LANGUAGE LEARNING AS LANGUAGE USE: STATISTICALLY-BASED
CHUNKING IN DEVELOPMENT

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Stewart M. McCauley

January, 2017



© 2017 Stewart M. McCauley

il



LANGUAGE LEARNING AS LANGUAGE USE: STATISTICALLY-BASED
CHUNKING IN DEVELOPMENT

Stewart M. McCauley, Ph. D.

Cornell University 2017

While usage-based approaches to language development enjoy considerable support
from computational studies, there have been few attempts to answer a key
computational challenge posed by usage-based theory: the successful modeling of
language learning as language use. I present a usage-based computational model of
language acquisition which learns in a purely incremental fashion, through on-line
processing based on chunking, and which offers broad, cross-linguistic coverage while
uniting comprehension and production processes within a single framework. The
model’s design reflects memory constraints imposed by the real-time nature of
language processing, and is inspired by psycholinguistic evidence for children's
sensitivity to the distributional properties of multi-word sequences and for shallow
language comprehension based on local information. It learns from corpora of child-
directed speech, chunking incoming words together to incrementally build an item-
based “shallow parse.” When the model encounters an utterance made by the target
child, it attempts to generate an identical utterance using the same chunks and
statistics involved during comprehension. In Chapter 2, I show that the model achieves
high performance across over 200 single-child corpora representing 29 languages from

the CHILDES database. It also succeeds in capturing findings from children’s

il



production of complex sentence types. In Chapter 3, I show that the model captures
key developmental psycholinguistic findings on children’s language learning and use.
Chapter 4 investigates the use of the model for understanding the different outcomes
of child first-language learning versus second-language learning in adults, providing
evidence that adult learners may rely on more fine-grained linguistic units. Together,
the modeling results presented in this dissertation suggest that much of children's early
linguistic behavior may be accounted for by item-based learning through on-line
processing of simple distributional cues, consistent with the notion that acquisition can

be understood as learning to process language.
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CHAPTER 1
TOWARDS A USAGE-BASED MODEL OF ON-LINE LANGUAGE LEARNING

By four years of age, most children have mastered the basic grammatical structures of
their native language, an achievement marking the transition to a seemingly
unbounded capacity for communicating novel information. How can children acquire
such productivity—in the span of a few short years—given input that is both noisy and
necessarily finite in nature? For over half a century, the dominant theoretical approach
to this question has assumed that linguistic productivity can only be achieved through
a system of abstract grammatical rules working over word classes, scaffolded by a
considerable amount of innate knowledge (e.g., Chomsky, 1957). This has primarily
taken the form of a words-and-rules approach, which posits a strict separation between
grammar and the lexicon (e.g., Fodor, 1983; Pinker, 1999). Language is viewed as
memory-based at the word level, but algorithmic at the multi-word level: syntactic
rules define the skeletal structure of a sentence, which is fleshed out by lexical-
semantic representations (e.g., Radford, 1988). At its most extreme, the words-and-
rules approach takes the form of a model in which the lexicon contains only those
units which cannot be computed from their component parts—morphemes, simple
words, irregular words, and idioms—while grammar consists of operations for the
hierarchical composition of lexical elements into complex words, phrases, and

sentences (e.g., Pinker, 1991; Pinker, 1999).

In recent decades, linguists have proposed a number of theoretical alternatives

to the words-and-rules approach which hold that grammar and the lexicon form a



single system: grammar is taken to consist in stored units, similar to simpler symbols,
such as words and morphemes (e.g., Croft, 2001; Fillmore, 1985; Goldberg, 1995,
2006; Langacker, 1987, 2008). What these approaches hold in common is the notion
of the inseparability of the lexicon from grammar: the two can only be distinguished in
so far as they constitute polar ends of a continuum of linguistic units ranging from
simple to more complex. The mapping between form and meaning composing a more
complex unit, such as an abstract grammatical construction (e.g., Goldberg, 2006), is
not qualitatively different than the mapping between a word's meaning and its
phonological form. Although this can be argued to involve a hierarchical system with
rule-like properties, grammar itself under this approach is inherently meaningful and
thus cannot be reduced to the type of operations over separately stored elements
assumed by words-and-rules models. In other words, grammar cannot be dissociated
from the lexicon.

It is with this latter set of theoretical approaches to language acquisition—
which necessarily hold that language learning is usage-based and arises from actual
usage events—that this dissertation is concerned. The studies described herein involve
the development of a computational model of language acquisition which takes usage-
based approaches to their natural conclusion, eliminating the sharp distinction between
language learning and language processing. The model—dubbed the Chunk-Based
Learner (CBL) because it operates primarily through a simple chunking mechanism—
takes real corpora of child-directed speech as input and builds linguistic knowledge
solely through attempts to perform concrete aspects of comprehension and production.

The model provides strong performance across a typologically diverse array of 29 Old



World languages. Importantly, the model achieves this through incremental, on-line
processing that adheres to psychological principles and constraints deriving from the
real-time nature of language use.

In what follows, I discuss the theoretical motivation for the CBL model's
emphasis on chunking: evidence that multiword patterns of varying sizes function as
linguistic units in their own right. I then discuss some of the practical constraints on
the psychological mechanisms for acquiring these useful chunks of linguistic
information. Finally, I provide an overview of the dissertation and a breakdown of the

following chapters.

A Unified Grammar and Lexicon

The studies described in this dissertation are motivated in part by a number of
psycholinguistic findings from recent decades which have served to blur the lines
between lexicon and grammar, consistent with the aforementioned usage-based
approaches to language. These findings not only cast doubt on the existence of
separate and distinct learning and processing mechanisms, but highlight a role for
multiword linguistic units. A number of these findings center on the time course of
lexical vs. grammatical development. Bates and Goodman (1997) provide a review of
longitudinal studies demonstrating the connection between grammatical abilities and
vocabulary size in both typically and atypically developing children. For instance, one
early study identifies a strong correlation between grammatical proficiency and
vocabulary size, with vocabulary at 20 months emerging as the best predictor of

syntactic abilities at 28 months (Bates, Bretherton, & Snyder, 1988). This general



pattern is replicated and extended in a number of further studies (e.g., Caselli,
Casadio, & Bates, 1999; Fenson et al., 1994; Singer-Harris, Bellugi, Bates, Rossen, &
Jones, 1998).

The mechanisms whereby lexical and grammatical abilities might emerge in
unison are beginning to be explored in studies inspired by the usage-based approach to
language development (Lieven, Pine, & Baldwin, 1997; Tomasello, 1992, 2000a,
2000b, 2003), which builds upon previous lexically-oriented theories of grammatical
development (e.g., Bowerman, 1976; Braine, 1976) and is largely consistent with
previous theoretical alternatives to dual-system models, proposed by linguists (as
discussed above; e.g., Fillmore, 1985; Langacker, 1987). Such work has emphasized
the item-based nature of children's early grammatical knowledge, yielding cross-
linguistic findings of item-specific patterns in early verb usage (e.g., Gathercole,
Sebastian, & Soto, 1999; Rubino & Pine, 1998; Tomasello, 1992; see also: Berman,
1982; MacWhinney, 1975; Pizutto & Caselli, 1992), as well as studies of children's
production of novel verbs (e.g., Tomasello & Brooks, 1998; Akhtar, 1999), use of
determiners (e.g., Mariscal, 2008; Pine & Lieven, 1997), case marking errors (e.g.,
Kirjavainen, Theakston, & Lieven, 2009), production of complex sentence types (e.g.,
Diessel & Tomasello, 2005), and question formation (e.g., Dabrowska, 2000). Such
widespread developmental findings of item-specific usage patterns dovetail nicely
with the intertwined developmental trajectories of lexical and grammatical abilities
identified by Bates and colleagues.

A number of recent findings suggest that children's item-based linguistic

behavior is rooted in the formation of representations of differing granularities, with



stored linguistic units ranging from the fine-grained level of morphemes and words to
the more coarse-grained level of word sequences comprising one or more phrases.
This notion has received support from naturalistic observation (e.g., Lieven, Behrens,
Speares, & Tomasello, 2003; Peters, 1983) and has recently been the supported by
empirical work. The finding of Bannard and Matthews (2008) that young children
repeat phrases faster and more accurately when they form a frequent chunk may have
provided the first direct evidence not only that multiword chunk storage takes place,
but that this storage can actively facilitate processing. Controlling for substring
frequency, they contrasted repetition of four-word phrases in which the fourth word
was of either high or low frequency, given the preceding trigram. Two and 3-year-olds
were more likely to repeat a phrase correctly when its fourth word combined with the
preceding trigram to form a frequent chunk, while 3-year-olds were significantly faster
to repeat the first three words. Further evidence comes from children's production of
irregular plurals: Arnon and Clark (2011) found that the overregularization errors are
significantly reduced when irregular plurals are produced in the context of lexically-
specific frames (e.g., “brush your teeth”).

With respect to multiword linguistic units, usage-based approaches have
focused primarily on the importance of stored sequences as exemplars in the
abstraction of schemas and grammatical regularities; at the heart of usage-based theory
lies the idea that productivity develops gradually through abstraction over multiword
sequences of the sort identified in the above studies (e.g., Abbot-Smith & Tomasello,
2006). Nevertheless, children's apparent use of multiword units during on-line

processing (as shown by both Arnon & Clark, 2011 and Bannard & Matthews, 2008)



highlights an active role for such units in comprehension and production, suggesting
the possibility that multiword sequences retain their significance throughout
development. Such a finding would blur the lines between lexicon and grammar even
further, presenting an even worse problem for words-and-rules approaches.

Indeed, this seems to be the case: a number of findings indicate that the storage
and active use of multiword units persists beyond early acquisition and into adulthood.
Bannard and Ramscar (2007) describe an effect of overall sequence frequency on
reading times for units ranging from 4 to 7 words in length, while Reali and
Christiansen (2007) showed chunk frequency effects in the processing of complex
sentence types. Arnon and Snider (2010) found the same general pattern using a
phrasal-decision task, whereby four-word expressions were classified as possible or
impossible strings in English (in a vein similar to lexical-decision tasks). Importantly,
Arnon and Snider's study explored multiple frequency bins; reaction times decreased
as a function of phrase frequency. Caldwell-Harris, Berant, and Edelman (2012)
extended this finding to a broader frequency spectrum, showing a continuous effect of
frequency and providing evidence against a “threshold” beyond which frequency
effects are exhibited. Additional evidence for adults' sensitivity to multiword sequence
frequency has been gained from self-paced reading and sentence recall tasks
(Tremblay, Derwing, Libben, & Westbury, 2011), eye-tracking data (Siyanova-
Chanturia, Conklin, & van Hueven, 2011), and event-related brain potentials
(Tremblay & Baayen, 2010). A similar pattern of results has been found in studies of
adult production, demonstrating a decrease in naming latencies with increasing phrase

frequency (Janssen & Barber, 2012) as well as reduced phonetic duration for frequent



multiword sequences in elicited and spontaneous speech (Arnon & Cohen Priva,
2013).

While the above studies have focused primarily on distributional properties,
there are likely to be additional semantic contributions to the ways in which language
users represent and draw upon multiword units. For instance, Jolsvai, McCauley, and
Christiansen (2013) investigated the processing of compositional multiword sequences
alongside idioms which were matched for whole- and sub-string frequency. In a
paradigm identical to that of Arnon and Snider (2010), subjects exhibited
indistinguishable processing latencies for the idioms and compositional sequences.
More importantly, norming scores collected from a separate set of subjects, who were
asked to rate strings based on how meaningful they were “as a single unit,” were a
better predictor of reaction times than frequency or compositionality, for the entire set
of test items. These results support the notion that multiword sequences are stored and
processed in ways that relate as much to their semantics as to their distributional
features, further undermining the exclusion of compositional forms from the lexicon.

There are also direct parallels between the learning and processing of
multiword units and individual words with respect to age-of-acquisition (AoA) effects.
In a variety of tasks, adults exhibit processing advantages for words that are acquired
earlier in childhood. Arnon, McCauley, and Christiansen (2017) show that multiword
sequences, like individual words, display AoA effects when AoA is determined using
either corpus-based metrics or subjective AoA ratings. The authors also show that the
effect cannot be reduced to frequency, semantic plausibility, or lexical AoA. By

underscoring this further parallel between words and multiword patterns, this study



builds strong support the notion of coarse linguistic units as key building blocks for
language learning and use.

Thus, the importance of multiword linguistic units extends beyond merely
serving as exemplars for the formation of item-based schemas or the abstraction of
grammatical regularities; multiword sequences play an active role in on-line
processing, one that persists into adulthood. These findings clearly require the
expansion of the mental lexicon in dual-system models to contain compositional
strings. Indeed, a small number of approaches in generative linguistics have
incorporated storage for larger compositional sequences (e.g., Culicover & Jackendoff,
2005). Nevertheless, the psycholinguistic findings described above indicate that
compositional forms are not stored merely as exceptions (i.e., when falling above a
certain frequency threshold), but by default, which casts doubt on a sharp boundary

between lexicon and grammar.

