project. It also uses a fully interactive Hoare logic

13Present in Java since J2SE 1.4.

16 Background and preliminaries

and can feed its prove obligations to both Simplify and interactive theorem provers such
as B [Abr96], Isabelle, and PVS.

2.5 Confidentiality as non-interference

Confidentiality is one of the basic notions in the study of computer security. Many differ-
ent (sub)disciplines within computer science and cryptography have studied it. Examples
include the study of security protocols that aim (amongst others) to keep sensitive informa-
tion secret, as well as the many cryptographic schemes studied in the field of cryptography.
The focus of this thesis is confidentiality from a programming language perspective. In par-
ticular the question how one can ensure that public information is completely independent
from sensitive (secret) information is central to this thesis.

Enforcing high level security properties –such as confidentiality– for programs is a non-
trivial task. Typically, modern programming languages –like Java– try to solve this problem
by using access control modifiers to ensure confidentiality (see [GJSB00, § 6.6]). However
access control modifiers cannot ensure end-to-end security. Language based information
flow security forms the subject within computer security that tries to enforce end-to-end
security for programs [SM03].

Confidentiality in programming languages has been studied since the seventies, going
back to the influential work of the Dennings [Den76, DD77, Den82]. They were the first to
systematically study secure information flow in programs. Another novelty of their work
is that it was the first to consider a secure information flow policy in terms of a mapping
from variables into a lattice, where such a lattice defines the different security levels and
how these levels relate to each other.

The notion of non-interference was first introduced by Goguen and Meseguer [GM82].
They define non-interference for automata by treating them as black-box processes and
looking at the input and output of the automaton. The input and output channels are
labeled with security levels, typically using to levels High for secret and Low for public in-
formation. By fixing the low input channels and varying (all) the high input channels, one
can check if high input channels are indeed independent of low outputs. Figure 2.2 below il-
lustrates non-interference in graphical form. This idea of confidentiality as non-interference
turned out to be very natural when studying confidentiality for programs written in par-
ticular programming languages. This research on language-based secure information flow
received a new impulse by the influential work of Volpano and Smith [VS97a]. They
were the first who showed that type systems are especially well suited for (automatically)
enforcing non-interference properties. And while Volpano and Smith only considered a
small imperative programming language (similar to WHILE), others extended their main
idea to (subsets of) languages like (sequential) Java [Mye99, BN05, Str03], Java byte-
code [BRB05, Aga00a] and ML [PS03]. Using type-systems to enforce secure information
flow proved to be highly successful. The combination of soundness and automation of the
type checking algorithm is an obvious advantage. There are, of course, also disadvantages,
most notably that a large group of secure programs are rejected by security type checking

2.5 Confidentiality as non-interference 17

algorithms. Below we show an example code fragment that does not leak any secret infor-
mation, but is deemed insecure by type-based approaches to secure information flow. Here
variable low has a low security level and high has a high security level.

Java

low = high ; low = 5;

This program fragment does not leak information (assuming that we work in a sequen-
tial setting), since after executing the (whole) fragment variable low will always have the
same value (5) and can thus not leak information about the high variable. Type-based
approaches will typically mark this code as leaking information. Indeed, the assignment
of high to variable low does leak information, but this is undone by the subsequent as-
signment of a constant to variable low. Such temporary breaches of confidentiality are not
detected by security type-checking algorithms.

Low′′

Low

Low′

?

High1

High′
1

LowHigh2

High′
2

?

The program is non-interfering
if Low′ = Low′′ for all possible
High inputs and a fixed Low in-
put

Figure 2.2: Non-interference.

Approaches based on other formalisms than type-checking have tried to deal with this
problem. Most notable are approaches based on abstract interpretation [Cou96, CC77] that
are still automatic and sound and exhibit fewer false positives than traditional type-based
approaches [GM04, Zan02]. We will discuss a new approach for (automatically) checking
non-interference that is based on abstract interpretation in detail in Chapter 6.

Another possibility is to give up automation of the analysis of non-interference and
instead focus on approaches that are both sound and complete. The influential paper
by Joshi and Leino [JL00] was one of the first to do this. Others have used theorem
proving [DHS05], program logics [CHH02, ABB06] and partial equivalence relations [SS01]
to interactively prove non-interference. In Chapter 7 we introduce a new program logic,

18 Background and preliminaries

implemented in the theorem prover PVS [ORSH95] that can be used for proving non-
interference properties of sequential Java programs. It is a Hoare logic based on relations
instead of on predicates.

Most approaches proposed in the literature formalize confidentiality as termination-
insensitive non-interference. This is the weak form of non-interference discussed before that
only considers normal termination modes. We also consider this form of non-interference
in Chapter 5 and Chapter 6.

A stronger version of non-interference does take the termination behavior of a program
into account, which results in the notion of termination-sensitive non-interference. Thus,
in this case non-interference ensures that no matter how a program terminates (or hangs)
high variables are independent of low ones. In other words, how the program terminates
is independent of high variables. This form of non-interference is studied in detail in
Chapter 7.

Still stronger versions of non-interference also take covert channels [Lam73] under con-
sideration. If a program leaks secret information via channels that are not intended for
communication, we speak of information leakage via covert channels14. Resource con-
sumption (memory/CPU/caching etc.) and timing behavior of a program can be used
as a covert channel. In Chapter 8 we study time-sensitive termination-sensitive non-
interference which considers –besides termination sensitive non-interference– information
leakage via a timing channel.

Terminology

We will often use the words non-interference and confidentiality as synonymous. Though
–as should be clear from the discussion above– technically not entirely correct, this is
common in the literature. Other terms that are used in the literature for non-interference
are secure information flow and confinement.

We prefer the term non-interference, since this is the most technical and least culturally
loaded term. Both (a form of) confidentiality and (a form of) integrity can be expressed
in terms of non-interference. We will focus on confidentiality, but all analysis methods
proposed can be equally applied to the form of integrity that is the dual of confidentiality,
see Section 5.1. ‘Secure information flow’ and ‘confinement’ are typical terms that are used
in the program languages community. In this thesis all terminology will be interpreted as
non-interference unless explicitly noted otherwise.

2.5.1 Security policies and security lattices

In order to be able to verify that a program is non-interfering, all output and input chan-
nels need to be labeled with appropriate security levels. This labeling is called a secure
information flow policy. Instead of just labeling the inputs and outputs of a program we

14Notice that the termination behavior of a program can also be regarded as a covert channel.

2.5 Confidentiality as non-interference 19

will typically label all global variables (fields) and discard those that are only used locally
afterwards15.

Security levels need to be ordered (⊑ below) in some way. As is standard in the
literature [Den76], we will use a lattice for this ordering. The basic lattice one can use is
the so-called simple security lattice. This lattice will suffice to explain the main ideas in
most cases. It is defined in Definition 2 below.

Definition 2 (Simple security lattice). The simple security lattice Σ is defined as:

Σ = {High, Low} with Low ⊑ High

.

For presentation purposes we will only use the simple security lattice in examples in
this thesis. In Chapter 6 we show how a more complicated lattice can be used for modeling
the security levels. In practice, more complicated secure information flow policies will be
needed, but all analysis methods presented in this thesis can be extended –at the cost of
some more ‘book-keeping’– to such complex lattices.

2.5.2 Downgrading

Non-interference –even the termination insensitive form– is a very strong (security) prop-
erty that is typically too strict in practice. Numerous examples can be found of this:

– verifying a PIN code leaks (partial) information, since a device typically reveals if a
PIN is incorrect, i.e., by not granting access. In practice this does not form a security
risk since only a small number of false authentication attempts are allowed (typically
3), which makes the chance of guessing the correct PIN very low.

– encrypted data will also leak (partial) information, because an encrypted message
depends on a (secret) encryption key. In practice a (secure) encryption scheme will
(with a very high probability) not reveal the secret key, but the encrypted message
is still not non-interfering.

A number of downgrading policies have been proposed in the literature [ZM01, CC04,
CM04, LZ05, MSZar] that address this problem. Downgrading policies are extensions of a
normal secure information flow policy that express how certain (secret or secret-depending)
information can be released safely. Some additional mechanisms will have to ensure that
only the correct, i.e., named in the downgrading policy, information is released. Safely
declassifying/downgrading information is a research subject in itself that lies outside the
scope of this thesis. It suffices to remark that while non-interference itself is usually too
strong a notion to enforce in real world applications, together with a suitable downgrading
policy, non-interference has indeed a more practical value.

15Local (stack) variables are not labeled by a secure information flow policy. These obtain the same
security level as the security level of the expression that is assigned to it.

20 Background and preliminaries

2.6 Tools

In this section we briefly discuss the main tools that have been used in the research covered
by this thesis.

2.6.1 ESC/Java2

The Extended Static Checker for Java version 2 (ESC/Java2 [CK04, ESC]) is the open
source successor of ESC/Java [FLL+02]. It is mainly developed by Joe Kiniry and David
Cok. It is a tool that can be used to check JML specifications automatically. JML-
annotated Java programs are checked using program verification of the program code and
its formal annotations. While the tool is neither sound or complete, it finds a lot of errors,
especially runtime exceptions such as null-pointer and array-out-of-bounds exceptions.

When ESC/Java2 checks an annotated program, it returns one of three results. The
result “passed” indicates that ESC/Java2 believes the implementation of a method fulfills
its specification; in that case we will say ESC/Java2 accepts the input. A result of “warn-
ing” indicates that an error potentially exists in the program. Typically examples include
run-time violations like a NullPointerException or an ArrayIndexOutOfBoundsExcep-

tion. The result “error” indicates that something else went wrong, e.g., a syntactic error
in the source file or the absence of a Java library, etc.

Users can control the amount and kinds of checking that ESC/Java2 performs by an-
notating their programs with specially formatted comments called pragmas. In its default
mode, ESC/Java2 will try to find null dereferences or possible division by zero etc. Prag-
mas such as nowarn Null or nowarn ZeroDiv are used to suppress such warnings. Notice
that pragmas are not part of JML (and can thus not be used by other JML-tools).

Verification conditions in ESC/Java2 are passed on to the back-end (automatic) theo-
rem prover, Simplify [DNS05]. Simplify is no longer maintained. Currently, work is under-
way to integrate ESC/Java2 with other theorem provers, both interactive and automatic
ones.

In this thesis ESC/Java2 is mainly used in Chapter 3. In other places we will sometimes
briefly comment when we think extensions to ESC/Java2 might be useful. The tool is
available for download from its website16.

2.6.2 The LOOP verification framework

The LOOP (for Logic of Object-Oriented Programming) project [JP04] is a research project
that aims at (interactive) verification of JML annotations for Java programs. In the LOOP
framework, a Java source file annotated with JML assertions is translated automatically
(using the LOOP tool) into a theory inside the theorem prover PVS [PVS]. This generated
PVS theory contains the semantic representation of the Java program and translated JML
annotations in the form of proof obligations. A semantic prelude defines the semantics

16 http://secure.ucd.ie/products/opensource/ESCJava2/

http://secure.ucd.ie/products/opensource/ESCJava2/

2.6 Tools 21

of Java and JML in PVS. Correctness proofs are not generated automatically. Instead,
interactive theorem proving in PVS is required to obtain these. However, a number of
dedicated proof-strategies are available that automate this process as much as possible.
Figure 2.3 summarizes the LOOP verification framework.

user
interactionOO

�� �O
�O
�O
�O

A.java
Java method m

+
JML spec

+3 LOOP
compiler

+3

A.pvs

denotation [[m]]
+

proof obligations

+3 PVS
theorem prover

KS

// QED

Semantic
prelude

Figure 2.3: The LOOP verification framework.

One of the main aims of the LOOP project is to reason about a real programming
language. Thus the semantical prelude contains a semantics in PVS of the whole sequential
part of Java. Almost all Java features, such as aliasing, inheritance, abrupt termination
via exceptions or labeled and unlabeled breaks and continues etc. are defined here. The
only notable exceptions are inner classes and floating point data types.

In this thesis, the LOOP verification framework is used in Chapter 3 and Chapter 4.
In Chapter 6 a new approach for statically checking non-interference is formalized on top
of (a subset of) LOOP’s Java semantics, and in Chapter 7 we present a new Hoare logic
on relations that has been integrated in the LOOP verification project. In Section 7.3.1
we also give a small overview of LOOP’s Java semantics. We refer to [JP04] for a more
extensive overview of the LOOP project.

2.6.3 PVS

PVS is not only a theorem prover, it is a complete verification system: that is, a speci-
fication language integrated with support tools and a theorem prover. The specification
language of PVS is typed higher-order logic wich supports dependent types. The Java
and JML semantics from the LOOP project are formalized in this language. The actual
theorem prover17 supports a range of powerful (primitive) inference procedures. These can

17We prefer the term ‘proof assistant’, since PVS (usually) does not prove theorems. It assists the user
and handles the easier cases automatically so that the user can concentrate on the harder (parts of a)
proof. However, since the name ‘theorem prover’ seems to the be standard in the literature, we will stick
with it.

22 Background and preliminaries

be combined into even more powerful strategies18, written in Lisp [Gra95]. PVS has been
used on numerous case studies, e.g., to specify, design and verify safety-critical flight control
systems, including a software requirements specification for the Space Shuttle [CDV96].

PVS is used extensively throughout this thesis. In Chapter 3, Chapter 4 and Chap-
ter 5 we use PVS as a back-end to the LOOP tool to prove the correctness of the JML
specifications. The proposed frameworks for proving non-interference in Chapter 6 and
Chapter 7 have also been completely formalized in PVS. We have chosen to present our
work as general as possible and will thus not go into all the details associated with the
verification and formalizations in PVS. However, a lot of time and effort have been spent
on this work in PVS and it should ensure a higher level of confidence in the techniques
presented in this thesis.

We refer to the PVS manuals [OSRSC99, SORSC99] and website19 for more information
(including download and install details) on PVS. Also see [GH98] for an introduction to
PVS (and a comparison to the theorem prover Isabelle).

2.6.4 Other tools

Numerous other tools have been used in this thesis. We briefly discuss these here.

The Iowa State JML tools [JML] form a tool-suite which include a type checker,
a runtime assertion checker [CL02a] and a unit-test generator [CL02b]. The JML type-
checker has been used extensively during the JML specification of the Java programs in
Chapter 3 through 5.

Findbugs [Fin] is a tool that analyzes Java programs and warns for indications of bugs. It
is based on heuristics and can be easily extended. Possible bug-pattern indicators are things
like equals methods that do not override the equals method from java.lang.Object or
mutably dependent static fields. In Chapter 3 we apply Findbugs to some examples.

JIF [Jif] is a tool for checking non-interference in Java programs. It is based on security
types and covers the whole of (sequential) Java. As far as we know, there is no soundness
result for the type-checking algorithm used by JIF.

Flow Caml [Flo] is a tool that can check non-interference for the ML dialect Caml. The
tool is also based on security types and has a (provably) sound type-checking algorithm.

We have not used the last two tools, they are mentioned here because we aim to have
at least the same level of coverage that these tools have. In Chapter 7 we introduce a
framework for (interactively) checking non-interference properties of (full) sequential Java.
This approach relates to the last two tools in the same way as the LOOP verification
framework relates to ESC/Java2.

18Strategies are called ‘tactics’ in the theorem provers Coq [Coq] and Isabelle [Pau94].
19http://pvs.csl.sri.com/

http://pvs.csl.sri.com/

Chapter 3

Specification and verification of Java
programs

Contemporary software projects typically have specifications given in informal natural
language, possibly in combination with some semi-formal diagrams (e.g., in UML [Fow00]).
While this in itself is not a problem for most software projects, it can become a problem
when one wants to certify the quality of the software.

Software certification mechanisms, such as the Common Criteria20 (CC), typically re-
quire the use of formal methods for the highest assurance levels (CC level EAL7).

Using a formal language to write specifications then has two obvious advantages: (i) the
specification is unambiguously clear (in a mathematical sense) and (ii) the correctness of
the specification, with respect to the program it specifies, can formally be proved (verified).

Both writing a useful specification and proving the correctness of this specification with
respect to the program are non-trivial tasks. If specifications are too high level (e.g., “the
program should be secure”), they are not useful at all; the same holds for specifications
that contain too much detail (e.g., a program forms a perfect –if trivial– specification of
itself).

Moreover, in the study of (sequential) program verification one usually encounters the
same examples over and over again (e.g., stacks, lists, alternating bit protocol, sorting
functions, etc.), often going back to classic texts like [Hoa69, Dij76, Gri81]. These examples
typically use an abstract programming language with only a few constructs, and the logic
for expressing the program properties (or specifications) is some variation on first order
logic. While these abstract formalisms were useful at the time for explaining the main ideas
in the field of programming verification, they are not so helpful anymore when it comes to
actual program verification for modern programming and specification languages.

In this chapter we give an updated series of program verification examples/challenges
written in Java. The programs are in no way ‘real world’ applications, though some of the
examples below are inspired by such programs. They form a set of semantically challenging
program fragments. They should illustrate both the difficulties in writing clear behavioral

20http://www.commoncriteriaportal.org/

http://www.commoncriteriaportal.org/

24 Specification and verification of Java programs

specifications and give an idea of the semantic complexity involved in formalizing a real
world language like (sequential) Java. The chapter is based on [JKW03]. We use the Java
specification language JML [LBR99b], see Section 2.3 above, to specify our examples.

The examples presented below are based on our experience with the LOOP tool [BJ01,
JP04] over the past years. Although the examples have actually been verified, the particular
verification technology based on the LOOP tool does not play an important rôle: we shall
focus on the underlying semantical issues. The examples may in principle also be verified
via another approach, like those of Jack [BLR02], Jive [MPH00], Krakatoa [CDF+04], and
KeY [ABB+04]. All examples have been verified with the LOOP tool and ESC/Java2. We
indicate where verification with LOOP or with the (automatic) ESC/Java2 [CK04] tool
brings up interesting semantical issues in our examples21.

The examples below do not cover all possible topics. Most noticeably, floating point
numeric types and multi-threading are not covered. In general, our work has focused on
Java for smart cards and several examples stem from that area. Other examples are taken
from work of colleagues [BL99], from earlier publications, or from test sets that we have
been using internally. They cover a reasonable part of the semantics of Java and JML. Most
of the examples can easily be translated in other programming languages. The examples
do not involve semantical controversies, as discussed for instance in [BS99].

The original idea behind the paper [JKW03] –which this chapter is based on– was to
collect a number of challenging examples which could be used as a test set for anybody
working in the program verification field, especially for those working on (sequential) Java.
We do not claim that the examples presented here are meant to be canonical or proscrip-
tive, however the examples should give a flavor of the level of completeness (and thus,
complexity) necessary to cover modern programming language semantics.

We have classified the verification examples in the following categories:

– Side-effects

– Data types

– Control flow

– Inheritance

– Static initialization

Some of the examples below are not restricted to one category. Since the more interesting
examples often combine multiple features; we take the liberty to just classify them where
we think is most appropriate. Finally, our explanations focus on the (semantic) issues
involved, and not so much on the actual code snippets. They should be relatively self-
explanatory.

21We use the (at the time of writing) latest alpha binary release of ESC/Java2 (ESC/Java-2.0a9, 1
October 2005).

3.1 Side-effects 25

3.1 Side-effects

One of the most common abstractions in program verification is to omit side-effects from
expressions in the programming language. This is a serious restriction. Below we show
a nice and simple example from [BL99] where such side-effects play a crucial part, in
combination with the logical operators. Recall that in Java there are two disjunctions (|
and ||) and two conjunctions (& and &&). The double versions (|| and &&) are the so-called
conditional operators: their second argument is only evaluated if the first argument is false
(for ||) or true (for &&).

Java

Class Logic{

boolean b = true;

boolean result1, result2;

/*@ normal_behavior

@ requires true;

@ assignable b;

@ ensures b == !\old(b) && \result == b;

@*/

boolean f(){ b = !b; return b; }

/*@ normal_behavior

@ requires true;

@ assignable b, result1, result2;

@ ensures (\old(b) ==> !result1 && result2) &&

@ (!\old(b) ==> result1 && result2);

@*/

void m(){

result1 = f() || !f();

result2 = !f() && f();

}

}

When the field b above is true, the expression f() || !f() evaluates to false while !f()
&& f() evaluates to true, going against standard logical rules.

LOOP may either use the implementation22 or the specification of f() in the verification
of the specification for method m(). The assertion itself is verified without any difficulty
in either case and can be handled completely without user interaction.

22As an aside, it is generally not desirable to use the implementation of a method instead of its specifica-
tion when verifying programs, since reasoning with implementations is not modular. However, sometimes
this is unavoidable (at least using JML’s behavioral subtyping semantics, see section 3.3.4).

26 Specification and verification of Java programs

ESC/Java2 uses the specification of method f() in the verification of method m(). The
tool has no problems with verifying this example: it says “pass”.

3.2 Data types

Another common abstraction in program verification is to consider only two data types:
the booleans and the (infinite) integers. In reality modern programming languages contain
data types such as references, arrays and bounded numeric types.

3.2.1 Aliasing

Aliasing is the phenomena where two (or more) names refer to the same object. An example
is shown below.

Java

class C {

C a;

int i;

/*@ normal_behavior

@ requires true;

@ assignable a, i;

@ ensures a == null && i == 1;

@*/

C() { a = null; i = 1; }

}

class Alias {

/*@ normal_behavior

@ requires true;

@ assignable \nothing;

@ ensures \result == 4;

@*/

int m() {

C c = new C();

c.a = c;

c.i = 2;

return c.i + c.a.i;

}

}

3.2 Data types 27

This second example might seem trivial to some readers. The return expression of the
method m() references the value of the field i of the object c value via an aliased reference
to itself, i.e., c, in the field a. We present this example because it represents (in our view)
the bare minimum necessary to model a language with pointers (like Java).

LOOP verifies this example automatically.

ESC/Java2 has no problem verifying this program.

3.2.2 Overflow of numeric types

The next example (due to Cees-Bart Breunesse) shows a program that does not terminate:

Java

class Diverges{

/*@ behavior

@ requires true;

@ assignable \nothing;

@ ensures false;

@ signals (Exception e) false;

@ diverges true;

@*/

public void m(){

for (byte b = Byte.MIN_VALUE; b <= Byte.MAX_VALUE; b++)

;

}

}

In the specification above the JML keyword diverges followed by the predicate true

indicates that the program may fail to terminate. Since the specification further asserts
that the program cannot terminate normally or with an exception the specifications as a
whole indicates that the program fails to terminate.

The non-termination of the program above can easily be explained once one realizes
that overflow in Java is silent, because Byte.MAX VALUE + 1 evaluates to Byte.MIN VALUE,
i.e., 127 + 1 = -128, and thus the guard in the for loop will never fail. Note that in order
to verify this program, both overflow and non-termination must be modeled appropriately.

LOOP models both overflowing and non-termination. The example is verified without
any problems,though user interaction is required.

ESC/Java2 cannot prove the correctness of methods that do not terminate. Moreover,
overflow of numerical data types is not modeled inside ESC/Java2’s logic. The above
specification will actually pass, but this result is meaningless since if we change the diverges

28 Specification and verification of Java programs

clause to false and leave the rest of the specification the same, ESC/Java2 will also pass
the example. Other incorrect specifications for this method give similar (incorrect) results.

3.2.3 Bitwise operations

Our next example is not of the sort one finds in textbooks on program verification. Yet, it
is a good example of the realistic code that verification tools have to deal with in practice,
specifically in Java Card applets, for selecting relevant parts of incoming APDU’s.

Java

static final byte ACTION_ONE = 1, ACTION_TWO = 2,

ACTION_THREE = 3, ACTION_FOUR = 4;

private /*@ spec_public @*/ byte state;

/*@ behavior

@ requires true;

@ assignable state;

@ ensures (cmd == 0 && state == ACTION_ONE) ||

@ (cmd == 16 && state == ACTION_TWO) ||

@ (cmd == 4 && state == ACTION_THREE) ||

@ (cmd == 20 && state == ACTION_FOUR);

@ signals (Exception)

@ ((cmd & 0x07) != 0 || (cmd != 0 && cmd != 16))

@ &&

@ ((cmd & 0x07) != 4 || (cmd != 4 && cmd != 20));

@*/

void selectstate(byte cmd) throws Exception {

byte cmd1 = (byte)(cmd & 0x07), cmd2 = (byte)(cmd >> 3);

switch (cmd1) {

case 0x00: switch (cmd2) {

case 0x00: state = ACTION_ONE; break;

case 0x02: state = ACTION_TWO; break;

default: throw new Exception(); }

break;

case 0x04: switch (cmd2) {

case 0x00: state = ACTION_THREE; break;

case 0x02: state = ACTION_FOUR; break;

default: throw new Exception(); }

break;

default: throw new Exception(); }

3.2 Data types 29

// ... more code

}

It involves a ‘command’ byte cmd which is split in two parts: the rightmost three,
and leftmost five bits. Depending on these parts, a dedicated state field is given an
appropriate value (also see Chapter 4 for more information about using such a state

field). This happens in a nested switch. The specification is helpful because it tells in
decimal notation what is going on, although the signals clause is still not very readable.

LOOP verifies the example using the bitvector semantics described in [Jac03].

ESC/Java2 has no semantics for bitwise operators like signed right shift (>>) or bitwise
and (&) thus cannot establish the postcondition.

3.2.4 Numeric types in specification and implementation

Representations of numeric types (e.g., int, short, byte, etc.) in Java are finite. A review
of annotated programs that use integral types indicates that specifications are often written
with infinite numeric models in mind [Cha02]. Programmers seem to be aware of the issues
of overflow (and underflow, in the case of floating point numbers) in program code, but
not in specifications.

Additionally, it is often the case that specifications use functional method invocations.
Such methods, which have no side-effects, are referred to as “pure” methods in JML23.
Method abs(int a) below is such a pure method.

Java

package java.lang.Math;

/*@ normal_behavior

@ requires true;

@ assignable \nothing;

@ ensures \result == ((a >= 0

@ || a == Integer.MIN_VALUE) ? a : -a);

@*/

public static /*@ pure @*/ int abs(int a)

The example isqrt(int x) method below highlights these complications, as it uses
method invocations in a specification and integral values that can potentially overflow.
The method isqrt(), which computes an integer square root of its input, is inspired by

23There is still debate in the community about the meaning of “pure”. Many Java methods, for example,
which claim to have no side-effects, and thus should be pure, actually do modify the state due to caching,
lazy evaluation, etc. See e.g., [BNSS05, DM05].

30 Specification and verification of Java programs

a specification (see method isqrt2(int x) below) of a similar function included in the
documentation of an early JML releases [LBR99a].

Note that the abs() method is used in the specification of isqrt() to emphasize that
both the negative and the positive square root are an acceptable return value, as all we
care about is its magnitude. Actually, the given implementation of isqrt() only computes
the positive integer square root.

Java

/*@ normal_behavior

@ requires x >= 0 && x <= 2147390966;

@ assignable \nothing;

@ ensures java.lang.Math.abs(\result) < 46340 &&

@ \result * \result <= x &&

@ x < (java.lang.Math.abs(\result) + 1) *

@ (java.lang.Math.abs(\result) + 1);

@*/

int isqrt(int x) {

int count = 0, sum = 1;

/*@ maintaining 0 <= count &&

@ count < 46340 &&

@ count * count <= x &&

@ sum == (count + 1) * (count + 1);

@ decreasing x - count;

@*/

while (sum <= x) { count++; sum += 2 * count + 1; }

return count;

}

The semantics of JML states that expressions in the requires and ensures clauses are
to be interpreted in the semantics of Java. Consequently, a valid implementation of the
specification of method isqrt2(int x) is permitted to return Integer.MIN VALUE when
x is 0, indeed in Java (Integer.MIN VALUE)2 = 0 (as already noted in [LBR99a]).

This surprising situation exists because Java’s numeric types are bounded and be-
cause the definition of absolute value in the Java Language Specification is somewhat
unexpected: abs(Integer.MIN VALUE) == Integer.MIN VALUE. While this is the doc-
umented behavior of java.lang.Math.abs(int), it is often overlooked by programmers
because they presume that a function as mathematically uncomplicated as absolute value
will produce unsurprising, mathematically correct results for all input. The absolute value
of Integer.MIN VALUE is equal to itself because Math.abs() is implemented with Java’s
unary negation operator ‘-’. This operator silently overflows when applied to the maximal
negative integer or long [GJSB00, §15.15.4].

3.2 Data types 31

Java

/*@ normal_behavior

@ requires x >= 0;

@ ensures java.lang.Math.abs(\result) <= x &&

@ \result * \result <= x &&

@ x < (java.lang.Math.abs(\result) + 1) *

@ (java.lang.Math.abs(\result) + 1);

@*/

int isqrt2(int x)

The precondition of method isqrt(int x) is explained in Figure 3.1. We wish to
ensure that no operation, either in the implementation of isqrt() or in its specification,
overflows. The critical situation that causes an overflow is when we attempt to take
an integer square root of a very large number. In particular, if we attempt to evaluate
the postcondition of isqrt() for values of x larger than 2,147,390,966 an overflow takes
place. The small but critical interval between the precondition’s bound 2,147,390,966 and
Integer.MAX VALUE = 2,147,483,647 (= 231 − 1) is indicated by the dark interval on the
right of Figure 3.1: to check the postcondition, the prospective root (the arrow labeled 1)
must be determined, one is added to its value (arrow 2), and the result is squared (arrow
3). This final result will thus overflow. Indeed, (46, 340+1)2 > 2, 147, 483, 647 (= 231 −1).

0

3.2.

1.

Integer.MAX_VALUE

Figure 3.1: The positive integers.

The erroneous nature of a specification involving potential overflows should become
clear when one verifies the method using an appropriate bit-level representation of integral
types [Jac03]. Unfortunately, such errors are not at all apparent, even when performing
extensive unit testing, because the boundary conditions for arithmetic expressions, like the
third term of the postcondition of isqrt(int x), are rarely automatically derivable, and
full state-space coverage is simply too computationally expensive.

LOOP proves the specification of method isqrt(int x), but since the support for the use
of pure methods in specifications is still rudimentary, this takes some considerable effort.

ESC/Java2 cannot prove the correctness of the specification of method isqrt(int x)

since it does not handle overflow of Java’s numeric types.

Specifications involving integral types, and thus potential overflows, are frequently seen
in application domains that involve numeric computation, both complex (e.g., scientific

32 Specification and verification of Java programs

computation, computer graphics, embedded devices, etc.) and relatively simple (e.g., cur-
rency and banking). The former category are obviously challenging due to the complexity
of the related data-structures, algorithms, and their specifications, and the latter are prob-
lematic because it is there that implementation violations can have drastic (financial)
consequences. This specification raises the question: What is the appropriate model for
arithmetic specifications? Recently, both Chalin [Cha03, Cha04] and Breunesse [Bre06,
Chapter 4] proposed extensions to JML that address this issue.

3.3 Control flow

Java has some interesting control flow features ranging from abrupt termination, exceptions
and breaks, to method calls. Each of these have their own semantic difficulties.

3.3.1 Return inside try-catch-finally

Typical of Java is its systematic use of exceptions24, via its statements for throwing and
catching [Kin06].

Java

int m;

/*@ normal_behavior

@ requires true;

@ assignable m;

@ ensures \result == ((d == 0) ? \old(m) : \old(m) / d)

@ && m == \old(m) + 10;

@*/

int returnfinally(int d){

try { return m / d; }

catch(Exception e){ return m / (d+1); }

finally{ m += 10; }

}

They require a suitable control flow semantics. Special care is needed for the finally

part of a try-catch-finally construction. Semantically, unless the try or catch parts do not
terminate at all, the finally part is always executed. The simple example above (adapted
from [Jac01]) combines many aspects. The subtle point is that the assignment m += 10

in the finally block will still be executed, despite the earlier return statements, but has no
effect on the value that is returned. The reason is that this value is bound earlier.

24At least in Sun’s standard APIs.

3.3 Control flow 33

LOOP has no problems with this example.

ESC/Java2 initially fails on this example and warns for a possible division by zero. Only
after we add the annotation //@ nowarn ZeroDiv; the program passes.

3.3.2 Throwing exceptions

The example in this section illustrates how specifications can become complicated for even
(very) small programs. The question that inspired this example is if it is possible to throw
an exception in Java that is a null reference. It turns out that this is not possible, because
before the null reference can be thrown a NullPointerException is raised. A correct
semantics of Java should reflect this behavior.

Java

class Small{

Exception ex;

/*@ exceptional_behavior

@ requires true;

@ assignable \nothing;

@ signals (Exception e) ((ex == null) ==>

@ \typeof(e) == \type(NullPointerException))

@ && ((ex != null) ==> e == ex);

@ signals (NullPointerException ne) ex == null ||

@ ex instanceof NullPointerException;

@*/

public void throwIt() throws Exception{

throw ex;

}

}

The specification is rather subtle. We know that if an exception is thrown and the
ex is null, then the thrown exception has dynamic type NullPointerException. The
JML keyword \typeof is used to refer to the most-specific dynamic type of an expression’s
value [LPC+05, §11.4.12], while the \type keyword is used in order to interpret a specific
class as a type, i.e., \type(A) is “class A as type” (also see Section 3.4 and [LPC+05,
§11.4.14]). In case ex is not null, we only know that an exception is thrown (and have no
idea about its runtime type).

In case a NullPointerException is thrown we know that either ex is null, or ex has
runtime type NullPointerException or the runtime type of one of NullPointerExcep-
tion’s subclasses. Notice that the signals clause with the NullPointerException is a
refinement of the general signals clause regarding the top-level Exception type.

34 Specification and verification of Java programs

This example clearly shows that writing ‘complete’ specifications in JML is not always
feasible and is indeed unwanted. Writing clear specifications at the right level of abstraction
is probably harder then writing a correct program.

LOOP has no problem verifying the correctness of the specification.

ESC/Java2 also has no problems verifying this example if the pragma //@ nowarn Null

is added. ESC/Java2 typically warns the user when unwanted behavior (such as division
by zero or null dereferencing) can occur.

3.3.3 Breaking out of a loop

While and for loops are typically used for going through an enumeration, for instance to
find or modify an entry meeting a specific condition. Upon hitting this entry, the loop may
be aborted via a break statement. This presents a challenge for the underlying control flow
semantics.

Java

int[] ia;

/*@ normal_behavior

@ requires ia != null;

@ assignable ia[*];

@ ensures \forall int i; 0 <= i && i < ia.length ==>

@ ((\old(ia[i]) < 0 &&

@ (// i is the first position with negative value

@ \forall int j; 0 <= j && j < i ==>

@ \old(ia[j]) >= 0))

@ ? ia[i] == -\old(ia[i])

@ : ia[i] == \old(ia[i]));

@*/

void negatefirst() {

/*@ maintaining 0 <= i && i <= ia.length &&

@ (\forall int j; 0 <= j && j < i ==>

@ (ia[j] >= 0));

@ decreasing ia.length - i;

@*/

for(int i = 0; i < ia.length; i++) {

if (ia[i] < 0) { ia[i] = -ia[i]; break; } }

}

Above a simple example is shown of a method with a for loop that goes through
an array of integers in order to change the sign of the first negative entry. The two

3.3 Control flow 35

lines of Java code are annotated with the loop invariant, with JML-keyword maintaining

asserting what holds while going through the loop, and the loop variant, with JML-keyword
decreasing. The loop variant is a mapping to the natural numbers which decreases with
every loop cycle that must reach zero on loop termination. It is used in verifications to
show that the repetition terminates.

LOOP verifies the example without any problems.

ESC/Java2’s result on this program is not very interesting because of its limited handling
of loops: they are executed (symbolically) only once by default. In general, this may
indicate a basic problem with the invariant, but the coverage is far from complete25.

As an aside: ESC/Java2 has difficulty with this example due to limitations in its
parser as quantified expressions cannot be used inside conditional expressions (? :). If we
rewrite the specification of method negatefirst() as a conjuction of disjoint implications,
ESC/Java2 accepts the program.

3.3.4 Class invariants and callbacks

Class invariants are extremely useful in specification because they often make explicit what
programmers have in the back of their mind while writing their code. A typical example
is: “integer i is always non-zero” (so that one can safely divide by i).

The naive26 semantics for class invariants is: an invariant should hold after construction,
and when it holds in the pre-state of a (non-constructor) method, it must also hold in
the post-state. Note that this post-state can result from either normal or exceptional
termination. An invariant may thus be temporarily broken within a method body, as long
as it is re-established at the end. A simple example is method decrementk() below.

Things become more complicated when, inside such a method body, the class invari-
ant is broken and another method is called. The current object this is then left in an
inconsistent state. This is especially problematic if control returns at some later stage to
the current object. This re-entrance or callback phenomenon is discussed in [Szy98, Sec-
tions 5.4 and 5.5]. The commonly adopted solution to this problem, which is also defined in
the semantics of JML, is to require that the caller establishes the invariant of this before
a method call. Hence the proof obligation in a method call a.m() involves the invariants
of both the caller (this) and the callee (a).

LOOP can not prove the specification for the method incrementk() since it uses the
naive semantics (with respect to callbacks). However, a proof using the implementations
of method go(A arg) and decrementk() is possible, if we make the additional assumptions
that the run-time type of the field b is actually B, and that the method incrementk() is
executed on an object of class A. These restrictions are needed because if, for instance, field

25We can use the (undocumented) -LoopSafe option, which proves the termination of a loop, given a
suitable loop invariant and loop variant. In that case ESC/Java2 proves the correctness of the specification.

26We use the naive semantics here, since this is the semantics incorporated in the LOOP framework.
Besides, for this particular example, the naive semantics coincides with the standard semantics which
states that the invariant holds in all visible states.

36 Specification and verification of Java programs

b has a subclass of B as run-time type, a different implementation will have to be used if
the method go(A arg) is overridden in the subclass (see Section 3.4.2 for another example
of this).

ESC/Java2 warns about the potential for invariant violation during the callback.

Java

class A {

private /*@ spec_public @*/ int k, m;

B b;

/*@ invariant k + m == 0; @*/

/*@ normal_behavior

@ requires true;

@ assignable k, m;

@ ensures k == \old(k) - 1 && m == \old(m) + 1;

@*/

void decrementk () { k--; m++; }

/*@ normal_behavior

@ requires b != null;

@ assignable k, m;

@ ensures k == \old(k) && m == \old(m);

@*/

void incrementk () { k++; b.go(this); m--; }

}

class B {

/*@ normal_behavior

@ requires arg != null;

@ assignable arg.k, arg.m;

@ ensures arg.k == \old(arg.k) - 1 &&

@ arg.m == \old(arg.m) + 1;

@*/

void go(A arg) { arg.decrementk(); }

}

Another issue related to class invariants is whether or not they should be maintained
by private methods. JML does require this, but supports a special category of so-called
‘helper’ methods that need not maintain invariants. We do not discuss this matter further.

3.4 Inheritance 37

3.4 Inheritance

Inheritance, together with other object-oriented features, is crucial in building modular
software systems, but its semantics can often be tricky. This section describes some typical
object-oriented features of Java such as inheritance, method overriding and late-binding.

3.4.1 Combining late- and early-binding

The next example is an adaption of an example by Kim Bruce27. In the example three
different objects are created, and the question is which of the three equals methods will
be called.

Notice that the equals(Point x) method in the ColorPoint class not only overrides
the equals(Point x) method of the (super) class Point, it is also overloads the equals

name in class ColorPoint. Overloading in Java is resolved at compile time (early binding),
while overriding is resolved at run-time (late binding).

When this is kept in mind, most examples should be self-explanatory. As an example we
explain why p2.equals(cp) (field r8) calls method equals(Point x) in class ColorPoint
and not the equals(ColorPoint x) method in the same class. The static type of object
p2 is Point; during compiling the method call is thus bound to the equals method in class
Point (early binding). Then, at run-time, the dynamic type of p2 (a ColorPoint) decides
via inheritance which method is called (late binding). This is of course the method in class
ColorPoint (because of p2’s run-time type) and, since only method equals(Point x) is
overridden, this is the one that is called. The other equals method in class ColorPoint

is effectively already ignored because of early binding.

Java

class Point{

/*@ normal_behavior

@ requires \typeof(this) == \type(Point);

@ assignable \nothing;

@ ensures \result == 1;

@*/

int equals(Point x) { return 1; }

}

27Originally posted to the TYPES-mailing list. The original example only has one equals method in
class ColorPoint, namely the one with a ColorPoint as argument. See http://www.seas.upenn.edu/

~sweirich/types/archive/1997-98/msg00444.html

http://www.seas.upenn.edu/~sweirich/types/archive/1997-98/msg00444.html
http://www.seas.upenn.edu/~sweirich/types/archive/1997-98/msg00444.html

38 Specification and verification of Java programs

class ColorPoint extends Point {

/*@ normal_behavior

@ requires true;

@ assignable \nothing;

@ ensures \result == 2;

@*/

int equals(ColorPoint x){ return 2; }

/*@ also

@ normal_behavior

@ requires \typeof(this) == \type(ColorPoint);

@ assignable \nothing;

@ ensures \result == 3;

@*/

int equals(Point x) { return 3; }

}

class Override{

int r1,r2,r3,r4,r5,r6,r7,r8,r9,r10;

/*@ normal_behavior

@ requires true;

@ assignable r1, r2, r3, r4, r5, r6, r7, r8, r9;

@ ensures r1 == 1 && r2 == 1 && r3 == 3 &&

@ r4 == 3 && r5 == 3 && r6 == 3 &&

@ r7 == 1 && r8 == 3 && r9 == 2 && r10 == 2;

@*/

void m() {

Point p1 = new Point();

Point p2 = new ColorPoint();

ColorPoint cp = new ColorPoint();

r1 = p1.equals(p1);r2 = p1.equals(p2);r3 = p2.equals(p1);

r4 = p2.equals(p2);r5 = cp.equals(p1);r6 = cp.equals(p2);

r7 = p1.equals(cp);r8 = p2.equals(cp);r9 = cp.equals(cp);

r10 = cp.equals((ColorPoint) p2); }

}

As an aside, this example also illustrates why one should, as a rule, override the equals
method of java.lang.Object. Since if this equals is overridden it is always clear which
equals is called (see e.g., [Hor05, §13.8.2]). Tools like Findbugs [Fin] can detect such

3.4 Inheritance 39

unwanted equals methods28 automatically and warn against using them.
Again, the specification of equals methods uses the JML keywords \typeof, which

refers to the dynamic type of an object, and \type, which gives the (class) type of a class.
Notice that we use these JML keywords here to circumvent behavioral subtyping.

According to JML’s behavioral subtyping semantics (see Section 2.3), the equals

method in the subclass ColorPoint should also satisfy the specification of the equals

method in superclass Point (as indicated by the also keyword in the specification). This
makes writing the specification of the equals method in the class ColorPoint non-trivial.

