
INFORMATIQUE THÉORIQUE ET APPLICATIONS

MEENA MAHAJAN

KAMALA KRITHIVASAN

Language classes defined by time-bounded

relativised cellular automata

Informatique théorique et applications, tome 27, no 5 (1993), p. 403-
432.

<http://www.numdam.org/item?id=ITA_1993__27_5_403_0>

© AFCET, 1993, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1993__27_5_403_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 27, n° 5, 1993, p. 403 à 432)

LAIMGUAGE CLASSES DEFIMED BY TIME-BOUNDED
RELATIVISED CELLULAR AUTOMATA (*)

by Meena MAHAJAN (*) and Kamala KRITHÏVASAN (2)

Communicated by C CHOFFRUT

Abstract. - Some of the fundamental problems concerning cellular automata {CA) are asfollows:
— Are Hnear-time CA {ICA) more powerfuî thon real-time CA(rCA)?
— Are nonlinear-time CA more powerfuî thon Hnear-time CA ?
— Does one-way communication reduce the power of a CA ?

These question have been open for a long time. In this paper\ we address these questions with
respect to tally languages in relativised worlds, interpreting timevarying CA (TVCA) as oracle
machines. We construct

— oracles which separate rCAfrom IC A and ICAfrom CA,
— oracle classes under which the CA classes coincide, and
— oracles which leave the CA classes unchanged.

Further, with r CA and IC A at the base, we build a hierarchy of relativised CA complexity classes
between rCA and CA, and study the dependencies between the classes in this hierarchy.

1. INTRODUCTION

Cellular automata {CA) as language recognisers have been the object of
study for several years [BC84, CC84, IJ88, IPK85, Smi71, Smi72]. A CA
consists of a 1-dimensional array of identical finite-state machines called cells,
one for each letter of the input. The cells operate synchronously at discrete

(*) Received October 29, 1991; accepted March 5, 1993.
O The Institute of Mathematical Sciences, Madras 600 113, India.
(2) Department of Computer Science and Engineering, Indian Institute of Technology, Madras

600 036, India
A preliminary version of this paper was presented at the llth FST and TCS Conference

[MK91].
This work was done when the second author was at the Department of Computer Science

and Engineering, ïndian Institute of Technology, Madras 600036. This research was partially
supported by a grant from the Department of Science and Technology, Government of India.,

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/93/05/$4.00/©AFCET-Gauthier-Villars

4 0 4 M. MAHAJAN, K. KRITHTVASAN

accepting node

Figure 1. — A cellular automaton

time steps. Seefig. 1. Let c{U i) dénote the state of the ith cell at time t. The
input word axa2. . ,an is fed to the CA by setting c(i9 0) to at. The state of
the zth cell at time t+\ is a function of its states and the states of its left and
right neighbours at time t\ thus c(i, t + l) = 5(c(i - 1, t), c(i, t), c(i+ 1, /))• (If
a neighbouring cell is missing, L e. at the boundaries of the array, a special
state # is taken to be the missing argument.) The CA accepts the input ax

a2. . . an if its leftmost cell eventually enters an accepting state.
Formally, a CA is defmed as follows:

DÉFINITION IA: A cellular automaton is a 4-tuple C={Q, # , 8, ̂ 4) w/ïere
— g is afinite set of states
— # eQ is the boundary state
~~ 8 : g x Qx Q -• Q is the local transition function satisfying

8(a, b,c)=# ifand only if b= #

— A^Q is the set of accepting states.

If inputs of length n are accepted within time T(n), the CA is said to have
time complexity T{n). Clearly, T{n)^n for non-trivial récognition. Of special
interest are the cases when T(ri) = n, given "real-time" CA(rCA), and
T(n) = cn for some constante, giving "linear-time" CA(ICA). CA with no
time restnction are equivalent to deterministic linear-space-bounded Turing
machines [Smi72], and thus accept exactly the class of deterministic context-
sensitive languages (DCSLs). It is not known whether ICA are more powerful
than rCA or whether nonlinear-time CA are more powerful than ICA.

A restricted version of a CA is the one-way CA (OCA), where the commun-
ication between cells is from left to right only. Here, c(i, t+ 1) is a function
of c{i- 1, /) and c(i, t) only. The rightmost cell must enter an accepting state
for the input to be accepted. Like CA, OCA have also been studied in depth
[BC84, CC84, CIV88, Dye80, IJ88, IJ87], because despite their simplicity,
they are remarkably powerful. For instance, they can accept some PSP ACE-
complete languages, as well as all languages in NSPACE {^Jn) [CIV88, IJ87].

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 4 0 5

It is not known whether CA are more powerful than OCA, The containments
and equalities known are as follows:

It is easy to see that IC A languages are contained in DTIME(n2)<=P. (In
gênerai, a T(n)-time CA can be simulated by a Turing machine in O(nT(n))
time, using only linear space.) Thus any proof that OCA are only as powerful
as IC A (e. g. ICA = CA, IOCA = OCA, etc.) will immediately imply that
P^PSPACE. On the other hand, a proof to the contrary seems extremely
difficult to obtain.

The motivation for our work here has corne from the field of structural
complexity theory, specifically from the use of relativisation techniques. A
relativised Turing machine has a separate tape for writing oracle queries, and
three special states qv qy, qn. The state #? is used to ask whether the string
on the query tape belongs to the oracle set. If this is so, then at the next
time step the machine enters state qy; else it enters state qn. The computation
then proceeds normally, until a fresh query is made by entering the state q?

again. Relativisation of Turing machines and the study of the polynomial

hierarchy (PH) have not answered the P^NP question, but they have
provided a lot of insight into the structural properties of these complexity
classes. We hope that similar useful insights into the structure of the CA
complexity classes rCA, IC A and CA can be obtained through relativisation.
However, the notion of relativisation in the context of CA is difficult to
formalise, because the control of the computation is not centralised but is
distributed over all the cells. Besides, there is no tape on which to write out
queries to the oracle. Even if queries were to be written in a separate
component of the state of each cell, synchronising the query procedure would
become contrived and cumbersome. We adopt the approach of using implicit
oracle querying as provided by a time-varying CA (TVCA). TV CA have been
defined in [MK92], and several interesting properties have been studied. A
TVCA is similar to a CA except in one respect: the transition rule which
spécifies the next state of a cell in terms of the states of cells in its neighbour-
hood is not fixed, but dépends on how many time steps have elapsed since
the TVCA opération began. Thus an oracle is implicitly queried on inputs
£= 1,2, . . ., and its replies teil the CA which transition rule is to be used.

The querying mechanism as described above is represented most naturally
using tally languages (languages over a unary alphabet); therefore, throughout
the rest of this paper, only tally languages are considered as oracles. While

vol. 27, n° 5, 1993

4 0 6 M. MAHAJAN, K. KRITHIVASAN

tally sets are often inadequate in capturing the complexity of various classes,
they sometimes suffice to express strong interdependencies [Boo74]. For
instance, tally sets are present in NP-P if and only if DEXT^NEXT. Even

?

when only tally sets are considered, the problem rCA = lCA is open [IJ88].
Though many conjecture that the classes (of tally sets) are distinct, no answer
is forthcoming. Book's results (theorem 2, [Boo74]) imply that if, for tally
languages, ICA = CA, then EXPSPACE= EXPTIME and every tally lan-
guage in PSP ACE belongs to P. Our work hère is based on the conjecture
that if the classes rCA, ICA and CA are distinct, then there are tally sets in
the différence.