Shallow Processing Based on Local Information

The item-based nature of children's and adults' processing of multiword strings nicely
complements a body of work suggesting that sentence processing is often shallow with
respect to syntactic structure, relying heavily on semantic knowledge and global
discourse structure. Such findings provide another key motivation for the studies
presented in this dissertation. Evidence for shallow processing of linguistic input has
lead some researchers to question the centrality of rule-based structures of the sort
required by dual-system approaches, as well as the standard assumption that syntactic

processes are carried out completely and automatically. Shallow processing has been



shown to be a widespread phenomenon through psycholinguistic research (Ferreira,
Bailey, & Ferraro, 2002; Sanford & Sturt, 2002), and while the vast majority of this
work has dealt with adult subjects, the theoretical implications extend from adult
processing to the study of language acquisition.

What is perhaps the most well-known thread of evidence for shallow
processing comes from work on text-change blindness (following work on change
blindness in visual processing; e.g., Simons & Levin, 1998) to demonstrate the extent
to which several factors modulate depth of processing, including focus (Sanford, 2002;
Sturt, Sanford, Stewart, & Dawydiak, 2004) and computational load (Sanford,
Sanford, Filik, and Molle, 2005). Perhaps more relevant is work demonstrating
subjects' interpretation of nonsensical sentences as coherent (Fillenbaum, 1974;
Wason & Reich, 1979) as well as the processing of semantically anomalous sentences
in ways that directly contradict the interpretations that would be made according to a
full syntactic parse (Ferreira, 2003), demonstrating the on-line use of background
world knowledge and pragmatic expectations.

Evidence for shallow processing makes good contact with Ferreira and
Patson's (2007) Good Enough approach to sentence processing, in which it is argued
that the goal of language comprehension is to establish representations which are
merely “good enough” to suit the needs of a listener or reader in a given situation, as
opposed to representing communicated information in full detail. In the above-
mentioned cases, readers seem to rely on local linguistic information and global
background knowledge rather than compositional meanings derived from fully

articulated syntactic representations. Thus, evidence for shallow processing based on



local information also makes close contact with Sanford and Garrod's (1981; 1998)
Scenario Mapping theory of comprehension, in which background knowledge of
situations and scenarios is used on-line to interpret linguistic input as it is encountered.
During on-line interpretation, incoming linguistic input is mapped onto schemas of
events, situations, or scenarios which have been established based on previous
contexts or input; interpretation of the overall message is therefore heavily influenced
by the background information which linguistic input is mapped onto. While the
computational modeling work described in this dissertation does not yet incorporate
semantic representations, it is compatible with the aforementioned perspectives on

shallow processing.

The Real-time Constraint on Language Learning and Processing
Evidence for multiword linguistic units and the ubiquity of shallow processing over
local information converge on a recent theoretical proposal by Christiansen and Chater
(2016; see also Chater, McCauley, & Christiansen, 2016), earlier forms of which
provided much of the inspiration for the studies presented in this dissertation. The
proposal rests on the uncontroversial observation that language takes place in the
“here and now.” The consequences of this real-time constraint—which Christiansen
and Chater refer to as the “Now-or-Never bottleneck”—are rarely considered,
however.

The fleeting nature of signal and memory presents something of an enigma: At
a normal rate of speech, humans produce between 10 and 15 phonemes per second

(Studdert-Kennedy, 1986). Nevertheless, the ability to process discrete sounds seems
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limited to about 10 items per second (Miller and Taylor, 1948). To make matters
worse, the auditory trace is limited to about 100 ms (Remez, Ferro, Dubowski, Meer,
Broder, & Davids, 2010). Moreover, memory for arbitrary sequences seems to be
limited to about four items (Cowan, 2001; Warren, Obusek, Farmer, & Warren, 1969).

Thus, the signal-—and human memory for it—are incredibly short-lived. If all
of these findings are taken at face value, language learning should be impossible. A
key strategy for overcoming these sensory and memory limitations lies in chunking:
incoming items can be rapidly grouped and passed to successively higher levels of
representation, with higher-level representations allowing input to be dealt with before
it is overwritten by the onslaught of incoming information at a lower level. It is fairly
intuitive and uncontroversial, for instance, that the raw acoustic signal is rapidly
packaged into phoneme- or syllable-like representations, which can in turn be chunked
into word- and phrase-like representations, and so on. The consequences of applying
this general approach to sentence-level processing and grammatical development are,
however, less obvious, as discussed by Christiansen and Chater (2016).

While receiving new emphasis under this perspective, chunking has been
regarded as a key learning and memory mechanism in human cognition for over half a
century (e.g., Feigenbaum & Simon, 1962; Miller, 1956; Simon, 1974). While verbal
theories have been more common, computational models of chunking have been
present in the literature for over four decades (e.g., Ellis, 1973; French, Addyman, &
Mareschal, 2011; Perruchet & Vintner, 1998; Servan-Schreiber & Anderson, 1990;
Simon & Gilmartin, 1973). Previous computational approaches to chunking have had

a significant impact on approaches to language development, particularly with respect
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to the area of speech segmentation (e.g., Frank, Goldwater, Griffiths, & Tenenbaum,
2010). The CBL model extends the use of chunking beyond word segmentation to
aspects of sentence comprehension and production, while stopping short of capturing

grammatical abstraction.

Modeling Language Learning as Language Use

The modeling approach described in this dissertation attempts to satisfy the constraints
imposed by the real-time nature of language: all processing (and therefore, all
learning) takes place in a fully incremental and on-line fashion. This is made possible
by the reliance on chunking and the use of shallow linguistic processing of local
information tied to multiword sequences as opposed to fully hierarchical
representations of structure. In Chapter 2, the CBL model is presented in full detail.
In this chapter, I explore the capabilities and limitations CBL's fully item-based
approach of language development. Importantly, there is no distinction between
learning and processing in the model: language learning is learning to process
language. The model's approach to chunking is explored in the context of ongoing
debates in statistical learning over recognition-based versus probabilistic processing of
sequences. The CBL model is shown to compare favorably to purely recognition-
based models of chunking as well as purely statistically-based approaches, through the
use of statistical cues in a recognition-based framework. Despite its extreme
simplicity, the model is shown to be capable of strong performance for specific
aspects of comprehension and production across a typologically-diverse array of 29

Old World languages. By taking usage-based approaches to the extreme in this way, I
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explore the use of the model as a foundation for a future approach also capable of
learning abstract linguistic units, in the vein of computationally more complex models
of grammatical development which acquire partially abstract, productive constructions
(e.g., Solan, Horn, Ruppin, & Edelman, 2005).

While Chapter 2 shows that CBL can discover and use building blocks for
language learning, in Chapter 3 the psychological validity of these building blocks is
explored. I explore simulations of empirical data covering several key developmental
psycholinguistic findings regarding children's distributional and item-based learning.
It is shown that CBL can capture developmental data from a range of findings
spanning from child artificial language learning (Saffran, 2002) to child sensitivity to
multiword sequence frequency (Bannard & Matthews, 2008) to morphological
development (Arnon & Clark, 2011). These results are discussed in the context of their
significance for understanding formulaic language use over the course of
development, spanning into adulthood.

In Chapter 4, I explore the notion that children rely more heavily on
multiword units in language learning than do adults learning a second language. To
this end, I take an initial step towards using large-scale, corpus-based computational
modeling as a tool for exploring differences between the linguistic units of different
learner types. The CBL model is used to compare the usefulness of chunk-based
knowledge in accounting for the speech of second-language learners vs. children and
adults speaking their first language. In the same vein as the TraceBack method
(Lieven et al., 2003), we compare the CBL model's ability to use chunks discovered in

the speech of single learners to generalize to the on-line production of unseen
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utterances from the same learners. This modeling effort thus aims to provide the kind
of “rigorous computational evaluation” of the Traceback Method called for by Kol,
Nir, & Wintner (2014). Moreover, I explore the nature of the chunk inventories
acquired by the model for each learner type, using a network-theoretic approach.
Together, these findings suggest that while multiword units are likely to play an
important role in second-language learning, adults may learn less useful chunks, rely
on them to a lesser extent, and arrive at them through different means than children
learning a first language.

In Chapter 5, I discuss the limitations and future directions for the modeling
approach outlined in this dissertation. In particular, the need for incorporating extra-
linguistic input and semantic representations is explored. I also discuss successful
attempts to test the predictions of the modeling work through behavioral studies

conducted with human adults.
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CHAPTER 2

A CROSS-LINGUISTIC MODEL OF CHILD LANGUAGE DEVELOPMENT!

The ability to comprehend and produce an unbounded number of novel utterances has
long been regarded as a hallmark of human language. How does a child acquire such
productivity, given input that is both noisy and finite? For over half a century,
generative linguists have argued that such open-endedness can only be explained by a
system of abstract grammatical rules operating over word classes, scaffolded by
innate, language-specific knowledge (e.g., Chomsky, 1957; Pinker, 1999). In recent
years, however, an alternative theoretical perspective has emerged in the form of
usage-based approaches (e.g., Croft, 2001; Goldberg, 2006; Tomasello, 2003), which
hold that children's language development is initially item-based. Rather than being
guided by system-wide abstract principles, productivity is taken to emerge gradually,
beginning with concrete items in the child's input. This perspective is motivated in part
by analyses of child-directed speech, showing that there is considerably more
information available in the input than previously assumed (e.g., Redington, Chater, &
Finch, 1998; Monaghan & Christiansen, 2008), as well as a wide range of
observational and empirical work showing that children can use such information in
an item-based manner. Such evidence includes cross-linguistic findings of item-
specific patterns in early verb usage (e.g., Berman, 1982; MacWhinney, 1975;

Gathercole, Sebastian, & Soto, 1999; Pizutto & Caselli, 1992; Rubino & Pine, 1998),

1

This chapter is under review as: McCauley & Christiansen (submitted), Language learning as
language use: A cross-linguistic model of child language development.
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as well as studies of children's production of novel verbs (e.g., Tomasello & Brooks,
1998; Akhtar, 1999), use of determiners (e.g., Mariscal, 2008; Pine & Lieven, 1997),
case marking errors (e.g., Kirjavainen, Theakston, & Lieven, 2009), production of
complex sentence types (e.g., Diessel & Tomasello, 2005), and question formation
(e.g., Dabrowska, 2000).

In addition to this wealth of observational and empirical evidence, a number of
computational modeling studies have provided a source of complementary support for
usage-based approaches, using item-based learning to successfully capture specific
developmental patterns (Freudenthal, Pine, & Gobet, 2006, 2007; Gobet, Freudenthal,
& Pine, 2004; Jones, Gobet, & Pine, 2000), the acquisition of item-based
constructions and schemas (Chang, 2008; Solan, Horn, Ruppin, & Edelman, 2005),
and semantic role learning (e.g., Alishahi & Stevenson, 2010), as well as tracing the
emerging complexity of children's grammatical knowledge more generally (e.g.,
Bannard, Lieven, & Tomasello, 2009; Borensztajn, Zuidema, & Bod, 2009).

Despite the considerable success of item-based computational approaches to
acquisition, there have been few computational accounts of the on-line processes
driving children's attempts to comprehend and produce speech, or the ways in which
these specific usage events incrementally contribute to the child's emerging linguistic
abilities. This lack seems to stem, in part, from traditional ways of idealizing the task
facing the language learner: from a computational standpoint, the issue of linguistic
productivity tends to be approached primarily as a problem of grammar induction; to
attain open-ended productivity, the learner must first identify a target grammar on the

basis of exposure to a sample of sentences generated by that grammar (Gold, 1967).
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While computational approaches to acquisition have largely moved beyond Gold's
formal learnability approach, incorporating a variety of different sources of linguistic
information, the idealization of the task facing the learner as one of grammar induction
has remained largely intact. As a consequence, computational work within the usage-
based tradition has continued to focus on grammar induction (e.g., Borensztajn et al.,
2009).

Usage-based theory suggests the possibility of sidestepping the grammar
induction approach altogether, focusing instead on the ways in which linguistic
knowledge is built up and reinforced through specific usage events (the child's
attempts to comprehend and produce speech). This perspective has recently been
bolstered by a number of complementary experimental results which suggest that the
task facing learners is better characterized as one of “learning by doing” than as one of
grammar induction (see also Chater & Christiansen, 2010; Christiansen & Chater,
2016a). Evidence for the psychological reality of multiword linguistic units has served
to blur the lines between grammar and lexicon, demonstrating the storage of
“compositional” phrases as well as their use in comprehension and production (e.g.,
Arnon & Snider, 2010; Bannard & Matthews, 2008). Moreover, work on associative
learning (e.g., Perruchet, Vinter, Pacteau, & Gallego, 2002) and statistical learning
(e.g., Thompson & Newport, 2007) suggests that computationally simple mechanisms
may be sufficient to identify the boundaries of such units in the speech stream.

