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ABSTRACT

In this paper, we investigate several automatic transcription schemes
for using raw bilingual broadcast news data in semi-supervised bilin-
gual acoustic model training. Specifically, we compare the transcrip-
tion quality provided by a bilingual ASR system with another system
performing language diarization at the front-end followed by two
monolingual ASR systems chosen based on the assigned language
label. Our research focuses on the Frisian-Dutch code-switching
(CS) speech that is extracted from the archives of a local radio broad-
caster. Using 11 hours of manually transcribed Frisian speech as a
reference, we aim to increase the amount of available training data by
using these automatic transcription techniques. By merging the man-
ually and automatically transcribed data, we learn bilingual acous-
tic models and run ASR experiments on the development and test
data of the FAME! speech corpus to quantify the quality of the auto-
matic transcriptions. Using these acoustic models, we present speech
recognition and CS detection accuracies. The results demonstrate
that applying language diarization to the raw speech data to enable
using the monolingual resources improves the automatic transcrip-
tion quality compared to a baseline system using a bilingual ASR
system.

Index Terms— Language diarization, code-switching, bilingual
acoustic modeling, semi-supervised training, Frisian language

1. INTRODUCTION

Spontaneous language switches in a single conversation, also known
as code-switching (CS), is prominent in multilingual societies in
which minority languages are influenced by the majority language or
majority languages are influenced by lingua francas, such as English
and French. West Frisian (Frisian henceforth) is a regional language
spoken in the northern provinces of the Netherlands with approxi-
mately half a million bilingual speakers. These speakers switch be-
tween the Frisian and Dutch languages in daily conversations. In the
FAME! Project, the influence of this language alteration on mod-
ern ASR systems is explored with the objective of building a ro-
bust recognizer that can handle this phenomenon. The main focus
has been developing robust acoustic models operating on bilingual
speech delving into the automatic speech recognition and CS detec-
tion aspects [1].

The impact of CS and other kinds of language switches on
speech-to-text systems has recently received research interest, re-
sulting in several robust acoustic modeling [2–8] and language
modeling [9–11] approaches for CS speech. Given that CS involves
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more than one language, it is foreseeable that automatic language
identification (LID) could assist in the automatic speech recogni-
tion (ASR) of CS speech [12–15]. One fundamental approach is
assigning language labels in advance with the help of a LID sys-
tem and performing recognition of each language separately using
a monolingual ASR system at the back-end. These systems may
suffer from error propagation between the language identification
front-end and ASR back-end, since language identification is still a
challenging problem especially in the case of intra-sentence CS and
closely related languages.

To cope with this problem, all-in-one ASR approaches, which do
not directly incorporate a language identification system, have also
been proposed [3, 6, 8]. In our previous work, we compared such an
all-in-one system with another system using ground-truth language
labels. Ground truth labels resulted in minor improvements in bilin-
gual recognition performance (with a WER of 33.9% compared to
34.7% for the best performing bilingual ASR) at a cost of additional
computation [1].

To date, our research has focused on the under-resourced Frisian
language using semi-supervised acoustic model training techniques
that can effectively leverage the little amount of manually tran-
scribed Frisian data for training a bilingual ASR system. In our
recent work [16], we used a multilingually trained ASR system to
automatically transcribe raw broadcast data. Later, a subset of this
data with reliable automatic transcriptions was combined with the
manually annotated data and used for retraining (fine-tuning) the
multilingually trained models aiming to improve recognition per-
formance due to the considerable increase in the amount of training
data. For generating the automatic transcriptions, we also applied
lattice rescoring using bilingual language models to examine their
impact on the quality of the automatic transcription. This type of
semi-supervised acoustic model training has been researched inten-
sively and various training strategies and data selection criteria have
been proposed [17–22].

In this paper, we investigate the impact of using a language
diarization (LD) system during this automatic transcription proce-
dure. To the best of our knowledge, using LD on raw speech data in
a semi-supervised bilingual acoustic modeling training setting has
never been investigated. Using LD is expected to provide improve-
ments in the acoustic modeling quality in this scenario for the fol-
lowing reasons. First, the LID errors on the raw broadcast record-
ings should be reduced due to the significant increase in recording
durations which provides better context for the diarization process.
Second, the marginal gains reported in [1] can indirectly improve
the acoustic modeling quality, i.e., due to more accurate automatic
transcription. Finally, the contribution of the lattice rescoring for im-
proved automatic transcriptions is expected to be higher using mono-
lingual LMs compared to using a bilingual LM as done in [16]. We
delve into each of these aspects in the rest of the paper.