In section 2, we define TVCA and formalise the interprétation of TVCA
as oracle CA, In section 3 we construct oracles separating rCA, ICA and
unrestricted-time CA. We also present oracle sets relative to which these
classes coïncide, and relative to which they remain unchanged. The CA
hierarchy is defîned in section 4 and shown to be contained in the class of
CA languages. This hierarchy is defîned with the tally languages in r CA and
ICA at the base, by iteratively relativising the classes obtained via oracles
from the preceding level. Some interesting properties of this hierarchy are
presented in section 5.

2. TVCA AS RELATIVISED CA

Time-varying cellular automata {TVCA) have been defîned in [MK92] and
several properties of these automata are investigated there. We rephrase the
définition hère in a form most convenient for this work. Informally, a TVCA
differs from a CA in the following way: the transition function 8 dépends on
time. Thus different transition rules may be used at different times. We
consider the simplest case where there are only two possible rules to be used,
Sj and 82, and one of them is used depending on the current time. In the
notation of [MK92], such TVCA are referred to as 2-TVCA; since we will
consider only such TVCA hère, we will drop the prefix 2-, The usage of bt

and ô2 is controlled by a tally set L. If O'eL, then at time i rule 8X is used,
else rule ô2 is used. Thus a TVCA is completely described by specifying Q,
, 81? 82, L and A. Formally,

DÉFINITION 2.1: A TVCA is a 6-îuple C=(Ô, # , Sl5 82, L, A) where

— Q is afinite set ofstates

— # eQ is the boundary state

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 4 0 7

— Lis a tally set over {0 }
— 81 and 52 are transition rules §i'.QxQx Q-* Q satisfying ht (a, b, c) = #

if and only ifb=#

— A^Q is the set of accepting states

The composite transition function S of the TVCA is then defined as follows:

(a,b,c) if O'eL
2 (a, b, c) otherwise

From this définition it is clear that the TVCA acts as if it has an oracle
answering queries about the membership of strings in L. The queries are
quite restricted; the oracle must be queried at each time step, and it must be
queried on strings O1, O2, . . . in that order. Thus such a machine may not
be equivalent to a DSPACE{n) Turing machine with an oracle for Z, even if
they are the same without oracles. However, even this restrictive notion of
querying appears to be quite non-trivial, and is used throughout this paper.

With this interprétation of 2-TVCA as oracle CA, we will henceforth
specify a TVCA as C{L\ where C=(g, # , Su S2, A) and L is the oracle.
When the oracle is an empty set, this dénotes the CA(Q, # , S2, A). Classes
of CA 9> with a particular oracle L are denoted Sf (L); e. g. r CA (L), CA (L),
etc. Classes of CA £f relative to a set of tally oracles ^£ are denoted Sf (JSf);
e. g. CA (r CA), etc. By SP (S£) we will mean both the class of machines in Sf
using an oracle from S£ and the class of languages accepted by such machines.
For a class of languages ^£, we use ^£ \t to dénote the restriction of 5£ to
taliy languages.

For some of the proofs in the next section, we need to fix an enumeration
of rCA and ICA. To completely specify a CA, two notions must be specified:
the CA itself (i. e. its state set and its transition function), and the set of
accepting states. In addition, if an ICA is being specified, then the maximal
time at which the accepting cell can be checked should also be indicated.
These notions are encoded by integers as follows. We assume that the state
set of a CA is {0,1, . . ., k} for some fïnite k, and that # is the state 0.
The number of distinct transition rules is m = fók+1)2k (since # always maps
to # and no other symbol maps to #) , and the number of possible sets of
accepting states is 2k (since # cannot be an accepting state). Thus a TVCA
can be specified, without the oracle language, as a 4-tuple {k, il9 i2,j) where
iu i2 are integers between 1 and m specifying the transition rules, and j is an
integer between 1 and 2k specifying A. Let <|)£, i~ 1, 2, . . . be an ordering of
such 4-tuples. This serves as an enumeration of CA as well as rCA. To

vol. 27, n° 5, 1993

408 M. MAHAJAN, K. KRITHIVASAN

enumerate ICA, we order pairs (<j>i5 cj) where §t is the machine and Cj spécifies
the constant for linear-time acceptance. Let this ordering by \|/;, an enumera-
tion of ICA. Since we allow the set of accepting states to be empty, CAs
accepting the empty set will occur infinitely often in both these enumerations.

3. RELATIVISED CA CLASSES

In this section we show how different oracle sets differently affect the
containment rCA^lCA^CA. We first construct oracles separating these
classes. We also show how to effect strong séparations via immune sets. A
set X is said to be immune to a class S? {<£-immune) if X is infinité and
contains no infinité subset belonging to if. An oracle L strongly séparâtes
classes S£x and JS?2, where i ^ g J ^ , if S£2{L) contains a set that is S£\(L)-
immune.

We will construct oracle sets A and B such that ICA(A)^CA(A) and
rCA(B)^lCA(B). We will then généralise the construction to obtain sets C
and D such that C (respectively, D) strongly séparâtes / CA from CA (respec-
tively, rCA from ICA). All these séparations hinge around the fact that in
our model of relativisation, a time bound imposes a stringent bound on the
potential query space. Before doing so we will show some intermediate results.

DÉFINITION 3.1: Afunction T(n):H + -»N + is said to be CA-time-construc-
tible if there is a CA which, on any input of length n, puts its accepting cell
into a special state after exactly T(ri) time steps.

PROPOSITION 3.2: Let / : 2 + ->N be a CA-time-constructible function, and
let A be some set acting as an oracle. If A is tally, then the set Lft(A), given
by

Lft(A)={xei:+\0meA, where m=f(x)}

can be accepted by a CA, with tally oracle A, in time ƒ (x). Thus iffx : N -> N
is the function defined as fx («)= max ƒ (x), then Lft(A) can be accepted by a

\x\=n

CA, wich oracle A, in time fx (n).

Proof: Since ƒ is Ol-time-constructible, we can design a relativised CA
where both 5X and 82 compute m=f(x). At time instant m, only ôx puts the
CA into an accepting state. Thus Lft(A) is accepted. •

LEMMA 3.3: 1. ƒ :{0}+ ->N, wheref(0n) = 2n, is CA-time-constructible,
2. g : { 0 } + -> N, where g (0") = n2, is CA-time-constructible.

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVTSED CELLULAR AUTOMATA 4 0 9

Proof: (a) This is straightforward — the CA just has to send a signal from
right to left at half speed.

(b) This is achieved as follows. At /= 1, the rightmost cell enters a special
bounding state b and also sends a signal $ left. $ travels upto a cell marked b
and then returns to the rightmost cell before setting out leftwards again.
Every time $ reaches a b cell, the b marker moves one unit left. Thus
the $ goes through excursions of length 2x1 , 2 x 2, . . ., 2 x i, . . . When
the $ reaches the leftmost cell, the number of steps elapsed is

£ (2x i)\-\-n = n2. An example is shown in figure 2. •

For taily sets A and B, let

and
1

) ~ 2

Then, in the above notation, /A = Lgt(A) and 1/2B = Lft(B), where ƒ and g
are as in Lemma 3.3. Clearly, fx(n)^2n and g1(n) = n2. The next lemma
now foliows from the preceding two results.

