
Thesis for the Degree of Doctor of Philosophy

Language Engineering in Grammatical
Framework (GF)

Janna Khegai

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, September 2006

Language engineering in Grammatical Framework (GF)
Janna Khegai
ISBN 91-7291-813-6

c© Janna Khegai, 2006

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie Nr 2494
ISSN 0346-718x

Technical Report no.19D
Department of Computer Science and Engineering
Language Technology Research Group

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone + 46 (0)31-772 1000

Printed at Chalmers, Göteborg, Sweden, 2006

Language engineering in Grammatical Framework (GF)
JANNA KHEGAI
Department of Computer Science
Chalmers University of Technology and Göteborg University

Abstract

The basis for the work presented is Grammatical Framework (GF) — a grammar
formalism based on type theory. It is also a powerful language processor that
provides a convenient framework for various multilingual applications. The pri-
mary concern of this thesis is the usage of GF as a piece of software. The main
results are:

• Implementing a syntax editor, which provides a graphical user interface
(GUI) for the command-line GF core.

• Writing the Russian resource grammar that takes care of the most ba-
sic morphological and syntactic rules and serves as a standard library for
building application grammars (describing sublanguage domains) in Rus-
sian.

These results contribute to language engineering in GF on two different levels:

• Author level (end-user) — constructing documents in natural languages.

• Grammarian level — building a grammar description, which is later used on
the author level. One can also distinguish between application and resource
grammars. An application grammar focuses of a particular sub-language
domain, while resource grammar is a general-purpose grammar that forms
a basis for application grammars.

Keywords: Russian resource grammar, syntax editing, multilingual authoring,
graphical user interface (GUI), interlingua, natural language processing (NLP),
computational linguistics, machine translation (MT)

Acknowledgements1

I would like to thank my supervisor, Aarne Ranta for giving me a project in the
first place, for his careful guidance in the beginning and for the encouragement
for independence in the end. I feel very lucky to work with GF – a full-cycle
machine translation engine: on one hand, it lets you focus on a specific area; on
the other hand, it gives you the satisfaction of seeing the final result where all
the pieces come together.

Thanks a lot to Arto Mustajoki and his colleagues from the Slavonic and
Baltic Department at the University of Helsinki for fruitful discussions about
Russian. Also thanks to Lars Borin for his insightful comments on the Russian
resource grammar. Many thanks to my opponent Lauri Carlson and the mem-
bers of the grading committee: Guy Perrier, Kuchi Prasad and Andrei Sabelfeld.
Also thanks to Mats Wirén from Telia Research for sharing his knowledge about
CLE and to the members of my advisory committee – Bengt Nordström and
Devdatt Dubhashi who donated their time and ideas to the project as well as
promoted publication of the results. Many thanks to all members of language
technology group, especially: Robin Cooper, Peter Ljunglöf, Kristofer Johannis-
son, Markus Forsberg, Björn Bringert and Harald Hammarström for their help
and professional advice.

I am grateful to my office mates: Angela Wallenburg, Wojciech Mostowski,
Erik Kilborn, Kristofer Johannisson and Markus Forsberg for being excellent
neighbours. I also want to express my appreciation to other PhD students whose
support has been invaluable and made my time at Chalmers a lot of fun. My
gratitude to all people at the department of Computing Science at Chalmers for
the opportunity to study in a friendly and intellectually charged atmosphere.

Finally, I am happy to thank my friends and relatives outside the department,
my husband Alexandre and particularly my daughter Vera for a break from my
PhD studies as well as for some extra time to complete them.

1This thesis has been partially supported by: 1) ”Interactive Language Technology” funded
by Vinnova (2001-2004). Project nr P20018-2A. 2) ”Grammars as Software Libraries” funded
by Vetenskapsr̊adet (2006-2008).

List of Included Papers

This thesis is based on work contained in the following peer-reviewed conference
papers:

Paper 1: Janna Khegai. ”GF Parallel Resource Grammars and Russian”. //
In proceedings of Coling/ACL2006 (The joint conference of the Interna-
tional Committee on Computational Linguistics and the Association for
Computational Linguistics), pages 475-482, Sydney, Australia, July 2006.

Paper 2: Janna Khegai and Aarne Ranta. ”Building and Using a Russian Re-
source Grammar in GF”. // In Intelligent Text Processing and Computa-
tional Linguistics (CICLing-2004), Seoul, Korea. LNCS 2945, pages 38-41.
Springer, 2004.

Paper 3: Janna Khegai. ”Grammatical Framework (GF) for MT in sublanguage
domains”. // In proceedings of EAMT-2006 (11th Annual conference of
the European Association for Machine Translation), pages 95-104, Oslo,
Norway, June 2006.

Paper 4: Janna Khegai, Bengt Nordström and Aarne Ranta. ”Multilingual Syn-
tax Editing in GF”. // In Intelligent Text Processing and Computational
Linguistics (CICLing-2003), Mexico. LNCS 2588, pages 453-464. Springer,
2003.

and technical reports:

Technical report A: Janna Khegai and Aarne Ranta. ”GF Russian Resource
Library”. //Technical Report no. 2006-14, Department of Computing Sci-
ence, Chalmers University of Technology, 2006.

Technical report B: Janna Khegai. ”Syntax Editing in GF”. // Technical Re-
port no. 2006-15, Department of Computing Science, Chalmers University
of Technology, 2006.

vi

Contents

Introduction 1
1 The GF grammar formalism . 1
2 GF in use . 7
3 Thesis overview . 8
4 Related work . 9

4.1 Multilingual authoring . 10
4.2 Resource grammars . 11

5 Results . 15
6 Future work . 16

Paper 1.
GF Parallel Resource Grammars and Russian 19

Paper 2.
Building and using a Russian Resource Grammar in GF 29

Paper 3.
Grammatical Framework (GF) for MT in sublanguage domains 35

Paper 4.
Multilingual Syntax Editing in GF 47

Technical report A.
GF Russian resource library 61
1 Overview of syntactic structures 62

1.1 Texts. phrases, and utterances 62
1.2 Sentences and clauses . 63
1.3 Parts of sentences . 64
1.4 Modules and their names 66
1.5 Top-level grammar and lexicon 67
1.6 Language-specific syntactic structures 67

2 Resource . 68
2.1 Enumerated parameter types 68

vii

viii CONTENTS

2.2 For Noun . 70
2.3 For Verb . 71
2.4 For Adjective . 74
2.5 For Numeral . 75
2.6 Transformations between parameter types 76

3 Categories . 76
3.1 Abstract API . 76
3.2 Russian Implementation 81

4 Adjective . 85
4.1 Abstract API . 85
4.2 Russian Implementation 86

5 Adverb . 87
5.1 Abstract API . 87
5.2 Russian Implementation 88

6 Conjunction . 89
6.1 Abstract API . 89
6.2 Russian Implementation 91

7 Idiom . 93
7.1 Abstract API . 93
7.2 Russian Implementation 94

8 Noun . 96
8.1 Abstract API . 96
8.2 Russian Implementation 100

9 Numeral . 104
9.1 Abstract API . 104
9.2 Russian Implementation 106

10 Phrase . 109
10.1 Abstract API . 109
10.2 Russian Implementation 111

11 Question . 111
11.1 Abstract API . 111
11.2 Russian Implementation 112

12 Relative . 114
12.1 Abstract API . 114
12.2 Russian Implementation 115

13 Sentence . 116
13.1 Abstract API . 116
13.2 Russian Implementation 118

14 Verb . 120
14.1 Abstract API . 120
14.2 Russian Implementation 122

15 Paradigms . 129
15.1 Parameters . 129

CONTENTS ix

15.2 Nouns . 130
15.3 Adjectives . 133
15.4 Adverbs . 134
15.5 Verbs . 134

16 Automatically generated test examples 136
16.1 Test definitions . 137
16.2 English linearizations . 140
16.3 Russian linearizations . 142

Technical report B.
Syntax editing in GF 145
1 Java GUI syntax editor for GF 152

1.1 Editor’s structure . 152
1.2 Creating a new object . 154
1.3 Refining the object . 155
1.4 Adding new languages . 158
1.5 Saving the object to a file 159
1.6 Changing the topic . 159
1.7 More syntax editing commands 160
1.8 Java GUI Editor command reference 166

2 Gramlets: GF on-line and in the pocket 169
2.1 Canonical GF . 169
2.2 Implementation . 171

Bibliography 177

x CONTENTS

Introduction

As an interdisciplinary topic, Language Engineering has attracted the attention
of both linguists (Computational Linguistics) and computer scientists (Natural
Language Processing). The purpose of their joint efforts is building computation-
ally rather than psychologically plausible representations of human language, i.e.
a representation suitable for computer processing. This is done by formalizing
the linguistic knowledge into grammar rules. A language for describing such rules
is called a grammar formalism.

Grammatical Framework (GF) is a grammar formalism based on constructive
Type Theory [25]. Together with its implementation it forms a framework for
performing various Natural Language Processing (NLP) tasks. We will give a
brief overview of the system in sections 1 and 2. For a systematic description of
GF we refer to [30, 21, 32].

Section 3 contains an overview of the thesis. Related work is discussed in
section 4. The chapter concludes with stating the main results (section 5) and
future work (section 6).

1 The GF grammar formalism

GF originates from the tradition of logical frameworks, which give the possibility
to define logical calculi that can be used for interactive theorem proving. This
tradition is closely connected to the functional programming paradigm, whose
programming style is very close to the language of mathematics. GF is imple-
mented in the functional programming language Haskell. Logical frameworks
implement Type Theory concepts and some of the frameworks even translate
these concepts into user-friendly notations. Although the user can define new
mathematical objects in a logical framework, the expressions that could be used
for that purpose are limited to those hard-wired in the system. GF extends Type
Theory into a grammar formalism by adding a notation for syntactic annotations.

The main features of the GF grammar formalism are:

• mapping between abstract and concrete syntax levels

• type system on both levels

1

2 INTRODUCTION

The first property makes it natural to have multilingual grammars with a shared
abstract part (interlingua) and different concrete parts for different languages.
The type system on the abstract level allows us to verify the well-formedness of
an input as well as resolve ambiguities using semantic information contained in
the type of the input. The type system on the concrete level prevents run-time
errors with grammars and forces grammaticality when using a resource grammar
library.

A grammar in GF is defined in a declarative way using GF syntactic notation
close to those used in functional programming languages. The definition consists
of an abstract and a concrete part. Let us consider a simple grammar for writing
letters in several languages. Here is a piece from the abstract part:

cat

Letter ;

Recipient ;

Heading ;

Message ;

Ending ;

fun

MkLetter : Heading -> Message -> Ending -> Letter ;

NameHe, NameShe : String -> Recipient ;

DearRec : Recipient -> Heading ;

This introduces five types (categories) for different types of letter elements
after the reserved word cat and four functions (rules) for constructing a letter
after the reserved word fun. The first function says that a letter consists of a
heading, a message and an ending. The second and third tell that a recipient can
be formed from a string representing a name. The last function forms a Dear
heading from a recipient argument. So far we describe the letter domain in a
language-independent manner. Thus the abstract syntax is a sort of interlingua
— a semantic (meaning) representation of the domain.

Language specific components are placed in the concrete part of the grammar.
Here is a fragment from the English concrete syntax:

param

Sex = masc | fem ;

Num = sg | pl ;

DepNum = depnum | cnum Num ;

lincat

Letter = {s : Str} ;

Recipient = {s : Str ; n : Num ; x : Sex} ;

Heading = {s : Str ; n : Num ; x : Sex} ;

1. THE GF GRAMMAR FORMALISM 3

-- needs Author’s & Recipient’s Num and Sex:

Message = {s : DepNum => Sex => Num => Sex => Str} ;

-- needs Recipient’s Num and Sex:

Ending = {s : Num => Sex => Str ; n : DepNum ; x : Sex} ;

lin

NameHe s = {s = s.s ; n = sg ; x = masc} ;

NameShe s = {s = s.s ; n = sg ; x = fem} ;

DearRec rec = {s = "Dear" ++ rec.s ; n = rec.n ; x = rec.x} ;

MkLetter head mess end = { s = head.s ++ "," ++ "&-" ++

mess.s ! end.n ! end.x ! head.n ! head.x ++ "." ++ "&-" ++

end.s ! head.n ! head.x };

Here we can see the correspondence between the abstract and the concrete
part. Each category (and each function) introduced in the abstract part has a
linearization in the concrete part (after the reserved word lincat and the reserved
word lin, respectively). Category linearizations describe the type of the category
declared in the abstract part for a concrete language. All categories have record
types with one or more record fields.

For instance, the category Letter contains one field of the type String (Str).
This basically means that a letter is a string. The categories Recipient and
Heading have number (n: Num) and sex (x: Sex) fields besides the string field,
where Num and Sex are parameters with values enumerated after the reserved
word param. n and x are so called inherent parameters, which are fixed for every
instance of Recipient and Heading.

The linearization type of the Message is a table of strings that depend on
four parameters, namely, the letter author’s and recipient’s sexes (Sex) and num-
bers (DepNum, Num), because the message can have references to both the author
and the recipient, for example: I love you or you have been promoted to project
managers. The DepNum parameter is introduced for the cases where the author’s
number depends on the recipient’s number, for instance in case of a spouse(s)
letter. Thus, the content of the message does not determine these four parame-
ters. As follows from the linearization types Heading and Ending they determine
the sex and number parameters for the author and the recipient, respectively.
According to the Ending type, the ending potentially needs to know the sex and
number parameters of the recipient (spouse(s) letters), while Heading is indepen-
dent.

These type definitions become more meaningful if we look at function lin-
earizations. For example, the linearizations for the function NameHe, which re-
turns the result of the type Recipient, says that the number of the resulting

4 INTRODUCTION

Recipient is singular and the sex is masculine while for the function NameShe

the sex will be feminine, which is also reflected in the names of the functions.
The field s of NameHe and NameShe just contains the string, which they take as
an argument. Thus, NameShe "Mary" gives as a result the following record of the
type Recipient:

{s = "Mary"; n = sg; x = fem}

Similarly,

DearRec (NameShe "Mary)

will give the type Heading record

{s = "Dear Mary"; n = sg; x = fem}

since the ++-sign in DearRec linearization means string concatenation and rec.s

gets the value of the field s of the argument rec.
The linearizations for the function MkLetter puts together the string fields of

the heading (head), the message (mess) and the ending (end). In case of the mes-
sage and the ending we first choose an appropriate string from the corresponding
tables. The exclamation sign (!) denotes the selection operation. For example,
end.s ! head.n ! head.x means that we take a string from the ending table
(end.s) that corresponds to the number and sex values of the heading number
and sex fields (head.n and head.x, respectively). The ”&-”-string stands for new
line marker.

Now let us take a look at the Russian version of the grammar Letter, namely
at the part, which differs from the English version:

DearRec rec = {s = regAdj "dorog" ! rec.n ! rec.x ++ rec.s ;

n = rec.n ; x = rec.x} ;

regAdj : Str -> Num => Sex => Tok =\s -> table {
sg => table {masc => s + "o�"; fem => s + "a�" } ;

pl => table { => s + "ie""}
} ;

In the linearization of the function DearRec the values of the fields n and x are
inherited from the argument rec similarly to the English version. The string field,
however, is more complex due to inflecting of the word dear in Russian, whose
inflection table is provided by the extra function regAdj. In order to choose the
right form we use the number and the sex fields’ values of the argument rec.
Then we use the operator ! to select the right values from the inflection table
thus providing grammatically correct output.

1. THE GF GRAMMAR FORMALISM 5

As we can see, all language-specific things can be expressed in the concrete
part, without disturbing the semantics of the abstract part. However, the abstract
part should be refined enough to take into account all possible grammar variations
in different languages. For instance, the English part in the fragment above
does not really use the parameter Sex2, since the word dear does not change.
However, the two versions NameShe and NameHe of the same function are needed
for compatibility with other languages, where the distinction between masculine
and feminine forms is important.

A grammar definition is stored in a text file. Usually the abstract part and the
concrete part for each language are stored in separate files. The path directive is
used to access the content of other files that are not in the same directory as the
original file. Grammar definitions are separated from the GF algorithmic core.
They are loaded and compiled before usage. During the compilation a parser for
the loaded grammar is generated. There is a number of user interfaces or modes
in which GF can be run. The main functionality of the system comprises:

• constructing semantic trees for expressions covered by the loaded grammars
using parsing

• constructing semantic trees for expressions covered by the loaded grammars
using interactive syntax editing

• linearization of semantic trees for expressions covered by the loaded gram-
mars

Translation is the combination of the first and the third operations above.
Input language concrete syntax is used during the first step. Output language
concrete syntax is used during the last step. The abstract syntax shared by all
implemented languages is used over the whole translation procedure.

The abstract syntax represents a syntactic and partially semantic model of
the natural language fragment we are trying to cover with a GF grammar. It
defines categories and relationships among them very much similar to the manner
of standard context-free rules, although using different notation suitable for ex-
pressing even context-dependent fenomena. Abstract syntax represents language
independent properties of the described natural language domain.

Concrete syntax, represented by linearization rules introduces actual strings
(words) from some natural language. The values returned by linearization can
be not only strings, but also tables and records. This is especially important
for expressing such language dependent features like morphological inflections
without affecting the abstract part. Tables look very much like inflection tables
in grammar books. Records remind of dictionary entries. For example, here is
the description of the word ona (she) in the Russian concrete syntax:

2The Sex is, however, needed in the English version in spouse(s) letters, for instance for an
ending like sincerely, your wife.

6 INTRODUCTION

oper pronOna: Pronoun =

{ s = table {

PF Nom NonPoss => "ona" ;

PF Gen No NonPoss => "eë" ;

PF Gen Yes NonPoss => "neë" ;

PF Dat No NonPoss => "e�" ;

PF Dat Yes NonPoss => "ne�" ;

PF Acc No NonPoss => "eë" ;

PF Acc Yes NonPoss => "neë" ;

PF Inst No NonPoss => "e�" ;

PF Inst Yes NonPoss => "ne�" ;

PF Prepos NonPoss => "ne�" ;

PF (Poss) => "eë"

} ;

g = PGen Fem ;

n = Sg ;

p = P3 ;

} ;

Every morphological entry is represented as an operation definition starting
with the reserved word oper followed by the name of the operation, here pronOna.
The operation return type is specified after a semicolon, here Pronoun. Thus, the
word ona (she) in Russian is a pronoun. Pronoun type in Russian is a record
with several fields that contain all the grammatical information belonging to the
entry word: s (different word forms), g(gender), n(number) and p(person). The
field s is a table that contains various inflection forms of the entry word just as a
grammar book table does. The rest of the fields provide the information about:
gender (g) — feminine (PGen Fem), number (n) — singular (Sg) and person (p)
— third (P3) of the word ona (she). Similar descriptions of a word can be found
in a dictionary.

Linearization and type checking are straightforward to implement following
the techniques from logical frameworks and functional programming languages.
Parsing is more difficult. The GF grammar formalism is stronger than context-
free grammars. Referring to abstract syntax the context-free subclass of GF is
equivalent to Parallel Multiple Context-Free Grammars (PMCFG), which has
polynomial parsing complexity. Unrestricted GF grammars also contain higher-
order functions and dependent types. A thorough investigation of GF’s expressive
power and parsing complexity together with optimized parsing algorithms can be
found in [21].

2. GF IN USE 7

2 GF in use

In the rest of the thesis we will talk about some usages of GF. GF provides a
framework for producing high-quality automatic translation in limited domains,
which determines the corresponding potential usage. However, since GF is an
open-ended system that can be adapted to various applications we can distinguish
between different kinds of usages.

Depending on their competence the GF users fall into one of the categories:
author, grammarian, implementor.

On the author level the user is only allowed to write documents within a pre-
existing grammar set. The graphical user interface (GUI) provided by Java GUI
Syntax Editor described in paper 3, paper 4 and technical report B ensures that
work on this level will not require any specific knowledge of GF.

The main purpose of the syntax editor is to construct a text simultaneously
in several natural languages. The author does not have to know all the languages
represented, but the GF system assures that if the output is correct in at least one
of them, including the GF abstract language – language-independent semantic
representation, then it will be syntactically and semantically correct in the rest
of the languages. This reflects the idea of so-called multilingual authoring.

Unlike translation that processes complete natural language strings, syntax
editor works with Abstract Syntax Trees (ASTs) and can handle incomplete
objects by using temporary place-holders (meta-variables). Thus, ASTs not only
come as the result of parsing, but also can be built directly using GF grammars.
Corresponding strings in natural languages can be generated (linearized) from
AST representation.

To build an AST, an interactive procedure of step-wise refinement of meta-
variables (syntax editing) is used. At first one creates an object of a chosen
type, for instance, a letter. At each step the author refines a tree node, for
example, the heading, the message or the ending, by using a context-dependent
menu that automatically suggests the valid options for each node. These options
are generated from the underlying grammar. See paper 3, paper 4 and technical
report B for syntax editing examples in GF.

On the grammarian level the user is able to add new grammars. It puts
additional demands: the GF grammar formalism together with some linguistic
knowledge. The grammarian creates a new grammar file in a text editor using
the GF grammar formalism. However, the grammar development cost can be
lowered by using the resource grammar library, which takes care of the standard
grammatical rules. Paper 1, paper 2 and technical report A are devoted to the
development of such a resource grammar library for Russian.

On these two levels we have some control for example over parsing algorithms
to be used. However, the core of the system with parsing, linearization and other
algorithms are hidden. Parsers for user grammars are generated automatically.
Finally, an implementor is supposed to be a programmer with fair knowledge

8 INTRODUCTION

of computer science in general and the GF system in particular. GF is a really
inter-disciplinary project.

We are aiming to create an Integrated Development Environment (IDE) for
the GF language that contains tools for users on different levels. GF is constantly
developing, so the system status described is subject to change. For example,
one of the recent additions is the GF embedded interpreter [4] – a library written
purely in Java that allows for using GF parsing and linearization functionality
without running the main GF system in the background. This thesis is a col-
lection of more or less independent reports describing several projects within the
GF system reflecting the progress towards our goal.

3 Thesis overview

The thesis consists of four refereed conference articles complemented, in order to
provide more technical details, with two technical reports.

Paper 1: GF Parallel Resource Grammars and Russian

The paper shares the author’s experience in implementing a Russian resource
grammar in GF. It describes the main Russian modules trying to answer the
question how well Russian fits into the common language-independent interface
shared with the other supported languages.

The paper is published in proceedings of Coling/ACL-2006 (The joint con-
ference of the International Committee on Computational Linguistics and the
Association for Computational Linguistics), pages 475-482, Sydney, Australia,
July 2006.

Paper 2: Building and Using a Russian Resource Grammar
in GF

The paper discusses the general structure of the GF resource grammar library
and its usage for writing application grammars using Russian as an example.

The paper was written together with Aarne Ranta and was published in In-
telligent Text Processing and Computational Linguistics (CICLing-2004), Seoul,
Korea. LNCS 2945, pages 38-41. Springer, 2004.

The author’s own contribution is implementing a Russian resource grammar
and writing most of the paper.

4. RELATED WORK 9

Paper 3: Grammatical Framework (GF) for MT in Sub-
language Domains

The paper presents the GF system as a platform for building MT applications
for natural sublanguage domains. It contains a demo of the recent version of GF
Syntax Editor.

The paper is published in proceedings of EAMT-2006 (11th Annual confer-
ence of the European Association for Machine Translation), pages 95-104, Oslo,
Norway, 2006.

Paper 4: Multilingual Syntax Editing in GF

A paper that describes the GF application to multilingual authoring and demon-
strates GF syntax editor’s functionality.

The paper was written together with Aarne Ranta and Bengt Nordström
and was published in Intelligent Text Processing and Computational Linguistics
(CICLing-2003), Mexico. LNCS 2588, pages 453-464. Springer, 2003.

The author’s own contribution is implementing the GUI (Graphical User In-
terface) for GF syntax editor and writing a part of the paper.

Technical reports

Two technical reports provide implementation details for the curious reader:

Technical report A complements the papers 1 and 2. It describes the imple-
mentation details of the Russian resource grammar. Some parts of the report
have been automatically translated from the GF grammar format into the latex
format using the gfdoc tool. The report is written together with Aarne Ranta.
The author’s own contribution is writing the Russian-specific part.

Technical report B complements the papers 3 and 4. It tries to address the
theoretical issues behind the implementation. It also contains a user-manual
for GF Java user interface and briefly tells about implementing Gramlets – a
specialized version of the GF syntax editor running on PDA and as an applet.

4 Related work

Since GF itself has many different aspects and the present work also deals with
several GF issues we divide the related work accordingly. The resource part and
the authoring part, combined in GF, do not accompany each other in the related
projects. Therefore, it is natural to consider these projects separately.

10 INTRODUCTION

4.1 Multilingual authoring

The idea of developing the user interface in Java programming language comes
from the CtCoq system [39].

GF applies formal language techniques to natural languages. Syntax editing
procedure is borrowed from proof editors used for interactive theorem proving and
pretty-printing of the proofs (Alf [24], Lego [22, 1]), which, in turn, originate from
earlier systems like Mentor [9] and Cornell program synthesizer [36]. Constructing
a proof in a proof editor corresponds to constructing an abstract syntax tree in
GF. The concrete part is, however, missing from proof editors, since the proofs
are usually expressed in a symbolic language of mathematics.

The multilingual authoring approach is similar to the one in WYSIWYM
tool [37, 27]. There, Multilingual Natural Language Generation from a semantic
knowledge base expressed in a formal language (non-linguistic source) is opposed
to Machine Translation (MT) (linguistic source).

The language-independent knowledge engineering (building a knowledge dia-
gram) in WYSIWYM corresponds to the construction of an abstract syntax tree
in GF. The refinement entities called anchors in WYSIWYM correspond to the
GF meta-variables. Refinement steps are performed by choosing from the list of
available options in both cases. Text generated from the current object in several
languages (English, French and Italian for WYSIWYM) are shown to the user
while editing. The language-independent ontology (domain model, terminology)
in WYSIWYM corresponds to a grammar (Abstract part) in GF.

Even the architecture of one of the WYSISYM implementations DRAFTER-
II [28] reminds that of GF in a way that the GUI part is separated from the
processing engine: Prolog is used for both ontology description and generation
while the GUI is written in CLIM (Common Lisp Interface Manager).

However, unlike WYSIWYM the GF architecture has one more separation,
namely a special language (GF grammar formalism) built upon the main imple-
mentation language Haskell. This makes GF more generic compared to WYSI-
WYM, where the ontology of concepts is hard-wired. The WYSIWYM user is
not supposed to change the ontology coverage, he is only allowed to work on the
author level. By contrast, in GF, writing one’s grammars is one of the main fea-
tures and even supporting tools like the resource grammar library are provided
for the grammarian.

Besides the design issues the underlying non-linguistic models in WYSIWYM
and GF are quite different in nature. The GF model is more semantic oriented,
while WYSIWYM is focused on syntactic information. Syntax is more developed
and even stylistic issues are addressed in the recent WYSIWYM applications
[29]. However, a clear semantic representation is work in progress. The model
currently used is mostly of syntactic nature. It consists of dozens of parameters
(features) for each sentence containing both syntactic (tense, modality etc.) and
semantical (actual verb) information.

4. RELATED WORK 11

GF is more versatile in one more respect compared to WYSIWYM. For every
grammar not only the generator is produced, but also a parser. Therefore, the
author is allowed to type his input provided that it conforms to the grammar.
This is considered useful for multilingual authoring applications because typing
can speed up the tedious syntax editing procedure. Thus, GF syntax editor is
an example of, so called pluralistic editor [38] that supports both text and tree
views.

GF was one of the sources of inspiration for an XML-based multilingual
document authoring application for pharmaceutical domain developed at XRCE
[5, 10]. The grammar formalism used in this system is called Interaction Gram-
mars (IG)3. Like the GF grammar language, IG has a separation between the
language-independent interlingua (abstract syntax in GF)and parallel realization
grammars (concrete syntax in GF) for the languages represented (English and
French). As GF, IG also uses the notions of typing and dependent types and
is suitable for both parsing and generation. But unlike GF the IG comes from
the logic programming tradition. It is based on Definite Clause Grammars — a
unification-based extension of context-free grammars, which has a built-in imple-
mentation in Prolog.

4.2 Resource grammars

The resource grammar library is related to the Core Language Engine (CLE)
project later used in Spoken Language Translator (SLT) system for Air Travel
Information System (ATIS) domain [33].

Like the resource grammars in GF the CLE grammars aimed to be domain-
independent, however they were trained upon and built with the ATIS corpus
in mind. Domain vocabulary contains around 1000-2500 words. In the SLT
system there are three main languages: English (coded first), Swedish and French
(adapted from the English version). Spanish and Danish are also present in the
CLE project.

The SLT processing modules, generic in nature, are based on large, linguis-
tically motivated grammars. However, the SLT system uses both grammatical
(hand-coded rules) and statistical knowledge (trained preferences).

Quasi (scope-neutral) Logical Form (QLF) – a feature-based formalism is
used for representing language structures. Due to quality-robustness trade-off
the QLF formalism is deeper than surface constituent trees (for better quality),
but captures only grammatical relations. It represents linguistic meaning, but
not yet an interlingua, since robust parsing would be problematic in this case.

Since the SLT uses a transfer approach two kinds of rules are needed:

• monolingual (to and from QLF-form) rules that are used for both parsing
and generation.

3Not to be confused with Interaction Grammars in [26].

12 INTRODUCTION

• bilingual transfer rules.

Both sets are specified in [33] using a unification grammars notation built on top
of Prolog syntax (based on Definite Clause Grammars with features).

Both GF and CLE describe their grammars declaratively. Record fields in the
GF type description roughly correspond to features in the CLE. Linearization
(interlingua) rules in GF map to monolingual unification rules in CLE. However,
no part of GF is similar to the transfer rules set (more than one thousand rules
for each language pair), since GF is an interlingua system.

The syntax coverage of the GF resource grammars is comparable with that of
the CLE grammars (about one hundred rules per language in both cases). CLE
contains some domain-specific rules like noun phrases for various flight codes
etc. Time and date expressions are also treated specially in the CLE. The same
phenomena are not treated in the same way. For example, prepositional phrases
are handled by complements of verbs types (V2 and V3) and as adverbs (Adv) in
GF, so that phrases like in the house and here belong to the same category.

Verb phrase discontinuous constituents are handled by combining the record
fields, while there is a special set of ”movement” rules responsible for word order
in the CLE. For example, to process the utterance Are we men? we need to use
the following four rules:

S:[inv=y] -> V:[subcat=List] -- "are"

NP -- "we"

VP: [svi=movedv:[subcat=List]] -- "men"

VP -> V:[subcat=COMPS]

COMPS

V:[subcat=[comp:COMP],svi=movedv:[subcat=[comp:COMP]]] -> []

COMP:[subjform=normal] -> NP

where the first rule is a special rule that takes care of the inverted word order. It
says that the verb (V)[are], which is supposed to be a part of the verb phrase(VP)
[are men] will go first. The rule also duplicates the information about this fronted
verb in the VP’s feature svi, so it can be later used by the second and the third
rules. The second rule forms a verb phrase taking a verb (V) and its complement
(COMP), which are in turn are formed by the third and the forth rules. The third
rule indicates that due to inverted word order (the feature svi) the verb phrase
will appear in the sentence without the verb (since it is already placed in the
front of the sentence). Notice that in case of the non-inverted word order we
would need to use different rules for V and S. The fourth rule gives a complement
to the verb phrase expressed by a noun phrase (NPs) [men].

4. RELATED WORK 13

In case of GF the word order issue is taken care of only on the sentence level
by applying a generic rule for making clauses:

mkClause : Str -> Agr -> VP -> Clause =

\subj,agr,vp -> {

s = \\t,a,b,o =>

let

verb = vp.s ! t ! a ! b ! o ! agr ;

compl = vp.s2 ! agr

in

case o of {

ODir => subj ++ verb.fin ++ vp.ad ++ verb.inf ++ compl ;

OQuest => verb.fin ++ subj ++ vp.ad ++ verb.inf ++ compl

}

} ;

For example, in the rule above in the lines four and five we can see that the
verb phrase (vp) [be a man] is used twice: in the verb verb [are] and in the
complement compl [men], i.e. the verb phrase is discontinuous: different parts of
the verb phrase are used in different parts of the sentence. The structure of the
verb phrase is the following:

VP : Type = {

s : Tense => Anteriority => Polarity => Order => Agr =>

{fin, inf : Str} ;

ad : Str ;

s2 : Agr => Str

} ;

By having a structure inside a verb phrase we avoid introducing special rules
for every word order, so the rules for forming verb phrases do not care about
the word order in the final sentence. It is only on the very top sentence level,
where the word order problem arises and is resolved by using the discontinuous
constituents of a verb phrase.

Morphological rules in GF use tables while the corresponding CLE rules use
features. For example, in the sentence Are we men? discussed above the word
men should be in plural form, since it needs to agree with the subject [we] (in the
rule denoted by subj). In GF this is done by selecting (using the exclamation
mark !) the plural form from the table vp.s, where agr comprises the number
of the subject, i.e. in this case – plural. In CLE we need to apply rules to the
basic word form in order to get various form of the word, see the example below.

Another difference is that the whole inflection pattern of a word (according
to several parameters) is put in one table in GF (see section 1), while several
independent rules are used to express a similar pattern in CLE. In CLE one

14 INTRODUCTION

rule can only take care of one parameter at a time. For example, here are the
fragments of two morphological rules that take care of standard French adjective
inflection:

adj:[..., num=p, gen=G] -->

adj:[..., num=s, gen=G],

[s].

adj:[..., num=s, gen=f] -->

adj:[..., num=s, gen=m],

[e].

The first one is responsible for the number parameter. It says that the plural
form is formed by adding -s to the singular form. The second rule is responsible
for inflecting according to gender. It says that the feminine form is formed by
adding -e to the masculine form. As we can see, number and gender variations
are described separately. So in order to get a plural feminine form we need to
apply the second and the first rules consequently. Choosing from the inflection
table in GF does not have such restrictions, i.e. all the inflection forms of a word
are described in one rule (function).

GF application grammars can be considered as specializations of general-
purpose resource grammars. However, unlike CLE, the specialization is done
by hand-writing an application grammar, while a CLE specialized grammar is
”trained” with a corpus. Application grammar writing in GF becomes more
automatic by using the example-based grammar writing technique. The idea is
to use parsing with resource grammars to automatically define linearizations for
application grammar rules. For example, to linearize a rule for expressing phrases
like X chases Y in the animal application grammar:

fun Answer : Entity -> Action -> Entity -> Phrase ;

one can just provide an example of similar grammatical construction like the
woman loves men:

lin Answer woman_N love_V2 man_N = in Phr "the woman loves men" ;

and the linearization will be automatically derived. Note that the words used
in the example (woman, to love, man) are from the resource lexicon and have
the types corresponding to the linearization types (N, V2) of function arguments,
i.e. in case of Answer-function the categories from the application grammar are
linearized using the following resource grammar categories:

lincat

Phrase = Phr ;

Entity = N ;

Action = V2 ;

5. RESULTS 15

Although GF is essentially an interlingua system, writing application gram-
mar rules using the resource grammars can be seen as compile-time transfer, since
different resource structures are mapped to express the same meaning in different
languages. Some run-time transfer has also been introduced recently, see [3, 2].

The differences between CLE and GF are partly due to design decisions, partly
hereditary to formalism’s expressive means. Despite these differences the general
structure of the GF resource library and the CLE monolingual rule set match a
lot, which is only natural since they both reflect the structure of the modelled
language.

5 Results

Our general goal is to improve the GF (re-)usability and portability as an appli-
cation as well as a piece of software.

We use the term portability in two senses:

Multi-lingual

The GF grammar language was used for building grammars in Russian, which
offers a typologically interesting case study.

The main result in this area is the Russian resource grammar library adapted
from the similar libraries for other languages. Such libraries allow the grammarian
to write multilingual application grammars faster by reuse of the previously writ-
ten, widely applicable code. Another advantage is that the resource grammars are
tested and, therefore, guarantee that all the library functions are grammatically
correct. Grammatical correctness is inherited to application grammars, which
is guaranteed by type-checking. GF multilingual resource grammars have been
used in projects like WebALT [6] (partly commercial) and KeY [13].

Some example application grammars in Russian were also written both from
scratch and using the resource library.

Using Russian in GF also required fixing some technical issues regarding the
Cyrillic alphabet.

Multi-platform

The platform portability part includes writing the Java GUI Syntax Editor, which
provides a graphical user interface for the GF main system written in Haskell,
as well as working on so called Gramlets – pure Java programs suitable for PDA
and also able to work as applets on WWW.

Using Java programming language makes the code written able to be run on
several platforms (including UNIX, Windows and Mac) without recompilation.