Fig. 1. Overview of the automatic transcription systems

This paper is organized as follows. Section 2 introduces the de-
mographics and the linguistic properties of the Frisian language and
summarizes the Frisian-Dutch radio broadcast database that was col-
lected for CS and longitudinal speech research. Section 3 details
the proposed semi-supervised bilingual acoustic model training ap-
proach with a language diarization system. The experimental setup
is described in Section 4 and the recognition results are presented in
Section 5.

2. THE FRISIAN LANGUAGE AND FRISIAN-DUTCH
RADIO BROADCAST DATABASE

Frisian belongs to the North Sea Germanic language group, which is
a subdivision of the West Germanic languages. Linguistically, three
Frisian languages exist: (1) West Frisian, spoken in the province
of Fryslân in the Netherlands; (2) East Frisian, spoken in Saterland
in Lower Saxony in Germany; and (3) North Frisian, spoken in the
northwest of Germany, near the Danish border. Historically, Frisian
shows many parallels with Old English. However, today the Frisian
language is under growing influence of the Dutch language due to
long-lasting and intense language contact. Frisian has about half a
million speakers. A recent study shows that about 55% of all inhab-
itants of Fryslân speak Frisian as their first language, which is about
330 000 people [23]. All speakers of Frisian are at least bilingual,
since Dutch is the main language used in education in Fryslân.

The bilingual FAME! speech database, which has been col-
lected in the context of the Frisian Audio Mining Enterprise Project,
contains radio broadcasts in Frisian and Dutch. The FAME! project
aims to build a spoken document retrieval system operating on the
bilingual archive of the regional public broadcaster Omrop Fryslân
(Frisian Broadcast Organization). This bilingual data contains
Frisian-only and Dutch-only utterances as well as mixed utterances
with inter-sentential, intra-sentential and intra-word CS [24]. To
design an ASR system that can handle the language switches, a
representative subset of recordings has been extracted from this ra-
dio broadcast archive. These recordings include language switching
cases and speaker diversity, and have a large time span (1966–2015).
The content of the recordings is very diverse, including radio pro-
grams about culture, history, literature, sports, nature, agriculture,
politics, society and languages.

The radio broadcast recordings have been manually annotated

and cross-checked by two bilingual native Frisian speakers. The
annotation protocol designed for this CS data includes three kinds
of information: (1) the orthographic transcription containing the ut-
tered words; (2) speaker details such as the gender, dialect and name
(if known); and (3) spoken language information. The language
switches are marked with the label of the switched language. For
further details, we refer the reader to [25].

Two kinds of language switches are observed in the broadcast
data in the absence of segmentation information. First, a speaker
may switch language in a conversation (within-speaker switches).
Secondly, a speaker may be followed by another one speaking in the
other language. For example, the presenter may narrate an interview
in Frisian, while several excerpts of a Dutch-speaking interviewee
are presented (between-speaker switches). Both type of switches
pose a challenge to ASR systems and must be handled carefully.

3. AUTOMATIC TRANSCRIPTION OF RAW BROADCAST
DATA

The automatic transcription schemes compared in this work are il-
lustrated in Figure 1. For all systems, speech segments are extracted
from a large amount of raw broadcast data using a robust speech
activity detection system [26]. The following steps differ for each
system and each component is detailed in the following sections.

3.1. Speaker Diarization

The speech segments are further labeled with speaker ids by using
a speaker diarization (SD) system. The speaker diarization system
used in these experiments attempts to cluster speaker voices in a
recording such that each unique voice is assigned to a single cluster
and each cluster only has the voice of one speaker. The intent of di-
arization in the current context is to aid in speaker-adaptive training.
Errors from diarization (i.e, the allocation of speech to the wrong
cluster) are expected to have limited impact on ASR since the errors
will likely be due to similar sounding speakers.

3.2. Bilingual ASR

Baseline automatic transcription is achieved by using a multilin-
gually trained system that is also used in [1]. Multilingual data from



closely related high-resourced languages, i.e., Dutch and English, is
used for training deep neural network (DNN)-based acoustic models
to obtain more robust acoustic models against the language switches
between the under-resourced Frisian language and Dutch. The mul-
tilingual DNN training scheme resembles prior work [27–29] and
is achieved in two steps. Firstly, the English and Dutch data are
used together with the Frisian data in the initial multilingual train-
ing step to obtain more accurate shared hidden layers. After training
the shared hidden layers, the softmax layer obtained during the ini-
tial training phase is replaced with one that is specific to the target
recognition task. In the second step, the complete DNN is retrained
bilingually (on Frisian and Dutch) to fine-tune the DNNs for the tar-
get CS Frisian and Dutch speech.