LEMMA 3.4

VA,

V5? - BelCA{B).

By direct diagonalisation we can now construct sets A and B such that
) and (lf2)B$rCA(B), giving the following result.

THEOREM 3.5: (a) There exists an oracle A such that lCA(A)#CA(A).

(b) There exists an oracle B such that r CA (B) / / CA (B).

Proof: (a) Let \|/l5 \|/2, . . . be an enumeration of relativised ICA, with
constants cu c2, . . . For any tally set X, fX can be accepted by a CA with
oracle X, We will incrementally construct a tally set A such that for any
relativised IC A \|/i5 the language accepted by ^ with oracle A differs from

[Â. This will prove the theorem's first assertion.

Stage 0: Ao = 0, mo = 0.

Stage i: Choose the smallest integer mt satisfying

vol. 27, n* 5, 1993

410

t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

•

•

•

•

•

•

•

b

b

b

b

b

b

bX

M. MAHAJAN,

0

-

•

•

•

b

b

b

b

bX
X

•
•

•

•

X

K. KRITHIVASAN

0

•

b

b

bX
X

•
•

X
-

X

*
X

0

bX
l
X

X
X

X
X

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Figure 2. - Computing n2 on a C4.

1. f

2.
3. Vy<ï, j

The first condition ensures that with input 0ms \|/(- does not get a chance to
query A on 0m«. The second condition ensures that the inclusion/exclusion
of 0mt in/from À does not change the behaviour of the TVCA already
considered. The third condition ensures that a string once excluded from A
cannot subsequently by included in A.

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 4 1 1

Simulate ^ on 0mf for qm^ steps, using At^x as oracle. If 0m* is acceptée,
then Ai = Ai_u else Ai = Ai_1 U {0m?}.

A = lim An = { w | w belongs to all but finitely many An }.
n -> oo

Since our construction never deletes strings from any An, A = U An.
n>0

Claim: The set ̂ 4 so constructed satisfies " J~Â cannot be accepted by any
relativised IC A with oracle A'\

Proof of claim: By contradiction. Assume that for some f, \|̂ (̂ 4) accepts
/Â. On input 0ms \|/f queries A on strings of length upto c£m;. By our

construction,

Thus on input O"1*, \|/jG4) behaves as \|/;(^f_i). Suppose ty^A^i) accepts O™1.
Then our construction excludes 0m* from At and 4̂. Thus 0m' is in
^Oki(^i-i))" ̂ /̂ ï* On the other hand, if V|/JG4J_I) does not accept 0m*, then
0mi is included in At. Since words are never deleted from A, it remains in A,
and hence 0m* is in /Z. Thus 0m* is in /Â-L^^A^J). In either case,
\|/f(̂ 4) cannot be correctly accepting IA.

Essentially, our construction ensures that V i, 0mie L(\|/f (̂ 4)) A [A. This
proves the claim.

(b) Let <j>f, / = 1 , 2, . . . be an enumeration of relativised rCA. We will
incrementally construct a tally set B such that (1/2) B is not accepted by any
§i(B). Since (1/2)5 can be accepted by an IC A with oracle B, the assertion
will be proved.

Stage 0: Bo = 0.

Stage i: Simulate ^ on the string 0' for i steps, using oracle Bi_1. If <|>£

accepts the input, then B^B^^ else B^B^^ \J {02i}.

J?= lim 2?„ = {w | w belongs to all but finitely many Bn }
n - » QO

Claim: The set 5 so constructed satisiles "(1/2) ^ cannot be accepted by
any relativised rCA with oracle B".

This proof is similar to that in (a). Here we ensure that Vf,

COROLLARY 3.6: There exists an oracle X such that

vol. 27, n° 5, 1993

4 1 2 M. MAHAJAN, K. KRITHIVASAN

Proof: In the above theorem, we have seen how to construct oracles A
and B separating CA from / CA and / CA from r CA respectively. If the
construction of A is modified so that only odd length strings are chosen
(choose odd mf), the séparation is still valid. Now the even length strings
can be used to separate ICA from rCA, as in the construction of B. cj>£ will
now be simulated on the string 02i instead of 0\ and according to the outcome
04"1 may or may not be added to the oracle. It is easy to see that the
oracle so constructed simultaeneously séparâtes CA from / CA and / CA from
rCA. M

These results can be strengthened to strong séparations; using delayed
diagonalisation in a similar fashion as above, we can show the following (see
[Mah92]).

THEO REM 3.7: (a) There is a tally oracle C such that CA (C) contains an
ICA (C)-immune set.

(b) There is a tally oracle D such that l CA (D) contains an r CA (Dyimmune
set.

The proofs of both Theorem 3.5 and Theorem 3.7 are identical in nature
to the corresponding oracle constructions for separating P and NP; refer
[BDG90].

In [MK92] we have shown the following:

THEOREM 3.8: Let C= CA (X) be a TVCA with oracle X. If X is ultimately
periodic (this includes regular languages), then C can be simulated by a non-
time-varying CA with no loss of time.

The proof is included in the appendix.

The following proposition is easily verifîed (for completeness, this is also
proved in the appendix).

PROPOSITION 3.9: rOCA\t equals the class of tally regular sets.

Thus as an oracle class, the class rOCA \t has no effect on the classes r CA,
ICA and CA. Hence the problem of whether r CA are properly contained in
/ CA remains unchanged in this relativised world.

THEOREM 3.10

rCA(rOCA\t) = rCA

lCA(rOCA\t) = lCA

CA(rOCA\t) = CA

Informatique théorique et Applications/Theoretical Infonnatics and Applications

RELATIVISED CELLULAR AUTOMATA 4 1 3

At the other extreme, when the class CA \t is used as oracles, r CA \t become
as powerful as ICA \v as seen below.

THEOREM 3.11 : r CA {CA |r) |f - / CA {CA \t) \t = CA | r

Proof: Clearly, rCA{CA\t)\t^lCA{CA\t)\r Observe that for any tally set
A, A can be accepted in real time by some CA using oracle A. Thus
CA\t^rCA{CA\t)\t^ICA{CA\t)\t. To show that lCA{CA\t)\t^CA\t, let
y\f{A) be an ICA using oracle A, where A can be accepted by CA§. Let the
constant for \|/ be c. Then we can construct a CA <|>' which, for the zth step
of \|/ (A), fïrst simulâtes <(> on the i length input 0', and then uses the outcome,
after re-synchronising the array, to simulate one step of \|/. Since \|/ is an
ICA, <|> has to be simulated on inputs upto length en. This requires a en
length array, which can be compacted onto the n length array of <J>'. (j>' thus
simulâtes \|/(A). Thus CA \t£r CA {CA \t) \t^ICA {CA \t) \tg CA \t9 implying the
theorem. •

Thus relativisation with respect to the class CA \t merges the classes r CA \t

and lCA\t and makes them equal to the class CA\V However relativisation
with respect to the same class CA \t increases the power of the class CA much
further. There is a CA controlled by a CA oracle which accepts languages
provably not acceptable by CA; this result follows from the following theorem
and the space hierarchy theorem [BDG88] which strictly séparâtes
DSPACE(fl) from DSPACE(2"). Before stating the theorem we prove a
simple proposition. For any positive natural number n, if 1 x is the unique
binary représentation of n, then x, denoted <«>, is the standard représenta-
tion for the number n.