LOOP does not allow the use of method specifications which contain the also keyword.
To prove the specification of method m() we can either manually desugar the specification
of equals(Point x) in ColorPoint or use the implementations of the equals methods.

ESC/Java2 warns that the postcondition is possibly not established. It turns out that
ESC/Java2 uses the static type of an object to determine which method to call. Thus r3,
r4 and r8 get different values assigned to them then ESC/Java2 expects. This is a serious
error in ESC/Java2’s semantics. We have contacted the developers and they are aware
of the issue. The latest version of ESC/Java2 –version ESCJava-2.0a9– still exhibits this
behavior.

3.4.2 Inheritance and method overriding

The next program is from [HJ00a] and was originally suggested by Joachim van den Berg.
On first inspection it looks like the method test() will loop forever.

Java

class C {

/*@ behavior

@ diverges \typeof(this) == \type(C);

@ assignable \nothing;

@ ensures false;

@*/

void m() throws Exception {

m();

}

}

28Such equals methods i.e., equals(ColorPoint x), form an example of so-called ‘covariant overload-
ing’.

40 Specification and verification of Java programs

class Inheritance extends C {

/*@ also

@ exceptional_behavior

@ requires \typeof(this) == \type(Inheritance);

@ assignable \nothing;

@ signals (Exception) true;

@*/

void m() throws Exception { throw new Exception(); }

/*@ exceptional_behavior

@ requires true;

@ assignable \nothing;

@ signals (Exception) true;

@*/

void test() throws Exception { super.m(); }

}

However, the method test() calls method m() from class C, which calls method m()

in class Inheritance, since ‘this’ has runtime-type Inheritance and thus method test()

will not loop. Due to the behavioral subtyping semantics used in JML for inheritance, we
have to be careful writing the specifications for the m() methods. Again, the also keyword
expresses that method m() from class Inheritance has to respect the specification of
method m() of its super class C.

LOOP proved the correctness of method test() using the implementation of method m().
LOOP cannot handle specifications that contain the also keyword, though it is possible to
(manually) desugar the specs and use the specification of method m() in class Inheritance.

ESC/Java2 accepts the specifications without any complaints. However, the specifications
of both m() methods are in this case crucial for verifying method test() –as ESC/Java2
cannot reason on the basis of an implementation when no specification is present.

3.5 Static initialization

This section describes an example that deals with the static initialization of different classes
which have mutually dependent static fields.

3.5.1 Mutually-dependent static fields

The code below shows an example of static initialization in Java (due to Jan Bergstra).
In Java a class is initialized at its first active use (see [GJSB00, §12.4]). This means that
class initialization in Java is lazy, so that the result of initialization depends on the order
in which classes are initialized. This rather sick example shows what happens when two

3.5 Static initialization 41

classes, which are not yet initialized, have static fields referring to each other. In the
specification we use the (non JML) keyword \static_fields_of in the assignable clause.
It is syntactic sugar for all static fields of the class.

Java

class C {

static boolean result1, result2, result3, result4;

/*@ normal_behavior

@ requires !\is initialized(C) &&

@ !\is initialized(C1) &&

@ !\is initialized(C2);

@ assignable \static fields of(C),

@ \static fields of(C1),

@ \static fields of(C2);

@ ensures result1 && !result2 && result3 && result4;

@*/

static void m(){

result1 = C1.b1; result2 = C2.b2;

result3 = C1.d1; result4 = C2.d2;

}

}

class C1 {

static boolean b1 = C2.d2;

static boolean d1 = true;

}

class C2 {

static boolean d2 = true;

static boolean b2 = C1.d1;

}

The first assignment in the body of method m() triggers the initialization of class C1,
which in turn triggers the initialization of class C2. The result of the whole initialization
is, for instance, that static field C2.b2 gets value false assigned to it. This can be seen
when one realizes that the boolean static fields from class C1 initially get the default value
false. Subsequently, class C2 becomes initialized and its fields also get the default value
false. Now the assignments in class C2 are carried out: d2 is set to true and b2 is set to
false. Note that d1 is still false at this stage. Finally the assignments to fields in class
C1 take place, both resulting in value true.

One can see that the order of initializations is important. When the first two assign-
ments in the method body of m() are swapped, class C2 will be initialized before class C1

42 Specification and verification of Java programs

resulting in all fields getting value true.
As an aside, this example describes the semantics of static initialization in Java. It can

be argued that the behavior described here is unwanted (see e.g., [KS02]) and indeed should
be considered an error, because most programmers will not expect this kind of behavior. If
one aims to have a complete semantics of Java, then static initialization should be modeled
accordingly in a precise semantics. However, in general, mutual depended (static) fields
should be considered a bug. There are tools (again Findbugs [Fin]) that can automatically
detect such circularities and mark them as bugs.

LOOP proves the correctness of the specification.

ESC/Java2 cannot handle this example as its semantics does not include static initial-
ization.

3.6 Conclusions

The main observation that inspired this chapter was that the classical examples in (se-
quential) program verification are no longer sufficient in today’s context. They need to
be updated in two dimensions: language complexity and size. This chapter focuses on
complexity, by presenting a new series of semantically challenging examples, written in
Java, with correctness assertions expressed in JML. The examples incorporate some of the
ugly details that one encounters in real-world programs, and that any reasonable semantics
should be able to handle29.

As for the question how canonical the examples presented here are, we claim that the
(sub)categories identified (again excluding the example from Section 3.5) here together
form a minimum set of examples that should be verifiable by a program verification tech-
nique that aspires to deal with complete coverage (of sequential Java). A truly canonical
set of examples should –at the very least– also cover all possible combinations of the
(sub)categories identified here.

3.6.1 LOOP & ESC/Java2

All examples have been verified and proved to be correct with the LOOP tool, at the cost
of some serious user interaction in the theorem prover PVS [PVS]. In contrast, ESC/Java2
had problems with several of the examples discussed above. This was mostly because
the tool lacked semantics for properties like non-termination and bounded numeric types.
However, ESC/Java2 can be used completely automatic, which makes using the tool a lot
easier.

The main difference between the tools is that all the Hoare rules used in the LOOP tool
are proved to be sound with respect to the underlying Java semantics. This has not yet been
done for ESC/Java2’s program logic and so occasionally soundness or completeness bugs

29Except for the obscure (but fun!) example concerning mutual referring fields in static initialization
from Section 3.5.

3.6 Conclusions 43

are found30. Another problem for ESC/Java2 is the back-end automatic theorem prover it
uses: Simplify. Simplify’s problems with numeric types makes a bitvector semantics almost
impossible to use. Currently, the use of other back-end provers is considered to get rid of
this problem.

For most users the assurance a tool like ESC/Java2 (currently) can give will be high
enough. Its automation and scalability will be far more important features then the occa-
sional soundness bug (which become rarer and rarer). Only for small core parts of programs
where the highest assurance levels are required, a tool like the LOOP tool would still be
better suited.

Finally, the fact that our example programs are small does not mean that we think size
is unimportant. On the contrary, once a reasonably broad semantic spectrum is covered,
another challenge is to scale up program verification techniques to larger programs. In this
respect, ESC/Java2 is far superior to LOOP. With LOOP we are currently able to verify
programs with hundreds of lines of code (see e.g., [BCHJ05, JMR04]), while ESC/Java2
can verify thousands of lines of code (see e.g., [HJKO04]).

It turned out that the Findbugs tool is very useful in finding ‘patterns’ in Java that –
though semantically correct– are clearly unwanted in a program. Notable examples are
the covariant overloading in Section 3.4.1 and the mutually depended static fields from
Section 3.5.1.

This chapter shows that it is possible to verify the correctness of specifications of (semanti-
cally) non-trivial programs in a complex language like Java. If we concentrate on security,
then the obvious next step will be to express security properties in a specification language
like JML. Typical examples of security properties that have already been formalized in
JML are the absence of certain exceptions at the top level, no unwanted overflows and well
formed transactions [PBB+04, JMR04]; others [Mos05b] have verified similar properties for
Java Card applets, but have not specified them in any high level specification language.
In Chapter 5 we will elaborate more on the specification of security properties in JML.

In the next chapters we will specify and verify several other security properties –namely
correct control flow and confidentiality– for a Java Card applet in JML.

30We found one such completeness bug in ESC/Java2 when we verified the example in Section 3.4.1,
ESC/Java2 (incorrectly) always uses the static type of a calling object to determine which method to
execute.

44 Specification and verification of Java programs

Chapter 4

Specification and verification of
control flow properties

Reasoning about the security of software systems can, in general, be done on two distinct
levels. The first one is a high abstract level where implementation details or a particular
programming language are abstracted away. A typical example of reasoning techniques
on this level forms the work on security protocols [Pau98, Low95, BAN89, Jac04a, Mea96,
CM04, GHJ05, Cor06] (also see [Mea03] for an overview of this field). Here, different prin-
cipals are distinguished that communicate with each other by sending abstract messages
over some untrusted network. Cryptographic primitives such as random nonce generation,
one-way hashes, encryption, signatures, etc. are used to construct these messages. Security
protocols are designed to establish high level properties such as authenticity, confidentiality
and data integrity. Other abstract security analysis techniques include, amongst others,
work on access control [SCFY96, ABLP93] and multi-level security [LB73, Bib77].

The second level is the low concrete level of program code (in the case of this thesis,
Java Card [Che00] source code). Specifications on this level usually consist of pre- and
postconditions for methods and invariants or history constraints for a class as a whole. It
is generally acknowledged that there is a substantial gap between these high and low level
approaches, and that bridging this gap is very important. In this chapter we shall try to
narrow this gap from the bottom upward. We choose to take this lowest level as starting
point because:

– Certification of specific, security sensitive products is expected to focus primarily on
the actual implementation, and not so much on a high level abstract description of
the system;

– Refinement is a problematic notion within the area of computer security: it may well
happen that by adding implementation details certain crucial security properties that
can be established at a high abstraction level no longer hold at a low level (because
an attacker has more material to exploit).

Within the setting of this chapter we study a payment system (a phone card) that can be
realized with (Java) smart cards, running a specific applet. The applet involves a balance,

46 Specification and verification of control flow properties

which represents an amount of electronic money. In general with such payment systems,
there are separate protocols for paying (debiting the balance), and for charging (crediting
the balance). Our debit protocol is not very elaborate because it does not involve any
form of authentication. Crediting however is less trivial. It involves a challenge-response
mechanism in which the terminal needs to authenticate itself and in which at most five tries
are permitted. The smart card applet that we have developed involves an implementation
of this protocol for crediting.

Our goal in this chapter is twofold: First we want to illustrate our current program
specification and verification technology on a somewhat larger example. Thereby proving
the correctness of the applet in general, and the crediting protocol in particular31. Second,
we introduce a new applet development methodology, consisting of:

– Describing the control flow (of the applet-part of the protocol) as a finite state ma-
chine;

– Translating the transitions of this finite state machine into a class constraint, involv-
ing a special ‘state’ variable capturing the states.

Elaborating the details of this methodology forms the main contribution of this chapter.
It is based on [JOW04].

The general approach taken in this chapter is bottom-up. Rather than attempting to
specify and verify a fully featured industrial purse applet, we describe a Java Card applet
of our own creation with minimal functionality, yet whose correctness is formally proved.
The applet features some cryptography, which is traditionally thought of as hard to specify
on the source code level and which is therefore usually specified on the (abstract) security
protocol level. Therefore it plays only a minor role in our verification effort. However, since
vulnerabilities are often introduced in the implementation rather than the specification of
software, in order to establish true security, it is necessary to take the use of cryptographic
operations seriously on the level of program code.

It should be emphasized that the Java code in this chapter is our own. It is written for
the purpose of verification. It has been compiled and even been loaded onto a smart card,
however it has—deliberately—not been tested. We wanted to see what kind of errors could
be discovered with our verification technology alone, without actually running the code.
And we did find several program bugs, see Section 4.3. Yet, most of the mistakes occurred
in the specifications we wrote. Once again it became clear that writing good specifications
is much harder than writing good programs.

We want to stress that in this chapter we only look at source code on the card-side of
the whole debit protocol. For the terminal-side one can also consider an appropriate finite
state machine, as done in [HOP04], possibly also with code verification.

31Note that the restriction to current specification technology is very relevant, and excludes, for instance,
specification language extensions such as in [BH02]. As a result, the cryptographic aspects in specification
and verification are not dealt with at all. On the other hand, our approach works well for the control-flow
aspects of the crediting protocol.

4.1 The applet 47

The remainder of this chapter is organized as follows. The next section gives a high
level description of the applet. Section 4.2 describes how the specification of the Java Card

applet came about. Section 4.3 sheds some light on different aspects of the formal proof
process. Related work is discussed in Section 4.4, and the chapter ends with conclusions
in Section 4.5.

4.1 The applet

The applet we discuss in this chapter has been developed and implemented by ourselves.
It can be viewed as a simple rechargeable phone card: the owner of the card can credit
some money on it and use it in a telephone booth. When in use the amount of money on
the card is debited.

In the next sections we discuss the high-level functional and security requirements that
the complete system should conform to, we give some comments about the implementation
of the applet and we discuss the security protocol that is used to credit the applet.

4.1.1 Requirements

We think the following functional requirements are reasonable for such a purse applet:

1. Crediting the card should be done on-line, connected to the bank.

2. It should be possible to debit the card off-line.

3. Anybody can debit the card (until the money runs out).

Thus, the idea is that anybody can use the card for making calls and that it is not
necessary for the bank to validate each transaction directly as is the case with, for example,
credit cards. The bank only has to approve the transfer of money when the card is credited.

Besides these functional requirements there are several security requirements. They
follow from the functional requirements above and from the requirements of the differ-
ent parties involved in using such a card: the card issuer (bank), the card owner (bank
client) and the service provider (phone company). We have identified the following security
requirements:

4. Cards cannot be forged or cloned.

5. Only the legitimate owner of the card (and corresponding bank account) can credit
it.

6. The card owner can only credit with as much money as he has in his bank account.

7. The card should lock itself after a certain number of consecutive tries to credit it
have failed.

48 Specification and verification of control flow properties

All these requirements must be taken into account when we design the applet and the
systems with which it interacts. Although we focus on the applet itself, we do sketch the
high level design of the complete system without going into implementation details on the
terminal or bank side.

4.1.2 Design

In this system the card owner will need three things: a card, a personal identification
number (PIN) and a bank account (with enough money on it). A specific card is coupled
with one bank account. Only someone who has the card and knows the PIN, i.e., the
card owner, can credit the card (item 5 above), see Section 4.1.4 for the specific crediting
protocol (item 1). Of course, on the bank side it will be checked that the owner has enough
money in his bank account when the card is credited (item 6).

Anybody can use the card for making phone calls (item 3 above). This means in
particular that somebody who found (or stole) the card can debit it until the card is
out of money, yet it should not be possible for anybody besides the owner to credit the
card again. In our implementation we have chosen to use an extremely simple payment
method: there is one dedicated command which simply decrements the amount on the
card by one (item 2), provided there is still money on the card. A more realistic debit
protocol would involve authentication of the card to the terminal –to prevent the use of
fraudulent cards– and possibly also the functionality to debit larger sums of money at
once. For presentation purposes we have not implemented such a debit protocol because it
is similar to the crediting protocol we use and does not add anything –besides complexity–
to the methodology we propose in this chapter. It is relatively straightforward to extend
the applet with such a debit protocol, by using a second key and a challenge-response
protocol where the card authenticates itself to the terminal as genuine.

Smart cards are what is often called tamper resistant devices [RE00]. The limited inter-
face of a smart card allows one to send and receive data to and from it, but confidentiality
of critical data (like cryptographic keys), as well as integrity of other data (like a balance
field) is ensured. If the card is indeed tamper resistant then item 4 should be satisfied as
well.

The last security requirement, item 7, is ensured in the implementation and will be
discussed in depth in the next sections.

4.1.3 Implementation

An electronic telephone card applet should, at the very least, contain a balance field, say
of type short. After card issuance it should be possible to decrease balance and to consult
its current value. Initially balance is set to zero, yet the card can be credited by charging
terminals. This means the applet needs a key field as well. The key is supposed to be
loaded onto the card before the card is issued. A symmetric key is used which is shared
by any legitimate terminal. Besides this key, the applet also gets a personal ID, which
is used by the terminal to generate the key (see Section 4.1.4). The card authenticates

4.1 The applet 49

a terminal by sending its (card) ID and a challenge. Only a terminal equipped with
appropriate credentials can respond to this challenge by sending the nonce back encrypted
with the key. The applet keeps track of the number of consecutive unsuccessfully answered
challenges in a counter field. As soon as counter reaches five, the card locks itself.

To make the verification of the applet a little bit more challenging, we restrict balance
to 12 bit signed values32, to be interpreted as the number of euro cents on the card. This
means that the maximum amount on the card is 40 euros and 96 cents, which seems
reasonable for a simple electronic purse. It also means that the applet’s source code will
contain several bitwise operations such as shifts and masking. The LOOP tool has support
for verification of such operations, see [Jac03].

Recall from Chapter 2 that smart cards are instructed to perform certain operations
through APDUs (Application Protocol Data Units). Within a Java Card applet the
process method is responsible for managing the incoming command APDUs once the
applet has been selected. Every command APDU contains an instruction byte which is
examined by the process method. The applet will throw an ISOException whenever
the terminal sends a command that is not understood or not appropriate in the applet’s
current state. Exceptions show up on the terminal side as special return codes in the
response APDU.

Instruction bytes for the electronic purse applet described above are encoded inside the
applet as follows:

– INS_SETKEY_AND_ID sets the 56 bit DES (Data Encryption Standard) key used for
crediting the card and the personal ID of the applet. The data field should contain
the eight bytes of key data33 and the eight bytes forming the applet ID. The response
APDU is empty.

– INS_GETVAL returns the value of balance. The response APDU that is to be expected
contains a data field of two bytes with the current balance.

– INS_DECVAL decreases the value of balance with 1 cent. The response APDU is
empty.

– INS_GETCHAL asks the applet to generate a challenge (a random nonce) and send it,
together with the applet ID, back to the terminal application. The response APDU
that is to be expected contains the 32 byte nonce and the 8 byte ID. The applet
increases the counter field for each requested challenge.

32The choice of 12 bit is somewhat arbitrary, other values would have sufficed just the same. However,
representing a currency as low level bits is realistic; it shows the kind of low-level details that are often
encountered in (commercial) Java Card applets. Verifying correctness conditions in the presence of such
low level operations forms a real challenge. See also Chapter 3.

33The Java Card API needs eight bytes (64 bits) to generate a (single) DES (56 bits) key. Although
DES uses a block size of 64 bits, the length of the key was restricted to 56 bits. Historically, this is usually
attributed to the NSA who could apparently break 56 bits keyed DES encryption (around 1974) but not
64 bits key encryption (see e.g., [Lev01]). The redundant 8 bits are typically used as check digits for the
actual key, see e.g., [PP03].

50 Specification and verification of control flow properties

– INS_RESPOND responds to the card challenge by sending a 24 byte encrypted hash of
the nonce. The APDU also includes a new value for balance in the last two bytes
of the decrypted cipher text array. A successful response to a challenge resets the
counter field. The response APDU is empty.

4.1.4 The crediting protocol

The key on the card is a diversified key [AB96]. This means that a legitimate terminal
can generate the card key if it has the appropriate information. In this particular case
this means that the terminal should know the card ID and the PIN (provided by the card
owner). It can then generate the card key Kc using a master key Km as follows:

Kc = {ID ++ PIN}Km
(∗)

where ++ is concatenation.
The use of a diversified key ensures that if the key of one card is discovered all other

cards are not compromised while the terminal only needs to store one key (instead of a
key for each card). Notice that for the implementation of the applet this is irrelevant.

The protocol implemented by the methods getChallenge and respond is now rather
straightforward. It can be formulated in standard security protocol notation as:

C // T : Nonce,ID

T // U : PIN?

U // T : PIN

T // C : {Hash(Nonce),NewValue}Kc

where C stands for the card, T for the terminal, U for the user and Kc for the card key,
which is computed as in (∗) above.

If the response from the terminal checks out, the current value of balance is replaced
by NewValue. Note that since the new value together with a hash of the nonce is also
encrypted, a replay or a man-in-the-middle attack is not possible as an attacker would
have to know Kc to change NewValue. Even though this is a very basic authentication
protocol, we checked the absence of such attacks by using the security protocol compiler
Casper [Low98] in combination with the model checker FDR [For00]. It presented no
problems.

As an aside, we have chosen to develop and implement our own cryptographic protocol.
However, it is also possible to use a dedicated API, such as the one provided by the
Global Platform API34, which ensures that the communication channel (provided by the
APDUs) is encrypted. We did not consider using such a secure channel approach for three
reasons: (i) using a secure channel for our simple applet is a bit of overkill and (ii) the
verification effort would be less interesting since it would simply involve some API calls
without actually showing what is going on at the protocol level. Of course, in commercial

34http://www.globalplatform.org/

http://www.globalplatform.org/

4.2 Specifying the applet 51

applets the added abstraction of the Global Platform API can be very useful. Finally, (iii)
not all cards implement this Global Platform.

4.2 Specifying the applet

In this section we explain the specification process for our applet. The starting point for
the specification forms the life-cycle of the applet, which we model using an automaton.
A complete listing of the Java Card applet together with its JML specification (proved to
be correct with respect to the implementation) can be found in appendix A.1.

4.2.1 Modeling the card life cycle

A rudimentary lifecycle model for a general smart card applet, comparable to those de-
scribed for example in [MM01, Glo01] or [RE00, Chapter 10], can be visualized using a
simple automaton. Figure 4.1 shows such an automaton. Usually the model identifies
different stages of an applet’s life, for example: Installation, Personalization, Processing,
and Locked. Of course, for concrete applets the life stages can usually be refined into more
detailed stages, in particular the Processing life stage, as we shall see below.

PROCESS

PERS

LOCKED

INIT

Figure 4.1: The default lifecycle model of an applet.

The applet’s current state is made explicit in the implementation by using a dedicated
field called state. Since the applet should always be in one of the states PERS, PROCESS or
LOCKED35 these modes will be represented by constants in the implementation, note that

35We ignore stage INIT here, since this state is only active when the applet is loaded on the card. At

52 Specification and verification of control flow properties

these constants should be stored in the persistent (permanent) memory of the smart card36.
This ensures that the states are indeed constants and cannot change.

In the case of the phone card applet we can further refine the PROCESS stage. Two
states can be identified: ISSUED, when the card is in normal operation and CHARGING,
when the applet is in a special state that is related to crediting the phone card. Moreover,
we can associate state transitions (the arrows in the figure) with applet commands. Not
every command is always appropriate. For instance, APDUs with the INS_SETKEY_AND_ID
instruction byte should be ignored by the applet once the card has been personalized.

Figure 4.2 displays the automaton that refines the PROCESS state.

getChal

ISSUED CHARGING
decVal

getVal

respond

getVal

decVal

Figure 4.2: Refinement of the PROCESS state.

We have two choices when we combine the automata from Figure 4.1 and Figure 4.2:

1. We can model the new states ISSUED and CHARGING by a new state variable making
them completely independent of the other states already modeled by the variable
‘state’. In this case we have the additional requirements that these states are only
accessible when we are in the PROCESS state and that they are stored in transient
memory37. Mostowski proposes this approach in his PhD thesis [Mos05a, Paper I].

2. We can simply replace state PROCESS by state ISSUED and add a new state CHARGING.
Both states can be then be stored in persistent memory.

the end of this process the install method (which calls the constructor and registers the applet with the
JCRE) is called and the applet will change its state to PERS, see [Che00, §3.10].

36A Java Card enabled smart card has persistent (permanent) memory, that keeps its contents when
the card has no power source, and transient (temporary) memory, that is cleared each time the card is
powered up. See Section 2.1, for a detailed explanation about the memory of Java Card enabled smart
cards.

37By using transient memory and assigning ISSUED the default value 0 and charging some other value,
it is ensured that card tears always return to state ISSUED.

4.2 Specifying the applet 53

We have chosen the second option because of its simplicity. However, in larger applets it
might be clearer to keep the standard states from Figure 4.1 and refine those states further
with separate automata. Another reason why one might choose the first option is that the
persistent memory is realized in EEPROM, which is a lot slower and easier to break than
the transient memory that is implemented using (fast) volatile memory. Another reason
might be that you might want to go back to the ISSUED state after a card tear (for security
reasons). Storing the new state in transient memory would ensure this.

The combined automaton can be seen in Figure 4.3. In state PERS the applet can
be personalized by setting the key and corresponding ID. The state will then change to
ISSUED. As soon as the terminal requests a challenge, state is switched to CHARGING. The
subsequent command will switch state back to ISSUED. When five or more challenges
are left unanswered, state becomes LOCKED and the applet will no longer respond to
commands.

Figure 4.3 (and Figure 4.4 as well) also specifies that it is only allowed to call specific
methods in certain states, e.g., only the setKey method can be called in the PERS state.
Thus, if a method (represented by an arrow) does not start in a particular state then it
means that the corresponding method cannot be called in that state. This behavior is
enforced by the process method (see Section 4.2.2).

setKey

install

INIT

ISSUED

LOCKED

CHARGING
decVal

getVal

respond

countergetChal,

counter < 4
getChal,

== 4

PERS

getVal

decVal

Figure 4.3: A composed automaton describing the control flow of the applet.

In order to obtain a yet more complete overview of the possible control flow of the
applet we add one more aspect to the finite state machine from Figure 4.3: exceptions. All
the methods of the applet can throw exceptions. We have modeled this in Figure 4.4 with
branching arrows, dotted arrows represent exceptional control flow.

54 Specification and verification of control flow properties

The automaton in Figure 4.4 clearly visualizes the possible flows of control of the applet.
Some points to note:

– Both method install and method setKey are atomic in the sense that they either
completely execute, and end up in a new state, or fail with an exception and return
to the state in which the method was called.

In Java Card one can use a dedicated transaction mechanism [Che00, Chapter
5] to enforce this kind of behavior. We have excluded the transaction mechanism
here because we have not modeled it inside the LOOP framework. A number of
other researchers have studied Java Card’s transaction mechanism in more detail
see e.g., [HP04, BM03, HM05].

– Depending on the value of the counter field, method getChal either terminates nor-
mally and ends up in state CHARGING, or it terminates with an exception and ends
up in state LOCKED.

– All method calls in state CHARGING end up in state ISSUED regardless of termination
behavior.

install

LOCKED

INIT

ISSUED

PERS

decVal
getVal

respond
getVal
decVal

== 4 < 4

counter

getChal

setKey

CHARGING

Figure 4.4: Control flow model extended with exceptional behavior.

Such an explicit representation of the applet’s state makes formulating global proper-
ties much easier when writing the specification. In fact, some of the applet’s code and
specification can be systematically derived from the finite state machine, as we shall see in
the next section.

4.2 Specifying the applet 55

4.2.2 The process method

In the implementation of the process method we created dedicated helper methods for
each of the possible instruction bytes:

Java

public void process(APDU apdu) throws ISOException {

byte ins = apdu.getBuffer()[OFFSET_INS];

if(selectingApplet())

return;

switch(state) {

case PERS:

switch(ins) {

case INS_SETKEY_AND_ID: setKey(apdu); break;

default: ISOException.throwIt(

SW_CONDITIONS_NOT_SATISFIED);

}; break;

case ISSUED:

switch(ins) {

case INS_GETVAL: getValue(apdu); break;

case INS_DECVAL: decValue(apdu); break;

case INS_GETCHAL: getChallenge(apdu); break;

default: ISOException.throwIt(

SW_CONDITIONS_NOT_SATISFIED);

}; break;

case CHARGING:

switch(ins) {

case INS_GETVAL: getValue(apdu); break;

case INS_DECVAL: decValue(apdu); break;

case INS_RESPOND: respond(apdu); break;

default: ISOException.throwIt(

SW_CONDITIONS_NOT_SATISFIED);

}; break;

case LOCKED: ISOException.throwIt(

SW_SECURITY_STATUS_NOT_SATISFIED);

default: ISOException.throwIt(

SW_CONDITIONS_NOT_SATISFIED);

}

}

These helper methods are only called from the process method, which consists of two
levels of nested switch statements. The outermost switch performs a case analysis on
the state field, while the innermost switches examine the instruction byte to call the
corresponding helper method. The selectingApplet() method in the beginning of the
process method returns true if the applet is selected, and false otherwise. Since we do not

56 Specification and verification of control flow properties

need to do anything special in case the applet is selected we simply end the method via a
return statement.

4.2.3 Global properties of the applet

Because the high level properties of the applet are captured in global invariants and con-
straints, the specification of the process method itself is not very interesting. It is shown
here for completeness sake.

JML

/*@ behavior

@ requires apdu != null && random != null

@ && cipher != null && digest != null;

@ assignable state, balance, counter, apdu.buffer[*],

@ tmp[*], id[*], key[*], cipher, nonce[*];

@ ensures true;

@ signals (ISOException) true;

@*/

The local specifications (in terms of pre- and postconditions) of the dedicated methods
capture the more detailed functional behavior of those methods. An example of such a
method specification is given in Section 4.3.2 for the methods dealing with APDUs whose
instruction byte is INS_GETCHAL or INS_RESPOND. Those specifications exactly describe the
behavior of the counter field as a result of the method invocations. The global properties
are stated in the class invariant below and the class constraint on the next pages.

JML

/*@ invariant

@ (state == PERS || state == ISSUED ||

@ state == CHARGING || state == LOCKED)

@ && 0 <= counter && counter <= 5

@ && (state == LOCKED <==> counter == 5)

@ && (state == PERS ==> counter == 0)

@ && 0 <= balance && balance <= 4096

@ && key != null && key.length == DES_KEY_SIZE

@ && nonce != null && nonce.length == NONCE_SIZE

@ && id != null && id.length == ID_SIZE

@ && tmp != null && tmp.length == TMP_SIZE

@ && sha_nonce != null && sha_nonce.length == SHA_SIZE

@ && plaintxt != null && plaintxt.length == SHA_SIZE+2

@ && ciphertxt != null

@ && ciphertxt.length == CIPHERTEXT_SIZE;

@*/

4.2 Specifying the applet 57

The first four conjuncts are the most interesting. They express that the applet can be only
in one of four states (PERS, ISSUED, CHARGING or LOCKED), that the counter that keeps
track of the number of unsuccessful challenge-responses is at least zero and at most five,
that the state LOCKED corresponds to the counter having the maximum value five, and that
in the PERS state the counter equals zero.

The class constraint conveys more interesting information as it captures the intended
flow of control. A constraint expresses a relation between the pre-state (indicated by \

old) and the post-state, that must hold for all method invocations. Part of the constraint
is generated automatically using the AutoJML tool described in [HOP03, HO03]. To
emphasize this fact, we list two constraints. In the actual verification of the applet these
are simply conjuncted.

The eight parts of the generated constraint describe the possible transitions from the
different states. Note that sending a command that is not supported by the applet does
not cause a change of state. This induces reflexive transitions from each state to itself,
which are not explicitly specified in Figure 4.3 and Figure 4.4.

JML

/*@ constraint

@ (state == LOCKED ==> \old(state) == ISSUED

@ || \old(state) == LOCKED) &&

@ (state == PERS ==> \old(state) == PERS) &&

@ (state == ISSUED ==> \old(state) == PERS

@ || \old(state) == ISSUED

@ || \old(state) == CHARGING) &&

@ (state == CHARGING ==> \old(state) == ISSUED

@ || \old(state) == CHARGING) &&

@ (\old(state) == LOCKED ==> state == LOCKED) &&

@ (\old(state) == PERS ==> state == ISSUED

@ || state == PERS) &&

@ (\old(state) == ISSUED ==> state == ISSUED

@ || state == CHARGING

@ || state == LOCKED) &&

@ (\old(state) == CHARGING ==> state == ISSUED

@ || state == CHARGING);

@*/

The second constraint (on the next page) was manually entered and captures the relation
between the balance, counter and state fields. Its first conjunct expresses that once the
applet becomes LOCKED, it will remain LOCKED and the balance and counter do not change
anymore.

The second one expresses that three things can happen in the normal state of operation
(i) ISSUED: the applet can stay in the same state, in which case the balance can only
decrease –a crucial security property– and the counter will not change; (ii) the applet can

58 Specification and verification of control flow properties

go into the CHARGING state, then the balance will not change, the counter will increase
with one, and the value of the counter in the pre-state was less than four; (iii) the applet
will become LOCKED, in which case the balance will stay the same, the counter will again
increase with one and in the pre-state the counter field had value four38. The latter
constraint describes another crucial security property for this applet. Notice that both
properties taken together implement security requirement number 7 from Section 4.1.2.

JML

/*@ constraint

@ (\old(state) == LOCKED ==>

@ (balance == \old(balance) &&

@ counter == \old(counter) &&

@ state == LOCKED)) &&

@ (\old(state) == ISSUED ==>

@ ((state == ISSUED && balance <= \old(balance) &&

@ counter == \old(counter))

@ || (state == CHARGING && balance == \old(balance) &&

@ counter == \old(counter + 1) && \old(counter) < 4)

@ || (state == LOCKED && balance == \old(balance) &&

@ counter == \old(counter + 1) &&

@ \old(counter) == 4))) &&

@ (\old(state) == CHARGING ==>

@ ((state == ISSUED && counter == 0)

@ || (state == ISSUED && counter == \old(counter)

@ && balance <= \old(balance))));

@*/

The third conjunct expresses the two possible transitions from CHARGING to ISSUED.
Either the response was valid, in which case the counter is reset to zero, or the response
was invalid, in which case the counter remains unchanged (recall that the getChallenge

method already incremented the counter) and the balance does not increase.

4.3 Correctness of the applet specification

Once we have a (JML) specification of the intended behavior of our applet, we want to
make sure that it actually holds for the given (Java) implementation. As already explained
in Chapter 2, this is done by first translating the Java + JML code into the language
of the theorem prover PVS, via the LOOP tool [BJ01]. Next, the theorem prover is

38The observant reader might notice that some of the properties specified in the invariant and constraint
are redundant. This is done deliberately, since we believe this makes the specification easier to read and
thus understand. The redundancy in the specification does not hinder the verification in PVS.

4.3 Correctness of the applet specification 59

used for (interactive) verification. The actual verification in the PVS [OSRSC99] proceeds
via a special Hoare logic for JML [HJ00b], in combination with a weakest precondition
calculus [Jac04b]. For the verification in the next sections we have used LOOP’s integer
arithmetic that models Java’s integer arithmetic precisely, which includes overflowing and
widening and narrowing of numeric types, see [Bre06, Chapter 4] and[Jac03].

Although the complete applet has been formally verified, discussing the verification of
the whole applet would present too many details. Instead we concentrate on the process

method, described in the previous section, and on two additional helper methods that are
called by process, namely getChallenge and respond, see below.

The most important properties to be verified are the class-wide invariant and constraint
properties. They express key security properties that should be established by all meth-
ods. In the semantics of JML –as incorporated in the LOOP tool– invariants are implicitly
added to all preconditions, and to all postconditions, both for normal and abnormal termi-
nation. Similarly, constraints are added to all postconditions. At first sight it might seem
easy to establish the trivial (normal and abnormal) postcondition true of the process

method. However in reality, these postconditions are far from trivial because they involve
the invariant and constraint.

4.3.1 Verifying the process method

The verification of the process method essentially involves making the various case dis-
tinctions in PVS, guided by the nested switch statements inside the process body39.
In each case an appropriate helper method is called. During verification of the process

method, we then use the specification of the method that is called. This means that the
method’s precondition must be established, so that its postcondition can be used in the
remainder of the proof.

4.3.2 Verification of the two helper methods

The two most prominent helper methods, getChallenge and respond, are discussed in
detail in this section. The getChallenge method can only be called when state is ISSUED
and the incoming APDU contains the INS_GETCHAL instruction.

Java

/*@ behavior

@ requires state == ISSUED

@ && buffer[OFFSET_INS] == INS_GETCHAL

@ && counter < 5

@ && apdu != null

39It was at this stage that we found a serious program bug: in our first version, the outer break

statements after the three inner switches in process were not there. But the inner breaks only break out
of the inner switches, not out of the outer one!

60 Specification and verification of control flow properties

@ && apdu.buffer != null

@ && apdu.buffer.length >=

@ OFFSET_CDATA + NONCE_SIZE + ID_SIZE

@ && random != null;

@ assignable state, counter, nonce[*], apdu.buffer[*];

@ ensures state == CHARGING

@ && counter == \old(counter) + 1

@ && counter < 5;

@ signals (ISOException)

@ state == LOCKED && counter == 5;

@*/

private void getChallenge(APDU apdu) throws ISOException {

counter++;

if (counter < 5) {

state = CHARGING;

random.generateData(nonce,(short)0,NONCE_SIZE);

apdu.setOutgoing();

apdu.setOutgoingLength(NONCE_SIZE + ID_SIZE);

byte[] buffer = apdu.getBuffer();

Util.arrayCopy(

nonce,(short)0,buffer,OFFSET_CDATA,NONCE_SIZE);

Util.arrayCopy(id, (short)0,

buffer,ISO7816.OFFSET_CDATA+NONCE_SIZE,ID_SIZE);

} else {

state = LOCKED;

ISOException.throwIt(SW_SECURITY_STATUS_NOT_SATISFIED);

}

}

It provides in the outgoing APDU a new, randomly generated nonce, to be used in the
challenge-response mechanism for authenticating the terminal, together with the applet
ID, which the terminal needs in order to generate the card key. For security reasons, we
keep track of how many times the getChallenge method is called until a challenge is
answered by an appropriate response. Technically, we use a private byte field counter –in
persistent memory– which is incremented with every call to getChallenge as explained in
Section 4.2. Thus, our getChallenge method must inspect the value of this counter.

Notice that the precondition contains certain requirements about the length of the
buffer of the incoming APDU. These requirements are actually redundant, because of the
invariant that we use for the APDU class. The important point is that the getChallenge

method only generates a challenge if the counter (in the pre-state) is less than 4. Recall
that the invariant says 0 ≤ counter ≤ 5. If getChallenge is called with counter equal to
4, the applet becomes locked. And the getChallenge method cannot be called by process

with counter equal to 5, because according to the constraint this means that the applet is
already locked. We thus see the importance of the invariant and constraint in determining

4.3 Correctness of the applet specification 61

the appropriate flow of control.

We briefly discuss the verification of getChallenge. There are three points worth
mentioning.

– Shortly after entering the method body, the counter is incremented and so the class
invariant is broken: the logical equivalence state == LOCKED <==> counter == 5

need not hold anymore. But at the end of the method the invariant is re-established.
Our semantics and proof methods can handle such temporary violations of invariants.

Re-establishing the class invariant at the end of the method body is sufficient for
Java Card programs. For Java Card applets, however, a card-tear is always possible.
Withdrawing the card from the terminal in the middle of the execution of this method
could leave the applet in a state in which the invariant no longer holds. A solution
to this is to use Java Card’s transaction mechanism. Unfortunately, verification of
transaction blocks is not supported by the LOOP tool yet40.

– The API methods that occur in the then part are handled via their specifications.
These specifications are fairly weak, and do not express any functional behavior. For
instance, the specification that we used for the javacard.security.RandomData

method generateData can be seen below.

JML

/*@ normal_behavior

@ requires buffer != null && offset >= 0 &&

@ length >= 0 &&

@ offset + length <= buffer.length;

@ assignable buffer[*];

@ ensures true;

@*/

public abstract void generateData(

byte[] buffer, short offset, short length);

This serves our purposes. We use similarly weak specifications for the setOutgoing

and setOutgoingLength methods from API class javacard.framework.APDU. But
the javacard.framework.Util method arrayCopy has a functional specification—as
in [BJP01].

40In particular, the LOOP framework has no support for transaction mechanisms on a semantic level.
A program transformation approach –as proposed in [HP04]– that removes the transaction and replaces
them by a suitable try-catch-finally construct can be used.

62 Specification and verification of control flow properties

– The two methods setOutgoing and setOutgoingLength may generate an APDU-

Exception. But this is a runtime exception that we ignore in our specification of
getChallenge. Of course, one can choose to include it and have a more detailed
specification.

The implementation of the respond method can be seen here:

Java

private void respond(APDU apdu) throws ISOException {

state = ISSUED;

byte[] buffer = apdu.getBuffer();

if (buffer[OFFSET_LC] != ciphertxt.length) {

ISOException.throwIt(

SW_SECURITY_STATUS_NOT_SATISFIED);};

readBuffer(apdu,ciphertxt);

cipher.doFinal(ciphertxt,(short)0,

CIPHERTEXT_SIZE,plaintxt,(short)0);

digest.doFinal(nonce,(short)0,

NONCE_SIZE,sha_nonce,(short)0);

if (Util.arrayCompare(sha_nonce,(short)0,

plaintxt,(short)0,SHA_SIZE) == 0) {

balance = (short)(((plaintxt[SHA_SIZE] & 0x0F) << 8)

| (plaintxt[SHA_SIZE+1] & 0xFF));

counter = 0 };

else {

ISOException.throwIt(

SW_SECURITY_STATUS_NOT_SATISFIED);

}

}

The respond method of our phone card applet can only be called (within the process

method from the previous section) when state is CHARGING and the incoming APDU
contains the INS_RESPOND instruction. The method checks whether the received response
is appropriate to the challenge previously sent, and if so, it extracts the new value for
balance from the APDU buffer through some bitwise shifting and masking. (The resulting
balance is described in slightly more readable form in the ensures clause.) The method
then resets the counter field to zero. Whether or not the appropriate response is given is
expressed in the JML specification, which can be found below.

The verification of the respond method is similar to the one for getChallenge. The
proof cannot be handled automatically with weakest-precondition calculus because there
are too many complicated method calls involved. Therefore, we have produced a proof in
Hoare logic, which requires substantial user interaction.

