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Prejudice is encountered almost everywhere in everyday life; it’s in human na-
ture. When someone new appears in a community some of the first questions
the members of that community ask are: ”Where does she/he come from? To
what family does she/he belong?”, hopping to get a clue about the character
of the new person. Even if families are never uniform, in absence of any other
information, some guesses can be made about the new person, but any infer-
ence should be taken with care. This way of thinking is often extrapolated to
objects, substances, etc.

Proteins are essential molecules to sustain life in all organisms. A normal
development and function of an organism depends on the normal function of
all proteins in the big chemical machinery of reactions. Many diseases appear
due to abnormal function of some proteins.

The first question to be ask about a newly discovered protein is ”What is
the function of this new protein?”. The most reliable way to infer the function
of a newly discovered protein is by wet-lab techniques, but these methods are
money and time consuming and are also subject to human errors. Because
it’s more easier to get the primary structure (amino acids sequence) of a new
protein it is desirable to have a method to infer the function based on its
amino acid sequence.

One way is to find the family to which the new protein belongs and based
on the already annotated proteins in that family, predict the function. Gen-

9 The content of this chapter is mainly based on experiments published in confer-
ence proceedings freely available. For reproduction of some fragments relevant for
methods description we kindly demand authors and publishers understanding.
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erally, a protein family contains homologous proteins , i.e. proteins that have
a common ancestor. To infer that two proteins are homologous we need a
method to quantify the similarity of the two proteins based on their amino
acid sequences . If the two sequences share a certain degree of similarity and
it’s proven that the similarity is significant (i.e. it’s hard to obtain by chance
such a degree of similarity), it might happen that the two sequences are ho-
mologous and then their alignment become a powerful tool for evolutionary
and functional inference. Protein structure is much better conserved during
evolution than protein sequence . Even if several proteins have low sequence
similarity, but still adopt similar structures, contain identical or related amino
acid residues in their active sites and have similar catalytic mechanism, they
have sufficient evidence for homology.

Classical methods for measuring the similarity of two proteins use a scor-
ing matrix and an alignment algorithm to align the sequences. The proteins
similarity is quantified by the alignment score . Despite the maturity of the
developed methodologies for genomic sequence similarity detection and align-
ment, the derivation of new similarity measures is still an active research area.
The interest is actually renewed, due to the continuous growth in size of the
widely available proteomic databases that calls for alternative cost-efficient al-
gorithmic procedures, which can reliably quantify protein similarity without
resorting to any kind of alignment. Apart from efficiency, a second specifica-
tion of equal importance for the establishment of similarity measures is the
avoidance of parameters that need to be set by the user (a characteristic in-
herent in the majority of the well known methodologies). It is often the case
with the classical similarity approaches that the user faces a lot of difficulties
in the choice of a suitable search algorithm, scoring matrix or function as well
as a set of optional parameters, whose optimum values correspond to the most
reliable similarity.

Because DNA, RNA and proteomic sequences can be represented in text
format, language engineering and information theoretic methods have recently
started to be used in protein similarity studies. Within this book chapter, we
underline the potential of language engineering techniques and those involving
information theoretic principles in analyzing protein sequences from similar-
ity perspective. First, we formulate a framework of the different approaches
identified, presenting a survey of the state of the art in the subject. Secondly,
the attention is focused on other two methods we experimented that prove
to be promising strategies in comparing sequences of proteins. In the sequel,
we describe the main aspects involved in these two new methods proposed for
protein similarity analysis underlining their advantages over the other classi-
cal well known methodologies. Even if the two new methods are using some
common concepts from information theory field they are independent, prov-
ing how interesting and efficient the fundamental theory merges in revealing
solutions for biological needs.
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1 A survey of language engineering and information
theoretic methods for protein sequences similarity

The fact that protein sequences from all different organisms can be treated
as texts written in a universal language where the alphabet consists of 20
distinct symbols, the amino acids , opens the perspective of many techniques
from language and text processing domains to be accessed. The mapping of
a protein sequence to its structure, functional dynamics and biological role
then becomes analogous to the mapping of words to their semantic mean-
ing in natural languages. This analogy is exploited in many applications that
use statistical language modeling and text processing techniques for the ad-
vancement, of biological sequences understanding. Also, information content
stored in biological sequences open the door for information theoretic meth-
ods to bring their contribution to efficient exploration of biological field. They
provide measures and methods for evaluation and quantification of biological
sequence information useful to a large diversity of investigations. In this sec-
tion we are presenting some interesting techniques identified in research works
that are proving benefits for protein sequence similarity detection based on
linguistic approaches and information theoretical measures.

1.1 NLP for the extraction of protein relationships

Extracting protein interaction relationships from textual repositories, prove
to be useful in generating novel biological hypotheses. Scientists often use
textual databases to ascertain further information about specific biological
entities such as proteins.

Using a natural-language processing tool, in [1] is realized a rule-based
analysis to retrieve textual data in order to find similar proteins , with the
similarity expressing the notion of common functional attributes . With the
relevant abstracts to two known functionally related proteins, and a modified
existing natural language processing tool able to extract protein interaction
terms, were obtained functional information about Amyloid Precursor Pro-
tein(APP) and Prion Protein(PrP). Both of them have been implicated in
the etiology of Alzheimer’s disease and Creutzfeldt-Jakob disease, respectively.
The program (called arbiter_pi) was developed in order to recover functional!
relationships from a selected set of biomedical titles and abstracts. In this
work, the attention is focused on three specific relation types: INDUCE, IN-
HIBIT, and REGULATE. An important step in the application is the recog-
nition of the verbs and nominalizations that cue relationships. Such syntactic
predicates are determined from the development dataset based on the seman-
tic characteristics of the target predications within the individual sentences.
Example of verbs involved in relation types identification observed in training
set are:

INDUCES - induce, activate, stimulate, cause, increase;
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INHIBIT - inhibit, attenuate, block, damage, disrupt, impair;
REGULATE - regulate, participate, modulate, mediate.

The practical application relies on input noun phrases being mapped [2]
to concepts in Unified Medical Language System Metathesaurus [3]. Concepts
in the Metathesaurus are assigned one or more semantic types, which pro-
vide allowable semantic categories for the arguments of protein interaction
predictions [1] like:

Amino Acid, Peptide, or Protein;
Biologically Active Substance;
Biologic Function;

Cell Function;

Cell or Molecular Dysfunction;
Molecular Function;

Organic Chemical,

Organism Function;

The experiments furnished some expected relations such as the inducement
of neuronal cells (see Figure 1) or the fact that both APP and PrP are involved
in inducing (see Figure 2).

Original sentence

Furthermore, treatement of cultures with 4-methylumbelliferly-beta-D-xyloside,
a competitive inhibitor of proteoglycan glycanation, inhibited APP-induced
neurite outgrowth but did not inhibit laminin-induced neurite outgrowth.

Arbiter-pi processed output
precursor amyloid protein-INDUCES-neurite outgrowth

Original sentence
PrP106-126 a peptide fragment of the prion
protein induces proliferation of astrocytes.

