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Abstract

Large text corpora are increasingly important for a wide variety of Natural Language Process-

ing (NLP) tasks, and automatic language identification (LangID) is a core technology needed

to collect such datasets in a multilingual context. LangID is largely treated as solved in the

literature, with models reported that achieve over 90% average F1 on as many as 1,366 lan-

guages. We train LangID models on up to 1,629 languages with comparable quality on held-out

test sets, but find that human-judged LangID accuracy for web-crawl text corpora created using

these models is only around 5% for many lower-resource languages, suggesting a need for more

robust evaluation. Further analysis revealed a variety of error modes, arising from domain mis-

match, class imbalance, language similarity, and insufficiently expressive models. We propose

two classes of techniques to mitigate these errors: wordlist-based tunable-precision filters (for

which we release curated lists in about 500 languages) and transformer-based semi-supervised

LangID models, which increase median dataset precision from 5.5% to 71.2%. These techniques

enable us to create an initial data set covering 100K or more relatively clean sentences in each of

500+ languages, paving the way towards a 1,000-language web text corpus.

1 Introduction

Thousands of languages are spoken in our world (Eberhard et al., 2019), but technologies like machine

translation (MT) and automatic speech recognition (ASR) are only available in about 100 of them. As

internet access becomes increasingly common with the spread of smartphones (Biggs, 2017), bringing

technologies that can help lower language and literacy barriers to more languages is ever more important.

Unfortunately, bringing language technologies to more languages is costly, as for many technologies,

extending to an additional language has generally required the use of large parallel labeled datasets. For

example, ASR systems are usually trained on large sets of audio recordings and transcriptions, while MT

systems have historically needed a set of bilingual sentence pairs. Increasingly, small parallel datasets do

exist for many languages (Mayer and Cysouw, 2014; Agić and Vulić, 2019; Artetxe et al., 2020; Ardila

et al., 2020), but those resources were either produced at high cost, or are restricted to narrow domains.

Parallel resources, which rarely occur naturally, remain scarce for most languages.

Monolingual text data, which is more commonly produced, is also used in building out language

technologies: for example, in training language models, which are used in many applications ranging

from next-word prediction in keyboard input software (Ouyang et al., 2017) to ASR and MT (Buck et

al., 2014). Historically, though, a monolingual text corpus by itself has not been sufficient to build ASR

and MT systems in a new language: at least some parallel data was typically necessary.

Recently, however, significant progress has been made in cross-lingual learning for NLP tasks (Kle-

mentiev et al., 2012; Ammar et al., 2016; Lample and Conneau, 2019; Pfeiffer et al., 2020): for example,

some approaches appear capable of extending machine translation models to new languages with only

monolingual data (Artetxe et al., 2017; Lample et al., 2017; Siddhant et al., 2020), and similar find-

ings have been reported for other NLP tasks (Hu et al., 2020). For ASR it is possible to combine a
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target-language language model with an acoustic model from a phonologically similar language, with no

need for parallel datasets of audio recordings and transcriptions (Prasad et al., 2019). Such approaches

are likely to get even more effective with nearly-universal acoustic models (Li et al., 2020) and more

scalable grapheme-to-phoneme modeling approaches (Deri and Knight, 2016; Mortensen et al., 2018;

Bleyan et al., 2019; Ritchie et al., 2019; Ritchie et al., 2020; Lee et al., 2020). Even if more work is

needed to establish when such approaches will work well (Marchisio et al., 2020; Artetxe et al., 2020;

Wu and Dredze, 2020), having useful monolingual text corpora across languages is clearly a prerequisite

to exploring such approaches further. Additionally, using techniques such as LaBSE (Yang and Feng,

2020), parallel corpora can also be constructed from monolingual corpora.

Unfortunately, it has proven challenging to derive highly multilingual text corpora from the web

(Artetxe et al., 2020). One commonly cited reason is that most web content is written in widely-spoken

languages like English and Mandarin1. Still, previous work has shown that the web contains labeled

and unlabeled data in thousands of languages (Scannell, 2007; Prasad et al., 2018). Since most web

pages do not have any language labels attached, previous efforts to build web text corpora often rely at

least in part on crawling selected URLs and top-level domains in each language, or use popular n-gram

Language Identification (LangID) models like FastText (Grave, 2017) to target a limited number of lan-

guages (Goldhahn et al., 2012; Ortiz Suárez et al., 2019). However, previous work (Section 2) has shown

that it is possible to build highly accurate LangID systems covering 1,000+ languages.

Thus, aiming to build a 1,000-language web text corpus, we trained a similar large-coverage LangID

model, and used it in a large web crawl. However, we found that such LangID systems do not deliver

useful results in a real-world web-crawl scenario. To address this, we make the following contributions:

1. We demonstrate that LangID is much less “solved” than frequently believed, and popular n-gram

modeling techniques (used for all existing web crawl corpora) have especially serious problems

2. We categorize common problems LangID models fall prey to (Section 3)

3. We present two improvements over existing approaches: tunable-precision wordlist-filtering and

Semi-Supervised Transformer models (Section 4)

4. We propose alternative evaluation metrics that better estimate the quality of LangID models from

the perspective of web-mining (Section 5) and perform a deep, 600-language web-crawl (Section 6)

This work focuses on monolingual corpora, but the problems described also apply to parallel texts,

and it is straightforward to extend the improvements described here to parallel data crawling.

2 LangID Approaches for Web Corpora

To create text corpora in as many languages as possible, we needed a broad-coverage, accurate LangID

model for our web crawl. We cover existing work and describe our model, built along similar lines.

2.1 Previous Implementations

A rich literature exists on building text corpora from the web: for example, the Web as Corpus workshops

have focused on the challenges around identifying relevant pages, extracting clean text, content de-

duplication, and many other relevant topics (Barbaresi et al., 2020; Jakubı́ček et al., 2020). We use an

internal web crawler, which is equipped with robust text extraction and de-duplication features, and focus

on expanding its LangID component.

A comprehensive recent survey on LangID is Jauhiainen et al. (2018). Naturally, LangID systems

have been applied to web crawls before: Buck et al. (2014) published n-gram language models for 175

languages based on Common Crawl data. The Corpora Collection at Leipzig University (Goldhahn et

al., 2012) and the Corpus of Global Language Use (Dunn, 2020) offer corpora in 252 and 148 languages.

