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ABSTRACT 

This article presents a survey of language features for distributed memory multiproces

sor systems (DMMs), in particular, systems that provide features for data partitioning 

and distribution. In these systems the programmer is freed from consideration of the 

low-level details of the target architecture in that there is no need to program explicit 

processes or specify interprocess communication. Programs are written according to 

the shared memory programming paradigm but the programmer is required to specify, 

by means of directives, additional syntax or interactive methods, how the data of the 

program are decomposed and distributed. c0 1995 by John Wiley & Sons, Inc. 

1. INTRODUCTION 

One solution to the need for higher-performance 

computers is to connect multiple sequential pro

cessors, each having its own local memory. into 

what is known as a distributed memory multipro

cessor (D:\1.\1). The combined computational 

power of these processors, which communicate by 

passing messages between one another, may then 

be brought to bear on a single problem. In many 

cases these systems are constructed from ordinary 

production microprocessors: for example, the 

Intel iPSC /2 consists of multiple ·'nodes,'' each of 

which includes an Intel 80386 CPL and an 80:387 

FPC coprocessor. DM'Vls can be both cost-effec-
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tive and potentially highly iicalable .. due to the low 

cost of their component microprocessors and the 

modular nature of their interconnection: further

more, they can achieve high levels of performance 

for certain types of application. 

Cnfortunately prowams for these machines are 

much more difficult to write. debug. maintain. 

and understand than sequential programs. being 

complicated by such concerns as livelock. dead

lock, processor topology, communications. syn

chronization, task wanularity. and separate ad

dress spaces. :\lessage-passing languages. such as 

Occam for the lnmos transputer. offer a relatively 

low-level programming interface to the multi

processing hardware: the situation is analogous to 

programming a sequential processor in assembly 

language. A further problem is that the low-level 

nature of a message-passing language leads to 

programs that are closely tied to the hardware 

charaeteristics of the D~IM for which it was de

signed, resulting in a lack of code portability be

tween the various D~l:\I machines now available. 

Consequently a considerable amount of current 

research is aimed at providing appropriate pro

gramming tools for D:\fMs. Included in this re

search is the construction of compilation systems 
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for translating high-level programs into message

passing code. One method of exploiting the paral

lelism offered by DMMs entails the decomposition 

(or partitioning) of data for distribution over the 

processors of the machine to achieve program 

speed-up through data-parallel execution. The 

parallelization strategies of a number of compila

tion systems based on this principle are consid

ered in the next section. 

The choice of data partition is important as it, 

along with the data dependencies present in the 

program, determines the amount of communica

tion required between processors. This, in turn, 

influences the overall performance because off

processor references can be an order of magnitude 

more costly that references to local memory. The 

choice of an "optimal" data partition must take 

into account the program structure, compiler ca

pabilities, characteristics of the underlying ma

chine (memory structure, number of processors 

and their topology, communication characteris

tics), and the sizes of distributed data structures. 

An appropriate heuristic method for automati

cally determining an optimal data partition has yet 

to be found. One method of overcoming this prob

lem is to enlist the help of the user, who must then 

provide the system with a suitable data partition, 

specified by means of directives, language exten

sions (additional syntax), or interactive methods. 

Typically an iterative, experimental approach 

would be adopted in choosing a partition. There 

are many degrees of freedom in this choice but the 

user would normally be sufficiently au fait with the 

computational code to have a good idea about 

which partitions are the most promising (although 

he/ she might not be so knowledgeable about the 

underlying hardware characteristics). Efficient 

parallelization may also require the help of the 

user, via assertions, directives, etc., with regard to 

global, high-level properties of the algorithm 

whose detection by even the most able systems 

may be intractable. One example of this is the 

specification of FORALL "loops" to indicate the 

possible parallel execution of loop iterations. 

This article considers some of the most signifi

cant of these compilation systems. These systems 

provide what may be called a virtual shared mem

ory, in other words they enable the programmer to 

write programs as though the memory of the target 

machine were a single, shared memory; this (logi

cal) shared memory model is put into effect on the 

underlying (physical) distributed memory of the 

target DMM by the compilation system. 

One example of this approach is high-perfor-

mance Fortran [HPF; 1, 2] in which compiler di

rectives are used within a Fortran 90 program to 

specify data distribution and redistribution. How

ever, this survey concentrates on systems that pre

ceded HPF and so represents the research context 

in which the HPF effort was established. Further

more, HPF currently exists largely as a proposal, 

whereas the systems presented below have been 

fully (or largely) implemented. 

2. DATA PARTITIONING AND 

DISTRIBUTION SCHEMES 

One of the problems in this area is the wide range 

of terminology. As a consequence the following 

terms, as used in this article, perhaps require clar

ification. The terms user and programmer are 

used interchangeably; normally the user of the 

parallelization system will be the author of the 

program to be parallized; in any case, the use of 

all but one (SUPERB) of the systems covered in 

this section entails additional programming, 

thereby causing the user to be a programmer. We 

use the term DMM to refer to a message-passing 

multiple instruction stream, multiple data stream 

(MIMD) computer where each processor has its 

own local memory and there is no shared memory. 

The terms decomposition and partition are used 

interchangeably to refer to the splitting up of data 

arrays into segments, each of which is distributed 

to a different processor; that processor is then said 

to own that segment, i.e. this data is stored in its 

local memory. A data distribution is a mapping of 

data to multiple processors in this way. 

A data distribution may be static (the mapping 

of segments to processors is unchanged during 

program execution) or dynamic (the data-to-pro

cessor mapping changes at run-time, as decided 

either automatically by the parallelizing system or 

explicitly by the programmer). Dynamic distribu

tion may be used to maintain a balanced compu

tational load over the processors of a DMM during 

program execution. Where there is a conflict be

tween the "lowest-cost" distributions (in terms of 

the amount of interprocess communication) of a 

given array at different points in a program, static 

distribution of that array in accordance with one 

of those "best" distributions would generally 

result in excessive interprocess communication at 

the other points in the program, since at each such 

point the best distribution is not in effect. Dy

namic distribution enables the resolution of such 

conflicts, although it is important that the com-



munication incurred bv the redistribution of an 

array (to resolve these conflicts and hence mini

mize communication during a computation) does 

not exceed the communication overhead which 

that redistribution was intended to reduce. 

Some systems permit explicit interarray align

ment. This is the explicit specification of a posi

tional relationship between data structures; it may 

be defined in an indirect form, using an interme

diate reference frame, or as a direct relationship 

between the data structures. For example, two 

4 X 4 arrays A and B may be directly aligned such 

that their elements are overlapped as shown in 

Figure 1. When these arrays are subsequently dis

tributed over processors their elements will be po

sitioned in relation to one another as shown in 

Figure 1; for example, each shaded element of B 

is guaranteed to reside on the same processor as 

the shaded element of A aligned with it in the dia

gram. 

~ Most of the systems discussed in this article 

produce target code in accordance with the single 

program multiple data (SP:vlD) model [3]. Cnder 

this scheme each processor runs the same pro

gram but executes different code depending on its 

processor id and the data held in its local memory, 

examining every statement to determine what part 

it must play, if any, in the execution of that state

ment. 

In the owner-computes paradigm all computa

tions updating a given datum are performed by 

the processor owning that datum. An alternative 

scheme is the owner-stores paradigm, whereby 

the right-hand side expression of an assignment is 

computed by a processor which owns data ap

pearing in that expression and this result is then 

sent to the processor owning the left-hand side 

A 

B 

FIGURE 1 The alignment of two 4X4 arrays A and B. 
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PROGRAM JACOBIRELAXATION 

REAL OLD, NEW 
DIMENSION OLD(l28,128), NEW(128,128) 

C INPUT VALUES OF ARRAY 'OLD' 

DO 10 I= 2, 127 

DO 10 J = 2, 127 
NEW(!, J) = C *(OLD(!, J) + OLD(I-1, J) + OLD(I+1, J) 

& +OLD(!, J-1) +OLD(!, 1+1)) 

10 CONTINUE 
C OUTPUT VALUES OF ARRAY 'NEW' 

END 

FIGURE 2 Sequential algorithm for Jacobi relaxation 

on 128x128 grid. 

datum; in some cases this scheme may incur less 

communication than the owner-computes para

digm. 

The data -parallel programming style is a 

SL\1D-like style, making use of a single execution 

thread and a global name space in expressing 

(loosely) synchronous operations. Regular com

putations are those for which all the necessary 

communications can be precisely determined at 

compile-time. Irregular computations, however, 

do not permit this-the data transfer behavior of 

the computation depends on the input with the 

result that communications can only be deter

mined exactly at run-time. One example of irregu

larity is indirect array referencing of the form 

A[B[i]] where the array A is distributed. With a 

reference of the form B [ i] the i is generally some 

loop counter whose range of values is known at 

compile-time so that the compiler can determine 

which communications statements must be gener

ated for that subset of the iterations of the loop 

which is to be executed by a given processor (i.e., 

the set of other processors with which communi

cation is necessary is determinable at compile

time). If, however, instead of i we have some ex

pression that is completely indeterminable until 

execution time when the compiler cannot make 

any deductions regarding the communicants of a 

given processor; the subscript B[i] in the indirect 

reference A[B[i]] is an example. In this case if A is 

distributed (regardless of whether B is distributed) 

then we have an irregularity and suitable run-time 

facilities are required that the compiler can ensure 

are invoked during program execution. (Note that 

if A is not distributed, but is instead replicated, 

and B is distributed then there is no irregularity 

because the situation is simply equivalent to an 

ordinary occurrence of B [ i ]. ) 

Figure 2 outlines a sequential algorithm, writ

ten in Fortran 77, for Jacobi relaxation on a grid of 

128X 128 points. The thrust of the algorithm is to 
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update each point in the grid using its north, 

south, east, and west neighbors, with special con

ditions at the boundaries. This is an example that 

requires the partitioning of data in a many-pro

cessor system. Where appropriate each of the fol

lowing scheme descriptions includes an examplP 

of how this procedure could be implemented un

der that scheme. In each case the parallelization 

constructs are highlighted in bold type. 

2.1 SUPERB 

The SUPERB parallelization system [ 4-8] was 

completed in 1989 and was the first implemented 

system to transform FORTRA~ 77 code (with ac

cdmpanying data distribution description) into 

message-passing code for a DYIM. It restructured 

sequential FORTRAK 77 code into SCPRENU\1 

Fortran for execution on the SCPREJ\C::\1 multi

processor; message-passing Fortran for the Intel 

iPSC and GENESIS machines could also be gen

erated. As each node in the SCPRE~Lvi machine 

possessed a pipelined vector uniL parallelization 

consisted of two phases: .V1Lv1D parallelization 

(creating a set of processes) followed by vectoriza

tion (within each process). The SLPRE.\T.\11 pro

ject was primarily aimed at the numerical simula

tion of large grid-based problems (typically having 

106 to 109 grid points) where the computations at 

each grid point are mostly local. 

SUPREJ'IUYI Fortran is an extended Fortran 

that includes the task concept (a task can be acti

vated more than once. each activation creating a 

process) and Fortran 90-style array features. The 

SPMD and owner-computes models were ob

served and some compile-time optimizations .. 

such as message vectorization and iteration elimi

nation, were carried out. Irregular problems in

volving subscript indirection were supported: 

however, dynamic distribution and explicit in

terarray alignment were not. Scalar variables were 

replicated over all processors. 