PROPOSITION 3.12: There is a CA which, given input < n) , puts its rightmost
cell into a special state S after exactly n steps.

Proof: The CA with input <n> counts n time steps by subtracting 15 at
each time step, from the number in its array. The leftmost "active" cell has
two bits of the number. Initially the leftmost cell of the CA is the leftmost
"active" cell and behaves as if it has 1 bk, where bk is the leftmost bit of < n >.
Subtraction occurs at the rightmost end, with "borrow" signais travelling left
as and when generated, and the leftmost "active" cell gradually shifting right.

An example for <«> = 011, is shown in figure 3. Since the input is 011,
the number in question is the binary number 1011 (the leading 1 is implicit),
i.e. 11 in décimal notation. The leftmost cell initially sets its state to 10 and
is the left-most "active" cell. The rightmost cell subtracts 1 from its contents
at each step. When it has only 0, it sets the 0 to 1 and also sets a b flag in

vol. 27, n° 5, 1993

414 M. MAHAJAN, K. KRITHÏVASAN

t = 0

1

2

3

4

5

6

7

8

9

10

11

#

#

#

#

#

#

#

#

#

#

#

0

10

10

10

10

10

X

X

X

X

X

X

1

1

1

0

0

11

11

10

10

X

X

X

1

0

h

0

h

0

h

0

11

10

01

s

#

#

#

#

#

#

#

#

#

#

#
Figure 3. — Computing n from (n) o n a CA

its state, indicating that it has "borrowed" a 1 from its left neighbour. A cell
which sees this b flag in its right neighbour's state subtracts one from its
own contents — if necessary, borrowing a 1 from its left neighbour in a similar
fashion. The exception is when a cell needs to borrow a 1 and fînds that its
left neighbour is the leftmost "active" cell and contains 10. Clearly, this cell
will become the leftmost "active" cell after the borrowing, so it directly sets
itself to IL A cell with a 10, on seeing its right neighbour set itself to 11,
knows that it is no longer required to be "active", and sets itself to some
special state X. The computation ends when the rightmost cell becomes the
leftmost "active" cell and décréments its contents to 00. •

THEOREM 3.13: DSP ACE (2") £ CA (CA \t)

Proof: Let L be any language in DSP ACE (2M). Consider the tally version
TALLY (L) defined as { 0n |< n > e L}. Since the length of 0w is exponential in
the length of { n >, it is easy to see that for any language L in DSPACE (2"),
TALLY (L) is in DSPACE (n) \t=CA \t. Now it is easy to construct a TVCA
which has 5X and 82 alike everywhere except in the présence of S. The input
to the TVCA is <(n) , and both 8t and 52 compute n in time, as in the above

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIV1SED CELLULAR AUTOMATA 415

proposition. In the présence of S, 8X puts the TVCA in an accepting state
and 52 puts it in a rejecting state. Such a TVCA, with a controlling language
TALLY(L) from CA \t9 can thus accept any language L in DSPACE(2"). •

COROLLARY 3.14: CA c CA (CA \t)

The next theorem strengthens Theorem 3.11.

THEOREM 3.15: rCA(OCA\t)\t = lCA(OCA\t)\t=OCA\v

Proof: Clearly, OCA\t^rCA(OCA\t)\t^lCA(OCA\t)\v To show that
lCA(OCA\t)\t^OCA\t9 we will use the sequential machine characterisation
for OCA. It has been shown [CIV88, IJ87, IPK85] that OCA are equivalent
to a restricted form of an online single-tape Turing machine, called a Sweeping
Automaton (SA). An SA consists of a semi-infinite worktape (bounded at
the left by a special boundary marker ty and a fmite-state controî with an
input terminal at which it receives the sériai input a1 a2. . . an. The symbol $
is used as endmarker. The SA opérâtes in left-to-right sweeps as follows:

Initially, all cells of the worktape to the right of <J: contain the blank
symbol X. A sweep begins with the read-write-head (RWH) scanning § and
the machine in a distinguished state q0. In the zth sweep, the machine reads at

and moves right of ^ into a non-#0 state. It continues moving right, rewriting
non-À, symbols by non-A, symbols and changing states except into q0. When
the RWH reads a X, it rewrites it by a non-X symbol and resets to the
leftmost cell in state q0 to begin the next sweep. When $ is first read, the
machine complètes the («+l)th sweep, writes a $ in the (n+l)th tape cell,
and resets to fy in state q0. Subséquent sweeps are performed between § and
$ without expanding the workspace. $ is assumed to be always available for
reading after the input is exhausted. The input is accepted if the machine
eventually enters an accepting state at the end of a sweep.

Several techniques for programming an SA have been described in [CIV88].
For a full description of how the techniques are implemented on an SA, the
reader is referred to [CIV88].

We will show that any language in the class / CA (OCA \t) \t can be accepted
by an SA, This will prove the theorem.

Let L be a language accepted by an ITVCA^ controlled by the OCA
language A. A is accepted by an OCA <p. Choose constant c sufficiently large
so that L is accepted by \|/ in T(n) < en time steps. Let the input be a1 a2. . . an.
Construct SA M accepting L as foliows:

The SA opérâtes in sweeps, reading at at the beginning of the zth sweep.
In the first sweep, M créâtes 2 c subcells in the first worktape cell, and puts

vol. 27, n° 5, 1993

4 1 6 M. MAHAJAN, K. KRITHIVASAN

a boundary marker b on the cth subcell. It also puts markers [and] on the
(c + l)th subcell, and writes ax on the (c+ l)th subcell (along with the [and]).
In subséquent sweeps while reading the input, it créâtes 2 c new subcelis per
sweep (in the fîrst X cell read). It also moves b and [c subcells right, and]
c+ 1 subcells right. The characters ax to ai_1 are shifted c subcells right, and
at is written, with], beyond them. Thus the worktape is partitioned by b into
two parts such that after the rth sweep, each part has ci subcells. In the
second part the fîrst i subcells are marked off between [and], and hold the
input read so far, one character per subcell. Each subcell in the left part
holds the unary character 0 (appart from possibly b).

When M starts getting $ as input, it begins the actual simulation. M places
a * on subcell 1 to indicate that membership of input O1 in A is to be
determined. cp is simulated on input 0cn in the left part. Since an OCA has
only two arguments in its transition function, the left cell's state and the
current cell's state, the state information can be updated in a left-to-right
sweep. Let c(i, t) dénote the state of the zth cell of cp at time t. Recause of
one-way communication, c(i, t) is the same for all input lengths n^i. So
simulating cp on input 0c" also gives simulations of cp on input O1, i^cn. If in
any sweep the zth subcell in the left part enters an accepting state of cp, the
subcell is marked with a Y indicating that input 0* belongs to A; whenever it
enters a rejecting state, the subcell is marked N. (Since OCA are closed under
complémentation, accepting and rejecting states can be defined.)