16 INTRODUCTION

GF (including the Java GUI Syntax Editor) is extended4 (by Hans-Joachim
Daniels) and integrated (by Kristofer Johannisson) as a plug-in in the KeY project
– a tool for formal software specification and verification based on the Together
commercial CASE (Computer-Aided Software Engineering) tool [13], which is
also implemented in Java. GF is called from the KeY together with a UML
diagram. The specification authored in the Java GUI Syntax Editor is sent back.
This allows us to look at GF in general and the Java GUI Syntax Editor in
particular as a module or a supplement to another system, thus making GF a
reusable piece of software.

Java GUI together with the communication protocol (XML) turn out to be
quite adaptable for applications other than syntax editing. In Fig. 1 we can see
the Numerals application showing numbers in dozens of languages, which was
adapted from the Java GUI Syntax Editor in a couple of hours without any
changes on the GF side.

6 Future work

So far the GF grammars has been developed interactively according to the build-
try-improve circular model. Grammar writing is done in a common text-editor,
while compiling and testing using the command-line GF mode or the Java GUI.
GF Integrated Development Environment (IDE) specially designed for writing
GF grammars is work in progress [19]. Unlike the Java GUI syntax editor a
grammar editing tool belongs to a higher — grammarian — user level.

The purpose of GF IDE is pragmatic: it uses its knowledge of GF to help
the grammarian in preparing correct GF code (application grammars). It can
also save efforts in learning the non-trivial grammar formalism, since otherwise
substantial training is needed even for simple grammar writing. Some of the GF
IDE features are:

• Systematic treatment of ”exotic” languages. UTF-8 encoding is used for
languages with non-latin alphabets. The system recognizes and properly
displays non-latin characters automatically.

• Example-based (example-based mode), menudriven (tree editing mode)
grammar development. It saves time for scrolling the resource library files
by hand and helps avoiding small syntactic mistakes and type-errors that
can be automatically detected.

• Lexicon extension on-the-fly. Parsing with resource grammar may result
in parser failure. When an unknown word is encountered during example
parsing the systems suggests to add the word to the resource lexicon and
then repeats parsing attempt.

4Among other things HTML support has been added [8]

6. FUTURE WORK 17

Figure 1: Numerals GUI displays numbers in dozens of languages. Adapted from
the Java Syntax Editor GUI without disturbing the GF core system.

18

The main function of GF IDE is interactive grammar localization for the
languages supported by the resource grammar library.

Another project is enriching Gramlets syntax editing functionality with pars-
ing functionality provided by GF Embedded Interpreter [4] – a pure Java library
that implements a restricted version of the GF language processor.

Paper 1.
GF Parallel Resource Grammars
and Russian

Janna Khegai. ”GF Parallel Resource Grammars and Russian”. In proceedings
of Coling/ACL-2006 (The joint conference of the International Committee on
Computational Linguistics and the Association for Computational Linguistics),
pages 475-482, Sydney, Australia, July 2006.

19

GF Parallel Resource Grammars and Russian

Janna Khegai

Department of Computer Science

Chalmers University of Technology

SE-41296 Gothenburg, Sweden

janna@cs.chalmers.se

Abstract

A resource grammar is a standard library

for the GF grammar formalism. It raises

the abstraction level of writing domain-

specific grammars by taking care of the

general grammatical rules of a language.

GF resource grammars have been built in

parallel for eleven languages and share a

common interface, which simplifies multi-

lingual applications. We reflect on our ex-

perience with the Russian resource gram-

mar trying to answer the questions: how

well Russian fits into the common inter-

face and where the line between language-

independent and language-specific should

be drawn.

1 Introduction

Grammatical Framework (GF) (Ranta, 2004) is a

grammar formalism designed in particular to serve

as an interlingua platform for natural language ap-

plications in sublanguage domains. A domain can

be described using the GF grammar formalism and

then processed by GF. Such descriptions are called

application grammars.

A resource grammar (Ranta, to appear) is a

general-purpose grammar that forms a basis for

application grammars. Resource grammars have

so far been implemented for eleven languages in

parallel. The structural division into abstract and

concrete descriptions, advocated in GF, is used

to separate the language-independent common in-

terface or Application Programming Interface

(API) from corresponding language-specific im-

plementations. Consulting the abstract part is suf-

ficient for writing an application grammar without

descending to implementation details. This ap-

proach raises the level of application grammar de-

velopment and supports multilinguality, thus, pro-

viding both linguistic and computational advan-

tages.

The current coverage is comparable with the

Core Language Engine (CLE) project (Rayner

et al., 2000). Other well-known multilingual

general-purpose grammar projects that GF can

be related to, are LFG grammars (Butt et al.,

1999) and HPSG grammars (Pollard and Sag,

1994), although their parsing-oriented unification-

based formalisms are very different from the

GF generation-oriented type-theoretical formal-

ism (Ranta, 2004).

A Russian resource grammar was added after

similar grammars for English, Swedish, French

and German (Arabic, Italian, Finnish, Norwegian,

Danish and Spanish are also supported in GF). A

language-independent API representing the cover-

age of the resource library, therefore, was already

available. The task was to localize modules for

Russian.

A resource grammar has morphological and

syntactic modules. Morphological modules in-

clude a description of word classes, inflectional

paradigms and a lexicon. Syntactic modules com-

prise a description of phrasal structures for ana-

lyzing bigger than one-word entities and various

combination rules. Note, that semantics, defining

the meanings of words and syntactic structures,

is constructed in application grammars. This is

because semantics is rather domain-specific, and,

thus, it is much easier to construct a language-

independent semantic model for a particular do-

main than a general-purpose resource semantics.

In the following sections we consider typical

definitions from different resource modules focus-

ing on aspects specific to Russian. We will also

demonstrate the library usage in a sample applica-

tion grammar.

2 Word Classes

Every resource grammar starts with a descrip-

tion of word classes. Their names belong to

the language-independent API, although their im-

plementations are language-specific. Russian fits

quite well into the common API here, since like

all other languages it has nouns, verbs, adjectives

etc. The type system for word classes of a lan-

guage is the most stable part of the resource gram-

mar library, since it follows traditional linguis-

tic descriptions (Shelyakin, 2000; Wade, 2000;

Starostin, 2005). For example, let us look at

the implementation of the Russian adjective type

AdjDegree:

param
Degree = Pos | Comp | Super;
Case = Nom|Gen|Dat|Acc|Inst|Prep;
Animacy = Animate | Inanimate;
Gender = Masc | Fem | Neut;
GenNum = ASingular Gender|APlural;
AdjForm = AF Case Animacy GenNum;

oper
AdjDegree : Type =
{s : Degree => AdjForm => Str};

First, we need to specify parameters (param) on

which inflection forms depend. A vertical slash

(|) separates different parameter values. While in

English the only parameter would be comparison

degree (Degree), in Russian we have many more

parameters:

• Case, for example: bolьxie doma –
bolьxih domov (big houses – big houses’).

• Animacy only plays a role in the ac-

cusative case (Acc) in masculine (Masc)

singular (ASingular) and in plural forms

(APlural), namely, accusative animate

form is the same as genitive (Gen) form,

while accusative inanimate form is the same

as nominative (Nom): � l�bl� bolьxie
doma – � l�bl� bolьxih muжqin (I love

big houses – I love big men).

• Gender only plays role in singular:

bolьxo� dom – bolьxa� maxina (big

house – big car). The plural never makes

a gender distinction, thus, Gender and

number are combined in the GenNum pa-

rameter to reduce redundant inflection table

items. The possible values of GenNum are

ASingular Masc, ASingular Fem,

ASingular Neut and APlural.

• Number, for instance: bolьxo� dom –
bolьxie doma (a big house – big houses).

• Degree can be more complex, since most

Russian adjectives have two comparative

(Comp) forms: declinable attributive and

indeclinable predicative1: bolee vysoki�
(more high) – vyxe (higher), and more

than one superlative (Super) forms: samy�
vysoki� (the most high) – naivysxi� (the

highest).

Even another parameter can be added, since

Russian adjectives in the positive (Pos) degree

have long and short forms: spoko�na� reka (the

calm river) – reka – spoko�na (the river is

calm). The short form has no case declension,

thus, it can be considered as an additional case

(Starostin, 2005). Note, that although the predica-

tive usage of the long form is perfectly grammat-

ical, it can have a slightly different meaning com-

pared to the short form. For example: long, pred-

icative on – bolьno� (”he is crazy”) vs. short,

predicative on – bolen (”he is ill”).

An oper judgement combines the name of

the defined operation, its type, and an expres-

sion defining it. The type for degree adjec-

tive (AdjDegree) is a table of strings (s: ..
=> ..=> Str) that has two main dimensions:

Degree and AdjForm, where the last one is a

combination of the parameters listed above. The

reason to have the Degree parameter as a sepa-

rate dimension is that a special type of adjectives

Adj that just have positive forms is useful. It in-

cludes both non-degree adjective classes: posses-

sive, like mamin (mother’s), lisi� (fox’es), and

relative, like russki� (Russian).

As a part of the language-independent API, the

name AdjDegree denotes the adjective degree

type for all languages, although each language has

its own implementation. Maintaining parallelism

among languages is rather straightforward at this

stage, since the only thing shared is the name of

1The English -er/more and -est/most variations are exclu-
sive, while in Russian both forms are valid.

a part of speech. A possible complication is that

parsing with inflectionally rich languages can be

less efficient compared to, for instance, English.

This is because in GF all forms of a word are kept

in the same declension table, which is convenient

for generation, since GF is a generation-oriented

grammar formalism. Therefore, the more forms

there are, the bigger tables we have to store in

memory, which can become an issue as the gram-

mars grow and more languages are added (Dada

and Ranta, 2006).

3 Inflection Paradigms and Lexicon

Besides word class declarations, morphology

modules also contain functions defining common

inflectional patterns (paradigms) and a lexicon.

This information is language-specific, so fitting

into the common API is not a consideration here.

Paradigms are used to build the lexicon incremen-

tally as new words are used in applications. A lex-

icon can also be extracted from other sources.

Unlike syntactic descriptions, morphological

descriptions for many languages have been al-

ready developed in other projects. Thus, consid-

erable efforts can be saved by reusing existing

code. How easy we can perform the transforma-

tion depends on how similar the input and output

formats are. For example, the Swedish morphol-

ogy module is generated automatically from the

code of another project, called Functional Mor-

phology (Forsberg and Ranta, 2004). In this case

the formats are very similar, so extracting is rather

straightforward. However, this might not be the

case if we build the lexicon from a very different

representation or even from corpora, where post-

modification by hand is simply inevitable.

A paradigm function usually takes one or more

string arguments and forms a lexical entry. For

example, the function nGolova describes the in-

flectional pattern for feminine inanimate nouns

ending with -a in Russian. It takes the basic form

of a word as a string (Str) and returns a noun (CN
stands for Common Noun, see definition in sec-

tion 4). Six cases times two numbers gives twelve

forms, plus two inherent parameters Animacy
and Gender (defined in section 2):

oper
nGolova: Str -> CN = \golova ->

let golov = init golova in {

s = table {

SF Sg Nom => golov+"a";

SF Sg Gen => golov+"y";
SF Sg Dat => golov+"e";
SF Sg Acc => golov+"u";
SF Sg Inst => golov+"o�";
SF Sg Prepos => golov+"e";
SF Pl Nom => golov+"y";
SF Pl Gen => golov;
SF Pl Dat => golov+"am";
SF Pl Acc => golov+"y";
SF Pl Inst => golov+"ami";
SF Pl Prepos => golov+"ah" };

g = Fem;
anim = Inanimate };

where \golova is a λ-abstraction, which means

that the function argument of the type Str will be

denoted as golova in the definition. The con-

struction let...in is used to extract the word

stem (golov), in this case, by cutting off the last

letter (init). Of course, one could supply the

stem directly, however, it is easier for the gram-

marian to just write the whole word without wor-

rying what stem it has and let the function take

care of the stem automatically. The table structure

is simple – each line corresponds to one parame-

ter value. The sign => separates parameter values

from corresponding inflection forms. Plus sign de-

notes string concatenation.

The type signature (nGolova: Str ->
CN) and maybe a comment telling that the

paradigm describes feminine inanimate nouns

ending with -a are the only things the grammar-

ian needs to know, in order to use the func-

tion nGolova. Implementation details (the in-

flection table) are hidden. The name nGolova
is actually a transliteration of the Russian word

golova (head) that represents nouns conforming

to the pattern. Therefore, the grammarian can just

compare a new word to the word golova in or-

der to decide whether nGolova is appropriate.

For example, we can define the word mashina
(maxina) corresponding to the English word car.

Maxina is a feminine, inanimate noun ending

with -a. Therefore, a new lexical entry for the

word maxina can be defined by:

oper mashina = nGolova "maxina" ;

Access via type signature becomes especially

helpful with more complex parts of speech like

verbs.

Lexicon and inflectional paradigms are

language-specific, although, an attempt to build

a general-purpose interlingua lexicon in GF has

been made. Multilingual dictionary can work

for words denoting unique objects like the sun

etc., but otherwise, having a common lexicon

interface does not sound like a very good idea or

at least something one would like to start with.

Normally, multilingual dictionaries have bilingual

organization (Kellogg, 2005).

At the moment the resource grammar has an

interlingua dictionary for, so called, closed word

classes like pronouns, prepositions, conjunctions

and numerals. But even there, a number of dis-

crepancies occurs. For example, the impersonal

pronoun one (OnePron) has no direct corre-

spondence in Russian. Instead, to express the

same meaning Russian uses the infinitive: esli
oqenь zahotetь, moжno v kosmos uletetь
(if one really wants, one can fly into the space).

Note, that the modal verb can is transformed

into the adverb moжno (it is possible). The

closest pronoun to one is the personal pronoun

ty (you), which is omitted in the final sen-

tence: esli oqenь zahoqexь, moжexь v kos-
mos uletetь. The Russian implementation of

OnePron uses the later construction, skipping the

string (s), but preserving number (n), person (p)

and animacy (anim) parameters, which are nec-

essary for agreement:

oper OnePron: Pronoun = {
s = "";
n = Singular;
p = P2;
anim = Animate };

4 Syntax

Syntax modules describe rules for combining

words into phrases and sentences. Designing a

language-independent syntax API is the most dif-

ficult part: several revisions have been made as the

resource coverage has grown. Russian is very dif-

ferent from other resource languages, therefore, it

sometimes fits poorly into the common API.

Several factors have influenced the API struc-

ture so far: application domains, parsing algo-

rithms and supported languages. In general, the

resource syntax is built bottom-up, starting with

rules for forming noun phrases and verb phrases,

continuing with relative clauses, questions, imper-

atives, and coordination. Some textual and dia-

logue features might be added, such as contrast-

ing, topicalization, and question-answer relations.

On the way from dictionary entries towards

complete sentences, categories loose declension

forms and, consequently, get more parameters that

”memorize” what forms are kept, which is neces-

sary to arrange agreement later on. Closer to the

end of the journey string fields are getting longer

as types contain more complex phrases, while pa-

rameters are used for agreement and then left be-

hind. Sentence types are the ultimate types that

just contain one string and no parameters, since

everything is decided and agreed on by that point.

Let us take a look at Russian nouns as an exam-

ple. A noun lexicon entry type (CN) mentioned in

section 3 is defined like the following:

param
SubstForm = SF Number Case;
oper
CN: Type = {
s: SubstForm => Str;
g: Gender;
anim: Animacy };

As we have seen in section 3, the string table field

s contains twelve forms. On the other hand, to

use a noun in a sentence we need only one form

and several parameters for agreement. Thus, the

ultimate noun type to be used in a sentence as an

object or a subject looks more like Noun Phrase

(NP):

oper NP : Type = {
s: Case => Str;
Agreement: {

n: Number;
p: Person;
g: Gender;
anim: Animacy} };

which besides Gender and Animacy also con-

tains Number and Person parameters (defined

in section 2), while the table field s only contains

six forms: one for each Case value.

The transition from CN to NP can be done via

various intermediate types. A noun can get modi-

fiers like adjectives – krasna� komnata (the red

room), determiners – mnogo xuma (much ado),

genitive constructions – gero� naxego vremeni
(a hero of our time), relative phrases – qelovek,
kotory� sme�ts� (the man who laughs). Thus,

the string field (s) can eventually contain more

than one word. A noun can become a part of other

phrases, e.g. a predicate in a verb phrase – znanie
– sila (knowledge is power) or a complement

in a prepositional phrase – za reko�, v teni
derevьev (across the river and into the trees).

The language-independent API has an hierarchy

of intermediate types all the way from dictionary

entries to sentences. All supported languages fol-

low this structure, although in some cases this does

not happen naturally. For example, the division

between definite and indefinite noun phrases is not

relevant for Russian, since Russian does not have

any articles, while being an important issue about

nouns in many European languages. The common

API contains functions supporting such division,

which are all conflated into one in the Russian im-

plementation. This is a simple case, where Rus-

sian easily fits into the common API, although a

corresponding phenomenon does not really exist.

Sometimes, a problem does not arise until the

joining point, where agreement has to be made.

For instance, in Russian, numeral modification

uses different cases to form a noun phrase in nom-

inative case: tri tovariwa (three comrades),

where the noun is in nominative, but p�tь to-
variwe� (five comrades), where the noun is in

genitive! Two solutions are possible. An extra

non-linguistic parameter bearing the semantics of

a numeral can be included in the Numeral type.

Alternatively, an extra argument (NumberVal),

denoting the actual number value, can be in-

troduced into the numeral modification function

(IndefNumNP) to tell apart numbers with the last

digit between 2 and 4 from other natural numbers:

oper IndefNumNP: NumberVal ->
Numeral -> CN -> NP;

Unfortunately, this would require changing

the language-independent API (adding the

NumberVal argument) and consequent adjust-

ments in all other languages that do not need

this information. Note, that IndefNumNP,

Numeral, CN (Common Noun) and NP (Noun

Phrase) belong to the language-independent

API, i.e. they have different implementations in

different languages. We prefer the encapsulation

version, since the other option will make the

function more error-prone.

Nevertheless, one can argue for both solutions,

which is rather typical while designing a com-

mon interface. One has to decide what should

be kept language-specific and what belongs to the

language-independent API. Often this decision is

more or less a matter of taste. Since Russian is

not the main language in the GF resource library,

the tendency is to keep things language-specific at

least until the common API becomes too restric-

tive for a representative number of languages.

The example above demonstrates a syntactic

construction, which exist both in the language-

independent API and in Russian although the com-

mon version is not as universal as expected. There

are also cases, where Russian structures are not

present in the common interface at all, since there

is no direct analogy in other supported languages.

For instance, a short adjective form is used in

phrases like mne nuжna pomowь (I need help)

and e� interesno iskusstvo (she is interested

in art). In Russian, the expressions do not have

any verb, so they sound like to me needed help

and to her interesting art, respectively. Here is the

function predShortAdj describing such adjec-

tive predication2 specific to Russian:

oper predShortAdj: NP -> Adj ->
NP -> S = \I, Needed, Help -> {

s = let {
toMe = I.s ! Dat;
needed = Needed.s !
AF Short Help.g Help.n;
help = Help.s ! Nom
} in
toMe ++ needed ++ help };

predShortAdj takes three arguments: a non-

degree adjective (Adj) and two noun phrases (NP)

that work as a predicate, a subject and an object in

the returned sentence (S). The third line indicates

that the arguments will be denoted as Needed, I
and Help, respectively (λ-abstraction). The sen-

tence type (S) only contains one string field s. The

construction let...in is used to first form the

individual words (toMe, needed and help) to

put them later into a sentence. Each word is pro-

duced by taking appropriate forms from inflection

tables of corresponding arguments (Needed.s,

Help.s and I.s). In the noun arguments I
and Help dative and nominative cases, respec-

tively, are taken (!-sign denotes the selection op-

eration). The adjective Needed agrees with the

noun Help, so Help’s gender (g) and number

(n) are used to build an appropriate adjective form

(AF Short Help.g Help.n). This is ex-

actly where we finally use the parameters from

Help argument of the type NP defined above.

We only use the declension tables from the argu-

2In this example we disregard adjective past/future tense
markers bylo/budet.

ments I and Needed – other parameters are just

thrown away. Note, that predShortAdj uses

the type Adj for non-degree adjectives instead of

AdjDegree presented in section 2. We also use

the Short adjective form as an extra Case-value.

5 An Example Application Grammar

The purpose of the example is to show similarities

between the same grammar written for different

languages using the resource library. Such similar-

ities increase the reuse of previously written code

across languages: once written for one language

a grammar can be ported to another language

relatively easy and fast. The more language-

independent API functions (names conventionally

starting with a capital letter) a grammar contains,

the more efficient the porting becomes.

We will consider a fragment of Health – a

small phrase-book grammar written using the re-

source grammar library in English, French, Ital-

ian, Swedish and Russian. It can form phrases like

she has a cold and she needs a painkiller. The fol-

lowing categories (cat) and functions (fun) con-

stitute language-independent abstract syntax (do-

main semantics):

cat
Patient; Condition;
Medicine; Prop;
fun
ShePatient: Patient;
CatchCold: Condition;
PainKiller: Medicine;
BeInCondition: Patient ->

Condition -> Prop;
NeedMedicine: Patient ->

Medicine -> Prop;
And: Prop -> Prop -> Prop;

Abstract syntax determines the class of statements

we are able to build with the grammar. The cat-

egory Prop denotes complete propositions like

she has a cold. We also have separate categories

of smaller units like Patient, Medicine and

Condition. To produce a proposition one can,

for instance, use the function BeInCondition,

which takes two arguments of the types Patient
and Condition and returns the result of the type

Prop. For example, we can form the phrase she

has a cold by combining three functions above:

BeInCondition
ShePatient CatchCold

where ShePatient and CatchCold are

constants used as arguments to the function

BeInCondition.

Concrete syntax translates abstract syntax into

natural language strings. Thus, concrete syntax is

language-specific. However, having the language-

independent resource API helps to make even a

part of concrete syntax shared among the lan-

guages:

lincat
Patient = NP;
Condition = VP;
Medicine = CN;
Prop = S;
lin
And = ConjS;
ShePatient = SheNP;
BeInCondition = PredVP;

The first group (lincat) tells that the semantic

categories Patient, Condition, Medicine
and Prop are expressed by the resource linguis-

tic categories: noun phrase (NP), verb phrase

(VP), common noun (CN) and sentence (S), re-

spectively. The second group (lin) tells that the

function And is the same as the resource coordina-

tion function ConjS, the function ShePatient
is expressed by the resource pronoun SheNP
and the function BeInCondition is expressed

by the resource function PredVP (the classic

NP VP->S rule). Exactly the same rules work for

all five languages, which makes the porting triv-

ial3. However, this is not always the case.

Writing even a small grammar in an inflection-

ally rich language like Russian requires a lot of

work on morphology. This is the part where us-

ing the resource grammar library may help, since

resource functions for adding new lexical entries

are relatively easy to use. For instance, the word

painkiller is defined similarly in five languages by

taking a corresponding basic word form as an ar-

gument to an inflection paradigm function:

-- English:
PainKiller = regN "painkiller";

-- French:
PainKiller = regN "calmant";

-- Italian:
PainKiller = regN "calmante";

3Different languages can actually share the same code us-
ing GF parameterized modules (Ranta, to appear)

-- Swedish:

PainKiller = regGenN
"smärtstillande" Neut;

-- Russian:
PainKiller = nEe "obezboliva�wee";
The Gender parameter (Neut) is provided for

Swedish.

In the remaining functions we see bigger dif-

ferences: the idiomatic expressions I have a cold

in French, Swedish and Russian is formed by ad-

jective predication, while a transitive verb con-

struction is used in English and Italian. There-

fore, different functions (PosA and PosTV) are

applied. tvHave and tvAvere denote transitive

verb to have in English and Italian, respectively.

IndefOneNP is used for forming an indefinite

noun phrase from a noun in English and Italian:

-- English:
CatchCold = PosTV tvHave
(IndefOneNP (regN "cold"));

-- Italian:
CatchCold = PosTV tvAvere
(IndefOneNP (regN "raffreddore"));

-- French:

CatchCold = PosA (regA "enrhumé")

-- Swedish:
CatchCold = PosA
(mk2A "förkyld" "förkylt");

-- Russian:
CatchCold = PosA
(adj yj "prostuжen");

In the next example the Russian version is rather

different from the other languages. The phrase

I need a painkiller is a transitive verb predica-

tion together with complementation rule in En-

glish and Swedish. In French and Italian we need

to use the idiomatic expressions avoir besoin and

aver bisogno. Therefore, a classic NP VP rule

(PredVP) is used. In Russian the same meaning

is expressed by using adjective predication defined

in section 4:

--English:
NeedMedicine pat med = predV2
(dirV2 (regV "need"))

pat (IndefOneNP med);

-- Swedish:
NeedMedicine pat med = predV2
(dirV2 (regV "behöver"))
pat (DetNP nullDet med);

-- French:
NeedMedicine pat med = PredVP
pat (avoirBesoin med);

-- Italian:
NeedMedicine pat med = PredVP
pat (averBisogno med);

-- Russian:
NeedMedicine pat med =
predShortAdj pat

(adj yj "nuжen") med;

Note, that the medicine argument (med) is used

with indefinite article in the English version

(IndefOneNP), but without articles in Swedish,

French and Italian. As we have mentioned

in section 4, Russian does not have any arti-

cles, although the corresponding operations ex-

ist for the sake of consistency with the language-

independent API.

Health grammar shows that the more similar

languages are, the easier porting will be. How-

ever, as with traditional translation the grammar-

ian needs to know the target language, since it is

not clear whether a particular construction is cor-

rect in both languages, especially, when the lan-

guages seem to be very similar in general.

6 Conclusion

GF resource grammars are general-purpose gram-

mars used as a basis for building domain-specific

application grammars. Among pluses of using

such grammar library are guaranteed grammatical-

ity, code reuse (both within and across languages)

and higher abstraction level for writing application

grammars. According to the ”division of labor”

principle, resource grammars comprise the nec-

essary linguistic knowledge allowing application

grammarians to concentrate on domain semantics.

Following Chomsky’s universal grammar hy-

pothesis (Chomsky, 1981), GF multilingual re-

source grammars maintain a common API for all

supported languages. This is implemented using

GF’s mechanism of separating between abstract

and concrete syntax. Abstract syntax declares uni-

versal principles, while language-specific parame-

ters are set in concrete syntax. We are not trying to

answer the general question what constitutes uni-

versal grammar and what beyond universal gram-

mar differentiates languages from one another. We

look at GF parallel resource grammars as a way to

simplify multilingual applications.

The implementation of the Russian resource

grammar proves that GF grammar formalism al-

lows us to use the language-independent API for

describing sometimes rather peculiar grammatical

variations in different languages. However, main-

taining parallelism across languages has its lim-

its. From the beginning we were trying to put as

much as possible into a common interface, shared

among all the supported languages. Word classes

seem to be rather universal at least for the eleven

supported languages. Syntactic types and some

combination rules are more problematic. For ex-

ample, some Russian rules only make sense as

a part of language-specific modules while some

rules that were considered universal at first are not

directly applicable to Russian.

Having a universal resource API and grammars

for other languages has made developing Rus-

sian grammar much easier comparing to doing it

from scratch. The abstract syntax part was simply

reused. Some concrete syntax implementations

like adverb description, coordination and subor-

dination required only minor changes. Even for

more language-specific rules it helps a lot to have

a template implementation that demonstrates what

kind of phenomena should be taken into account.

The GF resource grammar development is

mostly driven by application domains like soft-

ware specifications (Burke and Johannisson,

2005), math problems (Caprotti, 2006) or trans-

port network dialog systems (Bringert et al.,

2005). The structure of the resource grammar li-

brary is continually influenced by new domains

and languages. The possible direction of GF par-

allel resource grammars’ development is extend-

ing the universal interface by domain-specific and

language-specific parts. Such adaptation seems to

be necessary as the coverage of GF resource gram-

mars grows.

Acknowledgements

Thanks to Professor Arto Mustajoki for fruitful

discussions and to Professor Robin Cooper for

reading and editing the final version of the paper.

Special thanks to Professor Aarne Ranta, my su-

pervisor and the creator of GF.

References

B. Bringert, R. Cooper, P. Ljunglöf, and A. Ranta.
2005. Multimodal Dialogue System Grammars. In
DIALOR’05, Nancy, France.

D.A. Burke and K. Johannisson. 2005. Translating
Formal Software Specifications to Natural Language
/ A Grammar-Based Approach. In LACL 2005,
LNAI 3402, pages 51–66. Springer.

M. Butt, T. H. King, M.-E. Ni no, and F. Segond, edi-
tors. 1999. A Grammar Writer’s Cookbook. Stan-
ford: CSLI Publications.

O. Caprotti. 2006. WebALT! Deliver Mathematics Ev-
erywhere. In SITE 2006, Orlando, USA.

N. Chomsky. 1981. Lectures on Government and
Binding: The Pisa Lectures. Dordrecht, Holland:
Foris Publications.

A. E. Dada and A. Ranta. 2006. Implement-
ing an arabic resource grammar in grammatical
framework. At 20th Arabic Linguistics Sym-
posium, Kalamazoo, Michigan. URL: www.md
stud.chalmers.se/˜eldada/paper.pdf.

M. Forsberg and A. Ranta. 2004. Functional morphol-
ogy. In ICFP’04, pages 213–223. ACM Press.

M. Kellogg. 2005. Online french, italian and spanish
dictionary. URL: www.wordreference.com.

C. Pollard and I. Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.

A. Ranta. 2004. Grammatical Framework: A Type-
theoretical Grammar Formalism. The Journal of
Functional Programming, 14(2):145–189.

A. Ranta. to appear. Modular Grammar Engineer-
ing in GF. Research in Language and Computa-
tion. URL: www.cs.chalmers.se/˜aarne/
articles/ar-multieng.pdf

M. Rayner, D. Carter, P. Bouillon, V. Digalakis, and
M. Wirén. 2000. The spoken language translator.
Cambridge University Press.

M.A. Shelyakin. 2000. Spravochnik po russkoj gram-
matike (in Russian). Russky Yazyk, Moscow.

S. Starostin. 2005. Russian morpho-engine on-line.
URL: starling.rinet.ru/morph.htm.

T. Wade. 2000. A Comprehensive Russian Grammar.
Blackwell Publishing.

28

Paper 2.
Building and Using a Russian
Resource Grammar in GF

Janna Khegai and Aarne Ranta. ”Building and Using a Russian Resource Gram-
mar in GF”. In Intelligent Text Processing and Computational Linguistics (CICLing-
2004), Seoul, Korea. LNCS 2945, pages 38-41. Springer, 2004.

29

Building and Using

a Russian Resource Grammar in GF

Janna Khegai and Aarne Ranta

Department of Computing Science
Chalmers University of Technology and Gothenburg University

SE-41296, Gothenburg, Sweden
{janna, aarne}@cs.chalmers.se

Abstract. Grammatical Framework (GF) [5] is a grammar formalism
for describing formal and natural languages. An application grammar
in GF is usually written for a restricted language domain, e.g. to map
a formal language to a natural language. A resource grammar, on the
other hand, aims at a complete description of a natural languages. The
language-independent grammar API (Application Programmer’s Inter-
face) allows the user of a resource grammar to build application gram-
mars in the same way as a programmer writes programs using a stan-
dard library. In an ongoing project, we have developed an API suitable
for technical language, and implemented it for English, Finnish, French,
German, Italian, Russian, and Swedish. This paper gives an outline of
the project using Russian as an example.

1 The GF Resource Grammar Library

The Grammatical Framework (GF) is a grammar formalism based on type theory
[5]. GF grammars can be considered as programs written in the GF grammar
language, which can be compiled by the GF program. Just as with ordinary
programming languages, the efficiency of programming labor can be increased by
reusing previously written code. For that purpose standard libraries are usually
used. To use the library a programmer only needs to know the type signatures
of the library functions. Implementation details are hidden from the user.

The GF resource grammar library [4] is aimed to serve as a standard library
for the GF grammar language. It aims at fairly complete descriptions of different
natural languages, starting from the perspective of linguistics structure rather
the logical structure of applications. The current coverage is comparable with,
but still smaller than, the Core Language Engine (CLE) project [2].

Since GF is a multilingual system the library structure has an additional
dimension for different languages. Each language has its own layer, produced by
visible to the linguist grammarian. What is visible to the application grammarian
is a an API (Application Programmer’s Interface), which abstracts away from
linguistic details and is therefore, to a large extent, language-independent. The
module structure of a resource grammar layer corresponding to one language is
shown in Fig. 1. Arrows indicate the dependencies among the modules.

Fig. 1. The resource grammar structure (main modules). One language layer. Shad-
owed boxes represent high-level of interface modules. White boxes represent low-level
or implementation modules. Arrows show the dependencies.

The Russian grammar was written after grammars for English, Swedish,
French and German. The language-independent modules, defining the coverage
of the resource library, were therefore ready. The task was to instantiate these
modules for Russian. As a reference for Russian language, [3, 6, 7] were used.

2 An Example: Arithmetic Grammar

Here we consider some fragments from a simple arithmetic grammar written
using the Russian resource grammar library, which allows us to construct state-
ments like one is even or the product of zero and one equals zero.

The abstract part describes the meaning captured in this arithmetic gram-
mar. This is done by defining some categories and functions:

cat

Prop ; -- proposition

Dom ; -- domain of quantification

Elem Dom ; -- individual element of a domain

fun

zero : Elem Nat ; -- zero constructor

Even : Elem Nat -> Prop ; -- evenness predicate

EqNat : (m,n : Elem Nat) -> Prop ; -- equality predicate

prod : (m,n : Elem Nat) -> Elem Nat ; -- product function

To linearize the semantic categories and functions of the application grammar,
we use grammatical categories and functions from the resource grammar:

lincat

Dom = N ; -- Common Noun category

Prop = S ; -- Sentence category

Elem = NP ; -- Noun Phrase category

lin

zero = DefOneNP (UseN nol) ;

Even = predA1 (AdjP1 (adj1Star "qetn"));
EqNat = predV2 ravnjatsja ;

prod = appFunColl (funGen proizvedenie) ;

Some of the functions—nol, ravnjatsja, and proizvedenie—are lexical enti-
ties defined in the resource, ready with their inflectional forms ((which can mean
dozens of forms in Russian), gender, etc. The application grammarian just has
to pick the right ones. Some other functions—adj1Star—are lexical inflection
patterns. To use them, one has to provide the word stem and choose the correct
pattern.

The rest of the functions are from the language-independent API. Here are
their type signatures:

AdjP1 : Adj1 -> AP ; -- adjective from lexicon

predA1 : AP -> VP ; -- adjectival predication

DefOneNP : CN -> NP ; -- singular definite phrase

UseN : N -> CN ; -- noun from lexicon

appFamColl : Fun -> NP -> NP -> NP ; -- collective function appl

predV2 : V2 -> NP -> NP -> NP -> S ; -- two-place verb predic

The user of the library has to be familiar with notions of constituency, but not
with linguistic details such as inflection, agreement, and word order.

Writing even a small grammar in inflectionally rich language like Russian
requires a lot of work on morphology. This is the part where using the resource
grammar library really helps to speed up, since the resource functions for adding
new lexical entries are relatively easy to use.

Syntactic rules are more tricky and require fair knowledge of the type system
used. However, they heighten the level of the code written by using only function
application. The resource style is also less error prone, since the correctness of
the library functions is presupposed.

Using the resource grammar API, an application grammar can be imple-
mented for different languages in a similar manner, since there is a shared
language-independent API part and also because the libraries for different lan-
guages have similar structures. Often the same API functions can be used in
different languages; but it may also happen that e.g. adjectival predication in
one language is replaced by verbal predication in another.

Fig. 2 shows a simple theorem proof constructed by using the arithmetic
grammars for Russian and English. The example was built with help of GF
Syntax Editor [1].

3 Conclusion

A library of resource grammars is essential for a wider use of GF. In a gram-
mar formalism, libraries are even more important than in a general-purpose
programming language, since writing grammars for natural languages is such a

Fig. 2. Example of a theorem proof constructed using arithmetic grammars in Russian
and English.

special kind of programming: it is easier to find a programmer who knows how
to write a sorting algorithm than one who knows how to write a grammar for
Russian relative clauses. To make GF widely used outside the latter group of
programmers, resource grammars have to be created. Experience has shown that
resource grammars for seemingly very different languages can share an API by
which different grammars can be accessed in the same way. As a part of future
work on the resource libraries, it remains to see how much divergent extensions
of the common API are needed for different languages.

References

1. J. Khegai, B. Nordström, and A. Ranta. Multilingual syntax editing in GF. In
A. Gelbukh, editor, CICLing-2003, Mexico City, Mexico, LNCS, pages 453–464.
Springer, 2003.

2. M.Rayner, D.Carter, P.Bouillon, V.Digalakis, and M.Wirén. The spoken language
translator. Cambridge University Press, 2000.

