
Language Independent Content Extraction
from Web Pages

Javier Arias Moreno
Department of computer

science
Celestijnenlaan 200A
3001 Leuven, Belgium

Arias@lsi.upc.edu

Koen Deschacht
Department of computer

science
Celestijnenlaan 200A
3001 Leuven, Belgium

Koen.Deschacht@cs.kuleuven.be

Marie-Francine Moens
Department of computer

science
Celestijnenlaan 200A
3001 Leuven, Belgium

Sien.Moens@cs.kuleuven.be

ABSTRACT
In this paper we present a simple, robust, accurate and
language-independent solution for extracting the main con-
tent of an HTML-formatted Web page and for removing
additional content such as navigation menus, functional and
design elements, and commercial advertisements. This method
creates a text density graph of a given Web page and then
selects the region of the Web page with the highest density.
The results are comparable or better than state-of-the-art
methods that are computationally more complex, when eval-
uated on a standard dataset. Accurate and efficient content
extraction from Web pages is largely needed when searching
or mining Web content.

General Terms
Web page cleaning

1. INTRODUCTION
When building a system for searching or mining Web con-
tent, a first task is extracting the main content and remov-
ing extraneous data such as navigation menus, functional
and design elements, and commercial advertisements. Also
when showing Web pages on small screens (e.g., of mobile
phones) or sending text to screen readers that translate the
text to a more appropriate format (e.g., text-to-speech for
visually impaired people), the content extraction operation
is very valuable. Content extraction (CE) is defined as the
process of determining those parts of an HTML document
that represent the main textual content [5]. Because differ-
ent Web pages often have a different layout and a variety
of configurations are possible, the task is at first sight not
trivial. Recently a number of solutions have been proposed.
The problem, however, is to find a solution that is generic
(i.e., portable to many types of Web pages), accurate (i.e.,
find all important content in a precise way) and efficient
(often a large number of Web pages are processed).

We designed, implemented and evaluated a content extrac-

tion system that satisfies the above requirements. Our
method is simple, generic, robust and efficiently computable.
The results are comparable or better than state-of-the-art
methods that are computationally more complex, when eval-
uated on a standard dataset used in the literature. The re-
search was done in the frame of a project where we crawl,
clean, classify, summarize and index Web pages.

The remainder of the paper is organized as follows. Section
2 discusses related research. In section 3 we present our
method for content extraction. Section 4 describes how we
evaluate this method, and gives results and a comparison to
existing methods. We conclude in section 5 where we also
give some hints for future research.

2. RELATED RESEARCH
The simplest way to clean Web pages is to remove metadata
and tags from the source data. The derivation is a fast,
single-pass process. However, most often a deeper process-
ing is needed in order to extract the main content, because
Web data are infiltrated with advertisements and interaction
menus. Early approaches to the content extraction problem
heavily relied on a priori knowledge of the Web site’s layout
and formatting [10, 3], knowledge which could eventually au-
tomatically be learned, but the approach suggests that only
a limited amount of formating templates for Web pages are
used, which is an unrealistic assumption.

Gradually interest grew in building generic content extrac-
tion systems that operate on all types of Web pages. Usu-
ally the main text of a Web page is long and homogeneously
formatted, while additional contents are usually highly for-
matted and contain little and short texts. These and other
signaling cues for relevant and irrelevant content were ex-
ploited in various ways. [7] starts from the HTML tree
and wraps its relevant content as a subtree that contains
a large number of visible text elements, and which fans out
into many children. [6] use the high ratio of link content to
detect navigational menus and similar structures. [11] op-
erate on the DOM (Document Object Model) tree, which
defines the logical structure of well-formed HTML or XML
documents, and identify hyperlinked clutter as text adver-
tisements and long lists as syndicated references to other
structures. [12] detect a continuous part of the document
which contains text based on the analysis of so called doc-
ument slope curves. A document is represented as a binary
vector. HTML tags except for the ones that indicate content

(e.g., font changes) are given a weight one, all other tokens
are given a weight zero. From this vector a document slope
curve is generated. The entries in the document slope curve
graph correspond to the total of the binary vector entries
up to and including each token. Long, low sloping regions
of this graph represent content (text without tags). [13] use
the text-to-tag ratio of lines of a document to find clusters
of content in a Web page.