A highly relevant—though previously unconnected—Iine of research has
focused on the issue of syntactic processing depth, providing evidence that

comprehension processes are often shallow and underspecified (e.g., Sanford & Sturt,
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2002). Taken together with evidence for the primacy of local information during
processing (e.g., Tabor, Galantucci, & Richardson, 2004), this suggests that children
and adults form representations which are merely “good enough” for the
communication task at hand (e.g., Ferreira & Patson, 2007). Evidence for multiword
linguistic units, shallow processing, and the use of local information makes contact
with other work emphasizing the importance of sequential as opposed to hierarchical
linguistic structure (e.g., Frank & Bod, 2011; see Frank, Bod, & Christiansen, 2012,
for a review).

Despite the importance of these complementary areas of research for
strengthening item-based approaches, as well as their implications for re-
characterizing the task facing language learners, they have remained largely
unconnected. A recent theoretical proposal by Christiansen and Chater (2016b) unites
these seemingly disparate strands of evidence. The proposal rests on the
uncontroversial acknowledgement that language takes place in the “here and now.”
The consequences of this real-time constraint—which Christiansen and Chater refer to
as the “Now-or-Never bottleneck—are rarely considered, however. The fleeting
nature of signal and memory have implications for how we approach human language:
At a normal rate of speech, humans produce between 10 and 15 phonemes per second
(Studdert-Kennedy, 1986). Nevertheless, the ability to process discrete sounds appears
to be limited to about 10 items per second (Miller and Taylor, 1948), beyond which
they are perceived to fuse into a single buzzing sound. To make matters worse, the

auditory trace is limited to about 100 ms (Remez, Ferro, Dubowski, Meer, Broder, &
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Davids, 2010). Moreover, memory for arbitrary sequences seems to be limited to
about four items (Cowan, 2001; Warren, Obusek, Farmer, & Warren, 1969).

Thus, the signal-—and human memory for it—are incredibly short-lived. On
the surface, the Now-or-Never bottleneck would seem to render language learning and
use impossible. A key strategy for overcoming these sensory and memory limitations
lies in chunking: incoming items can be rapidly grouped and passed to successively
higher levels of representation, with higher-level representations allowing input to be
dealt with before it is overwritten by the onslaught of incoming information at a lower
level. It is fairly intuitive and uncontroversial, for instance, that the raw acoustic signal
is rapidly packaged into some sort of sound-based unit (e.g., phoneme- or syllable-like
representations), which can in turn be chunked into word-like representations, and so
on. The consequences of applying this general approach to sentence-level processing
and grammatical development are, however, less obvious, as discussed by
Christiansen and Chater (2016a, b).

Though gaining renewed emphasis under this perspective, chunking has been
regarded as a key learning and memory mechanism in human cognition for over half a
century (e.g., Feigenbaum& Simon, 1962; Miller, 1956; Simon, 1974). While verbal
theories have been more common, computational models of chunking have been
present in the literature for over four decades (e.g., Ellis, 1973; French, Addyman, &
Mareschal, 2011; Jones, 2012; Perrchet &Vinter, 1998; Servan-Schreiber &
Anderson, 1990; Simon & Gilmartin, 1973). Previous computational accounts of

chunking have had a significant impact on approaches to language development,
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particularly with respect to the area of speech segmentation (cf. Frank, Goldwater,
Griffiths, & Tenenbaum, 2010).

In what follows, we present a computational framework which extends the
real-time use of chunking beyond word segmentation to aspects of sentence
comprehension and production, uniting evidence for multiword linguistic units and
shallow processing within a simple, developmentally motivated model of acquisition
that learns through on-line processing. We begin by discussing these lines of research
as they pertain to our computational approach, before introducing the model and its
inner workings. We then report results on the acquisition of English as well as the
simulation of a key psycholinguistic experiment on children's sentence processing.
Finally, we demonstrate that our approach extends beyond English to cover the

acquisition of a broad array of typologically diverse languages.

The Psychological Reality of Multiword Linguistic Units

Our computational approach to acquisition begins with the idea that language learners
form representations of differing granularities, with linguistic units ranging from the
fine-grained level of morphemes and words to the more coarse-grained level of word
sequences comprising one or more phrases. This perspective emerges
straightforwardly from item-based approaches to acquisition; at the heart of usage-
based theory lies the idea that linguistic productivity develops gradually through
abstraction over multiword sequences (e.g., Abbot-Smith and Tomasello, 2006;
Tomasello, 2003), requiring that storage of multiword units (chunks) occurs. In

contrast, generative approaches have traditionally remained faithful to a words-and-
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rules perspective, in which learning and processing are supported by separate systems
for lexicon and grammar (e.g., Pinker, 1999).

While the assumption that children in some sense store multiword sequences
has received support from naturalistic observation (e.g., Lieven, Behrens, Speares, &
Tomasello, 2003; Peters, 1983), it is only recently that its validation has been made the
target of empirical work. The finding of Bannard and Matthews (2008) that young
children repeat phrases faster and more accurately when they form a frequent chunk
may have provided the first direct evidence not only that multiword chunk storage
takes place, but that this storage can actively facilitate processing. Controlling for
substring frequency, they contrasted repetition of four-word phrases in which the
fourth word was of either high or low frequency, given the preceding trigram. Two
and 3-year-olds were more likely to repeat a phrase correctly when its fourth word
combined with the preceding trigram to form a frequent chunk, while 3-year-olds were
significantly faster to repeat the first three words. Further evidence comes from
children's production of irregular plurals: Arnon and Clark (2011) found that the
overregularization errors are significantly reduced when irregular plurals are produced
in the context of lexically-specific frames (e.g., “brush yourteeth”).

The importance of such findings to usage-based approaches is underscored by
previous computational modeling work demonstrating that the alignment and
comparison (cf. Edelman, 2008) of multiword sequences can give rise to a

considerable amount of linguistic productivity, through the abstraction of partially

*More recent accounts, however, have allowed for storage of multiword sequences within a generative
framework (Culicover & Jackendoft, 2005; Jackendoff, 2002).
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item-based grammatical constructions (Kolodny, Lotem, & Edelman, 2015; Solan et
al., 2005).

While usage-based theory has focused primarily on the importance of stored
sequences as exemplars in the abstraction of grammatical regularities, children's
apparent use of multiword units during on-line processing (Arnon & Clark, 2011;
Bannard & Matthews, 2008) highlights an active role for such units in comprehension
and production, suggesting the possibility that multiword sequences retain their
significance throughout development. Indeed, a number of findings indicate that the
storage and active use of multiword units persists beyond early acquisition and into
adulthood. Bannard and Ramscar (2007) found an effect of overall sequence
frequency on reading times for units ranging from 4 to 7 words in length, while Reali
and Christiansen (2007) showed chunk frequency effects in the processing of complex
sentence types. Arnon and Snider (2010) found the same general pattern using a
phrasal-decision task, whereby four-word expressions were classified as possible or
impossible strings in English (in a vein similar to lexical-decision tasks). Importantly,
Arnon and Snider's study explored multiple frequency bins; reaction times decreased
as a function of phrase frequency. Caldwell-Harris, Berant, and Edelman (2012)
extended this finding to a broader frequency spectrum, showing a continuous effect of
frequency and providing evidence against a frequency “threshold” beyond which a
sequence is unitized. Additional evidence for adults' sensitivity to multiword sequence
frequency has been gained from self-paced reading and sentence recall tasks
(Tremblay, Derwing, Libben, & Westbury, 2011), eye-tracking data (Siyanova-

Chanturia, Conklin, & van Hueven, 2011), and event-related brain potentials
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(Tremblay & Baayen, 2010). A similar pattern of results has been found in studies of
adult production, demonstrating a decrease in naming latencies with increasing phrase
frequency (Janssen & Barber, 2012) as well as reduced phonetic duration for frequent
multiword sequences in elicited and spontaneous speech (Arnon & Cohen Priva,
2013)°.

There are also direct parallels between the learning and processing of
multiword units and individual words with respect to age-of-acquisition (AoA) effects.
In a variety of tasks, adults exhibit processing advantages for words that are acquired
earlier in childhood (for reviews, see Ghyselinck, Lewis, & Brysbaert, 2004; Johnston
& Barry, 2006; Juhasz, 2005). Arnon, McCauley, and Christiansen (2017) show that
multiword sequences, like individual words, display AoA effects when AoA is
determined using either corpus-based metrics or subjective AoA ratings. They also
show that the effect cannot be reduced to frequency, semantic plausibility, or lexical
AoA. By underscoring a further parallel between words and multiword patterns, this
study builds strong support the notion of stored multiword sequences as key building
blocks for language learning and use.

Thus, the importance of multiword linguistic units extends beyond merely
serving as exemplars for the formation of item-based schemas or the abstraction of
grammatical regularities; multiword sequences play an active role in on-line

processing, and this persists into adulthood. Accordingly, the on-line discovery and

*While the above studies have focused primarily on distributional properties, there are additional
semantic and prosodic contributions to the ways in which language users represent and draw upon
multiword units (e.g., Jolsvai, McCauley, & Christiansen, 2013)
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use of multiword sequences during comprehension and production forms one of the
key features of the present computational approach.

The use of multiword linguistic units also leads us to explore the possibility
that children's language development does not inevitably arrive at the use of fully
articulated, hierarchical phrase structure, as assumed in many previous computational
studies. In blurring the lines between lexicon and grammar, the active use of
multiword sequences points to a potential role for relatively “flat” syntactic structures,
suggesting that a more shallow form of processing may persist throughout
development and into adulthood. This radically changes the problem facing the
learner; instead of being forced to learn global hierarchical structures tied to a target
grammar, local sequential structure moves to the fore. In what follows, we explore this
idea more closely, reviewing evidence that shallow processing based on local

information represents the norm rather than the exception in language use.

The Ubiquity of Shallow Processing in Language Use

Evidence for shallow processing of linguistic input has led some researchers to
question the centrality of hierarchical phrase structure as well as the standard
generativist assumption that syntactic and semantic processes are carried out
completely and automatically. Yet for over half a century, hierarchical phrase structure
has been viewed as fundamental to most accounts of language acquisition and
processing (e.g., Chomsky, 1957). Consequently, the idea that the meaning of a
sentence need not stem from a fully articulated syntactic structure remains

controversial. Nevertheless, shallow processing has been shown to be a widespread
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phenomenon through psycholinguistic research (for reviews, see Ferreira, Bailey, &
Ferraro, 2002; Sanford & Sturt, 2002), and while the vast majority of this work has
dealt with adult subjects, the theoretical implications extend from adult processing to
the study of language acquisition. Here, we briefly discuss the evidence for shallow
processing in adult language users before turning our attention to similar (though
much more limited) evidence from developmental studies, and finally outlining an
account of shallow sentence processing which forms part of the motivation for the
computational approach to acquisition put forth in this paper.

What is perhaps the most well-known thread of evidence for shallow
processing comes from the failure of readers to notice semantically anomalous words
and phrases in texts, indicating that processes of semantic integration have not been
fully completed by readers who nevertheless form coherent semantic representations
based on the sentences in question (e.g., Barton & Sanford, 1993; Erickson &
Mattson, 1981). Other work has focused on text-change blindness (following work on
change blindness in visual processing; e.g., Simons & Levin, 1998) to demonstrate the
extent to which several factors modulate depth of processing, including focus
(Sanford, 2002; Sturt, Sanford, Stewart, &Dawydiak, 2004) and computational load
(Sanford, Sanford, Filik, and Molle, 2005). Perhaps more relevant is work
demonstrating subjects' interpretation of nonsensical sentences as coherent
(Fillenbaum, 1974; Wason& Reich, 1979) as well as the processing of semantically
anomalous sentences in ways that directly contradict the interpretations that would be
made according to a full syntactic parse (Ferreira, 2003), demonstrating the on-line

use of background world knowledge and pragmatic expectations.
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The above-mentioned evidence for shallow processing meshes naturally with
work highlighting readers' tendencies to form “underspecified” representations of
sentences, in which no commitment is made to any one of a number of possible
analyses, clearly indicating that fully articulated syntactic processing has not taken
place. Evidence for underspecification comes from work involving ambiguous relative
clause attachment (Swets, Desmet, Clifton, & Ferreira, 2008), quantifier scope
(Tunstall, 1998), metonymy (Frisson & Pickering, 1999), ambiguous nouns (Frazier &
Rayner, 1990), and anaphoric reference (Koh, Sanford, Clifton, & Dawydiak, 2008).
Like shallow processing more generally, underspecified representations are at odds
with theories of processing that assume full completion of syntactic and semantic
analyses. Much of the evidence for underspecification makes good contact with
Ferreira and Patson's (2007) Good Enough approach to sentence processing, in which
it is argued that the goal of language comprehension is to establish representations
which are merely “good enough” to suit the needs of a listener or reader in a given
situation, as opposed to representing communicated information in full detail*.