Arbiter-pi processed output
peptide fragment, prion protein-INDUCES-proliferation,
astrocyte

Fig. 1. Results of the experiments that obtain inducement of neuronal cells repro-
duced from [1]

The main result of this study was that by running over 70 sentences con-
taining 40 marked predications, 27 protein interaction relationships were iden-
tified with 18 correctly. Therefore, recall was 45% and precision 67%.

Discovering functional similarity from textual information is parallel to
what many researchers do in order to generate new hypotheses. Assistance
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Original sentence

Then, we examined the effect of the amino-terminal fragment of SAPP and
the epitope peptide of 22C11 antibody,and found that both of them also
promoted DNA synthesis,suggesting that the amino terminal region

of sAPP is responsible for the biological activity.

Arbiter-pi processed output

fragment of sSAPP-INDUCES-dna synthesis

Original sentence

PrP106-126induces increased progression through the cell cycle
to late G1 and enhances the level of both p53 and
phosphorylated ERKs in astrocytes.

Arbiter-pi processed output
prpl06-126-INDUCES-cell cycle, late gl

Fig. 2. Results of the experiments indicating that APP and PrP are involved in
inducing DNA synthesis reproduced from [1]

from NLP has the potential to not only increase the number of articles that
can be automatically reviewed but also the extraction of potential functional
properties about certain proteins that had not been previously noticed.

It is important to state that linguistic approaches will never eliminate
the need for experimental validation. Linguistic tools will also never replace
biomedical researchers but using NLP tools helps generate testable hypothesis
proving to be a boon for biomedical scientists.

1.2 Similarity due to conversed regions as index terms in
information retrieval

A new technique for comparing pairs of biological sequences based on small
patterns associated with highly conversed regions on some protein sequences
is proposed in [4]. Highly conversed regions implies that the corresponding
subsequences are not exactly the same, but only similar. Using a technique
of transforming protein sequences by grouping amino acids into different sets
according to their similarity and assign each set a unique code is a first step
for this new strategy. The algorithmic procedure implies the determination of
groups of similar amino acids based on a score matrix, like BLOSUM62. Two
amino acids are considered similar if they have a positive score in BLOSUMG62.
There are used codes to represent similarity among amino acids and coding
sequences to represent similarity among peptides. In order to generate codes,
is constructed a set A = {b|a is similar to b} for each amino acid a, where
a itself must be in A. Twenty such sets are generated (see Figure 3) but not
all elements in such a set are similar; for example in the set {S, 4,7, N}, S
is similar to A, T and N but A is not similar to T, and T is not similar to
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N. To each set is assigned a code. The authors of [4] remove redundant sets
and kept only 15 sets. The codes and their corresponding sets are listed in
Table 1.

{c} {5,A,T,N}  {T,S} {r}

{A, S} {G}y  {N,S,D,H} {D,N,E}
{E,D,Q,K} {Q,E,R,K} {H,N,Y} {R,Q,K}
{K,E,Q,R} {M,I,L,V} {I,M,L,V} {L,M,I,V}
{V,M,1,L} {FY,W} {Y,H,FFW} {W,F,Y}

Fig. 3. 20 sets of amino acids

Table 1. Codes and their corresponding code sets

Code 0[1]2(3(4|5|6|7]8]|9(10({11|12|13|14
Amino acids|C|S|T|P|A|G|ND|E|Q|R|H|M|Y |F
AlS| |S| |SINID|E|QIN|T|H|Y
T DIE[QIR|IK|Y|L|F|W

N H| |K|K VIW

A set of amino acids are code similar (or c-similar) if they are contained
in the same code and a pattern is defined to be a sequence of codes having
the length 4. A peptide of length 4 is said to be an instance of a pattern P
if the amino acid at each position is included in the code at that position
of P. A collection of peptides of length 4 are said to be c-similar if there
exists a pattern P such that each peptide is an instance of P. In this way,
for each protein sequence may be generated a code sequence consisting of
its corresponding sets of codes. For example, the sequence V-L-S-T-D-N has
the corresponding coding sequence {12}-{12}-{1,2,4,6}-{1,2}-{6,7,8}-{1,6,7}.
Using a sliding window of length 4 through this coding sequence, for each
subsequence of length 4 are generated all possible patterns. Considering the
sequence V-L-S-T, the coding sequence created is {12}-{12}-{1,2,4,6}-{1,2}
and the patterns generated are:

12-12-1-1; 12-12-1-2; 12-12-2-1; 12-12-2-2;
12-12-4-1; 2-12-4-2; 12-12-6-1; 12-12-6-2.

The -based similarity measure Pattern(p) is defined as the set of all pat-
terns contained in the protein sequence p and is measured using one of the
two following scores:

a)S1(pl,p2) = ¢ x |Match(pl, p2)|/(| Pattern(p1)| + |Pattern(ps)|) , where
Maitch(pl, p2) is the set of patterns shared by sequences p; and ps; ¢ is a
constant, normalizing factor used when the length of the proteins is ignored;
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b)S2(p1, p2) = cx Match(py, p2)|/(| Pattern(py)|+| Pattern(ps)|) —| Length(py)+
Length(p2)|, when the two protein-sequences are required to have the same
length.

This method was applied to build phylogenetic trees , for proteins clus-
tering and secondary structure prediction. The conclusion was that protein
secondary structure prediction using patterns seems to outperform other ex-
isting methods; it is easy to implement and have relatively high sensitivity
and specificity. In addition, the coding mechanism reduces the number of
candidate fragments to be checked.

1.3 Semantic similarity measures

Many repositories of biological sequences may have a large amount of anno-
tation associated with their entries. This ranges from semi-structured data,
such as species information, to unstructured free text descriptions [5]. This
additional information was important for human to read but it caused dif-
ficulties when trying to analyze it computationally. The growing interest in
ontologies within bioinformatics provide a mechanism for capturing a com-
munity’s view of a domain in a sharable form accessible by humans and
also computationally amenable [5]. An ontology provides a set of vocabulary
terms that label domain concepts. These terms should have definitions and
be placed within a structure of relationships, the most important being the
”is-a” relationship between parent and child and the ”part-of” relationship
between part and whole. The Gene Ontology (GO) is one of the most impor-
tant ontologies within the bioinformatics community [6]. It comprises three
orthogonal taxonomies or ”aspects” that hold terms describing the Molec-
ular function, Biological process, and Cellular component for a gene prod-
uct. Gene Ontology represents terms within a Directed Acyclic Graph (DAG)
consisting of a number of terms, represented as nodes within the graph, con-
nected by relationships, represented as edges. Terms can have multiple par-
ents as well as multiple children along the ”is-a” relationships, together with
”part-of” relations. The terms of this structure are used to annotate database
entries (http://www.geneontology.org/goa). By providing a standard vocab-
ulary across many biological resources such as SWISS-PROT and InterPro
annotated protein databases, this kind of shared understanding enable query
across the databases. One way to interrogate these databases would be to ask
for proteins which are semantically similar to a query protein. Three of such
semantic similarity measures are tested in [5].