The closest to our approach is the Content Code Blurring
(CCB) method of [5] that implements several methods to
identify those parts of a Web page which contain a lot of
text and few or no tags. A document is represented as a
sequence of text and tag (code) characters or tokens stored
as a binary content code vector. The code vector is blurred
by using a Gaussian blurring filter (by iteratively spread-
ing the values of a character or token to its neighbors until
the values stabilize), after which the areas with high con-
tent bearing values are extracted. A variant of the method,
Adapted Content Code Blurring (ACCB), is better suited
to wiki style documents and ignores anchor tags. [5] makes
a comparison with the methods described by [12] and [6],
where he shows that the content code blurring method that
ignores the anchor tags outperforms the former methods.

More sophisticated approaches extract the information from
the visually rendered output of a Web page or other HTML
content. Such an approach was following by [9], who ex-
tracted tabular data from rendered pages and [1] who classi-
fied emails based on the content that is rendered in the email
browser. Although very valuable and generic, especially in
an adversary setting where certain content might be present
in the source, but hidden for the user of the browser, these
approaches are computationally much more expensive than
the method for Web page cleaning that we propose.

3. GOALS
We are given a source file containing HTML markup-tags
and text. As shown in fig.1, this text consists of some rele-
vant content (“main content”) but also a lot of content that
is not relevant outside the context of this particular Web
page, such as navigational menus, comments, links to re-
lated articles and others. The goal of this article is to de-
velop a method that classifies every character in the source
file as being relevant or not relevant, and creates an output
file that contains only the main content, cleaned from any
markup-tags.

4. METHOD
We develop a method that extracts the main content from
Web pages. The difficulty of this task differs largely in dif-
ferent settings. First, there is the setting where the Web
page is known at development time. Here, the structure of
the page can easily be exploited to accurately extract the
main content based on simple regular expressions. In the
second setting a limited number of Web sites are targeted.
Here, it is possible to use automatic learning methods to
creating a method that extracts the main content specifi-
cally for every Web site (i.e. site wrapping). In the third
setting the Web page is unknown at development time and
can originate from any Web site. This task is extremely
challenging, since fully successful extraction methods need
to perform a semantic analysis of both the text and struc-

Figure 1: Example Web document with the main
content marked.

ture of the Web page, which can be further complicated by
common mistakes in spelling, miswritten markup-tags and
an ill-defined HTML-structure. In this setting it also not
possible to perform site wrapping, since the pages do not
originate from a common Web site.

In this paper we propose a method that performs only a
very shallow analysis of the Web page. This method does
not depend on strong assumptions on the structure or con-
tent of the Web page and is fully language independent. The
main idea behind our method is that a Web page has both
content text (the news item, blog entry, ...) and garbage
text (navigational menus, links to other articles, adverts,
comments,...), but that the content texts tend to be contin-
uous, long text with little structural markup, and that the
garbage text tends to be short texts with a lot of structural
markup. We make the following weak assumptions: The first
assumption states that the text representing the content is
separated from the garbage text with one or more markup-
tags. The second assumption states that no garbage text oc-
curs in the main content, e.g. that the main content text is
continuous (not taking into account the markup-tags). The
third and most important assumption states that the main
content of the text contains less structural markup-tags (see
below) than the garbage text.

An informal inspection of some targeted Web sites reveals
that both assumption 1 and 2 are always satisfied, and these
assumptions are also satisfied in our test set (see section
5.1). The third assumption, although intuitively correct,
was violated in some cases. In section 5.3 we will discuss in
detail when this occurred and the influence of this violation
on the content extraction method.

We first locate a subset of markup-tags that modify the
structure of the Web page. These tags include, but are not
limited to <p>,<table>,
,<div>,<h1>,<h2>,.. and

1.
We ignore the tags that do not modify the structure of
the Web page, such as , and

and we also ignore data that is not content-related, such
as JavaScripts, style definitions and HTML comments. We
then transform the structured HTML page to a linear list

1see http://www.w3.org/TR/xhtml1/

Figure 2: Example plot of the document density

of text strings L = {s1, ..., sn}. We parse the structure of
the Web page using a robust HTML parser2, that will, when
presented with a not well-structured HTML page perform a
best-effort parse. This parser visits every node in the HTML
structure. If a node containing text is encountered, this text
is added to the last text string in L. If a markup-tag that
modifies the structure of the Web page is encountered, L is
extended with one empty string. We continue this process
until the entire Web page is parsed.