In the SCPERB system, the programmer in

teractively specifies data partitioning (by block) 

and distribution using a special notation (the orig

inal Fortran 77 code remains unaltered); the par

titioning of ann-dimensional array is specified in 

the following form; 

part array-name ( sd_list 1 , sd_list2, 
sd_listn) 

Each sd_list1 is a list of segment descriptors speci

fying the segmentation of dimension i of the array; 

an sd_list1 mav be a list of constant descriptors 

such as 

where Li and Ri are integer constants, or a list of 

variable descriptors such as 

where each integer constant c1 specifies a number 

of segments each of size x 1 (integer constant or 

variable). The values x 1 are determined by the sys

tem. 

The following example illustrates the use of this 

notation in its simplest form where an array A is 

partitioned into four blocks in its second dimen

sion and is left unpartitioned in its first dimension 

(note that the default lower bound Li in each case 

is 1 ): 

part A (1, 4) 

The above example makes use of a default (linear) 

processor arrangement. However. the target pro

cessor arrangement may be specified as a proces

sor array structure (pas). For example. the follow

ing code declares GRID to be a two-dimensional 

abstraction of the underlying processors, whereas 

DIAG refers to those processors constituting the 

leading diagonal of GRID: 

pas GRID (4, 4) 

pas DIAG (4) with (i=l, 4 DIAG(i) ~ 

GRID (i, i)) 

This mechanism allows for considerable scope in 

the description of processor arrays because linear 

expressions are permitted in the processor-subset 

mapping. 

As a further example consider the Fortran 77 

code in Figure 2, assuming the GRID processor 

array structure, defined above. is used. To imple

ment this by partitioning each of arrays OLD and 

NE\V- into contiguous segments, each of the size 

32 X 32 elements and each allocated to one pro

cessor (assuming there are at least 16 processors), 

the user may specify the array decomposition us

icg constant descriptors; 

part OLD (1:32- 33:64- 65:96 

1:32- 33:64- 65:96- 97:128) 

part NEW (1:32- 33:64- 65:96 

1:32- 33:64- 65:96- 97: 128) 

97:128, 

97:128, 



[ OL because this example requires equal-sized 

blocks, the simpler form may be used 

part OLD (4, 4) 

part NEW (4, 4)) 

or by using variable descriptors as in 

part OLD (4*n, 4*n) 

part NEW (4*n, 4*n) 

The first use of constant descriptors abm·e illus

trates the possible specification of contiguous rec

tangular data segments of arbitrarv size. 

"~n array may be partitioned to ~nly a subset of 

a giVen processor array structure: for example: 

part B(4) with (i=l, 4 B(i) ~ 

GRID (5-i, i)) 

maps the elements of B onto the secondarv diago-
nal of GRID. . . 

Alignment may be achieved using distribution 

variables. ln the following, array C is distributed 

~y block along DlAG (distribution variable j is de

fined [on its first appearance; to the width of these 

blocks); D is distributed likewise but with its first 

block of size (j + 11): 

part C(4 <j>) with DIAG 

part D (1 <j+ll> - (3) <j> with DIAG 

The user may further specify the parallelization 

process itself. Analysis services are provided bv 

the system to enable the user to examine the com-

munication overhead resulting from a chosen par

tition. The analysis phase provided bv the svstem 

permits the inspection of the co~muni~ation 
overhead resulting from a partition, after which 

the user can interactively change the partition 

specification and apply a choice of transforma

tions to optimize communications: further optimi

zations may be chosen to improve vectorization. 

1\"onlocal read access to neiahborina arrav data e e . 

is provided by system-determined overlaps. These 

are private copies of adjoining nonlocal data: their 

consistency is maintained by interprocess com

munications generated bv the SUPERB svstem. 

For the distribution spec.ified above. appiied to 

the Jacobi relaxation example (see Fig. 2). the svs

tem will ensure, by appropriate analvsis of the r~f
erences involved. a one-element -·wide overlap 

around each block. 
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2.2 ld Nouveau 

Rogers and Pingali [ 9, 10] present a compiler that 

transformed programs written in Id 1\"ouveau into 

semantically equivalent C code for the iPSC/2. Id 

1\"ouveau is a functional language augmented with 

write-once arrays called !-structures. As in the 

case of imperative language arrays, the allocation 

of storage for an !-structure is separate from the 

definition to its elements: however, each element 

of an !-structure may onlv be defined once. !

structures therefore p~rmit the incremental defini

tion of arrays without the duplication overhead of 

functional language arrays. Id Nouveau also in

cludes features for the specification of data do

main decomposition. 

Because the SPYID model of node program 

generation results in redundant activitv (each 

node process examining every statement.) the Id 

1\"ouveau compilation system applied compile

time resolution where possible. This is the special

ization of the code of each node process to its local 

data. Greater run-time efficiency is achieved bv 

virtue of the reduction of redundant activitv and 

because, in generaL this specialization mak~s the 

node programs different from one another the 

SPYID model is effectivelv abandoned. However. 

compile-time resolution c~nnot be applied in cer

tain cases. such ail irregular computations. where 

sufficient information is not available at compile

time. Run-time resolution must then be used as a 

last resort: although less efficienL this guarantees 

that such codes can be compiled. The Id Nouveau 

compiler could recognize opportunities for accu

mulation. a form of owner-stores strategy that en

tails the evaluation of the right-hand side of an 

assignment by the process most involved in pro

viding the terms featured in the right-hand side 

expression: the owner-computes paradigm was 

otherwise applied as a default. 

In the ld 1\"ouveau compiler, data distribution is 

expressed within the source code using syntax ex

tensions. For example. a scalar variable mav be 

replicated to all processors using: . 

(variable_name : ALL) 

or placed on a specified processor: 

(variable_name : Pid) 

where Pid uniquely identifies a particular proces

sor. An array (I -structure) is distributed using one 

of three builtin, regular distributions; blocks, 
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wrapped rows (i.e., cyclically distributed), and 

wrapped columns. Figure 3, the Jacobi relaxation 

example, illustrates the use of the block distribu

tion function in partitioning arrays OLD and NEW 

into contiguous blocks of size 32X32, to be dis

tributed one block per processor. 

Procedure Jacobi_relaxation (OLD: block(32, 32)); block(32, 32) 

{ !-structures OLD and NEW are distributed block-wise in both dimensions) 
Let NEW= array (128, 128): block(32, 32) in 

for i=2to 127do 

for j = 2 to 127 do 

NEW [i,j] = C * (OLD[i,j] + OLD[i-l,j] + OLD[i+l,j] 

+ OLD[i, j-1] + OLD[i, j+ 1 ]); 
retumNEW 

FIGURE 3 Id Nouveau code for Jacobi relaxation. 

Array distributions are limited to the above 

three mappings and neither explicit interarray 

alignment nor dynamic distribution is supported. 

Consequently this system can support efficiently 

fewer applications than other languages such as 

Fortran D and Vienna Fortran (see later). How

ever, array distribution specification is straightfor

ward, requiring only the use of simple mappings, 

although knowledge of processor identification is 

required for the distribution of scalar variables. 

2.3 Kali 

Kali [11, 12] provides a set of parallelization ex

tensions supporting sequential-style programming 

on distributed memory architectures. For devel

opment purposes Kali (which grew out of the 

BLAZE project by the same group) was imple

mented as a Pascal-based language, although it 

could be based on any other sequential language. 

The Kali compiler transformed a program written 

in this language into SPMD message-passing C 

code for the NCUBE/7 or iPSC/2. As far as possi

ble the analysis required to produce the necessary 

communications and synchronizations was per

formed at compile-time; irregular problems were 

supported but these dictated that their analysis be 

done (less efficiently) at run-time, using inspec

tor/ executor loops. Kali did not support the ex

plicit alignment of arrays or the dynamic distribu

tion of data. 

Figure 4 illustrates the use of Kali in imple

menting the Jacobi relaxation example. The pro

grammer's first task is to specify an array of physi

cal processors using a processors statement, in 

this example it is defined to be a two-dimensional 

PxP processor array called Procrs. The parame

ter P is chosen by the run-ti.me system to be the 

(* specify PxP processor array called Procrs *) 
processors Procrs : array [I .. P, 1 .. P] with P in 1 .. 4; 

(*block decomposition of arrays OLD and NEW in each dimension, and*) 

(* distribution of these blocks over Procrs *) 

var0LD,NEW:array[l .. l28, 1 .. 128] ofreal dist by [block,block] onProcrs 

(*input values of array OLD *) 

(*computational code*) 

forall i in 2 .. 127,j in 2 .. 127 on NEW[i,j].loc do 
NEW[i,j] :=C * (OLD[i,j] +OLD[i-l,j] + OLD[i+l,j] 

+ OLD[i, j-1] + OLD[i, j+ I]); 

end; 

(* output values of array NEW *) 

FIGURE 4 Jacobi relaxation in Kali. 

largest possible integer constant in the given range 

(in this case 1..4). 

Next the programmer must define how arrays 

are to be distributed over this target architecture. 

This is achieved by appending a distribution 

(dist) clause to the declarations of those arrays 

intended for distribution; scalar variables. and ar

rays declared without a distribution clause, are 

universally replicated. Within a distribution 

clause the programmer specifies the distribution 

pattern for each dimension of the data arrav, ob

serving the limitation that the number of distrib

uted dimensions in a distribution clause must 

equal the number of processor array dimensions. 

Lser-defined distribution patterns are possible 

but Kali additionally provides the intrinsics block 

and cyclic, illustrated below; block-cyclic distri

bution is also supported. 

processors line : array 1 . . P] 
with P in 1 .. 10; 

var A : array [1 .. 100] of real dist 

by [block] on line; 

B : array [1 .. 100] of real dist 

by [cyclic] on line; 

C : array [1 100, 1 .. 100] of 

real dist by [*, block] on line; 

D : array [1 100] of real; 

Array A is distributed over the one-dimensional 

processor array "line" as contiguous blocks of 10 

elements each, whereas the elements of B are dis

tributed individually in a round-robin fashion. 

The asterisk indicates that a dimension is not to 

be distributed and so each processor in "line" will 

receive a block of 10 contiguous columns of C. 

Array D is undistributed and each processor in 

"line" receives a complete copy of D. In the ex-



ample of Figure 4 arrays OLD and NEW are dis

tributed over Procrs as contiguous two-dimen

sional blocks. 

Computations using distributed arrays must be 

enclosed in forallloops. These are treated as fully 

parallel loops and no provision is made for any 

parallelization of loops with interiteration depen

dences. Within a forallloop, the values used are 

those that were current immediately before the 

loop (a strategy referred to as "copy-in/ copy-out 

semantics"). Furthermore, the programmer must 

append an on clause to forall loops, specifying 

which processor is to execute each iteration of the 

loop. Figure 4 illustrates the use of the .loc func

tion for this purpose, which ensures that the itera

tion updating NEW[i, j] is executed on the proces

sor owing NEW[i, j]. However, this need not be 

the case because it is possible to depart from the 

owner-computes paradigm by explicitly referenc

ing processors in an on clause. 

Kali presents the programmer with a relatively 

large set of parallelization concerns. In addition to 

specifying data distributions, the programmer 

must also declare the underlying processor topol

ogy and explicitly indicate not only parallel loops 

but also the processors on which the iterations of 

these loops are to be executed, i.e., the user must 

take responsibility for both data and iteration dis

tributions. 