4.4 Related work 63

JML

/*@ behavior

@ requires state == CHARGING &&

@ buffer[OFFSET_INS] == INS_RESPOND &&

@ counter < 5 &&

@ apdu != null &&

@ apdu.buffer != null &&

@ apdu.buffer.length >= CIPHERTEXT_SIZE &&

@ cipher != null &&

@ ciphertxt != null &&

@ digest != null;

@ assignable state, counter, balance,

@ ciphertxt[*], plaintxt[*], sha_nonce[*];

@ ensures state == ISSUED &&

@ balance == (short)

@ (256 * (plaintxt[SHA_SIZE] & 0x0F)

@ + (plaintxt[SHA_SIZE+1] & 0xFF)) &&

@ counter == 0 &&

@ (\forall int i; 0 <= i && i < SHA_SIZE ==>

@ sha_nonce[i] == plaintxt[i]);

@ signals (ISOException e) state == ISSUED &&

@ balance == \old(balance) &&

@ counter == \old(counter) &&

@ (apdu.buffer[OFFSET_LC] != ciphertxt.length

@ ||

@ !(\forall int i; 0 <= i && i < SHA_SIZE ==>

@ sha_nonce[i] == plaintxt[i]));

@

@*/

The resulting proof tree in PVS is included in Figure 4.5, and gives an impression of the
complexity and number of interactions (each node corresponds to a user-command). The
reader is not expected to analyze the information in each node. The bitwise operations
involved present no problems because we have a detailed semantics of Java’s integral types
formalized in PVS [Jac03, Bre06].

4.4 Related work

As far as we know, the paper [JOW04] on which this chapter is based was the first to
describe a formal verification of a Java smart card applet which uses cryptographic meth-
ods (in the form of a simple challenge-response mechanism). Other approaches, such as
in [Mos02], concentrate on the development process, and stop short of the actual verifica-
tion. Verification of Java Card applets has since been done by a number of researchers,
e.g., [BCHJ05, PBB+04, Mos05b]. However these are case-studies showing the progress of

64 Specification and verification of control flow properties

(skosimp*)

(auto−rewrite −5)

(load−jml−classes ...)

(jml−start)

(case ...)

(case ...)

(case ...)

(comment ...)

(rewrite "composition")

(hide 2)

(inst ...)

(split +)

nfe−assert−rewrites ...) (composition−and ...)

(nfe−assert−rewrites ...) (composition−and ...)

(nfe−assert−rewrites ...) (composition−and ...)

(nfe−assert−rewrites) (composition−and ...)

(comment ...)

(e2s)

(ce2e−f2e)

(expand ...)

(expr−ext−f2e)

(expr−ext−and ...)

(nfe−assert−rewrites) (expr−ext−and ...)

(nfe−assert−rewrites) (expr−ext−f2e)

(expr−ext−and ...)

(nfe−assert−rewrites) (inst−spec)

(use−spec)

(semantic−assert ...) (semantic−assert ...)

(semantic−assert)

(composition−and ...)

(nfe−assert−rewrites ...)

(case−replace ...)

(hide 2)

(hss!! 1)

(assert)

(skosimp*)

(bj−assert)

(nfe−assert−rewrites ...)

(inst − "q?i!1")

(bj−assert)

(rewrite "byte_byte")

(lift−if +)

(split +)

(flatten)

(assert)

(flatten)

(assert)

(rewrite "byte_byte")

(lift−if +)

(split 2)

(flatten)

(assert)

(flatten)

(assert)

(inst − "bv2int[32](q?i!1)")

(assert)

(hide−all−but 1)

(name−replace ...)

(name−replace ...)

(case−replace ...)

(hide −1)

(assert)

(grind)

(hide 2)

(apply−extensionality :hide? t)

(grind)

(hide−all−but 1)

(name−replace ...)

(name−replace ...)

(case−replace ...)

(assert) (hide 2)

(apply−extensionality :hide? t)

(grind)

(hide−all−but 1)

(name−replace ...)

(name−replace ...)

(case−replace ...)

(hide −1)

(assert)

(hide 2)

(apply−extensionality :hide? t)

(grind)

(apply ...)

(apply ...)

(apply ...)

Figure 4.5: Proof tree for the respond method.

verification technology and do therefore not focus on the implementation of Java Card

applets. The closest work to this chapter we could find is [HRS02]. The applet they de-
velop seems to have been verified in a dynamic logic which abstracts away from certain
Java Card details, though.

4.5 Conclusions

In essence, what we have verified is a correspondence between the logical control flow and
the flow of the actual Java implementation. The explicit representation of the applet’s
state makes formulating global properties much easier when writing the JML specification.
Usually control flow analysis involves a lot of data abstraction, see e.g., [GD00, HGSC04]
for Java Card-related examples. In contrast, our approach uses no data abstraction at all.
This ensures that methods are called in an appropriate order, obeying security sensitive
restrictions—such as the upper limit on the number of outstanding challenge-responses.
Furthermore, it is possible to find actual implementation errors which can prove to be
security critical. Low-level implementation issues, such as overflow of data types and
unwanted exceptions, simultaneously with control flow properties can thus be detected.

Chapter 5

Specification and verification of
non-interference in JML

In the previous chapter we have seen that JML can be used to specify control flow related
security properties for Java Card applets. Many other security properties for Java Card

applets have been specified and verified in JML, such as the absence of ISOExceptions
at the top-level [JMR04] or well-formedness of transactions [PBB+04]. All these security
properties have in common that they are relatively easy to express for individual methods
in JML. Of course, getting the specifications correct if one has to deal with all the low-level
details of Java still forms a challenge. However, some program wide security properties
such as authentication, confidentiality or integrity are far harder to express in JML.

The focus of this chapter is the specification of confidentiality in JML. Confidential-
ity is an important security property that is notoriously hard to enforce in computer
programs. It can be formalized using the notion of non-interference, first introduced by
Goguen and Meseguer [GM82] in the early eighties. In this chapter we primarily focus on
termination-insensitive non-interference, i.e., we look at all the possible runs of a program
that terminate normally and disregard other termination forms such as non-termination
(if the program hangs) and abrupt termination (e.g., if the program terminations with an
exception).

In Section 2.5 we confidentiality (as non-interference) is discussed in more detail.
Confidentiality can be expressed in JML using the notion of a so-called specification

pattern for JML. This specification pattern is based on work by Joshi and Leino [JL00].
As far as we know, formalizing confidentiality in this way in JML is novel. Others have
either extended JML to be able to specify confidentiality [DFM05] or formalized it directly
in a logic of a particular tool, e.g., in dynamic logic [DHS05]. Both these approaches can
no longer use the whole range of JML tools [BCC+05] for verification, which is one of the
attractive features of JML.

The current chapter also serves as a bridge between Chapter 3 and Chapter 4 on the
one side and Chapter 6 through 8, on the other side. The former use JML to specify and
verify behavioral specifications while the latter deal with dedicated methods for proving
non-interference properties. This chapter combines these two and uses JML to specify and

66 Specification and verification of non-interference in JML

verify non-interference properties for Java programs.
The remainder of this chapter is organized as follows. Section 5.1 introduces the

specification pattern for confidentiality. Section 5.2 applies the specification pattern to
some examples. Section 5.3 explores the possibility of specifying stronger notions of non-
interference in JML. Section 5.4 discusses related work and the chapter ends with conclu-
sions in Section 5.5.

5.1 A specification pattern for confidentiality

In the examples in this chapter we use the simple security lattice Σ = {High, Low} with
Low ⊑ High from Chapter 2. A secure information flow policy is then given by the function
Sif : Var → Σ which maps variables to security levels in the simple security lattice. We
will abuse notation by identifying security levels and the sets of variables corresponding to
those levels, i.e. High = {v ∈ Var | Sif(v) = High} and Low = Var \ High.

Confidentiality can be formalized using the notion of non-interference [GM82]:

Noninterference for programs essentially means that a variation of confidential
(high) input does not cause a variation of public (low) output. [SM03]

In later chapters we will define non-interference more formally, for now this informal
definition suffices for our purpose. Notice that confidentiality involves a relation between
the pre- and post-state. In JML it is possible to express such relations using the key-
word \old. If used in a postcondition, variables encapsulated by \old are evaluated in
the precondition. This makes it possible to use a formulation of confidentiality in JML.
This formalization of confidentiality constitutes a form of non-interference that is called
termination-insensitive non-interference. Confidentiality is only guaranteed for all nor-
mally terminating runs of a program, non-termination and abrupt termination (i.e., via an
exception) is ignored.

Pattern 1 (specification pattern for confidentiality).

Confidentiality can be expressed in JML as a specification pattern, consisting of clauses of
the form:

ensures low == \old(χLow);

For each low ∈ Low the expression χLow should not contain any fields high ∈ High.

By proving for a Java method that all fields low ∈ Low in the post-state are independent
of the values of fields high ∈ High in the pre-state, we have proved confidentiality for that
Java method41. The meta-expression low == \old(χLow) is called a specification pattern
for confidentiality.

41Of course the specification pattern has to be meaningful, e.g., low == \old((high==1)? low=0:

low=0) does not suggest that secret information is leaked since the pattern is equivalent to the simpler
one low == \old(0) for which it is clear that it does not break confidentiality.

5.1 A specification pattern for confidentiality 67

Integrity, as the formal dual of confidentiality, can easily be expressed using a similar
specification pattern:

Pattern 2 (specification pattern for integrity).

ensures high == \old(χHigh);

For each high ∈ High the expression χHigh should not contain any fields low ∈ Low.

Pattern 2 expresses that all high fields are independent of low fields. Thus low fields
can not alter high fields, thereby ensuring integrity for all high fields in High. This chapter
focuses on proving confidentiality, but all techniques described in the sequel are equally
applicable to integrity.

The specification pattern for confidentiality can be used to prove one of the most
common –and weakest– forms of non-interference know as termination-insensitive non-
interference. As mentioned before, it can be understood to mean that the non-interference
property is only specified if the program terminates normally. If the program terminates
with an exception or does not terminate at all (e.g., via a non-terminating loop) the non-
interference property is not guaranteed. We can easily strengthen the non-interference
property somewhat by also using Pattern 1 inside JML’s signals clause:

Pattern 3 (extended specification patterns for confidentiality).

Confidentiality can be expressed in JML as two specification patterns:

ensures low == \old(χLow);
signals (ǫ) low == \old(ψLow);

For each low ∈ Low and exception types ǫ the expressions χLow and ψLow should not contain
any fields high ∈ High.

In this case non-interference is specified for a method if the method either terminates
normally or with an exception ǫ42. However, the termination behavior of the method itself
can also leak information or information can be leaked in case another exception than the
ǫ listed is thrown.

In case the termination behavior itself and the possible termination modes of a pro-
gram cannot leak any information we obtain the stronger form of non-interference called
termination-sensitive non-interference (see Chapter 7). Section 5.3 discusses how termina-
tion sensitive non-interference can be expressed in JML.

Still stronger forms of non-interference also prevent the use of so-called covert chan-
nels [Lam73], such as timing [Aga00a, BRW06], resource consumption or caching, to leak
information (see Chapter 8). We will not discuss this matter further here.

In the next section we show how the specification pattern for confidentiality can be
applied to an example.

42For the most sensitive notion of confidentiality one can take for ǫ java.lang.Exception, thereby
covering all possibly thrown exceptions.

68 Specification and verification of non-interference in JML

5.2 Applying the specification pattern

In this section we will show a couple of examples of how the specification pattern for
confidentiality can be applied.

5.2.1 A first example

This first example show a Java method test() that has the non-interference property:

Java

int high,low; // high:H, low:L

/*@ normal_behavior

@ requires true;

@ assignable low;

@ ensures low == \old(0);

@*/

void test() {

low = high;

low = low - high;

}

The post condition of this method uses the specification pattern for confidentiality. Prov-
ing the correctness of this specification with one of JML’s dedicated tools [BCC+05] is
straightforward. An since the specification pattern is used for all low fields and no high
field occurs inside \old we can conclude that the method is indeed non-interfering and
thus maintains confidentiality.

5.2.2 An example involving method calls

The example described below contains two methods: int decrementhigh(int i) and
void m() (the latter calls decrementhigh). There are only two fields, high and low which
have security level High and Low respectively.

5.2 Applying the specification pattern 69

Java

int high,low; // high:H, low:L

/*@ normal_behavior

@ requires true;

@ assignable high;

@ ensures \result == \old(i) && high == \old(high - 1);

@*/

int decrementhigh(int i){

high = high -1;

return i;

}

/*@ normal_behavior

@ requires true;

@ assignable low,high;

@ ensures low == \old(high) && ensures high == \old(high - 1);

@*/

void m(){

low = decrementhigh(high);

}

Whether method decrementhigh is confidential depends on the parameter i. In case i

is a low field the method does not leak information, otherwise it leaks information of a
high field via its return value (which is bound to the special JML variable \result. Thus,
since high is passed along as a parameter to method decrementhigh there is a dependency
between field low and the value of high in the pre-state –as indicated by the specification
pattern in the ensures clause– and method m() leaks secret information.

5.2.3 An example with a loop

The next example illustrates JML specification pattern for confidentiality on a method
with a loop.

Java

int high,low; // high:H low:L

/*@ normal_behavior

@ requires high > 0;

@ assignable low,high;

@ ensures low == \old(high);

@*/

70 Specification and verification of non-interference in JML

void m() {

low=0;

/*@ maintaining high + low = \old(high);

@ decreasing high;

@*/

while (high > 0){

high--;

low++; }

}

Method m() above leaks information from high to low as is indicated by the specification
pattern in the ensures clause. Notice that in order to prove the correctness of this specifi-
cation one needs to specify the loop invariant (as given by the JML keyword maintaining)
and the loop variant (denoted by the JML keyword decreasing).

Next we show the application of the specification pattern for confidentiality on a larger
example involving a cash register.

5.2.4 A cash register

Most modern cash registers have some sort of logging mechanism to check that no money
from the register has disappeared. As an example we have written a small Java program
that implements such a secure logging mechanism. The idea is that all transaction are
stored in an integer-array in such a way that both the total amount in the register and
each individual transaction is logged. The first index (I) of the array will be set to a
random value43 and each consecutive index will contain the value of the previous index
plus the new amount added to the register. When the last index is used the register will
be locked and no additional money can be added to it until the log is dumped and the
whole process can start form the beginning. Figure 5.1 gives a graphical representation of
the log.

0I V1

V1 = I + A1

Vi Vi+1

Vi+1 = Vi + (Ai+1)

0 0

Figure 5.1: The log of the cash register.

Entries that are not used yet have the default value zero. Since all values depend on the
previous one, fraud with the log involves changing all values of the log. Moreover the

43This is also the reason why we require that counter > 0 in the specification of method int add below.

5.2 Applying the specification pattern 71

initial random value at the first index ensures that someone who can read one index has no
idea what the total amount of money in the cash is44, which constitutes the main security
objective of the logging mechanism.

One method from the logging mechanism is discussed in detail here, the method public

int add(int amount, int money) that implements how money is added to the register.
The parameter amount is the amount that has to be payed by the customer and the money
parameter is the actual amount of money given by the customer. The return value is the
change that has to be returned to the customer. Both the parameters and the return
value have security level Low. The public fields counter and size will also be treated as
a variables with security level Low and the (private) reference field payments including its
array entries has a High security level. The security levels are also indicated in the code in
(ordinary) Java comments.

The full program listing can be found in Appendix A.2.

Java

class Logger{

public int counter, size; // Low

private /*@ spec_public @*/ int[] payments; // High

/*@ invariant

@ size > 0 && counter > 0 && counter <= size &&

@ payments != null && payments.length == size &&

@ (\forall int i; i > counter && i < size ==> payments[i] == 0) */

/*@ constraint

@ size == \old(size) && payments == \old(payments);

@*/

/*@

@ behavior

@ requires counter > 0;

@ assignable counter, payments[counter];

@ ensures amount > 0 && \old(counter) < size &&

@ counter == \old(counter) + 1 &&

@ payments[counter -1] ==

& \old(payments[counter - 1] + amount) &&

44A more involved implementation of such a secure logging mechanism should use cryptographic hash
functions like Sha-1 and MD5. In that case instead of simply adding the next value to the array one should
add the hash of the value concatenated with the entry at the previous array index (which is then either
a previous hash or the first random entry of the array. We have chosen not to use such functions here
since they add some complexity to the Java code in the form a API-calls but do not add any fundamental
insights.

72 Specification and verification of non-interference in JML

@ payments[counter] == payments[\old(counter)] &&

@ \result == \old(money) - \old(amount) &&

@ \result >= 0;

@ signals(NotEnoughMoneyException) \old(amount) > \old(money) &&

@ payments[counter - 1] ==

@ \old(payments[counter -1]) &&

@ counter == \old(counter);

@ signals(LogFullException) (\old(counter) >= \old(size) ||

@ amount <= 0) &&

@ counter == \old(counter) &&

@ payments[counter -1] ==

@ \old(payments[counter -1]);

@ signals(OverflowException)

@ amount > \old(Integer.MAX_VALUE - payments[counter - 1] &&

@ counter == \old(counter) &&

@ payments[counter] == \old(payments[counter]);

@*/

public /* Low */ int add(/* Low */ int amount,

/* Low */ int money) throws

NotEnoughMoneyException,

LogFullException,

OverflowException{

if (amount > money)

NotEnoughMoneyException.throwIt();

if (amount > 0 && counter < size) {

if(payments[counter-1] > Integer.MAX_VALUE - amount)

OverflowException.throwIt();

payments[counter] =

payments[counter-1] + amount;

counter++; }

else LogFullException.throwIt();

return money - amount;

}

}

There are three fields associated with this class: the private array payments (the log), a
public counter that keeps track of where the current index in the private array payments

is, and a public field size that equals the length of this array. The specification has a class
invariant which states some obvious properties of the array and asserts that indices that are
not used yet have the default value zero. Recall from Section 2.3 that the constraint gives
a relation between the pre- and post-state and says that, once created, the length and the
reference to the array stay the same. The method specification should be self-explanatory,
but notice that Pattern 3 is used in the specification –partly implicit via the constraint.

Three exceptions can be thrown: A NotEnoughMoneyException occurs if the money

5.3 Towards termination sensitive non-interference 73

given by the customer is less than the amount that has to be paid. An OverflowException

will be thrown if the value stored at the current index is bigger than Integer.MAX VALUE.
Note that this is explicitly implemented in the method, which is necessary because overflow
is silent in Java. Finally, a LogFullException will be thrown if the log is full, i.e., if
\old(counter)==size (or if amount is below 0 which shouldn’t be possible). The post-
conditions for each exception can be found in the corresponding signals clauses. Both the
NotEnoughMoneyException and the LogFullException are trivial. The specification of
the method add above has been proved for the given implementation, using the LOOP tool.
The examples in this section illustrate that the specification pattern for confidentiality can
be used on ‘real’ Java code and that it can identify potential information leaks.

When the OverflowException is thrown the method leaks information: part of this post-
condition reads:

amount > \old(Integer.MAX VALUE - payments[counter-1])

which leaks partial information about the value stored at the previous index, i.e., at
\old(payments[counter-1]). Notice that this is not expressible using the specification
pattern for confidentiality, since the binary relation used here is a ‘bigger then’ (>) instead
of an equality (==) relation.

This shows that our method is not complete, i.e., we cannot construct a specification
pattern for confidentiality in all cases. Another example of incompleteness occurs when a
program performs a complex computation on a low input that sometimes fails to termi-
nate. It might not always be the case that we can construct a specification pattern for
confidentiality in such cases. Another disadvantage of this approach is that writing such
JML specification patterns for confidentiality is a tedious and error-prone task. Moreover,
it does not scale very well. In a preliminary paper the author and Martijn Oostdijk have
investigated whether it is possible to automatically generate specification patterns for con-
fidentiality from a secure information flow policy [WO05]. The first results are encouraging,
but there is still more research to be done before this question can be answered fully.

However, we believe that the proposed methodology can still be useful in certain cases,
especially when one has already constructed (and verified) JML specifications that express
other functional or security properties for a particular program. Since in this case one can
use one specification language –JML– for the entire verification process.

In cases where confidentiality is of the utmost importance the specification patterns for
confidentiality are not enough. In the next chapters we propose methods that ensure a
more justified believe in the confidentiality of verified programs.

5.3 Towards termination sensitive non-interference

This chapter mainly focuses on termination-insensitive non-interference, meaning that the
non-interference property (confidentiality, integrity) is only guaranteed if the analyzed

74 Specification and verification of non-interference in JML

program terminates normally. If the program terminates with an exception or does not
terminate at all (hangs), non-interference is no longer assured.

We have already seen that the specification pattern for confidentiality can easily be
used in signals clauses. When used in this way, it expresses that when an exception of a
certain type is thrown the non-interference property holds. Similarly, it is possible to use
the specification pattern for confidentiality in JML’s diverges clause. Such a specification
pattern states for which precondition a non-interference result holds provided the method
does not terminate.

Termination behavior itself can also leak information, as illustrated by the next code
fragment:

Java

boolean high; // high:H

public void m(){

if(high) throw new Exception();

}

Assuming the termination behavior of a program is observable, the value of field high

is leaked. Such cases of information leakage are not covered by the specification pattern
for confidentiality. Termination sensitive non-interference can easily be specified in JML
using the normal behavior and exceptional behavior keywords, which specify that the
method must terminate normally or with an exception respectively. In effect this makes
termination sensitive and insensitive termination coincide, because only one termination
mode (per method) is allowed.

More generally, termination sensitive non-interference in JML can be specified using a
JML ghost field, as illustrated below:

Java

boolean high; // high: H;

//@ public ghost int _tmode;

/*@ invariant _tmode == 0 || // normal termination

_tmode == 1 // exceptional termination

*/

/*@ behavior

@ diverges false;

@ requires true;

5.4 Related work 75

@ assignable \nothing

@ ensures \old(high) ==> _tmode == 1 &&

@ !\old(high) ==> _tmode == 0;

@ signals (Exception e)

@ \old(high) ==> _tmode == 1 &&

@ !\old(high) ==> _tmode == 0;

@*/

public void m() throws Exception{

if (high){

//@ set _tmode = 1;

throw new Exception();

}

//@ set _tmode = 0;

}

First of all note that we restrict ourselves to programs that terminate either normally or
via an exception. We will always require that the diverges clause is false if we want to
prove termination-sensitive non-interference, thereby ensuring that non-termination of a
method cannot leak information.

By encoding the other termination behaviors of a method in the ghost field we can
specify that the value of field high in the pre-state determines the termination behavior
of the method. Thus information is leaked via the termination behavior of method m().
Notice that the postconditions in the ensures and signals clauses are the same and that
the invariant is used to guarantee that there are only two termination modes allowed.

In cases where a method is called, e.g., return someMethod(), it is the responsibility
of the called method (i.e., someMethod()) to ensure that the ghost variable is set to the
correct termination mode. This ensures that the method is modular and can be used for
complete programs.

The specification pattern for confidentiality is no longer used. A specification that
has the ambition to specify termination sensitive non-interference in JML should use the
specification pattern for confidentiality and should specify how the value of each High field
in pre-state influences termination behavior of a method.

5.4 Related work

In the context of the SecSafe project [Sec] several security properties which are relevant for
Java Card applets have been identified [MM01]. They concern amongst others the absence
of certain exception types at the top-level, atomicity of updates, no unwanted overflow, only
memory allocation during the install phase of the applet and conditional execution points.
All these points can either be expressed directly in JML or in the underlying semantic
model used by one of the JML tools, as is shown by several researchers [Mos05b, PBB+04,
JMR04, JOW04, HOP04]. Expressing non-interference properties such as confidentiality
and integrity directly in JML has, to the best of our knowledge, not been done before.

76 Specification and verification of non-interference in JML

The work of Dufay, Felty and Matwin [DFM05] is probably most related to ours.
They add keywords to JML that express confidentiality and have modified the Kraka-
toa tool [CDF+04] in order to prove non-interference properties for this extended version
of JML. The actual non-interference proves are then preformed using the approach de-
scribed in [BDR04]. The main idea is to compose the program with itself and execute it
again in a different part of memory. Then a non-interference relation has to hold. This
approach has two weak points: first the program needs to be analyzed twice, which leads to
a considerable overhead (see Chapter 7 for a solution to this problem). Second, as we will
show in Chapter 7, it impossible to show a termination-sensitive non-interference result
using this approach. Another disadvantages of Dufay et. al. ’s approach is that only the
(modified) Krakatoa tool can be used to prove their extended JML annotations. Other
JML tools first need to be altered in order to be used to prove non-interference.

The group behind the KeY-tool [ABB+04] uses a similar approach to ours to prove
confidentiality [DHS05]. The main difference is that they do not use a separate specification
language but express confidentiality directly in the dynamic logic which they use to reason
(interactively) about sequential Java (card) programs.

The Spark programming language [Bar03] has been developed for implementing highly
reliable code. The language is basically a subset of Ada[Geh83] with native support for
(JML like) annotations. The Spark annotation derives l from l1,l2,l3 expresses that
l depends on l1,l2 and l3. In a way this is a minimum annotation for expressing depen-
dencies between fields.

The notion of a specification pattern originated in the work of Dwyer et. al. [DAC99].
They noticed that patterns emerge when specifying temporal properties for concurrent
systems. As far as we know, specification patterns for JML have not been proposed before.

5.5 Conclusions

We have shown that is possible to apply JML for specifying non-interference properties
like confidentiality and integrity using specification patterns for JML. The main advantage
of this approach is that one specification language can be used to express a wide range
of functional and security properties for Java programs. The main disadvantages are that
we cannot construct a specification pattern in all possible cases and the approach does
not scale45. In the next chapters we therefore look at dedicated methods for proving
non-interference properties for Java programs.

45We suspect that the approaches proposed in [DFM05] and [DHS05] have similar (if not worse) scala-
bility issues.

Chapter 6

Statically checking
termination-insensitive
non-interference

In the previous chapter the starting point for specifying and proving non-interference prop-
erties was the specification language JML. The main advantage of using JML is its gener-
ality, which makes it possible to specify and prove other interesting safety and/or security
properties. However, this advantage comes at a price. If proving non-interference proper-
ties is the sole concern, then the whole process of proving these in JML can be shortened
and simplified considerably by a dedicated approach that focuses only on proving non-
interference properties. The current chapter, based on [JPW05], proposes such a dedicated
approach.

Most dedicated methods for statically checking non-interference are based on type-
checking, going back to the influential work of Volpano et. al. [VSI96, VS97a]. Typically
such type-checking methods consider a subset of (the sequential part of) languages like
ML [PS03], Java [BN02, Str03, Mye99], Java bytecode [BRB05] or special languages tai-
lored for security such as SLam [HR98]. The object of our study is a simple programming
language with side-effects in expressions and the usual programming constructs like com-
position, assignment, choice and repetition, i.e., WHILE. We will indicate how to extend
our results for this simple language to a Java-like language (see Section 6.5).

Type-based approaches have the advantage that they are very easy to employ. A
user only has to provide a secure information flow policy and the type-checking algorithm
automatically verifies if the program satisfies this policy. However, type-based approaches
are also overly restrictive. Many secure programs are rejected as being possibly insecure.

Joshi and Leino [JL00] were the first to show that even in very simple programming
languages one can construct provably secure programs that are deemed insecure by type-
based approaches. The main idea for constructing such a program is the observation that
type-based approaches will stop at the first point where a non-interference property –we
again take confidentiality as an example– is broken. Confidentiality is a property that holds
for a complete program. This means in particular that confidentiality can be temporarily

78 Statically checking termination-insensitive non-interference

broken, as long as it is restored before the program terminates46. Interactive techniques for
checking non-interference properties, such as those proposed by [JL00, BDR04, CHH02]
(also see Chapter 7), are able to handle such temporary breaches of confidentiality. Of
course, the main disadvantage of such approaches is that they require interactive reasoning
by a specialist.

In this chapter a new approach for statically checking confidentiality is introduced that
combines the advantages of type-based approaches and minimizes its disadvantages. It
is based on abstract interpretation [Cou96] and allows local breaches of confidentiality.
Furthermore, the approach is sound (with respect to some standard program semantics)
and has the same level of automation as type-based approaches. The entire framework
–including all correctness proofs– has been developed entirely inside the theorem prover
PVS [PVS, ORSH95].

Our approach uses a dynamic labeling function to track the security levels of program
variables. Consider the program fragment l := h ; l := 2, where l has initial security level
Low, h has initial level High and Low ⊑ High. Example 1 below (informally) illustrates
how a local breach of confidentiality can be restored. It also shows how the security level
of each variable changes during execution of this program fragment.

Example 1.

{

l : Low

h : High

}

l := h

{

l : High

h : High

}

l := 2

{

l : Low

h : High

}

Informally, the assignment l := h breaks confidentiality since a variable with security level
High is assigned to a variable of level Low which results in secret information flowing to
public (low) variables. However, the assignment l := 2 restores confidentiality. Every
completed execution of this program will have the same result: the low variable l will have
value 2. Thus no secret information is leaked to the low variable.

This use of dynamic labels ensures that it is possible to analyze confidentiality for entire
programs. Our main result is that if all dynamic labels for a program are non-increasing
–which can be checked automatically– then the program maintains confidentiality. In
Section 6.3 we will give a formal justification for this result.

In this chapter, like in Chapter 5, we again study termination-insensitive non-interfe-
rence. Thus, we only assure that a non-interference property holds if the program termi-
nates. Non-interference for all other termination modes –specifically non-termination– is
not ensured. Stronger forms of non-interference are studied in Chapter 7 and Chapter 8.

In order to deal with implicit information flow a special variable lenv, called the environ-
ment level, is used which stores the security level of ‘the context’. An example of implicit
information flow is given in the program fragment if(h > 2) then l := 0, where h has

46This only works for sequential programs. In a multi-threaded execution model information can be
shared amongst multiple threads. Thus, if at some point confidentiality is temporarily broken, other
threads can leak information to the outside.

6.1 Preliminaries 79

security level High, l level Low and the environment level has initial level Low. Example 2
shows the labels of l and h, and lenv at each point during the execution of this program:

Example 2.

lenv : Low

l : Low

h : High

if(h > 2)

lenv : High

l : Low

h : High

l := 0

lenv : High

l : High

h : High

Under normal conditions the assignment l := 0 does not break confidentiality. However,
the assignment in this particular context breaks confidentiality because it is carried out
under a high guard, thereby implicitly leaking information from a variable with security
level High to one with security level Low. The environment variable always has the same
security level as the highest security level of the conditionals that guard the context. The
variable l in Example 2 obtains the same security level as the maximum of the security
level of 0, which is Low, since it is a constant, and the environment level, which is High

since the highest (and only) security level of the conditionals in this context is h > 2 which
has level High. The new label of the variable l is thus higher than its old label and thus
this code fragment breaks confidentiality.

The remainder of this chapter is organized as follows: the next section introduces
some notation and basic concepts. In Section 6.2 it is shown how the dynamic labeling
transition functions that make up our approach are defined. A formal proof that every
program that only has non-increasing labels is indeed confidential (soundness) together
with an approach for statically checking confidentiality appears in Section 6.3. Section 6.4
gives some example programs that illustrate our approach. Section 6.5 discusses how
our approach can be extended to a more complex object-oriented programming language,
such as Java. Section 6.6 discusses related work. The chapter ends with conclusions and
suggestions for future work.

6.1 Preliminaries

In this and later sections we abstract away from the specific PVS syntax and formalization.
Instead a more logical/mathematical notation is used to present our work as generally as
possible.

We assume a finite lattice with carrier type L, bottom element ⊥, top element ⊤, partial
order relation ≤ and join ⊔. This lattice is used to represent the security levels. In this
chapter we will, in examples, only use the simple security lattice from Definition 2 with
values High and Low. The definitions and results however hold for general finite lattices.
A special variable conf:L, called the confidentiality level, is used to split the lattice L into
two parts:

⇑conf = {b : L | conf ≤ b}
⇓conf = {b : L | conf � b}

80 Statically checking termination-insensitive non-interference

The environment level lenv:L has initial value ⊥ and can only be changed when a con-
ditional statement is analyzed. The formal dual of confidentiality, which is a form of
integrity [Bib77], can be analyzed by ‘flipping’ the lattice. In this case we fix all the high
variables and vary the low ones and prove that all high output variables are independent of
low input variables. Thus ensuring that public inputs cannot alter the secret (high) data,
which enforces integrity.

A location in memory is represented by type Loc. The memory, written as M, consists
of mappings from Loc to values. A labeling function lab : Loc → L then maps memory
locations to the security levels given by L.

We consider the small imperative programming language WHILE from Definition 1 with
statements and expressions (with side-effects). Statements in WHILE are programs. The
semantics of a statement, which can either terminate or hang, has type M → 1+M, where
1 = {∗} and + is disjoint union. The semantics of an expression, which has an additional
result value of type Out, has type M → 1 + (M × Out), where Out can be int, bool etc.
We use a denotational semantics here since the work in this chapter has been formalized
on top of (a subpart) of the denotational LOOP semantics in PVS. For our purpose any
standard denotational semantics suffices (see e.g., [NN92, Sch86]). In the sequel [[]] refers
to this semantics.

Next we define an indistinguishability relation I between memory states, which is
parametrized by a labeling function and confidentiality level. This relation is used for
defining termination-insensitive non-interference.

Definition 3 (Indistinguishability). The indistinguishability relation I is defined as

I(conf, lab) ⊆ M × M = { (x, y) ∈ M × M | ∀l : Loc. conf � lab(l) ⇒ x(l) = y(l) }

Thus I(conf, lab) ∋ (x, y) means that memory locations in x and y may only differ for
variables in the part of the security lattice given by ⇑ conf47. A semantic definition of
confidentiality –as termination-insensitive non-interference– is then given in terms of this
indistinguishablity relation.

Definition 4 (Confidentiality as termination-insensitive non-interference). Let p be a pro-
gram written in WHILE. Then confidentiality for p is defined as

Confidential(p, lab) =
∀x, y : M.∀conf : L.
I(conf, lab) ∋ (x, y) ∧ [[p]](x) 6= ∗ ∧ [[p]](y) 6= ∗ ⇒ I(conf, lab) ∋ ([[p]](x), [[p]](y))

47Our definition of indistinguishability (I) is not the one usually found in the literature. The standard
definition for indistinguishability (which we shall call I∗) is: ∀l.Loc. lab(l) ≤ conf ⇒ x(l) = y(l). We
have chosen our own definition because it was more convenient in our modeling in PVS, but since we
quantify over all possible security levels the obtained results are equivalent for the standard definition. In
particular, our definition (I) rules out flows from a level conf unless the flows are to a level above conf,
while the standard definition (I∗) rules out flows to a level conf unless the flow comes form below. For a
two point lattice and a fixed level I(High) = I∗(Low).

6.2 Labeling transition functions 81

Confidentiality, as defined in Definition 4, states that if all memory locations in ⇓conf are
equal for (memory) states x and y, then these same variables should again be equal in
the new states obtained by executing program p. This guarantees that ⇓conf variables are
independent of ⇑conf variables.

Definition 4 clearly concerns termination-insensitive non-interference since it is required
that program p does not hang ([[p]](x) 6= ∗ ∧ [[p]](y) 6= ∗), i.e., terminates normally.
Furthermore, notice that by quantifying over conf and splitting the lattice in two parts
⇑ conf and ⇓ conf, we can reason about all secure information flow policies defined by
security levels in the lattice at once. Finally, notice that the labeling function used in the
definition of confidentiality is global in the sense that both before and after execution of p

the same labeling lab is used to distinguish variables in ⇑conf from those in ⇓conf.

6.2 Labeling transition functions

We define a function that, given a language construct in WHILE, an initial labeling and
an environment level, yields a labeling after execution of the statement or expression.
This function gives an abstract interpretation of the statement or expression in terms of
modification of security levels. We have two labeling transition functions, one for state-
ments, called labStat, and one for expressions, named labExpr. The function labExpr has
an additional result, namely the level of the result of the expression.

The signature for labExpr and labStat, where s is a statement and e an expression, is
then given by:

labStat(s) : ((Loc → L) × L) → (Loc → L)

labExpr(e) : ((Loc → L) × L) → ((Loc → L) × L)

We can now define the labeling transition function labStat for all statements in WHILE.

Definition 5 (labStat). Let lenv be the environment level. The labeling transition function
labStat is then defined as:

labStat(v := e)(lab, lenv) =
let (lab′, lres) = labExpr(e)(lab, lenv)
in lab′[(lres ⊔ lenv) / lab′(v)]

labStat(s1; s2)(lab, lenv) =
labStat(s2)(labStat(s1)(lab, lenv), lenv)

labStat(if-then(b)(s))(lab, lenv) =
let

(lab′, lres) = labExpr(b)(lab, lenv),
lenv′ = lres ⊔ lenv

in labStat(s)(lab′, lenv′) ⊔ lab′

82 Statically checking termination-insensitive non-interference

labStat(if-then-else(b)(s1)(s2))(lab, lenv) =
let

(lab′, lres) = labExpr(b)(lab, lenv),
lenv′ = lres ⊔ lenv

in labStat(s1)(lab
′, lenv′) ⊔ labStat(s2)(lab

′, lenv′)

labStat(while(b)(s))(lab, lenv) =
⊔

i

iterate(b)(s)(lab, lenv)(i),where

iterate(b)(s)(lab, lenv)(n) =

let
(lab′, lres) = labExpr(b)(lab, lenv),
lenv′ = lres ⊔ lenv,
lab′′ = labStat(s)(lab′, lenv′)

in
IF n = 0
THEN lab′

ELSE lab′ ⊔ iterate(b)(s)(lab′′, lenv′)(n− 1)

where n ∈ N, / is function update, and ≤ and ⊔ are defined point-wise on labeling functions.

We will explain the rule for assignment in some detail here. To determine the new labeling
function that is obtained by abstractly evaluating the statement v := e we first determine
what the result is of evaluating the expression e (this is necessary since e can have a side-
effect). This results in a new labeling function lab′ and the label of the result of evaluating
expression e which is lres. Now, to obtain the new labeling function we substitute the label
of variable v in lab‘ with the maximum of the label lres or the environment level, which is
denoted with lenv. Thus the environment level in the labeling function for v := e is used
to give v the security level of the result of expressions e or, if we are working in the context
of a higher conditional, the level of the environment.

In case a boolean expression b in a statement if-then(b)(s) evaluates to false we need
a rule that only updates the labeling function lab with the new labeling function obtained
by executing b (we allow b to have side-effects). However, if b evaluates to true, then
the statement s is also executed. In this case we (abstractly) evaluate labStat(s) with
as arguments the labeling function obtained by evaluating b and as environment level the
maximum of the old environment level lenv and the security level of the result of expression
b. Thus for the actual dynamic labeling rule (as found in Definition 5 above) we take the
point-wise maximum of the two new labeling functions as the new labeling function. This is
necessary since we only have an abstract semantics (given by the labeling function labStat)
and thus do not know if b is true or not.

The idea behind the labStat part for the while is that we calculate a least fixed point
for the iterate function. Since we use a finite lattice, and the join ensures that the iterate

function is increasing, such a fixed point always exists and is reachable in finitely many

6.2 Labeling transition functions 83

iterations. Notice that we do not check (non)-termination of the loop; this should be proved
by a semantic evaluation. The other parts of the definition of labStat should hopefully be
self-explanatory.

The use of an abstract semantics forms the source of the lack of completeness of our
formalization. The static framework is sound but not complete in the sense that some
programs which do maintain confidentiality will be marked as possibly violating confiden-
tiality. In Example 3 below we show a typical example of such a code fragment:

Example 3.
{

l : Low

h : High

}

l := h

{

l : High

h : High

}

l := h − l

{

l : High

h : High

}

Our approach (and other static approaches) will mark this code as violating confidentiality
even though the program does not leak information since variable l will have value zero
after each evaluation of this program and is thus independent of the value of variable h.
Since the problem of confidentiality is in general undecidable we have to choose between
a decidable sound –but incomplete– method or an undecidable but sound and complete
method. In Chapter 7 we propose a interactive framework for proving non-interference
properties. When this approach is used it is possible to prove that the example above is
non-interferent.

The function labExpr is defined in a similar fashion for all expressions in WHILE.

Definition 6 (labExpr). Let lab be a labeling function and lenv the environment level, the
labeling transition function labExpr is then defined as:

labExpr(c)(lab, lenv) = (lab,⊥)

labExpr(v)(lab, lenv) = (lab, lab(v))

labExpr(e1 op e2)(lab, lenv) =
let (lab′, lres) = labExpr(e1)(lab, lenv),

(lab′′, lres′) = labExpr(e2)(lab′, lenv)
in (lab′′, lres ⊔ lres′)

labExpr(v++)(lab, lenv) =
(lab[(lab(v) ⊔ lenv) / lab(v)], lab(v) ⊔ lenv)

labExpr(v := e)(lab, lenv) =
(labStat(v := e)(lab, lenv), π2(labExpr(e)(lab, lenv)))

where π is projection and op is either ==, +, −, < or >.

84 Statically checking termination-insensitive non-interference

6.3 Correctness of our approach

As we (informally) have seen in the introduction, confidentiality follows if we require that
labels, for an entire program, may not increase. We call this property non-increasingness.
Intuitively, this can be understood as follows: a variable with initial security level High

that has level Low after execution of a program does not break confidentiality, since it is
impossible to (directly) observe the original value of the high variable. However, a variable
with initial security level Low that has level High after execution of a program may leak
confidential information, since it gives information about the initial value of some higher
variable. In this section we only give definitions and proofs for statements. They are
analogous for expressions and do not add any new insights.

Definition 7 (NonIncreasing). Let s be a statement and lab a labeling function. The
predicate non-increasing on a statement s is then defined as:

Decreasing(s, lab) = labStat(s)(lab,⊥) ≤ lab

where ≤ is point-wise ordering on labeling functions of type Loc → L.

Notice that the environment level is initially set to ⊥. Only when conditionals are analyzed
can it change to a higher security level.

The labeling transition functions together with the non-increasing property determine
if a program is non-interfering. In order to formally prove that our approach is sound –that
is, that if our approach indicates that a program is non-interfering this is indeed the case–
we first define a technical property, which we simply call Good.

Definition 8 (Goodness). If s is a statement, then goodness of s is defined as

Good(s) =
∀lab : Loc → L.∀lenv : L.

(∀x, y : M.∀conf : L.
[[s]](x) 6= ∗ ∧ [[s]](y) 6= ∗∧
(I(conf, lab) ∋ (x, y) ⇒ I(conf, labStat(s)(lab, lenv)) ∋ ([[s]](x), [[s]](y))))

∧
(∀z : M.∀b : Loc.
[[s]](z) 6= ∗ ∧ z(b) 6= [[s]](z)(b) ⇒ lenv ≤ labStat(s)(lab, lenv)(b))

First of all notice that goodness is only defined for statements that terminate (normally).
We do not consider other termination behavior since we study termination-insensitive non-
interference. Goodness is then defined by two conjuncts. The first conjunct is almost the
same as Definition 4, which defines confidentiality. The only difference is that now the
newly obtained labeling function –acquired by application of labStat and labExpr– is used
to determine which variables are in ⇓conf after evaluation of s. Thus the labeling function is
no longer static, as is the case in the definition of termination-insensitive non-interference.