We build a graphical representation of the array L in fig. 2
where the x-axis represents the position of the array and the
y-axis represents the length of the strings at the different
positions. In a second step we analyze this graph to find
the main content in the Web page. Typically, the main
content for a Web page containing news articles is located
in the region of L that has the highest density. We therefore
convert the problem of extracting the main content of a Web
page in the problem of selecting the highest density region of
L, for which we have designed a simple algorithm. We first
locate the string smax in L with maximum length maxL3.
Then a cutoff length cutoffL is computed as cutoffL =
maxL ∗ c1, where c1 is a constant. We initialize the high
density region R as R = {smax}. We then incrementally add
strings si to R. A string si is added to R iff length(si) >

cutoffL and there is a string sj ∈ R such that |i − j| < c2,
where c2 is a constant. The algorithm terminates when no
more strings can be added to R.

To create the final text tautomatic containing the main con-
tent of the Web page, we find the leftmost string sl in R and
the rightmost string sr in R. We then create T by concate-
nating all strings si, where i ranges from l to r (inclusive).

Optimal values for c1 and c2 were chosen manually when
performing the experiments in section 5. The values used in
this experiment were c1 = 0.333 and c2 = 4.

Although this algorithm is very simple, it incorporates sev-
eral interesting ideas. First of all, it does not depend on the
structure of any particular Web site, but uses a notion of

2http://java.sun.com/products/archive/hotjava/
3Note that L and thus maxL are page specific

Web site URL # of pages Language
bbc news.bbc.co.uk 1000 en
chip www.chip.de 361 de
economist www.economist.com 250 en
espresso espresso.replubblica.it 139 it
golem golem.de 1000 de
heise www.heise.de 1000 de
manual different 65 en,de
repubblica www.replubbica.it 1000 it
slashdot slashdot.org 364 en
spiegel www.spiegel.de 1000 de
telepolis www.telepolis.de 1000 de
wiki de.wikipedia.org 1000 en
yahoo news.yahoo.com 1000 en
zdf www.heute.de 422 de

Table 1: Datasets used for evaluation, showing the
name, the URL, the number of pages used in this
evaluation and the languages of the datasets.

document density which can be expected to be universal for
most Web sites containing news articles. Secondly, it does
not depend in any way on the text and is thus fully language
independent. Thirdly, it relies only on a limited amount of
the HTML-markup, thus making allowances for dirty and
non-well structured Web pages.

5. EXPERIMENTS
5.1 Data set used
We evaluate the proposed method on a data set previously
used in state-of-the-art content extraction [5]. 14 different
datasets (see table 1) were gathered from the Web. A golden
standard was created for every HTML page by manually se-
lecting the main content of every Web page. Most Web
pages contain news items, although some also contain ency-
clopedia articles (wiki) or Web pages with different types of
contents (manual). The Web sites are written in different
languages : English (en), Italian (it) and German (de).

5.2 Evaluation
As described in section 3 we aim at building a method that
can successfully label text in a Web page as “main content”
or “garbage”. In this section we describe how we evaluate
the method proposed in this paper.

Although we described the task conceptually as labeling text
in a Web page, in reality most (all) systems that perform this
extraction task take as input the HTML source code of the
Web page and return a file containing the cleaned text. The
ground truth data (described above) is also stored in this
cleaned text format. To evaluate the developed method, we
need a metric that compares how “similar” the automatic
output is compared to the manually generated output. More
formally, we define tmanual as the main content text that was
manually created and we define tautomatic as the content text
that was automatically created.

Different metrics have been proposed that measure the simi-
larity between the two files. In this paper we use two evalua-
tion metrics: longest common substring and longest common
subsequence.

Baseline Content extraction
Web site LCString LCSequence LCString LCSequence

bbc 60.16 61.52 96.32 97.17
chip 6.09 19.25 26.33 78.09
economist 30.91 66.85 45.48 91.88
espresso 69.04 77.32 82.10 89.25
golem 8.28 50.92 15.78 92.17
heise 46.57 61.47 72.28 96.82
manual 11.72 40.72 20.64 53.94
repubblica 14.77 71.95 21.57 90.74
slashdot 10.96 11.61 29.93 53.85
spiegel 8.86 55.86 13.39 86.84
telepolis 5.25 83.14 5.83 89.15
wiki 70.49 81.87 71.96 78.67
yahoo 34.73 65.75 52.36 94.58
zdf 14.39 67.50 25.13 82.93

Table 2: Average results for the baseline and au-
tomatic extraction method for LCString and LCSe-
quence evaluation metrics, given in F1-measure (%).