Taken together, the evidence suggests that shallow, underspecified processing,
far from representing a degenerate case or mere exception to normal full syntactic and
semantic processing, is ubiquitous. It is worthy of note that current evidence for

shallow processing comes from work with written texts, a medium which allows

*As pointed out by Sanford and Sturt (2002), the contrast between traditional notions of full syntactic
processing and shallow, underspecified processing is mirrored in the fields of computational linguistics
and natural language processing (NLP) by differences between the output of shallow parsers, which
identify a subset of interpretations for a sentence, and full syntactic parsers, which build a fully
articulated syntactic analysis. Even in the context of NLP, shallow parsing sometimes offers
computational advantages over full parsing (e.g., Li & Roth, 2001). Recently, it has also been shown
that shallow parsing is sufficient for semantic role labeling in a morphologically rich language
(Goluchowski & Przepiorkowski, 2012).
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subjects to process language without facing considerable challenges from 1) the highly
noisy, variable nature of the speech signal and 2) the time constraints that come with
not being able to control the speed at which input is encountered’. Thus, it is likely
that much stronger evidence for shallow processing can be gained using speech stimuli
(cf. Christiansen & Chater, 2016).

In the above-mentioned cases, readers seem to rely on local linguistic
information and global background knowledge rather than compositional meanings
derived from fully articulated syntactic representations. Thus, support for shallow
processing makes close contact with the claim that adults process sentences by using
small chunks of local information to arrive at a semantic representation (e.g., Ferreira
&Patson, 2007), which is reflected by local coherence effects (e.g., Tabor et al., 2004).

Evidence that adults process sentences in this manner makes it more than
plausible that children may rely on similarly shallow, underspecified processing in
which local information is key. While the issue of syntactic processing depth remains
largely unexplored in children, initial evidence suggests that young learners rely upon
shallow, underspecified processing to an even greater extent than adults (e.g.,
Gertner& Fisher, 2012). Corpus analyses of child speech similarly suggest that
children's earliest complex sentences featuring sentential complements (e.g., I think I
saw one) represent the simple concatenation of a formulaic expression (/ think) with a
sentence (/ saw one) in a shallow rather than hierarchical fashion (Diessel &
Tomasello, 2000).

Evidence for shallow processing based on local information makes close

5 Note that there may also be strict time pressures during normal fluent reading, when readers take in
about 200 words per minute (see Chater & Christiansen, 2016, for discussion)..
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contact with Sanford and Garrod's (1981; 1998) Scenario Mapping and Focus theory
of comprehension, in which background knowledge of situations and scenarios is used
on-line to interpret linguistic input as it is encountered. During on-line interpretation,
incoming linguistic input is mapped onto schemas of events, situations, or scenarios
which have been established based on previous contexts or input — interpretation of the
overall message is therefore heavily influenced by the background information which
linguistic input is mapped onto. It may therefore be fruitful to test the view of
language comprehension as the attempt to map chunks of language input onto specific
parts of a scenario or event schema (which can, of course, be quite abstract and need
not correspond to concrete objects and events in the real world); shallow processing
may be sufficient for accomplishing this task. This, in turn, helps us reframe the
problem facing the language learner: multiword unit learning (which allows rapid and
efficient retrieval of chunks of local information during comprehension and
production) naturally dovetails with a shallow processing approach, allowing language
learners to comprehend much of the input without the need for full global syntactic
parsing of the sort assumed in the vast majority of approaches to language learning.
This perspective fits nicely with several threads of psycholinguistic and
computational work which are beginning to converge on the view that language users
rely on sequential rather than hierarchical structures (for a review, see Frank et al.,
2012). For instance, Ferreira and Patson (2007) found that interpretations can be
constructed on the basis of small numbers of adjacent items, at the expense of more
global syntactic structures and meanings, suggesting that global hierarchical structures

were either impeded by local information or were altogether less important. Along the
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same lines, Christiansen and MacDonald (2009) found that simple recurrent networks
(Elman, 1990), which simply learn to predict upcoming items in sentences in a linear
rather than hierarchical fashion, provide a close fit to the abilities of human subjects to
process recursive constructions involving center-embedding and cross-dependency.
Consistent with this finding, Frank and Bod (2011) demonstrated that models which
learn linear, non-hierarchical sequential information about word classes provide a
stronger fit to actual human eye movement data during reading than models which
learn hierarchical phrase structures.

In line with the view that sentence processing relies heavily on sequential
structures computed over chunks of local information, our computational approach is
centered on simple mechanisms for the on-line discovery, storage, and sequencing of
words and chunks through sensitivity to the local rather than global information
contained in utterances. Before detailing our computational approach in greater depth,
we briefly discuss the potential sources of information children might use to discover
useful chunks of local information, and the relationships between them, during their

attempts to comprehend and produce utterances.

Discovering Useful Multiword Sequences

Our computational account of children's on-line processing seeks to capture some of
the mechanisms by which multiword units are learned and employed in language
comprehension and production. For the sake of simplicity, we distinguish between two
types of multiword units: 1) unanalyzed chunks, and 2) phrasal chunks (see also

Arnon & Christiansen, in press; McCauley, Monaghan & Christiansen,2015).
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Unanalyzed chunks are those that are stored and accessed holistically before
segmentation of their parts has taken place, whereas phrasal chunks can be (and
sometimes are) broken down into their component words. Chunks falling into the first
category are most relevant to the study of very early language development (for a
recent incremental, on-line computational model of word segmentation which captures
processes whereby unanalyzed chunks can be discovered and gradually broken down
into smaller units, see Monaghan & Christiansen, 2010). As an example, the chunk
look at this may be treated as a holistic, unanalyzed unit by very young children (for a
review of the literature on children's use of such “frozen” sequences, see Wray, 2005),
while the same chunk would fall into the second category (as a phrasal chunk) for
older children who are capable of breaking the chunk down into its component parts.

Beyond a certain point, chunks will rarely be treated as holistic units: Consider
evidence that idioms, which even generative grammar-oriented approaches recognize
as stored (Jackendoff, 1995; Pinker, 1999), prime, and are primed by, their component
words (Sprenger, Levelt, &Kempen, 2006) as well as lead to syntactic priming
(Konopka & Bock, 2009). Given that idioms would appear to form stored multiword
units (their meanings are idiosyncratic and cannot be determined on the basis of
component parts), we must allow, then, that a multiword unit can be accessed and used
as a meaningful entity in its own right, even when activation of its individual parts
occurs.

One well-studied source of information that infants might use to arrive at some
of their earliest, unanalyzed multiword chunks lies in the acoustic correlates of clause

and phrase boundaries. Pre-linguistic infants can use prosodic information to segment

39



the speech stream into multiword units, and this ability has been shown to facilitate
certain types of processing. Early work in this vein established that infants are
sensitive to the prosodic correlates of clause boundaries (Hirsh-Pasek, Kemler Nelson,
Jusczyk, Cassidy, Druss, & Kennedy, 1987). Further work demonstrated that infants
are better able to recall phonetic information when it is packaged in a prosodically
well-formed unit, and that infants can use the acoustic correlates of clause boundaries
to form representations which are available for use in later segmentation of continuous
speech (Mandel, Jusczyk, & Kemler-Nelson, 1994). More relevant to the present study
is work on phrase-level units. Though several studies suggest that phrases are not as
reliably marked in the speech stream as are clauses (Beckman & Edwards, 1990;
Fisher & Tokura, 1996), infants' sensitivity to these markers has been demonstrated
(Jusczyk, Hirsh-Pasek, Kemler Nelson, Kennedy, Woodward, & Piwoz, 1992).
Moreover, it has been shown that infants can use these markers to segment larger
prosodic units corresponding to clauses into smaller, phrase-level units (Soderstrom,
Seidl, Kemler-Nelson, & Jusczyk, 2003). Results from the Soderstrom et al. (2003)
study went beyond mere on-line recognition of prosodic ill-formedness, suggesting
that infants formed representations based on the prosodic information in
familiarization sequences, and used them to segment prosodically well-formed items
into phrase-level units at test.

The incorporation of such prosodic information, however, represents a
challenge for computational models of acquisition, given the limited availability of
prosodic information in currently available corpora of child-directed speech.

Fortunately, distributional information is also highly relevant to early chunk

40



discovery. Some of children's earliest unanalyzed multiword chunks may stem from
“errors” in word segmentation (as suggested by Bannard & Matthews, 2008). For
instance, using mutual information between syllables to find word boundaries in an
unsegmented corpus, Swingley (2005) found that 91% of bisyllablic false alarms were
frequent word pairs, such as come on, while 68% of trisyllabic false alarms were
frequently occurring multiword phrases. More recent models of word segmentation
(e.g., Goldwater, Griffiths, & Johnson, 2009; Monaghan & Christiansen, 2010) have
yielded similar results. Given that such models exploit some of the same distributional
cues that infants have been shown to be sensitive to in experimental studies of
artificial word segmentation, it would not be surprising if infants similarly
undersegmented the speech stream to arrive at unanalyzed multiword chunks. Far
from hindering the child's language development, such “mistakes” may actually
impart an advantage, as predicted by usage-based theories (e.g., Arnon, 2009; Arnon
& Christiansen, in press).

But what of chunks acquired after segmentation of the component words has
taken place? Presumably, unanalyzed chunks, arrived at through under-segmentation
and/or the use of prosodic information, are rare once the child reaches a certain level
of experience. The usefulness of multiword chunks should be no less real for an
experienced language user (and indeed, as shown in the studies reviewed above, older
children and adults actively use multiword units). Thus, we should allow for the
possibility that statistical information linking words can be used to arrive at multiword

chunks by older children and adults.
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How might learners chunk co-occurring words together as a unit after
segmentation of the component parts has already taken place? The use of raw
frequency of co-occurrence would lead to placing too much emphasis on co-occurring
words that frequently occur adjacent to one another by mere virtue of being highly
frequent words. Similarly, precise tracking of the frequencies of all encountered
sequences would lead to a combinatorial explosion (cf. Baayen, Hendrix, & Ramscar,
2013).

Thus, while phrase-frequency effects are continuous rather than threshold-
based (e.g., Caldwell-Harris et al., 2012), meaningful chunks cannot be identified on
the basis of raw frequency alone®, in much the same way as a word segmentation
model based solely on raw frequency of co-occurrence would be largely ineffective.
Consistent with the Now-or-Never perspective (Christiansen and Chater, 2016b),
which forms part of the theoretical motivation for the present study, we explore the
notion that many of the same cues and mechanisms involved in word segmentation
may be involved in chunking at the level of multiword units. In what follows, we
discuss previous computational accounts of chunking which, in the domain of
language, have been primarily concerned with word segmentation. We then describe
our own model, which extends chunk-based learning and processing to the sentence

level.

Previous Computational Models of Chunking

% Indeed, it has been suggested that part of the problem experienced by second-language learners may
be due to a suboptimal chunking strategy based on raw frequency (Ellis, Simpson-Vlach, & Maynard,
2008)—something that has been corroborated by simulations of second-language learning using the
CBL model presented below (McCauley & Christiansen, in press).
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Chunking has been regarded as a key learning and memory mechanism for over half a
century (e.g., Feigenbaum & Simon, 1962; Miller, 1956), with many of the earliest
computational implementations being concerned with expertise (e.g., Ellis, 1973;
Simon & Gilmartin, 1973) or specific language-related phenomena such as spelling
(Simon and Simon, 1973) and alphabet recitation (Klahr, Chase, & Lovelace, 1983).
In recent decades, a number of chunking models related to implicit learning have
emerged, and have been applied to word segmentation, particularly in the context of
modeling data from artificial language learning experiments.

An early instance of one such model is the Competitive Chunking (CC) model
of Servan-Schreiber and Anderson (1990), which views learning as the buildup of
progressively larger chunks which are structured in a hierarchical network. Servan-
Schreiber and Anderson argued that the implicit learning of artificial grammars (e.g.,
Reber, 1967) is primarily driven by chunking, and model the discrimination of
grammatical vs. ungrammatical strings according to the number of stored chunks
necessary to describe a sequence. The CC model operates according to activation of
hierarchical chunks which match a current stimulus. Activated chunks which overlap
with one another then “compete” to shape perception of the stimulus. Chunk creation
and retrieval are determined by chunk strength, which is tied to free parameters
involving decay and competition. In a Reber (1967) task analogue, CC was able to
capture 87% of the variance in subject discrimination of grammatical vs.
ungrammatical strings.