6.3 Correctness of our approach 85

The second conjunct is an invariant property that we will need to prove that the labeling
transition functions for conditional statements are good. It states that if the value of any
variable changes by executing s, then the new security level of this variable should at least
be the same as the environment level lenv.

Definition 8 also illustrates that our abstract labeling transition functions are related
to the underlying (standard) denotational semantics via goodness. Hence our work is a
form of abstract interpretation [Cou96].

At this point we can prove our main theorem. It states that our approach is sound,
i.e., that goodness together with non-increasingness implies confidentiality.

Theorem 1 (Soundness).

∀s ∈ Statements.∀lab : Loc → L.Good(s) ∧ Decreasing(s, lab) ⇒ Confidential(s, lab)

Proof. Assume Good(s), then [[s]](x) 6= ∗ and [[s]](y) 6= ∗ and also I(conf, lab) ∋
(x, y) ⇒ I(conf, labStat(s,⊥)) ∋ ([[s]](x), [[s]](y)).

Now assume I(conf, lab) ∋ (x, y) which gives us

I(conf, labStat(s,⊥)) ∋ ([[s]](x), [[s]](y))

which in turn is equivalent to

∀l : Loc.conf � labStat(s)(lab,⊥)(l) ⇒ [[s]](x)(l) = [[s]](y)(l)

There are now two possible cases:

case conf ≤ labStat(s)(lab,⊥)(l)

Assumption Decreasing(s, lab) gives us labStat(s)(lab,⊥)(l) ≤ lab.
From this it follows that conf ≤ lab and thus that I(conf, lab) ∋
([[s]](x), [[s]](y)).

case conf � labStat(s)(lab,⊥)(l)

Then [[s]](x)(l) = [[s]](y)(l) from which I(conf, lab) ∋ ([[s]](x), [[s]](y))
follows directly.

Thus we have shown:

I(conf, lab) ∋ (x, y) ⇒ I(conf, lab) ∋ ([[s]](x), [[s]](y))

and thus Confidential(s, lab).

We can use Theorem 1 to formalize an approach for statically checking confidentiality.
This is accomplished in two steps.

86 Statically checking termination-insensitive non-interference

Proposition 1.
∀s ∈ Statements.(∀x : M.[[s]](x) 6= ∗) ⇒ Good(s)

Proof. By induction on the structure of s. All cases except for the while are straightfor-
ward. The while case handled is by induction on the number of iterations in memory x
and induction loading on the number of iterations in memory y.

Proving this proposition is where most of the effort of our work has been concentrated.
Here it turned out that formalizing our model in the theorem prover PVS was very useful
since the many small subtleties we encountered can easily be overlooked if one tries to do
these proofs on paper. Proving the while-case especially formed a challenge.

Corollary 1 then gives us our main result.

Corollary 1.

∀s ∈ Statements.∀lab : Loc → L.
(∀x : M.[[s]](x) 6= ∗) ∧ Decreasing(s, lab) ⇒ Confidential(s, lab)

Statically checking confidentiality then involves computing the labeling transition functions
and checking if non-increasingness holds.

6.4 Examples

In this section we illustrate the use of our approach with some simple example programs.
We shall first apply it to the statement l := h; l := 2 (from the introduction), using
the simple security lattice as representation for the security policy. The initial lab is
{l : Low, h : High} and the environment level is initially Low:

labStat(l := h; l := 2)({l : Low, h : High}, Low) =
labStat(l := 2)(labStat(l := h)({l : Low, h : High}, Low), Low) =
labStat(l := 2)({l : High, h : High}, Low) =
{l : Low, h : High}

We did not show the trivial steps of applying labExpr to constants or variables. Since the
labeling stays the same, non-increasingness holds and thus we conclude by corollary 1 that
this ‘program’ maintains confidentiality.

To show the use of the environment level in implicit secure information flow we look
at the program fragment if-then-else(h == 1)(l = 1)(l = 2); l = 0 that branches over
a variable with security level High. Again, the security level of h is High and the level of
l is Low. Using the informal notation from the introduction the analysis of this program
works as follows:

Example 4.

6.4 Examples 87

lenv : Low

l : Low

h : High

if

(h == 1)

lenv : High

l : Low

h : High

l := 1
or

l := 2
;

lenv : Low

l : High

h : High

l := 0

lenv : Low

l : Low

h : High

Notice how the environment levels becomes High inside the branches of the if statement
and is has security level Low again outside the scope of the if.

Figure 6.1 shows how our the abstract labeling functions are applied to Example 4. We
again use {l : Low, h : High} for an initial lab; the environment level is initially Low.

labStat(if-then-else(h == 1)(l := 1)(l := 2); l := 0)({l : Low, h : High}, Low) =
labStat(l := 0)(labStat(if-then-else (h == 1)(l := 1)(l := 2)

({l : Low, h : High}, Low), Low)
=

labStat(l := 0)(labStat(l := 1)({l : Low, h : High}⊔
π1(labExpr(h == 1)),
π2(labExpr(h == 1)) ⊔ lenv) ⊔

labStat(l := 2)({l : Low, h : High}⊔
π1(labExpr(h == 1)),
π2(labExpr(h == 1)) ⊔ lenv), Low)

=

labStat(l := 0)(labStat(l := 1)({l : Low, h : High}⊔
{l : Low, h : High},High ⊔ lenv) ⊔

labStat(l := 2)({l : Low, h : High}⊔
{l : Low, h : High},High ⊔ lenv), Low)

=

labStat(l := 0)(labStat(l := 1)({l : Low, h : High},High) ⊔
labStat(l := 2)({l : Low, h : High},High), Low)

=

labStat(l := 0)({l : High, h : High} ⊔ {l : High, h : High}, Low) =
labStat(l := 0)({l : High, h : High}, Low) =
{l : Low, h : High}

where π1 and π2 are first and second projection.

Figure 6.1: Application of abstract labeling functions to Example 4.

NonIncreasingness holds again for this example since the labeling before and after applying
labStat and labExpr is exactly the same. We conclude by corollary 1 that the program main-
tains confidentiality. This example also illustrates that statically checking confidentiality
with the abstract labeling functions is possible. The different steps in applying the labeling
transition functions only involve substitutions and calculating maximums. We have run

88 Statically checking termination-insensitive non-interference

this example in PVS where we loaded labStat en labExpr as automatic rewrite rules. It
took PVS a fraction of a second to automatically prove confidentiality for this example.

The following program fragment shows –in an abstract way– how we process a while.
In this piece of code h initially has security level High, l1,l2 and l3 start with security
level Low and the environment level lenv has initial level Low.

Example 5. while (l1 > (l1 := l2)) {l1 := h; l3++}

The table in Figure 6.2 shows the security levels of the different variables after each
iteration, where zero iterations means that only the conditional of the while is evaluated,
one iteration means that the conditional is evaluated, then the body and then the condi-
tional again, etc. Notice that after two iterations a fixed point is reached. The application

Iterations h l1 l2 l3 lenv

0 High Low Low Low Low

1 High Low Low Low High

2 High High Low High High

3 High High Low High High

Figure 6.2: Security levels of variables after each while iteration.

of the abstract labeling functions will stop at this point. Both l1 and l3 have a higher
security level than before execution of this program fragment, hence it does not maintain
confidentiality. We will not show the application of the rewrite rules here. Using PVS we
evaluated this example –using automatic rewrite rules– in about 5 seconds, after which the
program was identified as (possibly) breaking confidentiality. The time needed to check
this small example is of course too long for a practical tool. However, an optimized dedi-
cated tool should shorten this time considerably. If such a tool will be fast enough to be
of any practical value remains to be seen. Further research and an actual implementation
is needed for this.

6.5 Possible Extensions

We ultimately wish to extend our approach to a programming language like (sequential)
Java. This leads to a number of additional challenges which are briefly discussed in this
section.

6.5.1 Indistinguishable objects and heaps

Adding objects is, in principle, straightforward but, unlike the primitive types (such as
the booleans and integers which are used in this chapter), simply comparing objects by

6.5 Possible Extensions 89

looking at reference equality will not be enough to establish confidentiality. One particular
problem arises when we create new objects48. Consider the next code fragment:

Example 6. if(high > 0) then Object o := new Object();

Since the guard has security level High in this example, for some values of memory states
the then part will be evaluated and for other memory states this will not be the case. So
after this statement the heaps can be unbalanced. In our current work we only compare
memory locations, but in this situation this will not be enough. If the heaps are unbalanced,
the same location in the two heaps can refer to different objects. In essence, we want that
objects created under a high context are indistinguishable from the outside for an attacker.

An indistinguishablity relation for objects and heaps can fix this. Following [BN05] we
then have to define indistinguishablity relative to a partial bijection on reference locations.
We do this in the context of time-sensitive non-interference for an object-oriented language
in Definition 24 in Appendix B. Also see the next chapter for a different solution to this
problem.

6.5.2 Exceptions

In languages like Java, programs cannot only terminate normally or hang, they can also
throw exceptions. Taking this into account complicates our model considerably. In case
of exceptional termination, temporary breaches of confidentiality cannot occur, since each
exception propagates until its catch clause, without restoring confidentiality along the way.
Since every statement or expression can possibly throw an exception, and we do not want to
exclude temporary breaches of confidentiality completely, we have to calculate two labeling
functions, one for normal termination and one for exceptional termination. Moreover, if
an exception may be thrown by a certain statement, the statements after this one should
have as environment level the level of the condition under which the exception is thrown,
since their execution depends on this condition49.

6.5.3 Method calls

(Non-recursive) methods calls can easily be added to our language. The main idea is to
just propagate the labeling function lab and the environment level lenv. So if at a certain
point inside a program a method is called we simply compute the labeling function that
results from this method call by analyzing the method starting with the labeling function
and environment level at the point the method is called. After analysis of the method call

48Creating a new object (in Java) may also possibly throw an OutOfMemoryException. Since the memory
model we use (from the LOOP semantics) is modeled by infinite lists (in PVS), such memory violations
are not considered here. As an aside, these kind of memory errors can also leak secret information –via a
so called covert channel– thereby breaking confidentiality. Also see Chapter 8.

49The situation becomes even more complicated if we take the different internal termination modes into
account. In Java, statements can terminate abnormally via an exception, a break, a continue or a return.

90 Statically checking termination-insensitive non-interference

the new labeling function and environment level are used for the remainder of the analysis
of the original program.

Recursive method calls are more elaborate and require a treatment similar to the while
statement.

6.5.4 Assertions

Related to the problem of multiple termination modes is the following example:

Example 7. MyObject o := new MyObject(1); low := o.f

Here o is some high object with field f that has value 1. If we do abstract interpretation,
and consider the second statement separately, we do not know if the object is a null

reference or not. Therefore, the statement can throw a NullPointerException. This
means that even if we include exceptional termination in our approach we will only be
able to confirm confidentiality if this exception is caught in a surrounding try-catch block.
Otherwise, we will not be able to verify that the termination mode does not depend on
high variables.

A possible solution here is the use of assertions. Looking back at Example 7, if we
know that object o is never null at the start of the second statement, we only have to
consider normal termination. The assertion then needs to be proved separately using a
tool like ESC/JAVA2 [CK04] or LOOP [JP04].

6.5.5 Completeness

Our approach for checking confidentiality is not complete in the sense that some programs
which are confidential are identified as (possibly) leaking information (see Section 6.2). An
example of a program fragment that is considered to be insecure by our approach is given
below:

Example 8. low := high; low := low - high;

This code fragment does not leak any information from the high variable high to the
low variable low, because after complete evaluation the variable low will always have value
zero. However, the abstract labeling functions will assign the security level High to the
variable low: the assignment low := high will assign security level High to low and the
next assignment low := low - high will again assign security level High to low, because
the labeling function for minus involves calculating the maximum of the security levels
of low and high is High (in fact, both variables are high here). The problem with this
example is that we need more information on the semantic level, which we do not have in
our abstract semantics. Other automatic approaches, such as those based on type-checking
will also identify this example as possibly leaking information.

Assertions can also be useful when dealing with these situations were we need more
semantic information. In Example 8 we can add the assertion that variable low will always
have value zero at the end of this code fragment. If this assertion is true, then we can treat
variable low from this point onwards again as a variable with security level Low.

6.6 Related work 91

6.5.6 Aliasing

Even if all the proposed extensions work, there still remain a couple of open problems.The
main one being aliasing. Automatic analysis of aliasing of objects is a notoriously hard
problem by itself. In combination with variable security levels this problem becomes even
harder –the security levels in the automatic secure information flow analyzer JIF [Mye99]
are static because of aliasing50.

At the moment we have no idea how the handle aliasing in the approach discussed here.
Several solutions for this problem have been proposed, e.g., in [ABB06] and in Chapter 7
of this thesis, but it is unclear if and to what extend these approaches can be integrated
in our current work.

6.6 Related work

In this section we focus on closely related work on abstract interpretation. We refer to
Section 2.5 for a general overview of the field.

Applying abstract interpretation [Cou96, CC77] to confidentiality is not new. Gia-
cobazzi and Mastroeni [GM04] have formalized a notion of confidentiality based on ab-
stract interpretation. Their main idea is to formalize an explicit attacker and define non-
interference in terms of what this attacker can observe. The language they consider is
similar to ours except that they do not allow side-effects in expressions.

Avvenuti et al [ABDF03] formalized an algorithm for assuring confidentiality for Java
bytecode based on abstract interpretation. The main difference with our work is that
the secrecy labels associated with variables are static, i.e., do not change during the ab-
stract evaluation. This means that Avvenuti et al cannot check temporary breaches of
confidentiality.

Zanotti [Zan02] uses abstract interpretation in a way related to ours. However in-
stead of applying abstract label transition functions and then afterwards checking if non-
increasingness holds, Zanotti constructs at each assignment a set of allowed assignments,
i.e., those that do not violate confidentiality, and checks if the assigned variable is in this
set. We suspect that for larger programs this will not work as well as our approach, since
the constructed set of assignable variables can become very large.

6.7 Conclusions

We have presented a new approach for automatically proving termination-insensitive non-
interference. The framework is completely formalized and proved to be sound within the
higher-order theorem prover PVS. Based on this model a static approach for checking
confidentiality is given, which we have illustrated via rewriting in PVS. We argue that
this approach can easily be integrated in existing (rewriting) tools for static program
verification.

50Thanks are due to David Sands for pointing this out.

92 Statically checking termination-insensitive non-interference

Chapter 7

Interactively proving
termination-sensitive
non-interference

Chapter 6 concerned a method for automatically checking termination insensitive non-
interference for WHILE, which is only a small subset of sequential Java. In contrast,
this chapter focuses on interactively proving termination sensitive non-interference for full
sequential Java.

Our approach for proving non-interference extends the Java semantics developed for
the LOOP project (briefly discussed in Section 2.2). Instead of proving the correctness of
predicates on the state space using LOOP’s (ordinary) Hoare logic, one can use a novel
Hoare logic on relations to prove bisimulations on the state space. Such bisimulations can
be used to express non-interference properties, where we shall focus on confidentiality.

As far as we are aware, the extension on the LOOP project that is presented in this
chapter is the first that provides a provably sound verification framework for full sequential
Java. The JIF [Mye99, Jif] system also covers all of sequential Java –moreover, it can verify
(termination-insensitive) non-interference fully automatically– but a soundness result has
never been presented.

This chapter is also the first work that systematically studies non-interference for all
termination modes of a language like Java: so called termination-sensitive non-interference.
Others have studied exceptions [ML97] and (limited forms of) non-termination [VS97b],
but the work presented in this chapter also considers (labeled and unlabeled) break and
continue statements.

The remainder of this chapter is organized as follows: the next section explains how
bisimulation for a (Java) class can be used to express non-interference. Section 7.2 then
introduces a relational Hoare logic for a simple WHILE-like language that can be used to
prove non-interference as bisimulation. Section 7.3 discusses how the current LOOP frame-
work can be extended to prove non-interference for full sequential Java. A relational Hoare
logic for sequential Java is then introduced in Section 7.4, it can be used to interactively
prove termination-sensitive non-interference. Section 7.5 shows a number of (verified) ex-

94 Interactively proving termination-sensitive non-interference

amples, Section 7.6 discusses related work and we end with conclusions and suggestions
for future work in section 7.7.

7.1 Non-interference through bisimulation

The notion of invariant for a class is well-established in object-oriented programming. It
is a predicate on the state space State that is maintained by all methods51, i.e., a subset
P ⊆ State such that:

Definition 9 (Invariants for (Java) classes).
P is an invariant for all methods m of the class iff

∀x ∈ State. P (x) =⇒ P ([[m]](x))

Additionally, one should require that P is established by the constructors. Invariants form
a fundamental construct in JML; they are typically used to make assumptions explicit
that the programmer has in the back of his/her mind. Invariants in JML are so called
weak invariants, because they can be broken inside a method body as long as they are
restored before the method terminates (either normally or via an abnormal termination).
In contrast, a strong invariant is an invariant that must never be broken.

A bisimulation is a relation between states of different runs52, they form a standard for
showing indistinguishability. Bisimulations appeared in the context of transition systems
and process calculi, see e.g., [Par81, Mil89]. They are studied in abstract form in the context
of state-based computation provided by the theory of coalgebras [Rut00, Jac02, RTJ01].
This forms a source of inspiration for the current work, since the underlying (LOOP)
semantics of Java has a coalgebraic formulation (see Section 2.2 and [JP03] for a discussion).

Bisimulations for a class are less familiar in object-oriented programming. The basic
idea is, like in Definition 9, that they are relations that are maintained by all methods.
This can be expressed as: a relation R ⊆ State × State that satisfies

Definition 10 (Bisimulations for (Java) classes).
R is a bisimulation for all methods m of the class iff

∀x, y ∈ State. R(x, y) =⇒ R([[m]](x), [[m]](y))

Bisimilarity between classes is then defined as the union of all bisimulations. It is itself
a bisimulation—and an equivalence relation—and is the formalization of the notion of
indistinguishability of states. This means that we regard two states x, y as “equal as far
as we can see from the outside” in case we can find a bisimulation R with R(x, y). Similar

51For now, methods can simply be seen as functions on the state space, i.e., m : State → State.
52Recall that JML also supports the notion of a (history) constraint. This is a relation (or binary

predicate) between pre- and post-states of method calls. It is thus a relation between states in the same
run.

7.2 A relational Hoare logic for WHILE 95

to invariants we also distinguish between weak bisimulations53, that can be broken inside
a method body as long they are re-established when the method terminates, and strong
bisimulations that can never be broken.

7.1.1 Confidentiality as bisimulations in classes

Bisimulations can be used to formulate non-interference for a class (in an object-oriented
language). In the sequel, the simple security lattice Σ = {Low,High} with Low ⊑ High is
again assumed, where Low denotes ‘low’ or public information and High represents ‘high’ or
secret information. We assume a function sl : Loc → Σ maps memory locations (containing
fields) to elements in the security lattice. We overload notation and assume that the set
Field of all fields of the class is partitioned into two sets: High = { l ∈ Loc | sl(l) = High}
and Low = Field \ High.

We wish to express that the information that is held in the high fields remains confi-
dential. If we adapt the notion of confidentiality as non-interference to the current setting
than confidentiality can be defined as:

Definition 11 (Confidentiality).
A (Java) class C maintains confidentiality iff the relation L ⊆ State × State with

L = {(x, y) | ℓ(x) = ℓ(y), for all fields ℓ ∈ Low}

is a bisimulation for class C54.

This (weak) bisimulation property expresses confidentiality because if we have two states
x, y where we know that low fields are equal, but where we have no information about
the high fields, then after each method call these possibly different high values of x and y
should not interfere with the low fields: the lows should still be equal. Hence confidentiality
says that equality of low fields should be maintained.

Dually, one may formulate integrity as: equality of high fields should be maintained.
Hence differences in low fields should not be visible in the high fields. Since this dual
property of integrity is can be proved in a similar fashion as confidentiality, we shall not
elaborate it in this chapter.

7.2 A relational Hoare logic for WHILE

In order to prove that a program is non-interfering (confidential) we thus need to prove
that a (non-interference) relation is maintained by all methods of a class. The relational
formulation of confidentiality in Definition 10 requires that each method m is evaluated
twice, once in state x and once in state y. This is very inconvenient in proofs.

53Usually, i.e., in the context of transition systems and process calculi, weak bisimulation means that
(silent) τ -steps are allowed.

54The observant reader might notice that –using Definition 3 from the precious chapter– the following
is equivalent to Definition 11: L = I(High, sl)

96 Interactively proving termination-sensitive non-interference

The Hoare logic for relations that we introduce in this chapter is designed precisely to
handle this problem. It uses relations instead of predicates in its classical Hoare triples, and
uses structural rules to prove relational program properties. As far as we are aware, using
a Hoare logic for relations for proving non-interference properties is new. See Section 7.6
for a discussion on other relational Hoare logics and their uses.

Here in Section 7.2, we first explain the basic idea of a relational Hoare logic for WHILE

from Definition 1. In Section 7.3 this basic idea is then extended to full sequential Java.
As explained in Section 7.1 the relational approach to confidentiality requires proving

that specific relations are bisimulations, i.e., are maintained by all methods. We will denote
statements s, s1, s2 and expressions e, e1, e2 with small case letters and use capital letters
R, T, S for predicates and relations. For a predicate C we use a short hand notation C2

(“C squared”) for the relation given by C2(x, y) = C(x) ∧ C(y), with x, y ∈ State. The
partial relational Hoare triple {S} s {R} can be interpreted as: ‘if the relation S holds in
the pre-state of statement s and if statement s terminates, then the relation R holds in
the post-state of statement s’.

The main rules for the simple relational Hoare logic are displayed in Figure 7.1.

S ⇒ R[a/v(x), a/v(y)]
assignment

{S} v := a {R}

{R} s1 {T} {T} s2 {S}
composition

{R} s1; s2 {S}

R ⇒ C2 ∨ (¬C)2 {R ∧ C2} s1 {S} {R ∧ (¬C)2} s2 {S}
if-then-else

{R} if-then-else(c)(s1)(s2) {S}

R ⇒ C2 ∨ (¬C)2 {R ∧ C2} s {S}
while (partial)

{R} while(c)(s) {(¬C)2 ∧ S}

Figure 7.1: Relational Hoare logic for WHILE.

Since the Hoare triples are partial correctness triples, i.e., do not require that a state-
ment terminates, the relational Hoare logic can only be used to prove termination-insen-
sitive non-interference properties for programs written in WHILE. Notice that the logic is
sound with respect to WHILE’s semantics (given in Section 2.2.1):

Lemma 1. The relational Hoare logic defined in Figure 7.1 is sound, i.e.,

∀s : Statement. if ⊢ {R} s {T} then ∀q1, q2 : M. R(q1, q2) ⇒ T ([[s]](q1), [[s]](q2))

7.2 A relational Hoare logic for WHILE 97

Proof. Straightforward structural induction.

The following is also obvious:

Remark 1. The relational Hoare logic defined in Figure 7.1 is not complete, i.e.,

∀s : Statement.
if ∀q1, q2 : M. R(q1, q2) ⇒ T ([[s]](q1), [[s]](q2))

then it is not always the case that ⊢ {R} s {T}

This follows from a simple inspection of the rules for the if-then-else and while. These
rules all use the conditional C2 which forces an evaluation of the same branch (or the same
number of iterations for a while statement) in both states. Formally there are four different
possibilities here : C(x) ∧ C(y), ¬C(x) ∧ ¬C(y), ¬C(x) ∧ C(y) and C(x) ∧ ¬C(y).
Excluding the latter two cases ensures that the relational Hoare logic is not complete.

We have to exclude these cases if we want to restrict the relational Hoare rules to
evaluation of the same (one) statement or expression at the time. In cases where the
boolean values of C(x) and C(y) are different confidentiality is (possibly locally) broken.
Recall that only fields in set High can have different values in memory x and y. A similar
argument can be made for the rules for while statements.

If we want to be able to prove termination-sensitive non-interference we have to add
a variant55 to the rule for while statements. Figure 7.2 below shows the total relational
Hoare rule for while statements.

R ⇒ C2 ∨ (¬C)2 [R ∧ C2 ∧ (variant = n)2] s [S ∧ (variant < n)2]
while (total)

[R] while(c)(s) [(¬C)2 ∧ S]

Figure 7.2: Total relational Hoare logic for while statements.

Notice how we simply duplicate the variant in the total correctness rule for while
statements, basically requiring that the number of iterations is equal for all states.

Using these rules we can thus only prove strong bisimulation properties, not the more
desirable weak one. In the next sections we will show how we solved this problem and how
we have extended these rules to full sequential Java.

55A variant gives a mapping from the underlying state space to some well-founded set. Termination
may be proved by showing that, for each execution of the body of the while-loop, this mapping decreases.
Formally, we have to define two mappings, but, for our approach, one mapping suffices. Again if the
variant differs for separate states confidentiality will (at least locally) be broken.

98 Interactively proving termination-sensitive non-interference

7.3 Extension to sequential Java

When one actually tries to prove that a particular relation is a bisimulation for a class in a
concrete language like Java, it quickly becomes clear that the formulation of confidentiality
given in Definition 11 is an oversimplification, and that several additional aspects have to
be taken into account.

1. Methods in Java have different termination modes: they may hang, terminate nor-
mally, or throw an exception56. This means that instead of “R(m(x),m(y))” in 10
we should write: “m(x) and m(y) should have the same termination mode, and in
that mode the result states (if any) should be related again by R”.

2. Parameters of methods need to be included. So, if a method m has parameters −→a
we use quantification to fix their values. So instead of requiring R(m(x),m(y)) as
conclusion, we should write ∀−→a .R(m(x)(−→a),m(y)(−→a)).

3. Methods in Java can also return a result (when they have a non-void return type).
We should require in our adaptation of Definition 10 that these results are again
‘indistinguishable’, where indistinguishable can –for the moment– be interpreted as
Java’s equals methods. Indistinguishability depends in particular on the type of the
result: thus if the results of m(x) and m(y) are of

– primitive type, then they should be equal;

– reference, but not an array, type, then they should be either both null, or both
be references to ‘indistinguishable’ objects;

– an array type, they should either be both null, or both be references to arrays
with the same length and with ‘indistinguishable’ entries at each position.

We define this indistinguishability notion formally in Definition 17.

4. For each (public) field f of the class, we should have that if R(x, y), then f(x) and
f(y) should be indistinguishable, like we just described for results of methods.

Within the Java verification work centered around the LOOP tool [BJ01, JP04] there
is a well-developed semantics for sequential Java formalized in the theorem prover PVS.
The relational Hoare logic for Java will be formalized on top of this semantics. In the next
section we briefly explain a relevant subset of this Java semantics.

56This only describes the situation from the outside. Inside method bodies we may also have abrupt
termination because of a return, break or continue statements.

7.3 Extension to sequential Java 99

7.3.1 Interlude: Java semantics in the LOOP project

The Java semantics that has been formalized in the LOOP project has been modeled in
the higher order theorem prover PVS. We will not use the standard PVS notation here,
but will continue to use a more general logical/mathematical notation.

LOOP’s Java memory model, consisting of a heap and a stack, is denoted by the
type M. Typical getter and setter functions (in PVS) manipulate it, see [BHJP00] and
[Hui01, Chapter 2] for details. Java statements and expressions are represented as functions
M → StatResult and M → ExprResult[Out] for an output type Out (which –in Java– can be
either a primitive or a reference type). The result types are defined as labeled coproduct
types:

StatResult : TYPE ≡ { ExprResult[Out] : TYPE ≡ {
hang : unit

| norm : M

| abnorm : StatAbn }

hang : unit

| norm : [ns : M, res : Out]
| abnorm : ExprAbn }

where the labels hang, norm and abnorm represent non-termination, normal termination
and abnormal termination in Java, respectively. An expression that terminates normally
returns both a new memory state and an output type (of type Out). The abnormal
termination types StatAbn and ExprAbn formalize the different abrupt termination forms
of statements and expressions:

StatAbn : TYPE ≡ { ExprAbn : TYPE ≡
exp : [es : M, ex : RefType]

| return : M

| break : [bs : M, blab : lift[string]]
| continue : [cs : M, clab : lift[string]] }

[es : M, ex : RefType]

The type RefType represents references. The RefType above denotes a reference to an
exception object ex. Java’s break and continue constructs can be used with and without
label, this is indicated in the labeled product types above, where both bs and cs indicate
the resulting state (that incorporates the side-effect) and blab and clab are labels. The
lifted type lift[string] adds a bottom element to an arbitrary type (in this case string) which
ensures that labeled and unlabeled breaks and continues can be represented by the same
type.

These types for Java statements and expressions form the basis for the formalization
of the semantics of (sequential) Java in the theorem prover PVS. All statements and ex-
pressions in Java have to be formalized separately, as an example we give the semantics
for composition in Definition 12.

Definition 12 (Composition). Let p, q : [M → StatResult], composition in the LOOP Java
semantics is then defined as:

100 Interactively proving termination-sensitive non-interference

(p ; q) : [M → StatResult] =
λ(x : M) :
cases p(x) of {

hang 7→ hang,
| norm(y) 7→ q(y),
| abnorm(a) 7→ abnorm(a) }

A sound Hoare logic has been formalized ‘on top of’ this Java semantics. The extended
Hoare n-tuples take all the different termination modes of Java into account. Definition 13
defines the types (for statements and expression) of these Hoare tuples, where the boolean
type is denoted with B. Notice the similarity with JML method specifications:

Definition 13 (Hoare n-tuples for Java).

StatBehaviorSpec : TYPE ≡ ExprBehaviorSpec[Out] : TYPE ≡
[diverges : M → B,

requires : M → B,
statement : M → StatResult,
ensures : M → B,
signals : M → RefType → B,
return : M → B,
break : M → lift[string] → B,
continue : M → lift[string] → B,]

[diverges : M → B,
requires : M → B,
expression : M → ExprResult[Out],
ensures : M → Out → B,
signals : M → RefType → B]

The functions SB and EB then relate the Hoare tuples sbs : StatBehaviorSpec and ebs :
ExprBehaviorSpec to the underlying Java semantics. The precise interpretation of these
functions can be found in Definition 14.

Definition 14 (Semantic interpretation functions SB and EB).

sbs : StatBehaviorSpec ⊢ SB · sbs : B ≡
∀x ∈ M : sbs.requires · x ⇒

cases sbs.statement · x of {
hang 7→ sbs.diverges · x

| norm y 7→ sbs.ensures · y
| abnorm a 7→ cases a of {

excp e 7→ sbs.signals · (e.es) · (e.ex)
| return z 7→ sbs.return · z
| break b 7→ sbs.break · (b.bs) · (b.blab)
| continue c 7→ sbs.continue · (c.cs) · (c.clab) } }

ebs : ExprBehaviorSpec[Out] ⊢ EB · ebs : B ≡
∀x ∈ M : ebs.requires · x ⇒

cases ebs.statement · x of {
hang 7→ ebs.diverges · x

| norm y 7→ ebs.ensures · (y.ns) · (y.res)
| abnorm a 7→ ebs.signals · (a.es) · (a.ex) } }

7.3 Extension to sequential Java 101

The semantic functions SB and EB then allow us to interpret (classical) Hoare triples. Thus,
the partial Hoare triple {P} s {Q} is related to an extended Hoare n-tuple as follows:

{P} s {Q} = SB ·

diverges = λx : M.true,
requires = P
statement = s
ensures = Q
signals = λx : M.λe : RefType.true

return = λx : M.true

break = λx : M.λl : lift[string].true

continue = λx : M.λl : lift[string].true

The partial Hoare tuple above should be interpreted in the same way as classical partial
Hoare triples: “assuming that predicate P holds in the pre-state of statements s, then
if s terminates, predicate Q should hold in the post-state of s”. If all true values above
are changed into false, then the n-tuple becomes a total correctness tuple, meaning that
statement s must terminate normally.

The Hoare tuples can then be used to formulate (total) Hoare rules57. In the actual
PVS formalization these rules are specified as provable lemmas. Lemma 2 gives the Hoare
rule for composition, as an example.

Lemma 2 (Composition Hoare rule in LOOP).

∃T : M → B.

SB ·

diverges = λx : M.b,
requires = P,
statement = s1,
ensures = T,
signals = S,
return = R,
break = B,
continue = C

∧

SB ·

diverges = λx : M.b,
requires = T,
statement = s2,
ensures = Q,
signals = S,
return = R,
break = B,
continue = C

=⇒

57Notice that we use a boolean constant instead of a predicate in the diverges clause of the Hoare n-
tuples in Lemma 2. In most actual (to be verified) programs this will indeed be a constant value, but
there is a special dedicated rule that turns an arbitrary diverges predicate into two cases: one true and
one false.

102 Interactively proving termination-sensitive non-interference

SB ·

diverges = λx : M.b,
requires = P,
statement = s1; s2,
ensures = Q,
signals = S,
return = R,
break = B,
continue = C

Proof (sketch). Three cases can be distinguished:

– Case s1 diverges, then by the Definition 12 the composition also diverges.

– Case s1 terminates normally, then there are again three cases:

– Case s2 diverges, then by the Definition 12 the composition also diverges.

– Case s2 terminates normally, then we have to prove that s1; s2(x) = s2(s1(x))
for all states x where s1 followed by s2 terminate normally. This follows from
Definition 12.

– Case s2 terminates abnormal, then again by Definition 12 we know that the
composition also terminates abnormally.

– Case s1 terminates abnormal, then again by Definition 12 we know that the compo-
sition also terminates abnormally.

This ends the interlude. In the next section we will show how the LOOP Hoare rules can
be extended to a relational setting and can be used to interactively prove non-interference
properties for non-trivial Java programs.

7.3.2 Relational Hoare n-tuples

The Hoare n-tuples from the previous section can be extended to a relational setting: all
predicates are replaced by a (binary) relation which allows us to reason about the relation
between (memory) states in all possible different runs of a program. Once these relational
n-tuples are properly defined we widen the relational Hoare logic from Figure 7.1 to full
(sequential) Java in Section 7.4.

The Hoare n-tuples from Definition 13 can be extended to relational Hoare n tuples:

Definition 15 (Relational Hoare n-tuples for Java).

7.3 Extension to sequential Java 103

RelStatBehaviorSpec : TYPE ≡
[reldiverges : (M × M) → B,

relrequires : (M × M) → B,
statement : M → StatResult,
relensures : (M × M) → B,
relsignals : (M × M) → (RefType × RefType) → B,
relreturn : (M × M) → B,
relbreak : (M × M) → (lift[string] × lift[string]) → B,
relcontinue : (M × M) → (lift[string] × lift[string]) → B,]

RelExprBehaviorSpec[Out] : TYPE ≡
[reldiverges : (M × M) → B,

relrequires : (M × M) → B,
expression : M → ExprResult[Out],
relensures : (M × M) → (Out × Out) → B,
relsignals : (M × M) → (RefType × RefType) → B]

The functions RSB and REB, as given in Definition 16, relate the relational Hoare tuples
rsbs : RelStatBehaviorSpec and rebs : RelExprBehaviorSpec to the underlying semantics.
Notice that we do not uses a case-expression here (as in Definition 14) since this becomes
unreadable due to the large number of nested cases.

Definition 16 (Semantic interpretation functions REB and RSB).

rebs : RelExprBehaviorSpec[Out] ⊢ REB · rebs : B ≡
∀x, y ∈ M : rebs.relrequires · (x, y) ⇒

hang?(rebs.statement(x)) ∧
hang?(rebs.statement(y)) ∧
rebs.reldiverges · (x, y)

∨

norm?(rebs.statement(x)) ∧
norm?(rebs.statement(y)) ∧
rsbs.relensures · (x.ns, y.ns) · (x.res, y.res)

∨

abnorm?((rsbs).statement(x)) ∧
abnorm?((rsbs).statement(y)) ∧
excp?(dev?((rsbs).statement(x))) ∧
excp?(dev?((rsbs).statement(y))) ∧
rsbs.relsignals · (x.es, y.es) · (x.ex, y.ex)

rsbs : RelStatBehaviorSpec ⊢ RSB · rsbs : B ≡
∀x, y ∈ M : rsbs.relrequires · (x, y) ⇒

104 Interactively proving termination-sensitive non-interference

hang?(rsbs.statement(x)) ∧
hang?(rsbs.statement(y)) ∧
rsbs.reldiverges · (x, y)

∨

norm?(rsbs.statement(x)) ∧
norm?(rsbs.statement(y)) ∧
rsbs.relensures · (x.ns, y.ns)

∨

abnorm?((rsbs).statement(x)) ∧
abnorm?((rsbs).statement(y)) ∧
excp?(dev?((rsbs).statement(x))) ∧
excp?(dev?((rsbs).statement(y))) ∧
rsbs.relsignals · (x.es, y.es) · (x.ex, y.ex)

∨

abnorm?((rsbs).statement(x)) ∧
abnorm?((rsbs).statement(y)) ∧
return?(dev?((rsbs).statement(x))) ∧
return?(dev?((rsbs).statement(y))) ∧
rsbs.relreturn · (x.rs, y.rs)

∨

abnorm?((rsbs).statement(x)) ∧
abnorm?((rsbs).statement(y)) ∧
break?(dev?((rsbs).statement(x))) ∧
break?(dev?((rsbs).statement(y))) ∧
rsbs.relbreak · (x.bs, y.bs) · (x.blab, y.blab)

∨

abnorm?((rsbs).statement(x)) ∧
abnorm?((rsbs).statement(y)) ∧
cont?(dev?((rsbs).statement(x))) ∧
cont?(dev?((rsbs).statement(y))) ∧
rsbs.relcontinue · (x.cs, y.cs) · (x.clab, y.clab)

We can use the functions RSB and REB to interpret the relational Hoare triples from
Section 7.2. Thus if R and T are relations then in the extended setting the (partial)
relational Hoare triple {R} s {T} is equivalent to:

{R} s {T} = RSB ·

reldiverges = λx, y : M.true

relrequires = R
statement = s
relensures = T
relsignals = λx, y : M.λe1, e2 : RefType.true

relreturn = λx, y : M.true

relbreak = λx, y : M.λl1, l2 : lift[string].true

relcontinue = λx, y : M.λl1, l2 : lift[string].true

Again, by changing all true values in false the partial correctness tuple above becomes a total
correctness tuple. These relational Hoare tuples can also be used to express termination-
sensitive non-interference for (full) sequential Java.

7.3 Extension to sequential Java 105

7.3.3 Termination sensitive non-interference as
bisimulation

In order to be able to define termination-sensitive non-interference for sequential Java we
give a coinductive definition of indistinguishability on memory locations:

Definition 17 (Indistinguishability). I is the largest relation such that:

I(l1, l2) =
cases Jtypeof(l1) of {

PrimType 7→ cases Jtypeof(l2) of {
PrimType 7→ l1 = l2

| RefType 7→ false

| ArrayType 7→ false }
| RefType 7→ cases Jtypeof(l2) of {

PrimType 7→ false

| RefType 7→ class(l1) = class(l2) ∧
I(Jfieldsof(l1), Jfieldsof(l2))

| ArrayType 7→ false }
| ArrayType 7→ cases Jtypeof(l2) of {

PrimType 7→ false

| RefType 7→ false

| ArrayType 7→ class(l1) = class(l2) ∧
length(l1) = length(l2) ∧
Jdim(l1) = Jdim(l2) ∧
I(Jindices(l1), Jindices(l2)) } }

Where the function Jtypeof takes as argument a location in memory and returns a boolean.
It distinguishes either PrimType, RefType or ArrayType depending on if the memory location
was a primitive type, a (non-array) reference type or an array reference type. The function
class returns the static class type of a reference, i.e., the same as Java’s getClass()

method, and it returns null if the reference is a null reference. Jfieldsof lists all fields of a
reference. The function length returns the length, Jdim the dimension and Jindices lists all
memory locations of the indexes of an array.

Notice that the indistinguishability operator I is overloaded, as it is point-wise defined
for all fields of an object and all array entries.

Termination-sensitive non-interference is then defined as:

Definition 18 (Termination-sensitive non-interference). A program P is termination-
sensitive non-interfering if the following Hoare n-tuple holds:

106 Interactively proving termination-sensitive non-interference

∀l : Loc.∀x, y : M.
sl(l) = Low ∧

RSB ·

reldiverges = I(x(l), y(l))
relrequires = true,
statement = P,
relensures = I((P.ns · x)(l), (P.ns · y)(l))
relsignals = I((P.es · x)(l), (P.es · y)(l))
relreturn = I((P.rs · x)(l), (P.rs · y)(l))
relbreak = I((P.bs · x)(l), (P.bs · y)(l))
relcontinue = I((P.cs · x)(l), (P.cs · y)(l))

In words: a program P is termination-sensitive non-interfering if, when the program ter-
minates (either normally or abruptly), all memory locations with security level Low are
indistinguishable. The same holds if the program does not terminate (loops), but then
all Low memory locations have to be indistinguishable in the pre-state. If low memory
locations are not indistinguishable for a certain termination mode, then the program may
not terminate via that termination mode if non-interference is to be established.

We do not require that a relation (like R below) has to hold in the pre-state.

R ≡ ∀l : Loc.∀x, y : M. sl(l) = Low ∧ I(x(l), y(l))

Though this will usually be the case for a program that is ‘freshly started’.

7.3.4 JML for relations: JMLrel

The Hoare logic n-tuples from Definition 13 directly correspond with JML’s method spec-
ifications (e.g., such as the default one on page 12 in Chapter 2). The relational Hoare
n-tuples from Definition 15 similarly correspond directly with a JML for relations. Below
it is shown how an (interfering) JMLrel specification is related to a relational Hoare n-
tuple. Notice that the default specification for one of the relational clauses is false58, which
ensures that (proved) specifications are total.

58Which differs from JML’s default (in heavyweight specifications) in which the default spec is true,
except for the diverges clause which is also false [LPC+05, §9.9].

7.4 A relational Hoare logic for Java 107

JMLrel

int h,l;

//@ relrequires l(x) == l(y);

//@ relensures l(x) != l(y);

public void m(){

. . .
}

RSB · (reldiverges = λx, y : M. false,
relrequires = λx, y : M. x(l) = y(l),
statement = . . . ,
relensures = λx, y : M. x(l) 6= y(l),
relsignals = λx, y : M.λr1, r2 : RefType. false,
relreturn = λx, y : M. false,
relbreak = λx, y : M.l1, l2 : lift[string]. false,
relcontinue = λx, y : M.l1, l2 : lift[string]. false)

Where field l is stored in memory location l.

JMLrel should be considered as a convenient way of specifying relations for Java methods
that is understandable for anybody who can understand JML specifications. We are not
proposing to introduce a new specification language with its own tools, semantics and com-
munity backing. Its goal is to give a readable specification for the examples in Section 7.5.