The longest common substring metric (LCString) [2] finds
the longest continuous string that appears both in the au-
tomatic output and the manual output. For example, the
LCString of the strings “the dog jumps over the brown fox”
and “the fox jumps over the brown dog” is “ jumps over the
brown ” (of length 20). This metric is useful since it focuses
on the longest continuous string, thus highly penalizing any
discarded words (or punctuation marks) in the center of the
text, which could possible carry high semantic value (e.g.
imagine that at some point in the text the word “not”would
not be extracted by the automatic method, thus possibly
changing the entire meaning of a sentence). On the other
hand, a major disadvantage of this method is that it treats
all symbols identical, e.g. that discarding a space in the cen-
ter of the text could possibly half the LCString, thus halving
the score on a certain document.

The longest common subsequence metric (LCSequence) [8]
finds the longest sequence of characters that appear in that
order in both the automatic output and the manual output.
For example, the LCSequence of the strings “the dog jumps
over the brown fox” and “the fox jumps over the brown dog”
is “the jumps over the brown ” (of length 23). Notice how
LCString is always a substring of LCSequence. This met-
ric is less strict in that it assigns only a modest penalty to
missing characters.

We have opted for two character based algorithms (in con-
trast to for instance [4]), since we feel that word based algo-
rithms are harder to implement (because the characters on
a Web page need to be correctly split into words which is
not relevant for this task).

For both metrics we calculate, given the length of the longest
common string or sequence smax, the familiar information
retrieval metrics of precision, recall and F1-measure, as fol-
lows:

precision =
length(smax)

length(tautomatic)

Figure 3: Document density graph for an example
of the slashdot corpus.

recall =
length(smax)

length(tmanual)

F1 = 2 ∗
precision ∗ recall

precision + recall

5.3 Results
We perform a first set of experiments where we compare
the raw output of the proposed method with the manual
extracted texts. This method yielded results that were lower
then expected, caused by superfluous spaces in the manual
extracted texts. These spaces do not influence in any way
the rendering of the page (apart from splitting words) and
we thus feel that they can be ignored. All results reported
ignore any spaces in both automatic and manual extracted
texts.

We compare our approach with a baseline method that ex-
tracts all texts from a given Web page, removing markup
information, but does not perform any content selection.
Table 2 shows that the method proposed here results in a
significant increase over the baseline. This can be explained
by the fact that although the baseline achieves near perfect
recall (since the main content will certainly be part of the
extracted text), it suffers from a low precision (since it ex-
tracts all text). Our method generally also achieves a high
recall, but also a high precision because of the dynamic con-
tent selection methods.

Table 2 shows that for some datasets (bbc, yahoo, heise) our
method achieves near perfect F1-measure. For many other
datasets (spiegel, economist, repubblica, espresso, telepolis,
golem) our method achieves an F1-measure of 85% or more,
which is certainly satisfying given the complexity of the task.

The proposed method achieves disappointing (although bet-
ter then baseline) results on only two datasets, slashdot and
manual. On the slashdot dataset we achieve a LCSequence
F1-measure of 53.85%. The reason for this result can easily
be explained by fig. 3. We see here that the string represent-
ing the main content (as indicated) is only a small subset
of the entire text on the Web page. Closer inspection re-
veals that the remaining text appearing after this content

Baseline Content extraction
Web site Here In [5] Density ACCB
bbc 61.52 59.5 97.17 92.4
chip 19.25 17.3 78.09 70.3
economist 66.85 61.3 91.88 89.0
espresso 77.32 62.4 89.25 87.5
golem 50.92 50.2 92.17 95.9
heise 61.47 57.5 96.82 91.6
manual 40.72 37.1 53.94 41.9
repubblica 71.95 70.4 90.74 96.8
slashdot 11.61 10.6 53.85 17.7
spiegel 55.86 54.9 86.84 86.1
telepolis 83.14 85.8 89.15 90.8
wiki 81.87 82.3 78.67 68.2
yahoo 65.75 58.2 94.58 73.2
zdf 67.50 51.4 82.93 92.9

Table 3: Average LCSequence F1-measure (in %)
results of the density method reported here and the
ACCB method reported in [5].

are comments. Indeed, a page on the slashdot Web site typ-
ically consist of a small text describing some newsworthy
fact and many comments. Often the length of an individual
comment is larger than the length of the news item. It is
thus easy to understand how our method, relying heavily on
the text density, fails for these documents.