3. I.M. Pulkina. A Short Russian Reference Grammar. Russky Yazyk, Moscow, 1984.
4. A. Ranta. The GF Resource grammar library, 2002.

http://tournesol.cs.chalmers.se/aarne/GF/resource/.
5. A. Ranta. Grammatical Framework: A Type-theoretical Grammar Formalism. The

Journal of Functional Programming, to appear.
6. M.A. Shelyakin. Spravochnik po russkoj grammatike (in Russian). Russky Yazyk,

Moscow, 2000.
7. T. Wade. A Comprehensive Russian Grammar. Blackwell Publishing, 2000.

34

Paper 3.
Grammatical Framework (GF)
for MT in Sublanguage Domains

Janna Khegai. ”Grammatical Framework (GF) for MT in Sublanguage Do-
mains”. In proceedings of EAMT-2006 (11th Annual conference of the European
Association for Machine Translation), pages 95-104, Oslo, Norway, 2006.

35

Grammatical Framework (GF)

for MT in sublanguage domains

Janna Khegai

Department of Computer Science,

Chalmers University of Technology,

SE-41296, Gothenburg, Sweden

janna@cs.chalmers.se

Abstract

Grammatical Framework (GF) is a meta-language for multilingual linguis-
tic descriptions, which can be used to build rule-based interlingua MT ap-
plications in natural sublanguage domains. The GF open-source package
contains linguistic and computational resources to facilitate language en-
gineering including: a resource grammar library for ten languages, a user
interface for multilingual authoring and a grammar development environ-
ment.

1 Introduction

Grammatical Framework (GF) is a grammar
formalism that can be used to build rule-
based interlingua MT applications in natu-
ral sublanguage domains (Burke & Johan-
nisson, 2005; Bringert, Cooper, Ljunglöf, &
Ranta, 2005; Caprotti, 2006). The GF im-
plementation takes functional programming
approach using a semantic model that could
be described in Type Theory (Ranta, 2004).
GF provides a powerful meta-language suit-
able for describing both natural and formal
languages (Ljunglöf, 2004).

The core of a GF grammar is a language-
independent interlingua, called abstract

syntax. It models a domain by declar-
ing categories and relations over them using
the notation of functional programming lan-
guages. Abstract syntax is the most crucial
and difficult part of grammar writing. An-
other part, called concrete syntax, maps
abstract syntax into strings of natural lan-
guage. Every language has its own defini-
tion for the given function, called lineariza-

tion. Values returned by linearization could
be not only strings, but also records and
tables, see section 5.2 for some examples.
This is especially important for expressing
such language-specific features like inflec-

tions, morphological parameters and discon-
tinuous constituents without affecting the
abstract part.

Speaking of language-specific lower-level
details we want to point out that it would
be unreasonably tedious to descend to such
details every time we write a GF gram-
mar. To address the problem a standard li-
brary for the GF language, called resource

grammar library, is provided. It decreases
grammar development cost by code reuse,
guaranteed grammaticality and raising the
abstraction level of the task. Resource
grammars are now implemented for ten lan-
guages: Danish, English, Finnish, French,
German, Italian, Norwegian, Russian, Span-
ish and Swedish, see Fig. 1. They have
been developed in parallel and share the
same interface for common rules and cate-
gories, which makes implementation of both
resource and application grammars easier
(Ranta, to appear, 2005).

A resource grammar describes a language
in general: the basic morphological and
syntactical rules applicable to any domain.
An application grammar, on the other
hand, describes a particular sublanguage do-
main, for example, a set of math problems
(Caprotti, 2006) or a local transport net-
work (Bringert et al., 2005). To write an ap-

Figure 1: GF performs MT of interlingua type.
Ten languages have general-purpose resource
grammars that conform to a common interface.

plication grammar using the resource library
one need to be a domain-expert, but from
the linguistics point of view, it is enough to
be a fluent speaker of a language. Thus, re-
source grammars take care of grammatical
issues allowing the application grammarian
to concentrate on the semantics of the de-
scribed domain. Ideally, resource and appli-
cation grammars should be separated on all
possible levels, see Fig. 2. In our experience
linguistic knowledge usually dominates the
size of the grammar, which makes resource
grammar library crucial for efficient gram-
mar development.

Even with the resource library, writing
grammars entirely by hand can be time-
consuming because it still requires a fair
knowledge of the resources. To speed up the
process one can use Integrated Development
Environment (GF IDE) (Khegai, 2005), in-
cluded in the GF package – a grammar ed-
itor that can automatically suggest appro-
priate resource functions or even pre-fill the
definition by parsing example strings with
resource library. Manual post modification
may be needed afterwards, but still it is use-
ful if the system can at least partially fill-in
the definition.

In the next sections we will outline how to
write a demo application in GF. The source
code and the executable are explained in sec-
tions 2 and 3 respectively. Section 4 contains
notes on the expressiveness of the GF gram-
mar formalism. Section 5 discusses some re-
lated work.

Figure 2: The table shows the ideal division of
labor between resource and application gram-
mars. A resource grammar is a general-purpose
grammar that covers morphological and syntac-
tical rules of a language. An application gram-
mar is built on the top of the resource grammar
and concentrates on the language-independent
semantic description of a particular sublanguage
domain.

2 Sample GF Grammar

We present a small example from the ap-
plication grammar Health written using
the resource grammar library in English,
French, Swedish and Russian. We start by
looking at the fragment of the language-
independent (although the English names
are used) abstract syntax:

cat

Patient; Medicine; Prop;

fun

ShePatient : Patient;

PainKiller : Medicine;

NeedMedicine : Patient ->

Medicine -> Prop;

The categories Patient, Medicine and
Prop denote a patient, a medication and
a proposition respectively. ShePatient

and PainKiller are constants of the types
Patient and Medicine. The function
NeedMedicine takes two arguments of the
types Patient and Medicine and returns
the result of the type Prop – a proposition
expressing that a patient is in the need of a
medication. NeedMedicine is used to form
phrases like she needs a painkiller where pa-
tients and medications can vary. Thus, we
get a generic function for forming this kind
of propositions provided that a representa-
tive amount of possible arguments (various
patients and medications) are covered by the
grammar. The semantic tree (interlingua) of
the phrase she needs a painkiller is a combi-
nation of the functions above:

NeedMedicine ShePatient PainKiller

where the constants ShePatient and
PainKiller are used as arguments to the
function NeedMedicine.

Given the abstract syntax now we need
a corresponding concrete syntax in order
to translate interlingua trees into strings of
natural language. While the abstract syn-
tax is shared among all the languages, each
language has its own concrete syntax. Let
us start with the linearization definitions,
which happen to be the same for all five lan-
guages. This fragment is written using the
language-independent part of the resource
grammar library:

lincat

Patient = NP;

Medicine = NP;

Prop = S;

lin

ShePatient = She;

The first three definitions indicate that
Patient, Medicine and Prop categories will
be expressed by noun phrase (NP) and sen-
tence (S) categories. Noun phrases and sen-
tences in different languages are already de-
fined in the resource grammar, so we can
just reuse them. The function ShePatient

is basically a pronoun corresponding to the
English pronoun she, which is also already
defined in the resource grammar (She). No-
tice, that the function She bears the partial
semantics of the pronoun she. Thus, some
widely applicable semantic notions like pro-
noun references can be part of the resource
grammar library, although, in general se-
mantics is left for application grammars.

The definitions above are the same for all
languages, which makes the porting trivial.
In the remaining functions we see bigger dif-
ferences:

-- English:

PainKiller =

mkNP (nReg "painkiller");

-- French:

PainKiller =

mkNP (nReg "calmant" masculine));

-- Swedish: PainKiller =

mkNP (nIngenBöjning "smärtstillande");

-- Russian:

PainKiller =

mkNP (nNeut ee "obezboliva�w");

Painkiller is defined by using the inflection
paradigms nReg (pattern for Regular nouns
in English and French, see more details in
section 5.2), nIngenBöjning (indeclinable
nouns in Swedish) and nNeut ee (neuter
gender nouns ending with -ee in Russian)
from the resource library, which take cor-
responding word stems (in quotes) as argu-
ments. In French we also specify the gender
(masculine) of a noun. The type-casting
operation mkNP converts a noun into a noun
phrase.

A linearization for NeedMedicine is de-
fined as follows:

-- English:

NeedMedicine =

predV2 (mkDirectVerb verbNeed);

-- Swedish: NeedMedicine =

predV2 (mkDirectVerb verbBehöva);

-- French:

NeedMedicine patient medic =

PredVP patient (avoirBesoin medic);

-- Russian:

NeedMedicine = predNeedAdjective;

The phrase she needs a painkiller is a transi-
tive verb predication together with comple-
mentation in English and Swedish (predV2,
see the function type signature below). In
French the idiomatic expression avoir be-
soin (avoirBesoin) is used and, there-
fore, the more basic predication rule PredVP
(the classic NP V P → S rule) is ap-
plied. Russian requires the rule for adjec-
tive predication (predNeedAdjective). All
the functions are taken from the resource li-
brary. The function mkDirectVerb converts
the lexicon entries verbNeed (English verb
to need) and verbBehöva (Swedish verb
behöver) into direct verb type. The argu-
ments patient and medic of the function
NeedMedicine denote a patient and a med-
ication respectively.

Notice, that to use, for example, the func-
tion predV2 it is enough to know its type
signature (implementation is hidden):

predV2 : TV -> NP -> NP -> S;

-- e.g. John loves Mary

The type signature indicates that predV2

forms a sentence (S) combining a transitive
verb (TV), a subject and an object (both ex-
pressed by noun phrases NP), like in John
loves Mary. One just needs to recognize that
the same pattern is used in the phrase she
needs a painkiller. To define NeedMedicine

we only have to supply the first verb argu-
ment – a transitive verb (in parenthesis in
English and Swedish versions). The func-
tion predV2 takes care of the rest including
agreement, word order etc. We can even
suppress both NP arguments in the nota-
tion, since they will be automatically re-
stored from predV2’s type signature.

Having both abstract and concrete syn-
taxes for four languages we are now able to
translate the sentence she needs a painkiller
from one language into another via interlin-
gua. In a similar manner we need to de-
scribe all utterances from the domain to be
covered by the grammar. This requires a
lot of work. The main part is abstract syn-
tax – designing categories and functions to
model the domain. All supported languages
have to be taken into account in the inter-
lingua representation, see section 3 (partic-
ulary Fig. 8) for an example. Sometimes,
it is not possible to think of all the details
from the start. Then, several iterations are
needed along the way.

If a model conforms well to a language,
writing a concrete syntax should be more or
less straightforward using the GF IDE gram-
mar editing tool. Its menu-driven mode
helps to navigate through the resource li-
brary. Its example-based mode automat-
ically pre-fills the linearization rules using
parsing with resource grammars. For in-
stance, to linearize NeedMedicine in English
it is enough to provide an example like you
need vitamins in GF IDE and the system
will parse the string into a syntactic tree,
which then can be modified into a lineariza-
tion rule by replacing syntactic structures
(e.g. you and vitamins) with corresponding

Figure 3: GF syntax editor looks like a text-
editor. Just type some text, for example, she

has a headache.

Figure 4: The sentence is translated via interlin-
gua into French, Russian and Swedish.

semantic components (patient and medic

arguments respectively).

3 Application example

We use the GF syntax editor (Khegai, Nord-
ström, & Ranta, 2003) as a user interface
to demonstrate the outcome of Health as
a computer phrase-book, which is able to
translate simple phrases on medical topics
between four languages. One can start with
typing something like she has a headache,
see Fig. 3. The system parses the input into
an interlingua representation, which is then
linearized into strings in other languages, see
Fig. 4.

One can proceed in any of the represented
languages. For example, in Russian we can
change the hurting body part from golova

(head) to noga (leg), see Fig. 5. Of course,
one cannot just type anything, since the sys-
tem can only process a limited sublanguage.
If in doubt, by right-clicking the mouse you
can invoke context-dependent pop-up menu
generated from the grammar, see Fig. 6. No-
tice, that the menu can be displayed not
only in English, but also in all the other lan-

Figure 5: Editing text in Russian: a middle-click
on a chosen word pop-ups a text filed, which can
be used for replacing the current body part –
golova (head) by a new one – noga (leg).

Figure 6: An editing menu in English is invoked
by right-clicking on a placeholder (denoted by a
question mark) in the sentence in English. The
menu is generated automatically from the gram-
mar.

guages, for example, in French, see Fig. 7.
So it is enough for the user to know only
one of the languages.

Given a phrase in one language the sys-
tem guarantees the correct translations into
other languages. The translation is not only
grammatically (agreement, word order etc.)
but also stylistically correct. For example,
she has a headache in English corresponds
to she has pain in the head in Swedish and
French, while in Russian it sounds more like
at her hurts head. GF grammars allows us
to enjoy high-quality translation by choos-
ing the most appropriate form for the lan-
guage, which, nonetheless, still conforms to
the same underlying language-independent
interlingua.

Interlingua approach has some inherent
drawbacks. For example, the phrase I have
a headache is considered ambiguous by the
system, see Fig. 8. The reason is that the
gender of the pronoun I used as a subject

Figure 7: To get a context-dependent editing
menu in French just right-click on the word in
the French version.

Figure 8: In case of ambiguity the system asks to
choose among the available options. Here, after
typing I have a headache the gender of the sen-
tence’s subject is required. In English the gender
of the subject is not important for forming a cor-
rect sentence. However, the gender distinction
is kept in the interlingua semantic representa-
tion for the sake of compatibility with other lan-
guages where gender is needed for subject-verb
agreement.

is not specified. The gender information
is usually necessary for subject-verb agree-
ment in, for example, Russian. So the sys-
tem has to know the gender in order to po-
tentially translate the statements into Rus-
sian. Notice, that Russian (or any other lan-
guage) can be switched-off during the edit-
ing session, but it still affects the underlying
semantic model.

4 On GF Expressiveness

The GF grammar formalism is stronger than
context-free grammars. Parsing in GF con-
sists of two steps:

• context-free parsing (a number of

parsers is implemented including basic
top-down, Earley, chart)

• post-processing phase

The result produced by a context-free parser
is further transformed by post-processing,
which mainly consists of argument rear-
rangements and consistency checking for du-
plicated arguments. Consequently, a GF
grammar needs to be translated into a
context-free grammar, before feeding into a
context-free parser. After such translation
each GF rule is represented by a context-
free rule annotated with so called profile

that contains non-context-free information
used by the post-processor. Profile de-
scribes the mapping from the position of
a rule argument in the syntactic tree (af-
ter post-processing) to the position in the
string (parsed text). Possible argument re-
combinations are:

• Permutation

• Suppression

• Reduplication

These operations are important for describ-
ing multilingual grammars sharing the same
interlingua model (abstract syntax). For
instance, permutation is used for transla-
tion of adjective modifiers from English into
French: even number corresponds to nom-
bre pair. Suppression is needed, for exam-
ple, in translation from English into Rus-
sian, where the first language uses noun ar-
ticles, but the second does not. In collo-
quial Russian reduplication of adjectives has
an intensifying function like in bely�-bely�

sneg (very white snow). In some languages
reduplication is used to form plural form
(Lindström, 1995). The expressive power
of the GF grammar formalism permits to
handle these phenomena known to be non-
context-free (Jurafsky & Martin, 2000).

To give an example of a profile annotation
let us look at the GF function f for Finnish
grammar that linearize strings like ”Every
woman is pretty”:

fun

f: A -> B -> C -> D;

f x y z =

y ++ "kuin" ++ y ++ "on" ++ z;

where x, y and z are the arguments of the
type A, B and C respectively. We assume
that all four types are linearized as strings.
Function f corresponds to the context free
rule:

f ::= B "kuin" B "on" C

with profile:

[[], [1,2], [3]],

where each element in the list contains oc-
currences of the corresponding argument of
the function. Positions are numbered ac-
cording to the order in the right part of the
resulting context-free rule. Thus, the first
argument is suppressed, the second repeated
twice on the first and second place in the
rule. The third argument appears once at
the third position.

Having at disposition the mechanisms for
permutation, suppression and reduplication,
we can easily describe the notorious non-
context-free language:

{anbncn|n = 1, 2, ...}

The corresponding GF grammar is the fol-
lowing:

cat

S; Aux;

fun

exp : Aux -> S;

first: Aux;

next : Aux -> Aux;

lincat

Aux = {s1: Str; s2: Str;

s3: Str};

lin

exp x = {s = x.s1 ++ x.s2 ++ x.s3};

first = {s1 = "a"; s2 = "b";

s3 = "c"};

next x = {s1 = "a" ++ x.s1; s2 =

"b" ++ x.s2; s3 = "c" ++ x.s3};

The idea is to build an expression in two
steps: first, accumulate each letter sepa-
rately and second, glue the resulting strings
together. For the first step we use an in-
ductive definition parameterized by the vari-
able n, namely: The function first forms a
record containing just one of each letters a,
b and c, describing the case when n equals
one. The function next derives the n+1-case
from the n-case. At the second step exp

concatenates all the letters. S is a termi-
nal string category, while Aux is an inter-
mediate record category that contains three
string fields – one for each letter. The syntax
tree for aaabbbccc looks like:

exp (next(next first))

For a more systematic description of GF
expressiveness and complexity we refer to
(Ranta, 2004; Ljunglöf, 2004).

5 Related Work

GF is related to several well-established mul-
tilingual frameworks successfully used for
MT applications such as Core Language
Engine (CLE) (Rayner, Carter, Bouillon,
Digalakis, & Wirén, 2000), Head-Driven
Phrase Structure Grammar (HPSG) (Pol-
lard & Sag, 1994) and Lexical-Functional
Grammar (LFG) (Butt, King, no, & Segond,
1999). Unlike GF, which takes type-
theoretical approach close to logical frame-
works, they come from computational lin-
guistics: feature-structured, unification-
based and more focused on parsing.

5.1 Grammar Engineering Tools

The grammar engineering environments
XLE (Xerox Linguistics Environment –
LFG) (Crouch et al., 2005) and LKB (Lexi-
cal Knowledge Base – HPSG) (Copestake &
Flickinger, 2000) have been used for build-
ing large scale multilingual grammars. Like
LKB, GF is an open-source project, while
XLE is not publicly available.

Both XLE and LKB have some Graph-
ical User Interface (GUI), but mostly in-
tended for running different commands from
the command-line for processing the ready

grammar files. Not much support is avail-
able for grammar writing itself. Grammars
are written entirely by hand in an ordinary
text editor like Emacs. GF IDE, on the
other hand, is specially designed to meet the
needs of grammar writers. The pluses com-
paring to common text editors are:

• Systematic treatment of ”exotic” lan-
guages. UTF8 encoding is used for lan-
guages with non-latin alphabets. The
system recognizes and properly displays
non-latin characters automatically.

• Example-based, menu-driven grammar
development.

• Lexicon extension on-the-fly, i.e. when
an unknown word is encountered during
example parsing the systems suggests
to add the word to the resource lexicon
and then repeats parsing attempt.

GF IDE saves time for scrolling the re-
source library files by hand and helps avoid-
ing small syntactic mistakes and type-errors
that can be automatically detected. It can
also save efforts in learning the non-trivial
grammar formalism, since otherwise sub-
stantial training is needed even for simple
grammar writing.

5.2 CLE and GF Resource Gram-
mar Library

GF resource grammar library is related to
the proprietary CLE grammars used for
Spoken Language Translator (SLT) system
for Air Travel Information System (ATIS)
domain. In the SLT system there are
three main languages: English (coded first),
Swedish and French (adapted from the En-
glish version). Spanish and Danish are also
present in the CLE project.

Quasi (scope-neutral) Logical Form
(QLF) – a feature-based formalism is used
for representing language structures. Since
the SLT uses a transfer approach two kinds
of rules are needed:

• monolingual (to and from QLF-form)
rules that are used for both parsing and
generation.

• bilingual transfer rules.

Both sets are specified in (Rayner et al.,
2000) using a unification grammars notation
built on top of Prolog syntax (based on Def-
inite Clause Grammars with features).

Both GF and CLE describe their gram-
mars declaratively. Record fields in the GF
type description roughly correspond to fea-
tures in the CLE. Linearization (interlingua)
rules in GF map to monolingual unification
rules in CLE. However, no part of the GF is
similar to the transfer rules set (more than
one thousand rules for each language pair),
since GF is essentially an interlingua system,
although transfer components and statisti-
cal methods can be introduced.

The syntax coverage of the GF resource
grammars is comparable with that of the
CLE grammars (about one hundred rules
per language in both cases), although, the
same phenomena are not treated in the same
way. For example, verb phrase discontinu-
ous constituents are handled by combining
the record fields in GF (in a manner simi-
lar to the one used in exp-rule in section 4),
while there is a special set of ”movement”
rules responsible for word order in the CLE.
By having a structure inside a verb phrase,
GF avoids introducing special rules for ev-
ery word order, so the rules for forming verb
phrases do not care about the word order in
the final sentence. It is only on the very top
sentence level, where the word order prob-
lem arises and is resolved by using the dis-
continuous constituents of a verb phrase.

Morphological rules in GF use tables
while the corresponding CLE rules use fea-
tures. In CLE we need to apply rules to the
basic word form in order to get other forms.
In GF the whole inflection pattern of a word
(according to several parameters) is put in
one table, see Fig 9. Therefore, we can just
select a form from the table by specifying all
the parameters at once, for example, to get
the string painkillers’, we use the expression:

PainKiller.s ! Pl ! Gen

where PainKiller is the lexicon entry, the
dot-operation gets access to the record field
containing inflection table strings (.s), the
exclamation-sign-operation (!) selects the
corresponding form (plural, genitive) from

Figure 9: The GF IDE dialog window for adding
lexicon entries. As indicated by the window cap-
tion, the inflection table has been generated from
the stem string painkiller by using the nReg

(Regular noun) inflection pattern. We can see
that all declension forms (by number: Sg, Pl

and case: Nom,Gen) are kept together in one ta-
ble. The inherent parameter Gender is also kept
as a record field in the noun category.

the table. Several independent rules are
needed to express a similar pattern in CLE,
since one rule can only take care of one pa-
rameter at a time. A possible explanation
for such differences in lexicon construction is
that CLE is more parsing-oriented, so keep-
ing all the forms in one entity is not cru-
cial, while GF is more generation-oriented
and storing all the forms together is more
convenient during generation, especially for
languages with rich inflectional systems.

Thus, the differences are partly due to
design decisions, partly hereditary to for-
malisms’ expressive means. However, the
general structure of the GF resource library
and the CLE monolingual rule set match a
lot, which is only natural, since they both re-
flect the structure of the modelled language.

5.3 Multilingual Authoring

The GF syntax editor from section 3 orig-
inates from proof editors like Alf (Magnus-
son & Nordström, 1994) used for interactive
theorem proving and pretty-printing of the
proofs. Constructing a proof in a proof edi-
tor corresponds to constructing an abstract

syntax tree in GF. The concrete part is, how-
ever, missing from the proof editors, since
the proofs are usually expressed in a sym-
bolic language of mathematics.

Menu-driven multilingual authoring pro-
cedure is similar to the WYSIWYM tool
(Power, Scott, & Evans, 1998), where Multi-
lingual Natural Language Generation from a
semantic knowledge base expressed in a for-
mal language (non-linguistic source) is op-
posed to MT (linguistic source). However,
there are two important differences. First,
GF grammars are not hard-wired and can
be extended and changed. This makes GF
more generic compared to WYSIWYM. Sec-
ond, GF grammar is bidirectional, so for ev-
ery grammar not only the generator is pro-
duced, but also a parser. Thus, the author
is allowed to type his input provided that it
conforms to the grammar, which is useful for
multilingual authoring applications because
typing can speed up tedious menu editing.
GF syntax editor is also capable of handling
ambiguous input.

The language-independent ontology (do-
main model, terminology) in the WYSI-
WYM corresponds to abstract syntax in
GF. Respectively, building a knowledge dia-
gram in the WYSIWYM corresponds to the
construction of an abstract syntax tree in
GF. In both systems a feedback text, gen-
erated from the current object in several
languages (English, French and Italian for
WYSIWYM) is shown to the user while edit-
ing.

Even the architecture of the WYSISYM
implementations DRAFTER-II is similar to
GF in a way that the GUI part is separated
from the processing engine. In WYSIWYM,
Prolog is used for both ontology descrip-
tion and generation while GUI is written in
CLIM (Common Lisp Interface Manager).
In GF, the computational core is written in
a functional programming language Haskell,
while GUI is a Java program.

GF was one of the sources of inspira-
tion for an XML-based multilingual doc-
ument authoring application for pharma-
ceutical domain developed at Xerox Re-
search Center Europe (XRCE) (Dymetman,
Lux, & Ranta, 2000). Its grammar for-
malism called Interaction Grammars (IG)

also has a separation between the language-
independent interlingua (abstract syntax in
GF) and parallel realization grammars (con-
crete syntax in GF) for different languages
(English and French). As GF the IG also
uses the notions of typing and dependent
types and is suitable for both parsing and
generation. But unlike GF the IG comes
from the logic programming tradition. Like
CLE grammars (see subsection 5.2) it is
based on the Definite Clause Grammars –
a unification-based extension of context-free
grammars, which has a build-in implemen-
tation in Prolog.

6 Conclusion

GF is an open-source platform for building
rule-based MT applications of interlingua
type. It has two-level organization: abstract
syntax for semantic definitions (interlingua)
projected onto the concrete syntaxes in ev-
ery supported language. The division be-
tween abstract and concrete syntax allows
grammar writers to focus on the semantic
level, abstracting from the structural differ-
ences between languages.

The division between general-purpose re-
source grammars and domain-specific appli-
cation grammars allows for mapping inter-
lingua into surface syntactic representations
without descending to low-level language-
specific linguistic details. The mapping can
be even performed semi-automatically using
example-based menu-driven grammar devel-
opment interface (GF IDE).

Designed for generation rather than pars-
ing, GF works best for well-formalized sub-
language domains like software specifica-
tions (Burke & Johannisson, 2005), mathe-
matical language (Caprotti, 2006) or trans-
port networks (Bringert et al., 2005). The
end-user applications so far comprise mul-
tilingual authoring tools (Hähnle, Johan-
nisson, & Ranta, 2002; Caprotti, 2006)
and multimodal dialog systems (Cooper &
Ranta, 2004; Bringert et al., 2005). The GF
language processor including several gram-
mar engineering tools is available at GF’s
homepage (Ranta, 2006).

References

Bringert, B., Cooper, R., Ljunglöf, P.,
& Ranta, A. (2005). Multimodal Dia-
logue System Grammars. In DIALOR’05,
Ninth Workshop on the Semantics and
Pragmatics of Dialogue, Nancy, France.

Burke, D., & Johannisson, K. (2005).
Translating Formal Software Specifica-
tions to Natural Language / A Grammar-
Based Approach. In J. B. P. Blace,
E. Stabler & R. Moot (Eds.), Logi-
cal Aspects of Computational Linguistics
(LACL 2005) (Vol. 3402, pp. 51–66).
Springer.

Butt, M., King, T. H., no, M.-E. N., &
Segond, F. (Eds.). (1999). A grammar
writer’s cookbook. Stanford: CSLI Publi-
cations.

Caprotti, O. (2006). WebALT! De-
liver Mathematics Everywhere.
In SITE 2006, Orlando, USA.
(webalt.math.helsinki.fi/content/
e16/e301/e512/PosterDemoWebALT.pdf)

Cooper, R., & Ranta, A. (2004). Dialogue
systems as proof editors. The Jornal of
Logic, Language and Information.

Copestake, A., & Flickinger, D. (2000).
An open-source grammar development
environment and broad-coverage english
grammar using hpsg. In Second confer-
ence on Language Resources and Evalua-
tion (LREC-2000), Athens, Greece.

Crouch, D., Dalrymple, M., Kaplan, R.,
King, T., Maxwell, J., & Newman,
P. (2005). XLE documentation. (URL:
www2.parc.com/istl/groups/nltt/xle)

Dymetman, M., Lux, V., & Ranta, A.
(2000). XML and multilingual document
authoring: Convergent trends. In COL-
ING, Saarbrücken, Germany (pp. 243–
249).

Hähnle, R., Johannisson, K., & Ranta,
A. (2002). An authoring tool for in-
formal and formal requirements specifi-
cations. In R.-D. Kutsche & H. Weber
(Eds.), Fundamental Approaches to Soft-
ware Engineering (Vol. 2306, pp. 233–
248). Springer.

Jurafsky, D., & Martin, J. (2000). Speech

and language processing. Prentice Hall.

Khegai, J. (2005). GF IDE for GF 2.1.
www.cs.chalmers.se/~aarne/GF2.0/

GF-Doc/GF_IDE_manual/index.htm.

Khegai, J., Nordström, B., & Ranta, A.
(2003). Multilingual syntax editing in
GF. In A. Gelbukh (Ed.), CICLing-
2003, Mexico City, Mexico (pp. 453–464).
Springer.

Lindström, J. (1995). Summary on redupli-
cation. LINGUIST List: Vol-6-52.

Ljunglöf, P. (2004). Expressiv-
ity and Complexity of the Gram-
matical Framework. (URL:
www.cs.chalmers.se/~peb/pubs/p04-

PhD-thesis.pdf)

Magnusson, L., & Nordström, B. (1994).
The ALF proof editor and its proof en-
gine. In Types for Proofs and Programs
(pp. 213–237). Springer.

Pollard, C., & Sag, I. (1994). Head-Driven
Phrase Structure Grammar. University of
Chicago Press.

Power, R., Scott, D., & Evans, R. (1998).
Generation as a solution to its own prob-
lem. In Inlg’98. Niagara-on-the-Lake,
Canada.

Ranta, A. (2004). Grammatical Frame-
work: A Type-theoretical Grammar For-
malism. The Journal of Functional Pro-
gramming, 14 (2), 145–189.

Ranta, A. (2006). GF Homepage.
(www.cs.chalmers.se/~aarne/GF/)

Ranta, A. (to appear, 2005). Modular
Grammar Engineering in GF. Re-
search in Language and Computation.
(URL: www.cs.chalmers.se/~aarne/

articles/ar-multieng.pdf)

Rayner, M., Carter, D., Bouillon, P., Di-
galakis, V., & Wirén, M. (2000). The
spoken language translator. Cambridge
University Press.

46

Paper 4.
Multilingual Syntax Editing in
GF

Janna Khegai, Bengt Nordström and Aarne Ranta. ”Multilingual Syntax Editing
in GF”. In Intelligent Text Processing and Computational Linguistics (CICLing-
2003), Mexico. LNCS 2588, pages 453-464. Springer, 2003.

47

Multilingual Syntax Editing in GF

Janna Khegai, Bengt Nordström, and Aarne Ranta

Department of Computing Science
Chalmers University of Technology and Gothenburg University

SE-41296, Gothenburg, Sweden
{janna, bengt, aarne}@cs.chalmers.se

Abstract. GF (Grammatical Framework) makes it possible to perform
multilingual authoring of documents in restricted languages. The idea is
to use an object in type theory to describe the common abstract syntax
of a document and then map this object to a concrete syntax in the
different languages using linearization functions, one for each language.
Incomplete documents are represented using metavariables in type the-
ory. The system belongs to the tradition of logical frameworks in com-
puter science. The paper gives a description of how a user can use the
editor to build a document in several languages and also shows some
examples how ambiguity is resolved using type checking. There is a brief
description of how GF grammars are written for new domains and how
linearization functions are defined.

1 Introduction

1.1 Multilingual authoring

We are interested in the problem of editing a document in several languages
simultaneously. In order for the problem to be feasible, we use a restricted lan-
guage. The idea is to use a mathematical structure (an object in type theory) as
the basic representation of the document being edited. This structure describes
the abstract syntax of the document. Concrete representations of the document
in the various languages are expressed using linearization functions, one function
for each language. The process of producing a concrete representation from the
abstract object is thus deterministic, each abstract object has only one concrete
representation in each language. The reverse problem (parsing) is not determin-
istic, a given concrete representation may correspond to many abstract objects
(ambiguity). The way we resolve ambiguity is by having an interactive system,
an ambiguity results in an incomplete abstract object which has to be completed
by the user. For instance, in the phrase Dear friend it is not clear whether the
friend is male of female, thus making a translation into Swedish impossible. In
the corresponding abstract object there is a field for gender which has to be filled
in by the user before the editing is complete.

Type theory is a completely formal language for mathematics developed by
Martin-Löf in the 70’s [9]. Versions of it are extensively used under the title of
Logical Frameworks in various implementations of proof editors like Coq [19],

Alf [8], and Lego [7]. The type system of type theory is not only used to express
syntactic well-formedness, but also semantic well-formedness. This means that a
syntactically well-formed term also has a meaning. Moreover, it is often possible
to use type checking to resolve ambiguities that a weaker grammatical description
cannot resolve.

1.2 The GF Niche - Meaning-Based Technique

Grammatical Framework (GF) is a grammar formalism built upon a Logical
Framework (LF). What GF adds to LF is a possibility to define concrete syntax,
that is, notations expressing formal concepts in user-readable ways. The concrete
syntax mechanism of GF is powerful enough to describe natural languages: like
PATR [18] and HPSG [13], GF uses features and records to express complex lin-
guistic objects. Although GF grammars are bidirectional like PATR and HPSG,
the perspective of GF is on generation rather than parsing. This implies that
grammars are built in a slightly different way, and also that generation is efficient
enough to be performed in real time in interactive systems. Another difference
from usual grammar formalisms is the support for multilinguality: it is possi-
ble to define several concrete syntaxes upon one abstract syntax. The abstract
syntax then works as an interlingua between the concrete syntaxes. The develop-
ment of GF as an authoring system started as a plug-in to the proof editor ALF,
to permit natural-language rendering of formal proofs [5]. The extension of the
scope outside mathematics was made in the Multilingual Document Authoring
project at Xerox [3]. In continued work, GF has been used in areas like software
specifications [4], instruction texts [6], and dialogue systems [17]. In general, GF
works for any domain of language that permits a formal grammar. Since LF is
more general than specific logical calculi, it is more flexible to use on different
domains than, for instance, predicate calculus.

1.3 The Scope of the Paper

The GF program implementing the GF grammar formalism is a complex system
able to perform many NLP tasks. For example, it can do the morphological
analysis of French verbs, construct a letter in several languages, and even greet
you in the morning using a speech synthesizer. In this paper, however, we choose
to restrict the topic and only look at GF as a multilingual authoring tool. For a
more elaborated description of the system, we refer to [16, 15].

The GF users can be divided into three competence levels:

– Author level
– Grammarian level
– Implementor level

On the author level all we can do is to work with pre-existing grammars. This
level is described in Section 2. On the grammarian level we write grammars
describing new language fragments. This, of course, requires acquaintance with

the GF formalism. Examples of work on this level are given in Section 3. On
both of these levels, we have some control, for example, over parsing algorithms
to be used. However, the full control of parsing, linearization, graphics and other
algorithms, is only accessible on the implementor level. Since GF is open source
software, any user who wants can also become an implementor; but describing
the implementor level is outside the scope of this paper.

2 The GF Syntax Editor

The graphical user interface implemented in the GF Syntax Editor hides the
complexity of the system from the naive user. It provides access to the system
functionality without requiring knowledge of the GF formalism. In this section
we will show a simple example of GF syntax editing procedure.

When you start the GF editor you choose the topic and the languages you
want to work with. For instance, we decide to work within the LETTER topic
and want to have translations in four languages: English, Swedish, French and
Finnish. You can create a new editing object by choosing a category from the
New list. For example, to construct a letter, choose the Letter category (Fig. 1).
In Fig. 2 you can see the created object in the tree form in the left upper
part as well as linearizations in the right upper part. The tree representation
corresponds to the GF language-independent semantic representation, the GF
abstract syntax or interlingua. The linearizations area displays the result of
translation of abstract syntax representation into the corresponding language
using the GF concrete syntax.

Fig. 1. The New menu shows the list of available categories within the current topic
LETTER. Choosing the category Letter in the list will create an object of the cor-
responding type. The linearizations area contains a welcome message when the GF
Editor has just been started.

According to the LETTER grammar a letter consists of a Heading, a Mes-
sage and an Ending, which is reflected in the tree and linearizations structures.

Fig. 2. The Abstract Syntax tree represents the letter structure. The current editing
focus, the metavariable ?1 is highlighted. The type of the current focus is shown below
the linearizations area. The context-dependent refinement option list is shown in the
bottom part.

However, the exact contents of each of these parts are not yet known. Thus,
we can only see question marks, representing metavariables, instead of language
phrases in the linearizations.

Editing is a process of step-wise refinement, i.e. replacement of metavariables
with language constructions. In order to proceed you can choose among the
options shown in the refinement list. The refinement list is context-dependent,
i.e. it refers to the currently selected focus. For example, if the focus is Heading,
then we can choose among four options. Let us start our letter with the DearRec
structure (Fig. 3(a)).