In any sweep, if M encounters a Y (N) in a subcell marked *, then the
current query to A has been answered, so M moves the * one subcell right
to query A on the next input. It then simulâtes one transition of \|/ in the
région between and including the subcells marked [and] in the right part,
using transition St (52). However, since \|f is a two-way CA, a simulation in
a left-to-right sweep will shift its configuration one unit right. The [and]
markers are also correspondingly shifted. Since v|/ opérâtes within time en,
the right part is provided with en subcells to allow for the shifting configur-
ation. In any sweep if an accept state of \|/ is written on the subcell marked [,
then this means that the IC A \J/ has accepted the input. So M complètes this
sweep by moving right in a final state.

In sweeps where neither Y nor N are found on the * subcell, the * is kept
where it is and the right part is left unchanged.

Thus the membership of strings in the controlling language is answered in
the en left subcells. As and when an answer to the next query is available,
the corresponding transition step of the TVCA is simulated in n subcells in
the right part.

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 4 1 7

When M attempts to move * beyond b, all en queries to A have been
answered and this sweep will complete the opération of \|/. So by this time if
M has not found an accept state in the [subcell, it moves right in a rejecting
state.

«1

S2

«2

«1

a

d

g

j

l

a2

b

e

h

k

C

ƒ

i

(a) IC A t/> on input

4
z3 z3

Z4 Z5

4
4

(b) Computation of OCA (p on O5

(Accepting states are marked Y, rejecting states N)

Figure 4.

vol. 27, n° 5, 1993

418

input

a i

a2

a 3

$

$

$

$

$

$

$

$

$

cell 1

0

0

0

t.*ï
\Y4

\Y4

\Y*\

\YA

\YA

\Y4

Tv ̂ i

Tv *̂*i

b

0

0

4
.4
.4
N4

N4

N4
7

N4

N4

M. MAHAJAN, K

M
0

0

4
4

N4

*N4

N4

N4

N4

N 4

N4

•

b

0

4
Z4

4
4
•4
YA

Y4

YA

YA

. KRITHIVASAN

cell 2

[ai

0

4
4
4
4
4
.4
.4
.4
NA

a2]

b

b

b

b

b

b

b

b

b

.b

•

•

[ai

[a.

•

•

•

-

•

•

•

a2

a2

[a

[a

-

•

•

•

cell 3

•

03]

«3]

6

b

[d

•

•

•

•

•

•

•

c]

c]

e

{9

•

•

•

•

•

•

h

y
y
y

•

•
•

k

k

k

[l

(c) SA simulating 0(y)

Figure 4. - An SA simulating an ICA (OCA) compilation

One such simulation is depicted in figure 4. For the ICA opération shown
in figure 4 (a), with the oracle OCA operating as in figure 4 (b), the worktape
profile for the corresponding SA is shown in figure 4(c). (The f symbol is
printed by the SA on the first subcell in the (n+ l)th sweep to allow the SA
to tell this sweep apart from subséquent sweeps. This is crucial because only
in this sweep should the SA print a * on the first subcell) •

In theorems 3.11 and 3.15, showing the containments from left to right
requires only the oracle to be tally, not the accepted languages. Thus, with
minor modifications, we can also show that

TKEOREM 3.16

rCA(CA\t)^lCA(CA\t) <^CA^CA{CA\t)
r CA {OCA \t)ÇlCA (OCA \t)^OCA

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 4 1 9

Thus for the oracle class below rCA, Le. rOCA, relativisation does not
7

alter the rCA= IC A question. For the oracle classes above ICA, L e. OCA
and CA, relativisation merges rCA\t and /CA| r The question naturally
occurring at this point is: What happens under relativisation with respect to
classes between rOCA and O CAI This motivated us to construct the cellular
automata hierarchy, which is the subject of the next two sections. This
hierarchy is obtained by repeatedly relativising the classes r CA \t and / CA |t,
using the previously obtained classes as oracles.

4. THE CA HIERARCHY

The CA hierarchy is formally defmed as follows:

DÉFINITION 4.1: The cellular automata hierarchy (CAH\t) oftally languages
is the structure formed by the classes rrCAk, lrCAk, UCAk and rlCAk, for
each k^.0, where

1. rrCA0 = rlCA0 = rCA\t

2. llCA0 = lrCA0 = lCA\t

3. rrCAk+1 = rCA(rrCAk)\t

4. lrCAk + l = lCA(rrCAk)\t

5. HCAk+1 = lCA(llCAk)\t

6. rlCAk+i = rCA(UCAk)\t

Also, CAH\t= U {rrCAkVJrlCAk\JlrCAk\JUCAk).

Some elementary properties of the celiular automata hierarchy are given
below.

PROPOSITION 4.2: (a)

(b) \/k^Q,

^O, rrCAk^rrCAk+1

(c)

(d) Vfc^O, rrCAk^lrCAk^UCAk

vol. 27, n° 5, 1993

420 M. MAHAJAN, K. KRITHIVASAN

Proof: (a), (b), (c): Obvious, because the empty set belongs to all these
classes, and because with oracle A, A can be accepted in real time.

(d): This is proved by induction. The assertion is obviously true for k=0.
Assume it is true upto fc— 1. Now rrCAk and rlCAk are both real time CA,
but the oracle set of ri CAk, by the induction hypothesis, contains the oracle
set of rrCAk. So rrCAk*^rlCAk. rlCAk and UCAk both have the oracle set
HCAk_u but the CA from the class rlCAk can use only real time, while CA
from the class UCAk can use linear time. So rîCAk^HCAk. The other
inclusions are similarly shown. Thus the assertions are true for ail fc. M

THEOREM 4.3: CAH\t^(OCAC\P)\v

Proof; By statement (d) of the previous proposition, it suffices to show
that Vfc, HCAk^(OCADP)\f This is shown by induction. HCA0 = lCA\t is
clearly in the class (OCA f) P) | r Let //CAk_x be in (OCA (~\ P) \v Then UCAk

is contained in the class ICA (OCA |t) \t, which by Theorem 3.16 is contained
in OCA\V Also, UCAk is contained in the class lCA(P\t)\t9 which can be
easily seen to be contained in P (P) \t~P \t. M

This resuit, along with Book's results [Boo74], immediately yields the
following corollary:

COROLLARY 4.4: If CAH|f= CA |f, then EXPSPACE= EXPTIME and every
tally îanguage in PSP ACE belongs to P.

This suggests that while the power of the class IC A may be increased
some-what due to repeated relativisations with respect to previously obtained
classes, it is unlikely to increase sufficiently to equal the class CA |f, or even
OCA \v

The following theorem is mentioned in this section essentially for complete-
ness; the actual proof is provided only in the next section.

THEOREM 4.5: If rrCA0 = HCA0, then Vfc,

Consequently, CAH\t = rCA \t.

This theorem says that if the classes r CA \t and / CA \t are equal, then for
tally sets, linear time can be brought down to real time even in the présence
of any oracle from CAH\V Consequently, the entire hierarchy collapses.