The result on this dataset shows one of the limits of our
approach. Since we assume that the density vector has a
shape similar to fig. 2, we expect our method to fail on doc-
uments with a the density vector that has a very dissimilar
shape. This is also the reason why the results on the wiki
Web site are not excellent. We can thus see that it is impor-
tant to consider the type of the Web pages before employing
this technique, although in the course of the Acknowledge
project we experienced that most targeted Web sites did not
pose a serious problem for successful cleaning.

We found that the reason for the low performance on the
manual dataset is not due to the automatic extraction method,
but due to the golden standard for that dataset. For many
files, the golden standard is not correct and misses large
parts or all of the main content for a particular Web site.
We are not aware of the reason for this errors, but note that
the low result on this dataset in [5] can probably also be
attributed to this incorrect golden standard.

It is hard to compare our results with existing work on this
task. We are currently only aware of one work that also em-
ploys this dataset [5]. The authors evaluate their methods
using the LCSequence metric, using a word based algorithm,
and not a character based algorithm as reported here. Al-
though this might lead to slightly different results, we feel
that these metrics are still close enough to allow for a com-
parison.

Table 3 compares our content extraction method to the cur-
rently best method (Adapted Content Code Blurring) re-
ported in [5]. We also compare the baseline results reported
here with our baseline result. Surprisingly, we notice that

Web site ACCB density
bbc 1.0 0.361
chip 8.0 0.314
economist 15.0 0.294
espresso 16.0 0.317
golem 9.0 0.337
heise 12.0 0.341
manual 20.0 0.353
repubblica 14.0 0.355
slashdot 13.0 0.353
spiegel 15.0 0.351
telepolis 52.0 0.377
wiki 28.0 0.377
yahoo 13.0 0.315
zdf 1.0 0.318

Table 4: Average processing time (in s/Mb) for our
density extraction method and the ACCB method
reported in [5].

for some datasets (e.g. espresso, respectively 62.4% and
77.32%) there is a large difference between the two base-
line systems, although for other systems this difference is
only very modest (e.g. golem, with respectively 50.2% and
50.92%). This difference can only partially be explained for
by different evaluation metrics, but must also be caused by
a weaker baseline in [5], possibly caused by a less robust
HTML parser or by accidentally adding non-textual content
(e.g. JavaScripts) to the baseline result.

When comparing our content extract method to the ACCB
method, we see that the proposed density method achieves
on average 84.00% F1-measure where the ACCB method
achieves 78.16%. We achieve significantly higher results for
9 datasets (bbc, chip, economist, espresso, heise, manual,
slashdot, wiki and yahoo), comparable results for 1 dataset
(spiegel) and significantly lower results for 4 datasets (golem,
repubblica, telepolis and zdf). These results might indi-
cate that our method achieves generally better results. This
belief is further strengthened by the fact that our method
seems more robust, since our method achieves less then
75% F1-measure on only two (slashdot and manual) dataset,
compared to 5 datasets (chip, manual, slashdot, wiki and ya-
hoo) in [5].

We feel that the better results are largely due to the method
of creating the density vector employed here. Our choice
to use only structural tags, and ignore other mark-up tags
makes that this vector reflects closer the real structure of
the page, and that text elements that are structurally closer
together are also closer together in this vector.

Table 4 shows the processing times needed for the differ-
ent dataset on a 1.66Ghz Intel cpu. We also compare our
processing times with the times reported in [5]. This com-
parison might not be very accurate since we are not aware of
the speed of the computer that generated these results, but
still indicates that the proposed method performs at least
comparable and probably faster then this state-of-the-art
method.

6. CONCLUSIONS
We have presented a novel method for content extraction
from Web pages, sometimes also referred to as Web page
cleaning. This method relies on a single heuristic that the
main content of a HTML page has a high density of text
characters and low density of structural code. We have
shown that this method performs comparable to, or bet-
ter than state-of-the-art methods. Furthermore, it has the
following valuable properties : (1) it is simple, and easy to
implement, (2) it is fast, processing up to 3.4Mb of HTML
code per second, (3) it runs robustly on dirty or not well-
formed HTML code and (4) it does not use the content of
the text itself and is thus language-independent

Furthermore, we have proposed to make a distinction be-
tween structural and non-structural markup-tags. A com-
parison with another state-of-the-art method has shown that
making this distinction improves results and allows for more
robust methods.