Now we have a new focus - metavariable ?4 of the type Recipient and a new
set of refinement options. We have to decide what kind of recipient the letter has.
Notice that the word Dear in Swedish and French versions is by default in male
gender and, therefore, uses the corresponding adjective form. Suppose we want
to address the letter to a female colleague. Then we choose the ColleagueShe
option (Fig. 3(b)).

Notice that the Swedish and French linearizations now contain the female
form of the adjective Dear , since we chose to write to a female recipient. This
refinement step allows us to avoid the ambiguity while translating from English
to, for example, a Swedish version of the letter.

Proceeding in the same fashion we eventually fill all the metavariables and
get a completed letter like the one shown in Fig. 4(a).

A completed letter can be modified by replacing parts of it. For instance, we
would like to address our letter to several male colleagues instead. We need first
to move the focus to the Header node in the tree and delete the old refinement. In
Fig. 5(a), we continue from this point by using the Read button, which invokes
an input dialog, and expects a string to parse. Let us type colleagues.

The parsed string was ambiguous, therefore, as shown in Fig. 5(b), GF asks
further questions. Notice that after choosing the ColleaguesHe option, not only
the word colleague , but the whole letter switches to the plural, male form, see
Fig. 4(b). In the English version only the noun fellow turns into plural, while
in the other languages the transformations are more dramatic. The pronoun you

turns into plural number. The participle promoted changes the number in the
Swedish and French versions. The latter also changes the form of the verb have.

Fig. 3. (a) The linearizations are now filled with the first word that corresponds to Dear
expression in English, Swedish, French and Finnish. The refinement focus is moved to
the Recipient metavariable. (b) The Heading part is now complete. The adjective form
changes to the corresponding gender after choosing the recipient.

Fig. 4. (a) The complete letter in four languages. (b) Choosing the plural male form
of the Recipient causes various linguistic changes in the letter as compared to (a).

Fig. 5. (a) A refinement step can be done by using the Read button, which asks the
user for a string to parse. (b) When the parsed string in (a) is ambiguous GF presents
two alternative ways to resolve the ambiguity.

Both the gender and the number affect the adjective dear in French, but only
the number changes in the corresponding Finnish adjective. Thus, the refinement
step has led to substantial linguistic changes.

3 The GF grammar formalism

The syntax editor provided by GF is generic with respect to both subject matters
and target languages. To create a new subject matter (or modify an old one),
one has to create (or edit) an abstract syntax. To create a new target language,
one has to work on a concrete syntax. Target languages can be added on the fly:
if a new language is selected from the Language menu, a new view appears in
the editor while other things remain equal, including the document that is being
edited. Fig. 6 shows the effect of adding Russian to the above example.

Fig. 6. Now we are able to translate the letter into Russian

The syntax editor itself is meant to be usable by people who do not know GF,
but just something of the subject matter and at least one of the target languages.
Authoring GF grammars requires expertise on both the subject matter and the
target languages, and of course some knowledge of the GF grammar formalism.

A typical GF grammar has an abstract syntax of 1–3 pages of GF code, and
concrete syntaxes about the double of that size. The use of resource grammars
(Section 3.5) makes concrete syntaxes much shorter and easier to write.

3.1 Abstract syntax: simple example

An abstract syntax gives a structural description of a domain. It can be semanti-
cally as detailed and rigorous as a mathematical theory in a Logical Framework.
It can also be less detailed, depending on how much semantic control of the doc-
ument is desired. Asq an example, consider a fragment of the abstract syntax
for letters:

cat Letter ; Recipient ; Author ; Message ;

Heading ; Ending ; Sentence ;

fun MkLetter : Heading -> Message -> Ending -> Letter ;

fun DearRec : Recipient -> Heading ;

fun PlainSent : Sentence -> Message ;

fun ColleagueHe, ColleaguesShe : Recipient ;

The grammar has a set of categories cat and functions fun. The functions are
used for building abstract syntax trees, and each tree belongs to a category.
When editing proceeds, the system uses the abstract syntax to build a menu of
possible actions: for instance, the possible refinements for a metavariable of type
C are those functions whose value type is C.

3.2 Concrete syntax

Concrete syntax maps abstract syntax trees into linguistic objects. The objects
can be simply strings, but in general they are records containing inflection tables,
agreement features, etc. Each record has a type, which depends on the category
of the tree, and of course on the target language. For instance, a part of the
English category system for letters is defined as follows:

param Num = Sg | Pl ;

param Agr = Ag Num ;

lincat Letter = {s : Str} ;

lincat Recipient, Author = {s : Str ; a : Agr} ;

lincat Message = {s : Agr => Agr => Str} ;

lincat Heading, Ending = {s : Str ; a : Agr} ;

Both the author and the recipient have inherent agreement features (number),
which are passed from them to the message body, so that right forms of verbs
and nouns can be selected there:

lin MkLetter head mess end = {s =

head.s ++ "," ++

mess.s ! end.a ! head.a ++ "." ++

end.s} ;

Different languages have different parameter systems. French, for instance, has
gender in addition to number in the agreement features:

param Gen = Masc | Fem ; Num = Sg | Pl ; Agr = Ag Gen Num ;

3.3 Semantic control in abstract syntax

The main semantic control in the letter grammar is the structure that is imposed
on all letters: it is, for instance, not possible to finish a letter without a heading.
This kind of control would be easy to implement even using a context-free gram-
mar or XML. Semantic control of more demanding kind is achieved by using the
dependent types of type theory. For instance, the abstract syntax

cat Text ; Prop ; Proof (A : Prop) ;

fun ThmWithProof, ThmHideProof : (A : Prop) -> Proof A -> Text ;

defines mathematical texts consisting of a proposition and a proof. The type of
proofs depends on propositions: the type checker can effectively decide whether
a given proof really is a proof of a given theorem. Type checking also helps the
author of the proof by only showing menu items that can possibly lead to a
correct proof. Proof texts are linearized by to the following rules:

lin ThmWithProof A P =

{s = "Theorem." ++ A.s ++ "Proof." ++ P.s ++ "Q.E.D."} ;

lin ThmHideProof A P =

{s = "Theorem." ++ A.s ++ "Proof." ++ "Omitted."} ;

The latter form omits the proof, but the author is nevertheless obliged to con-
struct the proof in the internal representation.

Mathematical texts with hidden proofs are a special case of proof-carrying

documents, where semantic conditions are imposed by using dependent types
in abstract syntax (cf. the notion of proof-carrying code [12]). Consider texts
describing flight connections:

To get from Gothenburg to New York, you can first fly SK433 to Copen-

hagen and then take SK909.

There are three conditions: that SK433 flies from Gothenburg to Copenhagen,
that SK909 flies from Copenhagen to New York, and that change in Copenhagen
is possible. These conditions are expressed by the following abstract syntax:

cat City ; Flight (x,y : City) ;

fun Connection :

(x,y,z : City) -> (a : Flight x y) -> (b : Flight y z)

-> Proof (PossibleChange x y z a b) -> Flight x z ;

fun PossibleChange :

(x,y,z : City) -> Flight x y -> Flight y z -> Prop ;

The linearization rule for Connection produces texts like the example above,
with internal representation that includes the hidden proof. We have left it open
how exactly to construct proofs that a change is possible between two flights:
this involves a proof that the departure time of the second flight lies within a
certain interval from the arrival time of the first flight, the minimum length of
the interval depending on the cities involved. In the end, the proof condition
reduces to ordinary mathematical concepts.

3.4 Semantic disambiguation

An important application of semantic control is disambiguation. For instance,
the English sentence

there exists an integer x such that x is even and x is prime

has two French translations,

il existe un entier x tel que x soit pair et que x soit premier

il existe un entier x tel que x soit pair et x est premier

corresponding to the trees

Exist Int (\x -> Conj (Even x) (Prime x))

Conj (Exist Int (\x -> Even x)) (Prime x)

respectively. Both analyses are possible by context-free parsing, but type check-
ing rejects the latter one because it has an unbound occurrence of x.

Another example of semantic disambiguation is the resolution of pronominal
reference. The English sentence

if the function f has a maximum then it reaches it at 0

has two occurrences of it. Yet the sentence is not ambiguous, since it uses the
predicate reach, which can only take the function as its first argument and the
maximum as its second argument: the dependently typed syntax tree uses a
pronominalization function

fun Pron : (A : Dom) -> Elem A -> Elem A

making the domain and the reference of the pronoun explicit. Linearization rules
of Pron into languages like French and German use the domain argument to
select the gender of the pronoun, so that, for instance, the German translation
of the example sentence uses sie for the first it and es for the second:

wenn die Funktion f ein Maximum hat, dann reicht sie es bei 0

3.5 Application grammars and resource grammars

GF is primarily geared for writing specialized grammars for specialized domains.
It is possible to avoid many linguistic problems just by ignoring them. For in-
stance, if the grammar only uses the present tense, large parts of verb conjugation
can be ignored. However, always writing such grammars from scratch has several
disadvantages. First, it favours solutions that are linguistically ad hoc. Secondly,
it produces concrete syntaxes that are not reusable from one application to an-
other. Thirdly, it requires the grammarian simultaneously to think about the
domain and about linguistic facts such as inflection, agreement, word order, etc.
A solution is to raise the level of abstraction, exploiting the fact that GF is a
functional programming language: do not define the concrete syntax as direct
mappings from trees to strings, but as mappings from trees to structures in a
resource grammar.

A resource grammar is a generic description of a language, aiming at com-
pleteness. From the programming point of view, it is like a library module, whose
proper use is via type signatures: the user need not know the definitions of mod-
ule functions, but only their types. This modularity permits a division of labour
between programmers with different expertises. In grammar programming, there
is typically a domain expert, who knows the abstract syntax and wants to map it

into a concrete language, and a linguist, who has written the resource grammar
and provided a high-level interface to it.

For instance, the resource grammar may contain linguistic categories, syn-
tactic rules, and (as a limiting case of syntactic rules) lexical entries:

cat S ; NP ; Adj ; -- sentence, noun phrase, adjective

fun PredAdj : Adj -> NP -> S ; -- "NP is Adj"

fun Condit : S -> S -> S ; -- "if S then S"

fun adj_even : Adj ; -- "even"

The author of a grammar of arithmetic proofs may have the following abstract
syntax with semantically motivated categories and functions:

cat Prop ; Nat ; -- proposition, natural number

fun If : Prop -> Prop -> Prop ; -- logical implication

fun Ev : Nat -> Prop ; -- the evenness predicate

The concrete syntax that she writes can exploit the resource grammar:

lincat Prop = S ; Nat = NP ;

lin If = Condit ;

lin Ev = PredAdj adj_even ;

Experience with GF has shown that the abstract interfaces to resource gram-
mars can largely be shared between different languages. Thus a German resource
grammar can have the same type signatures as the English one, with the excep-
tion of lexical rules. In this case we have

lin Ev = PredAdj adj_gerade ;

Yet the effects of these rules are language-dependent. German has more agree-
ment and word order variation in the conditional and predication rules. For
instance, the syntax tree If (Ev n1) (Od n3) is linearized as follows:

English: if 1 is even then 2 is odd

German: wenn 1 gerade ist, dann ist 2 ungerade

Of course, there are also cases where different linguistic structures must be used
in the abstract syntax. For instance, the two-place predicate saying that x misses
y is expressed by a two-place verb construction in both English and French, but
the roles of subject and object are inverted (x misses y vs. y manque à x):

English: lin Miss x y = PredVP x (ComplV2 verb_miss y)

French: lin Miss x y = PredVP y (ComplV2 verb_manquer x)

4 Discussion

4.1 Comparison to other systems

In computer science, one of the earliest attempt of generating a syntax editor
from a language description was the Mentor [2] system at INRIA. Another early

example is the Cornell program synthesizer [20], which uses an attribute gram-
mar formalism to describe the language.

The idea of using a strictly formalized language for mathematics to express
the abstract syntax of natural language was proposed by Curry [1] and used by
Montague [11] in his denotational semantics of English. The followers of Mon-
tague, however, usually ignore the abstract syntax and define relations between
natural language and logic directly. This makes generation much harder than
when using an abstract syntax tree as the primary representation.

The WYSIWYM system [14] by Power and Scott has many similarities with
our system. It is also a system for interactive multi-lingual editing. WYSIWYM
does not use a mathematical language to express abstract syntax and it seems
not to be possible for the user to change the structure of what they call the
knowledge base (our abstract syntax).

Processing natural language within restricted domains makes GF related to
the KANT translation system [10]. Kant Controlled English (KCE) put con-
straints on vocabulary, grammar and document structure in order to reduce
the amount of ambiguity in the source text in the pre-processing phase. The
remaining ambiguities are resolved via interaction with the author in the au-
thoring environment. The only source language in the KANT system is English.
KANT does not use any formal semantic representation.

4.2 Future work

We would like to see the system as a (structured) document editor. This has
many implications. The major part of the screen will in the future be devoted to
the different documents and not to the various menus. The parts of the document
which is not filled in – now indicated by metavariables – will have a meaningful
label expressed in the language being presented. The natural action of refining
a metavariable by parsing a text from the keyboard is to put the cursor on
the metavariable and start typing. In the future it will also be possible to use
completions, so when the user enters for instance a tab character the system
responds with the longest unique possible continuation of the input together
with a list of alternatives. Completion in GF can be controlled both by the
application grammar and by statistics of the interaction history.

A grammarian-level user needs an advanced editor for editing grammar. So a
natural idea is to extend GF to make it possible to edit the GF formalism itself.

Creating resource grammars is an important part in the development of GF,
corresponding to the development of standard libraries for programming lan-
guages. The current libraries (end 2002) contain basic morphology, phrase struc-
ture, and agreement rules for English, French, German, and Swedish.

GF is generic program capable of using any set of grammars in an. Hard-
wired grammars, however, permit more light-weight implementations. We use
the name gramlets for Java programs implementing such light-weight special-
purpose editors. Gramlets can be used in PDAs and as web applets, and they
can be automatically compiled from GF grammars.

References

1. H. B. Curry. Some logical aspects of grammatical structure. In Roman Jakobson,
editor, Structure of Language and its Mathematical Aspects: Proceedings of the
Twelfth Symposium in Applied Mathematics, pages 56–68. American Mathematical
Society, 1963.

2. V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, and J. J. Levy. A structure-
oriented program editor: a first step towards computer assisted programming. In
International Computing Symposium (ICS’75), 1975.

3. M. Dymetman, V. Lux, and A. Ranta. XML and multilingual document authoring:
Convergent trends. In COLING, Saarbrücken, Germany, pages 243–249, 2000.

4. R. Hähnle, K. Johannisson, and A. Ranta. An authoring tool for informal and for-
mal requirements specifications. In R.-D. Kutsche and H. Weber, editors, Funda-
mental Approaches to Software Engineering, volume 2306 of LNCS, pages 233–248.
Springer, 2002.

5. T. Hallgren and A. Ranta. An extensible proof text editor. In M. Parigot and
A. Voronkov, editors, LPAR-2000, volume 1955 of LNCS/LNAI, pages 70–84.
Springer, 2000.

6. K. Johannisson and A. Ranta. Formal verification of multilingual instructions.
In The Joint Winter Meeting of Computing Science and Computer Engineering.
Chalmers University of Technology, 2001.

7. Z. Luo and R. Pollack. LEGO Proof Development System. Technical report,
University of Edinburgh, 1992.

8. L. Magnusson and B. Nordström. The ALF proof editor and its proof engine. In
Types for Proofs and Programs, LNCS 806, pages 213–237. Springer, 1994.

9. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
10. T. Mitamura and E. H. Nyberg. Controlled English for Knowledge-Based MT:

Experience with the KANT system. In TMI, 1995.
11. R. Montague. Formal Philosophy. Yale University Press, New Haven, 1974. Col-

lected papers edited by R. Thomason.
12. G. C. Necula. Proof-Carrying Code. In Proc. 24th ACM Symposium on Principles

of Programming Languages, Paris, France, pages 106–119. ACM Press, 1997.
13. C. Pollard and I. Sag. Head-Driven Phrase Structure Grammar. University of

Chicago Press, 1994.
14. R. Power and D. Scott. Multilingual authoring using feedback texts. In COLING-

ACL, 1998.
15. A. Ranta. GF Homepage, 2002. www.cs.chalmers.se/~aarne/GF/.
16. A. Ranta. Grammatical Framework: A Type-theoretical Grammar Formalism. The

Journal of Functional Programming, to appear.
17. A. Ranta and R. Cooper. Dialogue systems as proof editors. In IJCAR/ICoS-3,

Siena, Italy, 2001.
18. S. Shieber. An Introduction to Unification-Based Approaches to Grammars. Uni-

versity of Chicago Press, 1986.
19. Coq Development Team. Coq Homepage. http://pauillac.inria.fr/coq/, 1999.
20. T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: a syntax-directed

programming environment. Commun. ACM, 24(9):563–573, 1981.

60

Technical report A

GF Russian resource library5

One of the features of GF is separation between the language description (gram-
mars) and the processing engine. Grammars are written using the GF language
and stored in text files. Therefore, grammars can be considered as programs
written in the GF grammar language, which can be compiled and run by GF
system. Just as with ordinary programming languages the efficiency of program-
ming labor can be significantly increased by reusing previously written code. For
that purpose standard libraries are usually used.

To use the library a programmer only needs to know the type signatures of the
library functions. Implementation details are usually hidden from the user. The
GF resource grammar library [31] is aimed to serve as a standard library for the
GF grammar language. Since GF is a multlingual system the library structure
has an additional dimension for different languages. Each language has its own
layer and all layers have more or less similar internal structure. Some parts of
the library are language-independent and shared among the languages.

The implementation of Russian resource grammar proves that GF grammar
formalism allows us to use the language-independent abstract API for describing
sometimes rather peculiar grammatical variations in different languages.

A resource grammar has 13 language-specific modules (not including lexicon),
see Fig. 2 that contain implementations for about 125 language-independent API-
rules (not including paradigms). A standard lexicon included for a language has
450 words.

The first section of this chapter is an overview of syntactic structures borrowed
from the resource library documentation written by Aarne Ranta. Resource mod-
ule contains the description of the basic parameters and operations used in other
modules. Categories module is an overview of the grammar library types. In
the rest of the chapter the modules are listed alphabetically. The concluding
sections contain descriptions of some Russian morphological paradigms and au-
tomatically generated test examples intended for proof-reading and also reflecting

5Written together with Aarne Ranta.

61

62 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Figure 2: Resource grammar modules.

the coverage of the GF Russian resource library.

1 Overview of syntactic structures

1.1 Texts. phrases, and utterances

The outermost linguistic structure is Text. Texts are composed from Phrases
(Phr) followed by punctuation marks - either of ”.”, ”?” or ”!” (with their proper
variants in Spanish and Arabic). Here is an example of a Text string.

John walks. Why? He doesn’t want to sleep!

Phrases are mostly built from Utterances (Utt), which in turn are declarative
sentences, questions, or imperatives - but there are also ”one-word utterances”
consisting of noun phrases or other subsentential phrases. Some Phrases are
atomic, for instance ”yes” and ”no”. Here are some examples of Phrases.

yes

come on, John

but John walks

give me the stick please

don’t you know that he is sleeping

a glass of wine

a glass of wine please

There is no connection between the punctuation marks and the types of utter-
ances. This reflects the fact that the punctuation mark in a real text is selected

1. OVERVIEW OF SYNTACTIC STRUCTURES 63

as a function of the speech act rather than the grammatical form of an utterance.
The following text is thus well-formed.

John walks. John walks? John walks!

What is the difference between Phrase and Utterance? Just technical: a Phrase
is an Utterance with an optional leading conjunction (”but”) and an optional
tailing vocative (”John”, ”please”).

1.2 Sentences and clauses

The richest of the categories below Utterance is S, Sentence. A Sentence is formed
from a Clause (Cl), by fixing its Tense, Anteriority, and Polarity. For example,
each of the following strings has a distinct syntax tree in the category Sentence:

John walks

John doesn’t walk

John walked

John didn’t walk

John has walked

John hasn’t walked

John will walk

John won’t walk

...

whereas in the category Clause all of them are just different forms of the same
tree. The difference between Sentence and Clause is thus also rather technical. It
may not correspond exactly to any standard usage of the terms ”sentence” and
”clause”.

Fig.3 shows a type-annotated syntax tree of the Text ”John walks.” and gives
an overview of the structural levels.

Here are some examples of the results of changing constructors.

1. TFullStop -> TQuestMark John walks?

3. NoPConj -> but_PConj But John walks.

6. TPres -> TPast John walked.

7. ASimul -> AAnter John has walked.

8. PPos -> PNeg John doesn’t walk.

11. john_PN -> mary_PN Mary walks.

13. walk_V -> sleep_V John sleeps.

14. NoVoc -> please_Voc John sleeps please.

All constructors cannot of course be changed so freely, because the resulting tree
would not remain well-typed. Here are some changes involving many construc-
tors:

64 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Node Constructor Value type Other constructors

1. TFullStop Text TQuestMark

2. (PhrUtt Phr

3. NoPConj PConj but_PConj

4. (UttS Utt UttQS

5. (UseCl S UseQCl

6. TPres Tense TPast

7. ASimul Anter AAnter

8. PPos Pol PNeg

9. (PredVP Cl

10. (UsePN NP UsePron, DetCN

11. john_PN) PN mary_PN

12. (UseV VP ComplV2, ComplV3

13. walk_V)))) V sleep_V

14. NoVoc) Voc please_Voc

15. TEmpty Text

Figure 3. Type-annotated syntax tree of the Text ”John walks.”

4- 5. UttS (UseCl ...) ->

UttQS (UseQCl (... QuestCl ...)) Does John walk?

10-11. UsePN john_PN ->

UsePron we_Pron We walk.

12-13. UseV walk_V ->

ComplV2 love_V2 this_NP John loves this.

1.3 Parts of sentences

The linguistic phenomena mostly discussed in both traditional grammars and
modern syntax belong to the level of Clauses, that is, lines 9-13, and occasionally
to Sentences, lines 5-13. At this level, the major categories are NP (Noun Phrase)
and VP (Verb Phrase). A Clause typically consists of just an NP and a VP. The
internal structure of both NP and VP can be very complex, and these categories
are mutually recursive: not only can a VP contain an NP,

[VP loves [NP Mary]]

but also an NP can contain a VP

[NP every man [RS who [VP walks]]]

1. OVERVIEW OF SYNTACTIC STRUCTURES 65

(a labelled bracketing like this is of course just a rough approximation of a GF
syntax tree, but still a useful device of exposition).

Most of the resource modules thus define functions that are used inside NPs
and VPs. Here is a brief overview:

Noun. How to construct NPs. The main three mechanisms for constructing
NPs are

• from proper names: ”John”

• from pronouns: ”we”

• from common nouns by determiners: ”this man”

The Noun module also defines the construction of common nouns. The most
frequent ways are

• lexical noun items: ”man”

• adjectival modification: ”old man”

• relative clause modification: ”man who sleeps”

• application of relational nouns: ”successor of the number”

Verb. How to construct VPs. The main mechanism is verbs with their
arguments, for instance,

• one-place verbs: ”walks”

• two-place verbs: ”loves Mary”

• three-place verbs: ”gives her a kiss”

• sentence-complement verbs: ”says that it is cold”

• VP-complement verbs: ”wants to give her a kiss”

A special verb is the copula, ”be” in English but not even realized by a verb
in all languages. A copula can take different kinds of complement:

• an adjectival phrase: ”(John is) old”

• an adverb: ”(John is) here”

• a noun phrase: ”(John is) a man”

Adjective. How to constuct APs. The main ways are

66 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

• positive forms of adjectives: ”old”

• comparative forms with object of comparison: ”older than John”

Adverb. How to construct Advs. The main ways are

• from adjectives: ”slowly”

• as prepositional phrases: ”in the car”

1.4 Modules and their names

The resource modules are named after the kind of phrases that are constructed
in them, and they can be roughly classified by the ”level” or ”size” of expressions
that are formed in them:

• Larger than sentence: Text, Phrase

• Same level as sentence: Sentence, Question, Relative

• Parts of sentence: Adjective, Adverb, Noun, Verb

• Cross-cut (coordination): Conjunction

Because of mutual recursion such as in embedded sentences, this classification
is not a complete order. However, no mutual dependence is needed between the
modules themselves - they can all be compiled separately. This is due to the
module Cat, which defines the type system common to the other modules. For
instance, the types NP and VP are defined in Cat, and the module Verb only needs
to know what is given in Cat, not what is given in Noun. To implement a rule
such as

Verb.ComplV2 : V2 -> NP -> VP

it is enough to know the linearization type of NP (as well as those of V2 and
VP, all given in Cat). It is not necessary to know what ways there are to build
NPs (given in Noun), since all these ways must conform to the linearization type
defined in Cat. Thus the format of category-specific modules is as follows:

abstract Adjective = Cat ** {...}

abstract Noun = Cat ** {...}

abstract Verb = Cat ** {...}

1. OVERVIEW OF SYNTACTIC STRUCTURES 67

1.5 Top-level grammar and lexicon

The module Grammar collects all the category-specific modules into a complete
grammar:

abstract Grammar =

Adjective, Noun, Verb, ..., Structural, Idiom

The module Structural is a lexicon of structural words (function words), such
as determiners.

The module Idiom is a collection of idiomatic structures whose implementa-
tion is very language-dependent. An example is existential structures (”there is”,
”es gibt”, ”il y a”, etc).

The module Lang combines Grammar with a Lexicon of ca. 350 content words:

abstract Lang = Grammar, Lexicon

Using Lang instead of Grammar as a library may give for free some words needed
in an application. But its main purpose is to help testing the resource library,
rather than as a resource itself. It does not even seem realistic to develop a
general-purpose multilingual resource lexicon.

1.6 Language-specific syntactic structures

The API collected in Grammar has been designed to be implementable for all
languages in the resource package. It does contain some rules that are strange or
superfluous in some languages; for instance, the distinction between definite and
indefinite articles does not apply to Finnish and Russian. But such rules are still
easy to implement: they only create some superfluous ambiguity in the languages
in question.

But the library makes no claim that all languages should have exactly the same
abstract syntax. The common API is therefore extended by language-dependent
rules. The top level of each languages looks as follows (with English as example):

abstract English = Grammar, ExtraEngAbs, DictEngAbs

where ExtraEngAbs is a collection of syntactic structures specific to English, and
DictEngAbs is an English dictionary (at the moment, it consists of IrregEngAbs,
the irregular verbs of English). Each of these language-specific grammars has the
potential to grow into a full-scale grammar of the language. These grammars can
also be used as libraries, but the possibility of using functors is lost.

To give a better overview of language-specific structures, modules like are built
(for example, ExtraEngAbs) from a language-independent module ExtraAbs by
restricted inheritance:

68 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

abstract ExtraEngAbs = Extra [f,g,...]

Thus any category and function in Extra may be shared by a subset of all lan-
guages. One can see this set-up as a matrix, which tells what Extra structures
are implemented in what languages. For the common API in Grammar, the matrix
is filled with 1’s (everything is implemented in every language).

Language-specific extensions and the use of restricted inheritance is a recent
addition to the resource grammar library, and has only been exploited in a very
small scale so far. ExtraAbs and DictAbs are not implemented for Russian.

2 Resource

.
This module contains operations that are needed to make the resource syn-

tax work. To define everything that is needed to implement Test, it moreover
contains regular lexical patterns needed for Lex.

resource ResRus = ParamX ** open Prelude in {

flags coding=utf8 ; optimize=all ;

The flag coding=utf8 indicates that Russian grammars use UTF-8 encoding for
Cyrillic letters. The flag optimize=all turns on the optimization procedure,
which can result in reducing the grammar size up to 50% of the original.

2.1 Enumerated parameter types

These types are the ones found in school grammars. Their parameter values are
atomic. Some parameters, such as Number, are inherited from ParamX.

Declination forms depend on Case, Animacy , Gender: bolьxie doma -
bolьxih domov (big houses - big houses’); and on Number: bolьxo� dom -
bolьxie doma (a big house - big houses).

There are three genders: masculine, feminine and neuter. A number of Rus-
sian nouns have common gender. They can denote both males and females: um-
nica (a clever person), inжener (an engineer). We overlook this phenomenon
for now.

param

Gender = Masc | Fem | Neut ;

There are six cases: nominative, genitive, dative, accusative, instructive and
prepositional:

Case = Nom | Gen | Dat | Acc | Inst | Prepos ;

2. RESOURCE 69

Animacy plays role only in the Accusative case (Masc Sg and Plural forms):
Accusative Animate = Genitive, Accusaive Inanimate = Nominative � l�bl�
bolьxie doma - � l�bl� bolьxih muжqin (I love big houses - I love big
men):

Animacy = Animate | Inanimate ;

There are two voices: active and passive:

Voice = Act | Pass ;

Aspect = Imperfective | Perfective ;

The AfterPrep parameter is introduced in order to describe the variations of
the third person personal pronoun forms depending on whether they come after
a preposition or not:

AfterPrep = Yes | No ;

Possessive parameter is introduced for personal pronouns: � - mo� (I -
mine):

Possessive = NonPoss | Poss GenNum ;

This ClForm is introduced for the compatibility with the current language-independent
API:

ClForm = ClIndic Tense Anteriority | ClCondit |

ClInfinit | ClImper;

The plural never makes a gender distinction, for example, for adjectives:

GenNum = ASg Gender | APl ;

Coercions between the compound gen-num type and gender and number:

oper

gNum : Gender -> Number -> GenNum = \g,n ->

case n of

{ Sg => case g of

{ Fem => ASg Fem ;

Masc => ASg Masc ;

Neut => ASg Neut } ;

Pl => APl

} ;

The Possessive parameter is introduced in order to describe the possessives of
personal pronouns, which are used in the Genitive constructions like mo� mama
(my mother) instead of mama mo� (the mother of mine).

70 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

2.2 For Noun

Nouns decline according to number and case. For the sake of shorter description
these parameters are combined in the type SubstForm.

param

SubstForm = SF Number Case ;

Real parameter types (i.e. ones on which words and phrases depend) are
mostly hierarchical. The alternative would be cross-products of simple parame-
ters, but this would usually overgenerate. However, we use the cross-products in
complex cases (for example, aspect and tense parameter in the verb description)
where the relationship between the parameters are non-trivial even though we
aware that some combinations do not exist (for example, present perfective does
not exist, but removing this combination would lead to having different descrip-
tions for perfective and imperfective verbs, which we do not want for the sake of
uniformity).

param PronForm = PF Case AfterPrep Possessive;

oper Pronoun = { s : PronForm => Str ; n : Number ; p : Person ;

g: PronGen ; pron: Bool} ;

Gender is not morphologically determined for first and second person pro-
nouns.

param PronGen = PGen Gender | PNoGen ;

The following coercion is useful:

oper

pgen2gen : PronGen -> Gender = \p -> case p of {

PGen g => g ;

PNoGen => variants {Masc ; Fem}

} ;

oper

extCase: PronForm -> Case = \pf -> case pf of

{ PF Nom _ _ => Nom ;

PF Gen _ _ => Gen ;

PF Dat _ _ => Dat ;

PF Inst _ _ => Inst ;

PF Acc _ _ => Acc ;

PF Prepos _ _ => Prepos

} ;

2. RESOURCE 71

mkPronForm: Case -> AfterPrep -> Possessive -> PronForm =

\c,n,p -> PF c n p ;

CommNounPhrase: Type = {s : Number => Case => Str;

g : Gender; anim : Animacy} ;

NounPhrase : Type = { s : PronForm => Str ; n : Number ;

p : Person ; g: PronGen ; anim : Animacy ; pron: Bool} ;

mkNP : Number -> CommNounPhrase -> NounPhrase = \n,chelovek ->

{s = \\cas => chelovek.s ! n ! (extCase cas) ;

n = n ; g = PGen chelovek.g ; p = P3 ; pron =False ;

anim = chelovek.anim

} ;

det2NounPhrase : Adjective -> NounPhrase = \eto ->

{s = \\pf => eto.s ! (AF (extCase pf) Inanimate (ASg Neut));

n = Sg ; g = PGen Neut ; pron = False ; p = P3 ;

anim = Inanimate } ;

pron2NounPhraseNum : Pronoun -> Animacy -> Number -> NounPhrase =

\ona, anim, num ->

{s = ona.s ; n = num ; g = ona.g ;

pron = ona.pron; p = ona.p ; anim = anim } ;

Agreement of NP is a record. We’ll add Gender later.

oper Agr = {n : Number ; p : Person} ;

2.3 For Verb

Mood is the main verb classification parameter. The verb mood can be infinitive,
subjunctive, imperative, and indicative. Note: subjunctive mood is analytical,
i.e. formed from the past form of the indicative mood plus the particle qtoby.
That is why they have the same GenNum parameter. We choose to keep the
“redundant” form in order to indicate the presence of the subjunctive mood in
Russian verbs.

Aspect and Voice parameters are present in every mood, so Voice is put
before the mood parameter in the verb form description hierachy. Moreover
Aspect is regarded as an inherent parameter of a verb entry. The primary reason
for that is that one imperfective form can have several perfective forms: lomatь
- slomatь - polomatь (to break). Besides, the perfective form could be formed
from imperfective by prefixation, but also by taking a completely different stem:
govoritь-skazatь (to say). In the later case it is even natural to regard them

72 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

as different verb entries. Another reason is that looking at the Aspect as an
inherent verb parameter seem to be customary in other similar projects, see [34].

Note: Of course, the whole inflection table has many redundancies in the sense
that many verbs do not have all grammatically possible forms. For example,
passive does not exist for the verb l�bitь (to love), but exists for the verb
lomatь (to break). In present tense verbs do not conjugate according to Gender,
so parameter GenNum is used instead of Number, for the sake of using a verb, for
example, as an adjective in predication. Depending on the tense verbs conjugate
according to combinations of gender, person and number of the verb objects.
Participles (present and past) and gerund forms are not included in the current
description. This is the verb type used in the lexicon:

oper Verbum : Type = { s: VerbForm => Str ; asp : Aspect };

param

VerbForm = VFORM Voice VerbConj ;

VerbConj = VIND GenNum VTense | VIMP Number Person |

VINF | VSUB GenNum ;

VTense = VPresent Person | VPast | VFuture Person ;

oper

getVTense : Tense -> Person -> VTense= \t,p -> case t of

{Present => VPresent p ; Past => VPast; Future => VFuture p } ;

getVoice: VerbForm -> Voice = \vf ->

case vf of {

VFORM Act _ => Act;

VFORM Pass _ => Pass

};

sebya : Case => Str =table {

Nom => "";

Gen => "seb�";
Dat=> "sebe";
Acc => "seb�";
Instr => "sobo�";
Prep => "sebe";}

Verb : Type = {s : ClForm => GenNum => Person => Str ;

asp : Aspect ; w: Voice} ;

Verb phrases are discontinuous: the parts of a verb phrase are (s) an inflected

2. RESOURCE 73

verb, (s2) verb adverbials (not negation though), and (s3) complement. This
discontinuity is needed in sentence formation to account for word order variations.

VerbPhrase : Type = Verb ** {s2: Str; s3 : Gender =>

Number => Str ; negBefore: Bool} ;

This is one instance of Gazdar’s slash categories [11], corresponding to his
S/NP. We cannot have - nor would we want to have - a productive slash-category
former. Perhaps a handful more will be needed.

Notice that the slash category has the same relation to sentences as transitive
verbs have to verbs: it’s like a sentence taking a complement.