The largest language coverage is probably An Crúbadán, which does not leverage LangID, and found

(small amounts of) web data in about 2,000 languages (Scannell, 2007). Our work is probably most

1We think existing statistics on the distribution of languages on the web should be taken with a grain of salt, as they were
likely gathered using highly imperfect language identification models, as discussed in this paper.
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similar to OSCAR (Ortiz Suárez et al., 2019) and CCNet (Wenzek et al., 2019), which mined Common

Crawl data for 166 and 174 language varieties respectively. However, we believe depth of mining and

LangID robustness can limit the quality of datasets produced by these projects: a preliminary inspection

of the (often small) low-resource language corpora produced by these LangID-based projects discovers

the sort of data noise we describe in this paper, which may render them unusable for NLP applications.

These Common-Crawl based datasets are also smaller than our final, filtered dataset, which is ≈20x

larger than CCNet and ≈180x larger than OSCAR for shared low-resource languages (see Appendix D).

One relevant LangID implementation appearing in the above works is Dunn (2020), achieving an F1

above 0.95 for 464 languages, and offering a thorough evaluation on different data sources and domains.

The only LangID systems with higher coverage that we are aware of are those developed by Brown

(2012; 2013; 2014), with the most recent version covering as many as 1,366 language varieties, with

accuracy above 99%. These numbers are impressive, but as we will see, even such high accuracy on test

sets will not suffice to derive useful monolingual corpora from a real-world web crawl.

2.2 Our LangID Implementation

The LangID model we built is similar in approach to previously described systems: we use an n-gram

based CLD3 model (Bakalov et al., 2016), consisting of a single hidden layer feed-forward neural net-

work on bag-of-n-gram features and script-count features, which we trained on an aggregation of pro-

prietary and publicly available text corpora, covering 1,629 language varieties, with an average of 800K

tokens per language. Some of the data came from sources with language tags like Wikipedia, while

another subset was created using a text elicitation task where we prompted native speakers to write sen-

tences in their language (van Esch et al., 2019). For some languages, we also relied on data extracted

by Corpus Crawler (Brawer, 2017), a tool which mines text from sites with known in-language content.

Using these corpora, we trained several LangID models, on increasingly large sets of languages. As

Table 1 demonstrates, even highly multilingual models achieved good F1 scores on held-out test sets.

Coverage Avg. F1 Med. F1

212 lang. 96.1% 98.2 %

1629 lang. 90.4% 97.9%

Table 1: LangID model performance:

macro-average F1 and median F1

We balanced the data to have the same size dataset for each

language before training. Since the relatively uncommon lan-

guages we are targeting have little web data compared to lan-

guages like English, balancing the data makes sense in order

to have a high-enough recall model to get whatever scarce

data there might be on the web for less common languages.

Additionally, practically speaking, weighting training data

according to the estimated prevalence of each language on the

web at large—for example, with orders of magnitude more

English examples than Quechua examples—would likely make model training difficult from a compu-

tational and stability perspective. However, it is worth stressing that evaluating a model on balanced

data overestimates the performance of a model on the highly imbalanced web, especially with respect to

precision, as we will see in Section 3.1.

3 Failure Modes of LangID Models on Web Text

Despite our LangID models performing well on the held-out test sets, when applied on real-life web data,

the models were not as accurate as we had expected. We performed an initial limited crawl with a 648-

language model, but some quick evaluations showed that the results were highly noisy, so we performed

a full crawl on ≈100B documents with a 224-language model to isolate the problems for closer analysis.

This model had comparable performance to the models in Table 1, with median F1 of 96.8 on held-out

eval sets. As first-pass filtering, we performed document-consistency filtering: we ran the LangID

model on every sentence in each document, and then took the most commonly predicted language as

the document language. We only kept sentences where the sentence-level and document-level labels

matched. All datasets were also de-duplicated. This approach may have decreased recall on multilingual

pages, but it reduced the severe noise problems, and helped reduce disk storage needs.

While we expected some accuracy loss due to the domain mismatch between clean training data and
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Table 2: Examples of several representative classes of noise in our initial web-crawl corpora.

noisy web text (Dunn, 2020), even after document-consistency filtering the LangID labels were so noisy

that the corpora for the majority of languages in our crawl were unusable for any practical NLP task.

Table 2 presents some representative samples of noise. Beyond various kinds of noise, we also found a

high number of unexpected misclassifications, as in the Oromo case in Table 2. The following sections

detail important classes and sources of noise.

3.1 Massive Class Imbalances: 99% Accuracy Is Not Enough

Precision, unlike recall or false positive rate (FPR)2, is a function of the class balance in a dataset. Mea-

suring precision on a balanced dataset may give misleading impressions about real-world performance.

For example, consider a LangID model that has 99% precision, 99% recall, and 0.01% FPR on a partic-

ular language on a balanced development set. Imagine however that there are 100 billion pages on the

web, of which 10,000 are in the target language: in this scenario, the resulting web-crawled dataset will

be mostly out-of-language, containing just under a tenth of a percent of sentences in the target language

(see calculations in Appendix B)—insufficient for most NLP applications. Yet this assumes a relatively

low FPR; for languages with a high FPR with respect to a much more common language, like Nigerian

Pidgin with English, the situation is even more dire.

As can be seen from this example, calculations of precision (and by extension, F1) are misleading

when applied to real-world data with different class balances than the development set. In the general

case, for a classifier with recall r and false positive rate f , if we estimate that the language of interest

constitutes x% of the total web text, we get:

precisioncrawl =
xr

xr + (1− x)f
(1)

Therefore, any evaluation of LangID models should also report the false positive rate (ideally with

respect to major languages on the internet, like English) along with their precision and recall. This

class-imbalance effect exacerbates the problems described in the following sections.

3.2 General Internet Noise and Creativity

There are many kinds of web noise that are known to cause problems both with LangID and in down-

stream tasks, such as abbreviations (“g2g”, “hbu”), leetspeak (“n00b”), hashtags (“#99problems”), or

2In the two-class case. FPR depends on the balance of the other classes with respect to each other, but not on the balance
of the target class with respect to all other classes. Per-language FPR (e.g. percent of English sentences classified as Nigerian
Pidgin) is truly balance-independent.
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non-standard Unicode encodings (like a LATIN CAPITAL LETTER W instead of a CYRILLIC CAPITAL

LETTER WE). Some of these problems can be handled automatically (Prasad et al., 2018; Chua et al.,

2018). However, our efforts in scaling the LangID models in our web crawl to hundreds of languages

uncovered greater depths to internet noise, alongside even more creative ways of using text. As a result

of the sheer size of the web, any small pathologies of a LangID model are hugely magnified: we ob-

served that our models tend to pick up on particular genres of internet noise for each separate language,

resulting in corpora for some languages that mostly showcase a rich array of particular types of oddities.