Informatique théorique et Applications/Theoretical Informaties and Applications

#

#

#

#

#

#

0

a

c/

A

k

m

0

b

e

i

l

0

6

ƒ

3

0

6

RELATIVISED

o #
c

CELLULAR AUTOMATA

#

#

#

#

#

0

a

d

A

P

0

b

e

n

0

6

9

421

0 #

c

#

#

#

#

0 0 0 #

u </

r

#

#

#

0

a

s

0 #

C

#

#

0

t

#

C on in.puts 0 \ O4, . . . , O1

#

#

#

#

#

#

0

flt

rfs

fer

fcp

m$

0

bc

Cl/

»'n

/$

0

6c

ƒ</

i*

0

bc

9$

#

CA C1 simulating C

Figure 5. — Simulating an vCA on ail préfixes of the input in real time

5. THE STRUCTURE OF THE CELLULAR AUTOMATA HIERARCHY

In this section we show some interesting inclusions in the cellular automata
hierarchy. We first need some preliminary results.

vol. 27, n° 5, 1993

422 M. MAHAJAN, K. KRITHIVASAN

LEMMA 5.1: Let L be a (tally) Ianguage accepted by r CA C. We can
effectively construct CAs C and C" which, on input On, do the following:

(a) At time step z, the accepting cell of C' spécifies whether or not OleL.

(b) At time step 2i— 1, the accepting cell of C" spécifies whether or not
OleL,

Proof: (a) Consider the time-space unrolling of C. This is an array where
the topmost row has the input configuration, and successive configurations
appear in successive rows beneath it. Thus the ith row gives the configuration
of the CA after i time steps, and the j'th column gives the séquence of states
entered by the yth cell of the CA. (Figures 2 and 3 are such examples.) In
this diagram, the unrollings of C on inputs 0' and 0i + 1 differ only in the zth
diagonal from right to left. So we can construct C so that each cell stores
the corresponding values in the unrollings of two input lengths. This allows
C to be simulated on all input lengths. An example is shown in figure 5.

More specifically, let c" (z, t) (<? (z, t)) dénote the state of the zth cell of C
(C), on input 0n, at time t. Then cn (z, t) contains both cn (z, t) and ci+ï "* (i, *)•
c"(l, t) will now contain cf(l, t) as the second component of its state for
t<n, denoting membership of 0f in L, and at r = « it will contain [c"(l, n), $].
To achieve this, let 5 be the transition function of C. Then h, the transition
function of C', is given by the following rules. The first four rules give the
transitions at t— 1 and the other rules are used at subséquent steps,

*(#,0, #) = [5(#,0, #), 51
*(#,0,0) = [6(#,0,0),5(#,0, #)]
h (0,0,0) = [5 (0,0, 0X5(0,0, #)]

A(0,0, #) = [5(0,0, #), $]
*(#, [c, d], [c, ƒ!) = [&(#, c, e), 8(#, c9f\

h([a, b], [c, d\9 [c,yD = [S(fl, c9 e), S(a, c, ƒ)]
hQa9b]9[c9dl9[e,$!) = [Ha,c,ë),$\

For arguments where h is not specified above, h maps to some don't-care
state D.

(b) C" is merely a half-speed version of C. •
This lemma states that in a sense, rCA languages are closed under

"doubling"; for LerCA\t, the language 2L-\ = {02i~1\0ieL} is also in
rCA\v

THEOREM 5.2: rrCAx^llCA0.

Informatique théorique et Applications/Theoretical Infonnatics and Applications

RELATIVISED CELLULAR AUTOMATA 4 2 3

Proof: Let L be an rrCAx language accepted by an rCAC1 with oracle
L', where L' is accepted by an r CA C2. The machines of Lemma 5.1 can be
used to find responses to all the oracle queries made by Cx. These responses
must then be propagated down the array. This involves a delay; so C'{ rather
than C2 is used. Thus at time 2i — 1, the response to the ith oracle query is
available at the leftmost cell. So the ith transition of the leftmost cell of Cx

is also implemented at this cell now. Simultaneously, the oracle response is
sent right at unit speed, so that the jth cell implements the ith transition step
of Cx at time 2i- 1 +j- 1. It is easily verified that at this time, if each cell
stores the current and the previous value of the corresponding cell in the
simulation of Cx, the arguments to the transition function are indeed available
in the cell and its neighbours. An example is shown in figure 6. The oracle
queries are answered by C '̂, a half-speed version of the CA C shown in
figure 5. For the behaviour of Cx as in figure 6 (a), the simulating CA
functions as in figure 6(b), recognising the input in time 2n— 1.

Formally, the transition function of such a CA can be specified in terms
of those of Cx and C± as follows.

Let

C1 = (Q19 #,bub2,L\Fx) and C2' = (Ö", #,5,F").

Define aCAC=(Q, #,h9f) where

Q = {[u, v, w, x]\u, veQl9 weQ" and xeQ"\J {?}}

u and v hold the old and current states in the simulation of Cx. w holds the
state in the simulation of C{ and is updated at each time step. The value of

##

#

#

#

#

#

0

A

D

H

K

M

0

B

E

I

L

0

B

F

J

0

B

G

0

C

(a) rrCA\ C on input length 5, with the oracle from Figure 5.

Figure 6.

vol. 27, n° 5, 1993

424

#

#

#

#

#

#

#

#

#

#

M. MAHAJAN, K. KRITHIVASAN

0 0

0
ai

0
at

A
ds

A
ds

D
hr

D
hr

H
kp

H
kp

K
m$

A
at

A
?

D
ds

D
?

H
hr

H
1

K
kp

K
?

M
m$

\ .

\

0
bc

0
bc

0
e<7

B
eq

B
in

E
in

E
1$

I
/$

ƒ

0
?

B
at

B
1

E
ds

E
?

I
hr

I
?

L
kp

L

\ .

\ .

0
bc

0
bc

0
h

0
fg

B
j *

B
J"J

F

F

J

0
?

0
?

B
at

B
?

F
ds

F
?

J
hr

J
?

kp

\ .

0
bc

0
6c

0
9$

0
(/$

0

B

B

G

G

0
?

0
?

0
?

B
at

B

G
ds

G
1

hr

1

\ ^

^ ^

0
c$

0
c$

0

0

0

0

c

c

0
?

0
?

0
?

0
?

cat

C

ds

?

hr

(b) The simulatîng CA

Figure 6. -Simulating an rrCAx by an ÏÏCA0

w in the leftmost cell is the response to the oracle query, and is propagated
right at unit speed in x. When x holds a ?, u and v are not updated. When it
holds a state from Q'\ then v is stored in u and v is updated as in Cu using
the previous states u from the left neighbour and the current states v from
the cell and its right neighbour. In figure 6 (b\ a state [u, v, w, x] is represented

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 4 2 5

as
u

w

V

X

F={[u9 v, w, x]\ueQu veFu weQ" and xeQ"U {?}}

h(#, 0, z) = [0, A, B, C] for z = 0 or #5 where
£ = § (# , 0, z), C=£, and if CeF"

= 81(# J 0, z)
- S 2 (# , 0 , z).

hO, 0, z) = [0, 0, 0(0, 0, z),?] for z = 0 or # .
* (# , é, c) = [i4, 5, C, Z>] for 4-tuples b and c, where

C = 6 (# , 6 3 , c3), and i fè 4 ^?
then ^ = i l 9 ^ = è 2 , Z) = ?
else A = b2, D—Cy and

if C e F "
= 5 1 (# J è 2 , c2)

eJ5 = 8 2 (# ,è 2 5 c 2) .
(ö, b9 c) = [A, B, C, i)] for 4-tuples a, è, c, where

C=8(a3, è3, c3), and if a4 = ?

else A = b2, D~ a4, and
\ÏDBF"

=§2(au b2, c2).