Although we have shown that text density is an important
heuristic when extracting content from Web pages, it is naive
to expect that all Web pages can be successfully cleaned us-
ing this heuristic alone. Therefore, in the future more pow-
erful methods will have to be developed. We think that sev-
eral research directions could prove to be promising: Firstly,
methods that perform an analysis of an entire Web site (as
compared to a single Web page) could discover the common
structure and texts of all pages of a certain Web site. It can
be expected that this common structure and texts do not
belong to the main content for a particular Web site. Sec-
ondly, one could perform an analysis of the text in a Web
page, and learn that certain words do (e.g. “written by”,
“author”) or do not (e.g. “close this window”, “comments”)
belong to the main content.

The method as described here works on the raw density val-
ues. It might be advantageous however to create a more ab-
stract representation which potentially allows more powerful
algorithms. For instance, we could approximate a smooth
function such as a polynomial function to the density values
using a least squares method. We could then use the maxi-
mum, minimum, first and second order derivatives to select
the highest density region.

Acknowledgments
We would like to thank Thomas Gottron for providing us the
dataset which was used in the evaluation of this work. The
work reported in this paper was partially financed by the Ac-
knowledge project (IBBT) and partially by the AMASS++
project (IWT 060051).

7. REFERENCES
[1] A. Bergholz, G. Paass, F. Reichartz, S. Strobel, M.-F.

Moens, and B. Witten. Detecting known and new
salting tricks in unwanted emails. In CEAS 2008:
Proceedings of the Fifth Conference on Email and
Anti-Spam, 2008.

[2] P. E. Black. ”longest common substring”. In
Dictionary of Algorithms and Data Structures [online].
http://www.nist.gov/dads/, 2004, retrieved
17/11/2008.

[3] A. Finn, N. Kushmerick, and B. Smyth. Fact or
fiction: Content classification for digital libraries. In
DELOS Workshop: Personalisation and Recommender
Systems in Digital Libraries, 2001.

[4] T. Gottron. Evaluating content extraction on HTML
documents. In ITA’07: Proceedings of the 2nd
International Conference on Internet Technologies and
Applications, pages 123–132, 2007.

[5] T. Gottron. Content code blurring: A new approach
to content extraction. International Workshop on
Database and Expert Systems Applications, 0:29–33,
2008.

[6] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm.
DOM-based content extraction of HTML documents.
In WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 207–214, New
York, NY, USA, 2003. ACM.

[7] W. Han, D. Buttler, and C. Pu. Wrapping web data
into xml. SIGMOD Record, 30(3):33–38, 2001.

[8] D. S. Hirschberg. Algorithms for the longest common
subsequence problem. J. ACM, 24(4):664–675, 1977.

[9] B. Krüpl, M. Herzog, and W. Gatterbauer. Using
visual cues for extraction of tabular data from
arbitrary HTML documents. In WWW ’05: Special
interest tracks and posters of the 14th international
conference on World Wide Web, pages 1000–1001,
New York, NY, USA, 2005. ACM.

[10] S.-H. Lin and J.-M. Ho. Discovering informative
content blocks from web documents. In KDD ’02:
Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 588–593, New York, NY, USA, 2002. ACM.

[11] C. Mantratzis, M. Orgun, and S. Cassidy. Separating
XHTML content from navigation clutter using
DOM-structure block analysis. In HYPERTEXT ’05:
Proceedings of the Sixteenth ACM Conference on
Hypertext and Hypermedia, pages 145–147, New York,
NY, USA, 2005. ACM.

[12] D. Pinto, M. Branstein, R. Coleman, W. B. Croft,
M. King, W. Li, and X. Wei. Quasm: a system for
question answering using semi-structured data. In
JCDL ’02: Proceedings of the 2nd ACM/IEEE-CS
Joint Conference on Digital Libraries, pages 46–55,
New York, NY, USA, 2002. ACM.

[13] T. Weninger and W. H. Hsu. Text extraction from the
web via text-to-tag ratio. Database and Expert
Systems Applications, International Workshop on,
0:23–28, 2008.