SlashNounPhrase = Clause ** Complement ;

Clause = {s : Polarity => ClForm => Str} ;

This is the traditional S -> NP VP rule:

predVerbPhrase : NounPhrase -> VerbPhrase -> SlashNounPhrase =

\Ya, tebyaNeVizhu -> { s = \\b,clf =>

let

{ya = Ya.s ! (mkPronForm Nom No NonPoss);

khorosho = tebyaNeVizhu.s2;

vizhu = tebyaNeVizhu.s!clf!(gNum (pgen2gen Ya.g) Ya.n)!Ya.p;

tebya = tebyaNeVizhu.s3 ! (pgen2gen Ya.g) ! Ya.n

}

in

ya ++ khorosho ++ vizhu ++ tebya;

s2= "";

c = Nom

} ;

Questions are either direct (Ty sqastliv?) (Are you happy?) or indirect
(Potom on sprosil sqastliv li ty) (Then he asked if you are happy).

param QuestForm = DirQ | IndirQ ;

The order of sentence is needed already in VP.

oper

getActVerbForm : ClForm -> Gender -> Number -> Person ->

VerbForm = \clf,g,n, p -> case clf of

{ClIndic Future _ => VFORM Act (VIND (gNum g n) (VFuture p));

ClIndic Past _ => VFORM Act (VIND (gNum g n) VPast);

ClIndic Present _ => VFORM Act (VIND (gNum g n) (VPresent p));

ClCondit => VFORM Act (VSUB (gNum g n));

ClInfinit => VFORM Act VINF ;

ClImper => VFORM Act (VIMP n p)

};

74 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

2.4 For Adjective

Adjective declination forms depend on Case, Animacy, Gender and Number:
bolьxie doma - bolьxih domov (big houses - big houses’); and on Number:
bolьxo� dom - bolьxie doma (a big house - big houses); Animacy plays role
only in the Accusative case (Masc Sg and Plural forms): Accusative Animate
= Genitive, Accusaive Inanimate = Nominative � l�bl� bolьxie doma - �
l�bl� bolьxih muжqin (I love big houses - I love big men). AdvF is a special
adverbial form: horoxi� - horoxo (good-well):

param

AdjForm = AF Case Animacy GenNum | AdvF;

oper

Complement = {s2 : Str ; c : Case} ;

pgNum : PronGen -> Number -> GenNum = \g,n ->

case n of

{ Sg => case g of

{ PGen Fem => ASg Fem ;

PGen Masc => ASg Masc ;

PGen Neut => ASg Neut ;

_ => ASg Masc } ;

Pl => APl

} ;

oper numGNum : GenNum -> Number = \gn ->

case gn of { APl => Pl ; _ => Sg } ;

oper genGNum : GenNum -> Gender = \gn ->

case gn of { ASg Fem => Fem; ASg Masc => Masc; _ => Neut } ;

oper numAF: AdjForm -> Number = \af ->

case af of { AdvF => Sg; AF _ _ gn => (numGNum gn) } ;

oper genAF: AdjForm -> Gender = \af ->

case af of { AdvF => Neut; AF _ _ gn => (genGNum gn) } ;

oper caseAF: AdjForm -> Case = \af ->

case af of { AdvF => Nom; AF c _ _ => c } ;

The Degree parameter should also be more complex, since most Russian adjec-
tives have two comparative forms: attributive (syntactic (compound), declinable)
- bolee vysoki� (corresponds to more high) and predicative (indeclinable)- vyxe

2. RESOURCE 75

(higher) and more than one superlative forms: samy� vysoki� (corresponds to
the most high) - vysoqa�xi�/vysxi� (the highest). Even one more parameter
independent of the degree can be added, since Russian adjectives in the posi-
tive degree also have two forms: long (attributive and predicative) - vysoki�
(high) and short (predicative) - vysok, although this parameter will not be ex-
actly orthogonal to the degree parameter. Short form has no case declension,
so in principle it can be considered as an additional case. Note: although the
predicative usage of the long form is perfectly grammatical, it can have a slightly
different meaning compared to the short form. For example: on - bolьno� (long,
predicative) vs. on - bolen (short, predicative).

Adjective phrases

An adjective phrase may contain a complement, e.g. moloжe Rity (younger
than Rita). Then it is used as postfix in modification, e.g. qelovek, moloжe
Rity (a man younger than Rita).

IsPostfixAdj = Bool ;

Simple adjectives are not postfix: Adjective type includes both non-degree ad-
jective classes: possesive (mamin [mother’s], lisi� [fox’es]) and relative (russki�
[Russian]) adjectives.

Adjective : Type = {s : AdjForm => Str} ;

A special type of adjectives just having positive forms (for semantic reasons)
is useful, e.g. finski� (Finnish).

AdjPhrase = Adjective ** {p : IsPostfixAdj} ;

mkAdjPhrase : Adjective -> IsPostfixAdj -> AdjPhrase =

\novuj ,p -> novuj ** {p = p} ;

2.5 For Numeral

Parameters and operations for cardinal numbers:

param DForm = unit | teen | ten | hund ;

param Place = attr | indep ;

param Size = nom | sgg | plg ;

oper mille : Size => Str = table {

{nom} => "tys�qa" ;

{sgg} => "tys�qi" ;

=> "tys�q"} ;

oper gg : Str -> Gender => Str = \s -> table {_ => s} ;

76 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

2.6 Transformations between parameter types

Extracting Number value from SubstForm (see subsection 2.2) value:

oper

numSF: SubstForm -> Number = \sf -> case sf of

{

SF Sg _ => Sg ;

_ => Pl

} ;

Extracting Case value from SubstForm (see subsection 2.2) value:

caseSF: SubstForm -> Case = \sf -> case sf of

{

SF _ Nom => Nom ;

SF _ Gen => Gen ;

SF _ Dat => Dat ;

SF _ Inst => Inst ;

SF _ Acc => Acc ;

SF _ Prepos => Prepos

} ;

}

3 Categories

3.1 Abstract API

The category system is central to the library in the sense that the other modules
(Adjective, Adverb, Noun, Verb etc) communicate through it. This means that
a e.g. a function using NPs in Verb need not know how NPs are constructed in
Noun: it is enough that both Verb and Noun use the same type NP, which is given
here in Cat.

Some categories are inherited from Common. The reason they are defined there
is that they have the same implementation in all languages in the resource (typ-
ically, just a string). These categories are AdA, AdN, AdV, Adv, Ant, CAdv,

IAdv, PConj, Phr, Pol, SC, Tense, Text, Utt, Voc.

Moreover, the list categories ListAdv, ListAP, ListNP, ListS are defined
on Conjunction and only used locally there.

abstract Cat = Common ** {

cat

3. CATEGORIES 77

Sentences and clauses

Constructed in Sentence, and also in Idiom.

S ; -- declarative sentence

-- e.g. "she lived here"

”ona жila zdesь”

QS ; -- question

-- e.g. "where did she live"

”gde ona жila ”

RS ; -- relative

-- e.g. "in which she lived"

”v kotorom ona жila”

Cl ; -- declarative clause, with all tenses

-- e.g. "she looks at this"

”ona smotrit na зto”

Slash ; -- clause missing NP (S/NP in GPSG)

-- e.g. "she looks at"

”ona smotrit na”

Imp ; -- imperative

-- e.g. "look at this"

”smotri na зto”

Questions and interrogatives

Constructed in Question.

QCl ; -- question clause, with all tenses

-- e.g. "why does she walk"

”poqemu ona id�t”

IP ; -- interrogative pronoun

-- e.g. "who"

”kto”

IComp ; -- interrogative complement of copula

-- e.g. "where"

”gde”

IDet ; -- interrogative determiner

-- e.g. "which"

”kotory�”

78 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Relative clauses and pronouns

Constructed in Relative.

RCl ; -- relative clause, with all tenses

-- e.g. "in which she lives"

”v kotorom ona жiv�t”

RP ; -- relative pronoun

-- e.g. "in which"

”v kotorom”

Verb phrases

Constructed in Verb.

VP ; -- verb phrase

-- e.g. "is very warm"

”oqenь t�ply�”

Comp ; -- complement of copula, such as AP

-- e.g. "very warm"

”oqenь t�ply�”

Adjectival phrases

Constructed in Adjective.

AP ; -- adjectival phrase

-- e.g. "very warm"

”oqenь t�ply�”

Nouns and noun phrases

Constructed in Noun. Many atomic noun phrases e.g. everybody are constructed
in Structural. The determiner structure is

Predet (QuantSg | QuantPl Num) Ord

as defined in Noun.

CN ; -- common noun (without determiner)

-- e.g. "red house"

”krasny� dom”

3. CATEGORIES 79

NP ; -- noun phrase (subject or object)

-- e.g. "the red house"

”krasny� dom”

Pron ; -- personal pronoun

-- e.g. "she"

”ona”

Det ; -- determiner phrase

-- e.g. "all the seven"

”vse semь”

Predet; -- predeterminer (prefixed Quant)

-- e.g. "all"

”vse”

QuantSg;-- quantifier (’nucleus’ of sing. Det)

-- e.g. "every"

”kaжdy�”

QuantPl;-- quantifier (’nucleus’ of plur. Det)

-- e.g. "many"

”mnogo”

Quant ; -- quantifier with both sg and pl

-- e.g. "this/these"

”зtot/зti”

Num ; -- cardinal number (used with QuantPl)

-- e.g. "seven"

”semь”

Ord ; -- ordinal number (used in Det)

-- e.g. "seventh"

”sedьmo�”

Numerals

Constructed in Numeral.

Numeral; -- cardinal or ordinal, e.g. "five/fifth"

”p�tь/p�ty�”

80 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Structural words

Constructed in Structural.

Conj ; -- conjunction, e.g. "and"

”i”

DConj ; -- distributed conj. e.g. "both - and"

”kak - tak”

Subj ; -- subjunction, e.g. "if"

”esli”

Prep ; -- preposition, or just case e.g. "in"

”v”

Words of open classes

These are constructed in Lexicon and in additional lexicon modules.

V ; -- one-place verb e.g. "sleep"

”spatь”

V2 ; -- two-place verb e.g. "love"

”l�bitь”

V3 ; -- three-place verb e.g. "show"

”pokazyvatь”

VV ; -- verb-phrase-complement verb e.g. "want"

”hotetь”

VS ; -- sentence-complement verb e.g. "claim"

”utverжdatь”

VQ ; -- question-complement verb e.g. "ask"

”spraxivatь”

VA ; -- adjective-complement verb e.g. "look"

”smotretь”

3. CATEGORIES 81

V2A ; -- verb with NP and AP complement e.g. "paint"

”risovatь”

A ; -- one-place adjective e.g. "warm"

”t�ply�”

A2 ; -- two-place adjective e.g. "divisible"

”delimy�”

N ; -- common noun e.g. "house"

”dom”

N2 ; -- relational noun e.g. "son"

”syn”

N3 ; -- three-place relational noun e.g. "connection"

”sv�zь”

PN ; -- proper name e.g. "Paris"

”Pariж”

}

3.2 Russian Implementation

Parameters are listed and explained in the Resource section 2 or belong to the
language-independent CommonX module.

concrete CatRus of Cat = CommonX ** open ResRus, Prelude in {

The flag optimize=all subs turns on the so called subexpression elimination
that eliminates repetition of the same expressions, which can result in reducing
the grammar size up to 90% of the original. For an example of a typical case
where such optimization is useful, see technical report B subsection 2.1:

flags optimize=all_subs ; coding=utf8 ;

lincat

Phrase

Utt, Voc = {s : Str} ;

82 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Tensed/Untensed

S = {s : Str} ;

SC = {s : Str} ;

QS = {s : QForm => Str} ;

-- QForm distinguish between direct or indirect

RS = {s : GenNum => Case => Animacy => Str} ;

Many RS forms are due to Russian declension of kotory� (which), which declines
like an adjective.

Sentence

Cl = {s : Polarity => ClForm => Str} ;

Slash = {s : Polarity => ClForm => Str; s2: Str; c: Case} ;

Imp = {s : Polarity => Gender => Number => Str } ;

Polarity stands for either negative or positive statements. In imperative Gender

and Number is needed for verb conjugation, while in Slash and Clause they are
included in the ClForm-parameter.

Question

QCl = {s :Polarity => ClForm => QForm => Str};

IP = {s : PronForm => Str ; n : Number ; p : Person ;

g: PronGen ; anim : Animacy ; pron: Bool} ;

IAdv, IComp = {s : Str} ;

IDet = Adjective ** {n: Number; g: PronGen; c: Case} ;

Determiners inflect like non-degree adjectives.

Relative

RCl = {s : Polarity => ClForm => GenNum => Case => Animacy

=> Str} ;

RP = {s : GenNum => Case => Animacy => Str} ;

Similarly to RS, many RS forms are due to Russian declension of kotory� (which).

3. CATEGORIES 83

Verb

Comp, VP = {s : ClForm => GenNum => Person => Str ;

asp : Aspect ; w: Voice ; s2 : Str ;

s3 : Gender => Number => Str ; negBefore: Bool} ;

Verb phrases are discontinuous: the parts of a verb phrase are (s) an inflected
verb, (s2) verb adverbials (not negation though), and (s3) complement. This
discontinuity is needed in sentence formation to account for word order variations.

Adjective

AP = {s : AdjForm => Str; p : IsPostfixAdj} ;

An adjective phrase may contain a complement, e.g. moloжe Rity (younger
than Rita). Then it is used as postfix in modification, e.g. qelovek, moloжe
Rity (a man, younger than Rita).

Noun

CN = {s : Number => Case => Str; g : Gender; anim : Animacy} ;

NP = { s : PronForm => Str ; n : Number ; p : Person ;

g: PronGen ; anim : Animacy ; pron: Bool} ;

Pron = { s : PronForm => Str ; n : Number ; p : Person ;

g: PronGen ; pron: Bool} ;

CN basically corresponds to a noun lexicon entry N. NP is based on Pron type, so
except for Animacy field they are the same.

Determiners (only determinative pronouns (or even indefinite numerals: mnogo
(many)) in Russian) are inflected according to the gender of nouns they deter-
mine. extra parameters (Number and Case) are added for the sake of the deter-
minative pronoun bolьxinstvo (most); Gender parameter is due to multiple
determiners (Numerals in Russian) like mnogo. The determined noun has the
case parameter specific for the determiner:

QuantSg, QuantPl , Det = {s : AdjForm => Str; n: Number;

g: PronGen; c: Case} ;

Predet, Quant = {s : AdjForm => Str; g: PronGen; c: Case} ;

Adverb

Adv, AdV, AdA, AdS, AdN = {s : Str} ;

84 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Numeral

Num, Numeral = {s : Case => Gender => Str} ;

Structural

The conjunction has an inherent number, which is used when conjoining noun
phrases: Ivan i Maxa po�t (John and Mary sing) vs. *Ivan i Maxa po�t
(*John and Mary sings); in the case of ili, the result is, however, plural if any
of the disjuncts is.

Conj = {s : Str ; n : Number} ;

DConj = {s1,s2 : Str ; n : Number} ;

PConj = {s : Str} ;

CAdv = {s : Str} ;

Subj = {s : Str} ;

Prep = {s : Str ; c: Case } ;

Open lexical classes, e.g. Lexicon.

This is the verb type used in the lexicon:

V, VS, VV, VQ, VA = Verbum ;

-- = {s : VerbForm => Str ; asp : Aspect } ;

V2, V2A = Verbum ** Complement ;

V3 = Verbum ** Complement** {s4 : Str; c2: Case} ;

VV = {s : VVForm => Str ; isAux : Bool} ;

Aspect and Voice parameters are present in every mood, so Voice is put before
the mood parameter in verb form description the hierachy. Moreover Aspect

is regarded as an inherent parameter of a verb entry. The primary reason for
that is that one imperfective form can have several perfective forms: lomatь -
slomatь - polomatь (to break). Besides, the perfective form could be formed
from imperfective by prefixation, but also by taking a completely different stem:
govoritь-skazatь (to say). In the later case it is even natural to regard them
as different verb entries. Another reason is that looking at the Aspect as an
inherent verb parameter seem to be customary in other similar projects, see [34].

Similarly participles (Present and Past) and Gerund forms are better to be
handled separately (not included in the current description), since they decline
like non-degree adjectives and having them together with verb forms would be
too much for a single lexicon entry. Such separation is, however, non-standard
and does not present in the GF resource grammars for other languages.

4. ADJECTIVE 85

-- Ordinals decline like non-degree adjectives.

Ord = {s : AdjForm => Str} ;

A = {s : Degree => AdjForm => Str} ;

A2 = A ** Complement ;

-- Substantives moreover have an inherent gender.

N = {s : SubstForm => Str ; g : Gender ; anim : Animacy } ;

N2 = {s : Number => Case => Str; g : Gender; anim : Animacy}

** Complement ;

N3 = {s : Number => Case => Str; g : Gender; anim : Animacy}

** Complement ** {s3 : Str; c2: Case} ;

PN = {s : Case => Str ; g : Gender ; anim : Animacy} ;

}

4 Adjective

4.1 Abstract API

Language-independent functions (abstract syntax) for forming adjective phrases.

abstract Adjective = Cat ** {

fun

The principal ways of forming an adjectival phrase are positive, compara-
tive, relational, reflexive-relational, and elliptic-relational. (The superlative use
is covered in Noun.SuperlA.)

PositA : A -> AP ; -- warm

t�ply�

ComparA : A -> NP -> AP ; -- warmer than Spain

teplee, qem Ispani�

ComplA2 : A2 -> NP -> AP ; -- divisible by 2

delits� na 2

ReflA2 : A2 -> AP ; -- divisible by itself

delits� na seb�

UseA2 : A2 -> A ; -- divisible

86 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

delits�
Sentence and question complements defined for all adjectival phrases, al-

though the semantics is only clear for some adjective.

SentAP : AP -> SC -> AP ; -- great that she won,

-- uncertain if she did

zdorovo, qto ona vy�grala,
esli зto pravda

An adjectival phrase can be modified by an adadjective, such as very.

AdAP : AdA -> AP -> AP ; -- very uncertain

sovsem ne uveren
The formation of adverbs from adjective (e.g. quickly) is covered by Adverb.

}

4.2 Russian Implementation

Russian implementation of Adjective API (concrete syntax for Russian).

concrete AdjectiveRus of Adjective = CatRus ** open ResRus,

Prelude in {

flags coding=utf8 ;

lin

False-value of p-parameter indicates a prefix adjective:

PositA a = { s = a.s ! Posit; p = False} ;

Comparative forms are used with an object of comparison, as adjectival phrases
(bolьxe teb�) [more than you]:

ComparA bolshoj tu =

{s = \\af => bolshoj.s ! Compar ! af ++

tu.s ! (mkPronForm Gen Yes NonPoss) ;

p = True

} ;

SuperlA belongs to determiner syntax in Noun.
True-value of p-parameter indicates a postfix adjective. Agreement: vlublen.s2-
preposition requires vlublen.c-case of tu.s-object:

5. ADVERB 87

ComplA2 vlublen tu =

{s = \\af => vlublen.s ! Posit ! af ++ vlublen.s2 ++

tu.s ! (mkPronForm vlublen.c No NonPoss) ;

p = True

} ;

ReflA2 vlublen =

{s = \\af => vlublen.s !Posit! af ++ vlublen.s2 ++ "seb�";

p = True

} ;

SentAP vlublen sent =

{s = \\af => vlublen.s ! af ++ [", "] ++ sent.s;

p = True

} ;

AdAP ada ap =

{s = \\af => ada.s ++ ap.s ! af ;

p = True

} ;

UseA2 a = a ;

}

5 Adverb

5.1 Abstract API

Language-independent functions (abstract syntax) for forming adverbs.

abstract Adverb = Cat ** {

fun

The two main ways of forming adverbs are from adjectives and by prepositions
from noun phrases.

PositAdvAdj : A -> Adv ; -- quickly

bystro

PrepNP : Prep -> NP -> Adv ; -- in the house

88 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

v dome
Comparative adverbs have a noun phrase or a sentence as object of compari-

son.

ComparAdvAdj : CAdv -> A -> NP -> Adv ; -- more quickly

-- than John

bystree,
qem Ivan

ComparAdvAdjS : CAdv -> A -> S -> Adv ; -- more quickly

-- than he runs

bystree,
qem on beжit

Adverbs can be modified by ’adadjectives’, just like adjectives.

AdAdv : AdA -> Adv -> Adv ; -- very quickly

oqenь bystro
Subordinate clauses can function as adverbs.

SubjS : Subj -> S -> Adv ; -- when he arrives

kogda on prid�t

AdvSC : SC -> Adv ; -- that he arrives

qto on prid�t
Comparison adverbs also work as numeral adverbs.

AdnCAdv : CAdv -> AdN ; -- more (than five)

bolьxe

}

5.2 Russian Implementation

Russian implementation of Adverb API (concrete syntax for Russian).

concrete AdverbRus of Adverb = CatRus ** open ResRus, Prelude in {

flags coding=utf8 ;

lin

In the following three functions a positive (Posit) adverb form (AdvF) of a.s-
adjective is used:

6. CONJUNCTION 89

PositAdvAdj a = {s = a.s !Posit! AdvF} ;

ComparAdvAdj cadv a np =

{s = cadv.s ++ a.s ! Posit ! AdvF ++ "qem" ++

np.s ! PF Nom No NonPoss}

} ;

ComparAdvAdjS cadv a s =

{s = cadv.s ++ a.s ! Posit ! AdvF ++ "qem" ++ s.s

} ;

Agreement: na-preposition requires na.c-case of stol.s-object:

PrepNP na stol = ss (na.s ++ stol.s ! PF na.c Yes NonPoss) ;

AdAdv = cc2 ; -- concatenation of two strings

SubjS = cc2 ;

AdvSC s = s ;

AdnCAdv cadv = {s = cadv.s ++ "qem"} ;

}

6 Conjunction

6.1 Abstract API

Coordination is defined for many different categories; here is a sample. The rules
apply to lists of two or more elements, and define two general patterns: - ordinary
conjunction: X,...X and X - distributed conjunction: both X,...,X and X

Note. This module uses right-recursive lists. If backward compatibility with
API 0.9 is needed, use SeqConjunction.

abstract Conjunction = Cat ** {

Rules

fun

ConjS : Conj -> [S] -> S ; -- "John walks and Mary runs"

”Ivan idet i Maxa beжit”

90 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

ConjAP : Conj -> [AP] -> AP ; -- "even and prime"

”q�tny� i prosto�”

ConjNP : Conj -> [NP] -> NP ; -- "John or Mary"

”Ivan i Maxa”

ConjAdv : Conj -> [Adv] -> Adv ; -- "quickly or slowly"

”bystro ili medlenno”

DConjS : DConj -> [S] -> S ; -- "either John walks or Mary runs"

”libo Ivan idet,
libo Maxa beжit”

DConjAP : DConj -> [AP] -> AP ; -- "both even and prime"

”i q�tny�, i prosto�”

DConjNP : DConj -> [NP] -> NP ; -- "either John or Mary"

”libo Ivan, libo Maxa”

DConjAdv : DConj -> [Adv] -> Adv; -- "both badly and slowly"

”i ploho, i medlenno”

Categories

These categories are only used in this module.

cat

[S]{2} ;

[Adv]{2} ;

[NP]{2} ;

[AP]{2} ;

List constructors

The list constructors are derived from the list notation and therefore not given
explicitly. But here are their type signatures:

-- BaseC : C -> C -> [C] ; -- for C = S, AP, NP, Adv

-- ConsC : C -> [C] -> [C] ;

}

6. CONJUNCTION 91

6.2 Russian Implementation

Most of the functions have generic implementations that use dependent types
and, therefore, the same for all languages and all categories.

concrete ConjunctionRus of Conjunction =

CatRus ** open ResRus, Coordination, Prelude in {

flags optimize=all_subs ; coding=utf8 ;

lin

ConjS = conjunctSS ;

DConjS = conjunctDistrSS ;

ConjAdv = conjunctSS ;

DConjAdv = conjunctDistrSS ;

ConjNP c xs =

conjunctTable PronForm c xs ** {n = conjNumber c.n xs.n ;

anim = xs.anim ;

p = xs.p; g = xs.g ; pron = xs.pron} ;

DConjNP c xs =

conjunctDistrTable PronForm c xs ** {n = conjNumber c.n xs.n ;

p = xs.p ; pron = xs.pron ; anim = xs.anim ;

g = xs.g } ;

ConjAP c xs = conjunctTable AdjForm c xs ** {p = xs.p} ;

DConjAP c xs = conjunctDistrTable AdjForm c xs ** {p = xs.p} ;

These fun’s are generated from the list cat’s.

BaseS = twoSS ;

ConsS = consrSS comma ;

BaseAdv = twoSS ;

ConsAdv = consrSS comma ;

ConsNP x xs =

consTable PronForm comma xs x **

{n = conjNumber xs.n x.n ; g = conjPGender x.g xs.g ;

anim = conjAnim x.anim xs.anim ;

p = conjPerson xs.p x.p; pron = conjPron xs.pron x.pron} ;

92 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

ConsAP x xs = consTable AdjForm comma xs x ** {p = andB xs.p x.p} ;

BaseAP x y = twoTable AdjForm x y ** {p = andB x.p y.p} ;

BaseNP x y = twoTable PronForm x y ** {n = conjNumber x.n y.n ;

g = conjPGender x.g y.g ; p = conjPerson x.p y.p ;

pron = conjPron x.pron y.pron ; anim = conjAnim x.anim y.anim } ;

lincat

[S] = {s1,s2 : Str} ;

[Adv] = {s1,s2 : Str} ;

The structure is the same as for sentences. The result is either always plural or
plural if any of the components is, depending on the conjunction:

[NP] = { s1,s2 : PronForm => Str ; g: PronGen ;

anim : Animacy ; n : Number ; p : Person ; pron : Bool } ;

The structure is the same as for sentences. The result is a prefix adjective if and
only if all elements are prefix:

[AP] = {s1,s2 : AdjForm => Str ; p : Bool} ;

We have to define a calculus of numbers of persons. For numbers, it is like the
conjunction with Pl corresponding to False.

oper

conjNumber : Number -> Number -> Number = \m,n -> case <m,n> of {

<Sg,Sg> => Sg ;

_ => Pl

} ;

For persons, we let the latter argument win (?libo ty, libo � po�du [either
you or I will go], but ?libo ty, libo � po�d�xь (either you or I will go)). This
is not quite clear.

conjPerson : Person -> Person -> Person = _,p -> p ;

For Pron, we let the latter argument win – *Maxa ili mo� mama (Nomi-
native case) but – *moe� ili Maxina mama (Genitive case) both corresponds
to Masha’s or my mother, which is actually not exactly correct, since different
cases should be used – Maxina ili mo� mama.

conjPron : Bool -> Bool -> Bool = _,p -> p ;

7. IDIOM 93

For gender in a similar manner as for person: Needed for adjective predicates
like: Maxa ili Ol� – krasiva� (Masha or Olya is beautiful), Anton ili Oleg
– krasivy� (Anton or Oleg is beautiful), *Maxa ili Oleg – krasivy� (Masha
or Oleg is beautiful). The later is not totally correct, but there is no correct way
to say that.

conjGender : Gender -> Gender -> Gender = _,m -> m ;

conjPGender : PronGen -> PronGen -> PronGen = _,m -> m ;

conjAnim : Animacy -> Animacy -> Animacy = _,m -> m ;

}

7 Idiom

7.1 Abstract API

This module defines constructions that are formed in fixed ways, often different
even in closely related languages.

abstract Idiom = Cat ** {

fun

A separate example for Russian, since it rains can not be translated into an
impersonal construction (doжdь id�t):

ImpersCl : VP -> Cl ; -- it rains

svetaet (dawn is breaking)
No generic clauses in Russian. The function is kept for the sake of compatibil-
ity with the language-independent API. Infinitive is the closest form, see also
subsection 7.2 for more comments:

GenericCl : VP -> Cl ; -- one sleeps

spixь

ExistNP : NP -> Cl ; -- there is a house

estь dom

ExistIP : IP -> QCl ; -- which houses are there

kakie estь doma

ProgrVP : VP -> VP ; -- be sleeping

spit

94 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

ImpPl1 : VP -> Utt ; -- let’s go

dava�te po�d�m

CleftNP : NP -> RS -> Cl ; -- it is you who did it

зto ty, kto sdelal зto

CleftAdv : Adv -> S -> Cl ; -- it is yesterday she arrived

зto vqera, ona vernulasь

}

7.2 Russian Implementation

Russian implementation of Idiom API (concrete syntax for Russian). Every
function has a positive (Pos) and a negative (Neg) version that normally differ
by negation particle ne (ne).

concrete IdiomRus of Idiom = CatRus ** open Prelude,

ResRus, MorphoRus in {

flags optimize=all_subs ; coding=utf8 ;

lin

The verb suwestvovatь (suchestvovat.s) in Russian corresponds to the verb
exist in English. The verb is conjugated according to object’s gender (bar.g,
Kto.g), number (bar.n, Kto.n) and person (P3):

ExistNP = \bar -> {s =\\b,clf =>

let ne = case b of {

Pos =>[];

Neg =>"ne"}

in

ne ++ verbSuchestvovat.s ! (getActVerbForm clf }

(pgen2gen bar.g) bar.n P3) ++ bar.s ! PF Nom No NonPoss

} ;

ExistIP Kto = {s = \\b,clf,_ =>

let {

kto = Kto.s ! (PF Nom No NonPoss);

ne = case b of {Pos =>[]; Neg =>"ne"}

7. IDIOM 95

in

kto ++ ne ++ verbSuchestvovat.s!

(getActVerbForm clf (pgen2gen Kto.g) Kto.n P3)

} ;

Impersonal subject is omitted. The third person (P3) singular (ASg) verb form is
used:

ImpersCl vp = {s= \\ b, clf => let ne = case b of

{Pos =>[]; Neg => "ne"}

in

ne ++ vp.s! clf! (ASg Neut) ! P3 };

No direct correspondence in Russian. Usually expressed by infinitive: esli oqenь
zahotetь, moжno v kosmos uletetь (If one really wants one can fly into
the space). Note that the modal verb can is transferred into adverb moжno (it
is possible) in Russian The closest subject is ty (you), which is omitted in the
final sentence: esli oqenь zahoqexь, moжexь v kosmos uletetь:

GenericCl vp = {s= \\ b, clf =>

let ne= case b of {Pos =>[]; Neg =>"ne"}

in

ne ++ vp.s! clf! (ASg Masc) ! P2 };

ProgrVP vp = vp ;

The English phrase let us corresponds to dava�te in Russian:

ImpPl1 vp = {s = "dava�te"++vp.s!(ClIndic Future Simul)!APl!P1};

The English phrase it is corresponds to зto in Russian:

CleftAdv adv sen = {s= \\ b, clf =>

let ne = case b of {

Pos =>[];

Neg =>"ne"}

in

"зto" ++ ne ++ adv.s ++ [", "]++ sen.s };

CleftNP np rs = {s= \\ b, clf =>

let

96 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

ne = case b of {Pos =>[]; Neg =>"ne"};

gn = case np.n of {Pl => APl; _=> ASg (pgen2gen np.g)}

in

"зto" ++ ne ++ np.s!(PF Nom No NonPoss) ++ rs.s!gn!Nom!Animate};

}

8 Noun

8.1 Abstract API

Language-independent functions (abstract syntax) for forming noun phrases.

abstract Noun = Cat ** {

Noun phrases

The three main types of noun phrases are - common nouns with determiners -
proper names - pronouns

fun

DetCN : Det -> CN -> NP ; -- the man

qelovek

UsePN : PN -> NP ; -- John

Ivan

UsePron : Pron -> NP ; -- he

on
Pronouns are defined in the module Structural. A noun phrase already

formed can be modified by a Predeterminer.

PredetNP : Predet -> NP -> NP; -- only the man

tolьko qelovek
A noun phrase can also be postmodified by the past participle of a verb or by

an adverb.

PPartNP : NP -> V2 -> NP ; -- the number squared

qislo v kvadrate

AdvNP : NP -> Adv -> NP ; -- Paris at midnight

Pariж noqь�

8. NOUN 97

Determiners

The determiner has a fine-grained structure, in which a ’nucleus’ quantifier and
two optional parts can be discerned. The cardinal numeral is only available for
plural determiners. (This is modified from CLE by further dividing their Num

into cardinal and ordinal.)

DetSg : QuantSg -> Ord -> Det ; -- this best man

зtot svidetelь

DetPl : QuantPl -> Num -> Ord -> Det ; -- these five best men

зti p�tь svidetele�
Quantifiers that have both forms can be used in both ways.

SgQuant : Quant -> QuantSg ; -- this

зtot

PlQuant : Quant -> QuantPl ; -- these

зti
Pronouns have possessive forms. Genitives of other kinds of noun phrases are

not given here, since they are not possible in e.g. Romance languages.

PossPron : Pron -> Quant ; -- my (house)

mo� (dom)
All parts of the determiner can be empty, except Quant, which is the kernel

of a determiner.

NoNum : Num ;

NoOrd : Ord ;

Num consists of either digits or numeral words.

NumInt : Int -> Num ; -- 51

NumNumeral : Numeral -> Num ; -- fifty-one

p�tьdes�t odin
The construction of numerals is defined in Numeral. Num can be modified by

certain adverbs.

AdNum : AdN -> Num -> Num ; -- almost 51

98 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

poqti p�tьdes�t odin
Ord consists of either digits or numeral words.

OrdInt : Int -> Ord ; -- 51st

51-�

OrdNumeral : Numeral -> Ord ; -- fifty-first

p�tьdes�t pervy�
Superlative forms of adjectives behave syntactically in the same way as ordi-

nals.

OrdSuperl : A -> Ord ; -- largest

samy� bolьxo�
Definite and indefinite constructions are sometimes realized as neatly distinct

words (Spanish un, unos ; el, los) but also without any particular word (Finnish;
Swedish definites).

DefArt : Quant ; -- the (house), the (houses)

dom, doma

IndefArt : Quant ; -- a (house), (houses)

dom, doma
Nouns can be used without an article as mass nouns. The resource does not

distinguish mass nouns from other common nouns, which can result in semanti-
cally odd expressions.

MassDet : QuantSg ; -- (beer)

pivo
Other determiners are defined in Structural.

Common nouns

Simple nouns can be used as nouns outright.

UseN : N -> CN ; -- house

dom
Relational nouns take one or two arguments.

ComplN2 : N2 -> NP -> CN ; -- son of the king

syn korol�

8. NOUN 99

ComplN3 : N3 -> NP -> N2 ; -- flight from Moscow (to Paris)

re�s iz Moskvy v Pariж
Relational nouns can also be used without their arguments. The semantics is

typically derivative of the relational meaning.

UseN2 : N2 -> CN ; -- son

syn

UseN3 : N3 -> CN ; -- flight

re�s
Nouns can be modified by adjectives, relative clauses, and adverbs (the last

rule will give rise to many ’PP attachement’ ambiguities when used in connection
with verb phrases).

AdjCN : AP -> CN -> CN ; -- big house

bolьxo� dom

RelCN : CN -> RS -> CN ; -- house that John owns

dom, kotorym vladeet Ivan

AdvCN : CN -> Adv -> CN ; -- house on the hill

dom na holme
Nouns can also be modified by embedded sentences and questions. For some

nouns this makes little sense, but we leave this for applications to decide. Sen-
tential complements are defined in Verb.

SentCN : CN -> SC -> CN ;

-- fact that John smokes, question if he does

fakt, qto Ivan kurit, esli зto tak

Apposition

This is certainly overgenerating.

ApposCN : CN -> NP -> CN ; -- number x, numbers x and y

qislo h, qisla h i u

}

100 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

8.2 Russian Implementation

Russian implementation of Noun API (concrete syntax for Russian).

concrete NounRus of Noun = CatRus ** open ResRus, Prelude,

MorphoRus in {

flags optimize=all_subs ;

lin

The difference between Nominative (Nom) and other branches of determiner’s
(kazhduj.c) case is the choice of the case of the common noun (okhotnik.s).
Number (n) parameter is inherited from the determiner. So is gender (g) param-
eter, except the case where the determiner has no gender-value, then the gender
is taken from the common noun (okhotnik). Animacy (anim) is inherited from
the common noun (okhotnik). False-value of pron parameter indicates that the
result is not a pronoun (which is important if we need possessive forms). The
result is in the third person (p):

DetCN kazhduj okhotnik = {

s = \\c => case kazhduj.c of {

Nom =>

kazhduj.s ! AF (extCase c) okhotnik.anim (gNum okhotnik.g

kazhduj.n) ++ okhotnik.s ! kazhduj.n ! (extCase c) ;

_ =>

kazhduj.s ! AF (extCase c) okhotnik.anim (gNum okhotnik.g

kazhduj.n) ++ okhotnik.s ! kazhduj.n ! kazhduj.c };

n = kazhduj.n ;

p = P3 ;

pron = False;

g = case kazhduj.g of {

PNoGen => (PGen okhotnik.g); -- no gender-value case

_ => kazhduj.g };

anim = okhotnik.anim

} ;

Animacy (anim) and gender (g) parameters are inherited from proper noun
(masha). False-value of pron parameter indicates that the result is not a pro-
noun. The result is in the third person (p), singular number (n):

UsePN masha = {

s = \\pf => masha.s ! (extCase pf) ;

p = P3;

8. NOUN 101

g = PGen masha.g ;

anim = masha.anim ;

n = Sg;

pron = False

} ;

Animacy (anim) is inanimate by default:

UsePron p = p ** {anim = Inanimate};

All parameters are inherited from noun phrase argument (np). Predeterminer
(pred.s) agrees with the noun phrase in gender (np.g), number (np.n) and
animacy (np.anim):

PredetNP pred np = {

s = \\pf => pred.s! (AF (extCase pf) np.anim

(gNum (pgen2gen np.g) np.n))++ np.s ! pf ;

n = np.n;

p = np.p;

g = np.g;

anim = np.anim;

pron = np.pron

} ;

All parameters are inherited from quantifier:

DetSg quant ord = {

s = \\af => quant.s!af ++ ord.s!af ;

n = quant.n;

g = quant.g;

c = quant.c

} ;

The resulting number is plural (Pl). Other parameters are inherited from quan-
tifier:

DetPl quant num ord = {

s = \\af => quant.s !af ++ num.s! (caseAF af) !