The measurements are based on the information content of each term
expressed as a probability . This is defined as the number of times of each
term, or any child term occurs in the corpus.

Three measures of semantic similarity are tested on the same data using
the information content of the shared parents of the two terms, as defined in
Equation 1, where S(cl, ¢2) is the set of parental concepts shared by both c1



8 A. Bogan-Marta, A. Hategan, 1. Pitas, and I. Tabus

and ¢2. As GO allows multiple parents for each concept, two terms can share
parents by multiple paths. It is taken the minimum p(c), where there is more
than one shared parent, called p,,s

Pms (Cla 62) = minSES(Cl,CQ) {p(c)} (1)

A first measure is after Resnik [7] and uses only the information content
of the shared parents. While p,,s can vary in general between 0 and 1, this
measure vary between infinity (for very similar concepts) to 0. In practise, for
terms actually present in the corpus, the maximum value of this measure is
defined by —In(1/t) = In(t), where ¢ is the number of occurrences of any term
in the corpus

sim(cl, c2) = —In pms(cl, c2). (2)

The second measure is after Lin [8] and uses both, the information content
of the shared parents and that of the query terms. In this case, as py,s > p(cl)
and pys > p(c2), this value varies between 1(for similar concepts) and 0

sim(cl,e2) = 2 x [In pms(cl, 02)]. (3)
In p(cl) +In p(c2)

The last measure expressed in Equation 4 is after Jiang [9] and involve the
semantic distance , which is the inverse similarity. It uses the same terms as
( 3) but not in the same order. According to [5], this can give arbitrarily large
values although in practice has a maximum value of 2in(t)

dist(cl,c2) = =2In pps(cl, c2) — (In p(cl) 4+ In p(c2)). (4)

While the interest is in semantic similarity between proteins, these mea-
sures are applied on protein sequences . In order to test the semantic similarity
versus a classical method like that performed by BLAST tool, the correlation
is calculated with Equation 5, where x; and y; are the semantic similarity
between two proteins, over different aspects of GO, for all possible pairs of
proteins identified in the SWISS-PROT-Human dataset

CO’I”?"(.’E,y) o Z(xl _j)(yl_g) (5)

V(@i = 2)2 (v — §)?

In [5] the work was limited to those associations between GO terms, and
SWISS-PROT-Human proteins available. For all three measures, the correla-
tion coefficients show that sequence similarity is most tightly correlated (or
inversely correlated in the case of distance measure ) with the Molecular func-
tion aspect of GO, followed by the Cellular component aspect and finally the
Biological process aspect. From the three the measures, the one proposed by
Resnik prove the strongest correlation with sequence similarity.

The evidence in similarity performance may be observed in the Table 2
reproduced from [5].
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Table 2. Correlation co-eficients between BLAST bit scores, and semantic similarity
for three different measures and three biological aspects

Aspect Resnik measure|Lin measure|Jiang measure
Molecular Function 0.577 0.541 -0.483
Biological process 0.280 0.303 -0.312
Cellular Component 0.368 0.452 -0.414

1.4 Language techniques for sequence relations

Advances in genome sequencing have made available amino acid compositions
of thousands of proteins. Knowing the three dimensional shape of the protein,
that is knowing the relative positions of each of the atoms in space, would give
information on potential interaction sites in the protein. This aspect make
possible the analysis or inference of the protein function. Thus, the study of
determining or predicting protein structure from the amino acid sequences has
secured an important place both in experimental and computational areas of
research. Even if our interest was mainly on protein similarity methods using
primary structure of proteins, we observed some language techniques that use
the implication of secondary structure elements in establishing structural sim-
ilarity relations between proteins. The main ideas of two of these approaches
are shortly described in the following paragraphs.

Similarity search improved by a feature vectors extraction method

Feature vectors are extracted in [10] on triplets of Secondary Structure El-
ements (SSEs) that are later indexed using a multidimensional index struc-
ture. For the problem of finding similarities in protein structure datasets,
this technique quickly prune away unpromising proteins in the database. The
remaining sequences are then aligned using one of the available tools.

In order to construct the index structure is approximated each SSE using
a line segment in 3-D. For each SSE is made a set of SSE triplets by consid-
ering the SSEs in the local neighborhood around that SSE. For each triplet is
stored information about pairwise distances and pairwise angles for all pairs
of SSEs in that triplet. The pairwise distance information is a range of values
obtained by considering a set of points around the center of the line segment
approximation of each SSE. This range is defined by using the minimum and
maximum of these distances between the set of points chosen from the two
SSEs under consideration. The pairwise angle information is a single value
that measures the angle between the line segment approximations of the two
SSEs. In this way they have a set of three range values and three angle values
for each SSE triplet as the feature vector. These feature vectors are indexed
using an R*-tree [11]. For a given query protein, the search technique runs
in two phases:
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e Phase 1: A set of feature vectors is obtained from the query protein and
the R*-tree is searched using an appropriate range with each of these vec-
tors. Using the results of these range searches, a candidate set of database
proteins is determined at the end of this phase.

e Phase 2: A pairwise structure alignment program, is run on the candidate
proteins to find the C,, alignments.

Experimental results show that this technique called PSI (Protein Struc-
ture Indez) improve the pruning of VAST alignment tool while maintaining
similar sensitivity.

Conceptual relations captured by LSA

Latent semantic analysis (LSA) is a method based on singular value decompo-
sition (SVD) technique. It is an extremely useful approach in natural language
processing to generate summaries, compare documents, generate thesauri and
further for information retrieval [12],[13]. In the way that LSA captures con-
ceptual relations in text, based on the word distribution in documents, the
authors of [14] use it to capture secondary structure propensities (tendencies)
in protein sequences using different vocabularies. Considering the documents
di,ds, ...dxN1 to be the non overlapping protein segments for which structural
categories C1,C5,...,Cn1 are known and tq,ts,...,tN2 the non overlapping
test segments with known length for which secondary structure is to be pre-
dicted, the secondary structure of test data is predicted using a k nearest
neighbor (kNN) classification method. For each test segment ¢; the cosine
similarity of ¢; to all the training segments di,ds,...,dy1 is computed and
the k segments having maximum similarity with ¢; are identified. These k
segments are the kNN of ¢;. The predicted category of t; is the structural
category to which belong the most of the kNNs. This process is repeated for
each of the test segments. As vocabularies are considered: the 20 amino acids,
chemical groups and amino acid types. For documents are considered: heliz,
strand and coil structures identified in each protein secondary structure. Next
to the LSA method, vector space model (VSM) method was applied for the
same models and data. Subsequences of proteins are treated as documents
in vocabulary/documents matrix. Results are compared using and measures
from information retrieval theory. They prove that VSM and LSA capture se-
quence preferences in structural types. Protein sequences represented in terms
of chemical groups and amino acid types provide more clues on structure then
the classically used amino acids as functional building blocks. Another aspect
is that different alphabets differ in the amount of information they carry for
a specific prediction task within a given prediction method.