7.4 A relational Hoare logic for Java

In this section the relational Hoare logic is illustrated by showing some example rules59.
Note that all relational Hoare logic rules are actually (provable) lemma’s, just like the
(ordinary) Hoare rules described in the previous section.

7.4.1 Composition

The relational composition rule is provided here for easy comparison with the ‘ordinary’
Hoare logic rule from Lemma 2 and to illustrate that the rules are ‘inherently’ incomplete.
Applying such a rule is similar to the use of ordinary Hoare rules. In ordinary Hoare rules
the main challenge is to provide a suitable intermediate predicate (on the state space).
The challenge now becomes to provide the correct intermediate relation (T in Lemma 3
below).

Lemma 3 (Relational Hoare rule for composition).

59Due to space constraints we cannot show all (120+) rules. The relational Hoare logic rules in this
section should be enough to appreciate the complexities involved.

108 Interactively proving termination-sensitive non-interference

∀x, y : M. IF (s1 · x).norm ∧ (s1 · y).norm THEN D((s1 · x).ns, (s1 · y).ns) ⇒ D(x, y)

∧

∃T : M × M → B.

RSB ·

reldiverges = D,
relrequires = P,
statement = s1,
relensures = T,
relsignals = Qs,
relreturn = Qr ,
relbreak = Qb,
relcontinue = Qc

∧

RSB ·

reldiverges = D,
relrequires = T,
statement = s2,
relensures = Q,
relsignals = Qs,
relreturn = Qr ,
relbreak = Qb,
relcontinue = Qc

=⇒

RSB ·

reldiverges = D,
relrequires = P,
statement = s1; s2,
relensures = Q,
relsignals = Qs,
relreturn = Qr ,
relbreak = Qb,
relcontinue = Qc

Proof sketch. Case distinctions on the termination modes of s1 and s2 using Definition 12.

The composition rule above is a total correctness rule. First of all, notice the resemblance
to the ‘ordinary’ Hoare logic rule from Lemma 2. The predicates are simply replaced by
relations. This will actually work for most ordinary Hoare rules. Only in cases where a
form of branching is possible we need to do something more involved, which is illustrated
in subsequent sections.

On a more technical note, the first line of the rule above is needed because the reldiverges

clause is evaluated in the pre-condition. In later sections we will replace the relation D
with a boolean constant. In most actual cases this will indeed be a constant value, however
it is possible (using a dedicated rule) to replace the constant back into a relation.

In general, the relational Hoare logic rules presented in this section are total and sound,
but not complete:

Remark 2. The relational Hoare logic is not complete for sequential Java.

Completeness is not possible due to the different number of termination modes that can
occur. Suppose that s1 terminates normally in memory x and with an exception in y,
if s2 then throws the same exception in memory x then the termination mode of the

7.4 A relational Hoare logic for Java 109

composition of s1 and s2 does not leak information. It is easy to see that one can construct
a non-interfering program that uses this observation:

Java

int h; \\ High

int l; \\ Low

public void m() throws Exception {

if (h > 1) {

l++; throw new Exception() }

}

s1

l++;

throw new Exception();

}

s2

}

This method is non-interfering, but the composition rule from Lemma 3 (or any of the
other relational Hoare logic rules) cannot be used to prove this, hence the logic is not
complete.

At first glance it might seem problematic that our rules are not applicable in all cases.
Though completeness is hard to obtain in this context, it seems that the rules are somewhat
too restrictive, especially if one considers that the (interactive) relational Hoare rules have
a ‘similar level of completeness’ as the (automatic) type system [VS97a] of Volpano and
Smith60. It turns out that both approaches can only prove non-interference in terms
of strong bisimulations. Volpano and Smith’s type system cannot type programs that
only break the non-interference property (temporarily) inside a method body. Similarly
a relational Hoare logic rule, like the one in Lemma 3, cannot be applied in cases where
non-interference is temporarily broken.

In a sequential setting, weak bisimulations (as defined in Section 7.1) are more appro-
priate for expressing non-interference61, since these allow temporary breaches of confiden-
tiality (also described in Chapter 6). However, in practice, rules that can be applied in
all situations are not workable. Such rules require keeping track of all possible coupled
termination modes. Indeed, such a rule is required if we want to prove at a syntactical
level that the example above is non-interfering. It turns out that it is far easier to mix
syntactic reasoning with reasoning at a semantic level where necessary. This means that we
can –temporarily– drop the relational Hoare logic entirely and fall back on the underlying
semantics. Since the LOOP semantics in PVS form a shallow embedding, this is possible
(and straightforward).

Of course, mixing syntactic reasoning with semantic reasoning has its own problems.
For one thing, this restricts the use of the relational Hoare logic to a setting –such as the

60Though, the relational Hoare logic rules cover a much larger language (sequential Java) compared to
Volpano and Smith’s (while-like language).

61In a multi-threaded environment strong bisimulations are more natural (for expressing non-inter-
ference). Different threads may execute the same method at the same time which can leak (secret)
information from inside a method body.

110 Interactively proving termination-sensitive non-interference

LOOP framework– where it is possible to reason a semantical level. Tools like ESC/Java2
or Jive [MMPH00], that only use purely syntactic Hoare logics, thus cannot prove non-
interference as a weak bisimulation. The example in Section 7.5.1 illustrates switching
between the syntactic level of the relational Hoare logic and the semantic level of the
actual Java semantics.

If the termination behavior is restricted –by disallowing abrupt or non-termination–
then a sound and complete relational composition rule can be constructed. Where sound-
ness means that if confidentiality can be proved using the rule then confidentiality is indeed
maintained, and completeness means that if confidentiality cannot be established using the
rule then the analyzed program indeed does not maintain confidentiality.

Lemma 4 gives such a rule62:

Lemma 4 (Complete relational Hoare rule for composition).

∃T : M × M → B.

RSB ·

0

B

B

B

B

B

B

B

B

B

@

reldiverges = λx, y : M.false,

relrequires = P,

statement = s1,

relensures = T,

relsignals = λx, y : M.λe1, e2 : RefType.false,

relreturn = λx, y : M.false,

relbreak = λx, y : M.λl1, l2 : lift[string].false,
relcontinue = λx, y.λl1, l2 : lift[string].false

1

C

C

C

C

C

C

C

C

C

A

V

RSB ·

0

B

B

B

B

B

B

B

B

B

@

reldiverges = λx, y : M.false,

relrequires = T,

statement = s2,

relensures = Q,

relsignals = λx, y : M.λe1, e2 : RefType.false,

relreturn = λx, y : M.false,

relbreak = λx, y : M.λl1, l2 : lift[string].false,
relcontinue = λx, y : M.λl1, l2 : lift[string].false

1

C

C

C

C

C

C

C

C

C

A

⇐⇒

RSB ·

0

B

B

B

B

B

B

B

B

B

@

reldiverges = λx, y : M.false,

relrequires = P,

statement = s1; s2,

relensures = Q,

relsignals = λx, y : M.λe1, e2 : RefType.false,

relreturn = λx, y : M.false,

relbreak = λx, y : M.λl1, l2 : lift[string].false,
relcontinue = λx, y : M.λl1, l2 : lift[string].false

1

C

C

C

C

C

C

C

C

C

A

Proof.

(⇒) Trivial by Lemma 3.

(⇐) Trivial by Definition 12.

In principal one can define a relational Hoare logic that uses relational Hoare logic rules
that restrict the number of termination modes as in Lemma 4. Such a logic would be
sound and complete, but it can still not be used to prove non-interference of the example
on the previous page. In Section 7.5 it is shown how confidentiality can be proved for this
example.

62Note that similar complete rules can be constructed for other termination modes as well.

7.4 A relational Hoare logic for Java 111

7.4.2 If-then-else

The rule for if-then-else statements uses the same trick as in the simple relational Hoare
logic from Section 7.2: only one of the branches is evaluated. Thus, in cases where both
branches need to be analyzed, e.g., if the conditional depends on a variable that has security
level High, the rule cannot be applied.

The actual rule is then given by the following lemma:

Lemma 5 (Relational Hoare rule for if-then-else statements).

∀x, y : M.((c · x).norm ∧ (c · y).norm ∧ P (x, y)) ⇒ (c · x).res = (c · y).res

V

∃Rc : (M × M) → (B × B) → B.

2

6

6

6

4

REB ·

0

B

B

B

@

reldiverges = λx, y : M.b,

relrequires = P,

expression = c,

relensures = λx, y; M.λb1, b2 : bool.Rc(x, y)(b1, b2),
relsignals = Qs

1

C

C

C

A

V

RSB ·

0

B

B

B

B

B

B

B

B

B

@

reldiverges = λx, y : M.b,

relrequires = λx, y : M.Rc(x, y)(true, true),
statement = s1,

relensures = Q,

relsignals = Qs,

relreturn = Qr ,

relbreak = Qb,

relcontinue = Qc

1

C

C

C

C

C

C

C

C

C

A

V

RSB ·

0

B

B

B

B

B

B

B

B

B

@

reldiverges = λx, y : M.b,

relrequires = λx, y : M.Rc(x, y)(false, false),
statement = s2,

relensures = Q,

relsignals = Qs,

relreturn = Qr ,

relbreak = Qb,

relcontinue = Qc

1

C

C

C

C

C

C

C

C

C

A

=⇒

RSB ·

0

B

B

B

B

B

B

B

B

B

@

reldiverges = λx, y : M.b,

relrequires = P,

statement = if c then s1 else s2,

relensures = Q,

relsignals = Qs,

relreturn = Qr ,

relbreak = Qb,

relcontinue = Qc

1

C

C

C

C

C

C

C

C

C

A

3

7

7

7

7

7

7

7

7

7

5

Proof sketch. We distinguish two cases:

Case (c · x).res = (c · y).res = true We take as intermediate relation Rc = P (x, y) and
conclude this branch by the semantics of if-then-else.

Case (c · x).res = (c · y).res = false Analogous to the previous case.

This rule is only applicable in cases where the termination behavior of the conditional c
is the same in memory x and y. Moreover, if c terminates normally then it has to evaluate
to the same value in memory x and y, which will only be in cases where the conditional does

112 Interactively proving termination-sensitive non-interference

not depend on High variables. Notice that if this requirement is not met then (termination
sensitive) non-interference is –at least locally– broken (and we can thus not prove a strong
bisimulation property).

Also notice that in case the if-then-else statement terminates abnormally via an excep-
tion then –in order to prove termination-sensitive non-interference– we also have to prove
that the raised exception objects are indistinguishable (as defined by the indistinguisha-
bility operator I from Definition 17).

7.4.3 Integer division

The rule for division of integers is interesting because a (new) exception object is thrown
when a division by zero occurs. This implies that one can never naively divide by a variable
of high security level, since this can leak if the high variable has value zero (or not). The
rule is given in Lemma 6 below:

Lemma 6 (Relational Hoare rule for integer division).

∃T : (M × M) → (int × int) → B.

REB ·

reldiverges = λx, y : M.b,
relrequires = P,
expression = e1,
relensures = λx, y : M.λj1, j2 : int.T (x, y)(j1, j2),
relsignals = Qs

∧

∀i1, i2 : int. REB ·

reldiverges = λx, y : M.b,
relrequires = λx, y : M.T (x, y)(i1, i2)
expression = e2,
relensures = λx, y : M, λj1, j2 : int.

IF (j1 6= 0 ∧ j2 6= 0)
THEN Qi(x, y)(div(i1, j1) ∧ div(i2, j2))
ELSE IF (j1 = 0 ∧ j2 = 0)

THEN

LET ex1 : [M,RefType] =
make?ex(ArithmeticException)(x),

ex2 : [M,RefType] =
make?ex(ArithmeticException)(y)

IN Qs(π1(ex1), π1(ex2))(π2(ex1), π2(ex2))
ELSE false,

relsignals = Qs

7.4 A relational Hoare logic for Java 113

=⇒

REB ·

reldiverges = λx, y : M.b,
relrequires = P,
expression = e1/e2,
relensures = Qi ,
relsignals = Qs

Proof sketch. Figure 7.3 provides the proof tree (generated in PVS) of this proof. It is easy
to recognize the main points:

– Starting at the root, the first branching point represent the termination behavior of
expression e1, with non-termination (left), abnormal termination (right) and normal
termination (middle) of e1.

– following the main branch, the next branching then represents the termination be-
havior of expression e2, again non-termination (left), abnormal termination (right)
and normal termination (middle).

– the next place the main branch splits is a case distinction on the result of expression
e2 being zero or non-zero (in both memory x and y).

– the remaining parts are all (semi) automatically handled by PVS.

Like before (in Section 4.3.2), the proof tree is displayed here to give the reader an im-
pression of the complexity and number of interactions (each node corresponds to a user-
command). The reader is not expected to analyze the information in each node in detail
here.

The overall pattern should be familiar by now: (integer) division constitutes a branching
rule of some kind, i.e., if one divides by zero or not. Thus the rule is constructed in such a
way that it is only possible to apply it if at all times only one of ‘both branches’ is evaluated.
In the context of non-interference this means that we cannot divide by a high variable since
this can leak information to the outside (since high variables can have different values in
memory x and y, and in particular, one could be zero and the other one not).

The rule also shows some details of the actual PVS formalization. The function make?ex
takes a string as argument and returns a tuple that contains the new state and a reference
to a (new) exception object (of the type indicated by the string argument). Furthermore,
notice that the rule uses two different division operators: the Java operator “/” and the
native PVS devision operator “div”. The Java operator throws appropriate exceptions
when necessary, i.e., an ArithmeticException exception when a division by zero occurs,
and uses the native PVS operator otherwise. Overloading PVS’s div operator allows us
to use multiple representations of (Java) integers, such as bitvectors or PVS’s internal
(unbounded) integer type, see [Jac03] and [Bre06, Chapter 4] for details.

114 Interactively proving termination-sensitive non-interference

(skosimp*)

(expand "RelExprBehavior")

(skosimp*)

(inst - "x!1" "y!1")

(assert)

(expand "/" +)

(assert)

(split -)

(flatten)

(assert)

(flatten)

(assert)

(inst?)

(assert)

(split -)

(flatten)

(assert)

(flatten)

(assert)

(case ...)

(flatten)

(assert)

(expand "/=")

(assert)

(split -3)

(flatten)

(assert)

(flatten)

(split -)

(flatten)

(split -)

(flatten)

(assert)

(flatten)

(split -)

(flatten)

(assert)

(flatten)

(assert)

(flatten)

(assert)

Figure 7.3: Soundness prove in PVS of the relational Hoare logic rule for integer division.

Another point to note is that the heaps in x and y both grow with one object, thus if
the heaps were indistinguishable from the outside with respect to low memory locations
in the pre-state of the method, then after application of this rule the heaps are again
indistinguishable. In actual proofs we will often (implicitly) assume that the heaps are
indistinguishable for all low memory locations. Since high memory locations are supposed

7.4 A relational Hoare logic for Java 115

to be unobservable, these can be different. Indeed, the heaps do not need to have the same
size63 in both locations, i.e., in cases where an object is created under a high guard. We
refer to this as unbalanced heaps (this issue has briefly been discussed in Section 6).

7.4.4 Throwing exceptions explicitly

There are two basic options when one designs a relational Hoare logic like the one explained
in this section:

1. Make the logic as general as possible, this ensures that it can be used to prove a
number of different properties.

2. Make the logic as specific to the task at hand as possible.

We have not chosen for either of these extremes, but the logic clearly leans more towards
option 2 than to option 1 above. The rule for throw statements illustrates this64:

Lemma 7 (Throw relational Hoare rule).

∀x, y : M.((e · x).norm ∧ (e · y).norm ∧ P (x, y)) ⇒ I((e · x).res, (e · y).res)

∧

∀x, y : M.((e · x).abnorm ∧ (e · y).abnorm ∧ P (x, y)) ⇒ I((e · x).ex, (e · y).ex)

∧

REB ·

reldiverges = λx, y : M.b,
relrequires = P,
expression = e,
relensures = λx, y : M.λr1, r2 : RefType.

LET ex1 = make?ex(NullPointerException)(x),
ex2 = make?ex(NullPointerException)(y)

IN

cases a of {
null 7→ Qs(π1(ex1), π1(ex2))(π2(ex1), π2(ex2))

| reference c 7→ cases b of {
null 7→ false65

| reference d 7→ Qs(x, y)(a, b) } },
relsignals = Qs)

63Actually, the correct word here is length since the heap model in PVS is implemented as a list of lists
of native Java data types (references and primitive types). Garbage collection has not been modeled in
PVS, thus these (sub) lists can only grow longer.

64The composition rule from Lemma 3 is good example of one of the more general rules in our logic.

116 Interactively proving termination-sensitive non-interference

=⇒

RSB ·

reldiverges = λx, y : M.b,
relrequires = P,
statement = throw e,
relensures = Q ,
relsignals = Qs,
relreturn = Qr ,
relbreak = Qb,
relcontinue = Qc)

Proof. The proof is straightforward and has been omitted.

The rule requires that both the return value of the expression e in memories x and y
and the actual thrown object in memories x and y should be equivalent (indistinguishable)
references for memories x and y. The indistinguishability relation from Definition 17 is used
to ensure this. Customizing this rule for proving (termination-sensitive) non-interference
simplifies the rule considerably.

Another point to notice is that this rule will always end in an exceptional state (as
is required by the semantics of throw statements), the only difference is given by the
arguments of the relation Qs .

7.4.5 Other rules

We have formulated many more relational Hoare rules in PVS and proved their correctness
relative to LOOP’s Java semantics. We cannot show them here, mainly because they are
too involved –such as the rule for try-catch-finally and array access– or because they
are not interesting –such as the many rules for integer arithmetic (+,-,*)– that are all
almost the same, yet slightly different.

We especially want to mention the rule for while statements here, since it is very
restrictive in a setting where termination-sensitive non-interference is important. It can
only be applied in cases where one can find a strong bisimulation, i.e., a bisimulation
that is valid in both memories x and y at the same time, which we believe will almost
never be the case in practice. It is not surprising that in cases where even stronger forms
of non-interference have to be proved (such as time-sensitive non-interference discussed in
Chapter 8) it is standard to ignore loops altogether and simply require that the conditional
of a while statement is typed minimally66 (to borrow a notion from [VS97b]).

We believe that approximate approaches, such as discussed in Chapter 6 or in [AB05,
Zan02], are better suited for dealing with loops. Another option is to simply use a standard
type-checking algorithm that will indicate a possible breach of confidentiality if something
is assigned to a Low variable when the context (the conditional of the loop) has security
level High. This is equivalent to (dis)proving appropriate strong bisimulations for loops.

65Notice that this point is not reachable.
66An expression or statement is typed minimally (in our setting) if it has security level Low.

7.5 Examples 117

7.5 Examples

In this section we apply our framework to examples from the literature and of our own.
These should illustrate the use of the relational Hoare logic. We will use JML on relations
as specification language

7.5.1 A (partial) semantic proof

This example (from [DHS05]) illustrates mixing syntactic and semantic reasoning. Notice
that relational JML clauses that are not explicitly specified default to false.

Java

int h,l;

//@ relrequires l(x) == l(y);

//@ relensures l(x) == l(y);

public void m(){

if (h== 1) l=1; else l=0;

//@ relassert true;

l=0;

}

The idea here is to apply the composition rule with intermediate relation true and prove
the two (trivial) remaining branches on a semantic level. Examples likes these can typically
not be proved by type-based approaches, which will mark this method as possibly insecure.
Notice that a strong bisimulation property cannot be proved here.

7.5.2 An example revisited

Recall the example form the previous section:

Java

class Test{

int h,l;

//@ relrequires l(x) == l(y);

//@ relsignals (Exception e) l(x) == l(y) &&

//@ l == \old(l) + 1 && I(e(x),e(y));

public void m() {

if (h > 1) {

l++; throw new Exception() }

118 Interactively proving termination-sensitive non-interference

//@ relassert \old(h) <= 1) ==>

//@ l(x) == \old(l(x)) && l(y) == \old(l(y));

l++;

throw new Exception()

}

}

The proof starts with an application of the relational composition rule with the intermedi-
ate relation as indicated by the relational assertion. The first branch is than proved on a
semantic level, since we cannot apply the rule for if-then which requires that the guard
is minimally typed. The second branch can be proved by application of another composi-
tion rule and the throw rule. Notice that we have to prove that the exception objects are
indistinguishable, which is trivial (if we assume that the (low) observable part of the heap
was indistinguishable before method m() was called).

7.5.3 Simple arithmetic

This example (from [BDR04]) is non-interfering. It shows a perfect example of a –
temporary– breach of confidentiality on a semantical level.

Java

int h,l;

//@ relrequires l(x) == l(y);

//@ relensures l(x) == l(y);

public void m() {

l = l + h;

//@ relassert l(x) == \old(l(x)) + \old(h(x)) &&

//@ l(y) == \old(l(y)) + \old(h(y));

l = l - h;

}

The thing to notice for this example is how the intermediate relation (indicated by the
relassert keyword) no longer asserts how the low field l is related in both memories.
From here relational Hoare rules for assignment and integer subtraction are applied which
leads to the following relation:

l(x) == (\old(l(x)) + \old(h(x))) - \old(h(x)) &&

l(y) == (\old(l(y)) + \old(h(y))) - \old(h(y));

which is indeed equivalent to l(x) == l(y).
This examples illustrates what we call a (temporary) breach of confidentiality and

subsequent restoration of confidentiality on a semantical level. Program fragments like

7.6 Related work 119

these are very difficult to analyze automatically since they involve some semantical fact
(here that \old(h(y)) - \old(h(y)) == 0) which is hard to check at a more abstract
level. As a consequence, type-based approaches cannot prove that this program does not
leak secret information and the same holds for approaches based on abstract interpretation
(such as discussed in the Chapter 6).

7.5.4 Mixed termination modes

Java

int h,l;

//@ relrequires l(x) == l(y);

//@ relensures l(x) == l(y) && l = 5;

//@ relsignals (ArithmeticException ae) l(x) == l(y) &&

//@ l == \old(l) && I(ae(x),ae(y));

public void m() throws ArithmeticException{

l = h / l;

//@ relassert true;;

l = 5;

}

This program is non-interfering, since no information about field h is leaked. Its be-
havior should be self-explanatory.

7.6 Related work

A lot of research has focused on secure information flow and non-interference. We will
concentrate on closely related work here and refer to Section 2.5 for a general overview of
the field.

Numerous papers on non-interference have been published that use some Hoare-like
logic. We discuss the most important ones here.

Andrews and Reitman [AR80] were probably the first to use a Hoare-like logic for secure
information flow. They consider a small concurrent while-language and give Hoare rules
to prove a non-interference property. However they do not prove soundness of their rules.

Joshi and Leino [JL00] give an elegant definition of non-interference in terms of ar-
bitrary assignments. Every statement S is non-interfering if the following equality holds:
S; HH = HH; S; HH, where HH expresses that arbitrary values are assigned to all high vari-
ables. Their weakest pre-condition calculus can prove both termination sensitive (without
abnormal termination) and termination insensitive forms of non-interference. However,
they only consider a small while-like language.

Darvas, Hähnle and Sands [DHS05] use dynamic logic to prove secure information
flow properties for (a subset of) Java Card programs. They can prove both termination

120 Interactively proving termination-sensitive non-interference

insensitive and termination sensitive non-interference (though the latter is not illustrated
on examples), but do not consider abnormal termination modes. They do give an example
that involves objects.

Barthe, D’Argenio and Rezk [BDR04] propose a number of logics, including Hoare
logic, Separation logic and Linear Temporal Logic, for proving non-interference. The main
idea is to compose the program with itself and execute it again in a different part of
memory. Then a non-interference relation has to hold. They claim that their Hoare
logic is both sound and complete, which is true because they only consider termination
insensitive non-interference. As we have shown, completeness is practically impossible in
a setting with multiple termination modes where the goal is proving termination-sensitive
non-interference.

Amtoft and Banerjee [AB05] present a Hoare logic for a small imperative language.
Their approach is based on abstract interpretation [Cou96] and is less precise than the work
cited above, but the logic can be applied automaticly and can provide counterexamples in
cases where their approach encounters problems (either because the program is interfering
or their analysis is too course).

More recently, Amtoft, Bandhakavi and Banerjee [ABB06] propose a Hoare-like logic
for checking termination-insensitive non-interference for object-oriented programs. Under
certain assumptions they can use an (automatic) algorithm for computing the strongest
possible post-condition that ensures non-interference. JML-style (intermediate) assertions
can also be used that allow a more fine-scaled interactive verification framework.

Benton [Ben04] gives a simple analysis and transformation system for while-programs
that can be used to prove non-interference. He also gives a relational Hoare logic that can
be used to prove that a pair of statements maps a given pre-relation into a post-relation.
His logic only deals with a while-like language, but the logic is more general than ours,
because he considers two statements. Of course, this last point does introduce a (form of)
dual evaluation of statements, which is precisely something we wanted to prevent in the
design of our relational Hoare logic.

Another relational logic we encountered in the literature is Yang’s relational separation
logic [Yan05]. Like Benton’s logic, this one can prove relations for pairs of programs.
Yang’s logic works for a while language which includes lists and sets as basic data types.
The paper does not show how to prove non-interference properties, but we expect that this
is straightforward.

7.6.1 Relation to the LOOP framework

The relational Hoare logic has been formulated ‘on top of’ LOOP’s Java semantics in PVS.
This has a number of advantages:

– Proving soundness of the rules is easier since we work in a familiar environment
(PVS) and have a ‘stress tested‘ semantics for sequential Java.

– Aliasing and inheritance, which are handled by the LOOP compiler, are obtained
‘for free’.

7.7 Conclusions 121

– The LOOP compiler can translate Java code into PVS theories. The (JMLRel)
specifications still have to be written by hand, which –for now– is done by manu-
ally rewriting translated (standard) JML annotations. Implementing an automatic
translation is left for future work.

For an overview of the LOOP project we refer to [JP04]. It suffices to note that the
research presented in this chapter was only possible because of this pre-existing work.

7.7 Conclusions

We explained how non-interference can be expressed in terms of bisimulations for Java
classes. A novel Hoare logic on relations has been introduced for proving confidentiality
properties in the form of termination-sensitive non-interference. This logic is formalized in
the theorem prover PVS on top the LOOP verification framework. Soundness of the logic
has been proved as well and it is shown how completeness in actual verifications can be
obtained by mixing (syntactic) reasoning on the relational Hoare logic level with semantic
reasoning.

Besides the aforementioned automatic translation of JMLrel specifications there are
a number of other challenges remaining for future work. A start has been made on au-
tomating the interactive proofs by developing powerful proof strategies (tactics) in PVS.
This preliminary work can be extended further. Another question is if a relational weak-
est precondition calculus can be constructed (by lifting the ‘ordinary’ WP-calculus in the
LOOP-framework [Jac04b]). It seems that this might be difficult, since mixing semantic
and syntactic reasoning is less convenient in WP-calculi and formulating rules that are
applicable in all situations does not look promising. Finally, to really ‘stress-test’ the logic
a bigger verification case-study is required.

122 Interactively proving termination-sensitive non-interference

Chapter 8

Enforcing time-sensitive
non-interference

This chapter extends the previous one, in the sense that it deals with termination-sensitive
non-interference and adds one covert channel: timing behavior. The resulting form of
non-interference is called time-sensitive termination-sensitive non-interference, and ensures
termination-sensitive non-interference and the absence of timing channels. Such timing
channels can be used to leak sensitive information: for example, Kocher [Koc96] and
Bernstein [Ber04] showed that certain implementations of encryption algorithms can leak
information about the used key via timing behavior. Unfortunately, timing leaks are hard
to avoid by design, in particular because even the slightest difference in execution time
can be made observable by putting it inside a loop, thereby potentially leaking secret
information. They are also very hard to detect, and static enforcement mechanisms for
non-interference do not consider timing channels.

The main trend in avoiding timing channels is to use a program transformation that
transforms termination-insensitive non-interfering programs into time-sensitive termina-
tion-sensitive non-interfering programs. Supposedly, the following is a standard trick that
is used to avoid timing leaks in (the smart card) industry:

Java

if (c) { a = a+b; }

int[] x = new int[2];

x[0] = a;

x[1] = a+b;

a = x[c]; // boolean is 0 or 1 in c

Notice that the expressions a and b cannot have side-effects. In principle one can
remove all side-effects from a program and use the transformation above to remove all
timing leaks, but such (manual) transformations stay very ad hoc, and do not scale in
practice.

More elaborate methodologies –most notably by Agat [Aga00b]– have been proposed for
removing timing leaks in a more structured manner, however these are limited to programs

124 Enforcing time-sensitive non-interference

that only exploit a limited set of features.
The main result of this chapter,which is based on [BRW06], is a program transfor-

mation method that eliminates timing leaks in sequential object-oriented languages with
exceptions. Our method for enforcing non-interference is based on (nested) transaction
mechanisms [LMWF94]. The basic idea is to transform conditionals that depend on high
expressions, i.e., expressions that depend on high variables, into conditionals in which
each branch performs two transactions (one transaction for each branch in the original
conditional statement), one of which is committed, namely the one that would have been
executed in the original statement. Formally, the idea is to transform a branching state-
ment of the form

if e then s1 else s2

into the statement

if e then beginT; s′2; abortT; beginT; s′1; commitT

else beginT; s′1; abortT; beginT; s′2; commitT

where beginT starts a new transaction and abortT and commitT respectively aborts and
commits a transaction, and s′1 and s′2 are respectively the statements s1 and s2 transformed
in the same manner67.

The proposed transformation offers several advantages. First of all, it is correct in
the sense that termination-insensitive non-interfering programs are transformed into time-
sensitive termination-sensitive non-interfering programs.

Second of all, the method is applicable to sequential object-oriented languages with
exceptions and method calls, and therefore handles a fragment of the language that is
significantly more expressive than the languages considered in previous works, see below.
In particular, this is the first work considering dynamic object creation68. Furthermore,
the transformation is applicable to structured languages and intermediate or low-level
languages (but for the sake of clarity, we choose to present the transformation at source
code level).

Third, the transformation is independent of the technique used to enforce termination-
insensitive non-interference. More specifically, the transformation does not rely on the
fact that programs are verified with an information flow type system as the one pioneered
by Volpano and Smith’s work [VS97b], with a specification pattern such as the one in
Chapter 5, a static algorithm based on abstract interpretation as proposed in Chapter 6
or using a program logic as described in Chapter 7. The only requirement is that the
methodology can prove termination-sensitive non-interference.

On a more negative side our translation raises several questions, which are discussed in
Section 8.4.

67Notice that it is crucial that in both branches first the aborted block is executed and then the commit-
ted block. If one would first preform a committed code block and then the aborted one then the committed
block might influence the aborted one via a side-effect and hence might influence execution time.

68Hedin and Sands [HS05] published, at the same time as us, another approach for removing timing
leaks in object-oriented programs. It basically extends Agat [Aga00a] results to an object-oriented setting.
However, for now, they do not support exceptions.

8.1 Language 125

8.1 Language

We again use the sequential imperative language WHILE from Definition 1 (this time with-
out side-effects in expressions) to explain the basic idea behind the timing-leaks removing
program transformation. In Section 8.3 we extend this approach to an object-oriented
programming language.

The operational semantics of the programs we use here is given by a small step op-
erational semantics that captures one step execution of the program, and relates states,
execution time and results. Notice that we need a small step operational semantics here
because we want to model timing behavior of programs. In our setting results are simply
values and we let Res denote the set of results. The set State of states is defined as the set
of pairs of the form 〈c, ρ〉 where c is a statement, ρ is a mapping from local variables to
values. We distinguish a special variable res to store results of execution of programs, as is
defined below. Finally, the execution time of the program is modeled using a commutative
monoid (T,+, 0).

Formally, the operational semantics is defined through a relation s ❀t r, where s ∈
State, r ∈ Res ∪ State and t ∈ T , with intuitive meaning that s evaluates to r in time t.
The closure ❀

∗
t is then defined inductively by the clauses:

– if s ❀t s
′ then s ❀

∗
t s

′;

– if s ❀
∗
t s

′ and s′ ❀
∗
t′ s

′′ then s ❀
∗
t+t′ s

′′.

Finally, we define an evaluation relation ⇓ between states, results and execution time and
set 〈c, ρ〉 ⇓t v iff 〈c, ρ〉 ❀

∗
t 〈skip, ρ′〉 with ρ′(res) = v and v ∈ Res. In the sequel, we

often write 〈P, ρ〉 ⇓t when the result of the evaluation is irrelevant, i.e., as a shorthand for
∃r. 〈P, ρ〉 ❀

∗
t 〈skip, ρ

′〉 ∧ ρ′(res) = r. Further, for every function f ∈ A→ B, x ∈ A and
v ∈ B, we let f ⊕{x 7→ y} denote the unique function f ′ such that f ′(y) = f(y) if y 6= x
and f ′(x) = v.

The rules of the operational semantics are given in Figure 8.1. The rules are standard
except for execution time, for which there are several possible models. In our model, each
statement has its own execution time; for example, the execution time of x := e is equal to
the sum of the execution time of e and of some constant t:=. More refined models allow the
execution time of each instruction to be parametrized by the state, or even by execution
history; for example, in the above example t:= would become a function. It is possible to
extend our results to such execution models, by imposing suitable equational constraints
on these functions.

The operational semantics of transactions is given in Figure 8.2. We assume that a
beginT statement evaluates in time tb, abortT evaluates in time ta and commitT evaluates
in time tc. Note that transactions can be nested arbitrarily deep.

126 Enforcing time-sensitive non-interference

〈x, ρ〉 ❀tR1
〈ρ(x), ρ〉

v op v′ = v′′

〈v op v′, ρ〉 ❀tOP
〈v′′, ρ〉

〈e1, ρ〉 ❀t 〈e
′
1, ρ〉

〈e1 op e2, ρ〉 ❀t 〈e
′
1 op e2, ρ〉

〈e2, ρ〉 ❀t 〈e
′
2, ρ〉

〈v op e2, ρ〉 ❀t 〈v op e′2, ρ〉

〈x := v, ρ〉 ❀t:= 〈skip, ρ⊕{x 7→ v}〉

〈e, ρ〉 ❀t 〈e
′, ρ〉

〈x := e, ρ〉 ❀t 〈x := e′, ρ〉

〈s1, ρ〉 ❀t 〈s
′
1, ρ

′〉

〈s1; s2, ρ〉 ❀t 〈s
′
1; s2, ρ

′〉

〈skip; s2, ρ〉 ❀tskip
〈s2, ρ

′〉

〈e, ρ〉 ❀t 〈true, ρ〉

〈while(e)(s), ρ〉 ❀t 〈s; while(e)(s), ρ〉

〈e, ρ〉 ❀t 〈false, ρ〉

〈while(e)(s), ρ〉 ❀t 〈skip, ρ〉

〈e, ρ〉 ❀t 〈true, ρ〉

〈if-then-else(e)(s1)(s2), ρ〉 ❀t 〈s1, ρ〉

〈e, ρ〉 ❀t 〈false, ρ〉

〈if-then-else(e)(s1)(s2), ρ〉 ❀t 〈s2, ρ〉

〈e, ρ〉 ❀t 〈e
′, ρ〉

〈return e, ρ〉 ❀t 〈return e′, ρ〉

〈return v, ρ〉 ❀tR 〈skip, ρ⊕{res 7→ v}〉

Figure 8.1: Small step operational semantics for WHILE.

8.2 Transforming out timing leaks

Our method for transforming out timing leaks is based on (nested) transaction mecha-
nisms [LMWF94]. Transactions allow a programmer to view code blocks as atomic and
perform all updates inside such a transaction block as conditional. Only after an explicit
commit statement is an update actually carried out. If the programmer desires so it is also
possible to perform a roll-back to the state before the beginning of the transaction block
via an explicit abort statement.

8.2.1 Problem statement and hypotheses

Since we are interested in ensuring (time-sensitive) non-interference, we assume a secure
information flow policy that maps expressions, including program variables, to security
levels High (secret) or Low (public). Formally, we assume a function sl that maps variables
to security levels in the standard security lattice from Definition 2. A mapping from
expressions to the security lattice is calculated by looking at the security level of all the

8.2 Transforming out timing leaks 127

〈c, ρ〉 ❀
∗
t′ 〈skip, ρ

′〉

〈beginT; c; abortT, ρ〉 ❀tba+t′ 〈skip, ρ〉

〈c, ρ〉 ❀
∗
t′ 〈skip, ρ

′〉

〈beginT; c; commitT, ρ〉 ❀tbc+t′ 〈skip, ρ
′〉

Where tba = tb + ta and tbc = tb + tc and we assume ta = tc

Figure 8.2: Operational semantics for transaction mechanisms.

individual variables. The maximum of the individual variables is then the security level of
the whole expression69.

Timing leaks in a program might occur when the branches of a conditional statement
take different execution times. In our language, branches in execution are caused either by
if-then-else or while statements. Due to our execution model, timing leaks can only
occur when the conditional statement makes its test on a high expression. We only ad-
dress the case of if-then-else statements that branch over high expressions, and restrict
ourselves to low-recursive programs, where a program P is low-recursive iff it does not
contain a statement of the form while(e)(s) with sl(e) = High. While the restriction to
low-recursive programs is rather severe, it is a standard assumption in the literature, going
back to the works of Volpano and Smith [VS97b] and Agat [Aga00a, Aga00c].

8.2.2 The transformation

In order to avoid timing leaks caused by if-then-else statements, we use transactions to
execute both branches of the statement. Thanks to an appropriate use of committing and
aborting transactions, the transformation is semantics-preserving up to termination.

The transformation of if-then-else statements is given in Definition 19. The capi-
talized if-then-else in the translation –IF, THEN and ELSE– belongs to the translation
and not to the programming language, and is introduced so that we only use transactions
for if-then-else blocks with a high conditional. For all other cases, the transformation
is defined by the obvious recursive clause70.

69Note that this is an over-approximation. An expression like h − h, which should have security level
Low (since the result is always zero), is thus classified as High. However, this naive approach will suffice
for our purpose.

70Notice that –for reasons of readability— the syntax of if-then-else statements in WHILE has changed
in the sequel, i.e., if-then-else(e)(s1)(s2) equals if e then s1 else s2.

128 Enforcing time-sensitive non-interference

Definition 19 (Transformation T for removing timing leaks).

T (if e then s1 else s2) =
IF sl(e) = Low THEN if e then T (s1) else T (s2)
ELSE if e then

beginT;T (s2);abortT;beginT;T (s1);commitT; else

beginT;T (s1);abortT;beginT;T (s2);commitT;

The transformation is semantics preserving up to termination of the transformed pro-
gram. Indeed, the transformation may introduce non-termination, as illustrated by the
program fragments below (where h∈ High):

Java

if (h > 0) {

if (h < 0) { if (h != h) {

while (true); while(true);

} else ; } else;

} else ;

Nevertheless we can prove some interesting properties concerning our translation. We
first introduce an equality ≃ on memories, and say ρ ≃ ρ′ holds iff ρ(x) = ρ′(x) for all
variables x where sl(x) = Low:

Lemma 8. For every program P , memory ρ, results r, r′ ∈ Res, and times t, t′ ∈ T such
that 〈P, ρ〉 ⇓t r and 〈T (P), ρ〉 ⇓t′ r

′, we have r = r′.

Proof. We prove that for every statement s, memory ρ, results r, r′ ∈ Res, and times
t, t′ ∈ T such that 〈s, ρ〉 ⇓t r and 〈T (c), ρ〉 ⇓t′ r

′, we have r = r′.
The proof proceeds by induction on the structure of c. It is straightforward and omitted.

8.2.3 Application to non-interference

This section shows that our transformation maps low-recursive non-interfering programs
into time-sensitive termination-sensitive non-interfering programs.

Before establishing these results, we give a –by now familiar– definition of non-inter-
ference. The definition is again adapted to the current context; in the sequel ⇑ denotes
non-termination.

Definition 20 (Non-interference).

1. A program P is termination-insensitive non-interfering if

∀ρ, ρ′ : X → V . ∀v, v′ : V . ∀t, t′ : N.
(〈P, ρ〉 ⇓t v ∧ ρ ≃ ρ′) ⇒ ((〈P, ρ′〉 ⇓t′ v

′ ∧ v = v′) ∨ (〈P, ρ′〉 ⇑))

8.2 Transforming out timing leaks 129

2. A program P is termination-sensitive non-interfering if

∀ρ, ρ′ : X → V . ∀v, v′ : V . ∀t, t′ : N.
(〈P, ρ〉 ⇓t v ∧ ρ ≃ ρ′) ⇒ (〈P, ρ′〉 ⇓t′ v

′ ∧ v = v′)

3. A program P is time-sensitive termination-sensitive non-interfering if

∀ρ, ρ′ : X → V . ∀v, v′ : V . ∀t : N.
(〈P, ρ〉 ⇓t v ∧ ρ ≃ ρ′) ⇒ (〈P, ρ′〉 ⇓t v

′ ∧ v = v′)

The difference between termination-insensitive and termination-sensitive non-interference
is that the former only compares execution traces that terminate while the latter re-
quires that the termination of the program is uniform in the high part of the mem-
ory. Note that time-sensitive termination-sensitive non-interference implies termination-
sensitive non-interference, time-sensitive termination-sensitive non-interference imposes
moreover that the execution time is uniform in the high part of the memory.

Since the transformation is semantic-preserving up to termination, we prove that our
transformation preserves termination-insensitive non-interference.

Corollary 2. For every low-recursive program P , if P is termination insensitive non-
interfering, then T (P) is also termination insensitive non-interfering.

Proof. Straightforward by Lemma 8.

The transformation eliminates from programs timing leaks due to high if-then-else state-
ments, provided that the program is non-interfering and low-recursive.

Theorem 2. For all low-recursive non-interfering programs P , and memories ρ and ρ′

such that ρ ≃ ρ′, we have 〈T (P), ρ〉 ⇓t iff 〈T (P), ρ′〉 ⇓t.

Proof. We prove that for all low-recursive statements s, and memories ρ and ρ′ such that
ρ ≃ ρ′, we have 〈T (s), ρ〉 ❀

∗
t 〈skip, ρ1〉 iff 〈T (s), ρ′〉 ❀

∗
t 〈skip, ρ

′
1〉. The proof proceeds by

structural induction on statements.

Case s = if e then s1 else s2

– Suppose sl(e) = Low then

T (s) = if e then T (s1) else T (s2)

and by the IH we have that there exists a t such that, 〈T (s1), ρ〉 ❀
∗
t 〈skip, ρ1〉

iff 〈T (s1), ρ
′〉 ❀

∗
t 〈skip, ρ′1〉 and the same holds for s2. Since sl(e) = Low and

ρ ≃ ρ′, by our operational semantics e evaluates to the same value in memory
ρ and ρ′ and we conclude.