Perhaps the most influential chunking model devoted to implicit learning and

word segmentation is PARSER (Perruchet & Vinter, 1998), which was directly

43



inspired by the CC model of Servan-Schreiber and Anderson (1990). Unlike the CC
model, however, PARSER does not build up a hierarchical network of chunks, being
concerned primarily with identifying structurally relevant units, such as words
(Perruchet et al., 2002). Like the CC model, PARSER operates through competition,
or “interference,” between overlapping chunks, and utilizes free parameters for setting
decay and managing activation rates (chunk strength). PARSER has been used to
successfully model some of the experimental data involving human word
segmentation performance in artificial language learning contexts (e.g., Saffran,
Newport, & Aslin, 1996; cf. Perruchet & Vinter, 1998), and has also been used to
discover the syntactically relevant units in an artificial language generated by a finite-
state grammar (Perruchet et al., 2002).

A more recent approach to chunking is the MDLChunker (Robinet, Lemaire, &
Gordon, 2011), which operates according to the information-theoretic principle of
minimum description length (MDL), following the notion that human cognition favors
simpler representations as a general principle (Chater & Vitanyi, 2003). Like CC,
MDLChunker involves hierarchies of chunks. Unlike CC, or PARSER, MDLChunker
does not have free parameters. MDLChunker captures human chunking in a novel task
involving meaningless visual symbols, as well as providing similar results to PARSER
and CC on a well-known experiment by Miller (1958).

Another contemporary model of perhaps greater relevance is the TRACX
model (French et al., 2011). A connectionist auto-associator, TRACX operates
according to recognition-based processing rather than prediction, as in the case of

prediction-based networks like simple recurrent networks (SRNs; Elman, 1990).
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TRACX provides a better fit to human data than either PARSER or SRNSs, across a
range of sequence segmentation studies.

French et al. (2011) nicely exemplify the tensions in the implicit learning
literature between recognition-based processing, through chunking, and statistically-
based processing utilizing transitional probabilities (TPs). Despite the absence of
predictive processing and lack of conditional probability calculation, TRACX is
sensitive to TPs in both directions, as is the case with PARSER.

A number of studies have argued that recognition-based chunking provides a
better fit to human performance than do TPs: PARSER offers a better fit to human
data than learning based solely on TPs in a context in which the statistics of two
consecutively learned artificial languages are pitted against one another (Perruchet,
Poulin-Charronnat, Tillmann, & Peereman, 2014). Moreover, PARSER provides a
better fit to adult learning of a semi-artificial language than SRNs (Hamrick, 2014).
Poulin-Charronnat, Perruchet, and Tillmann (2016) developed a design which allowed
them to dissociate the influence of familiarity and transitional probabilities using a
pre-exposure phase in a standard artificial word segmentation task, in which
recognition of familiar units appeared to override sensitivity to statistical cues, though
findings were only partially captured by PARSER. These findings are compatible with
a recent recognition-based model of word segmentation (Monaghan & Christiansen,
2010) which performs reasonably well on child-directed speech input in comparison to
more computationally complex models.

Of the above computational approaches to chunking, PARSER has been the

most widely explored in the context of human artificial-language data on chunking
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and segmentation performance. PARSER also best satisfies the memory constraints
imposed by the Now-or-Never bottleneck, which forms part of the theoretical
motivation for the present study. MDLChunker, for instance, has no memory
limitations and is ill-suited to capturing on-line processing. Therefore, we chose
PARSER for use as a baseline for comparison to our own model, alongside a standard,

prediction-based model utilizing transitional probabilities over n-grams.

Integrating Recognition-based and Statistically-based Processing

While chunking models have been argued to offer a better fit than TPs to human
performance in studies of artificial word segmentation, which involve brief periods of
exposure, fewer studies have examined learning over longer periods of time, or the
learning of higher-level chunks, such as would be useful in learning grammatical
regularities.

Transitional probabilities have been found to be useful in segmenting out
multiword phrases: Thompson and Newport (2007) found that peaks in forward
transitional probabilities (FTPs) between form classes in an artificial language can be
used by adult subjects to group artificial words together into multiword units, whereas
dips in FTPs can be used to identify chunk boundaries. However, a number of
instances arise in natural language in which sole reliance on forward transitional
probabilities might prevent the segmentation of useful multiword chunks. For
example, if learners were to compute statistics over individual words rather than form
classes, the FTP between the words in an English phrase such as “the dog” will always

be extremely low, given the sheer number of nouns that may follow a determiner.
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Other sources of information, however, such as mutual information or backwards
transitional probabilities (BTPs) provide a way around this issue: given the word
“dog,” the probability that the determiner “the” immediately precedes it is quite high,
considering the small number of determiners one might choose from. Thus, it makes
sense that child learners might also make use of such sources of information to
discover useful multiword units.

Along these lines, Saffran (2001, 2002) has shown that dependencies in the
form of backwards transitional probabilities of between words in an artificial phrase-
structure grammar not only facilitate learning, but aid in isolating specific phrases.
That infants and adults are sensitive to backward transitional probabilities has been
established in the chunking (French et al., 2011; Perruchet &Desaulty, 2008) and
statistical learning (Pelucchi, Hay, & Saffran, 2009) literatures. Thus, the view of
backward transitional probabilities as a potential cue to useful multiword phrases
holds promise. That English speakers may be more sensitive to backwards than
forward transitional probabilities between words during production is suggested by
auditory corpus analyses showing that functors and content words are shorter when
predictable given the following word, while the same effect in the forward direction
appears only for the most frequent functors, and is absent for content words (Bell,
Brenier, Gregory, Girand, & Jurafsky, 2009). Though much previous work examining
adults' production of multiword units has been concerned with raw frequency counts
rather than conditional probabilities, the Bell et al. (2009) findings might also be taken
as initial support for idea that speaker sensitivity to backward transitional probabilities

may help drive the representation and use of multi-word chunks.
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The simple architecture of the model used in the present study—while inspired
by the successes of recognition-based chunking in accounting for experimental data—
also seeks to incorporate statistical learning, in line with the aforementioned evidence
for the use of TPs in phrase-level chunking. Rather than rely on prediction-based
processing, statistical information tied to BTPs is used as a cue for identifying chunks
which are then stored as concrete units and used to support further processing through
recognition. Forward prediction in the model is chunk-based rather than statistical. A
purely recognition-based model which does not directly utilize statistical cues,
PARSER (Perruchet &Vinter, 1998), serves as a baseline for comparison to our own
model, alongside a purely prediction-based model utilizing transitional probabilities

over n-grams.

The Chunk-Based Learner Model

In what follows, we present the Chunk-Based Learner (CBL) model of language
learning. Following Christiansen and Chater (2016b), one of the primary aims of the
CBL model is to provide a computational test of the idea that the discovery and on-
line use of multiword units forms part of the backbone for children's early
comprehension and production. To this end, the model gradually builds up an
inventory of chunks consisting of one or more words—a “chunkatory”—which is used
in both language comprehension and production. The model explicitly captures the
shallow processing perspective outlined above—in which chunks of local information
are used to process sentences—by learning to group words together into local chunks

that are appropriate for arriving at an utterance's meaning (a key aspect of
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comprehension), while simultaneously learning to produce utterances in an
incremental fashion using the same chunks of local information (a key aspect of
production).

CBL was designed with several key psychological and computational features

in mind:

On-line processing: During comprehension, input is processed word-by-word as it is
encountered, reflecting the incremental nature of human sentence processing (e.g.,
Altmann & Steedman, 1988; Tanenhaus, Carlson, & Trueswell, 1989; Tyler &
Marslen-Wilson, 1977); during production, utterances are constructed incrementally
according to a chunk-to-chunk process rather than one of whole-sentence
optimization. This approach is consistent with memory constraints deriving from the
real-time nature of language processing (Christiansen & Chater, 2016b).

Incremental learning: At any given point in time, the model can only rely on what it
has learned from the input encountered thus far (i.e., unlike the vast majority of
computational approaches to acquisition, the current model does not rely on batch
learning of any sort).

Simple statistics: For reasons detailed above, learning is based on the computation of
backward transitional probabilities, which 8-month-old infants (Pelucchi, Hay, &
Saffran, 2009) and adults (Perruchet &Desaulty, 2008) can track.

Local information: Learning is tied to local rather than global information; instead of
storing entire utterances as sequences, the model learns about transitions between

adjacent words and chunks.
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5. Item-based: The model learns from concrete words, without recourse to abstract
information such as that of syntactic categories (as is also the case with a number of
other usage-based models; e.g., Freudenthal et al., 2006; Jones et al., 2000; Kolodny et
al., 2015; Solan et al., 2005). This stands in stark contrast to most computational
approaches emerging from the tradition of generative linguistics; rule-based
processing in the “words-and-rules” framework operates over word classes rather than
words themselves.

6. Psychologically motivated knowledge representation: In accordance with evidence
for the role of multiword linguistic units in comprehension and production (reviewed
above) as well as for the interconnectedness of comprehension and production
processes more generally (Chater, McCauley, & Christiansen, 2016; Pickering &
Garrod, 2007, 2013), aspects of both comprehension and production are performed by
using the same inventory of single- and multiword linguistic units.

7. Naturalistic input: The model learns from corpora of child-directed speech taken
from the CHILDES database (MacWhinney, 2000). As word segmentation itself lies
outside the scope of the current model, the use of such pre-segmented corpora (which
consist of words rather than phonemic transcriptions) enables us to expose the model
to a far more diverse array of corpora than would be possible otherwise.

8. Broad, cross-linguistic coverage: The model is designed in such a way that it can be
evaluated on corpora of child-directed speech in any language (following Chang,
Lieven, & Tomasello, 2008). We therefore evaluate it using a typologically diverse set

of 29 languages.
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We begin by providing an initial glance at the general architecture of the
model, before describing its inner workings in full detail. We then present results from
simulations of the acquisition of English. Finally, we show that the model successfully

extends to the acquisition of a wide array of typologically diverse languages.

Inner Workings of the Model
There is growing behavioral and neuroimaging evidence for the involvement of the
same mechanisms in adult comprehension and production (for reviews, see Pickering
& Garrod, 2007, 2013), which prompts us to extend the idea of a unified framework
for comprehension and production to language development (Chater et al., 2016;
McCauley & Christiansen, 2013). In light of this, we designed CBL to capture the idea
that comprehension and production can be viewed as two sides of the same process.
Comprehension is approximated by the segmentation of incoming speech into chunks
relevant for determining the meaning of an utterance. These units are then stored in an
inventory that makes no distinction between single- and multi-word chunks.
Production is approximated by the model's ability to reproduce actual child utterances
through retrieval and sequencing of units discovered during comprehension. Crucially,
the very same distributional information underlying the model's comprehension-
related processing form the basis for production, while production itself is taken to
feed back into comprehension.

The model's inventory of single- and multi-word linguistic units—its chunk
inventory, or “chunkatory”—is its core feature. Comprehension-related processing is

used to build up the chunkatory while production-related processing both draws upon
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it and reinforces it. Through the chunkatory, CBL is able to approximate elements of
comprehension and production within a unified framework.

The model begins by learning—in an incremental, on-line fashion—to segment
incoming input into groups of related words (similar to phrasal units). These chunks
are then stored in the chunkatory unless they have been encountered before, in which
case the frequency of the relevant chunk is incremented by 1. In each simulation, the
input consists of a corpus of speech directed to a single child (taken from the
CHILDES database; MacWhinney, 2000). When the model encounters a multiword
utterance produced by the target child, the production side of the model comes into
play: the model's task is to produce an utterance which is identical to that produced by
the child, using only statistics and chunks learned and used during comprehension-
related processing up to that point in the simulation. Thus, we aimed to construct a
fully incremental, on-line model of child language development that uses the same
chunks and distributional statistics to perform aspects of both comprehension and
production.

To summarize this initial snapshot of the model's inner workings: CBL
approximates aspects of both comprehension, by learning an inventory of chunks and
using them to segment child-directed speech into related groups of words (such as
would be appropriate for arriving at an utterance's meaning via shallow processing),
and production, by reproducing actual child utterances as they are encountered in a
corpus, using the same chunks and statistics learned and used during comprehension.

We hypothesized that both problems could, to a large extent, be solved by recognition-
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based processing tied to chunks which are discovered through sensitivity to

transitional probabilities between linguistic units.

Transitional probability: The simple statistic at the heart of CBL: As
reviewed above, transitional probability (TP) has been proposed as a cue to phrase
structure in the statistical learning literature; peaks in TP can be used to group words
together, whereas dips in TP can be used to find phrase boundaries (e.g., Thompson &
Newport, 2007). The view put forth in such studies is that TP is useful for discovering
phrase structure when computed over form classes rather than actual words. We
hypothesized, instead, that distributional information tied to individual words provides
richer source of information than has been assumed in such work. Because we adopted
this purely item-based approach, and because of evidence for greater reliance on BTPs
when chunking words together in English (Bell et al., 2009), we decided to focus
initially on backward transitional probability.