For example, in our initial crawls, what purported to be the corpus for Varhadi picked up large amounts

of badly-encoded PDFs; Aymara and Turkmen were made up mostly of misrendered non-Unicode text;

Dimli had mostly invalid HTML; Dogri offered a rich array of Zalgo-like ornamentation; Fula was

awash in URLs; Ilocano caught vast amounts of garbled Javascript; and Zhuang captured German sen-

tences involving the Unicode SOFT HYPHEN character. In each of these cases, sadly the majority of the

crawled corpus actually consisted of the class of noise that the LangID classifier decided to assign to

these languages—unfortunately drowning out any in-language sentences in the corpora.

In another interesting twist, one might expect that languages which are written in scripts that are not

used for any other language would have clean corpora, as the unique connection between the script

and the language means that any LangID model gets 100% F1 on development sets. However, this

underestimates the creativity of the internet: the Cherokee syllabary, for example, contains characters

that look similar to Latin characters, which are consequently repurposed to give words in other languages

an aesthetic effect (see example in Table 2), while other scripts, such as Balinese, are used commonly

for purely decorative purposes alongside content in entirely unrelated languages. Some script-unique

languages like Divehi do yield high-precision corpora right from the get-go, but they are the lucky few.

3.3 Artifacts from Character N-gram Modeling

Many error modes seem to be direct consequences of n-gram count based models, and are also common

in public corpora crawled using n-gram models like FastText (Grave, 2017)—Appendix E explores these

phenomena in the OSCAR (Ortiz Suárez et al., 2019) corpus. Here are a few important classes of

pathologies we discovered; see Table 2 for examples of each, and Appendix C for frequency statistics:

1. Unlucky overlap of frequent n-grams with high-prevalence languages: Token frequencies in

natural text follow a power law distribution (Zipf, 1935), so that the most common n-grams in a lan-

guage will be present in a majority of all of its sentences. If one of these common n-grams happens

to occur in a sentence in a different language, LangID models can over-trigger. We observed this

with Oromo, where 50% of the crawled dataset was actually English sentences containing the word

“essay” at least three times, misleading the model due to high counts for the n-grams “essa”, “ess”,

“sa”, “a”, “e”, “s”, and “y”, all of which are top Oromo n-grams (see Appendix Table 12).

2. Repeated n-graaaaaaaaams: By repeating an n-gram sequence an arbitrary amount, which is rare

in clean training text but common on the internet, the class probability of a language may be ramped

up, even if the language is clearly wrong—cf. adversarial examples (Goodfellow et al., 2015).

3. A N T S P E A K : A surprisingly common internet phenomenon is to find text with space-separated

characters, l i k e t h i s (Channing, 2020). Standard n-gram models–or even SentencePiece models

(Kudo and Richardson, 2018)–can’t handle this without special-casing. This affects about one to

two languages per major script: we found that most of our “Chechen” data was actually R u s s i a n,

most of our “Lambadi” T e l u g u , our “Santali” B e n g a l i, and some of our “Sepedi” E n g l i s h.

3.4 Languages with High-Prevalence Cousins

Languages with High-Prevalence Cousins is a specific, quite common case of the Class Imbalance prob-

lem, which requires somewhat different techniques to mitigate (see Section 4). Crawling the web for a

low-resource language (“target language”) that is closely related to a language that is highly prevalent

on the internet (“distractor language”) can yield a dataset consisting mostly of the distractor language.

A particularly salient example is Nigerian Pidgin (i.e. Naija, ‘pcm’) and English (‘en’), which are similar
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enough (see Appendix Table 11 for examples) that typical LangID models will have high false positive

rates between the two. Because of the prevalence of English on the internet, along with this high degree

of confusability, building a high-precision web-crawled text corpus for languages like Nigerian Pidgin is

exceedingly difficult.

3.5 Languages with Out-of-Model Cousins

A variant on the above are languages that are not supported by the LangID model, which interfere with

related languages that are supported. For example, a majority of our Uyghur crawl was actually Kazakh

and Kyrgyz in the Arabic script; our model had been trained to recognize Kazakh and Kyrgyz, but only

in the Cyrillic alphabet. Table 2 gives an example Kazakh sentence that was labeled as Uyghur.

3.6 Unrepresentative Training Data

Sometimes training data may be too clean to be accurate on out-of-domain, noisy web data; yet other

times it may be too noisy, too homogeneous, or contain systematic biases. For example, for some lan-

guages, training data (especially data sourced from Wikipedia) had high quantities of special characters

and templated data (esp. from censuses). Templated data may be harmful for n-gram models, by skewing

the token distributions away from that of normal text, though there is some evidence that neural models

may be less affected by token distributions than by latent structure (Papadimitriou and Jurafsky, 2020).

Other training data may also have issues; for instance, in our elicited Chechen data, the CYRILLIC LET-

TER PALOCHKA (not found on many keyboards) was represented with the ASCII digit “1”. Our model

therefore may not handle Chechen text containing the correct code point, or other substitutes, very well.

4 Improving LangID Precision on Web Text

Monolingual web-text corpora afflicted by the issues described in Section 3 will likely prove unusable

for practical purposes. We report on two distinct approaches we found helpful in improving precision.

4.1 Tunable-precision Filtering with Curated Wordlists

We experimented with token-based filtering techniques, which are simple to implement and fast to per-

form on large corpora. Since the LangID models in our crawl operated on character n-grams, token-based

approaches may have complementary behavior and can side-step particular failure modes. For instance,

since a sentence with the word “essay” likely contains mostly non-Oromo words, the havoc caused by

the n-gram “essa” described in Section 3.3 is neatly sidestepped by checking against a curated list of

known Oromo words. Such filtering approaches have the added benefit of tunable precision, allowing us

to adjust the cleanliness of our corpora depending on the noise tolerance of downstream tasks.

Percent-Threshold filtering

The simplest approach to token-based filtering is to remove any sentence where less than x% of its

tokens appear in a clean list of known words for the language, such as one would find in a standard

dictionary. We used in-house lists with a median of ≈15K words per language, which were obtained

through frequency sorting followed by human curation. The one parameter for filtering—the percentage

of in-vocabulary words—provides a simple, interpretable way to tune for precision/recall. We call this

method Percent-Threshold Wordlist Filtering.

TF-IDF based filtering

Percent-Threshold Wordlist Filtering is effective for a majority of the problems we saw, where the text is

nonsense or in an entirely different language, but it will not help where the mislabeled text is in a similar

language, as in Nigerian Pidgin (‘pcm’), which has very high lexical overlap with English (‘en’)—

meaning that such filtering will still retain most English sentences, and fail to increase precision. This

problem will occur with any language that has high lexical overlap with a major language. Where there

is extensive borrowing of loanwords, the languages may even be unrelated, as for Chuvash and Russian.