1.5 Sequence similarity based on information theoretic methods

In many biological applications we are interested to quantify the similarity of
a pair of sequences, and to further state to what extent one is redundant with
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respect to the other, i.e., the information content in one is repeated in the
other. Kolmogorov complexity theory, known also as algorithmic information
theory, deals with quantifying the information in individual sequences. Algo-
rithmic information theory has been introduced independently, with different
motivations, by R.J. Solomonoff, A.N. Kolmogorov and G. Chaitin, between
1960-1966. Kolmogorov complexity of a sequence can be defined in an ele-
gant way as the length of the program needed to be run for recovering the
sequence on an universal computer. However, one of the important results of
the theory tells that Kolmogorov complexity is non-computable, which makes
it necessary to resort to approximations when the concept is used in prac-
tice. In many instances the evaluation of Kolmogorov complexity needed in
various definitions of similarity is based on the simpler notion of codelength
of a compressed sequence as provided by one of the general use compres-
sors (like Lempel-Ziv or Burrows-Wheeler compressors). Several similarity
distances based on approximates of the Kolmogorov complexity have been
shown to perform well in different application such as: language and author-
ship recognition[15], plagiarism detection[16],[17], language tree and genome
phylogenetic trees reconstruction[15],[18],[19],[20],[21],[22],[23], phylogeny of
chain letters [24] or protein sequence classification[25].

The Kolmogorov complexity K(z) of a sequence z is the length of the
shortest binary program that outputs z on an universal computer and can be
thought as the minimal amount of information necessary to produce z. The
conditional Kolmogorov complexity, K (x|y), is defined as the length of the
shortest binary program that computes x when y is given as input, using an
universal computer [26].

The problem of an absolute information distance metric between two indi-
vidual objects was studied in [27] in terms of Kolmogorov complexity, which
resulted in defining the information distance as the length of the shortest bi-
nary program that can transform either object into the other. Because the
program is the shortest it has to take into account any redundancy between
the information required to obtain x starting from y, or, to obtain y starting
from x. It has been shown in [27] that the information distance equals

E(z,y) = max{K(zly), K(y|z)} (6)

up to an additive O(log max{K (y|z), K(z|y)}) term. E(x,y) satisfies the met-
ric properties up to an additive finite constant.

The problem with F(z,y) is that it measures the absolute information
between the two objects without taking into account their lengths. For ex-
ample, if we have two very long strings that differ only in 100 bit positions,
that would represent about 0.001% of their length, we want to call them very
similar; while if we have two other much shorter strings that differ also in 100
bit positions, but this represents about 90% of their length we want to call
the strings very dissimilar. However, the quantities E(x,y) may be close to
100 in both cases, making it difficult to evaluate the similarity /dissimilarity
in these cases of notably different length of sequences.
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To overcome this problem, the first attempt to a normalized distance was
introduced in [18]. The normalized similarity distance aims to provide a rela-
tive similarity between the objects: when the distance is 0 the objects under
investigation are maximally similar and when the distance is 1 the objects are
maximally dissimilar.

The normalized distance introduced in [18] was based on the property that
the algorithmic mutual information between two objects I(x,y) = K(x) —
K(z|y) = K(y) — K(y|z) is symmetric within an additive logarithmic factor
[28], yielding the following formula for the of two sequences:

K(z) - K(zly) _,  K(y) - K(ylz)

doy) =1 ==y K(y)

(7)
where K(zy) represents the Kolmogorov complexity of the concatenated
strings. It has been shown in [19], that this distance is a metric , i.e. it
has the following properties: (a)-positivity d(z,y) > 0 for « # y; (b)-
identity d(z, ) = 0; (c)-symmetry d(z,y) = d(y, z) and (d)-triangle inequality
d(z,y) < d(z,z) +d(z,y).

In the paper [21], the authors introduced the normalized information dis-
tance “mathematically, more precise and satisfying” than the previous one:

max{K (z|y*), K(y|z*)}

di(z,y) = max{K(z), K (y)}

(®)

where for any string v the notation v* specifies the shortest binary program to
compute v. There is an intuitive interpretation of this distance: if K (y) > K(x)

then d;(z,y) = % =1- Il(f(;’)), where I(x,y) = K(y) — K(y|x) is
the algorithmic mutual information. It follows that 1 — d;(x,y) is the number
of bits of information that is shared between the two strings per bit of infor-
mation of the string with most information. It is shown that the normalized
information distance is a metric and it is universal up to a certain precision.

The problem with the normalized information distance is that its general-
ity comes with the price of noncomputability, because it is expressed in terms
of K(z),K(y), K(z|y), and K (y|z), which are noncomputable quantities. To
overcome this problem, the normalized compression distance was introduced
n [21], that uses a real-world reference compressor C to approximate Kol-
mogorov complexity:

C(ry) —min{C(x), Cy)} )
maz{C(x),C(y)}

NCD(x,y) =

where C(xy) denotes the compressed size of the concatenated sequences, C(z)
denotes the compressed size of x and C(y) denotes the compressed size of y.
It has been shown in [23] that if the compressor satisfies simple regularity
conditions, then NCD(x,y) is a similarity metric. The performance of the
normalized compression distance was tested in [23] for applications in different
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areas such as: genomic, music, language, handwriting, combination of objects
from different domains, etc.

One of the most useful applications of the normalized compression dis-
tance is the comparison of two different genomes/proteomes and the study of
the evolution of a group of species. Traditional phylogeny studies based on
individual genes depend on the multiple alignment of the given gene shared
by all the organism in the study. The problem with constructing phylogenetic
trees based on individual genes is that different genes yield different trees.
As the complete genomes for more and more organisms become available, the
study of evolution based on the genome is more attractive. Any method based
on multiple alignments will provide too many results to be combined when
full genomes are involved, and the aggregation of partial results to infer a
similarity measure has no straightforward solution.

To take full advantages of the normalized compression distance, it turns
out that we need a very efficient compressor in order to have a powerful tool
in genomic and proteomic sequence similarity studies. Several algorithms for
compression of biological sequences have been proposed with varying degree of
success. While the compression of DNA sequences was carefully studied in the
last decade, less is known about the compressibility of protein sequences. The
main reason is that compression of DNA sequences was shown successful from
its first attempts in the early 90’s, and that attracted many research groups
to compete in capturing in the best way the regularities present in DNA se-
quences [29],[30],[31],[32],[33],[34]. Unexpectedly, the compression of protein
sequences attracted less research, a possible reason being the fact that the first
elaborate report on this topic was negative: in a 1999 paper [35] at Data Com-
pression Conference an authoritative opinion was expressed in the negative,
the statement making the title being: “Protein is incompressible”. Although
several plausible schemes have been tried in [35], including making use of the
statistical description by substitution probabilities, the compression results
by using these mutational processes were not better than the results by using
only memory models of small order, leading to the conclusion that proteins are
incompressible. In 2004, a report [22] was published, in which the compress-
ibility of protein sequences is revealed in a scheme making use of substitution
probabilities. The main feature of the scheme was the adaptivity in estimating
the substitution probabilities, in that only the substitution statistics collected
over regions where these statistics will improve the description length, when
compared to the raw model or to a simple memory model, were used. The pos-
itive conclusion regarding the compressibility of protein sequences was drawn
in [22] from the significant improvement of the compression results over the
results reported in [35].
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2 Statistical language modeling method for sequence
similarity

The mapping of a protein sequence to its structure, functional dynamics and
biological role becomes analogous to the mapping of words to their seman-
tic meaning in natural languages. This analogy can be exploited by applying
statistical language modeling and text classification techniques for the ad-
vancement of biological sequences understanding. The identification of Gra-
mar/Syntax rules could reveal systematics of high importance for biological
and medical sciences.