2.4 ARF 

Wu et al. [13] presented an experimental com

piler and run-time support system, predominantly 

aimed at enabling the execution of sparse, un

structured applications written in ARF (ARguably 

Fortran), an extended dialect of Fortran 77. The 

ARF compiler produced an SPMD node program 

containing embedded PARTI primitives [ 14] to 

implement the necessary communications. PARTI 

(Parallel Automated Run-time Toolkit at ICASE) 

is a library of run-time procedures that support 

irregular distribution patterns and irregular com

putations involving subscript indirection. A run

time resolution scheme was used, employing an 

inspector/ executor approach for communication 

preprocessing; even for regular computations, no 

message communications were firmly decided at 

compile-time. 

Using ARF's language extensions, data distri

bution can be regular (block or cyclic) or user 

defined and irregular; the latter is achieved using 

a regularly distributed integer-valued mapping ar

ray of the same size and shape as the array to be 
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distributed, as illustrated below: 

distributed regular using block 
real A (1000) 
distributed regular using block 
integer maparray(lOOO) 
distributed irregular using 
maparray real B(lOOO) 

Here the processor to which B(i) is mapped is 

identified by the value of maparray(i). The current 

implementation of ARF can only support parti

tioning of one dimension (the last dimension) of 

an array, although the PARTI primitives are capa

ble of supporting more general distributions. Nei

ther dynamic data distribution nor explicit in

terarray alignment is supported. 

The distributed do language extension indi

cates that the iterations of a DO loop are to be 

distributed over the processors of the target ma

chine, whereas another extension, the on clause, 

gives the user a means of controlling this distribu

tion. As a result, the owner-computes rule is not 

necessarily adhered to. 

An example of the use of the ARF language in 

implementing the Jacobi relaxation problem is 

given in Figure 5. Note that only the last (i.e., the 

second) dimension of OLD and NEW can be par

titioned and therefore these arrays are partitioned 

and distributed as blocks of columns, one block 

per processor. This example is tentative because 

the researchers state that the syntax accepted by 

the current version of the ARF compiler differs 

slightly from that presented by Wu et al. [13]. 

The ARF system provides relatively few paral

lelization extensions but in enabling the treatment 

of irregular distributions the system requires the 

programmer to have some knowledge of processor 

identification. The on clause and distributed do 

construct, although necessary for sufficient pro

grammer control in certain kinds of application, 

C distribute contiguous blocks of columns of arrays OLD and NEW 

distributed regular using block real OLD(l28, 128), NEW(l28, 128) 

C initialisation of array OLD 

distributed do 10 j = 2, 127 

do 10 i=2,127 

NEW(i, j) = C * (OLD(i, j) + OLD(i-1, j) + OLD(i+ 1, j) 

& + OLD(i,j-1) + OLD(i,j+l)) 

10 continue 

C output of array NEW 

FIGURE 5 ARF code for Jacobi relaxation. 
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nevertheless increase the involvement of the pro

grammer in parallelization. 

2.5 ADAPT 

Merlin [15. 161 presents a system called ADAPT 

(Array Distribution Automatic Parallelization 

Tool) that was developed under Esprit Project 

2071 (PUMA). ADAPT transforms data-parallel 

programs written in distributed Fortran 90, a For

tran 90 subset enhanced with data-partitioning 

extensions, into a form suitable for execution on 

arrays of T9000 transputers with C104 switches 

(although the techniques are applicable to any 

message-passing .\1L\1D system). ADAPT makes 

no attempt to parallelize DO loops: parallelism is 

obtained from the inherent parallelism of the For

tran 90 array features. There is therefore an onus 

on the programmer to maximize the use of such 

features. 

ADAPT produces SP.\fD code in accordance 

with the owner-computes paradigm. This gener

ated code takes the form of a Fortran 77 node 

program, including calls to communication proce

dures provided by a purpose-built communica

tions library called ADLIB (Array Distribution 

LIBrary). The same node program is executed by 

each process in a multidimensional process array 

(because each transputer can support more than 

one process the researchers refer to processes 

rather than processors). The communication pro

cedures of ADLIB are high-level grid-based rou

tines requiring at least nearest-neighbor connec

tivity in every dimension of the process array. 

Indirect array referencing, expressible using (po

tentially distributed) vector subscripts. is sup

ported. ADAPT is currently at an early stage of 

development and little emphasis has as yet been 

placed on optimizations. 

The size of the logical process array is defined, 

in a separate file, in the form 

proc_array = (D1, 

PI P2 - ---r-- ----T 
P3 

As an example, a two-dimensional 4X4 process 

array for use by the Jacobi relaxation code would 

be declared as follows: 

proc_array = (4, 4) 

Preparation of a Fortran 90 program for paral

lelization bv ADAPT consists of the declaration of 

a DISTRIBUTION attribute for each arrav to be 

distributed. For an n-dimensional real arrav A 

this takes the form 

REAL, DIMENSION (e 1 , 

DISTRIBUTION (d 1 , 

Each non-negative integer d1 indicates the contig

uous block distribution of dimension i of A over 

the process array (block distribution is the only 

form of distribution available). A value of 0 ford, 

indicates that dimension i of the data array is not 

to be distributed: a value d1 > 0 indicates that 

dimension i of the data arrav is dio;tributed across 

dimension d1 of the process array. For example 

REAL, DIMENSION (10, 10), 

DISTRIBUTION (0, 1) :: A 

results in the following distribution over a one

dimensional five-proceso; array (Fig. 6 ). 

Omission of a DISTRIBUTION attribute for an 

array causes that array to be undistributed. Such 

arrays are replicated to all processes in the process 

array, as are scalar variables. An array can he 

distributed over onlv a subset of the dimensions of 

the process array. in which case it is replicated 

over the remaining process-array dimensions. For 

example, with proc_array = (2. 4) 

REAL, DIMENSION (8) , 

DISTRIBUTION (2) :: B 

gives the distribution seen in Figure 7. 

A dummy array argument may adopt ib distri

bution from the corresponding actual argument. a 

P4 P5 

'I 

A(l:IO,l:2) A(l:I0,3:4) A(l: 10,5:6) A~l0,7~-~A(l:10,9:10)-J 

------ ---- - > 
dimension 1 of process array 

FIGURE 6 The distribution of array A. 
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FIGURE 7 The distribution of arrav B. 

-

strategy that the researchers call assumed distri

bution (Fig. 8). Explicit interarray alignment is not 

supported. nor is dynamic data distribution. 

Apart from the definition of a process array in a 

separate file, the preparation of a distributed For

tran 90 program from its Fortran 90 equivalent 

entails the use of only a single .. simple paralleliza

tion feature, DISTRIBUTION. However. the price 

paid for such simplicity is the relatively limited 

applicability of the current ADAPT system com

pared with other languages like Vienna Fortran 

and Fortran D. In fact this simplicity is deceptive 

because the programmer must also make effective 

use of the arrav features of Fortran 90 to maxi

mize parallelism. 

PROGRAM JacobiRelaxation 

assumes a 4x4 underlying array of processors, declared in another file 

distribute dimensions I and 2 of arrays OLD and NEW over 

dimensions 1 and 2 of the underlying processor array 

REAL. DIMENSION (128, 128). DISTRIBUTION (I, 2) ::OLD, NEW 

input the values of array OLD 

computational code 

NEW(2:127, 2: 127) = C * (OLD(2: 127, 2: 127) +OLD(!: 126, 2: 127) 
& + OLD(3: 128, 2: 127) + OLD(2: 127, I: 126) 

& + OLD(2:127, 3:128)) 

output values of array NEW 

END PROGRAM JacobiRelaxation 

FIGURE 8 Jacobi relaxation in distributed Fortran 

90. 

2.6 Vienna Fortran 

Some authors [ 17-1 9: describe Vienna Fortran. 

an extended dialect of Fortran 77 that provides 

the programmer with facilities for the specification 

of data distribution within conventional Fortran 

77 code~ there is also a Fortran 90 subset[20: 

with Vienna Fortran extensions. The Vienna For

tran compilation system. based largely on the 

achievements of the SUPERB project, is currently 

in an advanced stage of development. This system 

supports the full Fortran 77 language and targets 

the SUPREKC:YL iPSC/860, and GENESIS ma

chines; optimized message-passing code is gener-
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ated in accordance with the SPMD paradigm. Vi

enna Fortran makes use of the P ARTI primitives 

[ 14 J to support the indirect referencing of distrib

uted arravs. 

The use of the Vienna Fortran extensions in the 

annotation of Fortran 77 code essentiallv com

prises three main aspects: 

1. The declaration of target processors. 

2. The distribution of data arrays over the tar

get processors. 

3. The specification of parallel loops and the 

allocation of their iterations to processors. 

Declaration 

In any given Vienna Fortran program there is an 

implicitly declared one-dimensional array of tar

get processors, called $P, which consists of all the 

processors available in the target machine. If any 

other processor structure is required then the pro

grammer may superimpose that structure upon 

the SP arrangement, which is achieved using a 

PROCESSORS statement. For example 

PROCESSORS procrs3D (N, N, N) 

declares a three-dimensional array of processors, 

called procrs3D. The value of]\\ in the above ex

ample is determined at load time in accordance 

with the number of processors available in the tar

get machine. It is important to note that this pro

cessor arrav is merelv an alternative view of the 

NxNxK ta~get proce~sors constituting $P; the in

dices of a given processor within $P and procrs3D 

are related according to the column-major order

ing convention of Fortran 77. Individual proces

sors may be referenced as elements in an array: 

for example, $P(2) is also procrs3D(2, 1, 1). For

tran 90 array section notation may also be used to 

reference subsets of processor structures, for ex

ample, procrs3D(1 :4, 3, 9). An intrinsic function 

$MYPROC is provided which, when called by a 

node program executing on one of the processors, 

returns the processor's index within $P. 

The processor structure declared in a PRO

CESSORS statement, such as procrs3D above, is 

known as the primary processors structure. If fur

ther alternative views of the processors of $P are 

required then these may be obtained by reshaping 

the primary processor structure, again in accor

dance with Fortran 77 column-major ordering. 

For example, if a two-dimensional structure were 

also needed then the above declaration might read 
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PROCESSORS procrs3D (N, N, N) 

RESHAPE procrs2D (N, NXN) 

The additional structures obtained by reshaping, 

such as procrs2D, are known as secondary pro

cessor structures. All processor arrays declared in 

a Vienna Fortran program must contain the same 

number of processors. 

No particular interconnection between proces

sors is assumed in either $P or any defined pro

cessor structures. For example, procrs2D is not 

necessarily connected as a nearest-neighbor grid. 

Distribution 

Some data arrays may not require distribution in a 

given application, for such arrays no Vienna For

tran annotations are required-the arrays are de

clared in the normal Fortran 77 manner and as a 

result are replicated on every processor. Scalar 

variables may also be universally replicated. How

ever, in general some arrays will need to be dis

tributed to achieve program speed-up through 

data-parallel execution. To this end Vienna For

tran provides an extensive and powerful set of fea

tures that enable the specification of a wide range 

of (static or dynamic) array distributions. 