The computation of transitional probabilities in the backward direction also has
an unexpected advantage in the context of incremental, on-line calculation, in that the
properties of the most recently encountered word attain the greatest importance (e.g.,
the BTP linking the sequence XY can be arrived at by normalizing P(X, Y) by P(Y)
rather than involving X in the denominator when computing FTP). For the above-
mentioned reasons, the current computational approach focuses initially on backward
rather than forward transitional probabilities as a cue to multiword units—chunks of
local information for use in processing—while comparing the types of transitional

probability in a systematic way in Appendix B.
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In what immediately follows, we provide an in-depth description of the inner
workings of the model, showing how simple transitional probabilities support
recognition-based chunk learning through comprehension- and production-related

processces.

Comprehension

Though comprehension and production in the model represent two sides of the same
coin, we describe them separately for the sake of simplicity. During comprehension,
the model discovers its first chunks through simple sequential statistics. Processing
utterances on a word-by-word basis, the model learns frequency information for words
and word pairs, which is used on-line to track BTPs between words and maintain a
running average BTP across previously encountered word pairs. When the model
calculates a BTP between two words that is greater than expected, based on the
running average BTP, it groups the word pair together such that it may form part of a
chunk. When the calculated BTP falls below the running average, a “boundary” is
placed and the chunk thereby created, consisting of one or more immediately
preceding words, is added to the chunkatory. Then, the model moves on to process the
next word in the utterance. The use of the running average BTP as a threshold allows
the avoidance of a free parameter. This process is illustrated using a simple utterance

in Figure 1.
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Fig. 1: Incremental, on-line processing of the simple utterance “the dog chased the
cat”. Material above the diagonal arrow depicts the simple computations driving
the model's on-line processing, while material below the arrow represents the
resulting shallow parse (the model's interpretation of the sentence) as it unfolds
over time. At Time 2, the model calculates the BTP between the and dog, which
exceeds the average TP threshold (indicated by the backward arrow's position
above the words), resulting in the two words being grouped together. Since the
next word has not yet been encountered, the two words are not yet stored in the
chunkatory as a chunk. At Time 3, the BTP between dog and chased falls below
the running average (indicated by the backward arrow's position below the
words), so chased is not grouped together with the preceding material and the dog
is then stored in the chunkatory. At Time 4, the BTP between chased and the falls

below the running average, so the two words are not grouped together and
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chased is added to the chunkatory as a single-word chunk. At Time 5, the BTP
between the and cat rises above the average threshold and because a pause

follows the sequence, the cat is chunked together and stored in the chunkatory.

All newly-added chunks are initialized with a frequency count of 1. The
frequency count of a chunk is incremented by 1 each time it is encountered
subsequently.

Once the model has acquired its first chunk, it begins using its chunkatory in a
recognition-based fashion to assist in processing the incoming input on the same
incremental, word-to-word basis as before. The model continues learning the same
low-level distributional information and calculating BTPs, but also uses the
chunkatory to make on-line predictions as to which words should form a chunk, based
on previously learned chunks. Crucially, these predictions are recognition-based rather
than statistically-based. When a word pair is encountered, it is searched for in the
chunkatory; if it has occurred more than once, either as a complete chunk or as part of
a larger chunk, the words are automatically grouped together and the model moves on
to the next word without placing a boundary. If the word pair has not occurred more
than once in the chunks found in the chunkatory at that time step, the BTP is compared
to the running average, with the same consequences as described above. Thus, there
are no a priori limits on the number or size of chunks that can be learned.

As an example of how this can be understood as prediction, consider the
following scenario in which the model encounters the phrase the blue ball for the first

time and its chunkatory includes the blue car and blue ball (with frequency counts
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greater than 1). When processing the and blue, the model will not place a boundary
between the two words because the word pair is already strongly represented in the
chunkatory (as in the blue car). The model therefore predicts that this word-pair will
form part of a chunk, even though the rest of the chunk has not yet been encountered.
Next, when processing blue and ball, the model reacts similarly, as this word pair is
also represented in the chunkatory. The model thereby combines its knowledge of two
chunks to discover a new, third chunk, the blue ball, which is added to the chunkatory.
As a consequence, the sequence the blue becomes even more strongly represented in

the chunkatory, as there are now two chunks in which it appears.

Production

While the model makes its way through a corpus incrementally, segmenting and
storing chunks during comprehension, it encounters utterances produced by the target
child, at which point the production side of the model comes into play. The model's
ability to generate the child's utterance, based on chunks learned from previous input,
is then evaluated using a sentence production task inspired by the bag-of-words
incremental generation task used by Chang et al. (2008), which offers a method for

automatically evaluating syntactic learners on corpora in any language.

We loosely approximate the overall message that the child wants to convey by
treating the utterance as an unordered set of words: a “bag-of-words,” corresponding
to (again, very roughly) the set of concepts contributing to the semantics of the
utterance to be produced. The task for the model, then, is to place these words in the

correct order, as originally produced by the target child. Following evidence for the
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use of multiword sequences in child production, as well as usage-based approaches
more generally, the model utilizes its chunkatory to generate the child’s utterances. In
order to model retrieval of stored chunks during production, the bag-of-words is filled
by comparing parts of the child’s utterance against the chunkatory. For instance,
consider a scenario in which the model is to produce the child utterance the dog
chased a cat and the largest chunk in the chunkatory consists of 3 words. To begin, the
first 3 words are searched for storage as a single chunk. As this is not found in the
chunkatory, the dog is searched for. This search succeeds, so the words are removed
from the utterance and placed in the bag as a single chunk. Next, chased a cat is
searched for, unsuccessfully, followed by chaseda, also without success. The word
chased is placed in the bag as a single chunk. Then, a cat is searched for, and so on.
Crucially, this procedure is only used to find chunks that the child already knows (i.e.,
that were in the chunkatory as a result of learning during comprehension) and thus
would be likely to use as such (e.g., the dog). Once in the bag, the order of chunks is

randomized.

During the second phase of production, the model attempts to reproduce the
child’s utterance using the unordered chunks in the bag-of-words. Again following
Christiansen and Chater (2016b), we model this as an incremental, chunk-to-chunk
process rather than one of whole-sentence optimization (e.g., calculating the
probability of the entire utterance, etc.), in order to reflect the incremental nature of
sentence processing (e.g., Altmann & Steedman, 1988; Christiansen & Chater, 2016b;
Tanenhaus et al., 1989; Tyler & Marslen-Wilson, 1977). Thus, the model begins by

removing from the bag-of-words the chunk with the highest BTP given the start-of-
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utterance marker (a hash tag representing the pause preceding the utterance in the
corpus), and producing it as the start of its new utterance. The chunk is removed from
the bag before the model selects and produces its next chunk, the one with the highest
BTP given the previously produced chunk. In this manner, the model uses chunk-to-
chunk BTPs to incrementally produce the utterance, adding chunks one-by-one until
the bag is empty. The model's production of the child utterance /'m gonna stop the
train with my whistle is depicted in Figure 2. In rare cases where two or more chunks

in the bag-of-words are tied for the highest BTP, one of them is chosen at random.

[i'm gonna]
[my whistle] [the train]
[stop]  [with] [stop]  my whistle]

[the train] [with]

- [the train]
[my whistle] it

[my whistle]

R
(pause) [ ? |

Highest BTP:
[i'm gonnal

[with]

[my whistle]

il

[i'm gonna] [ ? ]

Highest ETE:
[stop]

Y
[stop] [ ? ]

Highest BTP:
[the train]

Pause (Time 0)

I
[the train] [ ? ]

Hightest BTP:
[with]

"I'm gonna..." (Time 1)

VA

[with] [ 2 ]

Highest BTP:
[my whistle]

" _with..." (Time 4)

"..stop..." (Time 2)

'

[my whistle] [ ? ]

Empty bag-of-words
(utterance ends)

"...the train..." (Time 3)

"..my whistle." (Time 5)

Fig. 2: Incremental, on-line production of the child utterance “I'm gonna stop the
train with my whistle.” Material above the diagonal arrow depicts the contents of

the bag-of-words at each time step. Material below the arrow represents the
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simple computations whereby the model selects the next item to be produced at
each time step. At Time 0, the model selects its first chunk from the bag
according to the highest BTP, given the pause preceding the utterance (which can
be understood as a start-of-utterance marker); out of the chunks in the bag,

[i'mgonnalhas the highest BTP in this instance, so it is removed from the bag and
produced at the next time step. At Time 1, the model calculates the BTP between
[i'mgonnal and the remaining chunks in the bag; [stop] has the highest BTP and
is therefore removed and produced at the next time step. This process continues,
with the item possessing the highest BTP (given the previous item) being selected

until the bag-of-words is empty, at which point the utterance ends.

Because comprehension and production are seen as two sides of the same
process, a child's own productions are taken to reinforce statistics previously learned
during comprehension. For this reason, immediately following the model's attempt to
produce a given child utterance, the same utterance is used to reinforce the model's
low-level sequential statistics as well as its chunkatory, through the performance of
(incremental and on-line) comprehension on the utterance, in an identical manner to
any other utterance of child-directed speech in the corpus. The child is taken to “hear”
its own productions in a manner consistent with the position that no strong distinction
can be drawn between the mechanisms and statistics underlying comprehension and
production (as argued in Chater et al., 2016). Thus, the CBL model features some

similarities to the “Traceback Method” of Lieven et al. (2003), while also providing
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the kind of “rigorous computational evaluation” of the general approach called for by
Kol, Nir, and Wintner (2014).

Validity of the bag-of-words production task: In order to ensure that our
chosen production task evaluates meaningful linguistic skills, we tested adult native
speakers on a behavioral version of the task. Using the largest available child corpus
of English (Maslen, Theakston, Lieven, & Tomasello, 2004), we extracted, at random,
50 grammatical child utterances and 20 child utterances which had been previously
marked as ungrammatical, for a total of 70 test utterances. Twenty Cornell
undergraduates (mean age 20.1 [SE 0.8], all native speakers of English) then received,
for each utterance, an un-ordered set of chunks corresponding to the very same chunks
the model used when attempting to produce the given utterance during a full
simulation over the same corpus. The subjects' task, for each utterance, was to
sequence the chunks to form a sentence. The mean accuracy rate was 95.6% across all
subjects for the grammatical utterances, and 64% for the ungrammatical utterances
(note that only a perfect match to the child's utterance was scored as accurate, just as
with the model version of the task). Thus, we conclude that the bag-of-words task
itself does provide a meaningful and valid test of linguistic skills which reflect

knowledge of grammar.

Contrasting Recognition-based and Statistical Approaches to Chunking: Baseline
Models
We compare CBL directly to two models: PARSER (Perruchet &Vinter, 1998) as well

as a modified n-gram model. PARSER was chosen for comparison because it has been
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the most widely explored model in the context of human data on chunking and
segmentation performance, while also best satisfying the memory constraints imposed
by the Now-or-Never bottleneck (Christiansen & Chater, 2016b). As such, it provided
an ideal instantiation of purely recognition-based processing for comparison to the
alternative approach taken by the CBL model. As an additional baseline utilizing
purely prediction-based processing, we implemented a variation on the standard n-
gram model, focusing on Trigrams for reasons explained below. The contrasting unit
types and processing styles of the model and its baselines are simplified in Table 1.

Table 1
Contrasting Unit Type and Processing Style

Model Stored,Variable- Recognition- Prediction-
sized Chunks? based? based?
CBL Yes Yes Yes
PARSER Yes Yes No
Trigram No No Yes

Trigram baseline: To assess the usefulness of CBL and PARSER's variable-
sized, recognition-based chunks as opposed to simpler sequential statistics tied to
prediction, an additional alternate model was created which lacked a chunk inventory,
relying instead on forward transitional probabilities computed over stored n-grams.
Since trigram models (second-order Markov models) are commonly used in
computational linguistics as well as the field of machine learning (Manning &Schuitze,
1999), we chose to focus on three-word sequences. This decision was further
motivated by findings that trigram models are quite robust as language models,

comparing favorably even to probabilistic context-free grammars. Our trigram model
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acquired statistics in an incremental, on-line fashion, in the style of CBL, while
simultaneously processing utterances through the placement of chunk boundaries.

If the FTP between the first bigram and the final unigram of a trigram fell
below the running average for the same statistic, a chunk boundary was inserted. For
instance, as the model encountered Z after seeing the bigram XY, it would calculate
the FTP for the trigram by normalizing the frequency count of the trigram XYZ by the
count of the bigram XY, and comparing the result to the running average FTP for
previously encountered trigrams (inserting a chunk boundary if the running average
was greater). The start-of-utterance marker made it possible for the Trigram model to
place a boundary between the first and second words of an utterance.

During production attempts, which were also incremental and on-line in the
style of CBL, the trigram model began constructing an utterance by choosing from the
bag-of-words the word with the highest FTP, given the start-of-utterance marker (in
other words, bigram statistics were used to select the first word). Each subsequent
word was chosen according to trigram statistics, based on the two most recently placed
words (or the initial word and the start-of-utterance marker, in the case of selecting the
second word in an utterance). This meant the word with the highest FTP given the two
preceding words was chosen at each time step.