Some theoretical concepts

There are various kinds of language models that can be used to capture differ-
ent aspects of regularities in natural language [36]. Markov chains are gener-
ally considered among the more fundamental concepts for building language
models. In this approach, the dependency of the conditional probability of
observing a word wy, at a position k in a given text is assumed to depend only
upon its immediate n predecessor words wg_,, ... wg_1. The resulting stochas-
tic models , usually referred as n-grams, constitute heuristic approaches for
building language grammars.

Nowadays n-gram language modeling stands out as superior to any formal
linguistic approach [37] and has gained high popularity due to its simplicity.
Closely related with the design of models for textual data are algorithmic
procedures for validating them. Apart from the justification of a single model,
they can facilitate the selection of the specific one (among competing alterna-
tives), most faithfully representing the available data. Entropy is a key concept
for this kind of procedures. In general, its estimation is considered to provide
a quantification of the information in a text and has strong connections to
probabilistic language modeling [38]. As described in [39] and [40], the entropy
of a random variable X that ranges over a domain X, and has a probability
density function , P(X) is defined as:

H(X)=—>_ P(X)logP(X). (10)
Xen
In the specific case where a written sequence
W = wy,wa, ..., Wk_1, Wk, Wkt1, .- . is treated as a language model L based
composition, the entropy may result in the following estimating formula:

N 1 _
H(X)= N ZCount(w?)loggpL(wn | wi™h), (11)
W*
where the variable X has the form of an n-gram, X = v} < {wy,wa,...,w,}

and Count(w}) is the number of occurrences of w} . The summation runs
over all the possible n-length combinations of consecutive w (i.e. W* =
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{{wy,wa, ..., wy}, {wa,ws, ..., wpt1},...}) and N is the total number of n-
grams in the investigated sequence. The second term in the summation (11)
is the conditional probability that relates the n-th element of an n-gram with
the preceding n-1 elements. Following the principles of maximum likelihood
estimation (MLE)[39], it can be expressed by using the corresponding relative
frequencies :

_ Count(wy,)
n—1 n
Wy, | w =2
P (wn | wi™) Count(w]™")
According to a general definition, the cross-entropy between the actual
probability distribution of a data P(X), and the probability distribution Q(X)
estimated from a model, is defined as:

(12)

H(X,Q) ==Y P(X)logQ(X). (13)
Xer

Two important aspects involved in this approach are: first, the cross-
entropy of a stochastic process, measured by using a model, is an upper bound
on the entropy of the process (i.e. H(X) = H(X,Q)) [39], [40]); second, as
mentioned in [41], between two given models, the more accurate is the one
with the lower cross-entropy. The above entropic estimations are the basis for

building the protein similarity measure, described in the sequel.

Method description

Choosing a hypothetical protein sequence WASQVSENR, in the 2-gram mod-
eling the available "words” are WA AS SQ QV VS SE EN NR, while in the
3-gram representation the words are WAS ASQ SQV QVS VSE SEN ENR.
Based on the frequencies of these words (estimated by counting) and by form-
ing the appropriate ratios of frequencies, the entropy of a n-gram model can
be readily estimated (see 11). This measure is indicative about how well a spe-
cific protein-sequence is modeled by the corresponding n-gram model. While
this measure could be applied to two distinct proteins (and help us to decide
about which protein is better represented by the given model), the outcomes
cannot be used for a direct comparison of the two proteins. This shortcom-
ing is leading to a corresponding cross-entropy measure, in which the n-gram
model is first built based on the word-counts of one protein sequence Y and
then used in sequence X, contrasting the two proteins. Thus, the common
information content between two proteins X, Y is expressed via the formula:

E(X,Y) ==Y Px(w!)logPy(w, | wi™"). (14)

allw}

The first term Px(w}) in the above summation refers to the reference
protein sequence X (i.e. it results from counting the words of that specific
protein). The second term, logPy (w,, | w}™"), refers to the sequence Y based
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on which the model has to be estimated (i.e. it results from counting the words
of that protein). Variable w} ranges over all the words (that are represented
by n-grams) of the reference protein sequence.

Searching with this similarity measure

The essential point of this approach is that the unknown query-protein (e.g.
a newly discovered protein) as well as each protein in a given database (con-
taining annotated proteins with known functionality, structure etc.) are repre-
sented via n-gram encoding and the above introduced similarity is utilized to
compare their representations. Here are devised two different ways in which
the m-gram based similarity is engaged in efficient database searches. The
most straightforward implementation is called hereafter as direct method. A
second algorithm, the alternating method, was devised in order to cope with
the fact that the proteins to be compared might be of very different length.
The implication of this aspect is observable in the ratio value between the
number of words from the reference sequence involved in computing the simi-
larity score and the total number of words in the particular sequence (involved
in first probability of equation (14)). Experimenting with both methods and
contrasting their performances give the opportunity to check the sensitivity
of the proposed measure to the length of the sequences.

Direct method:
Let Sq be the sequence of a query-protein and {S} = {57, Sa, ... Sy} the given
protein database. The first step is the computation of the *perfect’ score (PS)
or ’reference’ score for the query-protein. This is done by computing E(S,, S;)
using the query-protein both as reference and model sequence in equation (14).
In the second step, each protein S;, i=1,...,N, from the database serves as the
model sequence in the computation of a similarity score E(S,,.S;), using the
same equation (14) with the query-protein serving as the reference sequence.
In this way, N similarities are computed E(Sy,S;), i=1,...,N. Finally, these
similarities are compared against the perfect score PS. By computing the
absolute differences D(Sy, S;) = |E(Sq,S;) — PS|, the discrepancies’ in term
of information content between the query-protein and the database-proteins
are expressed. By these N measurements, we can easily identify the most
similar proteins to the query-protein as those which have been assigned the
lowest D(Sy, S;)-

Alternating method:
The only difference with respect to the direct method is that when comparing
the query-protein with each database-sequence, the role of reference and model
protein can be interchanged based on which of the two sequences is the shortest
(the shortest sequence plays the role of reference sequence in (14)). The rest
of the steps (i.e. perfect-score estimation, ranking and selection) follow as
previously.
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Discussions