(genAF af) ++ ord.s!af ;

n = Pl;

g = quant.g;

c = quant.c

} ;

102 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

The resulting number is singular (Sg). Other parameters are inherited from
quantifier:

SgQuant quant = {s = quant.s; c=quant.c; g=quant.g; n= Sg} ;

The resulting number is plural (Pl). Other parameters are inherited from quan-
tifier:

PlQuant quant = {s = quant.s ; c=quant.c; g=quant.g; n= Pl} ;

Case parameter (c) is nominative (Nom), gender parameter (g) is unspecified
(PNoGen) in the result:

PossPron p = {s = \\af => p.s ! mkPronForm (caseAF af) No

(Poss (gNum (genAF af) (numAF af))); c=Nom; g = PNoGen} ;

NoNum = {s = _,_ => []} ; -- cardinal numeral

NoOrd = {s = _ => []} ; -- adjective

It is unclear how to tell apart the numbers from their string representation, so
just leave a decimal representation, without case-suffixes:

NumInt i = {s = table { _ => table {_ => i.s } } } ;

Ordinals inflect differently depending on the last digit. The functions OrdNumeral
and OrdInt are not yet implemented for Russian.

NumNumeral n = n ;

AdNum adn num = {s = \\c,n => adn.s ++ num.s!c!n} ;

OrdSuperl a = {s = a.s!Posit};

No articles in Russian:

DefArt = {s = _=>[] ; c=Nom; g = PNoGen };

IndefArt = { s = _=>[] ; c=Nom; g = PNoGen };

MassDet = {s = _=>[] ; c=Nom; g = PNoGen; n = Sg} ;

All parameters are inherited from noun argument (sb):

UseN sb =

{s = \\n,c => sb.s ! SF n c ;

g = sb.g ;

anim = sb.anim

} ;

8. NOUN 103

It is possible to use a function word as a common noun; the semantics is often
existential or indexical:

UseN2 x = x ;

UseN3 x = x ;

The application of a function gives, in the first place, a common noun: kl�q ot
doma (the key from the house). From this, other rules of the resource grammar
give noun phrases, such as kl�qi ot doma (the keys from the house), kl�qi ot
doma i ot maxiny (the keys from the house and the car), and kl�q ot doma
i ot maxiny (the key from the house and the car) (the latter two corresponding
to distributive and collective functions, respectively). Semantics will eventually
tell when each of the readings is meaningful:

ComplN2 mama ivan =

{s = \\n, cas => case ivan.pron of

{ True => ivan.s ! (mkPronForm cas No (Poss (gNum mama.g n)))

++ mama.s ! n ! cas;

False => mama.s ! n ! cas ++ mama.s2 ++

ivan.s ! (mkPronForm mama.c Yes (Poss (gNum mama.g n)))

};

g = mama.g ;

anim = mama.anim

} ;

Two-place functions add one argument place. There application starts by filling
the first place:

ComplN3 poezd paris =

{s = \\n,c => poezd.s ! n ! c ++ poezd.s2 ++ paris.s !

(PF poezd.c Yes NonPoss) ;

g = poezd.g ; anim = poezd.anim;

s2 = poezd.s3; c = poezd.c2

} ;

The two main functions of adjective are in predication (Ivan – molod) [Ivan is
young] and in modification (molodo� qelovek) [a young man]. Predication will
be defined later, in the chapter on verbs:

AdjCN khoroshij novayaMashina =

{s = \\n, c =>

khoroshij.s ! AF c novayaMashina.anim

(gNum novayaMashina.g n) ++ novayaMashina.s ! n ! c ;

g = novayaMashina.g ;

anim = novayaMashina.anim

} ;

104 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

This is a source of the I saw a man with a telescope-ambiguity, and may produce
strange things, like maxiny vsegda (cars always). Semantics will have to make
finer distinctions among adverbials:

AdvCN chelovek uTelevizora =

{s = \\n,c => chelovek.s ! n ! c ++ uTelevizora.s ;

g = chelovek.g ;

anim = chelovek.anim

} ;

Constructions like idea, qto dva q�tnoe (the idea that two is even) are formed
at the first place as common nouns, so that one can also have predpoloжenie,
qto... (the suggestion that...):

SentCN idea x = {

s = \\n,c => idea.s ! n ! c ++ x.s ;

g = idea.g;

anim = idea.anim

} ;

The relative clause (x.s) agrees with the common noun (idea) in gender (idea.g)
and animacy (idea.anim). All parameters are inherited from the common noun
argument (idea):

RelCN idea x = {

s = \\n,c => idea.s ! n ! c ++

x.s ! (gNum idea.g n) ! c ! idea.anim ;

g = idea.g;

anim = idea.anim

} ;

All parameters are inherited from common noun argument (cn):

ApposCN cn s =

{s = \\n,c => cn.s ! n ! c ++ s.s! PF c No NonPoss ;

g = cn.g ;

anim = cn.anim

} ;

}

9 Numeral

9.1 Abstract API

Language-independent functions (abstract syntax) for forming numerals from 1
to 999999. The implementations are adapted from the numerals library, which

9. NUMERAL 105

defines numerals for 88 languages. The resource grammar implementations add
to this inflection (if needed) and ordinal numbers.

Note 1. Number 1 as defined in the category Numeral here should not be used
in the formation of noun phrases, and should therefore be removed. Instead, one
should use Structural.one Quant. This makes the grammar simpler because
we can assume that numbers form plural noun phrases.

Note 2. The implementations introduce spaces between parts of a numeral,
which is often incorrect – more work on (un)lexing is needed to solve this problem.

abstract Numeral = Cat ** {

cat

Digit ; -- 2..9

Sub10 ; -- 1..9

Sub100 ; -- 1..99

Sub1000 ; -- 1..999

Sub1000000 ; -- 1..999999

fun

num : Sub1000000 -> Numeral ;

n2, n3, n4, n5, n6, n7, n8, n9 : Digit ;

pot01 : Sub10 ; -- 1

pot0 : Digit -> Sub10 ; -- d * 1

pot110 : Sub100 ; -- 10

pot111 : Sub100 ; -- 11

pot1to19 : Digit -> Sub100 ; -- 10 + d

pot0as1 : Sub10 -> Sub100 ; -- coercion of 1..9

pot1 : Digit -> Sub100 ; -- d * 10

pot1plus : Digit -> Sub10 -> Sub100 ; -- d * 10 + n

pot1as2 : Sub100 -> Sub1000 ; -- coercion of 1..99

pot2 : Sub10 -> Sub1000 ; -- m * 100

pot2plus : Sub10 -> Sub100 -> Sub1000 ; -- m * 100 + n

pot2as3 : Sub1000 -> Sub1000000 ; -- coercion of 1..999

pot3 : Sub1000 -> Sub1000000 ; -- m * 1000

pot3plus : Sub1000 -> Sub1000 -> Sub1000000 ; -- m * 1000 + n

}

106 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

9.2 Russian Implementation

Russian implementation of Numeral API (concrete syntax for Russian)6. Cardi-
nal numerals only. Cases are not included in the present description.

concrete NumeralRus of Numeral = CatRus ** open ResRus in {

flags coding=utf8 ;

lincat

Digit = {s : DForm => Gender => Str ; size : Size} ;

Sub10 = {s : Place => DForm => Gender => Str ; size : Size} ;

Sub100 = {s : Place => Gender => Str ; size : Size} ;

Sub1000 = {s : Place => Gender => Str ; size : Size} ;

Sub1000000 = {s : Gender => Str} ;

lin

num x = {s = table{ _ => x.s }};

n2 = {s = table {

{unit} => table {

{Fem} => "dve" ;

=> "dva" };

{teen} => gg "dvenadcatь" ;

{ten} => gg "dvadcatь" ;

{hund} => gg "dvesti" };

size = sgg} ;

n3 = {s = table {

{unit} => gg "tri" ;

{teen} => gg "trinadcatь" ;

{ten} => gg "tridcatь" ;

{hund} => gg "trista" };

size = sgg} ;

n4 = {s = table {

6Implemented by Arto Mustajoki and Aarne Ranta.

9. NUMERAL 107

{unit} => gg "qetyre" ;

{teen} => gg "qetyrnadcatь" ;

{ten} => gg "sorok" ;

{hund} => gg "qetyresta" };

size = sgg} ;

n5 = {s = table {

{unit} => gg "p�tь" ;

{teen} => gg "p�tnadcatь" ;

{ten} => gg "p�tьdes�t" ;

{hund} => gg "p�tьsot" };

size = plg} ;

n6 = {s = table {

{unit} => gg "xestь" ;

{teen} => gg "xestnadcatь" ;

{ten} => gg "xestьdes�t" ;

{hund} => gg "xestьsot" };

size = plg} ;

n7 = {s = table {

{unit} => gg "semь" ;

{teen} => gg "semnadcatь" ;

{ten} => gg "semьdes�t" ;

{hund} => gg "semьsot" };

size = plg} ;

n8 = {s = table {

{unit} => gg "vosemь" ;

{teen} => gg "vosemnadcatь" ;

{ten} => gg "vosemьdes�t" ;

{hund} => gg "vosemьsot" };

size = plg} ;

n9 = {s = table {

108 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

{unit} => gg "dev�tь" ;

{teen} => gg "dev�tnadcatь" ;

{ten} => gg "dev�nosto" ;

{hund} => gg "dev�tьsot" };

size = plg} ;

pot01 = {s = table {

{attr} => table {

{hund} => gg "sto" ;

_ => gg []} ;

_ => table {

{hund} => gg "sto" ;

_ => table {

{Masc} => "odin" ;

{Fem} => "odna" ;

=> "odno"}

}

} ;

size = nom} ;

pot0 d =

{s = table {_ => d.s} ; size = d.size} ;

pot110 =

{s = table { => gg "des�tь" } ; size = plg} ;

pot111 =

{s = table { => gg "odinnadcatь" } ; size = plg} ; -- 11

pot1to19 d =

{s = table {_ => d.s ! teen} ; size = plg} ;

pot0as1 n =

{s = table {p => n.s ! p ! unit} ; size = n.size} ;

pot1 d =

{s = table {_ => d.s ! ten} ; size = plg} ;

pot1plus d e =

{s = table {_ =>

table {g => d.s ! ten ! g ++ e.s ! indep ! unit ! g}};

size = e.size} ;

10. PHRASE 109

pot1as2 n =

{s = n.s ; size = n.size} ;

pot2 d =

{s = table {p => d.s ! p ! hund} ; size = plg} ;

pot2plus d e =

{s = table {

p => table {g => d.s ! p ! hund ! g ++ e.s ! indep ! g}};

size = e.size} ;

pot2as3 n =

{s = n.s ! indep} ;

pot3 n =

{s = gg (n.s ! attr ! Fem ++ mille ! n.size)} ;

pot3plus n m =

{s = table {

g => n.s ! attr ! Fem ++ mille ! n.size ++ m.s ! indep ! g}

} ;

}

10 Phrase

10.1 Abstract API

Language-independent functions (abstract syntax) for forming phrases.

abstract Phrase = Cat ** {

When a phrase is built from an utterance it can be prefixed with a phrasal
conjunction (such as but, therefore) and suffixing with a vocative (typically a
noun phrase).

fun

PhrUtt : PConj -> Utt -> Voc -> Phr ; -- But go home my friend.

No idi domo�, mo� drug.
Utterances are formed from sentences, questions, and imperatives.

UttS : S -> Utt ; -- John walks

Ivan id�t

UttQS : QS -> Utt ; -- is it good

зto horoxo

UttImpSg : Pol -> Imp -> Utt; -- (don’t) help yourself

110 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

(ne) vhodi

((don’t) come in)

UttImpPl : Pol -> Imp -> Utt; -- (don’t) help yourselves

(ne) vhodite

((don’t) come in)

There are also ’one-word utterances’. A typical use of them is as answers to
questions. Note. This list is incomplete. More categories could be covered.
Moreover, in many languages e.g. noun phrases in different cases can be used.

UttIP : IP -> Utt ; -- who

kto

UttIAdv : IAdv -> Utt ; -- why

poqemu

UttNP : NP -> Utt ; -- this man

зtot qelovek

UttAdv : Adv -> Utt ; -- here

zdesь

UttVP : VP -> Utt ; -- to sleep

spatь
The phrasal conjunction is optional. A sentence conjunction can also used to

prefix an utterance.

NoPConj : PConj ;

PConjConj : Conj -> PConj ; -- and

i
The vocative is optional. Any noun phrase can be made into vocative, which

may be overgenerating (e.g. I).

NoVoc : Voc ;

VocNP : NP -> Voc ; -- my friend

mo� drug

}

11. QUESTION 111

10.2 Russian Implementation

Russian implementation of Phrase API (concrete syntax for Russian). The func-
tions below are considered straightforward.

concrete PhraseRus of Phrase = CatRus ** open Prelude, ResRus in {

lin

PhrUtt pconj utt voc = {s = pconj.s ++ utt.s ++ voc.s} ;

UttS s = s ;

UttQS qs = {s = qs.s ! QDir} ;

UttImpSg pol imp = {s = pol.s ++ imp.s ! pol.p ! Masc! Sg} ;

UttImpPl pol imp = {s = pol.s ++ imp.s ! pol.p ! Masc! Pl} ;

UttIP ip = {s = ip.s ! PF Nom No NonPoss} ; --- Acc also

UttIAdv iadv = iadv ;

UttNP np = {s = np.s ! PF Acc No NonPoss} ;

UttVP vp = {s = vp.s ! ClInfinit ! ASg Masc! P3} ;

UttAdv adv = adv ;

NoPConj = {s = []} ;

PConjConj conj = conj ;

NoVoc = {s = []} ;

VocNP np = {s = "," ++ np.s ! PF Nom No NonPoss} ;

}

11 Question

11.1 Abstract API

Language-independent functions (abstract syntax) for forming questions.

abstract Question = Cat ** {

A question can be formed from a clause (’yes-no question’) or with an inter-
rogative.

fun

QuestCl : Cl -> QCl ; -- does John walk

Ivan id�t

QuestVP : IP -> VP -> QCl ; -- who walks

112 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

kto id�t

QuestSlash : IP -> Slash -> QCl ; -- who does John love

kogo Ivan l�bit

QuestIAdv : IAdv -> Cl -> QCl ; -- why does John walk

poqemu Ivan id�t

QuestIComp : IComp -> NP -> QCl ; -- where is John

gde Ivan
Interrogative pronouns can be formed with interrogative determiners.

IDetCN : IDet -> Num -> Ord -> CN -> IP; -- which five best songs

kakie p�tь luqxih
pesen

AdvIP : IP -> Adv -> IP ; -- who in Europe

kto v Evrope

PrepIP : Prep -> IP -> IAdv ; -- with whom

s kem

CompIAdv : IAdv -> IComp ; -- where

gde
More IP, IDet, and IAdv are defined in Structural.

}

11.2 Russian Implementation

Russian implementation of Question API (concrete syntax for Russian).

concrete QuestionRus of Question = CatRus ** open ResRus,

Prelude in {

flags optimize=all_subs ;

lin

QuestCl cl = {s = \\b,cf,_ => cl.s ! b ! cf } ;

QuestVP kto spit =

{s = \\b,clf,qf => (predVerbPhrase kto spit).s!b!clf } ;

11. QUESTION 113

Interrogative pronoun Kto is inflected according to the verb phrase’s case (yaGovoru.c):

QuestSlash Kto yaGovoruO =

let { kom = Kto.s ! (mkPronForm yaGovoruO.c No NonPoss) ;

o = yaGovoruO.s2 } in

{s = \\b,clf,_ => o ++ kom ++ yaGovoruO.s ! b ! clf

} ;

QuestIAdv kak tuPozhivaesh =

{s = \\b,clf,q => kak.s ++ tuPozhivaesh.s!b!clf } ;

QuestIComp pochemu stul =

{s = \\b,clf,q => let ne = case b of

{Pos =>[]; Neg => "ne"}

in

pochemu.s ++ ne ++ stul.s! PF Nom No NonPoss } ;

PrepIP p ip = {s = p.s ++ ip.s ! PF Nom No NonPoss} ;

All parameter values: number (n), person (p), gender (g), animacy (anim) are
inherited from interrogative pronoun (ip):

AdvIP ip adv = {

s = \\c => ip.s ! c ++ adv.s ;

n = ip.n; p=ip.p; g=ip.g; anim=ip.anim; pron=ip.pron

} ;

Number (n) and gender (g) are inherited from interrogative determiner (kakoj).
Animacy (anim) is inherited from common noun (okhotnik). The difference be-
tween Nominative (Nom) and other cases of interrogative determiner (kakoj.c) is
in the choice of case for common noun (okhotnik.s), i.e. common noun agrees
with interrogative determiner. Numeral (pyat.s) and ordinal (umeluj.s) agree
with common noun (okhotnik.s):

IDetCN kakoj pyat umeluj okhotnik =

{s = \\pf => case kakoj.c of {

Nom =>

kakoj.s ! AF (extCase pf) okhotnik.anim

(gNum okhotnik.g kakoj.n) ++ pyat.s!

(extCase pf) ! okhotnik.g ++ umeluj.s!

AF (extCase pf) okhotnik.anim

gNum okhotnik.g kakoj.n)++

okhotnik.s ! kakoj.n ! (extCase pf) ;

114 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

_ =>

kakoj.s ! AF (extCase pf) okhotnik.anim

(gNum okhotnik.g kakoj.n) ++

pyat.s! (extCase pf) ! okhotnik.g ++

umeluj.s!AF (extCase pf) okhotnik.anim

(gNum okhotnik.g kakoj.n)++

okhotnik.s ! kakoj.n ! kakoj.c };

n = kakoj.n ;

p = P3 ;

pron = False;

g = kakoj.g ;

anim = okhotnik.anim

} ;

CompIAdv a = a ;

}

12 Relative

12.1 Abstract API

Language-independent functions (abstract syntax) for forming relative phrases.

abstract Relative = Cat ** {

fun

The simplest way to form a relative clause is from a clause by a pronoun
similar to such that.

RelCl : Cl -> RCl ; -- such that John loves her

tak qto Ivan e� l�bit
The more proper ways are from a verb phrase (formed in Verb) or a sentence

with a missing noun phrase (formed in Sentence).

RelVP : RP -> VP -> RCl ; -- who loves John

kto l�bit Ivana

RelSlash : RP -> Slash -> RCl ; -- whom John loves

kogo l�bit Ivan
Relative pronouns are formed from an ’identity element’ by prefixing or suf-

fixing (depending on language) prepositional phrases.

IdRP : RP ; -- which

12. RELATIVE 115

kotory�

FunRP : Prep -> NP -> RP -> RP ; -- all the roots of which

vse korni kotorogo

}

12.2 Russian Implementation

Russian implementation of Relative API (concrete syntax for Russian).

concrete RelativeRus of Relative = CatRus ** open ResRus,

MorphoRus in {

flags optimize=all_subs ; coding=utf8 ;

lin

Tako� (takoj) and qto in Russian correspond to such and that in English,
respectively:

RelCl A = {s = \\b,clf,gn,c, anim =>

takoj.s ! AF c anim gn ++ "qto" ++ A.s ! b ! clf};

RelVP kotoruj gulyaet = { s = \\b,clf,gn, c, anim =>

let { nu = numGNum gn } in

kotoruj.s ! gn ! c ! anim ++ gulyaet.s2 ++

gulyaet.s ! clf ! gn !P3 ++

gulyaet.s3 ! genGNum gn ! nu

} ;

Relative pronoun (kotoruj) agrees with slash in case (yaVizhu.c):

RelSlash kotoruj yaVizhu = {s = \\b,clf,gn, _ ,

anim => yaVizhu.s2 ++ kotoruj.s ! gn ! yaVizhu.c ! anim

++ yaVizhu.s!b!clf

} ;

FunRP p mama kotoruj = {s = \\gn,c, anim =>

mama.s ! PF c No NonPoss ++ p.s ++ kotoruj.s ! gn ! p.c ! anim

} ;

IdRP = {s = \\gn, c, anim => kotorujDet.s ! (AF c anim gn)} ;

}

116 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

13 Sentence

13.1 Abstract API

Language-independent functions (abstract syntax) for forming sentences.

abstract Sentence = Cat ** {

Clauses

The NP VP predication rule form a clause whose linearization gives a table of
all tense variants, positive and negative. Clauses are converted to S (with fixed
tense) in Tensed.

fun

PredVP : NP -> VP -> Cl ; -- John walks

Ivan id�t
Using an embedded sentence as a subject is treated separately. This can be

overgenerating. E.g. whether you go as subject is only meaningful for some verb
phrases.

PredSCVP : SC -> VP -> Cl ; -- that you go makes me happy

qto ty prid�xь delaet men�
sqastlivym

Clauses missing object noun phrases

This category is a variant of the ’slash category’ S/NP of GPSG [11] and categorial
grammars, which in turn replaces movement transformations in the formation of
questions and relative clauses. Except SlashV2, the construction rules can be
seen as special cases of function composition, in the style of CCG [35]. Note:
the set is not complete and lacks e.g. verbs with more than 2 places.

SlashV2 : NP -> V2 -> Slash ; -- (whom) he sees

(kogo) on vidit

SlashVVV2 : NP -> VV -> V2 -> Slash; -- (whom) he wants to see

(kogo) on hoqet videtь

AdvSlash : Slash -> Adv -> Slash ; -- (whom) he sees tomorrow

(kogo) on uvidit zavtra

SlashPrep : Cl -> Prep -> Slash ; -- (with whom) he walks

(s kem) on gul�et

13. SENTENCE 117

Imperatives

An imperative is straightforwardly formed from a verb phrase. It has variation
over positive and negative, singular and plural. To fix these parameters, see
Phrase.

ImpVP : VP -> Imp ; -- go

idi

Embedded sentences

Sentences, questions, and infinitival phrases can be used as subjects and (adver-
bial) complements.

EmbedS : S -> SC ; -- that you go

qto ty id�xь

EmbedQS : QS -> SC ; -- whether you go

id�xь li ty

EmbedVP : VP -> SC ; -- to go

idti

Sentences

These are the 2 x 4 x 4 = 16 forms generated by different combinations of tense,
polarity, and anteriority, which are defined in Tense.

fun

UseCl : Tense -> Ant -> Pol -> Cl -> S ;

UseQCl : Tense -> Ant -> Pol -> QCl -> QS ;

UseRCl : Tense -> Ant -> Pol -> RCl -> RS ;

}

118 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

13.2 Russian Implementation

Russian implementation of Sentence API (concrete syntax for Russian).

concrete SentenceRus of Sentence = CatRus ** open Prelude, ResRus

in {

flags optimize=all_subs ; coding=utf8 ;

lin

Verb (vizhu) and complement (tebya) agree with subject (Ya) in gender (g),
number (n) and person (p):

PredVP Ya tebyaNeVizhu = { s = \\b,clf =>

let {

ya = Ya.s ! (case clf of {

ClInfinit => (mkPronForm Acc No NonPoss);

_ => (mkPronForm Nom No NonPoss)

});

ne = case b of {Pos=>""; Neg=>"ne"};

vizhu = tebyaNeVizhu.s ! clf ! (pgNum Ya.g Ya.n)! Ya.p;

tebya = tebyaNeVizhu.s3 ! (pgen2gen Ya.g) ! Ya.n

khorosho = tebyaNeVizhu.s2 ;

}

in if_then_else Str tebyaNeVizhu.negBefore

(ya ++ ne ++ vizhu ++ tebya ++ khorosho)

(ya ++ vizhu ++ ne ++ tebya ++ khorosho)

} ;

Embedded sentence as a subject is assumed to be singular (Sg), third person
(P3):

PredSCVP sc vp = { s = \\b,clf =>

let {

ne = case b of {Pos=>""; Neg=>"ne"};

vizhu = vp.s ! clf ! (ASg Neut)! P3;

tebya = vp.s3 ! Neut ! Sg

}

in

if_then_else Str vp.negBefore

(sc.s ++ ne ++ vizhu ++ tebya)

(sc.s ++ vizhu ++ ne ++ tebya)

} ;

13. SENTENCE 119

Verb (lubit) agrees with subject (ivan) in gender (g), number (n) and person
(p). Complement (s2 and c) in the next four functions is inherited from the verb:

SlashV2 ivan lubit = { s=\\b,clf => ivan.s ! PF Nom No NonPoss ++

lubit.s! (getActVerbForm clf (pgen2gen ivan.g) ivan.n ivan.p) ;

s2=lubit.s2; c=lubit.c };

SlashVVV2 ivan khotet lubit =

{ s=\\b,clf => ivan.s ! PF Nom No NonPoss ++

khotet.s! (getActVerbForm clf (pgen2gen ivan.g) ivan.n ivan.p)

++ lubit.s! VFORM Act VINF ;

s2=lubit.s2;

c=lubit.c

};

AdvSlash slash adv = {

s = \\b,clf => slash.s ! b ! clf ++ adv.s ;

c = slash.c;

s2 = slash.s2;

} ;

SlashPrep cl p = {s=cl.s; s2=p.s; c=p.c} ;

ImpVP inf = {s = \\pol, g,n =>

let

dont = case pol of {

Neg => "ne" ;

_ => []

}

in

dont ++ inf.s ! ClImper ! (gNum g n)!P2++

inf.s2++inf.s3!g!n

} ;

Qto in Russian corresponds to that in English:

EmbedS s = {s = "qto" ++ s.s} ;

In Russian ”Whether you go” transformed into ”go whether you”:

EmbedQS qs = {s = qs.s ! QIndir} ;

EmbedVP vp = {s = vp.s2 ++ vp.s!ClInfinit!(ASg Masc) !P3

120 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

++ vp.s3!Masc!Sg} ;

UseCl t a p cl = {s = case t.t of {

Cond => cl.s! p.p ! ClCondit ;

_ => cl.s! p.p ! ClIndic (getTense t.t) a.a}};

UseQCl t a p qcl= {s = case t.t of {

Cond => qcl.s! p.p ! ClCondit ;

_ => qcl.s!p.p! ClIndic (getTense t.t) a.a }};

UseRCl t a p rcl ={s = \\gn,c,anim => case t.t of {

Cond => [", "] ++ rcl.s! p.p ! ClCondit ! gn !c !anim ;

_ => [", "] ++ rcl.s! p.p ! ClIndic (getTense t.t)

a.a !gn !c !anim}};

}

14 Verb

14.1 Abstract API

Language-independent functions (abstract syntax) for forming verb phrases.

abstract Verb = Cat ** {

Complementization rules

Verb phrases are constructed from verbs by providing their complements. There
is one rule for each verb category.

fun

UseV : V -> VP ; -- sleep

spit

ComplV2 : V2 -> NP -> VP ; -- use it

ispolьzu� зto

ComplV3 : V3 -> NP -> NP -> VP ; -- send a message to her

poxli e� pisьmo

ComplVV : VV -> VP -> VP ; -- want to run

hoqet beжatь

14. VERB 121

ComplVS : VS -> S -> VP ; -- know that she runs

zna�, qto ona begaet

ComplVQ : VQ -> QS -> VP ; -- ask if she runs

sprositь begaet li ona

ComplVA : VA -> AP -> VP ; -- look red

vygl�dit krasnym

ComplV2A : V2A -> NP -> AP -> VP ; -- paint the house red

pokrasitь dom krasnym

Other ways of forming verb phrases

Verb phrases can also be constructed reflexively and from copula-preceded com-
plements.

ReflV2 : V2 -> VP ; -- use itself

ispolьzovatь seb�

UseComp : Comp -> VP ; -- be warm

bytь t�plym
Passivization of two-place verbs is another way to use them. In many lan-

guages, the result is a participle that is used as complement to a copula (is used),
but other auxiliary verbs are possible (Ger. wird angewendet, It. viene usato), as
well as special verb forms (Fin. käytetään, Swe. används, Rus: ispolьzuetS�).

Note. the rule can be overgenerating, since the V2 need not take a direct
object.

PassV2 : V2 -> VP ; -- be used

bytь ispolьzovannym
Adverbs can be added to verb phrases. Many languages make a distinction

between adverbs that are attached in the end vs. next to (or before) the verb.

AdvVP : VP -> Adv -> VP ; -- sleep here

spit tut

AdVVP : AdV -> VP -> VP ; -- always sleep

vsegda spit
Agents of passives are constructed as adverbs with the preposition.

122 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Complements to copula

Adjectival phrases, noun phrases, and adverbs can be used.

CompAP : AP -> Comp ; -- (be) small

(bytь) malenьkim

CompNP : NP -> Comp ; -- (be) a soldier

(bytь) soldatom

CompAdv : Adv -> Comp ; -- (be) here

(bytь) zdesь

Coercions

Verbs can change subcategorization patterns in systematic ways, but this is very
much language-dependent. The following two work in all the languages we cover.

UseVQ : VQ -> V2 ; -- ask (a question)

sprositь (vopros)

UseVS : VS -> V2 ; -- know (a secret)

znatь (sekret)

}

14.2 Russian Implementation

Russian implementation of Verb API (concrete syntax for Russian).

concrete VerbRus of Verb = CatRus ** open ResRus, Prelude in {

flags optimize=all_subs ; coding=utf8 ;

lin

In the next three rules numerous cases correspond to the inflection forms of copula
verb to be (bytь in Russian), which is imperfective in aspect(asp), active in voice
(w) with prefix negation (negBefore). Complements (s2, s3) are empty:

CompNP masha = { s=\\clf,gn,p => case clf of {

(ClIndic Present _) => masha.s ! (mkPronForm Nom No NonPoss) ;

(ClIndic Past _) => case gn of {

14. VERB 123

(ASg Fem) => "byla"++masha.s ! (mkPronForm Inst No NonPoss);

(ASg Masc) => "byl" ++ masha.s!(mkPronForm Inst No NonPoss);

(ASg Neut) => "bylo" ++ masha.s!(mkPronForm Inst No NonPoss);

APl => "byli" ++ masha.s ! (mkPronForm Inst No NonPoss)

};

(ClIndic Future _) => case gn of{

APl => case p of {

P3 => "budut"++masha.s ! (mkPronForm Inst No NonPoss);

P2 => "budete"++masha.s !(mkPronForm Inst No NonPoss);

P1 => "budem"++masha.s ! (mkPronForm Inst No NonPoss)

};

(ASg _) => case p of {

P3=>"budet"++masha.s!(mkPronForm Inst No NonPoss) ;

P2 => "budexь"++ masha.s ! (mkPronForm Inst No NonPoss) ;

P1=> "budu"++ masha.s ! (mkPronForm Inst No NonPoss)

} --case p

}; --case gn

ClCondit => "" ;

ClImper => case (numGNum gn) of {

Sg => "budь" ++ masha.s ! (mkPronForm Inst No NonPoss);

Pl => "budьte" ++ masha.s ! (mkPronForm Inst No NonPoss)};
ClInfin => "bytь" ++ masha.s ! (mkPronForm Inst No NonPoss)

}; -- case clf

asp = Imperfective ;

w = Act;

negBefore = True;

s2 = "";

s3 = \\g,n => ""

} ;

Unlike the previous function here not only copular inflects, but also adjective
(zloj) inflects in number and gender:

CompAP zloj ={ s= \\clf,gn,p => case clf of {-- person is ignored

ClInfinit => "bytь" ++ zloj.s!AF Inst Animate (ASg Masc) ;

ClImper => case gn of {

124 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

(ASg) => "budь" ++ zloj.s ! AF Inst Animate (ASg Masc);

APl => "budьte" ++ zloj.s ! AF Inst Animate APl };
Infinitive does not save GenNum, but indicative does for the sake of adjectival
predication:

ClIndic Present _ => zloj.s ! AF Nom Animate gn ;

ClIndic Past _ => case gn of {

(ASg Fem) => "byla" ++ zloj.s! AF Nom Animate (ASg Fem);

(ASg Masc) => "byl" ++ zloj.s! AF Nom Animate (ASg Masc);

(ASg Neut) => "bylo" ++ zloj.s! AF Nom Animate (ASg Neut);

APl => "byli" ++ zloj.s! AF Nom Animate APl };

ClIndic Future _ => case gn of

{ APl => case p of {

P3 => "budut" ++ zloj.s! AF Nom Animate APl;

P2 => "budete" ++ zloj.s! AF Nom Animate APl;

P1 => "budem" ++ zloj.s! AF Nom Animate APl

} ;

(ASg _) => case p of

P3 => "budet" ++ zloj.s! AF Nom Animate (ASg (genGNum gn));

P2 => "budexь"++ zloj.s! AF Nom Animate (ASg (genGNum gn));

P1=> "budu" ++ zloj.s! AF Nom Animate (ASg (genGNum gn))

}

};

ClCondit => ""

} ;

asp = Imperfective ;

w = Act;

negBefore = True;

s2 = "";

s3 = \\g,n=> ""

} ;

Verb phrases can also be formed from common nouns (qelovek) [a man], noun
phrases (samy� molodo�) [the youngest] and adjectives (molod) [young]. The
second rule is overgenerating: kaжdy� qelovek [every man] has to be ruled out
on semantic grounds.
Note: we omit a dash ”–” because it will cause problems with negation word
order: � – ne volxebnik (I am not a wizard). Alternatively, we can consider
verb-based VP and all the rest.

14. VERB 125

CompAdv zloj = { s= \\clf,gn,p => case clf of {

ClImper => case gn of {

ASg => "budь" ++ zloj.s; -- person is ignored

APl => "budьte" ++ zloj.s };
ClInfinit => "bytь " ++ zloj.s;

ClIndic Present _ => zloj.s ;

ClIndic Past _ => case gn of {

(ASg Fem) => "byla" ++ zloj.s;

(ASg Masc) => "byl" ++ zloj.s;

(ASg Neut) => "bylo" ++ zloj.s;

APl => "byli" ++ zloj.s

};

ClIndic Future _ => case gn of {

(ASg) => "budet" ++ zloj.s;

APl => "budut" ++ zloj.s };

ClCondit => "" } ;

asp = Imperfective ;

w = Act;

s2 = "";

negBefore = True;

s3 = \\g,n => ""

} ;

UseComp comp = comp ;

UseVS, UseVQ = \vv -> {s = vv.s ; asp = vv.asp; s2 = [] ;

c = Acc} ;

In the following functions aspect parameter (asp) is inherited from the verb (se,
dat, v, vidit etc.) active (Act) in voice (w); complements (s2, s3) are empty;
negation is prefixed.
A simple verb can be made into a verb phrase with an empty complement. There
are two versions, depending on if we want to negate the verb:

UseV se = {

s=\\clf,gn,p =>

se.s ! (getActVerbForm clf (genGNum gn) (numGNum gn) p) ;

asp = se.asp ;

w=Act;

s2 = "";

negBefore = True;

s3 = table{_=> table{_ => ""}}

} ;

126 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

The rule for using transitive verbs is the complementization rule:

ComplV2 se tu = {

s =\\clf,gn,p =>

se.s ! (getActVerbForm clf (genGNum gn) (numGNum gn) p)

++ se.s2 ++ tu.s ! (mkPronForm se.c No NonPoss) ;

asp = se.asp ;

w = Act;

s2 = "";

s3 = \\g,n => "";

negBefore = True

} ;

dat verb requires a certain case (dat.c) from the complement (dat.c from tu.s

and dat.c2 from pivo.s):

ComplV3 dat tu pivo = let tebepivo =

dat.s2 ++ tu.s ! PF dat.c No NonPoss ++ dat.s4 ++

pivo.s ! PF dat.c2 Yes NonPoss

in

{s = \\clf,gn,p => dat.s !

(getActVerbForm clf (genGNum gn) (numGNum gn) p) ++

tebepivo ;

asp = dat.asp ;

w = Act;

negBefore = True;

s2 = "";

s3 = \\g,n=> ""

} ;

Self in English corresponds to seb� (sebya) in Russian:

ReflV2 v = {

s = \\clf,gn,p => v.s !

(getActVerbForm clf (genGNum gn) (numGNum gn) p) ++

v.s2 ++ sebya!v.c;

asp = v.asp ;

w = Act;

negBefore = True;

s2 = "";

s3 = \\g,n=> ""

} ;

To generate skazal, qto Ivan gul�et / ne skazal, qto Ivan gul�et (told
that Ivan walks / did not tell that Ivan walks):

14. VERB 127

ComplVS vidit tuUlubaeshsya = {

s = \\clf,gn,p => vidit.s !