Static Distribution. A two-dimensional array A 

may be statically distributed over the .pro~essor 

structure procrs2D (i.e., in terms of this view of 

the target processors) by annotating its de clara

tion in the following manner 

REAL A (N, NXN) 

DIST distribution-expression 
TO procrs2D 

The TO clause is optional; if it is omitted then the 

distribution occurs over the primary processor 

structure. The distribution-expression specifies a 

distribution type, which is a class of distributions 

described using distribution functions; a list of 

functions may be given, each of which defines the 

distribution pattern of one dimension of the array 

FIGURE 9a Processor array p2D. 
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FIGURE 9b The distribution pattern of array B. 

over a dimension of the target processor array, or 

a single distribution function may be given which 

defines the distribution pattern for the entire ar

ray. A range of intrinsic distribution functions are 

available that provide BLOCK, CYCLIC and 

block-cyclic (CYCLIC(block-size )) distributions 

of array dimensions. Examples are 

PROCESSORS p2D (3, 3) 

REAL B(9, 9) DIST (BLOCK, CYCLIC) 

REAL C(90, 90) DIST (BLOCK, CYCLIC(10)) 

These distributions and the p2D grid are illus

trated in Figure 9 (a, b, and c); processor id num

bers are indicated in the boxes (for brevity proces

sor (i, j) is indicated by ij). BLOCK distribution 

produces the distribution of an array dimensi~n i.n 

equally sized contiguous sections; CYCLIC distn

bution produces a round-robin distribution of the 

individual elements along a dimension. In Figure 

array ~ 
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FIGURE 9c The distribution pattern of array C. 



9c the second dimension of array C is partitioned 

into 10-element blocks that are placed cyclically 

onto processors. 

The elision symbol ":" in place of a distribu

tion function for a dimension of an array prevents 

the distribution of that dimension. For example, 

the distribution 

REAL D(10, 100) DIST(CYCLIC, :) TO $P 

cyclically distributes the rows of D over the one

dimensional processor array $P as shown in Fig

ure 10 (assuming, for this example, that $P con

tains five processors). 

In the case where the number of processor-ar

ray dimensions exceeds the number of data-array 

dimensions being distributed the entire array is 

replicated over the extra dimensions of the pro

cessor array. 

Programmers may define their own distribution 

functions, for example 

DFUNCTION distfunc 

TARGET T(1:) 

DO 10 I = 1, SIZE(T) 

T(I) DIST TO $P(SIZE(T) - I) 

10 CONTINUE 

END DFUNCTION distfunc 

The TARGET array T in the definition of distfunc 

represents the array being distributed. This simple 

distribution function may be used to specify the 

distribution of an array F. For example 

REAL F(10) DIST (distfunc) 

achieves a reverse-order distribution of the ele-

$P(l) 
D(l,l:IOO) 

D(6,1:100) 

$P(2) ! D(2, 1:100) I' 

D(7,1:100) 
--- ------ ----

,---- ----

$P(3) 
D(3, 1:100) 

D(8,1:100) ____ I 
,---

D(4,1:100) 
$P(4) L 

D(9,1:100) _ _j 

,-
D(S,l:IOO) 

$P(5) ! 

D(IO, 1:100) 

FIGURE 10 Cyclical distribution of array D over $P. 
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PROGRAM JACOBIRELAXATION 
PROCESSORS grid2D(4, 4) 
REAL OLD(l28, 128) DIST (BLOCK, BLOCK) 
REAL NEW(l28, 128) DIST (=OLD) 

C INPUT VALVES OF ARRAY 'OLD' 

DO 10 I= 2, 127 

DO 10 J = 2, 127 

NEW(!, J) = C *(OLD(!, J) + OLD(I-1, J) +OLD(!+ I, J) 
& +OLD(!, J-1) +OLD(!, 1+1)) 

10 CONTINUE 

C OUTPUT VALVES OF ARRAY 'NEW' 

END 

FIGURE 11 Vienna Fortran code for Jacobi relaxa

tion. 

ments ofF over the processors of $P (assuming a 

sufficient number of processors). 

The distribution of an array may alternatively 

be specified using the distribution functions con

stituting the distribution -expression of another ar

ray. For example, 

REAL G(2000, 20, 300) 

DIST (CYCLIC, CYCLIC, BLOCK) 

REAL H(100, 2500) 

DIST (=G.3, =G.1) TO procrs2D 

distributes the first dimension of H by BLOCK 

(the distribution function of G.3, the third dimen

sion of G) and the second dimension of H in CY

CLIC fashion (in accordance with the distribution 

of G. 1, the first dimension of G). This feature is 

further illustrated in the Jacobi relaxation exam

ple given in Figure 11. This code declares a two

dimensional array of 16 processors, called 

grid2D, and distributes the array OLD over 

grid2D in contiguous blocks of size 32x32 ele

ments. The array New is distributed in the same 

way by virtue of the (=OLD) distribution expres

sion. Note that although Vienna Fortran makes no 

assumption concerning the interconnection pat

terns of target processors, clearly the annotations 

in Figure 11 will minimize the communications 

overhead in the case of the target processors being 

connected in a nearest-neighbor manner. 

The foregoing distributions are all examples of 

the direct specification of distributions. Vienna 

Fortran also allows the implicit distribution of one 

array (called the target array) in terms of the distri

bution of another array (the source array), i.e., 

interarray alignment. This is achieved using the 

ALIGN keyword, for example: 

REAL K(100, 100) ALIGN K(I, J) 

WITH H(J, I*10) 
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aligns each element of the target array K with the 

source array element identified by evaluating the 

subscript expressions of the source array H. 1 and 

J are placeholders, i.e., bound variables in this 

annotation that each range from 1 to 100 (their 

corresponding subscript ranges in array K). 

Hence, for example, target element K(5, 21) is 

aligned with source element H(21, .50). 

Programmers can also define their own align

ment functions, for example: 

AFUNCTION alfunc 

TARGET T (i:) 
SOURCE S (1:) 

DO 10 I= 1, SIZE(T) 

T (I) ALIGN WITH S ( (I+6) 

MODSIZE (S) +1) 
10 CONTINUE 

END AFUNCTION alfunc 

This alignment function may be used to specify 

the alignment of an array L to a four-element ar

ray M thus 

REAL L(10) ALIGN (alfunc) WITH M 

which results in the following alignment of ele

ments: 

M(1) ~L(2), L(6), L(10) 

M(2) ~L(3), L(7) 

M(3) ~ L(4), L(S) 

M(4) ~L(1), L(5), L(9) 

It is possible to define irregular data distributions 

in Vienna Fortran where individual elements of an 

array may each be mapped to a specified proces

sor using the INDIRECT distribution function 

and an integer-valued mapping array of the same 

shape and size as the data array. This mapping 

array may itself be distributed. 

INTEGER map (10) DIST(CYCLIC) 

REAL Q(10) DYNAMIC 

DISTRIBUTE Q : : INDIRECT (map) 

In the above example the value of map(i) is the 

index within $P of the processor to which Q(i) is to 

be mapped. 

Dynamic Distribution. Vienna Fortran also pro

vides for the dvnamic distribution of arravs. Such . . 
an array is distinguished by an additional annota-

tion to its declaration, the DYNAMIC kevword. 

Examples are: 

REAL R(lOO) DYNAMIC, DIST(CYCLIC) TO $P 

REAL U (100) DYNAMIC 

The array R is initially distributed cyclically but 

this distribution can later be altered, by virtue of 

its DYNAMIC declaration. The array C has no 

initial distribution and must not be accessed until 

it has been distributed. The distributions that a 

dynamically distributed array is permitted to 

adopt at run-time can be limited by specifying ex

plicitly the allowed distributions. For example 

REAL V(100) DYNAMIC, 

RANGE(BLOCK, CYCLIC) 

specifies that V may only be distributed in a block 

or cvclic fashion. Anv other distribution of V will . . 
have an undefined effect. 

The alignment and initial distribution of dy

namic arrays are specified in the same way as for 

static arrays; the array to which a dynamic array is 

aligned may be either static or dynamic. Such 

alignment is not maintained if either array is later 

redistributed. Such an association can. however. 

be achieved using the CONNECT keyword. For 

example 

REAL W(100, 100) DYNAMIC, 

DIST (CYCLIC, BLOCK) TO procrs2D 

REAL X(100, 100) DYNAMIC, CONNECT (=W) 

Here ·w is called the primary array and X is a 

secondary array. A primary array and the second

ary arrays CONI'iECTed to it constitute a connect 

set. A dvnamic arrav mav be a member of onlv one . . . . 
connect set. Only the primary array in a connect 

set may be redistributed and when this happens 

each of its secondary arrays is redistributed in a 

manner related to the primary's new distribution 

by that secondary's CONNECTion. The COI\

NECTion in the above example specifies that the 

distribution type of X will always be that of W. 

Dynamic distribution is specified by a DIS

TRIBUTE statement of the form 

DISTRIBUTE A1 , 

[NOTRANSFER (Ai , 

, An : : distrib 
, Ak)] 

On execution of this statement each listed dvnam

ically distributed array A; is given the distribution 

distrib, which may be a direct. INDIRECT. or im-



plicit specification as described above. For any 

primary array distributed by the DISTRIBUTE 

statement its secondary arravs are also distributed 

in accordance with th~ir CONNECTions. The op

tional NOTRANSFER clause attributes new ac

cess functions to the listed arrays Ai, . . . , Ak 

(which are selected from the list A1, . . . , An and 

their CONNECT sets) in accordance with the 

specified distribution distrib but does not produce 

any transfer of their data: the previous data values 

of .the arrays Ai, . . . , Ak are subsequently ig

nored. 

It must be noted that although dynamic distri

bution directives are provided, it is the user's re

sponsibility to ensure that they are used wisely. 

especially that their use does not incur greater re

distribution costs than the costs (of suboptimal 

execution with unredistributed arravs) that there

distribution is intended to alleviate. This decision 

may be far from trivial; tools are needed to help 

the. programmer in making such decisions. An

other part of the VFCS is a static performance 

estimation module [21] that may be of some use 

in this respect. 

Other Distribution-Related Features: Control 
Constructs. Vienna Fortran provides two features, 

the IF construct and the DCASE construct. that 

enable the distribution of an array to dictate the 

flow of execution. For example 

REAL Y(1000, 100) DYNAMIC 

IF (IDT(Y, (BLOCK, BLOCK))) THEN 

if-code 

END IF 

the if-code will only be executed if both dimen

sions of Y are block distributed: IDT (Identical 

Distribution Types) is an intrinsic inquiry function 

that compares the distribution of an array with a 

specified distribution type. 

In the following example of a DCASE construct 

the code to be executed is determined by the first 

pair (in textual order) of CASE limb distribution 

expressions to match the actual distributions of 

AA and BB: the asterisk signifies "anv distribu

tion." 

REAL AA(1000, 100), BB(200, 200) 

DYNAMIC ... 

SELECT DCASE (AA, BB) 

CASE (BLOCK, CYCLIC) , (BLOCK, BLOCK) 

code 1 
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CASE (CYCLIC, *) , (BLOCK, CYCLIC) 

code 2 

CASE (DEFAULT) 

cod en 

END SELECT 

Other Distribution-Related Features: Subroutine 
Parameters. The distribution of a formal parame

ter in a subroutine can be static or dynamic. For 

each formal parameter a distribution is specified 

which is enforced at subroutine entry. If the for

mal parameter is dynamic, however, then its dis

tribution mav be inherited from the actual argu

ment by sp~cifying the annotation DIST(*). A 

RANGE clause mav also be used to specify the 

permissible distrib~tions of a dummy argument 

with inherited distribution, thereby providing the 

compiler with useful information that may not 

otherwise be determinable. For example 

REAL Z(N) DIST(*) RANGE((CYCLIC(10)), 

(BLOCK)) 

declares that the formal parameter Z inherits its 

distribution from the corresponding actual pa

rameter and that this distribution will either be a 

block -cvclic pattern with block size 10 or a simple 

block distribution. If the actual argument is stati

callv distributed then any redistribution per

for~ed within the subroutine is undone at exit. 