This strategy proposed for measuring protein similarity was demonstrated
and validated in some experiments that gave a real motivation to keep the at-
tention on it. For different n-gram models are performed the same validation
procedures so that the best models to evaluate biological sequences proved
to be 4-gram models. Performing an N x N comparisons in order to identify
the similarity between the sequences involved in the experimental sets are
obtained very good results. In works like [42], [43], for a 100 sequences and
4-gram model is obtained a score of about 98% true positive rates against
2% of false positives in a ROC (Receiver Operating Characteristic) evalua-
tion. Also, using an exploratory data analysis method, the visual separation
between similar and non similar groups of proteins is showing a high grade
of accuracy. More experiments are in [44] proving that the biological infor-
mation captured by this statistical modeling approach may reach the high
performance of Clustal W in similarity scores accuracy. Considering the gen-
eral dichotomy between ”global” and ”local” protein similarity measures, this
new approach belongs to the former category. In this stage of its development
should be mentioned one of the aspects that restrict a very good performance
and that waits to be solved. It is a suitable normalization factor to cover
the lack of frequencies for some events in a sequence. Conceptual simplicity
and facility in implementation of this method deserve attention for future de-
velopments. The sequence content information are evaluated using concepts
from theoretical information field, offering a large perspective in handling,
understanding and exploration of biological sequences as text data.

3 Protein similarity detection based on lossless
compression of protein sequences

The primary goal of a compression algorithm is to reduce as much as possible
the size of a data set. For biological sequences, the study of their compressibil-
ity has a double value. The first one is a concrete, practical value, since storing
or transmitting a sequence which was compressed leads to savings of computer
resources and transmission costs. However, at the current compressibility rates
obtained for DNA and proteins these savings seem to be only marginally im-
portant. The second value, which is probably the most important one, is the
value of the statistical models uncovered by an efficient coding technique from
the sequence to be compressed, models that can be subsequently used to mea-
sure the similarity of different sequences or for further statistical inference in
various biological problems. The most useful application of protein similar-
ity detection based on the compressibility of their sequences is the building
of phylogenetic trees using the whole proteome of the given organisms. The
proteome is the collection of all protein sequences in one organism.
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3.1 Theoretical concepts

To define the relatedness or similarity of two proteome sequences, based on
the average description length obtained by a given compressor, we introduce
first the mutual information of two random variables X and Y that range
over an alphabet A. According to [45], the mutual information of two random
variables is a measure of the amount of information one random variable
contains about the other and is defined as:

I(X,Y) = H(X) - HX|Y) = HY) — HY|X) (15)

where H(X) and H(Y) are the entropies of X and Y defined by (10). H(Y|X)
is the conditional entropy of Y given X and is defined as the expected value
of the entropies of the conditional distributions over the conditioning random
variable [45]:

H(Y|X) =) p@)H(Y|X = 1) = —Ey(s) logp(Y|X) (16)
T€EA

Since the entropy is an idealistic measure of the average codelength for en-
coding a symbol generated by the source, it might be replaced by the imple-
mentable average codelength obtained by a compression algorithm, to obtain
a realistic evaluation of average codelengths, or information content. Because
the protein sequences are kept in text files, one might think that the classic
algorithms for text compression could be used to compress such a file. Prac-
tically, these algorithms do not perform better than log, 20 bits per symbol
which is the cost for encoding a symbol without any modelling. The reason for
this poor performance is that protein sequences obey other rules than human
created text. It turns out that we need a specialized compressor for proteome
sequences. Such a compressor, named ProtComp was introduced in [22], and
the main idea of the algorithm and its use in computing the similarity of two
sequences, is described in the next section.

3.2 ProtComp algorithm and its use in sequence comparison

One of the first attempt at compressing proteins [35], presented a result in the
negative, claiming from the title that protein is incompressible. The authors
proposed a scheme base on a sophisticated context algorithm, where not only
the current context is used, but also similar contexts are used for prediction,
the weighting of contexts being dependent on the mutation probabilities of
amino-acids. However, their results were not better than the results obtained
with simple, low order Markov models, which led them to the conclusion that
the approximate repeats in protein can not provide statistically significant
information to be exploited for compression. The main problem of this scheme
is that the model used is based on the patterns found in the immediate vicinity
of the symbol that is to be encoded at a given moment and it ignores the
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redundancy of different regions of the proteome, that are the result of different
biological phenomenon such as gene duplication.

The ProtComp algorithm was developed with the purpose of extracting
the regularities at the scale of full proteome, by searching for approximate
repeats and adaptively estimate the amino acids substitution probabilities
over the regions where the statistics will improve the description length of
that region, when compared to the description length obtained by the raw
model. The ProtComp algorithm can operate in single mode, when the input
is a single proteome and the regularities are extracted based on this sequence;
and it can operate also in conditional mode, when the input is composed of
two proteomes, one that is encoded and one that is considered to be known
and the regularities are extracted from both sequences.

ProtComp is a two pass algorithm. The goal of the first pass is to collect
the substitution probabilities and the goal of the second pass is to encode
the symbols. The proteome sequence that is to be encoded is split into non-
overlapping blocks of same length and for each current block we look for that
block in the sequence from the beginning until the current block, obtaining the
greatest number of matches (the same amino acid in the same position) and we
refer to it as a regressor block. When the algorithm operates in the conditional
mode, the regressor block can be found in the conditioning proteome. In the
first pass, the probability substitution matrix is collected for the symbols
having the same rank in the current block and in its regressor block, but
only for those pairs (current block, regressor block) for which the number of
matches is greater than a given threshold. For each conditional distribution,
obtained from each row of the substitution matrix, we design an optimal
Huffman code [46], and all these optimal codes have to be transmitted to the
decoder as a prefix of the encoded stream. In the second pass, we go through
the proteome sequence and encode a block that have the number of matches
greater than the threshold using the optimal codes built in the first pass.
The rest of the blocks, for which the number of matches does not exceed the
threshold, are encoded by arithmetic coding [47], using the statistics of an
adaptive first order Markov model [48].

Inspired by the mutual information of two random variables I(X,Y") (15),
and using the average codelengths obtained by ProtComp algorithm, in [22]
the relatedness or similarity of two proteomes X and Y was defined as:

R(X,Y) = ProtComp(X) — ProtComp(X|Y) (17)

where ProtComp(X) is the average codelength obtained when the proteome
X is encoded by ProtComp in the single mode and ProtComp(X|Y) is the
average codelength obtained when the proteome X is encoded by ProtComp in
the conditional mode, i.e. when the proteome Y is given as input argument and
is considered to be known. The value of R(X,Y") will be close to ProtComp(X)
when the two proteomes are very similar, because ProtComp(X|Y) will tend
to zero (if Y is already known and X is very similar to Y then the average
codelength of encoding X knowing Y will tend to zero) and the value of
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R(X,Y) will tend to zero when X and Y are maximum dissimilar (if X and
Y are completely dissimilar or independent, than knowing Y does not help
at all and the average codelength of encoding X knowing Y will tend to
ProtComp(X)).