PARSER: We implemented PARSER according to Perruchet and Vinter
(1998) as well as personal communication with the first author. While a full
description of PARSER is beyond the scope of the present article, it operates in much
the same fashion as the Competitive Chunking model of Servan-Schreiber and

Anderson (1990), but without building up a hierarchical network of chunks. Chunks
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are initially formed in PARSER through a stochastic process determining the size of
percepts consisting of elementary units (in the present case, words). At each time step,
chunks in the model's “lexicon” are affected by decay, with interference between
partially overlapping chunks.

Perruchet (personal communication) advised us to retain the default values for
the free parameters governing the threshold beyond which chunks shape percepts, the
initial weight assigned to newly-segmented chunks, and weight added when existing
chunks are reinforced by subsequent encounters(1.0, 1.0, and 0.5, respectively). Thus,
the free parameters of primary interest for the present study were those governing
decay and interference. We explored a range of values and adopted the one offering
the best performance according to the gold standard for evaluating the models
(described below).

While PARSER required no modifications to work with the shallow parsing
task (merely the addition of a mechanism for recording its “percepts” as
segmentations), Perruchet (personal communication) declined to offer suggestions for
how it might be applied to sequencing in the bag-of-words task. PARSER, according
to Perruchet and Vinter (1998), was designed merely to build up an inventory of
chunks rather than capture any sort of on-line usage of those chunks: “The issue
addressed by PARSER is quite different, insofar as it concerns the creation of the
lexicon (p. 252; emphasis in the original).” As such, we chose to focus the use of
PARSER on the comprehension-related shallow parsing task only. Moreover,
substantial changes to the model would be necessary in order to adapt it for use with

the bag-of-words task.
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1)

Simulation 1: Modeling Aspects of Child Comprehension and

Production of English

In this section, we describe CBL simulations of child language learning and
processing using English language corpora which capture interactions between
children and their caretakers. We begin by describing the criteria used in selecting
these corpora, followed by a description of the automated procedure used to prepare
each corpus prior to its use as input in a simulation. Following this, we report the
results of simulations for each corpus, comparing the performance of CBL to that of
the two baseline models. For the sake of simplicity, we report performance for

comprehension- and production-related tasks separately.

Corpus Descriptions and Preparation Procedure

In keeping with the key psychological features of the model, we initially sought to
assess what could be learned by CBL from the input available to individual children.
We therefore selected developmental corpora involving single target children, rather
than aggregating data across multiple corpora. From the English language sections of
the CHILDES database (MacWhinney, 2000), we selected every corpus meeting the

following criteria:

Sufficient data — In order to locate corpora that had sufficient diversity in terms of both
vocabulary and syntactic constructions, we included only those corpora which
contained at least 50,000 words.

65



2) Dyadic — Because we wished to model both comprehension and production for each
child, we selected only corpora which featured a multiword child-to-adult utterance
ratio of at least 1:10.

3) Developmental — As we sought to model the developmental progression of each child's
language learning, we included only those corpora that spanned at least a 6-month

period (in terms of the target child's age across the corpus).

The three criteria were met by corpora for 42 individual English-learning
children (US: 25, UK: 17). For use in subsequent analyses, we collected, for each
child, the age range (mean age of 1;11 at the beginnings of the corpora, 3;7 at the
ends), number of months spanned by the corpus (mean: 20.6), total number of words
in the corpus (mean: 183,388), number of child utterances (mean: 20,990), number of
multiword child utterances (mean: 12,417), number of adult utterances (mean:
33,645), child mean length of utterance (MLU; the mean number of morphemes per
utterance; mean: 3.17), and child mean number of words per utterance (mean: 2.6).

Corpus preparation: The corpora were submitted to an automated procedure
whereby codes, tags, and punctuation marks were removed, leaving only speaker
identifiers and the original sequence of words. To ensure that the input available to the
model was representative of what children actually receive, apostrophes were also
removed from the corpora along with the other punctuation symbols. Thus, the
contraction it's and the word ifs, for instance, were both represented orthographically

as its, reflecting their identical phonological forms. This offered a naturalistic
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approach, considering developmental work indicating that children treat contractions
as single words (cf. Tomasello, 2003).

Lines spanning tagged prosodic breaks, such as pauses (indicated in CHILDES
by the (.) code), were broken into separate utterances, following research indicating
that infants are sensitive to the suprasegmental properties of utterances, such as the
acoustic correlates of clause boundaries (e.g., Hirsh-Pasek et al., 1987). Pauses due to
hesitation (as indicated by the [/] code) were dealt with in the same manner. Finally,
hash marks were added to the beginning of each line to signal the pause preceding
each utterance.

Dense UK English corpus: The corpora in the CHILDES database typically
represent a small percentage of the input a typical child might receive during the
months spanned by the recording sessions. To examine subtle developmental trends
with the model, a denser sample may be necessary. For this reason, we also tested the
model using a dense corpus of child-directed speech which contains an estimated 8-
10% of the target child's total productions (the Thomas corpus, originally known as
the Brian corpus, which is now part of CHILDES; Maslen et al., 2004).

The dense corpus was submitted to the same automated procedure used to
prepare the other CHILDES corpora. The prepared corpus spanned 36 months from
age 2;0 to 5;0, featured 2,437,964 words, 225,848 child utterances, 114,120 multiword
child utterances, 466,484 adult utterances, and an overall child MLU (in morphemes,
as above) of 2.84.

Form class corpora: A considerable amount of work in computational

linguistics has assumed that statistics computed over form classes are superior to item-
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based approaches for learning about structure (hence the widespread use of tagged
corpora). This assumption is also present throughout the statistical learning literature
(e.g., Thompson & Newport, 2007; Saffran, 2002), but is at odds with the present
model, which relies on statistics computed over concrete words and chunks rather than
classes. To evaluate the usefulness of item-based chunking and statistics against those
computed over word classes, we ran the model and its alternates on separate versions
of each corpus, in which words were replaced by the names of their lexical categories.
This process was automatically carried out by tagging each corpus using TreeTagger,
a widely used, probabilistic part-of-speech tagger based on decision trees (Schmid,
1995). The tag set used by TreeTagger was reduced to the following 12 categories:
noun, verb, adjective, numeral, adverb, determiner, pronoun, preposition, conjunction,
interjection, infinitive marker, and proper name. Unknown words (e.g., transcribed
babbling) were marked as such. As we removed the punctuation from each corpus as
part of the preparation procedure, contractions were handled straightforwardly:
contractions involving verbs were classed as verbs, while possessives were classed as
nouns. Thus, contractions were classed according to the type of phrase they
immediately appeared in (noun vs. verb phrases). This allowed us to avoid the use of a
tokenizer (which would reflect an assumption that children represent contractions such
as don't as two separate words), while being motivated by psychological
considerations (e.g., a child may treat an utterance such as that's the car similarly to

see the car; the verb-like aspect of the whole contraction takes precedence).

Evaluating Model Performance
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Gold standard for testing comprehension performance of model and baselines:
Shallow parsing: As the model approximated comprehension by segmenting the
incoming input into semantically related, phrase-like multiword units, we evaluated
the model's comprehension performance—as well as that of the three baseline
models—against the gold standard of a shallow parser. Shallow parsing is a widely
used technique in the field of natural language processing, which aims to segment text
into non-hierarchical (i.e., non-embedded) phrases which are labeled according to
phrase type. As an example, take the sentence the dog chased the cat. A shallow
parser would group the words together into noun and verb groups: /NP the dog] [VP
chased] [NP the cat]. This choice of gold standard reflects the psychological
motivation for the model; as observed by Sanford and Sturt (2002), shallow parsing
identifies a subset of possible analyses for a sentence rather than giving the type of
articulated analysis created by full syntactic parsers. This is in line with the previously
discussed evidence for underspecification in sentence comprehension, as well as the
shallow processing approach we adopt more generally, in which chunks of local
information are used to arrive at a semantic interpretation of a sentence.

For each corpus, we generated a shallow parse for all utterances using the
Illinois Chunker (Punyakanok& Roth, 2001), a widely used shallow parser based on
constraint satisfaction with classifiers in a probabilistic framework. Phrase tags were
then removed, leaving only the original sequence of words segmented via the phrase
boundaries placed by the parser.

The model's on-line comprehension performance was scored according to two

measures: accuracy and completeness, which are analogous to precision and recall,

69



respectively. Each boundary marker placed by the model was scored as a Ait if it
corresponded to a boundary marker inserted by the shallow parser, and as a false
alarm otherwise. Each boundary inserted by the shallow parser which was not placed
by the model was scored as a miss. Thus, accuracy could be calculated as the
proportion of hits out of all boundaries placed by the model, Aits / (hits + false
alarms), and completeness as the proportion of 4its out of all boundaries placed by the
shallow parser, hits / (hits + misses). To avoid score inflation due to trivial factors, the
model was only scored on utterance-internal boundaries (i.e., no boundary placement
decisions were made at the beginnings or ends of utterances). Single-word utterances
were naturally excluded.

For purposes of scoring the model's comprehension performance on the form
class corpora (in which individual items were replace by their lexical categories), the
set of phrase boundaries placed by the shallow parser and used as the gold standard for
scoring the original corpus was overlaid on the corresponding form class corpus. For
instance, the utterance “[the dog] [chased] [the cat],” became “[DET N] [V] [DET N]”
in the form class version, which therefore featured identical phrase boundary markers.

As an overall measure of comprehension performance for a given simulation,
we relied on the F-score, which is widely used as a measure of performance in the
fields of information retrieval and machine learning (e.g., van Rijsbergen, 1979). The
F-measure combines both the precision (or accuracy, in the current case) and recall
(completeness) of a test to compute a single score. We used the general Fp formula,

which weights the completeness score according to B:
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FB _ ( accuracy » completeness ) (1)
- (Bz*accuracy) + completeness

In other words, the Fg metric attaches § times as much importance to completeness as
to accuracy.

In our case, B is the ratio of gold standard phrase boundaries to the total number of
word pairs (the number of possible slots for boundary insertion) across a given corpus.
The choice of the Fg metric reflects the need to control for score inflation stemming
from trivial factors, such as over-segmentation (e.g., due to data sparseness). As an
example of this, consider a toy corpus which features phrase boundaries between
exactly half of its word pairs. A model which heavily over-segments, placing phrase
boundaries in every possible position, would receive a completeness score of 100%,
and an accuracy score of 50%. By simply taking the harmonic mean of accuracy and
completeness (what is known as the F; score), the model would receive an F-score of
66.67, despite its heavy over-segmentation. The Fg score, on the other hand, uses the
number of word pairs straddling gold standard phrase boundaries to appropriately
weight completeness in the calculation. For the previous example, this would yield an
F-score of 55.56 (as opposed to the score 66.67 yielded by F,) thereby reducing the
impact of the perfect completeness score, which was achieved through trivial means
(segmenting the corpus to the maximum extent). Weighting accuracy more heavily
than completeness in this way is also motivated by psychological considerations:
phrases like go to the shop might be chunked as a single item by a child (as suggested
by the results of Bannard & Matthews, 2008), or the model, whereas a shallow parser
would segment it into three separate chunks: [go] [fo] [the shop]. Therefore, the
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calculation also reflects the fact that accuracy, which reflects the model's ability to
place boundaries that correspond to actual phrase boundaries (e.g., after shop or before
the instead of between the and shop), may be more important than following the fine-
grained chunking of a shallow parser (which penalizes the model through the
completeness measure for not placing boundaries after go or to in a phrase like go to
the store).

Gold standard for production: Child utterances. Each utterance produced
by the model is evaluated against the corresponding child utterance in the original
corpus, according to a simple all-or-nothing criterion: if the model's utterance matches
the child utterance in its entirety, a score of 1 is assigned. In all other cases, a score of
0 is assigned, despite the degree of similarity between the model- and child-produced
utterances. Thus, the overall percentage of correctly produced utterances provides the
sentence production performance for a given child/corpus. This represents a fairly
conservative measure, as the model may produce sentences that are grammatical but
nevertheless fail to match the target utterance. For example, the model may produce a
sentence such as the cat chased the dog when the target sentence is the dog chased the
cat. In such instances, the model receives a score of 0, due to the lack of principled
and efficient way of automatically evaluating mismatching utterances that are
nevertheless grammatical.

Parameter selection for PARSER: Following communication with the
model's creator (Perruchet, personal communication), we adjusted the interference and
decay parameters along a wide range, maintaining their separation by a factor of ten

(following the settings used by Perruchet &Vinter, 1998), and selected the one
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offering the best combination of accuracy and completeness. At higher settings (e.g.,
Decay: 0.001, Interference: 0.0001), the model heavily over-segmented, placing
boundaries between 90% of words. At settings 0.0001 and 0.00001 (for decay and
interference, respectively), the model saw substantial improvements in accuracy while
segmenting at a rate comparable to the CBL model. Decreasing the parameters by a
further factor of ten lead to slight drops in accuracy and completeness. Thus, for the
natural language simulations, we adopted settings of 0.0001 and 0.00001 for decay

and interference, respectively.