Each speech segment is labeled with a speaker id hypothesized
by the speaker diarization system. These speaker labels are useful
for applying speaker adaptive training using speaker-adapted speech
features. After removing very short segments, these segments are
automatically transcribed by the bilingual ASR. The most likely hy-
pothesis output by the recognizer is used as the reference transcrip-
tion. After obtaining the transcriptions, the manually and automat-
ically transcribed data is merged to obtain the combined Frisian-
Dutch broadcast data which is used for the training of the final acous-
tic model.

3.3. Language Diarization and Monolingual ASRs

The proposed automatic transcription incorporates a language di-
arization system between the speech activity detection and speaker
diarization. The speech segments extracted from each recording
are merged and language scores are assigned to the overlapping
speech segments of N seconds with a frame shift with K seconds
for N > K. The language detection scores are assigned using a
LD system based on bottleneck features modeled using an i-vector
framework followed by a Gaussian backend [30] (Additional details
provided in Section 4.2). For each segment of K seconds, we apply
majority voting among all language detection scores to decide on
the assigned language label. The arguable choice of majority voting
is due to the limited number of hypothesized language switches
avoiding false alarms.

The language-labeled segments are automatically transcribed
using monolingual resources at the back-end. Having one low-
resourced and one high-resourced language as mixed languages, the
monolingual resources of the highly resourced language, Dutch in
this case, is expected to provide better ASR quality compared to
a bilingual system which is trained to recognize both languages.
Moreover, the multilingual training approach described in Section
3.2 can be used for getting acoustic models that can recognize Frisian
speech only. Such a system also provides better recognition than a
bilingual system and, hence, improved automatic transcriptions.

3.4. Language Model Rescoring

Lattice rescoring using a bilingual and two monolingual recurrent
neural network (RNN) LMs has also been applied to extract alter-
native transcriptions. In [16], the transcriptions extracted with and
without the rescoring stage have given similar results. However, in
that case, the rescoring was performed with a bilingual LM with
a higher perplexity than the monolingual LMs used in this paper.
Therefore, we include the rescoring stage in the experiments, expect-
ing to see improved transcription quality due to the lower perplexity
of the monolingual LMs.

4. EXPERIMENTAL SETUP

4.1. Databases

The training data of the FAME! speech database comprises 8.5 hours
and 3 hours of speech from Frisian and Dutch speakers respectively.
The development and test sets consist of 1 hour of speech from
Frisian speakers and 20 minutes of speech from Dutch speakers each.
All speech data has a sampling frequency of 16 kHz.

The untranscribed radio broadcast data extracted from the same
archive with the FAME! speech database consists of 256 hours 50
minutes of audio, including 159 hours 27 minutes of speech in total.
The speech-only segments are fed either to the speaker diarization
system described in Section 3.1 or to the language diarization system
described in Section 3.3.

4.2. Implementation Details

The recognition experiments are performed using the Kaldi ASR
toolkit [31]. We train a conventional context dependent Gaussian
mixture model-hidden Markov model (GMM-HMM) system with
40k Gaussians using 39 dimensional mel-frequency cepstral coeffi-
cient (MFCC) features including the deltas and delta-deltas to ob-
tain the alignments for DNN training. A standard feature extrac-
tion scheme is used by applying Hamming windowing with a frame
length of 25 ms and frame shift of 10 ms. DNNs with six hidden lay-
ers and 2048 sigmoid hidden units at each hidden layer are trained on
the 40-dimensional feature-level maximum likelihood linear trans-
formations (fMLLR) [32] features with the deltas and delta-deltas.
The DNN training is done by mini-batch stochastic gradient descent
with an initial learning rate of 0.008 and a minibatch size of 256.
The time context size is 11 frames achieved by concatenating ±5
frames. We further apply sequence training using a state-level mini-
mum Bayes risk (sMBR) criterion [33].