(If c= # , then we take c(to be # for i = 1 to 4.) •

THEOREM 5.3: lrCA1=
sll CA0.

Proof: llCA0^lrCA1 follows from Proposition 4.2 (a). lrCA1sUCA0

can be shown as above, packing c cells of C2 together to simulate C2 on
input 0c" within an n length array. •

Note that in the above proofs, the crucial point is that the oracle classes
contain only tally sets. The accepted language itself need not be tally; thus
we can also conclude that rCA(rCA\t) is contained in ICA which is equal
to ICA (r CA |f). In other words, r CA \t is useless as an oracle class if the CA
is allowed even as much as linear time.

Theorem 4.5 of the previous section now follows from the above two
theorems, by a simple inductive argument.

Proof of Theorem 4.5: We know that r rC4 0 gr rC4 1 g/ /C4 0 . So if
rrCA0 = HCA0, then rrCA^rrCA^ Let rrCAk = nCA0. rrCAk + 1 is the

vol, 27, n° 5, 1993

4 2 6 M. MAHAJAN, K. KRITHIVASAN

class of languages accepted by r CA using oracles from rr CAk, i. e. oracles
from rrCA0, and so equals the class rrCAx. But this is equal to rrCA0,
under our assumption. So rr CAk + 1 = rr CA0. Thus by induction, V k,
rrCAk = rrCA0. From the définition, it then follows that Vfc, lrCAk = lrCA1

which equals rr CA0 by assumption. The other classes are similarly shown to
be equal to rrCA0. Thus if rrCA0 = HCAQ, then the CAH collapses to the
smallest class rr CA0 = r CA \t. •

We now show that the results of Lemma 5.1 and Theorems 5.2 and 5.3
"translate upwards"; they also hold at higher levels of the CA hierarchy. The
following lemma essentially states that Lemma 5.1 (b) relativises if the oracle
classes are rrCAk classes. Thus ail rrCAk classes are closed under doubling.

LEMMA 5.4: IfLerrCAk, then 2L-\ = {Q2i~1\QieL}errCAk.

Proof: Consider LerrCA0. Let L be accepted by rCA C. On input 02m~\
simulate machine C" described in Lemma 5.1, and also send a signal S at
unit speed from the rightmost cell to the left. S reaches the accept cell when
it is specifying membership of 0m in L. So C" will accept (reject) 02 m - 1 if
OmeL (0m£L), in time 2 m - 1, Le. in real time. So C" is an rCA accepting
2Z, -L

Assume that the statement of the lemma is true for k. Let LerrCAk + 1.
L is accepted by an rCAC using oracle L'errCAk. By our assumption,
2L'—l errCAk. Construct C" as above, using oracle 2 Z / - 1 . The resulting
CA accepts 2L- 1 in real time; hence 2L— lerrCAk+1. So the statement of
the lemma is also true for k + 1.

Thus by induction, the statement is true for all k. •
Since HCA0 = lrCA0, in Theorem5.2 we are essentially proving that

rrCA1<=lrCA0. Using the above lemma, this généralises as follows.

THEOREM 5.5: For A;^0, rrCAk+1^IrCAk.

Proof: For fc = 0, this is proved in Theorem 5.2. Consider &>0. Let C be
an rrCAk + 1 CA using oracle L. LerrCAk, so L is accepted by an rCA using
oracle L'errCAk_v Now 2L' — 1 is also in rrCAk_1. A CA using oracle
2L'~ 1 can accept the same language as C, in linear time, as described in
Theorem 5.2. But this IC A uses an oracle from rrCAk_u and hence will
belong to lrCAk. Hence the theorem. •

Similarly, reading Theorem 5.3 as irCAx = lrCA0 and translating it
upwards in an identical fashion, we get

THEOREM 5.6: For fc^>0, lrCAk+l^lrCAk.

Infonnatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA

This, along with Proposition 4.2, immediately yields

427

COROLLARY 5.7: Vfc^O, lrCAk = lCA\v

This corollary clearly généralises Theorem 5.3; not only are r CA \t (i. e,
rr CA0) languages useless as oracles for the class ICA, but so are all languages
in the classes rr CAk, for any k. Thus the rr CAk languages seem to be quite
limited in their power.

Now we can combine all these known results to obtain an overall picture
of the CA hierarchy. The structure of the cellular automata hierarchy is as
shown in figure 7.

The following series of propositions shows how this structure changes
under various assumptions of equality of certain classes.

\rrCA0 = riCÂ0\

I
I UCAQ = irCAp = irCAx = irCA2 = . .7|

Figure 7. - The structure of the CAH

PROPOSITION 5.8: IfrrCA0 = rrCA1, then all the rrCA classes are equaL

Proof: Obvious, as seen in proof of Theorem 4.5 . •

vol. 27, n° 5, 1993

428 M. MAHAJAN, K. KRITHIVASAN

PROPOSITION 5.9: rr CA x — lr CA x if and only if rr CA x — ri CA x. In this case,
the structure in figure 8 results.

rrÇA

rrCAx =

= UCAo = irCAo =

=

0 == rlCAo

rrCAi = . . .

= irCAi = lrCA2 = . . .

rlCAx

Figure 8. - The CÀH, assuming rrCAl=lrCA1

Proof: From figure 7, it is obvious that rr CA x = ri CA r implies
rrCA1 = IrCA1. Assume that rrCA^lrCA^. From figure 7, we see that this
implies rr CA1 = rr CA2 = II CA0. So

Further, since under this assumption we have rrCA2 = rrCAx, it is clear that

rr CA1 — r!CAt tneans that r CA \t and ICA \t as oracles add equally to the
class rCA\t. rrCA1

z=:IrCA1 means that rCA|, and ICA \t coïncide relative to
the class of oracles rCA\v Equivalèntly, since /CA(rCA\t) = ICA, this also
means that with an rCA oracle, the class rCA\t rises up to equal ICA\V

These equalities imply each other and also imply that the rr CAk classes are
not distinct for k>0.

PROPOSITION 5.10: If rrCAl=IICA1, then the cellular automata hierachy
has only two distinct classes: rCA\t = rrCA0 = rlCA0, and lCA\ti which is
equal to all the remaining classes.