Using this measure of similarity of two proteomes a phylogenetic tree can
be built for a given set of organisms. The building process of the phylogenetic
tree consists at each step in computing the relatedness of all pairs of proteomes
and the two proteomes that yield the maximum R are grouped, i.e. the two
proteome sequences are concatenated and in the next step they form a new
single proteome sequence. The process is repeated until only two proteome
sequences are left.

The fact that plausible phylogenetic trees can be built using this mea-
sure of similarity means that the ProtComp algorithm manages to capture
the biological meaningful features of the proteome sequences. Thus, a natural
question arise, i.e. if the similarity measure defined based on the average code-
length produced by ProtComp can be used to measure the similarity of two
protein sequences, which are of much shorter length than a whole proteome.
Using a slightly different version of ProtComp algorithm, the relatedness of
two protein sequences can be defined similar to (17) such that the resulted
codelength can be seen as the sum of substitution scores over the similar parts
of the proteins and can be compared to alignment scores obtained by classical
algorithms for sequence comparison.

A modified version of the ProtComp algorithm and its use in defining a
measure of similarity for pairs of proteins was presented in [49]. Because the
goal now is to compare pairs of proteins in different organisms, the substitution
matrix is not collected for each pair of proteins because there is not enough
statistics at this level and only the cost of transmitting the matrix may be
greater than the cost of encoding the whole sequence of amino acids. Then,
for each pair of organisms, a substitution frequency matrix is collected at the
proteome level and the associated Huffman codes are used to compute the
similarity of proteins from that organisms.

Following the same idea as in the original ProtComp algorithm, for a
given pair of proteins, the protein to be encoded is first compressed using
the statistics of its own sequence and then is conditionally encoded using the
statistics of the other sequence. The similarity of the two proteins is given by
the difference in the encoding costs. The protein to be encoded is also split
in non-overlapping blocks of a certain length. In the first case, the regressor
block is searched only in the already seen sequence and in the second case, the
regressor is searched also in the other protein. The pair of blocks having the
number of matches greater than a fixed threshold are encoded conditional on
their regressor using the Huffman codes designed at the proteome level, while
the blocks with less number of matches than the threshold are encoded in clear
using log,(20) bits/amino acid. Using this method to encode the amino acids
in the blocks with number of matches less than the threshold has an interesting
interpretation when computing the relatedness of the two proteins.
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Let X = z3,...,zn, be the protein which is to be encoded and ¥ =
Y1, --,yn, the conditioning protein. For each block k= T(i—1)k+1s - -+ » T(i—1)k+L>
where L is the length of the block, a regressor block is found r’; =T1,...,TL
where depending on the value of p we have two cases: r1,...,rp =2y, ..., T4 01
if p = 1, which means that the regressor is found before the current block in
the protein sequence which is to be encoded, or r1,...,7L = y¢, ..., Yspr—1 if
p = 2, which means that the regressor is found in the other protein. If p = 1,
then ¢ < (1 — 2)k + L and if p = 2, then ¢ < N,. The similarity of the two
proteins X and Y is given by R(X,Y) (17), where ProtComp is modified to
work with short sequences. Let N, = LN £ | be the number of non-overlapping
blocks in the protein X and let L£(a|b) be the encoding cost of a given block
a when the regressor block b is given. Then (17) becomes:

Ny

R(X,Y) =Y _[L(a*rf) — ca*|rh)] =
k=1
Np1

= 3 et ir) — £eirp)l +
Nb2

+ Z (29 |r]) — L(27|r})] =

Nb2

= Z (a7 |r]) = L(27[r})] (18)

where Np; is the number of blocks for which the number of matches is less
then the fixed threshold and Nys is the number of blocks for which at least in
the conditional case the number of matches is greater than the fixed threshold.
Because the sum of the encoding costs over the blocks that don’t have the
number of matches greater than the threshold is the same even the protein is
conditionally encoded or not, is zero, we can further write (18) as:

Np21

R(X,Y) =) [Llogy(20) — L(2'|r})] +
=1
Np22

+ Z @'|ry) = L(a'[r})] (19)

where Npo1 is the number of blocks for which only in the conditional case
the number of matches exceeds the fixed threshold and Npgo is the number
of blocks for which in both cases the number of matches is greater than the
fixed threshold. It turns out that our method to define the relatedness of
two proteins is in fact a measure of the local similarities of the two proteins
because the regions where the proteins are not similar are discarded.
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3.3 Experimental results

To assess the ability of the ProtComp algorithm to help on finding similarities
at a macro scale, i.e. at proteome level, as well at a micro scale, i.e. at the
protein level, two experiments were done in [22] and [49].

In the first experiment, the goal was to build a phylogenetic tree, to see
if the similarity measure (17) can manage to capture regularities at the full
proteome level. To do this, seven organisms for which the phylogentic tree
was built previously at the genome level [18], were used. The proteome se-
quences for the following organisms have been used: Archaeoglobus fulgidus
(AF), Escherichia coli K-12 MG1655 (EC), Pyrococcus abyssi (PA), Pyro-
coccus horikoshii (PH), Haemophilus influenzae Rd (HI), Helicobacter py-
lori 26695 (HP1) and Helicobacter pylori, strain J99 (HP2). The first step
in building the tree is to compute the similarity between all the proteomes
and the results are presented in Table 3. Because the similarity measure is
not symmetric in practice, we pick the proteomes having the highest sum
R(X,Y) + R(Y, X) as being the most related, so that for the first step HP1
and H P2 are the most related. For the next step, HP1H P2 is treated as a
single proteome and we have to compute the relatedness between this new
proteome and all the others. In the second step, the most related proteomes
will be PA and PH, in the third step EC and HI, in the fourth step PAPH
and AF, in the fifth step HP1H P2 and ECHI and finally, HP1HP2ECHI
and PAPHAF. The final phylogenetic tree, that is the same as in [16], is
presented in Figure 4.

Table 3. The similarity between all the proteomes in the first step of the phyloge-
netic tree building.

AF |EC|PA |PH| HI |HP1|HP2
AF 0.01{0.11|0.10{0.01| © 0
EC| 0 0 | 0 |0.29/0.03]0.03
PA ]0.14/0.01 1.51]0.01] O 0
PH |0.13]0.01{1.52 0 |-0.01] O
HI |0.01/0.78{0.01] O 0.07(0.07
HP1|0.01{0.09| 0 0.08 2.22
HP2|0.01{0.09| 0 | 0 |0.08|2.26

o

In the second experiment, the goal was to test if the similarity measure
(17) can be used to capture regularities at the protein level, i.e. to detect
related proteins. To do this, for different pairs of organisms two data sets
were chosen: the positive control data set, i.e. all the orthologous proteins in
the two organisms and the negative control data set, i.e. all pairs of proteins
in the positive set, except the orthologous pairs. For the positive data set the
similarity measure should yield values as big as possible, while for the negative
control data set, the similarity measure should yield values close to zero.