Some words, however, are highly effective language markers: for example, “wetin” is common in

Nigerian Pidgin, but does not occur in English. We therefore propose to keep any sentence that has at
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least one word from a small list of common tokens that are distinctive to that particular language, and are

not shared with its more prevalent cousins. We call this Disjunctive Wordlist Filtering.

First, we perform TF-IDF, where each “document” is our LangID training set. However, this suffers

one crucial flaw: the idf formulation of TF-IDF weights each document equally, so a word will be equally

penalized if it occurs in English or in K’iche’. For practical purposes, we care mainly about filtering out

common distractor-language text on the internet, so we only want to penalize those languages.

This motivates a simple variant on TF-IDF which we call TF-IIF, or Term Frequency-Inverse Internet

Frequency. This measure is the ratio of the frequency of a token in our per-language corpus (TF) with

the frequency of that token across the entire internet (IIF), which we approximate from a sample of 7

million randomly selected web sentences. In practice we find that performance improves slightly when

accounting for both IDF and IIF, yielding the TF-IDF-IIF score. Formally, for a token t in a language l,

with a frequency function f(term, corpus) and language-specific corpora Dl:

tf-idf-iift,l = tft,l ∗ idft,l ∗ iift = f(t,Dl) log

(

1
∑

l′ 6=l 1{t ∈ D′
l}

)

1

f(t, internet)
(2)

With a ranked TF-IDF-IIF list for each language, we then pick the top N words for each language such

that we have at least r% recall on our dev sets. While it is tempting to choose the same r for all languages

(e.g. 95%), different languages can behave quite differently with such filters, with small changes in recall

sometimes leading to large changes in precision. We had best results by choosing r ∈ [0.75, 1.0], and

then determining the ideal precision-recall trade-off on a per-language basis. With this paper, we publicly

release TF-IDF-IIF wordlists we used, covering the top 100 tokens for each of about 500 languages3.

4.2 Semi-Supervised LangID

A separate approach from filtering is to improve our original LangID model. Utilizing large unsuper-

vised text corpora to improve the quality of neural networks has become increasingly important in NLP

(Devlin et al., 2018; Wang et al., 2018). Following this line of work, we use the noisy data crawled with

our n-gram LangID model to improve the quality of our LangID system by leveraging self-supervised

approaches, yielding a Semi-Supervised LangID system (SS-LID).

model F1 prec. rec. FPR

NG-LID212 96.05 94.93 97.64 0.01079

XF-LID212 97.51 97.26 97.82 0.00849

∆ε 36.9% 46.0% 7.4% 21.4%

SS-LID212 98.03 97.61 98.55 0.00683

∆ε 50.2% 52.9% 38.4% 36.7%

SS-LID624 97.52 97.86 97.45 0.00610

∆ε 37.3% 57.8% -8.3% 43.5%

Table 3: Performance of n-gram LangID model, Trans-

former LangID model (XF-LID) and Semi-supervised mod-

els (SS-LID) trained on either 212 or 624 languages. Scores

are averaged over the shared 212 languages.

Specifically, following the text-to-text

self-supervised approach outlined in Raf-

fel et al. (2019), we train a Transformer

Big model (Vaswani et al., 2017) by sam-

pling equally from the crawled data from

212 languages. We co-train this self-

supervised task with the LangID task in a

text-to-text setting, with the hope of im-

proving the quality of LangID on noisy

open-domain web text. To reduce the

confounding effect of using a higher ca-

pacity transformer, we train a baseline

transformer on just the LangID task.

We evaluate these SS-LID models

and compare against the n-gram based

LangID model in Table 3. In addition to

F1, precision, and recall, we report FPR, whose importance we discussed in Section 3.1. All values

are macro-averaged over the shared 212 languages. To distinguish between apparently well-performing

models we also report the relative error reduction with respect to the n-gram model, which for an error

metric ε we define as ∆ε = εb−εt
εb

, where εb is the baseline model error and εt the test model error.

We see that the Transformer LangID model outperforms the n-gram model by a large margin, espe-

cially on precision and FPR. The SS-LID models improve further upon this model, notably with a 40%

3https://github.com/google-research-datasets/TF-IDF-IIF-top100-wordlists
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Unfiltered Threshold Disjunctive SS-LID624

Language p r p r p r p r

Aymara 2.1 100 86.2 98.3 76.4 92.9 94.6 99.3

Bhojpuri 4.0 100 3.0 100 4.0 93.0 83.0 98.5

Chechen 24.0 100 84.0 99.9 49.0 91.8 98.0 99.9

Cherokee 16.0 100 95.0 100 97.0 90.6 47.0 100

Chuvash 5.0 100 3.0 43.2 22.0 93.5 5.0 99.5

Divehi 98.8 100 98.6 99.0 99.1 91.4 98.9 99.6

Guarani 4.0 100 12.0 99.0 44.0 92.1 23.0 98.8

Oromo 5.0 100 78.0 98.0 80.0 91.8 33.0 99.5

Surjapuri 31.3 100 45.9 97.1 61.0 88.2 60.3 95.6

Swiss German 2.0 100 2.0 98.7 2.0 92.1 16.0 95.5

Tamazight 6.0 100 42.0 98.8 35.0 91.3 42.0 99.8

Twi (Akan) 49.0 100 83.0 100 83.0 92.4 82.0 93.5

Zhuang 1.0 100 59.0 85.9 3.0 92.6 15.0 98.3

Median 5.5 100 52.5 98.5 47.5 92.0 71.2 98.7

Table 4: Comparison of filtering approaches for a few languages: percent-threshold fitering (x = 20%),

disjunctive TF-IDF-IIF filtering (r = 90%), and filtering with a Semi-supervised LangID model. We

report 1. human-judged LangID precision over the crawl (percent of in-language sentences), and 2. recall

of this method on our held-out eval sets. Best precision is bolded. Full table in Appendix.

reduction in FPR. It is worth noting that these improvements are on the clean eval set, despite the addi-

tional training objective being on the noisy web crawl. We suspect the improvements are even greater on

web-type data, which is partially validated by the evaluation on web-text in Section 5.

5 Evaluating LangID Filtering Methods on Web-Text

5.1 Evaluation Methodology: Principles and Suggestions

Ideally, LangID models would be evaluated on a large, noisy test set, representative of real-life web

data. Since such sets do not currently exist, we recommend having human annotators evaluate crawled

corpora to ensure quality meets the threshold for downstream use (which will vary per application).

For automatic metrics, we suggest focusing on false positive rate and recall rather than precision and

recall, and comparing models using relative error reduction to amplify differences between apparently

highly-performant models, as we did above in Section 4.2.