Such distribution restoration may optionally be 

enforced, using the RESTORE keyword, for dy

namicallv distributed actual arguments. A NO

TRANSFER attribute can be given to specify that 

anv redistribution carried out on entry to a sub

ro~tine involves only a change in access function 

and no movement of data. A local array can be 

aligned with a formal parameter or given its own 

distribution. Where appropriate actual arguments 

may be specified using Fortran 90 array section 

notation. 

Parallel Loops 

Vienna Fortran provides a FORALL loop con

struct that enables the programmer to assert that 

the iterations of a loop may be executed in parallel 

by virtue of their being independent (i.e .. the data 

written within one iteration are neither read nor 

written within anv other iteration of the loop). 

Loop iteration's may be assigned to specified 

processors, for example 
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FORALL I= 1, NON $P(PROC(I)) 

END FORALL 

FORALL I= 1, M ON OWNER(V(I)) 

END FORALL 

it is assumed that PROC is some array, defined 

elsewhere, whose contents may be used as proces

sor indices. OWNER is a Vienna Fortran intrinsic 

function that identifies the home processor of its 

argument. In the default case, when the ON clause 

is omitted, the loop iterations are assigned by the 

compiler. This may be carried out so as to mini

mize communication, perhaps splitting individual 

iterations across several processors, or a simple 

(inefficient) assignment of several iterations to a 

single processor may be enforced. 

FORALL loops are implicitly synchronized at 

start and finish. They may be (tightly) nested and 

may contain private variables, in which case each 

iteration is equipped with its own copy of those 

variables. Reduction statements, using intrinsic 

and user-defined reduction functions, may be 

used within the loop and their results become 

available at the end of the loop. Vienna Fortran 

also provides II 0 support for concurrent file ac

cess by individual processors to several storage 

devices. 

Summary 

Vienna Fortran provides the programmer with a 

comprehensive range of features that enable the 

efficient parallelization of a wide range of algo

rithms coded within the conventional Fortran 77 

programming paradigm and referencing a single 

(virtual) shared memory space. Although Vienna 

Fortran provides the expressive control needed to 

specify the parallelization of even quite pathologi

cal algorithms, it has in so doing significantly in

creased the complexity of the programmer's task 

and consequently increased the possibility of (po

tentially very elusive) errors. 

Nevertheless, this increased involvement of the 

programmer in the parallelization process is much 

more palatable than the disadvantages of mes

sage-passing programming and clearly may be 

justified by the program execution speed-ups 

achievable. Indeed the programmer requiring a 

simple one-dimensional processor array and only 

static distributions need only specify the appropri

ate data distributions. 

2.7 Fortran D 

A few authors [22-25] describe an extended For

tran, called Fortran D, that enables a programmer 

to specify the distribution of data and computa

tional work across a DMM. Currently a Fortran 

77D (i.e., extended Fortran 77) compiler is being 

developed at Rice University and Wu and Fox 

[26] are developing a Fortran 90D (extended For

tran 90) compiler at Syracuse Cniversity. Clti

mately these two projects will converge with a sin

gle definition of Fortran D, the current "official" 

version of which is summarized here. It is pro

posed that the Fortran D compiler will form part of 

a data-parallel programming system that will also 

include a static performance estimator (to provide 

the user with predictions of relative performances 

of a Fortran D program with different data distri

bution [27]) and an automatic data partitioner 

(which will make use of the static performance es

timator either by interactively assisting a user in 

finding an efficient data distribution or by auto

matically producing one). The Fortran D compiler 

will produce optimized code in the SPMD model. 

The annotation of Fortran code using the For

tran D extensions essentially comprises four main 

components: 

1. The optimal specification of the number of 

target processors. 

2. The mapping of data arrays onto intermedi

ate frames of reference (called decomposi

tions). 

3. The distribution of decompositions over the 

target processors (implying the distribution 

of the arrays mapped onto these decompo

sitions). 

4. The specification of parallel loops and the 

allocation of their iterations to processors. 

This categorization shows some similarity to 

that given in the previous section for Vienna For

tran. The significant difference is the use of an 

intermediate mapping device (the decomposition) 

in Fortran D, which is intended to promote code 

portability. 

Specification 

The required number of processors may be stipu

lated at the begining of a Fortran D program using 

the reserved variable n$proc; alternatively this 

may be omitted and the number of processors will 

be determined automatically at run-time accord

ing to availability. 



Mapping 

Data distribution begins with the specification of 

one or more decompositions. A decomposition 

does not occupy any storage; it is simply an ab

stract structure that can be regarded as a frame of 

reference for interarray alignment and as a vehicle 

for the distribution of arrays. An arrav intended 

for distribution is first alig~ed with a decomposi

tion using placeholders (1, J, K, etc.) as in the fol

lowing examples. Arrays for which no alignments 

are specified are replicated over all processors. 

2 

3 

4 

5 

6 

7 

8 

1. REAL A(N, N), B(N, K) 

DECOMPOSITION DECl(N, N) 

ALIGN A(l, J) with DECl(I, J) 

ALIGN B(I, J) with DECl(I, J) 

Here a two-dimensional Nxl\' decomposi

tion called DEC1 is declared and arrays A 

and B aligned to it; on the distribution of 

DEC1, A and B will be codistributed. The 

above two ALIGNments can alternatively be 

stated as 

ALIGN A, B with DEC1 

2. REAL C(N, N), D(N, N) 

DECOMPOSITION DEC2(N, N) 

ALIGN C(I, J) with DEC2(6*I, J) 

ALIGN D(I, J) with DEC2(I,3*J-2) 

Here D has a stride of 3 and an offset of -2 

in the J dimension; C(1, 4), for example, will 

2 3 4 5 6 7 8 

D(l,l) D(l,2) D(l,3) 

D(2,1) D(2,2) D(2,3) 

D(3,1) D(3,2) D(3,3) 

D(4,1) D(4,2) D(4,3) DEC2(N,N) 

D(5,1) D(5,2) D(5,3) 

C(l,l) C(l,2) C(l,3) C(l,4) C(l,5) C(l,6) C(l,7) C(l,8) 

D(6,1) D(6,2) D(6,3) 

D(7,1) D(7,2) D(7,3) 

D(8,1) D(8,2) D(8,3) 

FIGURE 12 The alignment of arrays C and D with the 

decomposition DEC2. 
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2 3 4 

F(l,l:M,l) F(l,l:M,2) F(l,l:M,3) F(l,l:M,4) 

2 F(2,l:M,l) F(2,l:M,2) F(2,l:M,3) F(2,l:M,4) 

DEC4(N,N) 

3 F(3,l:M,l) F(3,l:M,2) F(3,l:M,3) F(3,l:M,4) 

4 F(4,l:M,l) F(4,l:M,2) F(4,l:M,3) F(4,l:M,4) 

FIGURE 13 Mapping of array F onto decomposition 

DEC4, showing the collapsing of the J dimension of F. 

be codistributed with D(6, 2), as shown in 

Figure 12 (assuming N=8). 

3. REAL E(N, N) 

DECOMPOSITION DEC3(N, N) 

ALIGN E(I, J) with DEC3(J, I) 

This is an example of permutation, in this 

case the transpose of the array E is aligned 

with the decomposition. 

4. REAL F(N, M, N) 

DECOMPOSITION DEC4(N, N) 

ALIGN F(I, J, K) with DEC4(I, K) 

Here the second dimension of F is undis

tributed so that elements in its J dimension 

are collapsed together in the eventual distri

bution. This is illustrated in Figure 13 for 

the N=4 case. 

5. REAL G(N, N) 

DECOMPOSITION DEC5(N, N, N) 

ALIGN G(I, J) with DEC5 (I, J+l, 

3) 

This is an example of embedding, the map

ping of an array onto a decomposition that 

has more dimensions. Depending on the 

distribution of its decomposition it might be 

the case that such an array is not mapped 

over all the processors in the target ma

chine. 

It is possible to specify the mapping of an array 

onto a decomposition in such a way that some of 

its elements are mapped onto nonexistent posi

tions in the decomposition. Fortran D therefore 

provides for an ALIGN statement with an optional 

overflow clause that specifies one of three options 
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FIGURE 14a The alignment of array II with decom

position DEC6. 

(ERROR, TRUNC, and WRAP) per dimension. 

This is used to describe how arrav elements ex

tending beyond the decomposition are to be 

treated, for example 

REAL H(N), K(N, N) 

DECOMPOSITION DEC6(N), DEC7(N, N) 

ALIGN H(I) with DEC6(I+l) overflow (ERROR) 

ALIGN K(I, J) with DEC7(I-1, J+l) 

overflow (TRUNC, WRAP) 

In this example, the element H(l") is aligned with 

DEC6(N + 1 ). This alignment is specified with type 

ERROR (the default type when the overflow 

clause is omitted): this means that H(l") is un

mapped and attempts to access it are illegal (see 

Figure 14a). The TRUNC option causes the over

flowing elements (here the first row of K) to be 

mapped to the overflowed edge of the decomposi

tion; hence the first and second rows of K are both 

mapped to the first row of DEC?. The WRAP op

tion maps the overflowing elements to the opposite 

end of the decomposition: the last column of K is 

2 N 

K(I.N) K(l.1) K(l.2) K(l,N-1) 

K(2,N) K(2,1) K(2,2) K(2,N-1) 

r < 
21 K(3,N) K(3,1) K(3,2) K(3,N-1) I 

! DEC7 

N-1• K(N,N) K(N,1) K(N,2) K(N,N-1) 

N 

FIGURE 14b The alignment of array K with decom
position DEC7. 

mapped to the first column of DEC?. These align

ments are illustrated in Figure 14b. 

The foregoing ALIGN statements mapped en

tire arrays onto decompositions. However, it is 

also possible to map only part of an array where, 

for example, a large work array is to be subdivided 

into a collection of smaller logical arrays at run

time. This partial mapping is achieved by specify

ing a section of the array in a range clause. The 

following example illustrates that all rows of L (in

dicated by the asterisk), but only columns 1 toN. 

are to be mapped. 

REAL L (N, N+N) 
DECOMPOSITION DECS(N, N) 
ALIGN L(I, J) with DECS(I, J) 
range ( *, 1: N) 

The replication of array elements over a dimen

sion of a decomposition is specified by the pro

grammer indicating a range of a decomposition 

dimension rather than a placeholder, for example 

REAL M (N) , P (N) , Q (N, N) 
DECOMPOSITION DEC9(N, N) 
ALIGN M(I) with DEC9(I, 2:5) 
ALIGN P(I) with DEC9(*, I+5) 
ALIGN Q(I, J) with DEC9(J, *) 

This example is illustrated in Figure 1;) where 

each of the second. third, fourth. and fifth 

columns of DEC9 is associated with the whole of 

M. For everv row of DEC9 there is an association 

between its last (.'i -5) elements and the first (l'\ -5) 

elements of P. Each column of Q is mapped to 

every element in the corresponding row of DEC9. 

Distribution 

The distribution of an array over the target rna

chine is achieved by specifying its associated de

composition in a DISTRIBUTE statement: the 

execution of such a statement distributes the ar

rays ALIGNed to the specified decomposition. 