Lang. eng. and information theoretic meth. in protein seq. similarity 23

Fig. 4. The resulted phylogenetic tree
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In [50] the authors studied if standard substitution matrices, like BLOSUM
[51] are appropriate for comparison of sequences with non-standard amino acid
composition. They argue that in most commonly used substitution! matrices,
the substitution score is in the form of log-odds ratio of the target frequen-
cies and of the background frequencies, derived from accurate alignments of
closely related proteins. These matrices are then appropriate for comparison
of protein sequences for which the amino acid composition is close to the
background frequencies used to construct them. Unfortunately, the standard
substitution matrices are also used when comparing protein sequences with
very different background frequencies. To overcome this problem, a method
for adjusting the implicit target frequencies of the substitution matrix used
for comparison was presented. They show that composition specific substitu-
tion matrix adjustment is useful for comparing compositional biased proteins,
including those of organism with nucleotide bias and therefore with codon
bias composition.

To test the ability of the similarity measure (17) we used the same data set
as in [50] where three pairs of organisms with very biased AT or GC genomes
were used. The three pairs of organisms considered are: (i) Clostridium tetani
(AT-rich) and Mycobacterium tuberculosis (GC-rich) with contrasting strong
biases; (ii) Bacillus subtilis and Lactococcus lactis both with relatively unbi-
ased genomes; and (iii) Mycobacterium tuberculosis and Streptomyces coeli-
color with strong biases in the same GC direction. For each pair of organisms
there is one positive control and one negative control data set. The optimal
Huffman codes used by ProtComp algorithm are built at the proteome level
of the organism for which the proteins are compared.

The results for the positive control data set, for each pair of organisms
are listed in Table 4. In this table, the values in the columns denoted by
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"Relatedness” are computed with (19), while the others are taken from [50].
In the fourth column, for each pair of organisms, is listed the mean of the local
alignment bit scores obtained when using a scaled version of the BLOSUM
62 substitution matrix for comparing the orthologous proteins. In the fifth
and sixth columns are listed the median change in bit scores with respect to
BLOSUM 62, when using composition-adjusted BLOSUM 62 matrices. For the
composition-adjusted BLOSUM 62 matrices, the background frequencies were
adjusted for proteome frequencies (the column denoted by ”Organism”) and
for the frequencies of the two sequences considered (the column denoted by
”Sequence”). In the last two columns are presented: the median changes in bit
score when using (19) to compute the local similarity score with respect to the
values obtained when using the scaled version of the BLOSUM 62 substitution
matrix and the median changes in bit score when using (19) to compute the
local similarity score with respect to the values obtained when composition
adjusted BLOSUM 62 matrices with background frequencies adjusted for the
frequencies of the two sequences compared.

For the negative control data set, the only values that can be reported
are the mean of the local alignment bit score for the three pair of organisms,
because the number of sequences compared for each pair of organisms is quite
big and the original paper [50] did not reported the local alignment bit score
for all protein comparisons, when using the scaled version of BLOSUM 62
matrix or compositional adjusted BLOSUM 62 matrices. The third column
contains the mean bit score obtained when comparing the unrelated protein
pairs using the scaled version of the BLOSUM 62 substitution matrix and the
last column presents the mean bit score when comparing the unrelated pairs
of proteins using (19).

From the results presented for the positive control data set in Table 4 and
the results presented for the negative control data set in Table 5, it can be
concluded that the similarity measure computed based on the codelength ob-
tained by the modified version of the ProtComp algorithm, does not artificially
increase the local similarity score, because for the two pairs of organisms for
which it yields a bigger median change in the bit score for the positive data
set, it also yields a smaller mean bit score for the negative control data set.

Table 4. The relatedness computed for the orthologous pairs of proteins in
the three pairs of organisms. ! Values taken from [50]. 2 Values computed with
(19).

Median change in bit Median change in bit
Mean score with respect to score with respect to
Sequence| Organisms No. of |BLOSUM 62 BLOSUM 62 Sequence
pairs compared |[sequences| bit score |Organism 1 |Sequence ! |Relatedness 2 Relatedness 2
Related | C.tetani and 40 68.3 ¥i6 +2.3 F0.6 3.5
M.tuberculosis
B.subtilis and 37 59.8 Fi1 F2.1 F10.9 F7.5
L.lactis
M. tuberculosis 34 58.6 Fia 2.7 Fa.6 F1.79
and S. coelicolor
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Table 5. The mean bit score for the unrelated pairs of proteins in the three
pairs of organisms. ! Values taken from [50]. 2 Values computed with (19).

Sequence Organism No. of Mean bit score
pair compared sequences| BLOSUM 62 '[Relatedness *
Unrelated| C. tetani and 1,560 16.7 17.05
M. tuberculosis
B.subtilis and 1,332 15.7 12.26
L. lactis
M. tuberculosis 1,122 16.4 14.33
and S. coelicolor

3.4 Discussions

The similarity measure of two sequences R(X,Y’) computed based on the es-
timated information shared by the sequences using the ProtComp algorithm,
is able to operate at a macro scale, by comparing proteome sequences and
at a micro scale, by comparing protein sequences. The results show that the
ProtComp algorithm manages to capture the biological meaningful patterns of
protein sequences and it proves that certainly there are regularities in the pro-
tein sequences that can be exploited in order to compress protein sequences.
This conclusions are in deep contrast with the conclusions in [35] were the
authors stated from the title that ”Protein is incompressible”.

4 Conclusions

This chapter is conceived as a collection of linguistic and theoretical techniques
tested in practice, which claim attention on textual analysis of biological se-
quence descriptions. Even if they do not perform at this stage with excellent
results, to a further stage in development is possible to become alternative and
efficient similarity methods to those classical, based on sequence alignment.
As textual description of proteins offers the opportunity to encode biolog-
ical information, theoretical information measures bring their contribution
in quantification of this data in relevant forms for comparisons or relational
attributes detection. Each of the methods introduced here serves to a well
defined scope and are tight connected to the input data format. If natural
language processing methods uses biological description of sequences they
may extract sequence relationships. Index terms, largely used in information!
retrieval field, found their application in sequence similarity detection using
conversed regions or secondary structure attributes. In this way, relations be-
tween sequences involve new developed techniques or some largely known like
LSA, SVM or kNN. Gene Ontology is another interesting way of data descrip-
tion allowing semantical similarity search for a query protein. Kolmogorov



26 A. Bogan-Marta, A. Hategan, 1. Pitas, and I. Tabus

complexity is many times applied in methods that try to quantify the similar-
ity between pairs of sequences. In addition to these linguistic and theoretical
methods, the two methods new introduced are bringing their contribution to
the investigated direction. Linguistic models seems to be able to capture se-
quence information content while a lossless compression algorithm open the
perspective of sequence similarity measurement as coded information. It de-
serve to be underlined the idea that many strategies originally developed for
linguistic and information theoretical field found their application in biolog-
ical knowledge discovery. We let the reader to evaluate and appreciate each
of the methods while in this context they comes to add more color to the
panoramic view of proteins sequence similarity detection.
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