5.2 Evaluating our Systems

We asked human annotators to evaluate LangID quality for our web-crawled text in a subset of the

languages. First, we filtered the web crawl with several methods. We then randomly sampled 100-1,000

sentences from each of these filtered data sets, and asked annotators (who were fluent speakers, or who

spoke a closely related language) to indicate whether each sentence was in the target language.

Table 4 presents the results of this evaluation for a selection of languages (full results on seventeen

languages in Appendix Table 5). For each language, we show the precision of the method from the

human annotations, and the recall of the same filter on our clean dev sets. For the percent-threshold

filtering we evaluated a threshold of 20%, and for the disjunctive wordlist filtering we used the top N

TF-IDF-IIF words per language such that the recall on our held-out eval set was at least 90%.

We see that the initial datasets were extremely noisy, with a median value of 5% of sentences being

in-language. The filtering methods drastically increased the percentage of correctly LangID’d sentences,

with values of up to 99% in-language, while maintaining high recall. However, the best filtering method

varies widely by language. The neural SS-LID model has the highest precision for Bhojpuri and Swiss

German, both of which also suffer most from the High-Prevalence-Cousin issue among these languages.



6596

However, it does much more poorly than wordlist-based approaches on Oromo and Cherokee. In the

latter case, we found that SS-LID was unable to discard English sentences written in Cherokee syllabics.

It is worth re-emphasizing that the thresholds in Table 4 were chosen somewhat arbitrarily for the pur-

pose of illustration. Since precision is tunable in the word-based approaches, precision can be increased

further, though at growing cost to recall—a trade-off to make depending on downstream noise tolerance.

For Guinea-Bissau Creole, which has both a High-Prevalence Cousin (Portuguese) and an Out-of-

Model Cousin (Papiamentu), none of our filtering methods were effective (see Appendix). Swiss Ger-

man, in the same situation, barely scraped by. Future work should investigate additional techniques for

such cases—although the most effective solution may be as simple as using a hand-curated TF-IDF-IIF

list, which looked promising in preliminary experiments in Nigerian Pidgin.

6 Web-crawled Dataset and Comparison with other Public Datasets

Using the above methods4, we performed a deep crawl of the web (touching >100B webpages) with a

600-language LangID model. Using percent-threshold filtering5 we made a recall-focused dataset, then

post-filter with a SS-LID model for high precision, yielding a larger, cleaner set than is found in similar

corpora. More details and comparisons to public corpora (OSCAR, CCNet) are in Appendices E and D.

7 Future Work

Our approach yielded usable monolingual text corpora in ≈600 languages. Internal user experience

research suggests the web may now contain at least some amount of monolingual text in thousands of

languages, so we plan to scale up with more multilingual LangID models, like our 1,629-language model.

Truly covering the linguistic richness of the web will also need crawling approaches to be fine-tuned

further. Text for some languages may only be found in PDF files (Bustamante et al., 2020), and some

scripts are commonly represented in non-Unicode fonts—such as Kruti Dev for Devanagari, requiring

separate detection for conversion into Unicode-encoded Devanagari (Singh and Goyal, 2013). Applying

OCR may also help handle non-Unicode text, and can uncover textual content within images. And many

languages that are not officially written in the Latin alphabet have informal transliterated orthographies

(Roark et al., 2020); our models can identify the most common ones, but we could cover more.

Finally, our work focused on a web crawl, but many new internet users primarily use their language

online on social media platforms and in chat messages (Soria, 2018; van Esch et al., 2019). Other work

has looked at applying LangID to social media (Jaech et al., 2016; Blodgett et al., 2017; Vo and Khoury,

2019). Our techniques should help improve LangID accuracy in this challenging domain, too.

8 Conclusion

Language Identification (LangID) is by no means a solved problem, and n-gram models are much worse

than popularly believed. We trained LangID models covering up to 1,629 languages, but found that even

seemingly high-quality models (> 95 F1) were nearly unusable in practice for low-resource languages.

We described and analyzed several major issues encountered in applying LangID to a real-life web

crawl. These practical problems included large amounts of noise, much of which appears to be natural

language and can’t be easily filtered out; insufficient expressiveness of n-gram models; issues with related

languages; and a massive class imbalance problem, meaning that even 99% F1 can be insufficient.

To solve these issues, we developed two major improvements to our LangID system: tunable-precision

filtering methods (for which we release wordlists in about 500 languages) and semi-supervised neural

models. These allowed us to create usable monolingual text corpora across hundreds of languages based

on our deep web crawl, with much more and cleaner data per language than previously published ap-

proaches. Such corpora hold great promise for bringing technologies like MT and ASR to more lan-

guages, and we believe it should be possible to use the approaches we outlined to create monolingual

corpora in many more languages, which should help extend language technology even further.

4Our process is also summarized in Appendix K for those interested in replicating.
5In this case, we used larger wordlists than those used for the analysis above, in order to stress recall.
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A Complete human evaluation results

A more complete version of Table 4 is given here in Table 5, containing the full set of seventeen languages

we evaluated. The only additional information it shows over Table 4 is the percentage of the web-crawl

each method filters out, for more context into how these methods will behave in practice. (Keep in mind

that, while the precision and % filtered rows are measured on the noisy web crawl, the recall is measured

on the held-out eval set.)

Unfiltered Threshold Disjunctive SS-LID

Language p r flt. p r flt. p r flt. p r flt.