The svntax for the n-dimensional case is 

DISTRIBUTE decomposition (attribute], 

, attributen) 

Each attribute specifies the manner in which that 

dimension of the decomposition is to he distrib

uted over the target machine. The attribute* indi

cates no distribution and as a result the corre

sponding dimension is allocated locally. Three 
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--- DEC9 

I 

2 3 -~~ _2~~6~,- 7 •. N-1 N 

1 

P(N-6) I P(N-5) : M(N) ~ M(N) M(N) : M(N) P(l) I P(2) 

I _Q(l N,l) Q(l:N,l)~()(l:J,l,l)~~N,l)' Q(l N,l) Q(lN,l)~~ Q(l:N,l)jl 

M(N) I M(N) ' M(N) M(N) I P(l) P(2) ! 

Q(l:N,l)>l' Q(l:N,l) 

P(N-6) P(N-5) 

2 I I ' ' ' 
Q(l N,2l_~~_.:>!_~LN,2)~ Q(l:N,2): Q(l N,2) I Q(l N,2)~(1 N,2)+ ! Q(l:N,2) Q(l:N,2) 

j ----- -------

' I 

---~--~ 

' M(N) 
1 

M(N) 1 M(N) M(N) P(l) P(2) P(N-6) P(N 5) 

N ' ' 
Q(l:N,N) Q(l:N.N)I Q(l:N,N)I Q(l:N,N) Q(l:N,N) Q(I:N,N) Q(I:N,N) Q(l:N,N) Q(!N,N) 

FIGURE 15 The alil2'nment of arrays .\1. P, and Q with decomposition DEC9. 

regular distribution attributes are available. 

namelv BLOCK, CYCLIC, and BLOCK_CY

CLIC: their use implicitly creates a processor ar

ray in that the target processors are allocated as 

evenly as possible between the dimensions. 

DISTRIBUTE DEC9(BLOCK, *) 

DISTRIBUTE DEClO(CYCLIC, 

BLOCILCYCLIC(2)) 

The above examples are illustrated in Figure 16 

for the case where n$proc = 4. Figure 16a shows 

the first dimension of the decomposition DEC9 

partitioned into contiguous blocks distributed be

tween the processors p1 to p4: the remaining di

mension of DEC9 is not distributed. The elements 

of DEClO (assumed to have been declared with 

size 8x8) are distributed individually. in a round

robin fashion. in one dimension and grouped into 

blocks of size 2 in the other dimension, these 

blocks also being distributed cyclically as shown 

in Figure 16b. 

Another example of the use of the DISTRIB

UTE statement is given in Figure 1? for the Jacobi 

I N 
-----~l 

pi ~-----1-
--~ 

-->-- ----1 I 

p2 processor to which 

.. ------j 
this section of DEC9 

is distributed 
DEC9 p3 

-I 
I p4 I 

I Nl -
FIGURE 16a The distribution pattern of the ~Xi\ de
composition DEC9. 

relaxation example where 16 target processors are 

specified and a decomposition DD of size 

128X 128 is declared. Having mapped arrays 

OLD and l\EW directly onto DD it is then distrib

uted in BLOCK fashion in both dimensions over 

the target processors. Because processors are allo

cated evenly between the dimensions of a decom

position this example causes DD (and hence the 

arrays OLD and l\EW) to be partitioned and dis

tributed as 16 (i.e., 4X4) contiguous blocks. each 

of size 32X32 elements. 

Extended forms of the regular distribution at

tributes are provided, allowing the programmer to 

specify explicitly the number of processors allo

cated to each dimension. As virtual processors are 

not supported in Fortran D the programmer must 

ensure that the specified attributes do not require 

more processors than n$proc. The number of 

2 3 4 5 6 7 8 
I T-- i 
I 

I. pi pi p3 p3 pi pi p3 p3 
I 

' 

2 p2 p2 p4 p4 p2 p2 p4 p4 

-+--~--1 r 3 pi pi p3 p3 pi pl p3 p3 

·-~·~-- --- ----+- --

4 p2 p2 p4 p4 p2 p2 p4 p4 j 

5 pl pi p3 p3 pl pi p3 p3 1. 

: DEC10(8, 8) 
I 

6 p2 p2 p4! p4 p2 p2 p4 p4 

7; 

~-~~ F~~ 
p3 pi pi p3 p3 

8 p4 I p2 p2 p4 p4 

l I ' -~- -----

FIGURE 16b The distribution pattern of the 8 X 8 de-

composition DEClO. 
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PROGRAM JACOBIRELAXATION 

n$proc = 16 

C 16 TARGET PROCESSORS DECLARED 

REAL OLD, NEW 

DIMENSION OLD(128, 128), NEW(128, 128) 

DECOMPOSITION DD(l28, 128) 

ALIGN OLD, NEW with DD 

DISTRIBUTE DD(BLOCK, BLOCK) 

C BOTH OLD AND NEW ARE NOW PARTITIONED IN A 

C 4X4 FASHION (AS BLOCKS OF SIZE 32X32) AND 

C DISTRffiUTED OVER 16 TARGET PROCESSORS. 

C INPUT VALUES OF ARRAY 'OLD' 

DO 10 1=2, 127 

DO 10 J = 2, 127 

NEW(!, J) = C *(OLD(!, J) +OLD(!- I, J) +OLD(!+!, J) 

& +OLD(I,J-l)+OLD(I,J+l)) 

10 CONTINUE 

C OUTPUT VALVES OF ARRAY 'NEW' 

END 

FIGURE 17 Fortran D code for Jacobi relaxation. 

processors per dimension is specified as an extra 

parameter. Taking the distribution of the decom

position DD in the Jacobi relaxation example, if 

rather than allocating the 16 target processors 

evenly between its two dimensions, giving the 4x4 

scheme shown in Figure 18a, we had instead re

quired the 2 X 8 scheme illustrated in Figure 18b 

then the DISTRIBUTE statement would have 

been written as follows 

DISTRIBUTE DD(BLOCK(2), BLOCK(8)) 

Irregular distributions are achieved in Fortran D 

by using replicated or distributed mapping arrays 

of integers in a manner analogous to the use of the 

INDIRECT distribution function in Vienna For

tran. In the following example element R(I, J) is 

DISTRIBUTE DD(BLOCK(2), BLOCK(8)) 

32 64 96 128 

pi p5 p9 pl3 

2 ..., 
..... 

' p2 p6 p!O p14 

64 DD(l2 8, 128) 

p3 I p7 pll piS 

9 6 

p4 ~p12 p16 

8 12 

FIGURE 18a The mapping of decomposition DD 

onto 16 processors, resulting from the even allocation of 

processors between dimensions. 

distributed to the processor identified by the value 

of the mapping array element MAP(I, J) 

n$proc = 16 

REAL R(4, 4) 

INTEGER MAP(4, 4) 

DECOMPOSITION DEC11(4, 4), 

DEC12 (4, 4) 

ALIGN R with DECll 

ALIGN MAP with DEC12 

DISTRIBUTE DEC12(CYCLIC, BLOCK) 

C FILL MAP WITH PROCESSOR ID NUMBERS 

DISTRIBUTE DECll(MAP) 

Fortran D also supports the dynamic alignment 

and distribution of arrays where both ALIGN and 

DISTRIBUTE are executable statements. As the 

example below illustrates, however, Fortran D dif

fers from Vienna Fortran by not discriminating 

between statically and dynamically distributed ar

rays. 

REAL S(N, N), T(N, N) 

DECOMPOSITION DEC13(N, N) 

ALIGNS, T with DEC13 

DISTRIBUTE DEC13(CYCLIC, CYCLIC) 

C BOTH S AND T ARE DISTRIBUTED 

(CYCLIC, CYCLIC) 

DISTRIBUTE DEC13(BLOCK, BLOCK) 

C BOTH S AND T ARE NOW REDISTRIBUTED 

(BLOCK, BLOCK) 

ALIGN T(I, J) with DEC13(J, I) 

C THE TRANSPOSE OF T IS NOW ALIGNED 

WITH S 

I 16 32 48 64 80 96 112 128 

11-1 ,- --- ! 

p31 
i 

p9 1 pll I p13 pi p5 p7 I piS 

I . 

! 

641 
-~ 

I 00(128, 128) 

i p2 p4 . p6 p8 p!O pl21 p14 p16 

I 

128 

FIGURE 18b The mappinf! of decomposition DD 

onto 16 processors. resulting from an uneven allocation 

of processors between dimensions. 



Distributed arrays may be used as actual pa

rameters to procedures and such an array may be 

dynamically redistributed within a procedure. 

However, unlike the Vienna Fortran equivalent 

such redistribution cannot be maintained outside 

the procedure because Fortran D limits the effect 

of a DECOMPOSITION, ALIGN, or DISTRIB

UTE to the scope of the enclosing procedure. An

other difference with Vienna Fortran is the lack of 

a facility for the querying of distribution patterns 

at run-time. 

Although ordinary sequential-style DO loops 

may be used for regular computations, situations 

can arise where a compiler cannot fully exploit the 

inherent parallelism in such a loop (e.g., irregular 

computations) and must make worst-case as

sumptions about interiteration dependences. In 

these cases, if the programmer knows that parallel 

execution will be possible then, as in Vienna For

tran, a FORALL loop may be specified instead; 

communication-free, determinate parallel execu

tion of the loop iterations is then obtained (al

though communication may still be required be

fore and after the loop for nonlocal values). In 

each iteration of a FORALL loop only values de

fined before the loop or within that iteration may 

be used. FORALL loops may be nested. 

Although the code produced by the compiler is 

by default based on the owner-computes model, it 

is possible to override this using an ON clause, 

which specifies on which processor each iteration 

of a FORALL loop will execute, for example 

n$proc = 16 

REAL U(400, 400), V(400, 400), 

W(400, 400), X (400, 400) 

DECOMPOSITION DEC14(400, 400) 

ALIGN U, V, W, X with DEC14 

DISTRIBUTE DEC14(BLOCK, BLOCK) 

FORALL I = 201, 400 

FORALL J = 1, 400 ON HOME (X(I-200, J)) 

X(I, J) = (U(I-200, J) + V(I-200, J) 

+ W(I-200, J)) * X(I-200, J) 

END FOR 

END FOR 

In this example it will probably be more efficient to 

execute each assignment on the processor owning 

the right-hand side values rather than on that 

holding X(L J), thereby implementing the owner

stores paradigm. This is achieved by the use of the 

HOME function. which returns the identifier of 

the processor owning the specified datum X(I-
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200, J) and is analogous to the OWNER intrinsic 

function in Vienna Fortran. 

As with Vienna Fortran, the range of applica

tions that may be efficiently parallelized using 

Fortran Dis extensive., but the comprehensive set 

of extended features that it provides makes possi

ble a substantial increase in the involvement of the 

programmer in the program parallelization pro

cess and a corresponding increase in the complex

ity (and error proneness) of that task. 

2.8 Booster 

Paalvast et al. [28, 29] describe the Booster lan

guage, a subproject of the ParTool Parallel Pro

cessing Environment project. Booster enables the 

description of parallel algorithms, based on array

like data structures, for both shared memory 

multiprocessors and DMMs. Booster introduces 

the concepts of index and data domains. An index 

domain consists of ordered index sets (each of 

which is a finite set of tuples of integers) and a 

data domain consists of data values of certain 

types. Different syntaxes are used for manipula

tions on index and data domains; data manipula

tions are imperative whereas index manipulations 

are functional. 