130 Enforcing time-sensitive non-interference

– Suppose sl(e) 6= Low then

T (s) = if e then

beginT;T (s2);abortT;beginT;T (s1);commitT;
else

beginT;T (s1);abortT;beginT;T (s2);commitT;

There are again two cases:

– 〈e, ρ〉 ⇓te v ∧ 〈e, ρ′〉 ⇓te v
′ ∧ v = v′ which follows directly from the IH.

– 〈e, ρ〉 ⇓te v ∧ 〈e, ρ′〉 ⇓te v
′ ∧ v 6= v′ in which case we have to prove that:

〈beginT;T (s2);abortT;beginT;T (s1);commitT;, ρ〉 ❀
∗
t 〈skip, ρ1〉

⇔
〈beginT;T (s1);abortT;beginT;T (s2);commitT;, ρ

′〉 ❀
∗
t 〈skip, ρ

′
1〉

(⇒) Suppose that

〈beginT;T (s2);abortT;beginT;T (s1);commitT;, ρ〉 ❀
∗
t 〈skip, ρ1〉

where 〈T (s2), ρ〉 ❀
∗
t2
〈skip, ρ2〉 and 〈T (s1), ρ〉 ❀

∗
t1
〈skip, ρ′2〉 and t =

t1+t2+tba+tbc. By the IH 〈T (s2), ρ
′〉 ❀

∗
t2
〈skip, ρ3〉 and 〈T (s1), ρ

′〉 ❀
∗
t1

〈skip, ρ′3〉 hence we are done.

(⇐) Analogous to previous case.

Case s = while e do s1 Because the program is low-recursive, we know that sl(e) = Low

and since ρ ≃ ρ′, by our operational semantics e evaluates to the same value in ρ and
ρ′. By the IH 〈T (s1), ρ〉 ❀

∗
t1
〈skip, ρ1〉 iff 〈T (s1), ρ

′〉 ❀
∗
t1
〈skip, ρ′1〉 holds. Since the

program is non-interfering, we have that ρ1 ≃ ρ′1 and we can conclude.

Assignment, return and skip statements are trivial. The case for s1; s2 is straightforward
by the IH.

As a corollary of this result we prove that our transformation also transforms termination-
insensitive non-interfering programs into (time-sensitive) termination-sensitive non-inter-
fering programs.

Corollary 3. For all low-recursive and termination-insensitive non-interfering programs
P we have that T (P) is time-sensitive termination-insensitive non-interfering.

Proof. By Corollary 2 we have that T (P) is termination-insensitive non-interfering. And
by Theorem 2, for all low-recursive and termination-insensitive non-interfering programs
P , and memories ρ and ρ′ such that ρ ≃ ρ′, we have 〈T (P), ρ〉 ⇓t iff 〈T (P), ρ′〉 ⇓t.

8.3 Adding objects, methods and exceptions 131

8.2.4 Enforcing termination-sensitive non-interference

Our transformation yields programs that are time-sensitive termination-sensitive non-
interfering provided the input programs are termination-insensitive non-interfering pro-
grams and low-recursive. In this section, we examine how the latter properties may be
enforced on programs.

Volpano and Smith [VS97b] provide a sound information flow type system for a sim-
ple imperative language. They use minimal typing for loop-conditionals and expressions
which can (possibly) throw exceptions to enforce the termination sensitive form of non-
interference, i.e., if the security types of these conditionals and expressions are minimal, in
terms of the security level, then the termination behavior will only depend on low variables,
thereby ensuring that termination behavior of a program cannot leak information. Volpano
and Smith prove an additional lemma which states that if all conditionals and expressions
that can throw exceptions are typed minimally then the program will be time-sensitive
termination-sensitive non-interfering.

The main disadvantage of this approach is that information flow type systems are very
restrictive, and reject many secure programs, even for simple programming languages. The
techniques discussed in the previous chapters allow more precise analysis of programs.

8.3 Adding objects, methods and exceptions

8.3.1 Language

We extend our simple imperative language with objects, methods (without dynamic dis-
patch) and an exception mechanism as in Java, and we call the resulting language OO. The
sets Expr of expressions and Stat of statements are given by the syntaxes in Definition 21.

An OO program P comes equipped with a set C of class names, including a class
Throwable of exceptions, a set F of field names, and a set of method declarations of the
form m(~x) := c, where m is a method name, ~x is a vector of variables (method formal
parameters), and c is a statement in Stat. For every program in OO, we distinguish a main
method namely main.

Definition 21 (The language OO).

e ::= x | n | e1 op e2 | e.f | new C | e.m(~e) | (C)e
c ::= x := e | s1; s2 | while e do c | if e then s1 else s2 |

e.f := e | return e | skip | try s1 catch(Exception x) s2 | throw e

where op is either a primitive operation +,×, a comparison operation <,≤,=, or the

(unconditional) boolean connectives | and & and skip is the empty program (skip).

The operational semantics of the language is given in the appendix71 in Section B.1; due

71The semantics of OO is presented in the appendix for completeness sake. This technical detail is not
strictly necessary to understand the current chapter and we believe that it would only blur the main issues
presented here.

132 Enforcing time-sensitive non-interference

to the presence of exceptions, performing one-step execution of a statement may either lead
to a normal state, or to an exceptional state. For the sake of simplicity, we assume that the
only statements that may raise exceptions in our language are x.f := e, x := e.f (where e
cannot throw exceptions), and an explicit throw statement.

The operational semantics is used to define an evaluation relation that relates programs,
memories, results, and execution times.

8.3.2 Problem statement

In our extended language, timing leaks may occur due to explicitly or implicitly thrown
exceptions.

We require that all exceptions that are thrown under a high security level are surrounded
by a try-catch block. In order to write a correct transformation, we also need to assume
that high exceptions (i.e., exceptions thrown by a statement containing e.f where e.f
is a high expression) are handled in the same method where the exceptions are thrown,
i.e., high exceptions cannot be propagated. The same applies to throw statements inside
influence of high conditionals.

8.3.3 The transformation

Definition 22 shows how we extend the translation T from Definition 19 to allow for
objects and exceptions. The transformation T uses a tail recursive function T1, shown72

in Definition 23. Intuitively T1 transforms every high statement that might throw an
exception into a set of statements without timing leaks.

Definition 22 (Transformation T for OO).

T (try s1 catch(Exception x) s2) = T1(skip, s1, s2, x) (1)
T (if e then s1 else s2) =

IF sl(e) = Low THEN if e then T (s1) else T (s2)
ELSE if e then beginT;T (s2);abortT;

beginT;T (s1);commitT;
else beginT;T (s1);abortT;

beginT;T (s2);commitT;
T (while e do c) = while e do T (c)
T (s1; s2) = T (s1); T (s2)

Transformation T for other statements is defined as the identity.

In the transformation T1(s0, s1, s2, x), argument s0 is a partial result of sequence of
statements that either do not depend of high variables or that depend of high variables
but that have been transformed in a sequence of timing-leaks free statements; its second
argument s1 represents statements in the original sequence of statements of a try part of

72Both definitions contain numbers between parentheses on the right, these are used in an example
program transformation (in Figure 8.3) and can be ignored for now.

8.3 Adding objects, methods and exceptions 133

a try-catch statement that has to be transformed into a sequence of timing-leaks free
statements; the third argument s2 corresponds to the original statement in the catch part
of a try-catch statement, and x is its variable.

Definition 23 (Function T1).

T1(s0, skip, s3, x) = try s0 catch(Exception x) s3 (4)
T1(s0, x

′ := e.f ; s2, s3, x) =
IF sl(x′) = Low

THEN T1(s0;x
′ := e.f, s2, s3, x)

ELSE T1(s0; s
′
1, s2, s3, x) (3)

where s′1 =
if e == null then

beginT; s3; commitT;
beginT;x′ := e;x′ := (new C).f ; abortT;

else

beginT; s3; abortT;
beginT;x′ := new C;x′ := e.f ; commitT;

T1(s0, (while e do s′1); s2, s3, x) = T1(s0; while e do T1(skip, s
′
1, s3, x), s2, s3, x)

T1(s0, (if e then s′1 else s′2); s2, s3, x) =
IF sl(e) = Low

THEN T1(s0; if e then T1(skip, s
′
1, s3, x)

else T1(skip, s
′
2, s3, x), s2, s3, x)

ELSE T1(s0; if e then

beginT;T1(skip, s
′
2, s3, x);abortT;

beginT;T1(skip, s
′
1, s3, x);commitT;

else

beginT;T1(skip, s
′
1, s3, x);abortT;

beginT;T1(skip, s
′
2, s3, x);commitT; , s2, s3, x)

T1(s0, x
′.f := e; s2, , s3, x) =
IF sl(x′.f) = Low

THEN T1(skip, x
′.f := e, s3, x)

ELSE T1(s0; s
′
1, s2, s3, x)

where s′1 =
if e == null then

beginT; s3; commitT;
beginT; beginT;x′ := new C; commitT;x′.f := e; abortT;

else

beginT; beginT;x′ := new C; abortT; s3; abortT;
beginT;x′.f := e; commitT

T1(s0, e.f := e′; s2, s3, x) = T1(s0; e.f := e′, s2, s3, x) where e is not a variable
T1(s0, x

′ := e; s2, s3, x) = T1(s0;x
′ := e, s2, s3, x) where e is not e′.f (2)

T1(s0, return e; s2, s3, x) = T1(s0; return e, s2, s3, x)
T1(s0, skip; s2, s3, x) = T1(s0, s2, s3, x)
T1(s0, throw; s2, s3, x) = T1(s0; throw, skip, s3, x)
T1(s0, try s′1 catch(Exception x′) s′2; s2, s3, x) = T1(s0; T1(skip, s

′
1, s

′
2, x

′), s2, s3, x)

134 Enforcing time-sensitive non-interference

For example, in the case where the first statement in s2 is x′.f := e, the ‘dummy’ object in
its transformation, that is created if variable x′ holds a null reference, is used to perform
the assignment x′.f := e, which is then aborted. Symmetrically we also create a dummy
object within a transaction-block which is then aborted directly, so that the assignment
can be performed on the initial (non-null) object. Note that the static type of an object is
used to create a corresponding dummy object. In this way we ensure that fields of dummy
objects are the same as the fields of the original one (either directly or via inheritance).

T (try{x := 1; y.f := v; z.f := v′} catch(Exception x′) {s3})
(1) //

T1(skip, x := 1; y.f := v; z.f := v′, s3, x
′)

(2) //

T1(x := 1, y.f := v; z.f := v′, s3, x
′)

(3) //

T1(x := 1; c′1, z.f := v′, s3, x
′) ≡

T1(x := 1; c′1, z.f := v′; skip, s3, x
′)

(2) //

T1(x := 1; c′1; z.f := v′, skip, s3, x
′)

(4) //

try {
x := 1;
if(y == null) {

beginT; T (s3); commitT; }
beginT;
beginT; y := new C; commitT;
y.f := v;

abortT;
else {

beginT;
beginT; y := new C; abortT;
T (s3);

abortT;
beginT; y.f := v; commitT; };

c′1

z.f := v′; }
catch(Exception x′) { s3 }

Figure 8.3: An example program transformation.

8.4 Some observations 135

In Figure 8.3 an example transformation is presented. It is assumed that x and z.f are
expressions with security level Low and that y.f is an expression with security level High.
The labels above the arrows refer to the (parts of the) rules in Definitions 22 and 23 that
are used for the program transformation.

One can extend the results of the previous section and show that the transformation
removes timing leaks from non-interfering programs. The proofs are similar to those of the
previous section, but they are more involved, because of the increased complexity of the
semantics and definitions of non-interference73.

8.3.4 Enforcing termination-sensitive non-interference

In order to yield time-sensitive termination-sensitive non-interfering programs, the trans-
formation must take as inputs non-interfering low-recursive programs. The framework
discussed in Chapter 7 can be used to prove such properties for sequential Java programs.

8.4 Some observations

This section describes some general observations about our approach, as well as some
problems and possible solutions when it is applied in practice. We describe these practical
concerns in the context of the (sequential part of the) programming language Java. However
we want to stress that the code translation can be applied to any object-oriented language
as long as (nested) transaction mechanisms are supported or can be implemented.

8.4.1 Total execution time

The main problem with our transformation is that the total execution time of a program can
dramatically increase. Since we always execute both branches of an if-then-else statement
the executing time of these increases to the sum of the execution time of both branches.
Obviously, for larger programs this is completely impractical. We therefore propose to only
use the program transformation in those parts of a program that handle secret information.
Examples of these include password checking routines and cryptographic operations.

8.4.2 Time-outs

We do not want to use transactions which can time-out, i.e., which have a maximum bound
on the time they can take, then time-out and consequently perform an abort. Either one
of two things can happen in such a scenario both of which are undesirable:

1. Information can be leaked.

2. The semantics of our language is no longer preserved.

73See Section B.2 in the appendix for a formal definition of time-sensitive non-interference in the current
setting.

136 Enforcing time-sensitive non-interference

Consider the translation T from Definition 19 again. Suppose that each transaction-block
has a fixed time-out tto. Then if the statement c1 hangs and the statement c2 terminates
normally in a time tc2 < tto the following situation occurs:

– if c evaluates to true both transactions will be aborted, the first (c2) explicitly via
a call to abortT the second (c1) implicitly via a time-out (because c1 does not
terminate),

– however if c evaluates to false then the first transaction-block will again time-out
and thus abort, but the second block will be executed.

So in this scenario information can be leaked (about the value of c).
We can prevent this undesirable behavior by putting the complete if-then -else

in a transaction block, i.e., if body is the (translated) if-then-else from Definition 19,
we would put this again inside a transaction block, thereby obtaining program fragment
beginT; body; commitT;. Information is now no longer leaked because if one of the
inner transaction blocks time-outs the outer block will obviously also time-out and thus
the whole if-then-else will no longer be executed. However, in this case the semantics
of our language is no longer preserved.

8.4.3 Termination

Our transformation may turn a terminating program into a program that hangs, which
is clearly undesirable. Non-termination arises in the transformation when we consider
program fragments like if e then s1 else s2 (a similar argument applies to statements
that may throw exceptions). If statement c1 terminates normally and c2 hangs then
the translated program will always hang. This behavior results from the fact that the
termination mode of a statement in a way overrules the transaction mechanism. In order
to minimize the cases of non-termination and the overhead caused by our transformation,
the translation of if-then-else blocks with a low conditional is given by the obvious
recursive clause. Finer grained approaches that do not introduce non-termination are left
for future work.

8.4.4 Timing model

Our operational semantics adopts a very simple model of time. In particular, the execution
time of arithmetic expressions is constant and independent of the values assigned to vari-
ables. Furthermore, our model of execution time does not reflect the fact that the execution
time for a given state may vary depending on the execution history of the program. Thus
mechanisms such as caching interfere with our approach and could allow timing leaks.

One drastic solution is to turn off all caching features, such as data-cache, instruction-
cache and virtual memory. A better solution would be to impose appropriate interactions
between caching and transaction mechanisms. This is left for future work.

8.4 Some observations 137

8.4.5 Preventing code explosion

Automatic program transformations may lead to a substantial increase in the size of code,
or even to code explosion. Our approach is no exception to this, since the size of the trans-
formed code is exponential in the number of nested ifs. In order to avoid code explosion,
one can implement the transaction mechanism at the bytecode level using subroutines. The
basic idea there is that conditional branching statements, which are usually compiled as,

Java bytecode

1 ifeq i
.. s2

i − 1 goto j
i s1

..
j return

are compiled, if they branch over a high expression, into

1 ifeq 9 13 jsr k2

2 beginT 14 abortT

3 jsr k1 15 goto 18
4 abortT 16 return

5 beginT k1 store x
6 jsr k2 s′1
7 commitT ...
8 goto 18 ret x
9 beginT k2 store x
10 jsr k1 s′2
11 commitT ...
12 beginT ret x

where the instruction jsr k calls the subroutine starting at k.

Another method that can be used to minimize code explosion is the use of assertions. The
method is complementary, in that it aims at reducing the branching at instructions that
may raise an exception, but in fact do not. Consider the following code fragment:

//@ assert o1!=null

o1.f = c;

The assertion states that the variable o1 is not a null reference. Since this prevents a branching
instruction it means in particular that the assignment does not need to be encapsulated inside
a try-catch block, which simplifies the program transformation considerably. That is, provided
the assertion is true, which has to be checked with a separate tool such as ESC/Java2 [CK04].
Note that assertions can also be used to improve the precision of information flow type systems
and other approaches for checking non-interference such those discussed in previous chapters.

138 Enforcing time-sensitive non-interference

8.4.6 Optimizing and JIT-compiling

Although we prove that the transformation at the source code level removes all timing leaks we
need to be careful when compiling and running the transformed program. In the case of Java
we have to ensure that no optimizations are performed when compiling to bytecode. A ‘smart’
compiler probably removes code fragments like beginT; . . . ; abortT since semantically these
are equivalent to a skip statement. In our approach it is crucial that these code-blocks are
also present in the compiled bytecode program. Other forms of optimization can have similar
undesirable results.

Java bytecode is interpreted by a virtual machine. All modern Java virtual machines use, so
called, just-in-time (JIT) compilation of bytecode. This means that code is compiled to native
machine language ‘on the fly’ and that calls to the same method with the same parameters can
take different execution times74 (if the code needs to be compiled on the fly or not). If no timing
leaks are allowed then this JIT-compilation has to be disabled and the bytecode simply needs to
be interpreted without optimization.

8.4.7 Nested transactions in Java

As far as we know there is no API that implements nested transactions for the Java Standard Edi-
tion. Both the Java Enterprise Edition and the Java tailored for smart cards, Java card [Che00],
have transaction mechanisms. The former in the form of the Java Transaction API75 and the
latter has transactions as a core language feature. However both transaction mechanisms only
allow non-nested transactions.

The one actual implementation of a nested transaction mechanism (for a language of the Java
family) we are aware of is the implementation by Lecomte, Grimaud and Donsez [LGD99] for
Java card. In order to empirically establish how well our proposed approach works we need to
implement a nested transaction mechanism [Mos81]. We leave this as future work.

8.5 Related work

Agat [Aga00a, Aga00c] suggests an approach for removing timing leaks based on program trans-
formation. In essence his approach involves dummy assignments and branching instructions
which take exactly the same time as normal assignments and branching instructions. By padding
a program with these dummy instructions he can prove that the resulting program will always
execute in a time which only depends on non-secret variables, thereby removing all timing leaks.
An additional type system then enforces that well-typed padded programs are time-sensitive
termination-sensitive non-interfering, under the restriction that all guards of while statements
are typed minimal. The programming language Agat considers is an imperative language with
arrays, but without objects or exceptions. In [Aga00b] Agat also implemented his approach, using
(part of) Java bytecode as his programming language.

Recently, Hedin and Sands [HS05] have extended Agat’s work towards an object-oriented
language. However, for now, exceptions are not supported.

74Assuming the method is evaluated in the same state.
75http://java.sun.com/products/jta/

http://java.sun.com/products/jta/

8.6 Conclusions 139

Köpf and Mantel [KM04] exposed ideas of how to improve type systems to eliminate timing
leaks by incorporating unification. They look at a simple imperative language without objects.

Di Pierro, Hankin and Wiklicky [DPHW05] have proposed a probabilistic padding algorithm
for removing timing leaks in the context of probabilistic process algebra.

A completely different approach is to use some kind of probabilistic reasoning applicable to
worst execution time [EES+03]. Since these techniques only address the same problem, but work
inherently different from our approach, we will not discuss it further here.

8.6 Conclusions

We show that, under certain assumptions, it is possible to transform termination-sensitive non-
interfering object-oriented programs (which can throw exceptions) into object-oriented programs
that maintain the stronger form of time-sensitive non-interference.

140 Enforcing time-sensitive non-interference

Chapter 9

Conclusions

“It’s important perhaps to point out here that se-
cure programs, reliable programs and correct pro-
grams are all different things. Knowing how to
write provably secure programs is very different
from saying we know how to write reliable or cor-
rect programs.”

– Alan Cox [Dum05]

In this final chapter we present the conclusions from the previous chapters and give some general
comments on the research preformed in the thesis as a whole. The work presented in this thesis
can broadly be divided into two parts both of which study security properties for programs written
in Java:

Chapter 3, 4 & 5 explore what can be done regarding security properties using state-
of-the-art program verification of traditional functional specifications, consisting of
preconditions, postconditions and invariants.

Chapter 6, 7 & 8 focus on dedicated methods for proving non-interference properties,
ranging from automatic checks for a weak form of non-interference to interactive
theorem proving and program transformations for verification of stronger forms of
non-interference.

As a whole the thesis shows what can be done using the latest specification and verification
techniques. At least for small programs –small in lines of code, not in terms of complexity– the
results are encouraging. We show that it is possible to specify and verify complex behavioral
specifications and security properties, specifically confidentiality as non-interference, for Java
programs, including programs that include complicated language features (such as exceptions).

On a by chapter basis we conclude the following:

142 Conclusions

Chapter 3: Specification and verification of Java programs

This chapter shows some of the semantical problems associated with (Java) program verification.
A number of canonical examples illustrates the semantical challenges involved and the LOOP
verification framework and ESC/Java2 were used to verify these examples. The following are
conclusions of the chapter:

– It is possible and feasible to verify the correctness of JML specifications of small, but
semantically interesting, programs in a real language like Java.

– ESC/Java2 can prove the correctness of fewer programs than the LOOP tool.

– For most users the assurances a tool like ESC/Java2 (currently) can give are high enough.
Its automation and scalability will be far more important features than the occasional
soundness bug (which become rarer and rarer). Only for small core parts of programs
where the highest assurance levels are required the LOOP tool would still be better suited.

– On a more general note, part of the work is switching to the appropriate ‘verification
mindset’, which requires an analytical view on ones own code. This is already necessary
when using JML as a specification language.

We especially want to remark that ESC/Java2 has made a lot of progress compared to its
previous incarnation. Semi-automatic tools that do not have the overhead of a general theorem
prover such as ESC/Java2 (or tools such as Key [ABB+04], or Jive [MMPH00]) seem to be the
future of program verification.

This does not mean that we think that approaches which have formalized Java’s semantics
entirely inside a theorem prover are not useful. On the contrary, since we know that all rules
are provably sound with respect to the Java semantics we have a higher level of assurance that
the correctness proofs of (JML) specifications are also correct. As an aside we want to remark
that it is possible to prove the correctness of the logic separately from the tool, which has been
done for part of the dynamic logic used in the KeY project [Tre05]. In certain small niches the
added control and flexibility provided by a tool like LOOP are a tremendous advantage. But it
seems clear that for large(r) scale verification projects an interactive theorem proving approach
is simply too labor intensive. Of course, in such large scale verification projects one might want
to use both ESC/Java2 and the LOOP tool. The former for the bulk of the work and the initial
specification and verification and the latter for a more in-depth look at certain key areas.

Chapter 4: Specification and verification of control flow properties

The chapter discusses a case study in design, development and formal verification of secure smart
card applications. JML is used to specify some crucial security properties –especially related to
control flow properties– and the LOOP verification framework is used to prove the correctness of
these specifications. The following conclusions stem from this chapter:

– It is possible –at least for small Java Card applets– to analyze control flow directly at the
level of source code. This in contrast to approaches that use some kind of data abstrac-
tion [GD00, HGSC04] –typically involving the construction of a call graph– and which thus
loose details about the actual implementation.

143

– This also ensures that it is possible to find actual implementation errors which can prove
to be security critical. Low level implementation issues, such as overflow of data types and
unwanted exceptions can be detected simultaneously with control flow properties.

There are several aspects left for future research –such as transactions, authentication, links
with abstract protocol descriptions, verification with a more complete API specification, more
complex Java Card applications– which provide ample material for future work.

Finally, the research in this chapter was inspired by the question if it is possible to bridge the
gap between security analysis at the abstract level of e.g., security protocols and the low level of
actual source code. This research attempted to close this gap from below –and has some partial
success on this topic. Another question for future work is if it is possible to bridge this gap from
above e.g., by code-generation techniques.

Chapter 5: Specification and verification of non-interference in
JML

In this chapter the notion of a specification pattern for JML is introduced and it is shown
how such patterns can be used to specify non-interference properties such as confidentiality and
integrity in JML. Any of the JML tools can then be used to verify if the Java program is indeed
non-interfering. The main conclusions of this chapter are:

– It is possible to use JML for specifying non-interference properties like confidentiality and
integrity using specification patterns for JML.

– With some extra effort it is even possible to specify termination-sensitive non-interference
in JML.

– The main disadvantages are that this approach is not complete and that it does not
scale. Hence the work in the next chapters that use dedicated methods for proving non-
interference properties for Java programs.

There is plenty room for future work. One of the questions that remains is whether it is
possible to generate the specification patterns for confidentiality automatically from a secure
information flow policy.

Chapter 6: Statically checking termination-insensitive non-inter-
ference

The chapter introduces another verification framework for checking termination-insensitive non-
interference –the most common notion of confidentiality found in the literature. The framework is
formally developed in the theorem prover PVS. It uses dynamic labeling functions that abstractly
interpret a simple programming language via modification of security levels of variables. The
conclusions for this chapter are:

– The new approach for proving termination-sensitive non-interference is sound and does not
require any user interaction.

144 Conclusions

– Our method generates fewer false positives than classical type-checking based approaches.

– The approach can easily be integrated in a dedicated tool for checking non-interference.

Obviously, there is again room for improvement. An extension to full sequential Java seems
an obvious next step, as is an actual implementation of this work.

Chapter 7: Interactively proving termination-sensitive non-inter-
ference

This chapter discusses another new approach for checking confidentiality. The notion of confiden-
tiality discussed here is termination sensitive non-interference. Bisimulations for Java classes are
used to formally define non-interference. Confidentiality can then be proved using a relational
Hoare logic. This relational Hoare logic has been specified on top of the LOOP semantics. The
rules of the logic are realized as (provable) lemmas in LOOP’s Java semantics in PVS. Conclusions
of this chapter are:

– A Hoare logic on relations, as introduced in this chapter, can be used for (interactively)
proving confidentiality properties in the form of termination-sensitive non-interference.

– The Hoare logic on relations can be used for all sequential Java programs (with the exception
of programs that contain inner-classes and floating point data types).

– The logic is sound with respect to LOOP’s Java semantics.

– If a program is termination-sensitive non-interfering, then –in principle– we can always
prove this. Either directly at the level of the relational Hoare logic or by mixing the
reasoning on the relational Hoare logic level with reasoning on a semantic level.

A number of challenges remain for future work. A start has been made on automating the
interactive proofs by developing powerful proof strategies (tactics) in PVS. This preliminary work
can be extended further.

Another question is whether a relational weakest precondition calculus can be constructed
(by lifting the ‘ordinary’ WP-calculus in the LOOP-framework [Jac04b]). It is not clear if this is
desirable since mixing semantic and syntactic reasoning is less convenient in WP-calculi. Formu-
lating rules that are applicable in all situations seems to lead to rules that become too big and
are thus no longer of any actual use.

In previous work on the LOOP verification framework case studies have been very helpful in
‘fine-tuning’ the verification framework [BCHJ05]. We expect that this is also the case for the
approach discussed in this chapter.

Chapter 8: Enforcing time-sensitive non-interference

This chapter discusses how timing-leaks can be removed for programs written in an object-oriented
language. A program transformation technique is introduced that uses a transaction mechanism
to prevent timing leaks in sequential object-oriented programs. Under some strong assumptions,
the transformation preserves the semantics of programs and yields for every termination-sensitive
non-interfering program a time-sensitive termination-sensitive non-interfering program. For this
chapter we concluded the following:

145

– Under certain assumptions, using nested transactions to remove timing leaks from sequen-
tial object-oriented programs with exceptions is possible.

– Such timing leaks can be removed automatically by using a semantics preserving program
transformation, as introduced in this chapter.

A possible direction of future research is to see if we can use transaction mechanisms to enforce
(standard non-time-sensitive) non-interference in a multi-threaded environment.

General conclusions

We have shown that both behavioral specifications and several non-interference properties can
be verified for Java-like programs of relatively small size. Recall that, even in its weakest form,
non-interference is a very strong property that in practice is only useful in conjunction with a
reasonable downgrading policy. The questions of how the proposed methods scale has not been
addressed, but dedicated automatic approaches, such as proposed in Chapter 6 will obviously
scale better than more general or interactive approaches.

When to use which approach depends on the context. In case one has a project that uses
JML as its main specification language and where confidentiality is just one of the many security
properties that have to be checked then the approach discussed in Chapter 5 seems to be the
most attractive.

However, in cases where confidentiality is the sole security concern an approach like the one
introduced in Chapter 6 is clearly more useful. And some (small but) highly critical modules can
then be verified using the interactive technique described in Chapter 7.

The program transformation from Chapter 8 is probably only useful in very specific niches –in
particular in (parts of) smart cards applets. Time-sensitive termination-sensitive non-interference
is a very strong notion indeed and it is not obvious if any meaningful downgrading policies exist
in this context.

Regarding the LOOP tool, we suspect that this thesis is the last in a series, started by Marieke
Huisman [Hui01] and followed by Joachim van den Berg and Cees-Bart Breunesse [Bre06], that
has the LOOP verification framework as its core subject.

As a final afterthought we wish to emphasize that this thesis is in the first place a theo-
retical study of how to enforce specific security properties –in particular confidentiality as non-
interference. In real world systems one does not have the luxury of just focusing on one aspect
of a system.

146 Conclusions

Bibliography

[AB96] R. Anderson & S.J. Bezuidenhoudt. On the reliability of electronic payment systems.
IEEE Transactions on Software Engineering, 22(5):294–301, 1996.

[AB05] T. Amtoft & A. Banerjee. A Logic for Information Flow Analysis with and Ap-
plication to Forward Slicing of Simple Imperative Programs. Science of Computer
Programming, 2005. Available at: http://www.cis.ksu.edu/~ab/Publications/

lifafs.pdf.

[ABB+04] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager & P.H. Schmitt. The KeY tool. Software
and System Modeling, 2004. Online First issue, to appear in print.

[ABB06] T. Amtoft, S. Banhakavi & A. Banerjee. A Logic for Information Flow in Object-
Oriented Programs. In Proceedings of the Thirty-third Annual ACM Symposium on
Principles of Programming Languages (POPL), 2006.

[ABDF03] M. Avvenuti, C. Bernardeschi & N. De Francesco. Java bytecode verification for
secure information flow. ACM SIGPLAN Notices, 38(12):20–27, 2003.

[ABLP93] M. Abadi, M. Burrows, B. Lampson & G. Plotkin. A Calculus for Access Control in
Distributed Systems. ACM Transactions on Programming Languages and Systems,
15(4):706–734, 1993.

[Abr96] J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[AF99] J. Alves-Foss, ed. Formal Syntax and Semantics of Java, volume 1523 of LNCS.
Springer-Verlag, 1999.

[Aga00a] J. Agat. Transforming out Timing Leaks. In 27th ACM Symposium on Principles of
Programming Languages, pp. 40–53. ACM Press, 2000.

[Aga00b] J. Agat. Transforming out Timing Leaks in Practice, chapter II from [Aga00c].
Department of Computing Science Chalmers University of Technology and Göteborg
University, 2000.

[Aga00c] J. Agat. Type Based Techniques for Covert Channel Elimination and Register Al-
location. Ph.D. thesis, Department of Computing Science Chalmers University of
Technology and Göteborg University, SE-412 96 Göteborg, Sweden, 2000.

http://www.cis.ksu.edu/~ab/Publications/lifafs.pdf
http://www.cis.ksu.edu/~ab/Publications/lifafs.pdf

148 Bibliography

[And01] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley and sons, Inc., 2001.

[AR80] G.R. Andrews & R.P. Reitman. An Axiomatic Approach to Information Flow in
Programs. ACM Transactions on Programming Languages and Systems, 2(1):56–76,
1980.

[BAN89] M. Burrows, M. Abadi & R. Needham. A logic of authentication. Proc. Royal Soc.,
Series A, Volume 426:233–271, 1989.

[Bar03] J. Barnes. High Integrity Sofware–The Spark Approach to Safety and Security.
Addison-Wesley, 2003.

[BCC+05] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino
& E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212–232, 2005. Special section
on formal methods for industrial critical systems.

[BCHJ05] C.-B. Breunesse, N. Cataño, M. Huisman & B. Jacobs. Formal methods for smart
cards: an experience report. Science of Computer Programming, 55:53–80, 2005.

[BDR04] G. Barthe, P. D’Argenio & T. Rezk. Secure Information Flow by Self-Composition.
In R. Foccardi, ed., Proceedings of CSFW’04, pp. 100–114. IEEE Press, 2004.

[Bec01] B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
I. Attali & T. Jensen, eds., Java on Smart Cards: Programming and Security. Revised
Papers, Java Card 2000, International Workshop, Cannes, France, volume 2041 of
LNCS, pp. 6–24. Springer-Verlag, 2001.

[Ben04] A. Benton. Simple Relational Correctness Proofs for Static Analyses and Program
Transformations. In Proceedings of the 31th Symposium on Principals of Program-
ming (POPL). ACM, 2004.

[Ber04] D. Bernstein. Cache-timing attacks on AES, 2004. Available at http://cr.yp.to/
papers.html#cachetiming.

[BFMW01] D. Bartetzko, C. Fischer, M. Müller & H. Wehrheim. Jass - Java with Assertions.
In K. Havelund & G. Rosu, eds., Proceedings of the First Workshop on Runtime
Verification (RV’01), volume 55 of ENTCS. Elsevier Science, 2001.

[BH02] R. Brinkman & J.H. Hoepman. Secure method invocation in Jason. In Proceedings
of Cardis 2002, pp. 29–40. USENIX Assoc., 2002.

[BHJP00] J. van den Berg, M. Huisman, B. Jacobs & E. Poll. A Type-Theoretic Memory Model
for Verification of Sequential Java Programs. In D. Bert, C. Choppy & P. Mosses,
eds., Recent Trends in Algebraic Development Techniques, volume 1827 of LNCS, pp.
1–21. Springer-Verlag, 2000.

[Bib77] K.J. Biba. Integrity considerations for secure computer systems. Technical Report
MTR-3153, MITRE Corp., 1977.

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming

Bibliography 149

[BJ01] J. van den Berg & B. Jacobs. The LOOP compiler for Java and JML. In T. Margaria
& W. Yi, eds., Tools and Algorithms for the Construction and Analysis of Software
(TACAS), volume 2031 of LNCS, pp. 299–312. Springer-Verlag, 2001.

[BJP01] J. van den Berg, B. Jacobs & E. Poll. Formal specification and verification of
Java Card’s application identifier class. In I. Attali & T. Jensen, eds., Java on
Smart Cards: Programming and Security (JavaCard Workshop 2000), volume 2041
of LNCS, pp. 137–150. Springer-Verlag, 2001.

[BL99] J. Bergstra & M. Loots. Empirical semantics for object-oriented programs, 1999.
Artificial Intelligence Preprint Series nr. 007, Dep. Philosophy, Utrecht Univ. http:
//preprints.phil.uu.nl/aips/.

[BLR02] L. Burdy, J.-L. Lanet & A. Requet. JACK (Java Applet Correctness Kit), 2002.
http://www.gemplus.com/smart/r_d/trends/jack.html.

[BM03] B. Beckert & W. Mostowski. A program logic for handling Java Card’s transaction
mechanism. In M. Pezzè, ed., Proceedings, Fundamental Approaches to Software
Engineering (FASE) Conference 2003, Warsaw, Poland, volume 2621 of LNCS, pp.
246–260. Springer-Verlag, 2003.

[BN02] A. Banerjee & D. Naumann. Secure Information Flow and Pointer Confinement in a
Java-like Language. In Proc. of the Fifteenth IEEE Computer Security Foundations
Workshop (CSFW), pp. 253–267. IEEE Computer Society Press, 2002.

[BN05] A. Banerjee & D. Naumann. Stack-Based Access Control for Secure Information
Flow. Journal of Functional Programming, 15(2):131–177, 2005. Special Issue on
Language-Based Security.

[BNSS05] M. Barnett, D. Naumann, W. Schulte & Q. Sun. 99.44% Pure: Functional Abstrac-
tions in Specifications, 2005. Submitted to the Journal of Object Technology.

[Boy03] R. Boyer. Proving Theorems about Java and the JVM with ACL2. In M. Broy
& M. Pizka, eds., Models, Algebras and Logic of Engineering Software, volume 191
of NATO Science Series: Computer & Systems Sciences, pp. 227–290. IOS Press,
Amsterdam, 2003.

[BP03] C.-B. Breunesse & E. Poll. Verifying JML specifications with model fields. In Formal
Techniques for Java-like Programs. Proceedings of the ECOOP’2003 Workshop, 2003.

[BRB05] G. Barthe, T. Rezk & A. Basu. Security Types Preserving Compilation. the Inter-
national Journal of Computer Languages, Systems and Structures, to appear, 2005.

[Bre06] C.-B. Breunesse. On JML: topics in tool-assisted verification of Java programs. Ph.D.
thesis, Radboud University, Nijmegen, The Netherlands, 2006.

[BRLS05] M. Barnett, K. Rustan, M. Leino & W. Schulte. The Spec# Programming System:
An Overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet & T. Muntean,
eds., Construction and Analysis of Safe, Secure, and Interoperable Smart Devices.
International Workshop, CASSIS 2004. Revised Selected Papers, volume 3362 of
LNCS, pp. 49–70. Springer-Verlag, 2005.

http://preprints.phil.uu.nl/aips/
http://preprints.phil.uu.nl/aips/
http://www.gemplus.com/smart/r_d/trends/jack.html

150 Bibliography

[BRW06] G. Barthe, T. Rezk & M. Warnier. Preventing Timing Leaks Through Transactional
Branching Instructions. In Proceedings of the Third Workshop on Quantitive Aspects
of Programming Languages (QAPL 2005), volume 153 of ENTCS, pp. 33–55. Elsevier
Science, 2006.

[BS99] E. Börger & W. Schulte. Initialization problems in Java. Software—Concepts and
Tools, 20(4), 1999.

[CC77] P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 238–252. ACM Press, New York, NY, Los Angeles,
California, 1977.

[CC04] H. Chen & S. Chong. Owned Policies for Information Security. In Proceedings of
the 17th IEEE Computer Security Foundations Workshop (CSFW), 2004.

[CDF+04] E. Contejean, J. Duprat, J.-C. Filliâtre, C. Marché, C. Paulin-Mohring & X. Urbain.
The Krakatoa tool for certification of Java/Java Card programs annotated in JML.
Journal of Logic and Algebraic Programming, 58(1-2):89–106, 2004. Available via
the Krakatoa home page at http://www.lri.fr/~marche/krakatoa/.

[CDV96] J. Crow & B.L. Di Vito. Formalizing Space Shuttle software requirements. In First
Workshop on Formal Methods in Software Practices (FMSP’96), pp. 40—48. ACM,
1996.

[Cha02] P. Chalin. Back to basics: Language support and semantics of basic infinite inte-
ger types in JML and Larch. Technical Report 2002.003.1, Computer Science De-
partment, Concordia University, 2002. http://www.cs.concordia.ca/~faculty/

chalin/.

[Cha03] P. Chalin. Improving JML: For a Safer and More Effective Language. In Formal
Methods Europe 2003, 2003.

[Cha04] P. Chalin. JML Support for Primitive Arbitrary Precision Numeric Types: Definition
and Semantics. Journal of Object Technology, 3(6):57–79, 2004.

[Che00] Z. Chen. Java Card technology for smart cards: architecture and programmer’s guide.
Addison-Wesley, 2000.

[CHH02] D. Clark, C. Hankin & S. Hunt. Information Flow for ALGOL-like Languages.
Computer Languages, 28(1):3–28, 2002. Special Issue on Computer Languages and
Security.

[Chi] Chipknip, the Dutch electronic wallet smart card. http://www.chipknip.nl.

[CK04] D.R. Cok & J.R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet & T. Muntean, eds., Proceedings of CASSIS:
Construction and Analysis of Safe, Secure and Interoperable Smart devices, volume
3362 of LNCS, pp. 108–128. Springer-Verlag, 2004.

http://www.lri.fr/~marche/krakatoa/
http://www.cs.concordia.ca/~faculty/chalin/
http://www.cs.concordia.ca/~faculty/chalin/
http://www.chipknip.nl

Bibliography 151

[CKRW99] P. Cenciarelli, A. Knapp, B. Reus & M. Wirsing. An Event-Based Structural Oper-
ational Semantics of Multi-Threaded Java. In Alves-Foss [AF99], pp. 157–200.

[CL02a] Y. Cheon & G. Leavens. A runtime assertion checker for the Java Modeling Lan-
guage (JML). In H. Arabnia & Y. Mun, eds., International Conference on Software
Engineering Research and Practice (SERP ’02), pp. 322–328. CSREA Press, Las
Vegas, 2002.

[CL02b] Y. Cheon & G.T. Leavens. A Simple and Practical Approach to Unit Testing: The
JML and JUnit Way. In B. Magnusson, ed., ECOOP 2002 – Object-Oriented Pro-
gramming, 16th European Conference, volume 2374 of LNCS, pp. 231–255. Springer-
Verlag, 2002.

[CLSE05] Y. Cheon, G. Leavens, M. Sitaraman & S. Edwards. Model variables: cleanly sup-
porting abstraction in design by contract. spe, 35(6):583–599, 2005.

[CM04] S. Chong & A.C. Myers. Security Policies for Downgrading. In 11th ACM Conference
on Computer and Communications Security (CCS). ACM Press, 20004.

[CM04] C.J.F. Cremers & S. Mauw. Operational semantics of security protocols. In S. Leue &
T. Syst, eds., Scenarios: models, transformations and tools, international workshop,
dagstuhl castle, germany, september 7-12, 2003, revised selected papers, volume 3466
of LNCS. Springer-Verlag, 2004.

[Coq] The Coq proof assistant, http://coq.inria.fr/.

[Cor06] R. Corin. Analysis Models for Security Protocols. Ph.D. thesis, University of Twente,
Enschede, The Netherlands, 2006.

[Cou96] P. Cousot. Abstract interpretation. Symposium on Models of Programming Lan-
guages and Computation, ACM Computing Surveys, 28(2):324–328, 1996.

[CR05] P. Chalin & F. Rioux. Non-null References by Default in the Java Modeling Language.
In Proceedings of the Workshop on the Specification and Verification of Component-
Based Systems (SAVCBS’05). Lisbon, Portugal, 2005.

[DAC99] M.B. Dwyer, G.S. Avrunin & J.-C. Corbett. Patterns in Property Specification for
Finite-State Verification. In Proceedings of the 21st International Conference on
Software Engineering (ICSE ’99). ACM, 1999.