Proof: rrCAl = HCA1 clearly implies rrCA1 = lrCA1. So from the above
proposition we immediately conclude that Vfc^l, rrCAk = rrCA1. Further,
since UCA^UCA^ Vfc^O UCAk^UCA0. This also implies that Vfc^l,

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 429

rlCAk = HCA0. Thus rrCA0 and rlCA0 are identical, and all other classes
are identical; the CAH has at most two distinct classes. •

PROPOSITION 5Al:IrCAl = HCA1if andonly if IICAO = IICA1. In this case,
the CAH has the structure shown in figure 9. •

Figure 9. - Thé CAH, assuming Ir CA, = //CA t

Proof: Obvious.
A point wörth examining is whether proper Cöntainments translate

upwards. Equalities do; we have, by a straightforward argument,

rr CAk = rr CA

= UCA
k + 1

Vm>fe, rrCAm^rrCAk

k+1

6. CONCLUSIONS

This work attempts to study the structure of the tally languages, if any,
separating CA, IC A and rCA. We have also restricted the language
classes CA, ICA and rCA to tally sets. A similar hierarchy of CA language
classes can be constructed if non-tally languages are cotisidered for acceptance
and as oracles, within the framework of TVCA (see [Mah92]). It is eàsily

vol. 21, n° 5, 1993

4 3 0 M. MAHAJAN, K. KRITHIVASAN

verifîed that Proposition 4.2(a), (c), (d) continue to hold. (b) does not appear
to, because once we consider non-tally oracles, the containment A e I CA (A)
does not necessarily hold. [AeCA(A) does hold, from Proposition 3 .2, since
on input x=<m>, m is C^-time-constructible; refer Proposition 3.12.] A
straightforward algorithm for recognising an IICA1 language (non-tally
oracle) by a CA requires O (n log ri) time, while for tally oracles such an
algorithm runs in O {ri1) time. However, even for rrCAx languages with non-
tally oracles we have been unable to improve the O (n log ri) upper bound,
whereas rrCAl languages with tally oracles can be accepted by ICA; refer
Theorem 5.2. Of course, such différences are to be expected, since tally sets
are very low in information content.

An unanswered question is whether or not r CA and / CA coincide over
unary alphabets. If this is the case, then Theorem 4.5 states that the CA
hierarchy collapses. In [IJ88] it is conjectured that these classes do not
coincide. Our work is motivated by a weaker conjecture —namely, that if the
classes rCA and ICA are distinct, then there are tally sets in the différence.

Another aspect which deserves more study is finding languages complete
for CA and ICA, where completeness will have to be suitably defïned. Such
complete languages may admit a relativisation under which the classes rCA,
ICA and CA coincide. This, along with Theorem 3.5, will provide a contrad-
ictory relativisation of these problems, but may also'provide more information
about the nature of the CA complexity classes.

REFERENCES

[BC84] W. BÛCHER and K. CULIK II, On real-time and linear-time cellular auto-
mata, R.A.LR.O. Informatique théorique, 1984, 18, pp. 307-325.

[BDG88] J. L. BALCÂZAR, J. DÏAZ and J. GABARRÓ, Structural Complexity I,
volume 11 of EATCS Monograph Series, Springer-Verlag, Berlin, 1988.

[BDG90] J. L. BALCÂZAR, J. DÏAZ and J. GABARRO, Structural Complexity II,
volume 22 of EATCS Monograph Series, Springer-Verlag, Berlin, 1990.

[Boo74] R. V. BOOK, Tally languages and complexity classes, Information and
Control, 1974, 26, pp. 186-193.

[CC84] C. CHOFFRUT and K. CULIK II, On real-time cellular automata and trellis
automata, Acta Informatica, 1984, 21, pp. 393-409.

[CGS84] K. CULIK II, J. GRUSKA and A. SALOMAA, Systolic trellis automata Part I.
International J. of Computer Mathematics, 1984, 15, pp. 195-212.

[CIV88] J. H. CHANG, O. H. IBARRA and A. VERGIS, On the power of one-way
communication. / . of the ACM, 1988, 35, pp. 697-726.

[Dye80] C. DYER, One-way bounded cellular automata, Information and Contrôla
1980, 44, pp. 261-281.

[IJ87] O. H. IBARRA and T. JIANG, On one-way cellular arrays, SIAM J. of
Computing, 1987, 16 pp. 1135-1154.

Informatique théorique et Applications/Theoretical Informaties and Applications

RELATIVISED CELLULAR AUTOMATA 4 3 1

[IJ88] O. H. IBARRA and T. JIANG, Relating the power of cellular arrays to their
closure properties, Theoretical Computer Science, 1988, 57, p. 225-238.

[IPK85] O. H. IBARRA, M. PAUS and S. M. KIM, Some results concerning linear
itérative (systolic) arrays, / . of Parallel and Distributed Computing, 1985,
2, pp. 182-218.

[Mah92] M. MAHAJAN, Studies in Language Classes Defined by Different Types
of Time-Varying Cellular Automata, Ph. D. Thesis, Indian Institute of
Technology, Madras, India, 1992.

[MK91] M. MAHAJAN and K. KRITHIVASAN, Relativised cellular automata and com-
plexity classes. In Proceedings of the Wth International FST&TCS Confer-
ence, New Delhi, December 1991, LNCS 560, pp. 172-185.

[MK92] M. MAHAJAN and K. KRITHIVASAN, Some results on time-varying and
relativised cellular automata, International J. of Computer Mathematics,
1992, 43, pp. 21-38.

[Smi71] A. R. SMITH III, Cellular automata complexity trade-offs, Information and
Control, 1971, 18, pp. 466-482.

[Smi72] A. R. SMITH III, Real-time language récognition by one-dimensional cellu-
lar automata, /. of Computer and System Sciences, 1972, 6, pp. 233-253.

APPENDIX

Proof of Theorem 3.8

A language L^{0}* is said to be ultimately periodic if there exist natural
numbers w0 = 0 a n d P= 1 s u c n that

V«^«o, 0"+ PGL ifandonlyifOneL

Clearly, a CA which is not time-varying can be considered as an ultimately
periodic TVCA with n0 = 0 and p = 1.

Let C=(ö, # , Su 52, X, A) be an ultimately periodic TVCA. n0 and p
are as in the définition above.

Construct C = (Q\ # , 5', A') as follows.

Defme sets Qt, i=2 to no+p— 1, to be disjoint copies of Q; thus

(no+p-i \
U Qi 1 U Ö- L e t Ai be the restriction

o
of Qt to copies of states in A; then A' = l \J AA\J A. 5' is defined as

i 2

follows:

5' (a, b, c) = q2 where q=8(a, b, c, 1) and & / # .

5'(at, bh Ci) = qi+1 where q = b(a, b, c, ï) and i<no+p~ 1.

vol. 27, n° 5, 1993

4 3 2 M. MAHAJAN, K. KRITHIVASAN

8'(ais bt, ci) = qj where i=no+p— 1 and q = §(a? b, c, i)
8'(a, # , Z>) = # for any a, Z>eg'.
It is easy to see that C so defined simulâtes C and that the simulation is

step-for-step, Le., with no loss of time.
Essentially, no+p copies of the state set are created, and the transition

function dépends on which copy of the state is an argument. Copies of the
boundary state need not be created. Accepting states can be suitably defined.

Proof of Proposition 3.9

In [GGS84, CC84] it has been shown that all regular languages can be
accepted by rOCA. To see the converse when restricted to tally sets, let
C=(ô> #> 8, A) be an rOCA accepting a tally language L. We can construct
a finite-state machine M accepting L as follows: M= (q0 U (Q x Q), {0 }, ô',
qOi F) where

5'(<7O)0)=[ô(#,0)3 8(0,0)],

and

F={[a,b]\aeA).

For instance, if the cells of C change states as shown in Figure 10, then M
goes through states q0, AB, CD, EF, GH, . . .

O

A

0

B

C

0

B

D

E

0

B

D

F

G

0

B

D

F

H

I
Figure 10. - The unrolling of an r OCA

Informatique théorique et Applications/Theoretical Informaties and Applications