The only data structure provided is the shape, 

which is a finite set of elements whose values are 

all of a single data type; each element is uniquely 

associated with an index of the shape's index set. 

Shapes differ from conventional arrays in that a 

shape-index set may be more complex than the 

simple linear indexing of an array. Selected shape 

elements are referenced using views. A view is not 

a data structure but is constructed from the index 

sets of one or more shapes. Effectively the view is 

an abstraction of array-like access and removes 

the need for index loops. 

Examples of these concepts can be seen in Fig

ure 19 which is the algorithm module for an im

plementation of the Jacobi relaxation method. A 

Booster program consists of a collection of sepa

rately compiled modules of which there are two 

types, an algorithm module and an annotation 

module (considered later). in this example, OLD 

and NEW are declared as shapes of size 128 X 

128 elements and the computation shows the use 

of the simple view [1 :126, 1 :126] applied to the 

shape ]\;EW and other simple views applied to 

OLD to effect the update. 

In the next example the shape Sis declared as a 

rectangular 3 X 4 data structure and V is a view 

identifier defined as a view on S such that V[O, 0], 
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MODULE Jacobi (OLD)-> NEW 
SHAPE OLD (128#128) OF REAL; 

NEW (128#128) OF REAL; 

BEGIN 

NEW[1:126, 1:126] := C * (OLD[0:125, 1:126] + OLD[1:126, 1:126] + 
OLD[2:127, 1:126] + OLD[1:126, 0:125] + 
OLD[ 1:126, 2: 127]); 

END. 

FIGURE 19 Algorithm module for an implementation 

of Jacobi relaxation in Booster. 

V[O, 1], ... , V[2, .3] reference S[O, 01. S[O, 1], 

... , S[2, 3], respectively. 

SHAPE S(3#4) OF REAL; 

V ~ S; 

This view identifier V mav then be redefined or 

used to define other views of S, for example 

Vl ~ V [ 0 : 2 , 3] 

defines the view identifier V1 so that it references 

the fourth column of shape S. 

Irregular computations may be expressed in 

Booster using content selection views as follows 

SHAPE A(lO) OF REAL; 

B (10) OF INT; 

A [B<4] ... 

The view [B<4l is a content selection view be

cause the Boolean expression B<4 results in an 

index set whose elements reference the values of B 

which obey this expression: this index set is then 

applied to A. Hence if B is the set {2, 1. 6, 6, .3, 7} 

then the index set B<4 is {1, 2, 5} and the ele

ments referenced in A are A[1;, A[2L and A[5;. 

Clearly irregularity will result when A is distributed 

because the precise elements of A that are being 

referenced cannot be determined until run-time. 

The algorithm modules of a Booster program 

are machine independent and as a result informa

tion regarding the decomposition and distribution 

of data over processor memories, and the assign

ment of computation responsibility to processors. 

must be provided by the programmer in an anno

tation module using an annotation language. 

Within an annotation module, the programmer 

first specifies a virtual machine that serves as a 

model onto which data and associated computa

tion responsibility may be mapped. The processor 

structure of the virtual machine mav be defined 

separately from its memory structure, for example 

VIRTUAL MACHINE sharedmem 

(PROC procr(p), MEM memory(m)); 

declares a machine called sharedmem with a sin

gle memory of size m, shared among p processors. 

whilst 

VIRTUAL MACHINE distribmen 

(PROC procr(p), MEM memory(n) (m)); 

declares a machine called distribmem consisting 

of p processors and n memory units each of size 

m. 

In the annotation module Jacobi (Figure 20) the 

virtual machine \'yf consists of a processor-plus

memory arrangement PYI made up of 16 identical 

processors, each with its own local memory of size 

2X32X32. The module also defines the mapping 

of the shape OLD and of the associated responsi

bility for the computation of its elements .. onto the 

virtual machine VYl. In the statement 

OLD [i, j] ~VM [(i div32)*4 

+ j div 32, 0, i mod 32, j mod 32]; 

The first subscript in \'yl[ ... 1 defines the processor 

responsible for performing assignments to the de

ment OLD[i, jJ. A variant of the owner-computes 

convention is employed-the processor responsi

ble for assignment to a shape element on the left

hand side of an assignment statement is also re

sponsible for the calculation of the expression on 

the right-hand side. The remaining :-;ubscripts in 

V:YI[ ... ] define the location on the local memory of 

the processor identified by the first subscript. into 

which the element OLD[i, j] is to be mapped. In

terarray alignment is practised using the virtual 

machine as a reference frame. 

Thus the shape OLD is partitioned into 16 (i.e .. 

4 X 4) contiguous blocks. each of which is stored in 

the local memory of one of the 16 processors of 

VM. The same distribution is performed on the 

shape l\EW. giving the mapping shown in Figure 

ANNOTATION MODULE Jacobi; 
VIRTUAL MACHINE VM (PROCMEM PM (16)(2#32#32)); 

IMPORT Jacobi:: OLD. NEW (128#128); 

OLD [i, j] <- VM [(i div 32)*4 + j div 32, 0, i mod 32, j mod 32]; 

NEW[i,j] <- VM [(i div 32)*4 + j div 32, 1, i mod 32 ,j mod 32]; 
REAL MACHINE RM (PROCMEM RPM (16)(1max#mmax#nmax)); 

VM[i, 1, m, n] <- RM[i, 1, m, n]; 

END. 

FIGURE 20 Annotation module for an implementa

tion of Jacobi relaxation in Booster. 
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3 1 
OLD[0:31,96: 127] 
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FIGURE 21 The mapping of shapes OLD and :\'E\\ over the virtual machine Y\L 

21. Each local memory must therefore be capable 

of storing two 32 X :32 bloch of data. 

The programmer may also define a real ma

chine and a mapping of the virtual machine. The 

processors of the real machine need not be identi

cal and, unlike the virtual machine, a real ma

chine possesses an interconnection structure. al

though this is only visible to the compiler and not 

to the programmer. An example of a real machine 

is the machine Rvi in Figure 20. This consists of a 

processor-plus-memory arrangement RP:VI which 

comprises 16 processor-plus-memory units. each 

memory being of size lmax X mmax X nmax 

(where lmax 2: I. nrmax 2: nL and nrnax 2: n). 

These processors might be arranged as a 4 X 4 grid 

with a nearest-neighbor interconnection stru(> 

ture. Figure 20 specifies a very simple mapping 

from VM to R:VI, with each virtual processor being 

mapped onto its own real processor and each vir

tual machine memory location being mapped onto 

its real counterpart. 

Although the above example defines a mapping 

in terms of a shape identifier (OLD and 1\E\V). 
giving a static distribution. it is possible to define a 

mapping in terms of a view identifier instead. Cn

like a shape, the size of a view may change at run

time; consequently a mapping defined in terms of 

MODULE shrinker (SH) -> (SH) 

SHAPE SH(4) OF REAL; 

BEGIN 

VW<-SH; 
WHILE SIZE (VW) > 0 DO 

computation 

VW <- VW[lwb:upb-2]; 

END; 

END. 

FIGURE 22a Algorithm module for ·'shrinking view'' 

example. 

a view identifier may also change. thereby achiev

ing dynamic distribution. For example, in Figure 

22a V\V is declared as a view on shape SH. In 

each -WHILE iteration the view VW is redefined 

such that it shrinks: initially the correspondence 

between view V\V and shape SH is 

VW[O] 

VW[2] 

SH [0], VW [1] 

- SH [ 2] , VW [ 3] 

SH[l], 

SH[3] 

but after one iteration vw- is redefined so that the 

correspondence becomes 

VW[O] = SH[O], VW[l] = SH[l] 

(in Figure 22a, lwb and upb are lower bound and 

upper bound, respectively). 

The corresponding annotation module is given in 

Figure 22b which introduces a virtual machine 

and defines a mapping. 

Initially the value of the parameter VWsize is 4, 

giving the mapping shown in Figure 23a. How

ever, after one iteration vw-size has the value 2 

and the mapping is as shown in Figure 23b. Dy

namic distribution has occurred because shape 

element SH(1) has been moved from the local 

memory of processor 0 to that of processor 1. 

thereby achieving load balancing for the next 

phase of the computation. 

ANNOTATION MODULE shrinker; 
VIRTUAL MACHINE virt (PROCMEM procr(2)(2)); 

IMPORT shrinker :: VW(VWsize); 
VW[i] <- virt[i div (VWsize div 2), i mod (VWsize div 2)]; 

END. 

FIGURE 22b Annotation module for "shrinking 

view" example. 
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processor memory 

VW[O] VW[l] VW[2] VW[3] 

FIGURE 23a Initial state of virtual machine virt: the 

relationship between view VW and shape SH is also 

indicated. 

An accompanying calculus, called V -cal, has 

been developed as a formal basis for Booster. The 

algorithm modules constituting the computational 

parts of a program are translated into an equiva

lent V -cal representation of the program. Trans

formations and optimizations are performed on 

this V -cal representation. The information con

tained in the annotation module is then translated 

into V -cal form; this is integrated with the V -cal 

representation of the computational code and the 

result undergoes some further optimizations. Fi

nally an equivalent parallel program is generated 

using the SPMD model. 

The implementation of a compiler to translate 

Booster programs to Fortran and C is currently in 

progress. The Booster parallel software develop

ment strategy is experimental and iterative with 

the compiler returning feedback information to 

the programmer which will, for example, enable 

an estimation of the amount of parallelism lost or 

introduced by different mappings. and the detec

tion of communication hot-spots. Booster pro

vides constructs that enable the specification of 

alternative mappings. The choice between alter

natives is made by the compiler. so these con

structs do not imply any dynamic distribution 

ability (i.e., they are not executable). The choice 

construct is of the (self-explanatory) form: 

processor memory 

VW[O] 

c (,;.( a 
l 

I 

VW[l] 

FIGURE 23b State of virtual machine virt after one 

iteration; the relationship between view VW and shape 

SH is also indicated. 

IF condition THEN mapping-statements 1 

ELSE mapping-statements 2 

where the condition may be dependent on, for ex

ample, the size of a shape; the alternative con

struct is of the form; 

ALTERNATIVE mapping-statements 1 

{OR mapping-statementsi} END 

This construct specifies a list of mapping strate

gies, one of which is chosen by the compiler. The 

compiler will also inform the programmer of the 

annotations that it has chosen in the case of AL

TERNATIVE annotations or in cases where map

pings have not been provided by the programmer. 

An example of the latter is an assignment state

ment in which some of the participant shapes 

have no mappings defined. In such a situation the 

compiler may select mapping annotations such 

that (relevant dimensions of) these shapes are 

mapped in the same way as an already mapped 

participant shape. The compiler may also make 

use of data dependence information in such situa

tions or simply select a predefined built-in map

ping. The compiler feedback information allows 

the programmer to improve upon chosen annota

tions and perhaps also the computational code. 

The Booster system differs significantly from 

the other svstems outlined in that its source lan

guage is not based on an existing, well-known lan

guage. Booster contains several novel concepts 

that present a considerably greater barrier to the 

new user than the simple, relatively intuitive lan

guage extensions employed by the other systems. 

Furthermore, it is perhaps unfortunate that even 

the simplest mappings (such as block distribution) 

must be defined explicitly-no intrinsic mappings 

are available to the programmer-although this 

same feature allows the specification of relatively 

irregular mappings. The separation of mapping 

information (annotations) from the algorithm en

ables experimentation with different mappings. 

and even different machines .. without altering the 

computational code. See summarv table (Table 

1). 