Ahirani* 49.1 100 0.0 38.2 100 27.2 46.0 90.7 49.8 96.4 98.6 86.6

Aymara 2.1 100 0.0 86.2 98.3 98.3 76.4 92.9 98.2 94.6 99.3 98.1

Bashkir* 33.1 100 0.0 84.9 95.2 62.1 91.5 91.9 67.7 89.7 99.4 61.0

Bhojpuri 4.0 100 0.0 3.0 100 28.3 4.0 93.0 57.6 83.0 98.5 97.0

Chechen 24.0 100 0.0 84.0 99.9 73.9 49.0 91.8 69.1 98.0 99.9 78.7

Cherokee 16.0 100 0.0 95.0 100 86.9 97.0 90.6 87.7 47.0 100 68.6

Chuvash 5.0 100 0.0 3.0 43.2 56.3 22.0 93.5 89.5 5.0 99.5 54.8

Divehi 98.8 100 0.0 98.6 99.0 2.7 99.1 91.4 27.2 98.9 99.6 0.0

Guarani 4.0 100 0.0 12.0 99.0 77.4 44.0 92.1 93.5 23.0 98.8 85.4

G.B. Creole* † 0.0 100 0.0 0.0 100 18.5 0.0 93.6 36.1 0.0 92.9 76.3

Kinyarwanda* 37.3 100 0.0 79.6 93.0 58.1 88.1 91.9 62.0 90.9 98.8 60.8

Oromo 5.0 100 0.0 78.0 98.0 99.0 80.0 91.8 99.0 33.0 99.5 97.4

Surjapuri 31.3 100 0.0 45.9 97.1 34.7 61.0 88.2 51.8 60.3 95.6 77.9

Swiss German 2.0 100 0.0 2.0 98.7 70.6 2.0 92.1 43.3 16.0 95.5 88.5

Tamazight 6.0 100 0.0 42.0 98.8 88.2 35.0 91.3 78.6 42.0 99.8 88.5

Twi (Akan) 49.0 100 0.0 83.0 100 50.0 83.0 92.4 42.5 82.0 93.5 38.9

Zhuang 1.0 100 0.0 59.0 85.9 98.9 3.0 92.6 84.6 15.0 98.3 88.2

Median 5.5 100 0.0 52.5 98.5 60.1 47.5 92.0 64.9 71.2 98.7 82.6

Table 5: More complete comparison of different filtering approaches for different languages. For each

example language, we report 1. the precision of the crawl (percent of in-language sentences), as judged

by human raters over a sample of 100 sentences per filtering method, 2. the recall of this method on

our held-out eval sets, and 3. the percentage of the crawl removed by this filtering method. * Starred

languages were omitted from the table in the main paper. † G.B. = Guinea-Bissau

B Massive Class Imbalance: Worked Example

This section shows the methodology for the example in Section 3.1, where we examine by way of ex-

ample a LangID model with 99% precision, 99% recall, and 0.01% FPR for a given language. If we

approximate that there are 100 billion pages on the web, of which 10,000 are in a language we are seek-

ing, we can analyze the precision of the web crawl using the quantities of True Positives (TP), True

Negatives (TN), False Negatives (FN), and False Positives (FP). For the dataset resulting from the web

crawl, we can therefore say that TN + FP ≈ 100B − 100k ≈ 100B, and TP + FN ≈ 100k. One can

now calculate pcrawl, the precision on the resulting crawl of the web:

TP =
TP

TP + FN
(TP + FN) = r ∗ (TP + FN) = 0.99 ∗ 10k = 9.9k (3)

FP =
FP

TN + FP
(TN + FP ) = fpr ∗ (TN + FP ) = 0.0001 ∗ 100B = 10M (4)

pcrawl =
TP

TP + FP
=

9.9k

9.9k + 10M
≈ 0.1% (5)
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C Statistics on languages most affected by different types of noise

Many of the types of noise mentioned in Section 3.2 are hard to quantify without significant extra work.

For instance, it would require building special classifiers for misrendered PDFs, non-Unicode fonts,

creative use of Unicode, and so on—and it may need a stronger classifier than an n-gram classifier, since

after all these are mistakes of an n-gram classifier. Issues like out-of model-cousins are even trickier,

probably requiring human ratings. However, some types of noise can be quantified using approximations

like the following:

• A N T S P E A K : regex match with /[ˆ ] [ˆ ] [ˆ ] [ˆ ] [ˆ ]/

• n-graaaaams: regex match with /((.)\2\2\2\2)/ up to /((.....)\2\2\2\2)/

• HTML: regex match with /<[a-z/]*>/

• http: regex match with /http/

• Title Case: > 5 successive tokens such that x[0].isupper() and x[1:].islower()

• essay: (special for Oromo) regex match with /[Ee]ssay/

• misrendered PDF: contains bigrams along the lines of {åı́,ı́è,ñò} etc. or {ˆj,jˆ,ˆJ} etc.

(basically, we created a very simple bigram classifier on known misrendered PDFs)

Language (Script) Phenomenon Percent of crawl

Lambadi (Telu.) A N T S P E A K 72.1%

Santali (Beng.) A N T S P E A K 58.2%

Bodo (Beng.) n-graaaaams 50.9%

Pular n-graaaaams 26.3%

Avar HTML 64.2%

Dimli HTML 93.1%

Fula http 44.5%

Magahi http 23.6%

Nigerian Fulfulde Title Case 64.5%

Balinese Title Case 63.1%

Oromo essay 64.4%

Varhadi misrendered PDF 90.8%

Yucateco misrendered PDF 74.7%

Table 6: Quantification of the incidence of a few noise phenomena, along with their most affected lan-

guages in our web-crawl.

D Details on the web-mined datasets

As described in Section 6, the dataset we mined has two versions, one focused on recall (called recall

in the table), and one focusing on precision (called sslid(recall) in the table). Table 7 compares

these two datasets with public benchmarks.

Since the purpose of this crawl was to focus on low-resource languages, we mined a smaller portion

of the internet for the ∼100 highest-resource languages, and did not do any filtering on these languages.

For this reason, in addition to the stats on the entire dataset, we report the stats on the dataset omitting

the highest-resource 100 languages, to give a fairer approximation of the size of datasets for truly low-

resource languages. We also report stats on the languages among those that are shared between the three

datasets, again omitting the ∼100 highest resource languages.

Please note that these datasets are hard to compare to public benchmarks, as they crawl a wider swath

of the internet, and are much more highly multilingual. Therefore, the comparison with public data
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sources in this table should not be interpreted as giving information about the nature of the filtering

methods described in this paper.

metric N Languages N Sentences Median Dataset size

subset all 100+ shared all 100+ shared all 100+ shared

recall 600 500 59 36B 3200M 3200M 2100K 970K 12000K

SS-LID(recall) 600 500 59 2.8B 600M 740M 200K 100K 1400K

CCNet 174 74 59 70B 4.4M 22M 930K 6K 78K

OSCAR 166 66 59 20B 0.5M 5.4M 200K 1K 8K

Table 7: Comparison between the two versions of our dataset and the public datasets CCNet and OSCAR.

Although the statistics look similar on the full dataset, we see that the public datasets are heavily skewed

towards higher-resource languages. When excluding the 100 highest-resource languages (“100+”), or

looking only at shared low-resource languages (“shared”), we see that the public datasets have 20x to

200x less data than our crawl was able to identify.

E Comparison with OSCAR Corpus

While the analyses in the main paper focused on evaluating the quality of the data we crawled, publicly

available datasets have similar issues. This section briefly analyzes the OSCAR corpus (Ortiz Suárez et

al., 2019), which, although an excellent resource for many languages, has lower-quality content for some

languages. All analyses are performed on the deduplicated OSCAR corpus, which is cleaner.