The bilingual lexicon contains 110k Frisian and Dutch words.
The number of entries in the lexicon is approximately 160k due
to the words with multiple phonetic transcriptions. The phonetic
transcriptions of the words that do not appear in the initial lexicons
are learned by applying grapheme-to-phoneme (G2P) bootstrapping
[34, 35]. The lexicon learning is done only for the words that ap-
pear in the training data using the G2P model learned on the corre-
sponding language. We use the Phonetisaurus G2P system [36] for
creating phonetic transcriptions.

The details of the multilingually trained bilingual system that we
used for the automatic transcription are found in [1]. The monolin-
gual Frisian system used for automatically annotating the Frisian-
labeled speech segments is also multilingually trained on the same
data as the bilingual system, but retrained only on the Frisian train-
ing data. This system provides a WER of 32.7% and 30.9% on the
Frisian component of development and test sets respectively. The
monolingual Dutch system is trained on 110 hours of Dutch speech
from the CGN corpus [37]. Further details of the Dutch ASR sys-
tem are available in [1]. This system provides a WER of 27.9% and
23.8% on the Dutch component of development and test sets.

Standard bilingual and monolingual 3-gram with interpolated
Kneser-Ney smoothing and RNN LMs are trained with 300 hidden
units for recognition and lattice rescoring respectively. All language
models are trained on a bilingual text corpus containing 37M Frisian
and 8.8M Dutch words. The Frisian text is extracted from Frisian
novels, news articles, Wikipedia articles and orthographic transcrip-
tions of the FAME! training data.

SRI International’s OLIVE software package is used for speaker
diarization and language identification [38]. Speaker diarization is



Table 1. Word error rates in % obtained on the Frisian-only (fy), Dutch-only (nl) and code-switching (fy-nl) segments in the FAME!
development and test sets

Development Test
fy nl fy-nl all fy nl fy-nl all

# of Frisian words 9190 0 2381 11,571 10,753 0 1798 12,551
# of Dutch words 0 4569 533 5102 0 3475 306 3781

Approach Training Data
baseline Man. Trans. 33.6 41.7 44.8 37.8 32.0 40.2 47.5 35.7
sad sd Man.+Auto. Trans. 31.2 35.7 44.2 34.7 29.3 34.8 46.7 32.7

sad sd rescore Man.+Auto. Trans. 31.1 34.7 44.2 34.4 28.9 33.2 46.1 32.1
sad ld sd Man.+Auto. Trans. 33.5 31.4 46.3 35.0 30.0 28.5 47.4 31.8

sad ld sd rescore Man.+Auto. Trans. 32.7 31.0 44.9 34.2 29.0 28.7 47.4 31.2

largely based on the process defined in [39]. Specifically, i-vectors
[40] are first extracted from two-second segments of audio with 50%
overlap prior to an exhaustive comparison of segments with proba-
bilistic linear discriminant analysis (PLDA) to provide a matrix of
scores representing speaker similarity. These scores are then trans-
formed into a distance matrix, with distances being computed as
the opposite of the log-likelihood ratios (LLR) obtained with PLDA
shifted by the maximum LLR obtained for any pair of samples. Con-
sequently, the minimum distance is 0. Finally, hierarchical cluster-
ing with average linkage method is used to generate a clustering tree
which is pruned to ensure that each cluster has a cophenetic distance
no greater than a pre-defined threshold tuned on a held-out corpus of
telephone conversations.

The language diarization system is based on bottleneck features
extracted from a DNN trained on English telephone data from the
Fisher and Switchboard datasets to predict more than 2000 tied tri-
phone states (senones). Bottleneck features of 80 dimensions are
used to extract 400 dimensional i-vectors [40] from a framework
that used a 2048-component universal background model (UBM).
The Dutch and Frisian language classes are modeled by Gaussians
with shared covariance. The LLR of the detected languages is cal-
culated using calibration with a multi-class objective function [41]
trained on the same data used to estimate the Gaussian parameters.
The language diarization is performed with a frame length of N=30
sec. and a frame shift K=10 sec. As an initial step, we mainly aim
for detecting between-speaker switches (cf. Section 2) in the raw
broadcast data in this work. Therefore, a coarse LD with a frame
shift on the order of 10 seconds is viable for this purpose. Investigat-
ing a finer LD that enables detecting intra-sentential and intra-word
CS in raw data remains as future work.