3 DATA PARTITIONING AND 

DISTRIBUTION IN OTHER SYSTEMS 

This section outlines some of the other systems 

that have made contributions towards the devel-



Table 1. Summary Table 

~ 
0 
>! 
~ ::0 ::0 

" " " [f) 7 7 a "0 (") 
System Source Language ::::: 

n, 
0 0 ~ 

t:) a a :t 
"0 "0 " 
~ ~ 2 
~ ~ 

SCPERB Fortran ?7 Yes Yes :\'o 

ld 1'\ouveau Id :\'ouveau :\'o Yes Yes 

Kali Pascal Yes Yes Yes 

ARF Fortran 77 Yes Yes Yes 

ADAPT Fortran 90 Yes Yes :\'o 

Vienna Fortran Fortran ?? and 90 Yes Yes Yes 

Fortran D Fortran ?7 and 90 Yes Yes Yes 

Booster Booster Yes Variant 

opment of language constructs for data partition

ing and distribution. 

The source language for Pandore II [30, 31] is 

a subset of C, with data distribution syntax exten

sions from which message-passing DMYI code is 

generated. The SPMD and owner-computes para

digms are employed: howeveL irregular computa

tions are not supported. A Pandore II source pro

gram is a sequential program called distributed 

phases. A distributed phase is similar to a proce

dure in that its definition is given a name and a 

formal parameter list and its body is sequential 

code (the source language for Pandore II does not 

contain any parallel constructs). A distributed 

phase may only be called from within the main 

program. The partitioning (into blocks) and distri

bution of the data arravs used in a distributed 

phase are specified in the formal parameter list of 

the phase (called its distributed parameter list). 

After the partitioning of an array into blocks. the 

blocks are distributed over the processors of the 

target machine. The mapping of the blocks onto 

processors can be specified using one of two map

ping styles, regular (contiguous allocation of 

blocks to processors) or wrapped (cyclic alloca

tion). 1\"o particular processor arrangement is as

sumed in Pandore II: the user may specify the 

number of processors at compile-time using the 

command line interface. It is assumed that there is 

an efficient routing system in the target machine. 

ADAPTOR (Automatic DAta Parallelism 

TranslatOR) [32] is a source-to-source transla

tion package that translates programs written in a 
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t:) s :r 
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Yes Yes Yes :\'o Yes :\'o :\'/A 

subset of Fortran 77 (extended with some CM 

Fortran features and many of the array-syntax 

features of Fortran 90) into message-passing For

tran 77 host and node programs for the iPSC I 860 

hypercube; other targets include the Meiko Con

certo and the Parsytec GCel. The user consults an 

interactive transformation tool, XAdaptor, which 

provides analysis information on user-selected 

code units that the user can use to alter the source 

code and to insert data distribution directives: 

these directives may be used to specify block or 

cvclic distribution of the last one or two dimen

sions of an array. The generated code incor

porates calls to message-passing communication 

routines from a DALIB (Distributed Array 

LIBrary). ADAPTOR does not support dynamic 

redistribution. 

DINO (Distributed Numerically Oriented lan

guage) [33] was one of the first systems in this 

area to be implemented (1986 ). It comprises stan

dard C extended with high-level constructs for the 

description of parallel numerical algorithms for 

DMMs. There are three key concepts in DII'O: 

environments. distributed data, and composite 

procedures. An environment consists of data and 

procedures and is equivalent to a process: the 

user. in declaring an environment structure. effec

tively defines a virtual parallel machine to fit the 

communications and number of processes re

quired by a parallel algorithm. Data structures are 

distributed over this virtual machine/ environment 

structure by specifying one-to-one or one-to

many mappings that may be user defined (and 
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hence potentially irregular) or selected from a set 

of built-in functions offering block, cyclic, and 

replicate distributions. All data distributions are 

static and explicit alignment is not supported. A 

composite procedure is a set of identical proce

dures, one in each environment in a given stnic

ture, that are called concurrently. Dll'\0 requires 

not only explicit parallel programming (in the form 

of composite procedures) but also the explicit 

marking of nonlocal accesses, using the '#' 

svmbol. 

Dataparallel C[34] is a SIMD-extended C vari

ant and derivative of the C* language [35]. The 

programmer must specify groups ("domains") of 

virtual processors and the local computations and 

data for these domains. A global name space is 

supported but nonlocal references must be pre

fixed by a reference to the appropriate domain 

instance (the virtual processor owning the data). 

Predefined and user-defined static data mappings 

are possible. Dataparallel C compilers exist for 

shared memory multiprocessors (Sequent Sym

metry S81) and DMMs (iPSC/2, nCUBE 3200). 

Koelbel and others [36, 37] describe a com

piler that accepts programs written in BLAZE (a 

largely sequential language but with functional 

procedure calls) and annotated with arrav distri

bution details. The compiler automatically gener

ates equivalent E-BLAZE code where E-BLAZE 

is a superset of BLAZE, which effectively provides 

a virtual target architecture for the compiler. Par

allel loops are specified using a forall construct. 

Data distributions are static and there is no pro vi

sion for explicit alignment of arrays. The BLAZE 

project has been targeted at nonuniform memory 

access (1'\UMA) machines, such as the BBN But

terfly and the IBM RP3; its successor. Kali, targets 

DMMs. 

Baber's Hypertasking system [381 translates C 

code annotated with data (block) distribution di

rectives into message-passing code for the iPSC; 

other directives enable the delineation of loops 

that iterate over local data onlv. Distributed arravs . . 
are prohibited from being passed in procedure 

calls but dynamic redistribution is provided. 

Carriero and others [39, 40] present the Linda 

parallel programming model. This is a memory 

model, based on the idea of tuple space and mak

ing use of the Linda coordination language in or

chestrating coarse-grain parallel processes, which 

have been programmed in, for example, C code. 

Distributed data structures are used to provide a 

shared memory abstraction and can be regarded 

conceptually as free-floating, delocalized struc-

tures that are accessible simultaneously by several 

processes. 

Crystal [41, 42] is a high-level functional lan

guage compiled for execution on a D~fvl by a 

compiler capable of implementing automatic data 

decomposition. Consequently, no indication of 

data partitioning/ distribution need be supplied by 

the programmer. On compilation a Crystal pro

gram is divided into different computational 

phases, each represented by an index domain: 

each phase has associated with it a set of data 

fields that are interrelated by data dependence. 

Data arrays are heuristically aligned with index 

doml\ins and a varietv of block distributions are 

supported. Crystal has also been used as an inter

mediate language in the Crystallizing Fortran pro

ject, transforming Fortran programs for execution 

on massively parallel machines. 

Another compiler capable of automatic data 

decomposition is ASP AR [ 43] for C or Fortran 77 

programs. ASPAR recognizes four general types of 

loop and uses pattern-matching techniques to de

tect common reference patterns, or stencils. in the 

program. Using a knowledge base, a given stencil 

and loop type direct the selection of collective 

communication calls in the message-passing tar

get program and an array within the loop is stati

cally distributed as contiguous blocks of elements. 

A major drawback is that ASPAR makes some as

sumptions that can result in the semantic modifi

cation of the program. 

Paragon [ 44] is a programming environment 

supporting the execution of SniD programs on 

DMMs. Data distribution is performed by either 

the user or the system; user-specified. arbitrary. 

contiguous, rectangular data distributions are 

permitted, although only the first two dimensions 

of a given array may be distributed. Array re(lis

tribution is supported but explicit alignment is 

not. 

The AL language [ 4.5: is compiled for the 

WARP distributed memory systolic array. Distrib

uted arrays are specified as such in DARRAY dec

larations. Only one dimension of such an array 

may be distributed and given the programmer· s 

indication of this dimension the AL compiler au

tomatically generates a distribution. 

The ::\<1Lv1Dizer [ 46' is a commercially available 

programming environment targeting both shared 

and distributed memorv ::\<IL\1D machines. For 

DMMs the user interactivelv selects block. cvclic. . . 
or replicate distributions (maintained in a sepa

rate file) for a chosen arrav dimension: the user is 

also interactively involved in introducing parallel-



ism by specifying code spreading of loops, hence, 

like SUPERB, this system is not fully automatic 

after the data distribution has been specified. 

Ruhl and Annaratone [ 4 7] present the ETHZ 

Oxygen compiler for the K2 experimental distrib

uted memory machine. This system differs from 

the others in that it uses a functional rather than a 

data-driven parallelization strategy. The user in

serts directives in the Fortran source code to indi

cate task-level and loop-level parallelism, reduc

tions, and broadcast communications. Arrays 

may be private, replicated. or distributed (in a 

row-oriented, column-oriented, or ring fashion). 

4 CONCLUSIONS 

Features such as dynamic data distribution, irreg

ular data distributions. support for irregular com

putation, circumvention of the owner-computes 

rule, interarray alignment (and the ability to main

tain such an association after redistributions). 

run-time querying of distribution patterns, etc. 

are all desirable for ensuring the efficient parallel 

execution of a wide range of applications on 

D.\1Ms. The systems presented in Section 2 of this 

article vary widely in the range of such features 

made available to the user and in the depth to 

which the user may become involved in the paral

lelization process. 

In the ideal case a parallelizer would take re

sponsibility for all aspects of parallelization be

cause users of such systems will generally be non

computer scientists who wish to be involved a,; 

little as possible in the parallelization proces,;. 

while seeking the maximum possible performance 

of their applications. However. certain aspects of 

distributed memory parallelization are intractable 

for even the most capable ,.;ystem: not lea,;t of 

the,.;e is the 1'\P-completeness of the ·'shapes·· 

problem (that of finding an optimal storage pat

tern for parallel execution in the general case) as 

proved by :\<lace [ "±8]. 

Hence. for the majority of problems, user assis

tance is required and because data distribution 

has a significant effect on the performance nf a 

parallelized program a sufficiently wide and ex

pressive range of features must be provided by a 

parallelizing compiler to enable the specification 

of sufficiently precise distribution specifications 

for a wide range of problem type,o;. The greater the 

control afforded by the provision of these features 

the greater the penalty incurred. namely. the ero

sion of the shared memorv abstraction. A balance 
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must therefore be determined between, on the one 

hand, taking the responsibility for parallelization 

away from the users and, on the other, providing 

them with the control needed to obtain efficient 

parallel code. In other words automation and high 

performance are, in general, mutually exclusive. 

In general, the user cannot avoid giving at least 

some thought to the formulation of data parallel

ization annotations. Although these annotations 

will insulate the user from the real technicalities of 

DMM programming (processes, message-passing 

communication, and so on), this abstraction will 

be destroyed if appropriate debugging facilities 

are not provided: otherwise the user will be faced 

with the formidable task of debugging message

passing target code which, even if the user is fa

miliar with the message-passing paradigm, will 

not have been seen previously. 

Finally it must be pointed out that these paral

lelizing compilers complement but do not replace 

the programming of D.\1Ms by explicit message

passing techniques. The situation is analogous to 

the use of high-levellanguages to write uniproces

sor code, where assembly language may be used 

for the most performance-critical cases. D.\1M 

programming systems such as those suggested by 

this article mav be used for the ease of use and 

reduction of development time whereas lower

level message-passing methods may be used in 

cases where performance is particularly critical 

and none of the available parallelizing svstems 

can provide the required facilities. 
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