(getActVerbForm clf (genGNum gn) (numGNum gn) p)

++ [", qto"] ++ tuUlubaeshsya.s ;

asp = vidit.asp;

w = Act;

s2="";

negBefore = True;

s3 = \\g,n => ""

} ;

To generate moжet gul�tь; ne pytaets� rabotatь (can walk; does not try
to work):

ComplVV putatsya bezhat = {

s = \\clf,gn,p =>

putatsya.s ! (getActVerbForm clf (genGNum gn)

(numGNum gn) p) ++ bezhat.s!ClInfinit !gn!p ;

asp = putatsya.asp ;

w = Act;

negBefore = True;

s2 = "";

s3 =\\g,n => ""

} ;

ComplVQ dat esliOnPridet = {

s = \\clf,gn,p =>

dat.s ! (getActVerbForm clf (genGNum gn) (numGNum gn) p)

++ esliOnPridet.s ! QDir ;

asp = dat.asp ;

w = Act;

negBefore = True;

s2 = "";

s3 = \\g,n=> ""

} ;

ComplVA vuglyadet molodoj = {

s = \\clf,gn,p => vuglyadet.s!

(getActVerbForm clf (genGNum gn) (numGNum gn) p) ;

asp = vuglyadet.asp ;

w = Act;

negBefore = True;

s2 = "";

128 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

s3 = \\g,n => molodoj.s!(AF Inst Animate (gNum g n))

} ;

Verb requires a certain case (obechat.c) from noun phrase (tu). Adjective’s
(molodoj.s) form depends on noun phrase’s animacy (tu.anim):

ComplV2A obechat tu molodoj = {

s = \\clf,gn,p => obechat.s2++obechat.s !

(getActVerbForm clf (genGNum gn) (numGNum gn) p)

++ tu.s ! PF obechat.c No NonPoss ++

molodoj.s!AF Inst tu.anim (pgNum tu.g tu.n) ;

asp = obechat.asp ;

w = Act;

negBefore = True;

s2 = "";

s3 = \\g,n =>""

} ;

The difference between the next two functions is the word order (prefix of postfix
adverb) in the complement (s2). All parameters are inherited from the verb
argument (poet):

AdvVP poet khorosho = {

´ s = \\clf,gn,p => poet.s ! clf!gn!p;

s2 = poet.s2 ++ khorosho.s;

s3 = poet.s3;

asp = poet.asp;

w = poet.w;

t = poet.t ;

negBefore = poet.negBefore } ;

AdVVP khorosho poet = {

s = \\clf,gn,p => poet.s ! clf!gn!p;

s2 = khorosho.s ++ poet.s2;

s3 = poet.s3;

asp = poet.asp;

w = poet.w;

t = poet.t ;

negBefore = poet.negBefore } ;

PassV2 se = {s=\\clf,gn,p =>

se.s ! (getPassVerbForm clf (genGNum gn) (numGNum gn) p) ;

15. PARADIGMS 129

asp=se.asp;

w=Pass;

s2 = se.s2;

negBefore = True;

s3 = table{_=> table{_ => ""}}

};

}

15 Paradigms

This is an API for the user of the Russian resource grammar for adding lexi-
cal items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.

The implementations of paradigms are placed in lower-level module MorphoRus,
which is not shown, because it is too big (around 2000 lines) and too detailed.
Also our work here is concentrated on syntax and not on morphology.

The main difference with MorphoRus is that the types referred to are compiled
resource grammar types. We have moreover had the design principle of always
having existing forms, rather than stems, as string arguments of the paradigms.

The structure of functions for each word class C is the following: first we give a
handful of patterns that aim to cover all regular cases. Then we give a worst-case
function mkC, which serves as an escape to construct the most irregular words of
type C.

resource ParadigmsRus = open

(Predef=Predef),

Prelude,

MorphoRus,

CatRus,

NounRus

in {

flags coding=utf8 ;

15.1 Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

130 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

masculine : Gender ;

feminine : Gender ;

neuter : Gender ;

To abstract over case names, we define the following.

Case : Type ;

nominative : Case ;

genitive : Case ;

dative : Case ;

accusative : Case ;

instructive : Case ;

prepositional : Case ;

In some (written in English) textbooks accusative case is put on the second
place. However, we follow the case order standard for Russian textbooks. To
abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

Animacy: Type ;

animate: Animacy;

inanimate: Animacy;

15.2 Nouns

Best case: indeclinabe nouns: kofe (coffee), palьto (coat), VUZ (university).

mkIndeclinableNoun: Str -> Gender -> Animacy -> N ;

Worst case – give six singular forms: Nominative, Genitive, Dative, Ac-
cusative, Instructive and Prepositional; corresponding six plural forms and the
gender. May be the number of forms needed can be reduced, but this requires a
separate investigation. Animacy parameter (determining whether the Accusative
form is equal to the Nominative or the Genitive one) is actually of no help, since
there are a lot of exceptions and the gain is just one form less.

mkN : (nomSg, genSg, datSg, accSg, instSg, preposSg,

nomPl, genPl, datPl, accPl, instPl, preposPl: Str)

-> Gender -> Animacy -> N ;

15. PARADIGMS 131

(muжqina, muжqinu, muжqine, muжqinu, muжqino�, muжqine
muжqiny, muжqin, muжqinam, muжqin, muжqinami, muжqinah)
(man)

The regular function captures the variants for some popular nouns endings
from the list below:

regN : Str -> N ;

Here are some common patterns. The list is far from complete.

Feminine patterns

feminine, inanimate, ending with a, instructive case – maxinO� (car):

nMashina : Str -> N ;

feminine, inanimate, ending with a, instructive case – edinicE� (one):

nEdinica : Str -> N ;

feminine, animate, ending with a, nominative case – жenwina (woman):

nZhenchina : Str -> N ;

feminine, inanimate, ending with ga ka ha, nominative case – noga (leg):

nNoga : Str -> N ;

feminine, inanimate, ending with i�, nominative case – mal�ri� (malaria):

nMalyariya : Str -> N ;

feminine, animate, ending with �, nominative case – t�t� (aunt):

nTetya : Str -> N ;

feminine, inanimate, ending with ь(soft sign), nominative case – bolь (pain):

nBol : Str -> N ;

Neuter patterns

neutral, inanimate, ending with ee, nominative case – obezboliva�wee (painkiller):

nObezbolivauchee : Str -> N ;

neutral, inanimate, ending with e, nominative case – proizvedenie (product):

nProizvedenie : Str -> N ;

neutral, inanimate, ending with o, nominative case – qislo (number):

nChislo : Str -> N ;

neutral, inanimate, ending with oe, nominative case – жivotnoe (animal):

nZhivotnoe : Str -> N ;

132 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Masculine patterns

Ending with consonant:
masculine, inanimate, ending with el, genitive case – pepLA (ash’s):

nPepel : Str -> N ;

animate, plural – bratЬ� (brothers):

nBrat : Str -> N ;

same as above, but inanimate, nominative case – stul (chair):

nStul : Str -> N ;

plural genitive – malyxE� (babies’):

nMalush : Str -> N ;

genitive case – potolKA (ceiling’s)

nPotolok : Str -> N ;

The next four differ in plural nominative and/or accusative form(s):
plural – bankI (banks) (Nom=Acc):

nBank : Str -> N ;

same as above, but animate, nominative case – stomatolog (dentist):

nStomatolog : Str -> N ;

genitive case – adresA (address’) (Nom=Acc):

nAdres : Str -> N ;

plural – telefonY (phones) (Nom=Acc):

nTelefon : Str -> N ;

masculine, inanimate, ending with ь (soft sign), nominative case – nolь (zero):

nNol : Str -> N ;

masculine, inanimate, ending with enь, nominative case – urovenь (level):

nUroven : Str -> N ;

Nouns used as functions need a preposition. The most common is with geni-
tive.

mkFun : N -> Prep -> N2 ;

mkN2 : N -> N2 ;

mkN3 : N -> Prep -> Prep -> N3 ;

15. PARADIGMS 133

Proper names

Ivan, Maxa:

mkPN : Str -> Gender -> Animacy -> PN ;

nounPN : N -> PN ;

On the top level, it is maybe CN that is used rather than N, and NP rather
than PN.

mkCN : N -> CN ;

mkNP : Str -> Gender -> Animacy -> NP ;

15.3 Adjectives

Non-comparison (only positive degree) one-place adjectives need 28 (4 by 7) forms
in the worst case:

(Masculine — Feminine — Neutral — Plural) *
(Nominative — Genitive — Dative — Accusative Inanimate — Accusative

Animate — Instructive — Prepositional).
Notice that 4 short forms, which exist for some adjectives are not included in

the current description, otherwise there would be 32 forms for positive degree.
The regular function captures the variants for some popular adjective endings

below. The first string argument is the masculine singular form, the second is
comparative:

regA : Str -> Str -> A ;

Invariable adjective is a special case: haki (khaki) , mini (mini), hindi (Hindi),
netto (netto):

adjInvar : Str -> A ;

Some regular patterns depending on the ending.
ending with y�, nominative case, masculine – stary� (old):

AStaruyj : Str -> Str -> A ;

ending with i�, masculine, genitive case – malenьkOGO (small):

AMalenkij : Str -> Str -> A ;

ending with i�, masculine, genitive case – horoxEGO (good):

AKhoroshij : Str -> Str -> A ;

ending with o�, plural – molodYE (young) :

134 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

AMolodoj : Str -> Str -> A ;

ending with o�, plural – kakIE (which):

AKakoj_Nibud : Str -> Str -> Str -> A ;

Two-place adjectives need a preposition and a case as extra arguments.
delim na (divisible by):

mkA2 : A -> Str -> Case -> A2 ;

Comparison adjectives need a positive adjective (28 forms without short forms).
Taking only one comparative form (non-syntactic) and only one superlative form
(syntactic) we can produce the comparison adjective with only one extra argu-
ment - non-syntactic comparative form. Syntactic forms are based on the positive
forms.

mkADeg : A -> Str -> ADeg ;

On top level, there are adjectival phrases. The most common case is just to use
a one-place adjective.

ap : A -> IsPostfixAdj -> AP ;

15.4 Adverbs

Adverbs are not inflected.

mkAdv : Str -> Adv ;

15.5 Verbs

In our lexicon description (Verbum) there are 62 forms:

2 (Voice) *
{ 1 (infinitive)

+
[2(Number) * 3(Person)](imperative)
+
[[2(Number) * 3(Person)](present)

+
[2(Number) * 3(Person)](future)

+
4(GenNum)(past)](indicative)

+
4 (GenNum) (subjunctive) }.

15. PARADIGMS 135

Participles (present and past) and gerund forms are not included, since they
function more like adjectives and adverbs respectively rather than verbs (see
also 3.2). Such separation is, however, non-standard and is not present in the
GF resource grammars for other languages. Aspect is regarded as an inherent
parameter of a verb. Notice that some forms are never used for some verbs.

Voice: Type;

Aspect: Type;

Tense : Type;

Bool: Type;

Conjugation: Type ;

gul�EXЬ, gul�EM (walk):

first: Conjugation;

Verbs with vowel �: da�xь (give), pь�xь (drink):

firstE: Conjugation;

vidIXЬ, vidIM (see):

second: Conjugation;

hoqEXЬ, hotIM (want):

mixed: Conjugation;

irregular:

dolzhen: Conjugation;

true: Bool;

false: Bool;

active: Voice ;

passive: Voice ;

imperfective: Aspect;

perfective: Aspect ;

The worst case need 6 forms of the present tense in indicative mood: � begu
(I run), ty beжixь (you run), on beжit (he runs), my beжim (we run),
vy beжite (you run), oni begut (they run); a past form (singular, masculine:
� beжal (I run)), an imperative form (singular, second person: begi (run)), an
infinitive (beжatь (to run)). Inherent aspect should also be specified.

mkV : Aspect -> (presentSgP1,presentSgP2,presentSgP3,

presentPlP1,presentPlP2,presentPlP3,

pastSgMasculine,imperative,infinitive: Str) -> V ;

136 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Common conjugation patterns are two conjugations: first – verbs ending with
atь/�tь and second – itь/etь. Instead of 6 present forms of the worst case,
we only need a present stem and one ending (singular, first person): � l�bl�
(I love), � жdu (I wait), etc. To determine where the border between stem
and ending lies it is sufficient to compare first person from with second person
form: � l�bl� (I love), ty l�bixь (you love). Stems should be the same. So
the definition for verb l�bitь (to love) looks like: regV Imperfective Second

”l�b” ”l�” ”l�bil” ”l�bi” ”l�bitь”;

regV : Aspect -> Conjugation -> (stemPresentSgP1,

endingPresentSgP1,pastSgP1,imperative,infinitive: Str) -> V ;

Two-place verbs, and the special case with direct object. Notice that a particle
can be included in a V.

vo�ti v dom (come in into the house), v, accusative:

mkV2 : V -> Str -> Case -> V2 ;

sloжitь pisьmo v konvert (put the letter into the envelope):

mkV3 : V -> Str -> Str -> Case -> Case -> V3 ;

videtь (to see), l�bitь (to love):

dirV2 : V -> V2 ;

tvDirDir : V -> V3 ;

16 Automatically generated test examples

Automatically generated test examples of using the resource grammar library
functions are intended for proof-reading and also reflect the coverage of the re-
source library. Below we show the test definitions together with their Russian
and English linearizations. Corresponding linearizations can also be generated in
other supported languages.

The purpose of the test is to cover all the syntactic resource library functions.
Every function from the language-independent API is tested at least once in the
test.

Of course, corresponding linearizations in different languages are not perfect
translations, since they use exactly the same syntactic structures. The lexicon
entries are taken from the basic interlingua lexicon.

16. AUTOMATICALLY GENERATED TEST EXAMPLES 137

16.1 Test definitions

--# -path=.:../abstract:../../prelude

abstract ResExamples = Lang ** {

fun

ex1, ex2, ex4, ex8, ex13, ex19, ex20, ex23: Utt;

ex3, ex5, ex6, ex7, ex10, ex12, ex14, ex15, ex16, ex24, ex25,

ex26, ex27: S;

ex9: Phr;

ex11, ex17, ex18, ex21, ex22 : Text;

def

ex1 = UttS (UseCl TPres ASimul PPos (PredVP (UsePron he_Pron)

(AdvVP (UseV sing_V) (AdAdv almost_AdA (PositAdvAdj

correct_A)))));

ex2 = UttAdv (SubjS when_Subj (ConjS and_Conj (BaseS (UseCl

TPast ASimul PPos (PredVP everybody_NP (UseComp

(CompAP (ConjAP and_Conj (BaseAP (PositA young_A)

(PositA beautiful_A))))))) (UseCl TPast ASimul PPos

(PredVP everything_NP (ComplVA become_VA (PositA

probable_AS)))))));

ex3 = UseCl TPres ASimul PPos (CleftNP (PredetNP only_Predet

(DetCN (DetPl (PlQuant IndefArt) (NumInt 2) NoOrd)

(UseN woman_N))) (UseRCl TCond ASimul PPos (RelSlash

IdRP (AdvSlash (SlashPrep (PredVP (UsePron i_Pron)

(ComplVV want_VV (PassV2 see_V2))) with_Prep)

(PrepNP in_Prep (DetCN (DetSg

(SgQuant DefArt) NoOrd) (UseN rain_N)))))));

ex4 = UttNP (DetCN someSg_Det (RelCN (UseN day_N) (UseRCl TFut

ASimul PPos (RelCl (ExistNP (AdvNP (DetCN (DetSg

(SgQuant IndefArt) NoOrd) (UseN peace_N))

(PrepNP on_Prep (DetCN (DetSg (SgQuant IndefArt)

NoOrd) (UseN earth_N)))))))));

ex5 = UseCl TPres ASimul PPos (PredVP (UsePron they_Pron) (AdvVP

(ProgrVP (UseV play_V)) (ComparAdvAdjS less_CAdv clever_A

(UseCl TPres ASimul PPos (GenericCl (UseV think_V))))));

138 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

ex6 = UseCl TPres ASimul PPos (CleftAdv (AdvSC (EmbedVP (AdVVP

always_AdV (UseV stop_V)))) (UseCl TPres ASimul PPos

(PredVP (UsePron we_Pron)

(ComplV2 beg_V2V (UsePron youPl_Pron)))));

ex7 = UseCl TCond ASimul PNeg (PredVP (UsePron i_Pron)

(ComplV3 give_V3 (DetCN (DetPl (PlQuant IndefArt)

(AdNum (AdnCAdv more_CAdv) (NumNumeral (num

(pot2as3 (pot1as2 (pot0as1 (pot0 n3))))))) NoOrd)

(UseN star_N)) (DetCN (DetSg (SgQuant this_Quant) NoOrd)

(UseN restaurant_N))));

ex8 = UttImpSg PPos (ImpVP (ComplV2A paint_V2A (DetCN (DetSg

(SgQuant DefArt) NoOrd) (UseN earth_N)) (DConjAP

both7and_DConj (BaseAP (ComparA small_A (DetCN (DetSg

(SgQuant DefArt) NoOrd) (UseN sun_N))) (ComparA big_A

(DetCN (DetSg (SgQuant DefArt) NoOrd) (UseN moon_N)))))));

ex9 = UseCl TPres ASimul PPos (PredVP everybody_NP (ComplVQ

wonder_VQ (UseQCl TPres ASimul PPos (QuestSlash

whatSg_IP (SlashV2 (UsePron youSg_Pron)love_V2)))));

ex10 = UseCl TPres ASimul PPos (PredSCVP (EmbedS (UseCl TPres

ASimul PNeg (PredVP (UsePron i_Pron) (UseComp

(CompAP (ReflA2 married_A2))))))

(ComplV2 kill_V2 (UsePron i_Pron)));

ex11 = TQuestMark (PhrUtt (PConjConj and_Conj) (UttQS (UseQCl

TPres ASimul PNeg (QuestIAdv why_IAdv (PredVP

(DetCN (DetSg MassDet NoOrd) (UseN art_N)) (UseComp

(CompAP (ComparA (UseA2 easy_A2V) (DetCN (DetSg

MassDet NoOrd) (UseN science_N))))))))) NoVoc) TEmpty;

ex12 = UseCl TPres ASimul PPos (CleftNP (DetCN (DetSg (SgQuant

IndefArt) NoOrd) (UseN dog_N)) (UseRCl TPres ASimul

PPos (RelSlash (FunRP with_Prep (DetCN (DetSg (SgQuant

IndefArt) NoOrd) (UseN friend_N)) IdRP) (SlashVVV2

(DetCN (DetSg (SgQuant (PossPron i_Pron)) NoOrd)

(UseN2 brother_N2)) can_VV play_V2))));

ex13 = ImpPl1 (ComplVS hope_VS (DConjS either7or_DConj (BaseS

(UseCl TPres ASimul PPos (PredVP (DetCN (DetSg

(SgQuant DefArt) NoOrd) (ComplN2 father_N2 (DetCN

16. AUTOMATICALLY GENERATED TEST EXAMPLES 139

(DetSg (SgQuant DefArt) NoOrd) (UseN baby_N))))

(UseV run_V))) (UseCl TPres ASimul PPos (PredVP

(DetCN (DetSg (SgQuant DefArt) NoOrd)(UseN3

distance_N3)) (UseComp (CompAP (PositA small_A))))))));

ex14 = UseCl TPres ASimul PNeg (PredVP (UsePron i_Pron) (AdvVP

(ReflV2 (UseVS fear_VS)) now_Adv));

ex15 = UseCl TPres ASimul PPos (PredVP (UsePron i_Pron) (ComplV2

(UseVQ wonder_VQ) (ConjNP or_Conj

(BaseNP somebody_NP something_NP))));

ex16 = UseCl TPres ASimul PPos (PredVP (DetCN every_Det

(UseN baby_N)) (UseComp (CompNP (DConjNP either7or_DConj

(BaseNP (DetCN (DetSg (SgQuant IndefArt) NoOrd)

(UseN boy_N)) (DetCN (DetSg (SgQuant

IndefArt) NoOrd) (UseN girl_N)))))));

ex17 = TQuestMark (PhrUtt NoPConj (UttQS (UseQCl TPres ASimul

PPos (QuestVP (IDetCN whichSg_IDet NoNum NoOrd

(ApposCN (ComplN2 (ComplN3 distance_N3 (DetCN (DetSg

(SgQuant DefArt) NoOrd) (UseN house_N))) (DetCN (DetSg

(SgQuant DefArt) NoOrd) (UseN bank_N))) (DetCN (DetSg

(SgQuant DefArt) (OrdSuperl short_A)) (UseN road_N))))

(PassV2 find_V2)))) NoVoc) TEmpty;

ex18 = TQuestMark (PhrUtt NoPConj (UttQS (UseQCl TPres ASimul

PPos (QuestIComp (CompIAdv where_IAdv) (DetCN (DetSg

(SgQuant DefArt) NoOrd) (RelCN (UseN teacher_N)

(UseRCl TPres ASimul PPos (RelVP IdRP (ComplV3 sell_V3

(PPartNP (DetCN (DetPl (PlQuant DefArt) NoNum NoOrd)

(UseN book_N)) read_V2) (DetCN (DetPl (PlQuant IndefArt)

NoNum NoOrd) (UseN student_N)))))))))) NoVoc) TEmpty;

ex19 = UttIAdv (PrepIP with_Prep (AdvIP whoSg_IP (ConjAdv

and_Conj (BaseAdv (PositAdvAdj cold_A)

(PositAdvAdj warm_A)))));

ex20 = UttAdv (DConjAdv either7or_DConj (ConsAdv here7from_Adv

(BaseAdv there_Adv everywhere_Adv)));

ex21 = TExclMark (PhrUtt NoPConj (UttImpPl PNeg (ImpVP

(UseV die_V))) please_Voc) TEmpty;

140 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

ex22 = TQuestMark (PhrUtt NoPConj (UttIP (IDetCN how8many_IDet

NoNum NoOrd (UseN year_N))) (VocNP (DetCN (DetSg

(SgQuant PossPron i_Pron)) NoOrd) (UseN friend_N))))

TEmpty;

ex23 = UttVP (PassV2 know_V2);

ex24 = UseCl TPres ASimul PPos (PredVP (DetCN (DetSg MassDet

NoOrd) (SentCN (UseN song_N) (EmbedVP (UseV sing_V))))

(UseComp (CompAP (PositA (UseA2 easy_A2V)))));

ex25 = UseCl TPast ASimul PNeg (PredVP (UsePron she_Pron)

(ComplV2 know_V2 (DetCN (DetSg MassDet NoOrd) (AdvCN

(UseN industry_N) (PrepNP before_Prep (DetCN (DetSg

(SgQuant DefArt) NoOrd) (UseN university_N)))))));

ex26 = UseCl TPres ASimul PPos (PredVP (UsePron she_Pron)

(UseComp (CompAP (AdAP almost_AdA (SentAP (ComplA2

married_A2 (DetCN (DetSg (SgQuant (PossPron she_Pron))

NoOrd) (UseN cousin_N))) (EmbedQS (UseQCl TPast ASimul

PPos (QuestCl (PredVP (UsePron youPol_Pron)

(ComplV2 watch_V2 (DetCN (DetSg (SgQuant DefArt) NoOrd)

(UseN television_N))))))))))));

ex27 = UseCl TPres ASimul PPos (ImpersCl (ComplVV can8know_VV

(UseComp (CompAdv (PositAdvAdj important_A)))));

}

16.2 English linearizations

Example 1.

He sings almost correctly

Example 2.

When everybody was young and beautiful and everything became probable

Example 3.

It is only 2 women that I would want to be seen in the rain with

Example 4.

Some day such that there will be a peace on an earth

16. AUTOMATICALLY GENERATED TEST EXAMPLES 141

Example 5.

They are playing less cleverly than one thinks

Example 6.

It is always to stop that we beg you

Example 7.

I wouldn’t give more than three stars to this restaurant

Example 8.

Paint the earth both smaller than the sun and bigger than the moon

Example 9.

Everybody wonders what you love

Example 10.

That I am not married to myself kills me

Example 11.

And why isn’t art easier than science?

Example 12.

It is a dog a friend with which my brother can play

Example 13.

Let’s hope that either the father of the baby runs or the distance is small

Example 14.

I don’t fear myself now

Example 15.

I wonder somebody or something

Example 16.

Every baby is either a boy or a girl

Example 17.

Which distance from the house to the bank the shortest road is found?

Example 18.

142 TECHNICAL REPORT A. GF RUSSIAN RESOURCE LIBRARY

Where is the teacher that sells the books read to students?

Example 19.

With who coldly and warmly

Example 20.

Either from here, there or everywhere

Example 21.

Don’t die please!

Example 22.

How many years, my friend?

Example 23.

To be known

Example 24.

Song to sing is easy

Example 25.

She didn’t know industry before the university

Example 26.

She is almost married to her cousin if you watched the television

Example 27.

It can be importantly

16.3 Russian linearizations

Example 1.

on po�t poqti pravilьno

Example 2.

kogda vse byli molodye i krasivye i vs� stalo vozmoжnym

Example 3.

зto edinstvennye 2 жenwiny, s kotorymi � hotel by videtьs� v
doжde

16. AUTOMATICALLY GENERATED TEST EXAMPLES 143

Example 4.

nekotory� denь, tako� qto budet suwestvovatь mir na zemle

Example 5.

oni igra�t menee umno qem ty dumaexь

Example 6.

зto vsegda ostanavlivatь, my prosim vas

Example 7.

� ne daval by boleee qem tri zvezdy зtomu restoranu

Example 8.

risu� zeml� kak menьxe solnca, tak i bolьxe luny

Example 9.

vse interesu�t qto vy l�bite

Example 10.

qto � ne zamuжem za sobo� ubivaet men�

Example 11.

i poqemu iskusstvo ne legqe nauki?

Example 12.

зto sobaka, s drugom s kotoro� mo� brat moжet igratь

Example 13.

dava�te budem nade�tь, qto libo otec malyxa begaet, libo rassto�nie
malenьkoe

Example 14.

� ne bo� seb� se�qas

Example 15.

� interesu� kogo-to ili qto-to

Example 16.

kaжdy� malyx libo malьqik, libo devoqka

144

Example 17.

kotoroe rassto�nie ot doma k banku korotka� doroga nahodits�?

Example 18.

gde uqitelь, kotory� proda�t knigi studentam?

Example 19.

s kto holodno i teplo

Example 20.

libo ots�da, libo tam, libo vezde

Example 21.

ne umira�te poжalu�sta!

Example 22.

skolьko godov, mo� drug?

Example 23.

znatьs�

Example 24.

pesn� petь l�gka�

Example 25.

ona ne znala proizvodstvo pered universitetom

Example 26.

ona poqti zamuжem za e� kuzenom, vy smotreli televidenie

Example 27.

moжet bytь vaжno

Technical report B

Syntax editing in GF

The editing procedure in GF is strongly connected to the concept of interactive
theorem proof construction in proof editors like ALF[23] and Alfa[14].

Proof checker and user interface are the two main parts of such a proof edi-
tor, which are usually clearly separated and often even implemented in different
languages. In this chapter we will talk about two programs both written in
Java. The first is a user interface for GF (section 1). The second is Gramlets
(section 2), where the core-interface division is more subtle.

In the subsequent sections of this chapter we will concentrate on the implemen-
tation and graphical user interface while here we want to be more theoretical in
presenting the syntax editing semantics. By syntax editing semantics we mainly
mean the one present in Gramlets.

The general theory behind the GF grammar formalism is Martin-Löf’s Type
Theory – a mathematical meta-language (or framework) for representing different
logics and reasoning about them. Axioms and rules of a logic as well as functions,
predicates and theorems – everything is represented as constants. Each constant
has a name, a type and a definition (optional) that represent the meaning (or
semantics) of the constant.

To reason within a logic, which traditionally means to prove some theorems
within the logic, in type theory means to declare constants representing these
theorems, i.e. to specify their name, type and definition. The type reflects the
statement of a theorem while the definition is responsible for the proof. To be
correct the definition (or the proof) should be of the declared type, see section 1.7
for an example.

Type theory language is expressive – by introducing new constants we can
extend our logic with all the usual inductive data types and logical connectives.

The GF grammar formalism is built upon type theory language. It uses
the notation with predefined keywords (such as cat, fun) to distinguish among
the different sorts of declarations (or judgments). The main division is between
the abstract (corresponds to the type of a constant in type theory) and the

145

146 TECHNICAL REPORT B. SYNTAX EDITING IN GF

concrete (has no direct analog in type theory) syntax declarations. Each abstract
declaration should be completed with the corresponding concrete declaration.
Abstract and concrete parts should match for the whole constant declaration to
be correct.

Judgments in GF represent grammatical categories and rules. A GF grammar
is a sequence of judgments and can be extended with new declarations.

ALF and Alfa proof editors allow the user to build theories by introducing
new constant declarations in type theory framework. They also provide pretty-
printing facilities – translating type theory into user-friendly notations. New
declarations are constructed interactively by top-down step-wise refinement. One
proof(definition)-constructing step corresponds to using an object formation rule
in type theory. The rules are abstraction (introducing a variable, which corre-
sponds to making an assumption) and application (using the constants already
defined in the theory).

Each step is invoked in the editor by an elementary editing command, which is
immediately checked by the type checker – the main part of the framework. If the
step is correct, the corresponding changes are shown on the screen, otherwise an
error message is generated. In this way the framework ensures that the tree built
is type correct (or well-formed), i.e. corresponds to the declared type. To perform
the type checking the framework must consult both the type of the declaration to
be defined and the so called environment – constant definitions already declared in
the current theory. It actually does even more, namely, analyzes the environment
and the type sought and then suggests the next step, by listing the pre-approved
alternatives. In case there is only one possible alternative it can even fill in the
next step automatically. In non-trivial cases the next step is chosen by the user
and the framework helps by narrowing down the possible choices. Thus, the
framework is assisting to construct the desired definition interactively correcting
and consulting the user at every step.

A similar stepwise interactive procedure is used for editing a multilingual
text in GF. Here, new declarations are simply phrases we want to construct,
which have certain types (such as a sentence or a verb phrase). The environment
consists of the rules (the constants defined already) in a grammar (the current
theory). The type checking and the corresponding next step suggestion list are
also present in the GF syntax editor. Unlike proof editors, in GF the bottom-up
construction is also possible.

Another useful concept borrowed from proof editors is metavariable – a place-
holder for incomplete constant definition ?i :T. It has an expected type T and
an identifier ?i. An identifier consists of a question mark indicating that the
declaration is incomplete, i.e. intended to be replaced by a complete object; and
a number assigned to tell apart different metavariables. All metavariables carry
unique identifiers (numbers).

Metavariables represent the parts of the definition that are not yet refined.
Therefore, a definition-constructing step is basically a metavariable-refinement

147

step of finding an appropriate instantiation for the metavariable.
Implementation of a type checker is the core of a logical framework. The dif-

ficulty of a type checking algorithm depends on the expressiveness of the frame-
work.

When writing a Java GUI Syntax Editor we did not deal with the type check-
ing problem, since all the computations were performed on the Haskell side and
the Java side just displays the result for the user. The type checking algorithm
for the main GF system is outside the scope of this document [7].

In case of Gramlets, which is implemented purely in Java, type checking for
syntax editing is needed. However, a grammar comes to Gramlets compiled into
the canonical form – a simplified (computation-oriented) representation of the
grammar. Further in this section we will speak about syntax editing implemented
in Gramlets although most of it applies to the GF syntax editing in general, since
Gramlets’ functionality is borrowed from the GF Syntax Editor.

The main functionality of Gramlets is syntax editing operations on abstract
syntax tree object. In GF the user is only allowed to edit one object at a time.
It can of course be saved for future references in a file, but otherwise it is not
possible to have several objects during the editing session.

Syntax editing of an abstract syntax tree starts from creating a new syntax
tree object of a certain type. This corresponds to the type declaration during
constant declaration in type theory. Unlike for example Alfa implementation of
the type theory, in GF the user is only allowed to choose among the predefined (in
a grammar) types. No new types can be added on the fly. Thus, the first syntax
editing step is always type declaration of the object to be built. The predefined
types are always primitive in the sense that all the constrains involved are of the
form ?i:T (if no dependent type are introduced, see 1.7). Therefore, no further
constraint unification is needed for type checking.

Once the type of the tree is chosen, a new syntax tree object is created. It
only contains a root node, which contains a metavariable to be filled later.

Abstract syntax tree is a data structure, which has a root-node and a focus-
node, where focus node works like a cursor in a text editor and points out where
the current editing takes place. The tree nodes and the focus are parameters that
represent so called editing state. In the full GF the state also includes the current
grammar imported (environment). However, since the grammar is hard-wired in
Gramlets the environment remains unchanged during syntax editing.

A node contains the node information and the pointers to its children- and
parent- nodes. A node information can be either a metavariable (a type dec-
laration) or a function name (constant application), whose arguments are put
in the children-nodes. In figure 3 the abstract syntax tree for the expression
0+?1 is shown. Storing the type information in a node is actually needed only
for metavariables, since for applied functions (predefined constants) the type
information can always be looked up in the grammar (type declaration of the
constant). However, we keep the type information even for function-nodes to

148 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 3: The abstract syntax tree for the expression 0+?1. The root contains
the operation function Plus, which takes two arguments (children nodes) and
returns the result if the type Int. One argument is the function Zero (with Int
result), while the other is not yet known. Therefore, it contains a metavariable
with identifier ?1 of the type Int(Integer). The field with values FUNCTION and
META is used to distinct complete and incomplete nodes.

improve the performance.
Syntax editing process is replacing (or refining or instantiating) the metavari-

ables with functions. A syntax tree is completed when there are no metavariables
left. The refinement steps are suggested by the system just as during the proof
construction in a proof editor. To do so the system does a simple type checking
consulting the grammar (the environment) and the focus-node information (the
type declaration).

Traditionally type checking is a program that type annotates abstract syntax
trees parsed from a text input. However, since Gramlets do not deal with parsing,
but only with text generation, the syntax trees are built already containing the
type information from the start. The type-checking operations are, therefore,
localized in the syntax editing commands by which the trees are built. Each
refinement operation is responsible for the type checking necessary for performing
the corresponding operation so that the syntax tree remains well-formed after
the operation is carried out. Such localization is possible, since all the type
information we need to perform a check is localized in the focus-node, not spread
out over the whole tree, so it is sufficient to perform a local type check.

There are five basic syntax editing commands in GF:

• The top-down command refine is a standard function (constant) appli-
cation in proof editors. Here we have to make sure that the type of the
focus-node is the return type of the function. Children nodes containing

149

the metavariables of the function argument types will be introduced with
this refinement operation if there are any arguments to that function. For
example in Fig. 4 the focus node of the tree on the top of the picture has
type Exp. We can use function + : Exp → Exp → Exp to refine the focus
node, since the return type of the + is Exp. Two new metavariables are
introduced in the resulting tree. They both have the type Exp, since the
+-function takes two arguments of this type.

• The bottom-up command wrap is used on non-metavariable root- node to
wrap the current tree into a bigger tree. Type checking here is simply
finding the functions (constants), which have arguments of the type of the
focus-node (A): f : ...A → ..., if the focus node is a root or f : ...A... →
A, otherwise. If there is more than one argument of this type several
alternatives will be presented, one for each occurrence. After wrapping
operation the function arguments different from the focus-subtree if any
will be represented by the metavariables of the appropriate types. For
example in Fig. 4 we can wrap the focus node of the middle tree with
function succ : Exp → Exp. The resulting tree will comprise the + subtree
with the succ node on the top. No extra metavariables are introduced, since
succ takes only one argument of the type Exp.

• ChangeHead is performed on nodes that contain a function that can be
replaced with another function of the same type while keeping the old ar-
gument subtrees. Type checking in this case is comparison of the old and
the new function types. Corresponding argument types as well as the re-
turn type should be the same for both functions. No new metavariable
nodes will be introduced with this operation. For example in Fig. 4 func-
tion + : Exp → Exp → Exp can be replaced by ∗ : Exp → Exp → Exp

function with the same type signature. Arguments stay the same while the
top node + is replaced by ∗. The resulting tree is shown in the right down
corner.

• PeelHead is used if the focus node contains a function of the type: f :
...A → ..., if the focus node is a root or f : ...A... → A, otherwise; to
remove the function while keeping (some of) the argument subtrees. Can
be seen as opposite to the wrap command. To perform the peel operation
correctly we need to check that the function actually has such a type. No
new metavariable nodes will be introduced with this operation. For example
in Fig. 4 the succ head can be peeled off. This transforms the tree in the
left down corner back into the middle tree.

• Delete (local undo) operation replaces the subtree in focus with a metavari-
able of the proper type. To specify the correct type we need to look up the
type of the function (constant) specified in the focus node. For example in

150 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 4: Examles of 5 basic types of syntax editing commands in GF. Syntax
trees contain hidden parts (shown as roofs) and the focus nodes with its subtrees
(if any). The original abstract syntax tree is the top tree. Arrows show possible
refinement steps. The type of the editing step and the type signature of the
refinement function are shown near the corresponding arrow.

151

Fig. 4 delete operation performed on the middle tree will lead back to the
tree on the top, so the whole +-subtree will be removed and replaced by a
metavariable of the type Exp.