4.3. Recognition and CS Detection Experiments

The baseline system is trained only on the manually annotated data.
The other ASR systems incorporate acoustic models trained on the
combined data which is automatically transcribed in various ways.
These systems are tested on the development and test data of the
FAME! speech database and the recognition results are reported sep-
arately for Frisian only (fy), Dutch only (nl) and mixed (fy-nl) seg-
ments. The overall performance (all) is also provided as a perfor-
mance indicator. The recognition performance of the ASR system
is quantified using the Word Error Rate (WER). The word language
tags are removed while evaluating the ASR performance.

After the ASR experiments, we compare the CS detection per-
formance of these recognizers. For this purpose, we use a different

LM strategy. We train separate monolingual LMs, and interpolated
between them with varying weights, effectively varying the prior for
the detected language. For each LM, we generate the ASR output
for each utterance. Then, we extract word-level segmentation files in
.ctm format for each LM weight. By comparing these alignments
with the ground truth word-level alignments (obtained by applying
forced alignment using the baseline recognizer), a time-based CS
detection accuracy metric is calculated. Specifically, we label each
frame with a language tag for the ground truth and hypothesized
alignments and calculate the total duration of the frames in the ref-
erence alignments with a mismatch with the hypothesized language
tag. The missed Frisian (Dutch) time is calculated as the ratio of
total duration of frames with a Frisian (Dutch) tag in the reference
alignment which is aligned to frames without a Frisian (Dutch) tag
to the total number of frames with a Frisian (Dutch) tag in the ref-
erence alignment. CS detection accuracy is evaluated by reporting
the equal error rates (EER) calculated based on the detection error
tradeoff (DET) graph [42] plotted for visualizing the CS detection
performance. The presented code-switching detection results indi-
cate how well the recognizer detects the switches and hypothesizes
words in the switched language.

5. RESULTS

5.1. ASR Results

The WER obtained on each component of the FAME! development
and test data is presented in Table 1. The upper panel of this table
presents the number of Frisian and Dutch words in order to clarify
the language priors in each subset. The baseline ASR system trained
on the manually transcribed data provides a WER of 37.8% on the
development and 35.7% on the test data. Only by adding the auto-
matically transcribed data after applying SAD and SD improves the
bilingual acoustic models, providing around 3% absolute reduction
in WER on both datasets.

Bilingual rescoring brings minor improvements reducing the
WER from 34.7% to 34.4% on the development data and 32.7% to
32.1% on the test data. Using language diarization for automatic
transcription considerably improves the recognition performance
on the test data reducing the WER from 32.7% to 31.8% without
LM rescoring and 32.1% to 31.2% with LM rescoring. Comparable
recognition performance is provided on the development data. The
best performing ASR system on both datasets (sad ld sd rescore) is
trained using the automatic transcriptions provided by monolingual
ASRs and monolingual rescoring.
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Fig. 2. Code-switching detection performance obtained on the
FAME! development and test sets

5.2. CS Detection Results

The CS detection performance obtained on each component of the
FAME! development and test data is presented in Figure 2. The base-
line ASR system provides an EER of 10.9% on the development data
and 7.5% on the test data. Increasing the amount of training data by
automatic transcription also helps with CS detection accuracy and
the sad sd system reduces the EER to 9.9% and 5.9% on the de-
velopment and test data respectively. Similar to the ASR results,
bilingual rescoring also provides minor improvements by providing
an EER of 9.6% on the development and 5.8% on the test data.

The sad ld sd system performs considerably better CS detection
with an EER of 8.5% on the development and 4.5% on the test data.
Applying monolingual LM rescoring during automatic transcription
further improves the CS detection reducing the EERs to 8.1% on the
development and 3.9% on the test data. From these results, we can
conclude that using language diarization for semi-supervised acous-
tic model training boosts the quality of the language tags assigned by
the final acoustic model and helps with detecting possible language
switches. Moreover, monolingual LM rescoring provides larger im-
provements in CS detection compared to bilingual LM rescoring.

6. CONCLUSIONS

This paper describes a semi-supervised bilingual acoustic model
training approach that uses a language diarization system to as-
sign language labels to the speech segments extracted from the
untranscribed data. Later, these language-labeled segments are auto-
matically transcribed using monolingual resources and merged with
the manually transcribed data for training bilingual acoustic models.
We compare these acoustic models to others that are obtained using
bilingual ASR for the automatic transcription. The acoustic models
trained in the proposed manner provide minor improvement in ASR
performance and considerable improvement in CS detection per-

formance. Further, monolingual LM rescoring is found to provide
larger improvements in automatic transcription quality compared to
bilingual LM rescoring.
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