[DD77] D.E. Denning & P.J. Denning. Certification of programs for secure information flow.
Communications of the ACM, 20(7):504–513, 1977.

[Den76] D.E. Denning. A Lattice Model of Secure Information Flow. Communications of the
ACM, 19(5), 1976.

[Den82] D.E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[DFM05] G. Dufay, A. Felty & S. Matwin. Privacy-Sensitive Information Flow with JML. In
Conference on Automated Deduction (CADE) proceeedings, volume 3632 of LNCS.
Springer-Verlag, 2005.

http://coq.inria.fr/

152 Bibliography

[DHS05] Á. Darvas, R. Hähnle & D. Sands. A Theorem Proving Approach to Analysis of Secure
Information Flow. In Proc. 2nd International Conference on Security in Pervasive
Computing, LNCS. Springer-Verlag, to appear, 2005.

[Dij76] E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DM05] Á. Darvas & P. Müller. Reasoning About Method Calls in JML Specifications. In
Workshop on Formal Techniques in Java-like Programs (FTfJP) prooceedings, 2005.

[DNS05] D. Detlefs, G. Nelson & J.B. Saxe. Simplify: a theorem prover for program checking.
Journal of the ACM, 52(3):365–473, 2005.

[DPHW05] A. Di Pierro, C. Hankin & H. Wiklicky. Time-based Interference and Probabilistic
Padding. In Informal proceedings of the 2nd International Workshop on Programming
Language Interference and Dependence (PLID’05), 2005.

[Dum05] E. Dumbill. The Next 50 Years of Computer Security: An Interview with Alan
Cox. O’reilly network, http://www.oreillynet.com/pub/a/network/2005/09/12/
alan-cox.html, 2005.

[DY83] D. Dolev & A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(6), 1983.

[EES+03] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson & H. Hansson. Worst-case
execution-time analysis for embedded real-time systems. International Journal on
Software Tools for Technology Transfer (STTT), 4(4):437–455, 2003.

[ESC] ESC/JAVA2 project. Available at:
http://secure.ucd.ie/products/opensource/ESCJava2/.

[Ese01] O. Eseling. iContract: Design by contract in Java. available at: http://www.

javaworld.com/archives/index-jw-02-2001.html, 2001.

[Fil] J.-C. Filliâtre. Why: A multi-language multi-prover verification condition generator.

[Fin] FindBugs - Find Bugs in Java Programs. Available at: http://findbugs.

sourceforge.net/.

[FLL+02] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe & R. Stata. Extended
static checking for Java. In Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), volume 37(5) of
SIGPLAN Notices, pp. 234–245. ACM, 2002.

[Flo] Flow Caml website. http://cristal.inria.fr/~simonet/soft/flowcaml/.

[Flo67] R.W. Floyd. Assigning meaning to programs. In J.T. Schwartz, ed., Mathematical
aspects of computer science: Proc. American Mathematics Soc. symposia, volume 19,
pp. 19–31. American Mathematical Society, Providence RI, 1967.

[For00] Formal Systems (Europe) Ltd. Failures-Divergence Refinement, FDR2 user manual,
2000.

http://www.oreillynet.com/pub/a/network/2005/09/12/alan-cox.html
http://www.oreillynet.com/pub/a/network/2005/09/12/alan-cox.html
http://secure.ucd.ie/products/opensource/ESCJava2/
http://www.javaworld.com/archives/index-jw-02-2001.html
http://www.javaworld.com/archives/index-jw-02-2001.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://cristal.inria.fr/~simonet/soft/flowcaml/

Bibliography 153

[Fow00] M. Fowler. UML Distilled. Addison-Wesley, 2000.

[GD00] P. Giambiagi & M. Dam. Confidentiality for mobile code: The case of a simple
payment protocol. In Proc. 13th IEEE Computer Security Foundations Workshop,
2000.

[Geh83] N. Gehani. Ada: An Advanced Introduction. Prentice-Hall, 1983.

[GH98] W. Griffoen & M. Huisman. A Comparison of PVS and Isabelle/HOL. In Proceedings
of Theorem Proving in Higher Order Logics (TPHOLs ’98), volume 1479 of LNCS,
pp. 123–142. Springer-Verlag, 1998.

[GHJ05] A.D. Gordon, C. Haack & A. Jeffrey. CRYPTYC: Cryptographic Protocol Type
Checker, 2005. http://www.cryptyc.org/.

[GJSB00] J. Gosling, B. Joy, G. Steele & G. Bracha. The Java Language Specification Sec-
ond Edition. The Java Series. Addison-Wesley, 2000. http://java.sun.com/docs/
books/jls/second_edition/html/j.title.doc.html.

[Glo01] Global Platform. Open platform card specification version 2.1, 2001. Available at
http://www.globalplatform.org/.

[GM82] J. Goguen & J. Meseguer. Security policies and security models. In IEEE Symp. on
Security and Privacy, pp. 11–20. IEEE Comp. Soc. Press, 1982.

[GM04] R. Giacobazzi & I. Mastroeni. Abstract Non-Interference: Parameterizing Non-
Interference by Abstract Interpretation. In POPL04 proceedings, 2004.

[GMP93] D. Guaspari, C. Marceau & W. Polak. Formal verification of ada programs. In
U. Martin & J.M. Wing, eds., First International Workshop on Larch, pp. 104–141.
Springer, 1993.

[Gra95] P. Graham. ANSI Common Lisp. Prentice-Hall, 1995.

[Gri81] D. Gries. The Science of Programming. Springer, 1981.

[HGSC04] M. Huisman, D. Gurov, C. Sprenger & G. Chugunov. Checking Absence of Illicit
Applet Interactions: A Case Study. In Fundamental Approaches to Software Engi-
neering (FASE’04), volume 2984 of LNCS, pp. 84–98. Springer-Verlag, 2004.

[HJ00a] M. Huisman & B. Jacobs. Inheritance in higher order logic: Modeling and reasoning.
In M. Aagaard & J. Harrison, eds., Theorem Proving in Higher Order Logics, volume
1869 of LNCS, pp. 301–319. Springer, Berlin, 2000.

[HJ00b] M. Huisman & B. Jacobs. Java program verification via a Hoare logic with abrupt
termination. In T. Maibaum, ed., Fundamental Approaches to Software Engineering
(FASE’00), volume 1783 of LNCS, pp. 284–303. Springer-Verlag, 2000.

[HJKO04] E. Hubbers, B. Jacobs, J. Kiniry & M. Oostdijk. Counting votes with formal methods.
In C. Rattray, S. Maharaj & C. Shankland, eds., Algebraic Methodology and Software
Technology (AMAST’04), volume 3116 of LNCS, pp. 241–257. Springer-Verlag, 2004.

http://www.cryptyc.org/
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://www.globalplatform.org/

154 Bibliography

[HM01] P.H. Hartel & L. Moreau. Formalizing the safety of Java the Java virtual machine,
and Java Card. ACM Computing Surveys, 33(4):517–558, 2001.

[HM05] R. Hähnle & W. Mostowski. Verification of Safety Properties in the Presence of
Transactions. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet & T. Muntean,
eds., Post Conference Proceedings of CASSIS: Construction and Analysis of Safe,
Secure and Interoperable Smart devices, Marseille, volume 3362 of LNCS, pp. 151–
171. Springer-Verlag, 2005.

[HO03] E. Hubbers & M. Oostdijk. Generating JML specifications from UML state diagrams.
In Proceedings of the Forum on specification & Design Languages (FDL 2003), pp.
263–273. University of Frankfurt, 2003. Proceedings appeared as CD-Rom with ISSN
1636-9874.

[Hoa69] C. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12:576–580, 583, 1969.

[HOP03] E. Hubbers, M. Oostdijk & E. Poll. From Finite State Machines To Provably Correct
Java Card Applets. In Proceedings of the 18th IFIP Information Security Conference.
Kluwer Academic Publishers, 2003.

[HOP04] E. Hubbers, M. Oostdijk & E. Poll. Implementing a formally verifiable security
protocol in Java Card. In D. Hutter, G. Müller, W. Stephan & M. Ullmann, eds.,
Proceedings of the 1st International Conference on Security in Pervasive Computing,
volume 2802 of LNCS, pp. 213–226. Springer-Verlag, 2004.

[Hor05] C. Horstmann. Java concepts. Wiley, 4th edition, 2005.

[HP04] E. Hubbers & E. Poll. Reasoning about card tears and transactions in Java Card. In
Fundamental Approaches to Software Engineering (FASE’2004), Barcelona, Spain,
volume 2984 of LNCS, pp. 114–128. Springer, 2004.

[HR98] N. Heinze & J. Riecke. The SLam calculus:programming with secrecy and integrity.
In Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL), pp. 365–377, 1998.

[HRS02] D. Haneberg, W. Reif & K. Stenzel. A method for secure smartcard applications. In
Proceedings of AMAST 2002, volume 2422 of LNCS, pp. 319–333. Springer-Verlag,
2002.

[HS05] D. Hedin & D. Sands. Timing Aware Information Flow Security for a JavaCard-like
Bytecode. In F. Spoto, ed., First Workshop on Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE) proceedings, ENTCS, pp. 149–166. EL-
sevier, 2005.

[Hui01] M. Huisman. Reasoning about Java programs in higher order logic with PVS and
Isabelle. Ph.D. thesis, University of Nijmegen, Nijmegen, The Netherlands, 2001.

[ISO] International Standard ISO 7816. Available at:
http://www.iso.org/iso/en/ISOOnline.frontpage.

http://www.iso.org/iso/en/ISOOnline.frontpage

Bibliography 155

[Jac01] B. Jacobs. A formalisation of Java’s exception mechanism. In D. Sands, ed., Pro-
gramming Languages and Systems (ESOP), volume 2028 of LNCS, pp. 284–301.
Springer, Berlin, 2001.

[Jac02] B. Jacobs. Exercises in coalgebraic specification. In R.C. R. Backhouse & J. Gibbons,
eds., Algebraic and Coalgebraic Methods in the Mathematics of Program Construc-
tion, volume 2297 of LNCS, pp. 237–280. Springer, Berlin, 2002.

[Jac03] B. Jacobs. Java’s integral types in PVS. In E. Najim, U. Nestmann & P. Stevens,
eds., Formal Methods for Open Object-Based Distributed Systems (FMOODS 2003),
volume 2884 of LNCS, pp. 1–15. Springer, Berlin, 2003.

[Jac04a] B. Jacobs. Semantics and Logic for Security Protocols, 2004.
available at:
http://www.cs.ru.nl/B.Jacobs/PAPERS/protsemlog.pdf.

[Jac04b] B. Jacobs. Weakest precondition reasoning for Java programs with JML annotations.
Journal of Logic and Algebraic Programming, 58(1-2):61–88, 2004.

[Jas] Jass: Java with assertions. http://csd.informatik.uni-oldenburg.de/~jass/

index.html.

[Jif] Jif:Java + information flow. http://www.cs.cornell.edu/jif/.

[JKW03] B. Jacobs, J. Kiniry & M. Warnier. Java Program Verification Challenges. In F.S.
de Boer, M.M. Bonsangue, S. Graf & W.P. de Roever, eds., Formal Methods for
Components and Objects, volume 2852 of LNCS, pp. 202–219. Springer, Berlin, 2003.

[JL00] R. Joshi & K. Leino. A semantic approach to secure information flow. Science of
Comput. Progr., 37(1-3):113–138, 2000.

[JML] JML web site. http://www.jmlspecs.org.

[JMR04] B. Jacobs, C. Marché & N. Rauch. Formal verification of a commercial smart card
applet with multiple tools. In C. Rattray, S. Maharaj & C. Shankland, eds., Algebraic
Methodology and Software Technology (AMAST’04), volume 3116 of LNCS, pp. 21–
22. Springer, Berlin, 2004.

[JOW04] B. Jacobs, M. Oostdijk & M. Warnier. Source Code Verification of a Secure Payment
Applet. Journ. of Logic and Algebraic Programming, 58(1-2):107–120, 2004.

[JP03] B. Jacobs & E. Poll. Coalgebras and monads in the semantics of Java. Theoretical
Computer Science, 291(3):329–349, 2003.

[JP04] B. Jacobs & E. Poll. Java Program Verification at Nijmegen: Developments and
Perspective. In Software Security - Theories and Systems: Second Mext-NSF-JSPS
International Symposium, ISSS 2003, Tokyo, Japan, November 4-6, 2003, volume
3233 of LNCS, pp. 134 – 153. Springer, 2004.

http://www.cs.ru.nl/B.Jacobs/PAPERS/protsemlog.pdf
http://csd.informatik.uni-oldenburg.de/~jass/index.html
http://csd.informatik.uni-oldenburg.de/~jass/index.html
http://www.cs.cornell.edu/jif/
http://www.jmlspecs.org

156 Bibliography

[JPW05] B. Jacobs, W. Pieters & M. Warnier. Statically checking confidentiality via dynamic
labels. In WITS ’05: Proceedings of the 2005 workshop on Issues in the theory of
security, pp. 50–56. ACM Press, New York, NY, USA, 2005.

[Kin06] J. Kiniry. Exceptions in Java and Eiffel: Two Extremes in Exception Design and
Application. In C. Doney et al, ed., Exception Handling, volume 4119 of LNCS, pp.
288–300. Springer-Verlag, 2006.

[KM04] B. Köpf & H. Mantel. Eliminating timing leaks by unification (extended abstract),
2004.

[Koc96] P. Kocher. Timing attacks on implementations of diffie-helman, rsa, dss, and other
systems. In N. Koblitz, ed., Advances in Cryptology – CRYPTO’96, volume 1109 of
LNCS, pp. 104–113. Springer-Verlag, 1996.

[Kra98] R. Kramer. iContract - The Java(tm) Design by Contract(tm) Tool. In TOOLS ’98:
Proceedings of the Technology of Object-Oriented Languages and Systems, p. 295.
IEEE Computer Society, 1998.

[KS02] D. Kozen & M. Stillerman. Eager Class Initialization in Java. In W. Damm &
E. Olderog, eds., Proc. 7th Int. Symp. Formal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT’02), volume 2469 of LNCS, pp. 71–80. Springer-Verlag,
2002.

[Lam73] B.W. Lampson. A note on the Confinement Problem. Communications of the ACM,
16(10):613–615, 1973.

[LB73] L.J. LaPadula & D.E. Bell. Secure Computer systems: A mathematical model. Tech-
nical Report MTR-2547, Vol 2, MITRE Corp., 1973. Reprinted in J. of Computer
Security, vol 4, no 2–3, pp. 239–263, 1996.

[LBR99a] G. Leavens, A. Baker & C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java, 1999. Techn. Rep. 98-06, Dep. of Comp. Sci., Iowa
State Univ. http://www.cs.iastate.edu/~leavens/JML.html.

[LBR99b] G.T. Leavens, A.L. Baker & C. Ruby. JML: A Notation for Detailed Design. In
H. Kilov, B. Rumpe & W. Harvey, eds., Behavioral Specification for Businesses and
Systems, chapter 12, pp. 175–188. Kluwer Academic Publishers, 1999.

[Lev01] S. Levy. Crypto. Penguin Books, 2001.

[LGD99] S. Lecomte, G. Grimaud & D. Donsez. Implementation of Transactional Mechanisms
for Open SmartCard. In GEMPLUS Developer Conference, 1999.

[LMWF94] N. Lynch, M. Merritt, W. Weihl & A. Fekete. Atomic Transactions. Morgan Kauf-
mann Publishers, 1994.

[Low95] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters, 56:131–133, 1995.

http://www.cs.iastate.edu/~leavens/JML.html

Bibliography 157

[Low98] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, 1998.

[LPC+05] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok & J. Kiniry. JML
reference Manual (draft), 2005. Available at:
http://www.jmlspecs.org/jmlrefman/jmlrefman_toc.html.

[LW94] B. Liskov & J. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 7(16(6)):1811–1841, 1994.

[LY99] T. Lindholm & F. Yellin. The Java Virtual Machine Specification. Addison-Wesley,
2nd edition, 1999.

[LZ05] P. Li & S. Zdancewic. Downgrading Policies and Relaxed Noninterference. In Pro-
ceedings of the 32nd Symposium on Principals of Programming (POPL), pp. 158–170.
ACM, 2005.

[MBRS04] E. Ábrahám Mumm, F.S. de Boer, W.P. de Roever & M. Steffen. An Assertion-based
Proof System for Multithreaded Java. Special issue of TCS, 331:251–290, 2004.

[Mea96] C. Meadows. The NRL Protocol Analyzer: An Overview. Technical report, Center
for High Assurance Computer Systems, Navel Research Laboratory, 1996.

[Mea03] C. Meadows. Formal Methods for Cryptographic Protocol Analysis: Emerging Issues
and Trends. IEEE Journal on Selected Areas in Communication, 21(1):44–54, 2003.

[Mey92] B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10):40–51, 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[ML97] A.C. Myers & B. Liskov. A Decentralized Model for Information Flow Control. In
Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP),
pp. 129–142, 1997.

[MM01] R. Marlet & D.L. Métayer. Security properties and Java Card specificities to be
studied in the SecSafe project. Technical Report SECSAFE-TL-006, Trusted Logic,
2001.

[MMPH00] J. Meyer, P. Müller & A. Poetzsch-Heffter. The jive system—implementation de-
scription, 2000. Available at http://softech.informatik.uni-kl.de/downloads/
publications/jive.pdf.

[Moo99] S. Moore. Proving Theorems About Java-Like Byte Code. In Correct System Design,
Recent Insight and Advances, (to Hans Langmaack on the occasion of his retirement
from his professorship at the University of Kiel), volume 1710 of LNCS, pp. 139–162.
Springer-Verlag, 1999.

[Mos81] J.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
Ph.D. thesis, MIT, 1981.

http://www.jmlspecs.org/jmlrefman/jmlrefman_toc.html
http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf
http://softech.informatik.uni-kl.de/downloads/publications/jive.pdf

158 Bibliography

[Mos02] W. Mostowski. Rigorous development of JavaCard applications. In T. Clarke,
A. Evans & K. Lano, eds., Proc. Fourth Workshop on Rigorous Object-Oriented
Methods, London, 2002.

[Mos05a] W. Mostowski. Formal Development of Safe and Secure Java Card Applets. Ph.D.
thesis, Chalmers University of Technology, Department of Computer Science and
Engineering, Göteborg, Sweden, 2005.

[Mos05b] W. Mostowski. Formalisation and verification of Java Card security properties in
Dynamic Logic. In M. Cerioli, ed., Proceedings, Fundamental Approaches to Software
Engineering (FASE) Conference 2005, Edinburgh, Scotland, volume 3442 of LNCS,
pp. 357–371. Springer, 2005.

[MP05] J. Manson & W. Pugh. The Java Memory Model. In Proceedings of the 32nd Sym-
posium on Principals of Programming (POPL), pp. 378–392. ACM, 2005.

[MPH00] J. Meyer & A. Poetzsch-Heffter. An architecture for interactive program provers. In
S. Graf & M. Schwartzbach, eds., Tools and Algorithms for the Construction and
Analysis of Systems, volume 1785 of LNCS, pp. 63–77. Springer, Berlin, 2000.

[MSZar] A.C. Myers, A. Sabelfeld & S. Zdancewic. Enforcing Robust Declassification. Journal
of Computer Security, 2006, to appear. Available at: http://www.cs.chalmers.se/
~andrei/msz-jcs.pdf.

[Mye99] A.C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In Proceedings
of the 26th ACM Symposium on Principles of Programming Languages (POPL’99),
1999.

[NL97] G. Necula & P. Lee. Proof-carrying code. In Proceedings of the 24th Symposium on
Principals of Programming (POPL). ACM, 1997.

[NN92] H.R. Nielson & F. Nielson. Semantics with Applications. Wiley Professional Com-
puting, 1992.

[ORSH95] S. Owre, J. Rushby, N. Shankar & F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Trans. on Softw.
Eng., 21(2):107–125, 1995.

[OSRSC99] S. Owre, N. Shankar, J.M. Rushby & D.W.J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, USA, 1999. URL
http://pvs.csl.sri.com/, available at http://pvs.csl.sri.com/.

[OW03] M. Oostdijk & M. Warnier. On the combination of Java Card Remote Method In-
vocation and JML. Technical Report NIII-R0321, Nijmegen Institute for Computer
and Information Sciences, 2003.

[Par81] D. Park. Concurrency and Automata on Infinite Sequences. In P. Deussen, ed., Pro-
ceedings 5th GI Conference on Theoretical Computer Science, volume 104 of LNCS,
pp. 15–32. Springer, Berlin, 1981.

http://www.cs.chalmers.se/~andrei/msz-jcs.pdf
http://www.cs.chalmers.se/~andrei/msz-jcs.pdf
http://pvs.csl.sri.com/
http://pvs.csl.sri.com/

Bibliography 159

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover. LNCS. Springer, Berlin, 1994.

[Pau98] L. Paulson. The inductive approach to verifying cryptographic protocols. Journ. of
Computer Security, 6:85–128, 1998.

[PBB+04] M. Pavlova, G. Barthe, L. Burdy, M. Huisman & J.-L. Lanet. Enforcing High Level
Security Properties For Applets. In J.J. Quisquater, P. Paradinas, Y. Deswarte &
A. El Kalam, eds., Proceedings of Smart Card Research and Advanced Applications
(CARDIS). IFIP, Kluwer Academic Publishers, 2004.

[PBJ00] E. Poll, J. van den Berg & B. Jacobs. Specification of the Java Card API in JML.
In J. Domingo-Ferrer, D. Chan & A. Watson, eds., Fourth Smart Card Research and
Advanced Application Conference (CARDIS’2000), pp. 135–154. Kluwer, 2000.

[PP03] C.P. Pfleeger & S.L. Pfleeger. Security in Computing. Prentice Hall, 3th edition,
2003.

[Pro] Proton, the Belgian electronic wallet smart card. http://www.proton.be.

[PS03] F. Pottier & V. Simonet. Information flow inference for ML. ACM Transactions on
Programming Languages and Systems, 25(1):117–158, 2003.

[PVS] The PVS verification system, http://pvs.csl.sri.com/.

[RE00] W. Rankl & W. Effing. Smart Card Handbook. John Wiley & Sons, 2nd edition,
2000.

[RG02] M. Richters & M. Gogolla. OCL: Syntax, Semantics, and Tools. In Object Modeling
with the OCL, The Rationale behind the Object Constraint Language, pp. 42–68.
Springer-Verlag, London, UK, 2002.

[RM02] A. Roychoudhury & T. Mitra. Specifying Multithreaded Java Semantics for Program
Verification. In Proceedings of the International Conference on Software Engineering
— ICSE, 2002.

[RTJ01] J. Rothe, H. Tews & B. Jacobs. The coalgebraic class specification language CCSL.
Journal of Universal Computer Science, 7(2), 2001.

[Rut00] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

[SCFY96] R. Sandhu, E. Coyne, H. Feinstein & C. Youman. Role-Based Access Control Models.
IEEE Computer, 29(2nd), 1996.

[Sch86] D. Schmidt. Denotational semantics: a methodology for language development.
William C. Brown Publishers Dubuque, IA, USA, 1986.

[Sch00] B. Schneier. Secrets & Lies. Wiley, 2000.

[Sec] European IST-1999-29075 Project SecSafe. http://www.doc.ic.ac.uk/~siveroni/
secsafe/.

http://www.proton.be
http://pvs.csl.sri.com/
http://www.doc.ic.ac.uk/~siveroni/secsafe/
http://www.doc.ic.ac.uk/~siveroni/secsafe/

160 Bibliography

[SM03] A. Sabelfeld & A.C. Myers. Language-Based Information-Flow Security. IEEE Jour-
nal on selected areas in communications, 21(1), 2003.

[SORSC99] N. Shanker, S. Owre, J. Rushby & D. Stringer-Calvert. PVS prover guide, 1999.
Version 2.3.

[SS01] A. Sabelfeld & D. Sands. A Per Model of Secure Information Flow in Sequential
Programs. In S. Swierstra, ed., Programming Languages and Systems: 8th European
Symposium on Programming, ESOP’99, volume 1576 of LNCS, pp. 59–91. Springer-
Verlag, 2001.

[Str03] M. Strecker. Formal analysis of an information flow type system for MicroJava
(extended version). Technical report, Technische Universität München, 2003.

[Szy98] C. Szyperski. Component Software. Addison-Wesley, 1998.

[The02] The Krakatoa team. The Krakatoa proof tool, 2002. Available from http://www.

lri.fr/~marche/krakatoa/.

[Tre05] K. Trentelman. Proving Correctness of JavaCard DL Taclets using Bali. In B.K.
Aichernig & B. Beckert, eds., Third IEEE International Conference on Software En-
gineering and Formal Methods (SEFM 2005), pp. 160–169. IEEE Computer Society,
2005.

[Ver] European IST-2000-26328 Project VerifiCard. http://www.verificard.org.

[VS97a] D. Volpano & G. Smith. A Type-Based Approach to Program Security. In Proc. 7th
Int’l Joint Conference on the Theory and Practice of Software Development, volume
1214 of LNCS, pp. 607–621. Springer, 1997.

[VS97b] D. Volpano & G. Smith. Eliminating Covert Flows with Minimum Typings. In Proc.
10th IEEE Computer Security Foundations Workshop, pp. 156–168, 1997.

[VSI96] D. Volpano, G. Smith & C. Irvine. A sound type system for secure flow analysis.
Journal of computer security, 4(3):167–187, 1996.

[WO05] M. Warnier & M. Oostdijk. Non-interference in JML. Technical Report ICIS-R05034,
Nijmegen Institute for Computing and Information Sciences, 2005.

[Yan05] H. Yang. Relational separation logic, 2005. Available at http://ropas.snu.ac.kr/
~hyang/paper/data.ps, submitted to the Journal on Theoretical Computer Science.

[Zan02] M. Zanotti. Security Typings by Abstract Interpretation. In SAS, volume 2477 of
LNCS, pp. 360–375. Springer-Verlag, 2002.

[ZM01] S. Zdancewic & A.C. Myers. Robust Declassification. In Proceedings of 14th IEEE
Computer Security Foundations Workshop (CSFW), pp. 15–23, 2001.

http://www.lri.fr/~marche/krakatoa/
http://www.lri.fr/~marche/krakatoa/
http://www.verificard.org
http://ropas.snu.ac.kr/~hyang/paper/data.ps
http://ropas.snu.ac.kr/~hyang/paper/data.ps

Appendix A

Java source code listings

A.1 The phone card applet from chapter 4
import javacard.framework.*;

import javacard.security.*;

public class PayApplet extends Applet {

5

static final byte INS_SETKEY = (byte)0x00;

static final byte INS_GETVAL = (byte)0x01;

static final byte INS_DECVAL = (byte)0x02;

static final byte INS_GETCHAL = (byte)0x03;

static final byte INS_RESPOND = (byte)0x04;10

static final short DES_KEY_SIZE = 8;

static final short ID_SIZE = 8;

static final short CIPHERTEXT_SIZE = 24;

static final short NONCE_SIZE = 32;15

static final short SHA_SIZE = 20;

static final short TMP_SIZE = 16;

static final byte PERS = 0;

static final byte ISSUED = 1;20

static final byte CHARGING = 2;

static final byte LOCKED = 3;

private /*@ spec_public @*/ Cipher cipher;

private /*@ spec_public @*/ MessageDigest digest;25

private /*@ spec_public @*/ RandomData random;

private /*@ spec_public @*/ byte state;

private /*@ spec_public @*/ byte[] key;

private /*@ spec_public @*/ byte[] id;30

private /*@ spec_public @*/ byte[] tmp;

private /*@ spec_public @*/ byte[] nonce;

private /*@ spec_public @*/ byte[] sha_nonce;

private /*@ spec_public @*/ byte counter;

private /*@ spec_public @*/ short value;35

private /*@ spec_public @*/ byte[] plaintxt;

private /*@ spec_public @*/ byte[] ciphertxt;

162 Java source code listings

/*@ invariant

@ (state == PERS || state == ISSUED ||40

@ state == CHARGING || state == LOCKED)

@ && 0 <= counter && counter <= 5

@ && (state == LOCKED <==> counter == 5)

@ && (state == PERS ==> counter == 0)

@ && 0 <= value && value <= 4096 // = 16 * 25645

@ && key != null && key.length == DES_KEY_SIZE

@ && id != null && id.length == ID_SIZE

@ && tmp != null && tmp.length == TMP_SIZE

@ && nonce != null && nonce.length == NONCE_SIZE

@ && sha_nonce != null && sha_nonce.length == SHA_SIZE50

@ && plaintxt != null && plaintxt.length == SHA_SIZE+2

@ && ciphertxt != null

@ && ciphertxt.length == CIPHERTEXT_SIZE;

@*/

55

/*@ constraint // automatically generated

@ (state==LOCKED ==> \old(state)==ISSUED

@ || \old(state)==LOCKED) &&

@ (state==PERS ==> \old(state)==PERS) &&

@ (state==ISSUED ==> \old(state)==PERS60

@ || \old(state)==ISSUED

@ || \old(state)==CHARGING) &&

@ (state==CHARGING ==> \old(state)==ISSUED

@ || \old(state)==CHARGING) &&

@ (\old(state)==LOCKED ==> state==LOCKED) &&65

@ (\old(state)==PERS ==> state==ISSUED

@ || state==PERS) &&

@ (\old(state)==ISSUED ==> state==ISSUED

@ || state==CHARGING

@ || state==LOCKED) &&70

@ (\old(state)==CHARGING ==> state==ISSUED

@ || state==CHARGING);

@*/

/*@ constraint // by hand75

@ (\old(state) == LOCKED ==>

@ (value == \old(value) &&

@ counter == \old(counter) &&

@ state == LOCKED)) &&

@ (\old(state) == ISSUED ==>80

@ ((state == ISSUED && value <= \old(value) &&

@ counter == \old(counter))

@ ||

@ (state == CHARGING && value == \old(value) &&

@ counter == \old(counter + 1) &&85

@ \old(counter) < 4)

@ ||

@ (state == LOCKED && value == \old(value) &&

@ counter == \old(counter + 1) &&

@ \old(counter) == 4))) &&90

@ (\old(state) == CHARGING ==>

@ ((state == ISSUED && counter == 0)

@ ||

@ (state == ISSUED && counter == \old(counter)

@ && value <= \old(value))));95

@*/

A.1 The phone card applet from chapter 4 163

public PayApplet() {

state = PERS;

value = 0;

counter = 0;100

key = new byte[DES_KEY_SIZE];

id = new byte[ID_SIZE];

tmp = new byte[TMP_SIZE];

nonce = new byte[NONCE_SIZE];

sha_nonce = new byte[SHA_SIZE];105

plaintxt = new byte[SHA_SIZE+2];

ciphertxt = new byte[CIPHERTEXT_SIZE];

digest = MessageDigest.getInstance(MessageDigest.ALG_SHA,false);

random = RandomData.getInstance(RandomData.ALG_PSEUDO_RANDOM);

}110

public static void install(byte[] buffer, short offset, byte length) {

PayApplet a = new PayApplet();

a.register(buffer, (short) (offset + 1), buffer[offset]);

}115

public boolean select() {

return true;

}

120

/*@ normal_behavior

@ requires

@ apdu != null && dest != null &&

@ apdu.buffer != null &&

@ apdu.buffer.length > ISO7816.OFFSET_LC &&125

@ dest.length == apdu.buffer[ISO7816.OFFSET_LC] &&

@ apdu.buffer.length >= dest.length

@ + ISO7816.OFFSET_CDATA;

@ assignable

@ dest[*];130

@ ensures

@ (\forall int i; 0 <= i && i < dest.length ==>

@ apdu.buffer[ISO7816.OFFSET_CDATA + i] == dest[i]);

@*/

void readBuffer(APDU apdu, byte[] dest) {135

byte[] buffer = apdu.getBuffer();

short readCount = apdu.setIncomingAndReceive();

short i = (short)0;

Util.arrayCopy(buffer, ISO7816.OFFSET_CDATA,dest,i,readCount);140

while ((short)(i + readCount) < dest.length) {

i += readCount;

readCount = (short)apdu.receiveBytes(ISO7816.OFFSET_CDATA);

Util.arrayCopy(buffer, ISO7816.OFFSET_CDATA,dest,i,readCount);145

}

}

164 Java source code listings

/*@ behavior

@ requires apdu != null

@ && random != null150

@ && cipher != null

@ && digest != null;

@ assignable state, value, counter, apdu.buffer[*],

@ key[*], cipher, nonce[*], id[*], tmp[*],

@ ciphertxt[*], plaintxt[*], sha_nonce[*];155

@ ensures true;

@ signals (ISOException e) true;

@*/

public void process(APDU apdu) throws ISOException {

byte ins = apdu.getBuffer()[ISO7816.OFFSET_INS];160

if(selectingApplet())

return;

switch(state) {

case PERS:

switch(ins) {165

case INS_SETKEY:

setKey(apdu);

break;

default:

ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);170

}; break;

case ISSUED:

switch(ins) {

case INS_GETVAL:

getValue(apdu);175

break;

case INS_DECVAL:

decValue(apdu);

break;

case INS_GETCHAL:180

getChallenge(apdu);

break;

default:

ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);

}; break;185

case CHARGING:

switch(ins) {

case INS_GETVAL:

getValue(apdu);

break;190

case INS_DECVAL:

decValue(apdu);

break;

case INS_RESPOND:

respond(apdu);195

break;

default:

ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);

}; break;

case LOCKED:200

ISOException.throwIt(ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);

default:

ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);

}

}205

A.1 The phone card applet from chapter 4 165

/*@ behavior

@ requires

@ state==PERS && apdu != null &&

@ buffer[OFFSET_INS] == INS_SETKEY &&

@ counter == 0;210

@ assignable

@ state, key[*], cipher, tmp[*], id[*];

@ ensures

@ state==ISSUED &&

@ (\forall int i; 0 <= i && i < DES_KEY_SIZE ==>215

@ apdu.buffer[ISO7816.OFFSET_CDATA + i] == key[i]) &&

@ (\forall int j; DES_KEY_SIZE <= j &&

@ j < DES_KEY_SIZE + ID_SIZE ==>

@ apdu.buffer[ISO7816.OFFSET_CDATA

@ + DES_KEY_SIZE + j] == id[j]) &&220

@ DES_KEY_SIZE + ID_SIZE == apdu.buffer[ISO7816.OFFSET_LC];

@ signals(ISOException e)

@ state==PERS &&

@ DES_KEY_SIZE + ID_SIZE != apdu.buffer[ISO7816.OFFSET_LC];

@*/225

private void setKey(APDU apdu) {

if((DES_KEY_SIZE + ID_SIZE) == apdu.getBuffer()[ISO7816.OFFSET_LC]){

readBuffer(apdu,tmp);

Util.copy(tmp,(short)0,key,(short)0,DES_KEY_SIZE);

Util.copy(tmp,DES_KEY_SIZE,id,(short)0,ID_SIZE);230

cipher = Cipher.getInstance(Cipher.ALG_DES_CBC_NOPAD, false);

DESKey des_key = (DESKey)KeyBuilder.buildKey(KeyBuilder.TYPE_DES, KeyBuilder.LENGTH_DES, true);

des_key.setKey(key,(short)0);

cipher.init(des_key,Cipher.MODE_DECRYPT);

state = ISSUED;235

}

else{

ISOException.throwIt(ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);

}

}240

/*@ normal_behavior

@ requires

@ (state==ISSUED || state==CHARGING)

@ && buffer[OFFSET_INS] == INS_GETVAL245

@ && apdu != null;

@ assignable

@ state, apdu.buffer[ISO7816.OFFSET_CDATA],

@ apdu.buffer[ISO7816.OFFSET_CDATA + 1];

@ ensures250

@ state==ISSUED;

@*/

private void getValue(APDU apdu) {

state = ISSUED;

apdu.setOutgoing();255

apdu.setOutgoingLength((short)2);

byte[] buffer = apdu.getBuffer();

buffer[ISO7816.OFFSET_CDATA] = (byte)(value >> 8);

buffer[ISO7816.OFFSET_CDATA + 1] = (byte)value;

}260

166 Java source code listings

/*@ behavior

@ requires

@ (state==ISSUED || state==CHARGING) &&

@ buffer[OFFSET_INS] == INS_DECVAL;

@ assignable265

@ state, value;

@ ensures

@ state==ISSUED

@ && \old(value) > 0

@ && value==\old(value)-1;270

@ signals (ISOException e)

@ state==ISSUED

@ && \old(value) == 0

@ && value==\old(value);

@*/275

private void decValue(APDU apdu) throws ISOException {

state = ISSUED;

if (value > 0) {

value--;

}280

else {

ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);

}

}

285

/*@ behavior

@ requires

@ state == ISSUED

@ && buffer[OFFSET_INS] == INS_GETCHAL

@ && counter < 5290

@ && apdu != null

@ && apdu.buffer != null

@ && apdu.buffer.length >= ISO7816.OFFSET_CDATA

@ + NONCE_SIZE + ID_SIZE

@ && random != null;295

@ assignable

@ state, counter, nonce[*], apdu.buffer[*];

@ ensures

@ state == CHARGING

@ && counter == \old(counter) + 1300

@ && counter < 5;

@ signals (ISOException e)

@ state == LOCKED && counter == 5;

@*/

private void getChallenge(APDU apdu) throws ISOException {305

counter++;

if (counter<5) {

state = CHARGING;

random.generateData(nonce,(short)0,NONCE_SIZE);

apdu.setOutgoing();310

apdu.setOutgoingLength((short)(NONCE_SIZE+ID_SIZE));

byte[] buffer = apdu.getBuffer();

Util.arrayCopy(nonce,(short)0, buffer, ISO7816.OFFSET_CDATA,NONCE_SIZE);

Util.arrayCopy(id, (short)0, buffer, (short)(ISO7816.OFFSET_CDATA+NONCE_SIZE),ID_SIZE);

}315

else {

state = LOCKED;

ISOException.throwIt(ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);

}

}320

A.1 The phone card applet from chapter 4 167

/*@ behavior

@ requires

@ state == CHARGING

@ && buffer[OFFSET_INS] == INS_RESPOND

@ && counter < 5325

@ && apdu != null

@ && apdu.buffer != null

@ && apdu.buffer.length >= CIPHERTEXT_SIZE

@ && cipher != null

@ && ciphertxt != null330

@ && digest != null;

@ assignable

@ state, counter, value, ciphertxt[*],

@ plaintxt[*], sha_nonce[*];

@ ensures335

@ state == ISSUED

@ && value == (short)(256 *

@ (plaintxt[SHA_SIZE] & 0x0F) +

@ (plaintxt[SHA_SIZE+1] & 0xFF))

@ && counter == 0340

@ && (\forall int i; 0 <= i && i < SHA_SIZE ==> sha_nonce[i] == plaintxt[i]);

@ signals (ISOException e)

@ state == ISSUED

@ && value == \old(value)

@ && counter == \old(counter)345

@ && (apdu.buffer[ISO7816.OFFSET_LC] != ciphertxt.length

@ ||

@ !(\forall int i; 0 <= i && i < SHA_SIZE ==> sha_nonce[i] == plaintxt[i]));

@*/

private void respond(APDU apdu) throws ISOException {350

state = ISSUED;

byte[] buffer = apdu.getBuffer();

if (buffer[ISO7816.OFFSET_LC] != ciphertxt.length) {

ISOException.throwIt(ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);

};355

readBuffer(apdu,ciphertxt);

cipher.doFinal(ciphertxt,(short)0, CIPHERTEXT_SIZE,plaintxt,(short)0);

digest.doFinal(nonce,(short)0, NONCE_SIZE,sha_nonce,(short)0);

if (Util.arrayCompare(sha_nonce,(short)0, plaintxt,(short)0,SHA_SIZE)==0) {

value = (short)(((plaintxt[SHA_SIZE] & 0x0F) << 8) | (plaintxt[SHA_SIZE+1] & 0xFF));360

counter = 0;

}

else {

ISOException.throwIt(ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);

}365

}

}

168 Java source code listings

A.2 The cash-logger from chapter 5
class PaymentsLog {

private /*@ spec_public @*/ int size, counter;

private /*@ spec_public @*/ int[] payments;

5

/* @

@ invariant

@ size > 0 && counter > 0 && counter <= size &&

@ payments != null && payments.length == size &&

@ (\forall int i; i > counter && i < size ==> payments[i] == 0);10

@*/

/*@

@ constraint15

@ size == \old(size) && payments == \old(payments);

@*/

/*@ requires s > 0; */

public PaymentsLog(int s) {20

size = s;

counter = 1;

payments = new int[s];

payments[0] = (int) (Integer.MAX_VALUE * Math.random());

}25

/*@

@ normal_behavior

@ requires true;

@ assignable \nothing;30

@ ensures \result == (counter == size);

@*/

public boolean isFull() {

return counter == size;

}35

/*@

@ behavior

@ requires counter > 0;40

@ assignable counter, payments[counter];

@ ensures amount > 0 && \old(counter) < size &&

@ counter == \old(counter) + 1 &&

@ payments[counter -1] ==

& \old(payments[counter - 1] + amount) &&45

@ payments[counter] == payments[\old(counter)] &&

@ \result == \old(money) - \old(amount) &&

@ \result >= 0;

@ signals(NotEnoughMoneyException) \old(amount) > \old(money) &&

@ payments[counter - 1] ==50

@ \old(payments[counter -1]) &&

@ counter == \old(counter);

@ signals(LogFullException) (\old(counter) >= \old(size) ||

@ amount <= 0) &&

@ counter == \old(counter) &&55

@ payments[counter -1] ==

@ \old(payments[counter -1]);

@ signals(OverflowException)

@ amount > \old(Integer.MAX_VALUE - payments[counter - 1] &&

@ counter == \old(counter) &&60

@ payments[counter] == \old(payments[counter]);

@*/

A.2 The cash-logger from chapter 5 169

public int add(int amount, int money) throws NotEnoughMoneyException,

LogFullException, OverflowException{

if (amount > money)65

NotEnoughMoneyException.throwIt();

if (amount > 0 && counter < size) {

if(payments[counter-1] > Integer.MAX_VALUE - amount) //@ nowarn Null; nowarn IndexTooBig;

OverflowException.throwIt();

payments[counter] = //@ nowarn IndexTooBig;70

// overflow possible:

payments[counter-1] + amount;

counter++;

}

else LogFullException.throwIt();75

return money - amount;

}

/*@80

@ normal_behavior

@ requires true;

@ assignable counter, payments[*];

@ ensures \result != null && \result != payments &&

@ \result.length == size &&85

@ counter == 0 &&

@ (\forall int i; i >= 0 && i < size ==>

@ \result[i] == \old(payments[i]) &&

@ payments[i] == 0);

@*/90

public int[] dump() {

int[] dmp = new int[size];

for(int i = 0; i < size; i++) {

dmp[i] = payments[i]; //@ nowarn Null; nowarn IndexTooBig; nowarn IndexNegative ;

payments[i] = 0;95

};

counter = 0;

return dmp;

}

100

}

105

class Casher {

public boolean locked;

private /*@ spec_public */ PaymentsLog log;

110

/*@

@ constraint

@ log == \old(log);

@*/

115

/*@

@ invariant

@ log != null;

@*/

170 Java source code listings

/*@120

@ behavior

@ requires log.counter > 0;

@ assignable locked, log.counter, log.payments[*];

@ ensures (\old(!locked) && (log.size != \old(log.counter))) ==>

@ (amount > 0 && \old(log.counter) < log.size &&125

@ log.counter == \old(log.counter) + 1 &&

@ (\forall int i; i > 0 && i < log.size ==>

@ (i == \old(log.counter))

@ ? (log.payments[i] == \old(log.payments[i-1] + amount))

@ : (log.payments[i] == \old(log.payments[i]))) &&130

@ \result == \old(money) - \old(amount) &&

@ (\old(log.counter) == log.size -1 ==> locked));

@ signals(NotEnoughMoneyException) \old(amount) > \old(money) &&

@ (\forall int i;i >=0 && i < log.size ==>

@ log.payments[i] == \old(log.payments[i])) &&135

@ log.counter == \old(log.counter);

@ signals(LogFullException) (\old(log.counter) >= \old(log.size) || amount <= 0) &&

@ log.counter == \old(log.counter) &&

@ (\forall int i;i >=0 && i < log.size ==>

@ log.payments[i] == \old(log.payments[i]));140

@ signals(OverflowException)

@ \old(log.payments[log.counter - 1]) > (Integer.MAX_VALUE - \old(amount)) && // Conf. fails

@ log.counter == \old(log.counter) &&

@ (\forall int i;i >=0 && i < log.size ==>

@ log.payments[i] == \old(log.payments[i]));145

@

@*/

public int deposit (int amount, int money) throws NotEnoughMoneyException,

LogFullException, OverflowException{

int returnvalue = 0;150

if (!locked && !log.isFull()) { //@ nowarn Null;

returnvalue = log.add(amount,money);

if (log.isFull()) locked = true;

}

return returnvalue;155

}

/*@

@ behavior

@ requires true;160

@ assignable locked, log.counter, log.payments[*];

@ ensures \old(locked) ==> (!locked &&

@ \result != null && \result != log.payments &&

@ \result.length == log.size &&

@ log.counter == 0 &&165

@ (\forall int i; i >= 0 && i < log.size ==>

@ \result[i] == \old(log.payments[i]) &&

@ log.payments[i] == 0));

@ signals(LogNotLockedException) \old(locked) == locked && !locked;

@*/170

public int[] unlock() throws LogNotLockedException{

if (locked)

locked = false;

else LogNotLockedException.throwIt();

/*@ assert175

@ (!locked) && \old(locked) &&

@ log.counter == \old(log.counter) &&

@ (\forall int i; i>=0 && i < log.size ==>

@ log.payments[i] == \old(log.payments[i]));

@*/180

return log.dump();

}

}

A.2 The cash-logger from chapter 5 171

class LogNotLockedException extends Exception{

185

public static final LogNotLockedException lnle = new LogNotLockedException();

private LogNotLockedException(){

super();

}190

/*@ exceptional_behavior

@ assignable \nothing;

@ signals(LogNotLockedException) true;

@*/195

public static void throwIt() throws LogNotLockedException{

throw lnle;

}

}200

class NotEnoughMoneyException extends Exception{

public static final NotEnoughMoneyException neme = new NotEnoughMoneyException();

205

private NotEnoughMoneyException(){

super();

}

210

/*@ exceptional_behavior

@ assignable \nothing;

@ signals(NotEnoughMoneyException) true;

@*/

public static void throwIt() throws NotEnoughMoneyException{215

throw neme;

}

}

class LogFullException extends Exception{220

public static final LogFullException lfe = new LogFullException();

private LogFullException(){

super();225

}

/*@ exceptional_behavior

@ assignable \nothing;

@ signals(LogFullException) true;230

@*/

public static void throwIt() throws LogFullException{

throw lfe;

}

}235

172 Java source code listings

class OverflowException extends Exception{

public static final OverflowException oe = new OverflowException();

private OverflowException(){240

super();

}

/*@ exceptional_behavior

@ assignable \nothing;245

@ signals (OverflowException) true;

@*/

public static void throwIt() throws OverflowException{

throw oe;

}250

}

Appendix B

Formal properties of OO

B.1 Operational semantics of OO and OO with excep-

tions

In this section we give the timed operational semantics of OO. The set of values of OO is defined
as V = Z ∪ L ∪ {null}, where L is an (infinite) set of locations, x ∈ X , where X is a set of local
variables, n ∈ Z and o is an object from a set, namely O.