The Gramlets syntax editor only proposes (by showing in the editing menu)
the editing steps that are pre-approved during type checking. The type checking
procedure consists of simply looking at the focus-node type information and then
fetching the appropriate functions (functions with the return type of the focus-
node) from the grammar. Delete and refine operations are standard for proof
editors. For syntax editing examples using the Java GUI editor see section 1.

As we have mentioned Gramlets are only able to work in the direction of text-
generation, not parsing. The process of translating an abstract syntax tree into
a text is called linearization. This is done by single-pass traversal of the syntax
tree by using the canonical GF computational model. Linearization transforms
an abstract syntax tree into sequences of terminals by using linear patterns de-
fined in the linearization rules (constant definitions). The linearization rules are
required to be compositional i.e. the linearization of a constant is a function of
the linearizations of its arguments. This allows us to treat argument variables
as pointers to the linearizations of subtrees, which in turn makes the lineariza-
tion algorithm efficient enough to produce linearizations of trees on the fly. The
linearization of an incomplete abstract syntax tree containing metavariables is
shown to the user as a feedback during the syntax editing of a tree. Update in
a tree invokes the corresponding update in the linearization. Producing a com-
pleted (without metavariables) text from the abstract syntax tree corresponding
to the meaning of the text is the goal of the syntax editing in GF.

The canonical representation of a grammar is essentially a table where we can
easily look-up the type information as well as linearization patterns (constant
definition) needed for type checking and linearization.

Two supporting syntax editing operations undo (chronological) and random
are also implemented in Gramlets. For undo we just keep the record of the trees
at the last editing steps. Random generator makes the choice of the next step
among the pre-approved alternatives until all metavariables are eliminated from
the tree. The random operation is convenient, for example, for the demonstration
and surface testing of a grammar.

Two subsequent sections are about two different syntax editing programs:
Java GUI Syntax Editor (GUI modules in Java) and Gramlets (standalone Java
program). The next section describes the Java GUI Syntax Editor. Syntax
editing operations in Gramlets is a subset of those in Java GUI Syntax Editor,
so to avoid repetition we will just talk about the Gramlets implementation and
general motivation behind the project.

152 TECHNICAL REPORT B. SYNTAX EDITING IN GF

1 Java GUI syntax editor for GF

Grammatical Framework (GF) forms a basis on which various Natural Language
Processing (NLP) applications can be built. Java Syntax Editor provides a
Graphical User Interface (GUI) for GF. Together with the editor the GF system
can be used as a multilingual document authoring tool. The Java GUI Syntax
Editor is intended for work on the author level. This section describes the Java
Syntax Editor program and presents a simple example of the GF syntax editing
session. The content of this section overlaps with [20, 18, 16].

The main purpose of the Syntax Editor is to construct a text simultaneously
in several natural languages. The author does not have to know all the languages
represented, but the GF system assures that if the output is correct in at least
one of them, including the GF abstract language - language-independent semantic
representation, then it will be syntactically and semantically correct in the rest
of the languages. This reflects the idea of so-called multilingual authoring.

The core of the GF system is written in a functional programming language
Haskell. Actually, there is a number of user interfaces available for the GF:
command line mode, ALFA proof editor, Fudget Syntax Editor and Java Syntax
Editor. The subject of the paper is the latter and the latest one - Graphical User
Interface (GUI) written in an imperative programming language Java. All the
rest belong to functional programming. Java was chosen as an implementation
language for GF user interface due to the following main reasons:

• Cross-platform

• Unicode support

• Extensive GUI libraries

The GF - GUI architecture takes a standard client-server approach (Fig. 5).
The GF executable (Haskell source)plays the server role. Java GUI classes in-
terpreted by Java Virtual Machine (JVM) form a client. The communication
protocol consists of GF command string sent by the client, which uses the stan-
dard controls like buttons and menus in order to issue corresponding request, and
GF result string in XML-format. GF commands used are roughly the same as in
the command line mode. The GF result string is processed on the client side to
be fitted into the GUI controls.

1.1 Editor’s structure

We will describe the functionality of the Java GUI Syntax Editor by examples.
Before we start with the examples let us look at the general appearance of the
syntax editor in Fig. 6.

The main areas are:

1. JAVA GUI SYNTAX EDITOR FOR GF 153

Figure 5: The communication between GF and Java GUI is performed according
to the client-server architecture.

Figure 6: . Java GUI Syntax Editor’s structure.

154 TECHNICAL REPORT B. SYNTAX EDITING IN GF

• Tree Panel – displays the abstract syntax tree (AST) representation of the
edited object.

• Linearizations Panel – shows the linearizations corresponding to the AST
in different languages. In Fig. 6 there are linearizations in Swedish and
English. The linearization panel is an editable area. One can click on the
chosen word (or select a group of words) to shift the focus. Middle-click
allows you to type directly in the text.

• Editing Menu Panel – contains the refinement options for the current focus.
You can also get the refinement list in a pop-up menu invoked by a mouse
right-click on the chosen tree node of directly in the text.

Other common elements are:

• Topic – says to what domain the current editing object belongs. The topic
is extracted from the grammar file name. In Fig. 6 the topic is LETTER,
which means that the user is building a letter according to the GF letter
grammar.

• Focus – Colors background selection marks the editing focus. Focus is high-
lighted both in the tree and the linearizations, since they are just parallel
representations of the same editing object. One can change the focus by
clicking on a new tree node or in the text. One can also ”select” several
words to get the focus that spreads across more than one word.

• Focus Type – specifies the syntax type of the editing focus. In Fig. 6 the
focus type is Ending , which means that the user is now constructing the
final piece of the letter.

For a more systematic explanation of GUI functionality take a look at ap-
pendix 1.8.

1.2 Creating a new object

When you start the GF editor the topic and the languages you want to work
with should be chosen. Let us say, we want the LETTER topic in four languages:
English, Swedish, French and Finnish. The topic can be changed later at any
moment. You can create a new editing object by choosing a category from the
New list. For example, to construct a letter, choose the Letter category (Fig. 7).
In Fig. 8 you can see the created object in the tree form in the left upper part as
well as linearizations in the right upper part. The tree representation corresponds
to the GF language-independent semantic representation, the GF abstract syntax
or interlingua. The linearizations area displays the result of translation of abstract
syntax representation into the corresponding language using the GF concrete
syntax.

1. JAVA GUI SYNTAX EDITOR FOR GF 155

Figure 7: The New menu shows the list of available categories within the current
topic LETTER. Choosing the category Letter in the list will create an object
of the corresponding type. The linearizations area contains a welcome message
when the GF Editor has just been started.

1.3 Refining the object

According to the LETTER grammar a letter consists of a Heading, a Message and
an Ending, which is reflected in the tree and linearizations structures. However,
the exact contents of each of these parts are not yet known. Thus, we can only
see question marks, representing metavariables, instead of language phrases in
the linearizations.

Editing is a process of step-wise refinement, i.e. replacement of metavariables
with language constructions. In order to proceed you can choose among the
options shown in the refinement list. The refinement list is context-dependent,
i.e. it refers to the currently selected focus. For example, if the focus is Heading,
then we can choose among four options. Let us start our letter with the DearRec
structure (Fig. 9(a)).

In order to see the linearizations in three languages at the same time we have
to first choose the text mode in the Filter menu, see the upper panel buttons
description. This will make the letter look more compact without extra free lines
between the letter parts. Second, we have to scroll down. Alternatively to the
second step one can switch off the abstract representation: see subsection 1.4.

Now we have a new focus - metavariable ?4 of the type Recipient and a new
set of refinement options. We have to decide what kind of recipient the letter has.
Notice that the word Dear in Swedish and French versions is by default in male

156 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 8: The Abstract Syntax tree represents the letter structure. The current
editing focus, the metavariable ?1 is highlighted. The type of the current focus
is shown below the linearizations area. The context-dependent refinement option
list is shown in the bottom part.

Figure 9: (a) The linearizations are now filled with the first word that corresponds
to Dear expression in English, Swedish, French and Finnish. The refinement
focus is moved to the Recipient metavariable. (b) The Heading part is now
complete. The adjective form changes to the corresponding gender after choosing
the recipient.

1. JAVA GUI SYNTAX EDITOR FOR GF 157

Figure 10: (a) The complete letter in four languages. (b) Choosing the plural male
form of the Recipient causes various linguistic changes in the letter as compared
to (a).

gender and, therefore, uses the corresponding adjective form. Suppose we want
to address the letter to a female colleague. Then we choose the ColleagueShe
option (Fig. 9(b)).

Notice that the Swedish and French linearizations now contain the female
form of the adjective Dear , since we chose to write to a female recipient. This
refinement step allows us to avoid the ambiguity while translating from English
to, for example, a Swedish version of the letter.

Proceeding in the same fashion we eventually fill all the metavariables and
get a completed letter like the one shown in Fig. 10(a).

There are six types of commands appearing in the Select Action window:

• r (refine) – used on metavariables to refine them.

• w (wrap) – used on non-metavariables of some type A to wrap them by
functions of the form: f : ...A → ..., if the focus node is a root or f :
...A... → A, otherwise .

• ch (changeHead) – used on functions to replace the current function with
another function of the same type while keeping the old argument subtrees.

• ph (peelHead) – used on functions of the type: f : ...A → ..., if the focus
node is a root or f : ...A... → A, otherwise; to remove them while keeping
(some of) the argument subtrees. Can be seen as opposite to the wrap
command.

• d (delete) – used on non-metavariables to delete them.

158 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 11: (a) A refinement step can be done by using the Read button, which
asks the user for a string to parse (only in English in the present version).(b)
When the parsed string in (a) is ambiguous GF presents two alternative ways to
resolve the ambiguity.

• s (select) – used after ambiguous parsing or paraphrase.

Refinement steps can also be generated randomly, by clicking on the Random
button.

A completed letter can be modified by replacing parts of it. For instance, we
would like to address our letter to several male colleagues instead. We need first
to move the focus to the Header node in the tree and delete the old refinement.
In Fig. 11(a), we continue from this point by using the Read button, which
invokes an input dialog, and expects a string to parse. Alternatively we middle-
click directly in the text and a special editing text field appears. Let us type
colleagues.

The parsed string was ambiguous, therefore, as shown in Fig. 11(b), GF asks
further questions. Notice that after choosing the ColleaguesHe option, not only
the word colleague , but the whole letter switches to the plural, male form, see
Fig. 10(b). In the English version only the noun fellow turns into plural, while
in the other languages the transformations are more dramatic. The pronoun you
turns into plural number. The participle promoted changes the number in the
Swedish and French versions. The latter also changes the form of the verb have.
Both the gender and the number affect the adjective dear in French, but only the
number changes in the corresponding Finnish adjective. Thus, the refinement
step has led to substantial linguistic changes.

1.4 Adding new languages

So far all the available languages have been displayed. However, some of them
can be switched off using the Languages menu. To add a new language, one has
to work on a concrete syntax. Target languages can be added on the fly: if a new
language is selected from the Language menu, a new view appears in the editor

1. JAVA GUI SYNTAX EDITOR FOR GF 159

Figure 12: Now we are able to translate the letter into Russian.

while other things remain equal, including the document that is being edited.
Fig. 12 shows the effect of adding Russian to the above example.

1.5 Saving the object to a file

We can save our work by clicking the Save button. In the open dialog we should
specify the name of the file as well as navigate to the directory where the file
will be placed. The default directory is the GF directory under Windows plat-
form or the running directory otherwise. We can also choose the saving format:
Text or Term. The Term option will save the abstract syntax representation,
while the Text option – the linearizations displayed at the moment. Both types
of documents can be later opened by the editor. However, it is safer to open
terms, because texts may be impossible to parse since linearization may destroy
important information. For example, is we save the English version of the let-
ter containing Dear colleague - heading the gender information of the colleague
word will be lost. In Fig. 13 we want to save the language-independent, abstract
representation in the file named myLetter in the GF directory.

1.6 Changing the topic

The LETTER domain is restricted to constructing letters. Several other sample
grammars are provided with GF and also the user can write his own grammars.
To create a new subject matter (or modify an old one), one has to create (or edit)
an abstract syntax. When you want to work in a different domain, assuming that
the corresponding grammar (both abstract and concrete parts) is written, you
can use the New Topic button. You will get an open dialog, where you should
navigate to the grammar file and specify the file name. Windows users have the
grammar files stored in the Grammars subdirectory of GF directory. In Fig. 14 we
are about to download the grammar from arithmetic.Eng.gf file, where .gf is the
extension of GF grammar files, Eng tells that the file describes the linearizations
in English and logic is the topic name that will be shown on the upper button
panel.

160 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 13: Pressing the Save button brings up a file chooser dialog.

After choosing the file with a new grammar you will get a picture very sim-
ilar to the one in the beginning of this example, except for the different topic
and, correspondingly, a new list of available categories, and a different welcome
message Fig. 15.

1.7 More syntax editing commands

The ARITHMETIC grammar allows us to illustrate some commands, which were
missing in the previous examples, namely, wrap and peelHead refinement com-
mands as well as three commands from the Modify menu: compute, paraphrase
and solve.

Let us start with a simple construction shown in Fig. 16. It contains a theorem
and its proof, which is rather trivial, since it just refers to an axiom from the
grammar.

Notice that unlike the LETTER grammar ARITHMETIC grammar can also
be treated as a formal mathematical theory describing arithmetical domain. The
ARITHMETIC grammar, therefore, contains definitions, axioms and deduction
rules, which allows us to formulate and prove theorems about the arithmetic
domain similarly to what one can do in proof editors [23, 14].

The current focus node zero can be wrapped, for example, with succ function.
The result is shown in Fig. 17. So, now instead of the statement Zero is even we

1. JAVA GUI SYNTAX EDITOR FOR GF 161

Figure 14: Pressing the New Topic button brings up an open dialog to choose a
grammar file.

Figure 15: GF Syntax Editor after choosing the ARITHM (ARITHMETIC)
grammar.

162 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 16: Zero node can be wrapped with succ function. This is possible, since
the succ function takes a natural number as an argument and returns the result
of the same type.

have the statement The successor of zero is even. Although the new statement is
correct from the linguistical point of view, the mathematical proposition is wrong
(and, therefore, highlighted with read color), since the type checker finds out that
the proof and the proposition do not match. We changed the proposition while
the proof part remains the same. However, in the ARITHMETIC grammar, as in
mathematics in general a proof and a proposition in a theorem are not irrelevant
to each other. Namely, the theorem proof should prove the proposition of the
theorem. For this purpose, the dependent types are used. Thus, the type of proof
is dependent on the proposition type. This leads to type-checking procedure
invocation each time we change some part of the theorem. Type-checking makes
sure that the proof and the proposition still conform to each other. The result of
the type-checking is a number of constraints that should be met in order to keep
the theorem correct. In Fig. 17 we can see such a constraint in the root node
of the tree in brackets: zero <>succ zero. This simply says that the theorem is
correct as soon as zero is equal to the successor of zero.

To go back to the correct proposition we can use the peelHead refinement
option, which will basically undo the effect of the wrap operation. However, this
is true only for a wrap function, where both the result and one of the arguments
are of the same type. Otherwise, we could not peel and would have to use the
Undo button to restore the original proposition.

Another operation that can be demonstrated here is paraphrase from the
Modify menu, see Fig. 17. As the result of the paraphrase search we get two

1. JAVA GUI SYNTAX EDITOR FOR GF 163

Figure 17: Constraint zero <>succ zero is produced by the type-checking proce-
dure to assure that the theorem type is correct, namely, the proof part contains
the proof of the stated proposition. PeelHead selection option undo the wrap-
ping operation and restore the proposition in Fig. 16. This is only possible for
functions that have at least one argument of the same type as the result type.
Paraphrase operation allows us to search for equivalent expressions.

Figure 18: There are two versions (synonyms): one and the successor of zero to
choose from.

164 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 19: Compute operation will unfold the definition of one giving the suc-
cessor of zero.

selection options, see Fig. 18. Namely, we can keep the successor of zero or use
stylistically nicer one instead, see Fig. 19. Of course, such variations are possible
due to the corresponding definitions made in the ARITHMETIC grammar. For
instance, the function one is defined as the successor of zero succ zero. If we want
to go back to the longer successor expression we can use the operation compute
from the Modify menu, see Fig. 19. It unfolds the function definition if any and
computes the linearization of the result.

Dependent types allow us to even fill parts of a theorem by using the solve
operation from the Modify menu, see Fig. 20. Here, we do not have an argument
for the even function, although we have a completed proof, which is dependent
on the proposition. Solve operation resolves the constraint zero <>?0 necessary
for the theorem being correct. In this case it is only possible if the argument to
the even function is zero, which gets us back to Fig. 16.

More systematic description of the Java GUI Syntax Editor controls can be
found in the Appendix I. The GF commands that are not accessible via GUI
controls can still be sent to GF as a command line using the GF command
button.

1. JAVA GUI SYNTAX EDITOR FOR GF 165

Figure 20: Solve operation will resolve the type constraint zero <>?0 (in the
root node) and fill the metavariable ?0.

166 TECHNICAL REPORT B. SYNTAX EDITING IN GF

1.8 Java GUI Editor command reference

Here we describe the functionality of the editor GUI controls. There are two
main possibilities to access the Editor functions: the menu bar and the button
panels. Some operations are accessible both from the menu and the buttons.
Menu items with three dots like in Open... assume that a file-chooser will appear
before performing reading or writing operation.

File menu

File menu contains the main operations:

• Open... – Read both a new environment and an editing object from a file.
The current editing will be discarded, but first the user will be prompted
to confirm his/her intentions.

• New Topic... – Read a new environment from a file. The old work will be
dismissed although a warning message will be displayed beforehand.

• Reset – Empty the environment. The objects created previously will be lost.
The user will always be asked for permission to perform the operation.

• Save As... – Write the current editing object to a file in the term or text
format.

• Exit – Quit the editor.

Languages menu

Languages menu Controls the language settings. First, it contains the list of
available languages including so-called Abstract, language-independent syntax
representation Abs. Only languages with marked checkboxes will be shown in
the linearizations’ display area.

• Add... – Add another language to the current topic by reading the corre-
sponding grammar file.

View menu

View menu controls the appearance of the editor:

• Tree – Show/hide the tree representation of the current editing object.

• One window – Put all the panels in one window.

• Split windows – Put the editing selection menu in a separate window.

1. JAVA GUI SYNTAX EDITOR FOR GF 167

Menus menu

Change the display format of the refinement options:

• language – show the menu through linearization in the corresponding lan-
guage or as formal object (default).

• short – use short command names (default).

• long – use long command names.

• typed – show types of refinements.

• untyped – don’t show types of refinements (default).

Upper panel buttons

The operations affecting the environment state:

• New – Start a new goal of the chosen type. The current editing will be
discarded, but first the user will be promted to confirm his/her intentions.

• Open – Read both a new environment and an editing object from file. The
old work will be dismissed although a warning message will be displayed
beforehand. Duplicates the Open... item in the File menu.

• Save – Write the current editing object to a file in the term or text format.
Duplicates the Save... item in the File menu.

• New Topic – Read a new environment from file. The objects created previ-
ously will be lost. The user will always be asked for permission to perform
the operation. Duplicates the New Topic... item in the File menu.

• Filter – Apply the chosen Filter (one of the -filter values) to the linearization
output:

– identity – No change (default).

– erase – Erase the text.

– take100 – Show the first 100 characters.

– text – Format as text (punctuation, capitalization).

– code – Format as code (spacing, indentation).

– latexfile – Embed in a LaTeX file.

– structured – show with constituents in brackets.

– unstructured – don’t show brackets (default).

• Size – Choose the font size.

• Font – Choose the font for linearization display area.

168 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Middle panel buttons

Here, the buttons related to the tree navigation are collected:

• ?< – Go to the previous metavariable.

• < – Go one step back (up)in the tree.

• Top – Go to the top of the tree.

• > – Go one step ahead in the tree.

• >? – Go to the next metavariable.

Bottom panel buttons

This panel contains the refinement-related operations:

• GF command – Send a string command to GF. The button is meant for
advanced users. For GF command syntax see [32].

• Read – Read a term or parse a String as a refinement of the current sub
goal. The input can be either typed or read from a file.

• Modify – Transform the current term:

– identity – don’t change (default).

– compute – compute to normal form.

– paraphrase – generate trees with the same normal form.

– typecheck – perform global typecheck.

– solve – apply global constraint solver.

– context– try to refine with variables bound in context.

The compute and paraphrase commands only have effect if the grammar has
semantic definitions (def judgements). The typecheck and solve commands
only have effect if the grammar has dependent types. The context command
only has effect if the grammar has variable bindings.

• Alpha – Change (alpha convert) a bound variable. The syntax is: ”x 0 y”
means to change x 0 to y. This command only has effect if the grammar
has variable bindings, and if the current focus has variable bindings.

• Random – Find a random refinement.

• Undo – Go back in the refinement history.

2. GRAMLETS: GF ON-LINE AND IN THE POCKET 169

2 Gramlets: GF on-line and in the pocket

Gramlet is a Java applet/application with syntax editing functionality (described
in section 1) for a specialized grammar [17]. It is another user-related branch
in GF development, whose name is a combination of the words GRAMmatical
framework (GF) and appLETS. The main purpose is to make GF more accessi-
ble for wider audience. This is to be achieved by better portability and easier
installation and usage.

The Gramlets project is the first attempt to implement the GF functional-
ity purely in an imperative programming language, namely, Java known for its
portability. This makes Gramlets more portable, since they do not need the
platform-dependent executable (written in Haskell) necessary for the main GF
system.

Gramlets written in Java are aimed to work on PDA (Personal Digital As-
sistant) devices that support Java. Our target PDA is Sharp Zaurus SL-5500
handheld computer [40], which has a JVM (Java Virtual Machine) compatible
with the platform. To easily install and run a Gramlet on a PDA a special
installation package is prepared.

A gramlet as a Java applet can be run in an internet browser (provided that
the corresponding Java Plug-ins are downloaded). Therefore, running Gramlets
is fast and easy. Gramlet example in the MS Internet Explorer is shown in Fig. 21
For on-line example visit the Gramlets homepage [12].

A light-weight, portable Java applet of course does not possess the full GF
functionality. It is simply a syntax editor, that can be used as a multilingual
authoring tool for a predefined topic. For example in Fig. 21 we can see the
Health gramlet where the user can construct some statements about somebody’s
health condition. Unlike the normal Syntax Editor, where a new grammar can
be loaded, the grammar in a Gramlet is hard-wired. In case one wants to work
with a different topic one needs to produce another Gramlet specialized for that
particular grammar. Fortunately, producing a new gramlet is an automatic pro-
cess. A command script can be used to generate a gramlet given a GF grammar,
GF binary (compiled Haskell) and a number of Java classes from the Gramlets
project. Therefore, one does not need to do any extra programming oneself, just
specify the input grammar and execute the script. One can also produce a gram-
let for a grammar one wrote oneself and run it on PDA or put it on WWW.
However, the grammar used for Gramlets production should not contain depen-
dent types, since the Gramlets implementation does not have the full strength of
the GF grammar formalism.

2.1 Canonical GF

The full GF grammar formalism allows the use of function definitions and pattern
matching mechanism that raise the level of abstraction of the grammarian work.

170 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 21: Health gramlet in the Internet Explorer browser.

However, for the simpler computation the grammars in this notation must be
normalized into so called canonical GF by type driven partial evaluation[30].
This format of the GF grammar is produced on GF side, which makes further
processing on the Java side simpler.

The type driven partial evaluation originates as GF itself from the functional
programming and corresponds to program evaluation if the GF grammars are
regarded as functional programs (which they in fact are). In [17] the following
example of partial evaluation is given. Consider the rule DefOneNP:

fun

DefOneNP: CommNounPhrase -> NounPhrase ; -- "the car"

lin

DefOneNP = defNounPhrase Sg ;

oper

defNounPhrase : Number -> CommNounPhrase -> NounPhrase =

\n,car ->

{s = \\c => artDef ++ car.s ! n ! toCase c ; n = n ; p = P3} ;

where the following is predefined:

param

Number = Sg | Pl ;

2. GRAMLETS: GF ON-LINE AND IN THE POCKET 171

Gender = NoHum | Hum ;

Case = Nom | Gen ;

Person = P1 | P2 | P3 ;

NPForm = NomP | AccP | GenP | GenSP ;

oper

artDef = "the" ;

toCase : NPForm -> Case = \c -> case c of

{GenP => Gen ; _ => Nom} ;

CommonNounPhrase: Type = {s : Number => Case => Str; g : Gender} ;

NounPhrase: Type = {s : NPForm => Str ; n : Number ; p : Person} ;

The canonical GF representation of the same function after partial evaluation
will be:

lin DefOneNP = \CN_0 -> { s = table {

NomP => "the" ++ (CN_0.s ! Sg) ! Nom ;

AccP => "the" ++ (CN_0.s ! Sg) ! Nom

GenP => "the" ++ (CN_0.s ! Sg) ! Gen

GenSP => "the" ++ (CN_0.s ! Sg) ! Nom

} ; n = Sg ; p = P3 } ;

The substitutions of known arguments has been made (Sg of the type Number),
the functions applied (detNounPhrase, artdef, toCase) and the table expanded.
The only operations left are concatenation (++), projection (.) and table selection
(!). Function application and table expansion are the corresponding evaluation
procedures for function definitions and pattern matching - two abstraction mech-
anisms in the GF grammar formalism. Such mechanisms help the grammarian
to work on a higher level of abstraction.

In the example above, the same expression

"the" ++ (CN_0.s ! Sg) ! Nom

is repeated three times. This can be optimized by using the flag optimize=all subs

in the grammar.
Compilation into the canonical form actually does more than partial evalua-

tion. It also represents a grammar in a format adapted for easy usage in syntax
editing implementation. Thus, grammar compilation fills in the gap between the
abstract theory and the implementation.

2.2 Implementation

Gramlets generation scheme is shown in Fig. 22.
First the grammar files are loaded in the main GF. A special command pro-

duces the XML format of the canonical GF grammar form. After that we leave

172 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Figure 22: Gramlets production architecture. Files (shaded rectangles) are fed
into and produced by the processing modules (rounded rectangles). Arrows indi-
cate the information flow. The resulting run-time system is shown as an octagon
containing the serialized grammar object and the syntax editor. The generated
gramlet can be converted into packages for WWW and PDA.

2. GRAMLETS: GF ON-LINE AND IN THE POCKET 173

the Haskell side and only use the XML output we got from it. Notice that
the original GF grammar can be distributed into several files: one for abstract
language-independent part, and one for each language represented. The XML
canonical grammar representation is put into one output file, since it is not sup-
posed to be read by the user but only by the automatic parser.

The next step is to convert the XML representation into Java grammar object
representation. This is done by the XML parser written in Java. The reason we
have the intermediate XML representation and do not produce the Java grammar
object directly is the efficiency. The size of the automatically generated Java
module to produce a grammar object was too big and, therefore, caused a run-
time error. That is why we have chosen to generate the Java grammar object
separately and then serialize it and store it in another file, so that the run-time
GUI just have to read the Java grammar object from the file instead of creating
it on the fly. With this approach it takes about 20 seconds to start a gramlet on
Zaurus although some very big grammars (using the resource library) produce
the error out of memory on Zaurus.

The GUI duplicates the functionality of the Java GUI Syntax Editor from
section 1. However, it differs from the latter in two ways:

• It implements the syntax tree editing operations, while the Java GUI Syntax
Editor just displays what has been sent to it by the main GF. On the other
hand, the Java GUI Syntax Editor has richer functionality regarding both
the layout options and the performed computations.

• The AWT Java GUI library is used for GUI controls on Zaurus instead of
SWING because of limited JVM implementation.

Syntax tree editing operations like navigating the tree, adding and remov-
ing nodes are done using the Zipper structure [15] in the main GF written in
Haskell. Java Gramlets we do not have a similar structure, since pointers (object
references) mechanism is provided in this non-functional language. The elemen-
tary (without dependent types) type checking is done by ordinary statements
if-then-else in the imperative editing procedures.

There are two GUI versions for Gramlets - one using AWT (for Zaurus) and
one using SWING. The first one is not an applet due to some layout problems
with the applet class on Zaurus. The second one is an applet.

The table below gives the figures on each of the Gramlet processing modules:

XML generation(Haskell) XML parsing Canonical GF GUI
Lines 163 750 2300 1750
Total 6100

This code was written during half a year period (not full-time though) with
three active project participants (not including the GF core written previously in

174 TECHNICAL REPORT B. SYNTAX EDITING IN GF

Haskell by Aarne Ranta). The XML generation in Haskell was done by Markus
Forsberg. The Canonical GF classes in Java were written by Kristofer Johannis-
son. The author’s part is the GUI and XML parser modules and also putting
everything together to produce the final result.

The algorithms used are a direct translation from the corresponding Haskell
modules (by Aarne Ranta) into Java. Each structure in the Canonical GF format
is represented as a separate Java class, which gives around 40 classes most of which
are rather trivial, while the same thing in Haskell takes just a couple of pages.
Thus the Canonical GF in Java is a very big and slow structure, which leads
to the efficiency problems (out of memory error on Zaurus with some bigger
grammars).

This explosion effect was expected from the start and it is the reason why
the direct re-implementation of the full GF in Java is infeasible. However, the
Gramlets project is an interesting experiment on porting GF to an imperative
language in principle. Java was chosen because of the portability issues, rich GUI
library and the Unicode usage, which is important for multilingual grammars.
This makes the work relatively straightforward and possible to do in a reasonable
amount of time.

Another convenience brought by writing the whole program in Java is inde-
pendent development. With Java GUI Syntax Editor a special XML protocol has
been developed for communicating between Haskell and Java side. This protocol
is only used for sending the results computed by the main GF system to the Java
GUI for display. A special command shell to be sent in the opposite direction
from Java GUI to the Haskell side was written. Thus, Haskell side and Java GUI
side are highly dependent on each other and a modification of one of them in most
cases requires corresponding updates in the other part. These complications are
avoided in Gramlets, which only uses the XML output file from GF.

Further improvements are possible that can affect the efficiency. Most likely
they have to do with reducing the Canonical representation structure and adjust-
ing it to the imperative programming style.

The XML processing can be made more systematic by using parser genera-
tors and other techniques. This will make the code cleaner and more readable.
However, since the XML processing is separated from the run time process this
will not cause any improvement in the final result although it may speed up the
intermediate step of a grammar object creation, which now takes around one
minute for bigger grammars.

Even the GUI can be made richer or at least attaining the level of the Java
GUI Editor. This of course will not help to solve the efficiency problem.

Bibliography

[1] D. Aspinall. The LEGO Proof Assistant.
http://www.dcs.ed.ac.uk/home/lego/, 1999.

[2] B. Bringert. The transfer programming language. URL:
www.cs.chalmers.se/~aarne/GF/doc/transfer.html, 2005.

[3] B. Bringert and A. Ranta. A pattern for almost compositional functions. In
Proc. International Conference on Functional Programming ICFP, Portland,
Oregon, September, pages 216–226, 2006.

[4] Björn Bringert. Embedded grammars. Master’s thesis, Chalmers University
of Technology, Gothenburg, Sweden, February 2005.

[5] C. Brun, M. Dymetman, and V. Lux. Document structure and multilingual
authoring. In INLG’2000, Mitzpe Ramon, Israël, pages 24–31, 2000.

[6] O. Caprotti. WebALT! Deliver Mathematics Everywhere. In SITE
2006, Orlando, USA, 2006. URL: webalt.math.helsinki.fi/content/

e16/e301/e512/PosterDemoWebALT.pdf.

[7] T. Coquand. An algorithm for type checking dependent types. Science of
Computer Programming, 26:167–177, 1996.

[8] H.-J. Daniels. Multilingual syntax editing for software specifications. Mas-
ter’s thesis, Karlsruhe University, Karlsruhe, Germany, August 2005.

[9] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, and J. J. Levy. A structure-
oriented program editor: a first step towards computer assisted program-
ming. In International Computing Symposium (ICS’75), 1975.

[10] M. Dymetman, V. Lux, and A. Ranta. XML and multilingual document
authoring: Convergent trends. In COLING, Saarbrücken, Germany, pages
243–249, 2000.

[11] G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. Generalized Phrase
Structure Grammars. Blackwell Publishing, Oxford, 1985.

175

176 BIBLIOGRAPHY

[12] Gramlets Development Team. Gramlets Homepage, 2003. URL:
www.cs.chalmers.se/~markus/gramlets.

[13] Reiner Hähnle, Kristofer Johannisson, and Aarne Ranta. An authoring tool
for informal and formal requirements specifications. In R.-D. Kutsche and
H. Weber, editors, Fundamental Approaches to Software Engineering, vol-
ume 2306 of LNCS, pages 233–248. Springer, 2002.

[14] T. Hallgren. Home Page of the Proof Editor Alfa. URL: www.cs.chalmers
.se/~hallgren/Alfa, 2003.

[15] G. Huet. The Zipper. Journal of Functional Programming, 7(5):549–554,
1997.

[16] J.Khegai. Java GUI syntax editor for GF. In The Joint Winter Meeting
of Computing Science and Computer Engineering. Chalmers University of
Technology, 2003.

[17] J. Khegai K. Johannisson, M. Forsberg and A. Ranta. From grammars to
gramlets. In The Joint Winter Meeting of Computing Science and Computer
Engineering. Chalmers University of Technology, 2003.

[18] J. Khegai. Java GUI Syntax Editor manual. URL: www.cs.chalmers.se/
~aarne/GF2.0/doc/javaGUImanual/javaGUImanual.htm, 2004.

[19] J. Khegai. GF IDE for GF 2.1. URL: www.cs.chalmers.se/~aarne/

GF2.0/GF-Doc/GF_IDE_manual/index.htm, 2005.

[20] Janna Khegai, Bengt Nordström, and Aarne Ranta. Multilingual syntax
editing in GF. In A. Gelbukh, editor, CICLing-2003, Mexico City, Mexico,
LNCS, pages 453–464. Springer, 2003.

[21] P. Ljunglöf. Expressivity and Complexity of the Grammatical Framework,
2004. URL: www.cs.chalmers.se/~peb/pubs/p04- PhD-thesis.pdf.

[22] Z. Luo and R. Pollack. LEGO Proof Development System. Technical report,
University of Edinburgh, 1992.

[23] L. Magnusson. The Implementation of ALF - a Proof Editor based on
Martin-Löf ’s Monomorphic Type Theory with Explicit Substitution. PhD
thesis, Department of Computing Science, Chalmers University of Technol-
ogy and University of Göteborg, 1994.

[24] L. Magnusson and B. Nordström. The ALF proof editor and its proof engine.
In Types for Proofs and Programs, LNCS 806, pages 213–237. Springer, 1994.

[25] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

BIBLIOGRAPHY 177

[26] G. Perrier. Interaction grammars. In COLING, Saarbrücken, Germany,
pages 600–606, 2000.

[27] R. Power and D. Scott. Multilingual authoring using feedback texts. In
COLING-ACL 98, Montreal, Canada, 1998.

[28] R. Power, D. Scott, and R. Evans. Generation as a solution to its own
problem. In INLG’98, Niagara-on-the-Lake, Canada, 1998.

[29] Richard Power, Donia Scott, and Anthony Hartley. Multilingual generation
of controlled languages. In EAMT/CLAW-03, Dublin, Irland, 2003.

[30] A. Ranta. Grammatical Framework: A Type-theoretical Grammar Formal-
ism. The Journal of Functional Programming, 14(2):145–189, 2004.

[31] A. Ranta. The GF Resource grammar library, 2005. URL:
www.cs.chalmers.se/~aarne/GF/lib/resource/doc/01-gf-resource.html.

[32] A. Ranta. GF Homepage, 2006. www.cs.chalmers.se/~aarne/GF/.

[33] M. Rayner, D. Carter, P. Bouillon, V. Digalakis, and M. Wirén. The spoken
language translator. Cambridge University Press, 2000.

[34] S. Starostin. Russian morpho-engine on-line. URL:
starling.rinet.ru/morph.htm, 2005.

[35] M. Steedman. Combinators and grammars. In R. Oehrle, E. Bach, and
D. Wheeler, editors, Categorial Grammars and Natural Language Structures,
pages 417–442. D. Reidel, Dordrecht, 1988.

[36] T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: a syntax-
directed programming environment. Commun. ACM, 24(9):563–573, 1981.

[37] K. van Deemter and R. Power. Multimedia document authoring using wysi-
wym editing. In INLG-2000, pages 15–19, Mitzpe Ramon, Israël, 2000.

[38] Jim Welsh, Brad Broom, and Derek Kiong. A design rationale for a language-
based editor. Software – Practice and Experience, 21(9):923–948, 1991.

[39] Y. Bertot. The CtCoq System: Design and Architecure. Formal Aspects of
Computing, 11:225–243, 1999.

[40] Sharp Zaurus. Sharp Zaurus Homepage, 2003. www.myzaurus.com.