Language Phenomenon % of crawl

Central Bicol A N T S P E A K 100.0%

Neapolitan A N T S P E A K 100.0%

Em.-Romagnol A N T S P E A K 55.8%

Somali n-graaaaams 88.1%

Cantonese n-graaaaams 57.1%

Asturian n-graaaaams 53.0%

Table 8: Most-affected languages in the OSCAR cor-

pus for two common error modes of n-gram models

Please note that it is hard to compare OS-

CAR directly with our dataset. One notable

confound is that the two datasets are draw-

ing from different portions of the web. An-

other confound is the degree of multilingual-

ity and the subset of languages chosen (this pa-

per tends to focus on longer-tail languages than

OSCAR). A further large confound is that OS-

CAR uses the FastText LangID model (Grave,

2017), which does not upsample training data,

and therefore will tend to have lower recall and

higher precision.

Applying the heuristic analyses from Sec-

tion C, we see that repeated ngram and A N T S P E A K issues are also very common in the OSCAR

corpus (the other phenomena from Table 6, however, were mostly absent). Table 8 reports the three most

affected languages per phenomenon, and Figure 1 shows a representative sample of two of these corpora.

In both these cases, the dataset consisted only of such noise, and had no in-language content.

To further analyze the cleanliness of the OSCAR corpus, we performed a similar analysis as in Section

5, to determine the percentage of each dataset that was in-language. Table 9 summarizes these findings,

along with the percentage of the corpus remaining after percent-threshold filtering with our wordlists.

We only look at the thirty lowest-resource languages in the corpus. We find that the percent in-language

varies widely by language, ranging from 0% to 100%. However, many of the corpora have relatively

high precision, with the average precision being just over 89%. At the same time, this accords with a

low average recall, with the median dataset size being only 37 sentences. It is interesting to note that

wordlist-filtering corresponds quite well with human-judged precision, with Pearson’s R of 87.3%.
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(a) “Neopolitan” (actually A N T S P E A K - like content) (b) “Somali” (actually repeated ngraaaaaaaaams)

Figure 1: Representative samples from OSCAR corpora affected by two n-gram LangID error modes

Language precision wordlist-match N

Central Bikol 0% 0% 1

Chavacano 0% 0% 1

Dimli 100% 100% 1

Pampanga 100% 100% 2

Bavarian 25% 25% 4

Erzya 100% 100% 5

Mirandese 57.1% N/A 7

Yue Chinese 14.3% 57.1% 7

Northern Frisian 0% 0% 9

Haitian 30% 30% 10

Interlingue 15.4% 0N/A 11

Sicilian 100% 100% 17

Tuvinian 96.2% 96.2% 26

Maithili 89.7% 89.7% 29

Russia Buriat 100% 97.3% 37

Lower Sorbian 97.6% 95.1% 41

Somali 0% 0% 42

Romansh 100% 100% 47

Nahuatl languages 100% 30% 60

Neapolitan 0% 0% 61

Yoruba 100% 100% 64

Guarani 81.5% 81.5% 81

Venetian 91.4% 91.4% 81

Cornish 89.2% 91.6% 83

Wu Chinese 0% 68.6% 86

Bihari 89.4% 95.2% 104

Emilian-Romagnol 43.3% 42.3% 104

Northern Luri 99.1% 87.6% 113

Limburgan 99.2% 96.9% 128

Minangkabau 56.1% 57.2% 180

Median 89.3% 89.7% 39

Table 9: The 30 lowest-resource languages in OSCAR, and 1. their human-judged percent in-language

(i.e. precision); 2. the percentage remaining after applying percent-threshold wordlist filtering; and 3.

total number of sentences in the (deduplicated) corpus. Languages for which we lacked wordlists are

marked with “N/A”.
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F Notes on Curated Wordlist Approaches

For languages written in unsegmented scripts (where spaces are not used in between words; for exam-

ple, Mandarin), leveraging the curated wordlists during the filtering techniques is not as straightforward.

When given a sentence to check for valid words, we would first need to run a segmentation model in

order to split the sentence into words, but segmentation models need to be trained on specific languages

and do not usually support lower-resource languages. To handle languages written in such writing sys-

tems, we included all valid characters in the language as part of the wordlist, so that we could fall back

to character-level checks for any sentences written in these scripts. This means that any somewhat rea-

sonable language data using the same script will be kept, even if it is a different language.

G Wordlist-based Language ID

For languages with little or no training sentence-level data, even an n-gram LangID model is not practical

to train. We therefore additionally explored pure wordlist-based models: specifically, we experimented

with a Word-Based LangID system (WB-LID), which assigns a LangID label to the sentence by simply

counting how many known words appear in the sentence for each possible language and predicting the

language with the highest counts, with extra weight granted to “unique words” that appear only in a

single language’s wordlist. The simple architecture of WB-LID does not compare to an n-gram LangID

model for most languages (Table 10), and we decided not to pursue using the outputs of WBLID as a

filter in this work, but this approach seems stable and scalable to more languages, and may be worth

exploring in the future as a LangID system for languages where no sentence data can be found to train

an n-gram model.

LangID system Comparisons (median F1) 493 Languages 590 Languages

n-gram LangID 97% 96%

Word-Based LangID 75% 76%

Table 10: Performance of the n-gram LangID system vs Word-Based LangID system on development

sets. For the dev sets shown in this comparison, we only include languages for which we had both

sentence data to train the n-gram model and known wordlists to train the WBLID. We remove any known

words from our WBLID system that do not appear in the sentence data used to train the n-gram model.

The n-gram model is trained on all sentence data for the supported languages.

H Illustration of the High-Prevalence-Cousin problem

Although the issue of highly similar varieties is very common and may be familiar to speakers of most

languages in the world, English-speaking researchers may be less familiar with it, since close relatives

of English do not generally receive a lot of attention in the literature. As an illustration, Table 11 gives

some examples of Nigerian Pidgin and the English translations. It is clear that a simple classifier might

have trouble distinguishing them, especially for more technical sentences.

Nigerian Pidgin English

abeg, you fit help me? please, can you help me?

no dey buy wetin we no need don’t go buying what we don’t need

He don accuse her family say dem inflate di value He has accused her family of inflating the value

Born August 28, 1991 Born August 28, 1991

Structured, goal-oriented education Structured, goal-oriented education

Table 11: Examples of Nigerian Pidgin versus English. It is very hard to mine datasets of Nigerian Pidgin

from the web, because it is close enough to English that Language ID models and frequent-wordlist

filtering methods will pick up a lot of English. In the informal register, like the first few examples, they

are more distinguishable, but in the formal, written register they can appear identical.
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I Oromo: A Case Study in Unfortunate N-gram Overlap

As alluded to in Section 3.3, Oromo has the peculiar error mode that our n-gram model massively over-

triggers with English, despite the two languages bearing little to no resemblance to each other, as a result

of the frequent 4-gram “essa”. Table 12 illustrates this further, showing the most common n-grams in

true Oromo, in natural English, and in the web-crawl that claimed to be Oromo.