The set State of OO states is defined as the set of pairs 〈sf , h〉 where sf is a stack of frames,
and h is a heap.

A frame is of the form 〈s, ρ〉 where s is in Stat, ρ is a mapping from local variables from a
set of variables X to values. We distinguish a special variable res to store results of execution of
programs.

Heaps are modeled as a partial function h : L ⇀ O, where the set O of objects is modeled
as F ⇀ V, i.e. as the set of finite functions from F to V. We let Heap be the set of heaps
and R be the set of all variable mappings. We further use ⊑: C → C → B to denote subclass
relation and the functions static : O → C and dynamic : O → C give the static and dynamic
type of an object respectively, the function cdynamic : C ×O → O assigns a (new) dynamic type
to an object. Furthermore we have an allocator function fresh : Heap × C → L and a function
default : C → O which puts a new object on the heap. The operational semantics of OO can be
found in Figure B.1. Note that we assume that the object this remains unmodified during the
execution of a program.

The relation ❀ such that ❀⊆ T × State × ((skip ∪ V) × R × Heap) formalizes –besides the
operational semantics–the execution time of OO. Figure B.1 shows both quantified variables,
such as h, or ρ, and constants, such as t. The set of constants includes constant executions times,
namely tR1

, tR2
, tOP , t:=, tW , tN , tC , for different statements and operations.

We extend the semantics of OO with exceptions in Figure B.2. The exceptional states of
the form < exc > s where s ∈ State are used for propagation of exceptions, that is every time
that a subexpression or substatement is evaluated to a state of the form < exc > s, this state is
propagated to the containing expression or statement, or in the case of method calls, if a method
evaluates to an exceptional states, the exception is propagated to the caller method.

174 Formal properties of OO

B.2 Non-interference for OO

Defining non-interference for a language with dynamic object creation is somewhat more involved
then the relatively straightforward definition of non-interference for a simple stack based language
(such as defined in Definition 20).

We assume sl : Loc → Σ with Loc = V ∪ L, Σ = {High, Low} and Low ⊑ High as usual.
Furthermore, it is assumed that objects that are created ‘under a high context’76 are considered
to be indistinguishable for an attacker77. We follow Banerjee and Naumann [BN05] and define
non-interference relative to a partial bijection β on locations:

Definition 24 (non-interference).

i. Value indistinguishability v ∼β,σ v′ where v, v′ ∈ V and σ ∈ Σ, is defined by the clauses:

null ∼β,Low null v ∼β,High v′
v ∈ Z

v ∼β,Low

v, v′ ∈ L β(v) = v′

v ∼β,Low v′

ii. Two heaps h1 and h2 are indistinguishable (relative to β), written h1 ∼β h2, if:

– dom(β) ⊆ dom(h1) and rng(β) ⊆ (h2)

– for every o ∈ dom(β), we have dom(h1)(o) = dom(h2)(β(o))

– for every f ∈ dom(h1)(o), we have h1(o)(f) ∼sl(f) h2(β(o))(f)

iii. A program P is termination-insensitive non-interfering, if for every ρ, ρ′ ∈ X → V, and
h, h′, hf , h′

f ∈ Heap and v, v′ ∈ V, and partial bijection on locations β, we have P, ρ, h ⇓t

v, hf and P, ρ′, h′ ⇓t′ v′, h′
f and ρ ∼β ρ′ and h ∼β h′ imply hf ∼β′ h′

f and v ∼β′ v′ for some
partial bijection β′ ⊆ β

iv. A program P is termination-sensitive non-interfering, if for every ρ, ρ′ ∈ X → V, and
h, h′, hf , h′

f ∈ Heap and v, v′ ∈ V, and partial bijection on locations β, we have:

– P, ρ, h ⇓t v, hf and ρ ∼β ρ′ and h ∼β h′ imply P, ρ′, h′ ⇓t′ v′, h′
f and hf ∼β′ h′

f and
v ∼β′ v′ for some partial bijection β′ ⊆ β, or

– P, ρ, h ⇓t⇑ and ρ ∼β ρ′ and h ∼β h′ imply P, ρ′, h′ ⇓t′⇑.

v. A program P is time-sensitive termination-sensitive non-interfering, if item iv above is valid
and t = t′.

Where ⇑ denotes non-termination

76I.e., an object is ‘created under a high context’ if the expression that creates the object has security
level High or if this expression is under the influence of a conditional with security level High. In the
context of Chapter 6 this means that ’an object is created under a high context’ if the environment level
lenv has a high security level (is not ⊥).

77This assumption also implies that we do not consider memory consumption, which forms another
resource that can be used as covert channel that leaks sensitive information.

B.2 Non-interference for OO 175

〈x, ρ〉 :: sf , h ❀tR1
〈ρ(x), ρ〉 :: sf , h

h(o).f = v

〈o.f, ρ〉 :: sf , h ❀tR2
〈v, ρ〉 :: sf , h

〈e, ρ〉 :: sf , h ❀t 〈e′, ρ〉 :: sf , h′

〈e.f, ρ〉 :: sf , h ❀t 〈e′.f, ρ〉 :: sf , h′

v op v′ = v′′

〈v op v′, ρ〉 :: sf , h ❀tOP
〈v′′, ρ〉 :: sf , h

〈e1, ρ〉 :: sf , h ❀t 〈e′
1
, ρ〉 :: sf , h′

〈e1 op e2, ρ〉 :: sf , h ❀t 〈e′
1

op e2, ρ〉 :: sf , h′

〈e2, ρ〉 :: sf , h ❀t 〈e′
2
, ρ〉 :: sf , h′

〈v op e2, ρ〉 :: sf , h ❀t 〈v op e′
2
, ρ〉 :: sf , h′

〈x := v, ρ〉 :: sf , h ❀t:= 〈skip, ρ⊕{x 7→ v}〉 :: sf , h

〈e, ρ〉 :: sf , h ❀t 〈e′, ρ〉 :: sf , h′

〈x := e, ρ〉 :: sf , h ❀t 〈x := e′, ρ, h′〉

〈e, ρ〉 :: sf , h ❀t 〈e′, ρ〉 :: sf , h′

〈x := e.m(~e), ρ〉 :: sf , h ❀t 〈x := e′.m(~e), ρ〉 :: sf , h′

〈~e, ρ〉 :: sf , h ❀t 〈~e′, ρ〉 :: sf , h′

〈x := o.m(~e), ρ〉 :: sf , h ❀t 〈x := o.m(~e′), ρ〉 :: sf , h′

m(~x) := s

〈x := o.m(~v), ρ〉 :: sf , h ❀t 〈s, ~x 7→ ~v〉 :: 〈x := res, ρ〉 :: sf , h

〈s1, ρ〉 :: sf , h ❀t 〈s′
1
, ρ′〉 :: sf , h′

〈s1; s2, ρ〉 :: sf , h ❀t 〈s′
1
; s2, ρ′〉 :: sf ′, h′

〈x := o.m(~v), ρ〉 :: sf , h ❀t 〈s, ρ′〉 :: 〈x := res, ρ〉 :: sf , h′

〈x := o.m(~v); s2, ρ〉 :: sf , h ❀t 〈s, ρ′〉 :: 〈x := res; s2, ρ′〉 :: sf ′, h′

〈skip; s2, ρ〉 :: sf , h ❀0 〈s2, ρ′〉 :: sf , h′

〈e, ρ〉 :: sf , h ❀t 〈true, ρ〉 :: sf , h′

〈while e do s, ρ〉 :: sf , h ❀t 〈s; while e do s, ρ〉 :: sf , h′

〈e, ρ〉 :: sf , h ❀t 〈false, ρ〉 :: sf , h′

〈while e do s, ρ〉 :: sf , h ❀t 〈skip, ρ〉 :: sf , h′

〈e, ρ〉 :: sf , h ❀t 〈true, ρ〉 :: sf , h′

〈if e then s1 else s2, ρ〉 :: sf , h ❀t 〈s1, ρ〉 :: sf , h′

〈e, ρ〉 :: sf , h ❀t 〈false, ρ〉 :: sf , h′

〈if e then s1 else s2, ρ〉 :: sf , h ❀t 〈s2, ρ〉 :: sf , h′

o ∈ dom(h) f ∈ dom(h(o))

〈o.f := v, ρ〉 :: sf , h ❀tW
〈skip, ρ, h⊕{o 7→ h(o)⊕{f 7→ v}}〉

〈e2, ρ〉 :: sf , h ❀t 〈e′
2
, ρ, h′〉

〈o.f := e2, ρ〉 :: sf , h ❀t 〈o.f := e′
2
, ρ, h′〉

〈e1, ρ〉 :: sf , h ❀t 〈e′
1
, ρ, h′〉

〈e1.f := e2, ρ〉 :: sf , h ❀t 〈e′
1
.f := e2, ρ〉 :: sf , h′

〈e, ρ〉 :: sf , h ❀t 〈e′, ρ〉 :: sf , h′

〈return e, ρ〉 :: sf , h ❀t 〈return e′, ρ, h′〉

〈return v, ρ〉 :: 〈c, ρ〉 :: sf , h ❀tR+t:= 〈c, ρ⊕{res 7→ v}〉 :: sf , h 〈return v, ρ〉 :: skip, h ❀tR
〈v, ρ〉 :: sf , h

o = fresh(h, C)

〈new C, ρ〉 :: sf , h ❀tN
〈o, ρ〉 :: sf , h⊕{o 7→ defaultC}

dynamic(o) ⊑ C

〈(C)o, ρ〉 :: sf , h ❀tC+tW
〈o, ρ〉 :: sf , h′ ⊕{o 7→ cdynamic(C)}

〈e, ρ〉 :: sf , h ❀t 〈e′, ρ〉 :: sf , h′

〈(C)e, ρ〉 :: sf , h ❀t 〈(C)e′, ρ〉, h′

Figure B.1: Small step operational semantics for OO.

176 Formal properties of OO

〈e1, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈e1 op e2, ρ〉 :: sf , h ❀t< exc > s, h′

〈e2, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈v op e2, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈e, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈(C)e, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈e, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈e.f, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈e, ρ〉 :: sf , h ❀t< exc > s :: sf ′, h′

〈x := e, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈e, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈return e, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

o = fresh(h′, Throwable)

〈null.f := e2, ρ〉 :: sf , h ❀tN
< exc > 〈o, ρ〉, h⊕{o 7→ defaultThrowable}

o = fresh(h′, Throwable)

〈null.m(~e), ρ〉 :: sf , h ❀tN
< exc > 〈o, ρ〉, h′ ⊕{o 7→ defaultThrowable}

o = fresh(h, Throwable)

〈Throw, ρ〉 :: sf , h ❀tN
< exc > 〈o, ρ〉, h⊕{o 7→ defaultThrowable}

〈s1, ρ〉 :: sf , h ❀t< exc > 〈o, ρ′〉 :: sf , h′

〈try{s1} catch(Exception x){s2}, ρ〉 :: sf , h ❀t+t:= 〈s2, ρ′ ⊕{x 7→ o}〉 :: sf , h′

〈s1, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

〈s1; s2, ρ〉 :: sf , h ❀t< exc > s :: sf , h′

Figure B.2: Operational semantics for OO with exceptions.

List of Figures

2.1 Natural semantics for WHILE. 10
2.2 Non-interference. 17
2.3 The LOOP verification framework. 21

3.1 The positive integers. 31

4.1 The default lifecycle model of an applet. 51
4.2 Refinement of the PROCESS state. 52
4.3 A composed automaton describing the control flow of the applet. 53
4.4 Control flow model extended with exceptional behavior. 54
4.5 Proof tree for the respond method. 64

5.1 The log of the cash register. 70

6.1 Application of abstract labeling functions to Example 4. 87
6.2 Security levels of variables after each while iteration. 88

7.1 Relational Hoare logic for WHILE. 96
7.2 Total relational Hoare logic for while statements. 97
7.3 Soundness prove in PVS of the relational Hoare logic rule for integer division. . . . 114

8.1 Small step operational semantics for WHILE. 126
8.2 Operational semantics for transaction mechanisms. 127
8.3 An example program transformation. 134

B.1 Small step operational semantics for OO. 175
B.2 Operational semantics for OO with exceptions. 176

Index

abnormal termination, 59, 99
abstract interpretation, 17, 78
aliasing, 21, 26, 120
APDU, 8, 49
assertion checking, 15, 90, 137

behavioral subtype semantics, 13, 37
bisimilarity, 94
bisimulation, 94

for a class, 94
strong, 95
weak, 95, 109

cash register, 70–73
source code listing, 168–172

class invariant, 11, 35, 94
applet, 56

coalgebra, 94
code explosion

preventing, 137
completeness

of labeling transition functions, 90
of relational Hoare logic, 97, 108

confidentiality, see non-interference
confidentiality level, 79
confinement, 18
constraint, 11

generated, 57
manual, 58

control flow, 32–36
covert channels, 18, 123

downgrading policy, 19
dynamic labeling function, see labeling transi-

tion function

early binding, 37

environment level, 79
ESC/Java, 15
ESC/Java2, 15, 20, 90, 110

compared to LOOP, 42

findbugs, 22, 43
finite state machine, 51–54

goodness, 84

Hoare n-tuple, 100, 101
relational, 102–104

Hoare logic, 12, 14, 100
partial correctness, 96
relational

for Java, 107–116
for WHILE, 95–97

Hoare triple
extended, 100, 101

implicit information flow, 78
indistinguishability relation

definition of, 80, 105
for heaps, 89
for objects, 89

inheritance, 37–40
integrity, see non-interference, 18, 67

as dual of confidentiality, 67, 80
invariant, see class invariant
Iowa State JML tools, 22

Java
relational Hoare logic for, 107–116
removing timing leaks, 131, 132
semantics of, 8, 10

in LOOP, 99–102
Java Card, 7, 8, 45

Index 179

life cycle, 51
process method, 55

verification of, 59
JIT compiling, 138
JML, 11

\type, 13, 37
\typeof, 13, 37
constraint, see constraint
decreasing, 30
ghost field, 13
heavy and light-weight specifications, 12
invariant, see class invariant
maintaining, 30
method specification, 12
model field, 13
runtime assertion checker, 22
semantics of, 12, 30
specification pattern

for confidentiality, 65
for confidentiality, 66
for integrity, 67

syntax, 12
JMLrel, 106

relation with JML, 106

labeling transition function, 78, 81–83
for expressions, 83
for statements, 81
signature, 81

language based security, 1
late binding, 37
lattice

security, 19
simple security, 19

least fixed point, 82
LOOP, 15, 20, 59

relational Hoare logic, 120
semantics in, 99–102
tool, 21
compared to ESC/Java2, 42
composition

formal definition of, 99
composition rule, 101

low-recursive, 127

memory

model
in LOOP, 99

persistent, 8, 52
transient, 8, 52

method overriding, 37, 40
minimally typed, 116

non-increasing, 78, 84
non-interference, 16

as a bisimulation, 95
formal definition of, 95

confidentiality as, 16, 18, 80
in JML, 65

confinement, 18
downgrading, 19
integrity as, 18
lattice, 16
secure information flow, 16, 18
semantic notion of, 17
specified in JML, 65–67
termination-insensitive, 18

formal definition of, 80
termination-sensitive, 18, 78, 93

formal definition of, 105
in JML, 73

terminology, 18
time-sensitive termination-sensitive, 18, 123
time-sensitive termination-sensitive

definition of, 128, 174
type based, 16, 77

non-termination, 27, 74, 78, 93, 136, 174
numerical types, 29

in ESC/Java2, 28
in Java, 30
in JML, 30
in LOOP, 27, 59
in specifications, 32
overflow of, 27
bitwise operations on, 28

OO, 131
non-interference, 174
operational semantics of, 173

overflow, 27
overloading

of names, 37

180 Index

of notation, 66

partial correctness, 101
phone card applet, 47

implementation of, 48
specification of, 51–58
verification of, 58–63
design of, 48
requirements, 47
source code listing, 161–167

program transformation, 124
for removing timing leaks, 127
for removing timing leaks, 124–132

program verification, 1, 14
phone card applet, 58–63
bytecode, 14
cash register, 70–73
interactive theorem proving, 15
source code, 14

pure methods, 29
PVS, 21, 63, 79, 86, 99, 113

relational Hoare logic
for Java, 107–116
for WHILE, 95–97

secure information flow, 18
policy, 18

security
economically, 7
protocol, 45

crediting, 50
semantic interpretation functions, 100

relational, 103
smart card, 7, 45
soundness

for labeling transition functions, 85
of relational Hoare logic, 97

specification pattern, 65
for confidentiality, 66
for integrity, 67

static initialization, 40
strong bisimulation, see bisimulation

temporary breach of confidentiality, 17, 78
termination modes, 67, 89, 110

in Java, 74, 98, 99

mixing, 119
time-outs, 135
timing channel, 18, 123
timing model, 136
total correctness, 101
transactions

in Java, 138
in Java Card, 54
for removing timing leaks, 127

unbalanced heaps, 89, 115

weak bisimulation, see bisimulation
WHILE, 9, 125

BNF of, 9
denotational semantics of, 80
non-interference for, 86, 128
operational semantics of, 9

with timing, 125
removing timing leaks, 127

Samenvatting (Dutch summary)

Computer programma’s bevatten fouten. Het is belangrijk om deze fouten te vinden. Vooral als
programma’s gebruikt worden in situaties waar de consequenties van zulke fouten verstrekkend
kunnen zijn, zoals programma’s die voor financiële transacties of in de boordcomputer van een
vliegtuig worden gebruikt. Dit proefschrift behandelt een aantal analyse methodes die garanderen
dat wiskundig kan worden vastgesteld dat bepaalde fouten niet voorkomen in een programma.

De programmeertaal Java staat centraal in dit proefschrift. De voorgestelde analyse-methodes
werken op de broncode van programma’s die in deze taal geschreven zijn. Het eerste gedeelte
van het proefschrift behandelt het gebruik van JML, een specificatietaal voor Java. In JML is
het mogelijk om –op een formele manier– op te schrijven wat de beoogde functionaliteit van
een programma is. Speciale programma’s, zoals de LOOP tool en ESC/Java2, kunnen worden
gebruikt om te bewijzen dat JML specificaties correct zijn voor een specifiek programma.

Het eerste deel van het proefschrift laat zien hoe JML-specificaties formeel correct kunnen
worden bewezen voor een aantal kleinere, maar semantische complexe, Java programma’s. Ver-
volgens wordt er getoond hoe een Java Card programma –een Java programma dat draait op
een smart card– dat een elektronische portemonnee implementeert op een structurele manier kan
worden ontwikkeld. Bepaalde gewenste eigenschappen, zoals dat de portemonnee geen negatief
saldo kan bevatten, kunnen dan worden gegarandeerd. Met behulp van JML specificaties worden
deze en andere eigenschappen van de elektronische portemonnee formeel bewezen

Het tweede deel van het boek behandelt het probleem van veilige informatie stromen in
programma’s. We willen bewijzen dat geheime waarden in een applicatie, bijvoorbeeld een PIN-
code, volledig onafhankelijk zijn van niet geheime (publieke) waarden, zoals bijvoorbeeld het
saldo van een elektronische beurs. Dit probleem mag in eerste instantie makkelijk lijken, maar
als we de onafhankelijkheid van alle geheime waardes ten opzichte van publieke waardes in een
programma op een mathematische manier willen vaststellen blijken er vele moeilijkheden op te
treden.

Een eerste aanpak van dit probleem bestaat eruit dat we JML gebruiken om de afhankelijkhe-
den tussen waardes (variabelen) in Java programma’s aan te geven. Dit is in principe mogelijk
omdat we in JML voor elke aparte methode (subroutine) kunnen aangeven hoe variabelen van
elkaar afhangen. Met behulp van een specificatie-patroon kunnen zulke afhankelijkheden op een
gestructureerde manier worden weergegeven. Vervolgens kan de specificatie met een aparte tool
worden gecheckt en kan worden vastgesteld of er ongewenste afhankelijkheden tussen geheime
en publieke waardes bestaan. Een nadeel van deze methode is dat de specificaties erg groot en
complex kunnen worden, zelfs voor kleinere programma’s.

Een alternatieve aanpak wordt in het volgende hoofstuk uitgewerkt: Het programma wordt op
een abstract niveau geëvalueerd. Dit wil zeggen dat we niet kijken hoe het (computer) geheugen

182 Samenvatting (Dutch summary)

verandert door de executie van een programma, maar hoe het veiligheidsniveau –bevat een vari-
abele een geheime of een publieke waarde?– van een programma verandert tijdens de executie.
Dit resulteert in een methode, gebaseerd op de wiskundige techniek van abstracte interpretatie,
die automatisch kan bepalen of een programma geschreven in een subset van Java informatie
lekt (door een afhankelijkheid tussen geheime en publiek variabelen). De beschreven methode is
correct bewezen met behulp van de stellingbewijzer PVS.

De voorgaande methodes kunnen een onafhankelijkheid tussen geheime en publieke variabe-
len aantonen in het geval dat een programma normaal tot zijn einde komt (termineert). Maar
programma’s kunnen ook weigeren om te termineren (hangen) of kunnen abrupt stoppen, bij-
voorbeeld als er een fout optreed omdat een programma door nul probeert te delen. Als we zulke
alternatieve terminatiemogelijkheden van een programma ook willen meenemen in onze analyse
dan wordt het onderliggende semantisch model (wiskundige beschrijving) van de programmeer-
taal ingewikkelder. Om deze reden introduceren we een methode gebaseerd op een nieuwe Hoare
logica. Met deze methode is het mogelijk om afhankelijkheden tussen variabelen aan te tonen die
niet op predikaten, maar op relaties werken. Deze relationele Hoare logica is gëımplementeerd in
de stellingbewijzer PVS en correct bewezen ten opzichte van de formele semantiek van Java zoals
die ontwikkeld is binnen het LOOP project. De logica kan gebruikt worden om onafhankelijkhe-
den tussen variabelen aan te tonen voor programma’s die geschreven zijn in (single threaded)
Java. Omdat het hier om een interactieve methode gaat –een mens moet de bewijzen met behulp
van de relationele Hoare logica zelf construeren– is de methode feitelijk vooral geschikt om kleine
kritieke componenten van een programma te analyseren.

Programma’s kunnen ook op andere manieren geheime informatie lekken. Eén zo’n manier is
via het tijdsgedrag van een programma. Zo is het bijvoorbeeld soms mogelijk om met tijdswaar-
neming een pincode te achterhalen. Het proefschrift eindigt met een voorstel dat dit probleem
behandelt. Een programmatransformatie wordt gëıntroduceerd die afdwingt dat het getrans-
formeerde programma geen informatie via verschillen in executietijd lekt. Onder bepaalde aan-
names bewijzen we dat deze transformatie correct is (het getransformeerde programma behoudt
dezelfde functionaliteit) en geen informatie lekt via verschillen in executietijd.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Alge-
bra. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-01

A.M. Geerling. Transformational Development
of Data-Parallel Algorithms. Faculty of Mathemat-
ics and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs:
Models, Methods, and Implementation. Faculty of
Mathematics and Computer Science, KUN. 1996-
03

M.G.A. Verhoeven. Parallel Local Search. Fac-
ulty of Mathematics and Computing Science, TUE.
1996-04

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines with
Distrib. Memory. Faculty of Mathematics and
Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard Real-
Time Systems. Faculty of Mathematics and Com-
puting Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-
tion, and Fault-Tolerance. Faculty of Mathematics
and Computer Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics and
Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and its
Denotational Dual. Faculty of Mathematics and
Computer Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Speci-
fication Formalism. Faculty of Mechanical Engi-
neering, TUE. 1996-11

P. Severi de Santiago. Normalisation in Lambda
Calculus and its Relation to Type Inference. Fac-
ulty of Mathematics and Computing Science, TUE.
1996-12

D.R. Dams. Abstract Interpretation and Parti-
tion Refinement for Model Checking. Faculty of
Mathematics and Computing Science, TUE. 1996-
13

M.M. Bonsangue. Topological Dualities in Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tions in Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathematics
and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1997-06

F.A.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Mathe-
matics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Simulator for Systems Engineering. Faculty
of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for
Multiprocessor Computation. Faculty of Mathe-
matics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-
Power 80C51 Microcontroller. Faculty of Mathe-
matics and Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty of
Mathematics and Computing Science, TUE. 1998-
05

E. Voermans. Inductive Datatypes with Laws and
Subtyping – A Relational Model. Faculty of Math-
ematics and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-
based Parsing. Faculty of Computer Science, UT.
1999-02

J.P.L. Segers. Algorithms for the Simulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolu-
tionary Search. Faculty of Mathematics and Natu-
ral Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty of
Mathematics and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in
Real-Time Distributed Databases. Faculty of Math-
ematics and Computing Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart: Syntax
and Semantics. Faculty of Mathematics and Com-
puting Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfia-
bility problems. Faculty of Mathematics and Com-
puting Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols
with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fábián. A Language and Simulator for Hybrid
Systems. Faculty of Mechanical Engineering, TUE.
1999-11

J. Zwanenburg. Object-Oriented Concepts and
Proof Rules. Faculty of Mathematics and Comput-
ing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural
Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation
of Attribute Grammars. Faculty of Mathematics
and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-
allel Program Construction. Faculty of Mathemat-
ics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in
the Dutch Republic. Faculty of Mathematics and
Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified ap-
proach to the verification of distributed algorithms.

Faculty of Mathematics and Computer Science,
UU. 2000-02

W. Mallon. Theories and Tools for the Design of
Delay-Insensitive Communicating Processes. Fac-
ulty of Mathematics and Natural Sciences, RUG.
2000-03

W.O.D. Griffioen. Studies in Computer Aided
Verification of Protocols. Faculty of Science, KUN.
2000-04

P.H.F.M. Verhoeven. The Design of the Math-
Spad Editor. Faculty of Mathematics and Comput-
ing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Pack-
aging Plant. Faculty of Mechanical Engineering,
TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving Cor-
rect Programs. Faculty of Mathematics and Com-
puting Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Het-
erogeneous Applications. Faculty of Natural Sci-
ences, Mathematics and Computer Science, UvA.
2000-08

E. Saaman. Another Formal Specification Lan-
guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search
Discovering and Representing Search Space Struc-
ture. Faculty of Mathematics and Natural Sciences,
UL. 2001-01

R. Ahn. Agents, Objects and Events a computa-
tional approach to knowledge, observation and com-
munication. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs in
higher order logic using PVS and Isabelle. Faculty
of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and
semantics. Faculty of Sciences, Division of Mathe-
matics and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics and
Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Test-
ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes.
Faculty of Mathematics and Natural Sciences, UL.
2001-08

M.H. Lamers. Neural Networks for Analysis
of Data in Environmental Epidemiology: A Case-
study into Acute Effects of Air Pollution Episodes.
Faculty of Mathematics and Natural Sciences, UL.
2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concur-
rency control and recovery protocols. Faculty of
Mathematics and Computing Science, TU/e. 2001-
11

M.D. Oostdijk. Generation and presentation of
formal mathematical documents. Faculty of Math-
ematics and Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A
simulation approach using χ. Faculty of Mechani-
cal Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction
techniques for model checking. Faculty of Math-
ematics and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelli-
gent Data Analysis: theoretical and experimental
aspects. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specifica-
tion and Analysis of Industrial Systems. Faculty of
Mathematics and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Natural Sci-
ences, Mathematics and Computer Science, UvA.
2002-03

S.P. Luttik. Choice Quantification in Process Al-
gebra. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction:
Algorithms and Complexity. Faculty of Mathemat-
ics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of
Probabilistic, Real-time and Parametric Systems.

Faculty of Science, Mathematics and Computer
Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences, UL.
2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and
Cost-Optimality in Model Checking of Timed and
Hybrid Systems. Faculty of Science, Mathematics
and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pack-
ing. Faculty of Mathematics and Natural Sciences,
UL. 2002-09

D. Tauritz. Adaptive Information Filtering: Con-
cepts and Algorithms. Faculty of Mathematics and
Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for Pro-
cess Algebra. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Se-
mantical Models. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2002-
12

L. Moonen. Exploring Software Systems. Faculty
of Natural Sciences, Mathematics, and Computer
Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Compu-
tation to Constraint Satisfaction and Data Mining.
Faculty of Mathematics and Natural Sciences, UL.
2002-14

S. Andova. Probabilistic Process Algebra. Fac-
ulty of Mathematics and Computer Science, TU/e.
2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of
Mathematics and Computer Science, TU/e. 2002-
16

J.J.D. Aerts. Random Redundant Storage for
Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-
niques for component composition and construc-
tion. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed
Source Code Representations. Faculty of Natu-
ral Sciences, Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of
Mathematics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in
Process Algebras with Data and Timing. Faculty of
Mathematics and Computer Science, TU/e. 2003-
05

S.V. Nedea. Analysis and Simulations of Cat-
alytic Reactions. Faculty of Mathematics and
Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Ter-
tiary Storage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annota-
tion – CoMPAs. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics of
Object-based Software: a Foundational Approach.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal Ap-
proach to the Modeling of Collaboration Between
System Components. Faculty of Mathematics and
Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Ap-
proach to Software Components. Faculty of Math-
ematics and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the
Differencing Method. Faculty of Mathematics and
Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and
Their Use in Interactive Theorem Proving. Fac-
ulty of Mathematics and Computer Science, TU/e.
2004-02

P. Frisco. Theory of Molecular Computing – Splic-
ing and Membrane systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty
of Mathematics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for
Home Environments. Faculty of Mathematics and
Computer Science and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction and
Probabilistic Specification Formats. Faculty of Sci-
ences, Division of Mathematics and Computer Sci-
ence, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis: a
Type-Theoretical Formalization and Applications.
Faculty of Science, Mathematics and Computer
Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargain-
ing Games: An Evolutionary Investigation of Fun-
damentals, Strategies, and Business Applications.
Faculty of Technology Management, TU/e. 2004-
08

N. Goga. Control and Selection Techniques for
the Automated Testing of Reactive Systems. Fac-
ulty of Mathematics and Computer Science, TU/e.
2004-09

M. Niqui. Formalising Exact Arithmetic: Rep-
resentations, Algorithms and Proofs. Faculty of
Science, Mathematics and Computer Science, RU.
2004-10

A. Löh. Exploring Generic Haskell. Faculty of
Mathematics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms
for Car Navigation. Faculty of Mathematics and
Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Pro-
cessing Using Conditionally Guaranteed Budgets.
Faculty of Mathematics and Computer Science,
TU/e. 2004-13

J. Pang. Formal Verification of Distributed Sys-
tems. Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Eco-
nomics. Faculty of Technology Management,
TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation
Using a Single Base Station. Faculty of Mathemat-
ics and Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Ver-
ified Distribution. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2004-
17

M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents. Faculty
of Mathematics and Computer Science, UU. 2004-
18

E. Eskenazi and A. Fyukov. Quantitative Pre-
diction of Quality Attributes for Component-Based
Software Architectures. Faculty of Mathematics
and Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Fac-
ulty of Mathematics and Computer Science, TU/e.
2004-20

N.J.M. van den Nieuwelaar. Supervisory Ma-
chine Control by Predictive-Reactive Scheduling.
Faculty of Mechanical Engineering, TU/e. 2004-
21

E. Ábrahám. An Assertional Proof System for
Multithreaded Java -Theory and Tool Support- .
Faculty of Mathematics and Natural Sciences, UL.
2005-01

R. Ruimerman. Modeling and Remodeling in
Bone Tissue. Faculty of Biomedical Engineering,
TU/e. 2005-02

C.N. Chong. Experiments in Rights Control -
Expression and Enforcement. Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT. 2005-03

H. Gao. Design and Verification of Lock-free
Parallel Algorithms. Faculty of Mathematics and
Computing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of
Internet Applications. Faculty of Mathematics and
Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architect-
ing - A Systematic Approach to Developing Future-
Proof System Architectures. Faculty of Mathemat-
ics and Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Techniques
in Security and Fault-Tolerance. Faculty of Elec-
trical Engineering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model Transforma-
tions. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth -
Lower Bounds and Network Reliability. Faculty of
Science, UU. 2005-09

O. Tveretina. Decision Procedures for Equal-
ity Logic with Uninterpreted Functions. Faculty of
Mathematics and Computer Science, TU/e. 2005-
10

A.M.L. Liekens. Evolution of Finite Populations
in Dynamic Environments. Faculty of Biomedical
Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Pro-
gramming: Classification and Symbolic Regression.
Faculty of Mathematics and Natural Sciences, UL.
2005-12

B.J. Heeren. Top Quality Type Error Messages.
Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of Hy-
brid Systems using Simulation Relations. Faculty
of Science, Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Structural Opera-
tional Semantics. Faculty of Mathematics and
Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Probabilistic
Systems. Faculty of Mathematics and Computer
Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Structure of
pi-Calculus Processes with Replication. Faculty of
Mathematics and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint Solvers.
Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2005-18

J.J. Vinju. Analysis and Transformation of
Source Code by Parsing and Rewriting. Faculty
of Natural Sciences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and Repli-
cation of Processes with Data. Faculty of Sciences,
Division of Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through Haskell. Faculty of
Science, UU. 2005-21

Y.W. Law. Key management and link-layer se-
curity of wireless sensor networks: energy-efficient
attack and defense. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT. 2005-
22

E. Dolstra. The Purely Functional Software De-
ployment Model. Faculty of Science, UU. 2006-01

R.J. Corin. Analysis Models for Security Proto-
cols. Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computational Complex-
ity of Evolving Systems. Faculty of Science, UU.
2006-03

K.L. Man and R.R.H. Schiffelers. Formal Spe-
cification and Analysis of Hybrid Systems. Faculty

of Mathematics and Computer Science and Faculty
of Mechanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of UML
Models: Tool Support and Compositionality. Fac-
ulty of Mathematics and Natural Sciences, UL.
2006-05

M. Hendriks. Model Checking Timed Automata
- Techniques and Applications. Faculty of Science,
Mathematics and Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting. Fac-
ulty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-assisted
verification of JML programs. Faculty of Science,
Mathematics and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular Simu-
lations. Faculty of Biomedical Engineering, TU/e.
2006-09

S.G.R. Nijssen. Mining Structured Data. Fac-
ulty of Mathematics and Natural Sciences, UL.
2006-10

G. Russello. Separation and Adaptation of Con-
cerns in a Shared Data Space. Faculty of Mathe-
matics and Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic and
Probabilistic Choices. Faculty of Science, Mathe-
matics and Computer Science, RU. 2006-12

B. Badban. Verification techniques for Exten-
sions of Equality Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal methods and
protocol standardization. Faculty of Mathematics
and Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hybrid
Systems. Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2006-15

M.E. Warnier. Language Based Security for Java
and JML. Faculty of Science, Mathematics and
Computer Science, RU. 2006-16

	Preface
	Introduction
	Background and preliminaries
	Java Card
	Semantics of programming languages
	Semantics of While-like languages
	Semantics of Java-like languages

	JML
	Java program verification
	Confidentiality as non-interference
	Security policies and security lattices
	Downgrading

	Tools
	ESC/Java2
	The LOOP verification framework
	PVS
	Other tools

	Specification and verification of Java programs
	Side-effects
	Data types
	Aliasing
	Overflow of numeric types
	Bitwise operations
	Numeric types in specification and implementation

	Control flow
	Return inside try-catch-finally
	Throwing exceptions
	Breaking out of a loop
	Class invariants and callbacks

	Inheritance
	Combining late- and early-binding
	Inheritance and method overriding

	Static initialization
	Mutually-dependent static fields

	Conclusions
	LOOP & ESC/Java2

	Specification and verification of control flow properties
	The applet
	Requirements
	Design
	Implementation
	The crediting protocol

	Specifying the applet
	Modeling the card life cycle
	The process method
	Global properties of the applet

	Correctness of the applet specification
	Verifying the process method
	Verification of the two helper methods

	Related work
	Conclusions

	Specification and verification of non-interference in JML
	A specification pattern for confidentiality
	Applying the specification pattern
	A first example
	An example involving method calls
	An example with a loop
	A cash register

	Towards termination sensitive non-interference
	Related work
	Conclusions

	Statically checking termination-insensitive non-interference
	Preliminaries
	Labeling transition functions
	Correctness of our approach
	Examples
	Possible Extensions
	Indistinguishable objects and heaps
	Exceptions
	Method calls
	Assertions
	Completeness
	Aliasing

	Related work
	Conclusions

	Interactively proving termination-sensitive non-interference
	Non-interference through bisimulation
	Confidentiality as bisimulations in classes

	A relational Hoare logic for WHILE
	Extension to sequential Java
	Interlude: Java semantics in the LOOP project
	Relational Hoare n-tuples
	Termination sensitive non-interference as bisimulation
	JML for relations: JMLrel

	A relational Hoare logic for Java
	Composition
	If-then-else
	Integer division
	Throwing exceptions explicitly
	Other rules

	Examples
	A (partial) semantic proof
	An example revisited
	Simple arithmetic
	Mixed termination modes

	Related work
	Relation to the LOOP framework

	Conclusions

	Enforcing time-sensitive non-interference
	Language
	Transforming out timing leaks
	Problem statement and hypotheses
	The transformation
	Application to non-interference
	Enforcing termination-sensitive non-interference

	Adding objects, methods and exceptions
	Language
	Problem statement
	The transformation
	Enforcing termination-sensitive non-interference

	Some observations
	Total execution time
	Time-outs
	Termination
	Timing model
	Preventing code explosion
	Optimizing and JIT-compiling
	Nested transactions in Java

	Related work
	Conclusions

	Conclusions
	Bibliography
	Java source code listings
	The phone card applet from chapter 4
	The cash-logger from chapter 5

	Formal properties of OO
	Operational semantics of OO and OO with exceptions
	Non-interference for OO

	List of Figures
	Index
	Samenvatting (Dutch Summary)