Oromo “Oromo” English

LID idx. crawl idx. LID idx.

atti 0 ssay >1000 your >1000

anii 1 essa 4 have >1000

akka 2 tion >1000 with >1000

eess 3 writ >1000 what >1000

essa 4 atio >1000 here >1000

jedh 5 mple >1000 ther >1000

isaa 6 ment >1000 tion >1000

oota 7 ampl >1000 want 930

kees 8 tive >1000 like >1000

itti 9 ting >1000 thin >1000

Table 12: Top 10 most common 4-grams in a) Oromo LangID training data, b) the “Oromo” crawl of

the web, and c) English LangID training data. Each 4-gram is presented with its index among the top

1,000 most common Oromo 4-grams. We can understand from the n-gram list that the “Oromo” crawl is

majority English, overtriggering because of the 4-gram “essa”, from the English word “essay”. In fact,

50% of sentences in the “Oromo” crawl contain the word “essay” at least three times! The other common

n-grams in this Table from the “Oromo” crawl are epiphenomenal, reflecting only English words that tend

to occur in English sentences about essays.

J Correlation of filtering precision with relevant variables

When do some filtering methods work better than others? We do not have enough data points to make

strong statements (N=17), but there are some trends that may be worth commenting on here. In Table 13,

we look at the correlation of the precision of unfiltered data and the three proposed filtering methods, and

how they correlate with 1) the size of the crawled dataset, and 2) the dialectical relatedness to common

languages online. We hypothesize that variable (1) is a combination of variable (2) with non-linguistic

noise artifacts, so looking at these two variables can give us an idea of which methods are better at

general noise filtering (from train-data pathologies, etc.) and distinguishing related languages.

Unfortunately the “dialectical relatedness to common languages online” is hard to quantify. As a rough

approximation, we introduce four heuristic “confusability classes”:

1. Class 1: No obviously confusable languages

2. Class 2: Confusable low-resource languages or slightly confusable high-resource language

3. Class 3: Medium-confusable high-resource language

4. Class 4: Very confusable high-resource language

To perform the regression we assign these classes to the values {1, 2, 3, 4}. Per-language assignments

are given in Table 14.

Based on the numbers in Table 13, it looks like both wordlist filtering methods perform similarly, and

the SS-LID method is noticeably better when languages are more confusable, and possibly slightly worse

when there are larger datasets (signalling more confusion with non-linguistic or out-of-domain noise).
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log(n. segs) confusion rank

unfiltered -0.71 -0.16

threshold -0.26 -0.75

disjunctive -0.21 -0.46

SS-LID -0.55 0.15

Table 13: Pearson correlation of the precision of three filtering methods (and unfiltered data) with two

relevant variables. Number of segments (i.e. number of sentences in the “unfiltered” dataset) is passed

through a log transform first, since the size of the unfiltered datasets follows a log distribution. For an

explanation of the “confusion rank”, please see the appendix section J and Table 14.

Language confusion class Notes / relevant related languages

Divehi class #1 script unique

Zhuang class #1 pretty unique orthography

Cherokee class #2 some confusion with “Cherokee English” etc.

Guarani class #2 some lexical overlap with Spanish

Tamazight class #2 some lexical overlap with ar-Latn and Tamasheq

Twi(Akan) class #2 some lexical overlap with Ewe, Ga, etc.

Kinyarwanda class #2 high lexical overlap with Rundi etc.

Aymara class #2 some lexical overlap with Spanish

Oromo class #2 some lexical overlap with Gedeo, Hamer, Somali etc.

Bashkir class #3 medium lexical overlap with Russian

Ahirani class #3 medium lexical overlap with Hindi

Chechen class #3 medium lexical overlap with Russian

Surjapuri class #3 medium lexical overlap with Hindi

Chuvash class #4 high lexical overlap with Russian*

Bhojpuri class #4 high lexical overlap with Hindi

Guinea-Bissau Creole class #4 high lexical overlap with Portuguese

Swiss German class #4 high lexical overlap with German

Table 14: Heuristic judgement of “confusability” for use in the regression in Table 13. Please note that

this is not a rigorous quantification of these languages and may contain mistakes. For explanations of the

“classes”, please see text. * Note that Chuvash is considered “high” overlap because of polluted training

data.

K Complete Recipe

This section is simply a concise description of the steps we took to create our dataset, in the form of

suggestions for someone interested in creating a similar dataset.

1. Train LangID model

(a) Balance the data first in order to have higher recall. The distribution of languages in train-

ing data may not be representative of the distribution of languages on the web. Temperature

sampling (Arivazhagan et al., 2019) may also be a good alternative, in order to decrease over-

triggering somewhat.

(b) If it is computationally feasible to apply a more complex model at inference time, a

Transformer-based LangID model (especially co-trained with a self-supervised objective on

in-domain text) will have better performance, even if the held-out scores seem only slightly

better.

(c) Evaluate cannily: use out-of-domain held-out sets if possible, and pay special attention to the

relative reduction in false-positive rate. A model with FPR of 0.1 is much different than one
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with FPR of 0.01—don’t give up once you reach 95% F1.

2. Curate wordlists. If the publicly released wordlists don’t suit one’s purposes, one could take e.g.

the 200 most frequent tokens from the train set, removing words that are also in highly-prevalent

languages if desired, like English, Portuguese, Spanish, Russian, German, Chinese, and Hindi. One

can skip this step if the Transformer LangID model is good enough, but it will still be useful for

tuning the precision of the final datasets, and will still improve for several languages (e.g. in our

situation, it was necessary to catch English written in Cherokee script).

3. Perform the web crawl. Document-consistency filtering is highly recommended (only output sen-

tences whose sentence-level ID matches the majority sentence-level ID on the page).

4. Deduplicate the web-crawled data and filter with wordlists to reach a desired precision.

5. Look at samples of every language in the dataset! Even quickly eyeballing the dataset can reveal

serious problems. Also consider quickly checking that all the language codes are plausible: for

instance, is the als data a mix of Tosk Albanian (ISO639-3 code als) and Swiss German (which

Wikipedia stores under the code als)? Or are there some macrolanguage codes in the dataset

that cover a superset of other already-covered languages, like Norwegian Bokmal nb, Norwegian

Nynorsk nn, and the macrolanguage code Norwegian no?