Results and Discussion: Simulating Aspects of Comprehension and Production of
English

Shallow parsing performance. Across all 43 single-child English corpora, CBL
attained a mean F-score of 75.4, while the PARSER model attained a mean F-score of
66.1. The Trigram model had a mean F-score of 65.9. Comprehension performance for
each model is shown in Figure 3. As can be seen, the CBL model not only
outperformed its baselines, but yielded a tighter, more uniform distribution of scores

across the corpora.
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Fig. 3: Boxplots depicting shallow parsing F-scores for the CBL model and its

baselines. Boxes depict the median (thick line), with upper and lower edges
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representing the respective quartiles. Whiskers depict the range of scores falling

within 1.5 IQR of the quartiles, while dots depict outliers.

The F-scores for the model and its baselines were logit-transformed’ and
submitted to a repeated-measures ANOVA including the factor Model (3: CBL vs.
PARSER vs. Trigram) with Child Corpus as a random factor. This yielded a
significant main effect of Model [F(2,84) = 643.3, p < 0.0001], with post-hoc analyses
confirming stronger performance for CBL compared to the PARSER [t(42)=35.9,
p<0.0001] and Trigram [t(42)=28.3, p<0.0001] models, with no significant difference
in means between PARSER and the Trigram model [t(42)=0.49, p=0.63].

In line with the developmental motivation for the model, we also examined
accuracy rates independently. Across the 43 child corpora, CBL achieved a mean
accuracy rate of 76.4%, while PARSER attained a mean accuracy of 65.2% and the
Trigram model reached a mean accuracy rate of 65.8%. The same general pattern was
seen for completeness: CBL achieved a mean completeness of 73.8%, while the
PARSER attained a mean completeness of 68.7% and the Trigram model reached a
mean completeness rate of 66.5%. Accuracy and completeness scores are described
more fully in Appendix A.

Thus, the best combination of accuracy and completeness (as measured by the
F-score), as well as the best accuracy and completeness overall, was achieved by
CBL's statistically-based chunking for the English child corpora. CBL was able to

approximate the performance of a shallow parser through a combination of

"As the scores necessarily have both floors and ceilings, and represent proportional data, a logit
transformation was applied prior to analysis in order to fit the assumptions of the test.
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recognition- and statistically-based processing in an on-line, incremental fashion
starting with a single distributional cue. This result is encouraging, as shallow parsing
is regarded as a nontrivial problem in the field of natural language processing (e.g.,
Hammerton, Osborne, Armstrong, & Daelemans, 2002).

In addition to highlighting the wealth of distributional information in the input,
these results suggest that purely item-based information may be far more useful to
early learners than has been assumed previously; in addition to providing the basis for
discovering useful multiword sequences (which may later be abstracted over, as
proposed by usage-based approaches more generally; e.g., Tomasello, 2003),
statistical information tied to concrete items can be used to uncover the chunks of
local information necessary to interpret sentences (“phrase structure,” in most
approaches), as demonstrated by the present model.

CBL and the Trigram model may have outperformed PARSER in part because
of the latter model's over-reliance on raw frequency of occurrence. For instance, CBL
can identify high TPs between items which have occurred with very low frequency in
the corpus: the relative, rather than absolute, frequency of the two items is stressed.
While PARSER s indirectly sensitive to TPs, via its decay and interference
parameters, the use of these parameters along with randomly determined percept sizes

may requires more exposure.

CBL also has the additional advantage of being directly sensitive to
background rates (ct. Ramscar, Dye, & McCauley, 2013). Words that occur extremely
often in a variety of contexts have high background rates, which mean they are less

informative about the items preceding them (or following them, in the case of the

76



Trigram model). Conditional probabilities directly reflect this. PARSER is only
indirectly sensitive to background rates, through its interference feature: items that
occur often as parts of larger chunks will lead to decreases in the strength of chunks
featuring the same item. However, the impact of the decay parameter on less-frequent

chunks may still lead to an overemphasis on items with high background rates.

For these reasons, PARSER may ultimately be best suited to working with
small, artificial languages which involve fairly uniform frequency distributions over
items, such as those featured in studies to which it has previously been applied (e.g.,

Perruchet et al., 2002; Saffran et al., 1996).

Development of the chunkatory. The development of the model's knowledge
over the course of a simulation, independently of its performance, may offer potential
predictions on which to base psycholinguistic work. To examine the development of
the chunkatory, we tracked the percentage of stored chunks which consisted of
multiple words, for chunk types as well as chunk types weighted by their frequency
counts in the chunkatory (akin to chunk tokens). Figure 4a shows the percentage of
multiword chunks in the chunkatory as it develops, for each of the 43 child corpora.
As can be seen, the percentage of multiword chunk types increased logarithmically
over the course of the simulations, leveling off below 90%. The first data point fell
above 50% for all child corpora. When we weighted individual chunk types by their
strength (frequency counts) in the chunkatory, however, we found higher percentages

for single-word chunks, as shown in Figure 4b.
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Fig. 4: a) Development of the chunkatory by percentage of multiword types; b)
Development of the chunkatory by percentage of multiword types weighted by

frequency of use.

As can be seen, the percentage of multiword chunk types, when weighted by
frequency, began well below 50% at the first data point for all corpora, with
percentages for many of the child simulations dipping within the first 20,000
utterances before rising sharply and then climbing more steadily.

The dense corpus (Thomas) exemplifies the same pattern. To look more
closely at the makeup of chunks we might expect the child to actively use in
production, we calculated the percentage of multiword chunk types, weighted by
frequency, which were actively used by the model during the bag-of-words task. This

is depicted in Figure 5 for the dense corpus (Thomas).
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Fig. 5: Percentage of multiword types weighted by frequency of use in the
production task for the dense corpus (Thomas). Each time step represents the

mean percentage across 2,000 child utterances.

As can be seen, the prominence of multiword chunks in the chunkatory for the
Thomas simulation mirrors the general pattern illustrated by Figure 4b, dipping early
before rising once more. However, because the dense corpus extends well past the

other corpora in terms of length, we were able to look at a more complete trajectory,
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which included a sharp dip followed by a more subtle increase which spanned the
remainder of the simulation.

The U-shaped curve exhibited by the model mirrors a common developmental
pattern which has been tied to several aspects of language learning, including
phonological development (Stemberger, Bernhardt, & Johnson, 1999), morphological
development (Marcus, Pinker, Ullman, Hollander, Rosen, & Xu, 1992), relative clause
comprehension (Gagliardi, Mease, &Lidz, submitted), and verb usage (Alishahi &
Stevenson, 2008; Bowerman, 1982). Though the model's shifting reliance on chunks
of differing granularity represents a small change numerically during the more stable
latter half of the simulation, subtle changes in distributional statistics may have
dramatic outcomes. The model's behavior leads us to consider that children's reliance
on multiword chunks may shift in similar ways to that of the model, and that this may
have some bearing on U-shaped trajectories in other areas, such as morphological
development. For instance, Arnon and Clark (2011) found that over-regularization
errors were less likely when irregular plurals were produced in the context of a
lexically-specific frame; the facilitatory role played by chunks in this area (and others)
may wax and wane with the “degree of chunkedness” of the child's linguistic
representations, consistent with preliminary findings comparing children of different
ages (Arnon, personal communication).

In summary, multiword chunks ultimately grow in importance to the model
over the course of a simulation, both in terms of types and in terms of tokens. In light
of psycholinguistic work with adults (Arnon & Snider, 2010; Bannard & Ramscar,

2007), this leads us to predict that children do not merely “start big” by relying on
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larger multiword sequences which break down over time, leaving single words; the
child's memory-based processing is dynamic, and the degree to which representations
of linguistic material are tied to multiword sequences ultimately grows in importance
over time. The model's U-shaped reliance on weighted multiword chunks also leads us
to propose that children may go through periods where new knowledge of the
properties of single words may lead to a decreased reliance on multiword sequences,
only to be followed by a renewed reliance on chunked representations.

Class- vs. item-based comprehension performance. As discussed above, most
generative approaches as well as certain trends within the statistical learning literature
(cf. Thompson & Newport, 2007) have assumed that language learning is tied to word
classes. For this reason, we re-ran the 43 simulations reported above, using the form
class corpora (see the corpus preparation above for a description of how words were
converted to form classes).

Because PARSER is sensitive to overall number of unit types it is exposed to,
we found that the highest parameter setting we tested for natural language (0.01 for
decay, and 0.001 for interference) provided the best trade-off between accuracy and
completeness when working with form classes.

Class- versus item-based performance for the model and its baselines is
depicted in Figure 6. Performance for CBL was considerably worse when working
with class-based statistics, with a sharp decrease in the mean F-score (from 75.4 to
39). For PARSER there was a far less drastic decrease in performance (from a mean

F-score of 66.1 to 63.1). The Trigram baseline also fared worse under class-based
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statistics, though with less dramatic decreases in performance. The mean F-score
dropped from 65.9 to 57.2.

In the case of the CBL model, the lower comprehension performance when
working with class statistics was driven both by a drop in accuracy as well as a more
drastic drop in completeness scores, the latter owing partly to the use of the
chunkatory in phrase segmentation; the relatively small number of possible class
combinations in a sequence lead to the automatic grouping of items together (based on
the use of the chunkatory) with increasing frequency throughout the models' pass
through a corpus. As more combinations exceeded the average TP threshold, the
models placed progressively fewer phrase boundaries. PARSER, however, saw a
slight increase in accuracy accompanied by a decrease in completeness. As PARSER
was designed for use with small item sets, as discussed above, further experimentation
with the parameter settings of PARSER may be necessary in order to improve

performance on the form-class simulations.
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Fig. 6: Boxplots depicting comprehension performance (F-scores) for the CBL
model and its baselines, comparing item-vs. class-based simulations. Boxes depict
the median (thick line), with upper and lower edges representing the respective
quartiles. Whiskers depict the range of scores falling within the 1.5 IQR of the

quartiles, while dots depict outliers.

We evaluated the effects of learning from class-based information using a two-
way ANOV A with factors Statistic Type (2: item- vs. class-based) and Model (3: CBL
vs. PARSER vs. Trigram), with Child Corpus as a random factor, over logit-

transformed F-scores. This yielded main effects of Statistic Type [F(1,42) = 1562,
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p<0.0001], confirming stronger performance for item-based models, and of Model
[F(2,84)=171.4, p<0.0001], with an interaction between Statistic Type and Model
[F(2,84)=25.5, p<0.0001], due to a more drastic drop in performance for the CBL
model relative to the baselines when working with classes.

Thus, a reliance on word classes did not improve the performance of the model
or its baselines; instead, knowledge of classes lead to a decrease in performance,
which was considerably more drastic for CBL. This result makes close contact with
item-based approaches more generally (e.g., Tomasello, 2003), suggesting that
successful language learning can take place without the sort of abstract syntactic
categories that much previous psycholinguistic and computational work has focused
upon. This also runs counter to claims made in the statistical learning literature that
children and adults can use transitional probabilities to segment phrases by calculating
statistics over word classes rather than concrete items (e.g., Saffran, 2002; Thompson
& Newport, 2007). Indeed, we have shown elsewhere (McCauley & Christiansen,
2011) that comprehension through item-based learning in our model captures subject
performance in one such study (Saffran, 2002) better than class-based learning.

Production performance. Across all 43 single-child corpora, CBL achieved a
mean sentence production performance of 58.5%, while the Trigram model achieved a
sentence production performance score of 45.0%. Recall that PARSER was not
compatible with the production task (for reasons discussed in the Methods section
above). The distributions of the scores for each model are depicted in Figure 7. As can
be seen, the overall pattern of results was similar to that seen with comprehension,

with CBL achieving the highest mean score.
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Fig. 7: Boxplots depicting Sentence Production Performance scores for the CBL
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A repeated-measures ANOVA including the factor Model (2: CBL vs.
Trigram), with Child Corpus as a random factor, yielded a significant effect of Model
[F(1,42) =514.9, p <0.0001], indicating better performance for CBL.

Thus, CBL exhibited clear advantages over the baseline. The advantage of
stored-chunks (which do not have to be sequenced, in and of themselves) is clear in
these results. What is less clear is that BTPs may offer an advantage over FTPs when

there is a limited, specified set of possible items that can follow the most recently
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placed item in a sequence (such as a bag-of-words, in the present instance). The FTP-
based Trigram model simply selects, at each time step, the item combination with the
highest frequency, since the frequency of every possible sequence is normalized by the
preceding item, which is fixed, as it has already been produced. The CBL model,
however, through the use of BTPs, is sensitive to the background rate (discussed
above; cf. Ramscar et al., 2013) of the candidate items: items that occur more often in
contexts other than the present one will not be selected.

Production summary and discussion. CBL not only outperformed its
baselines in reproducing child utterances, but was able to produce the majority of the
target utterances it encountered, with a mean score of nearly 60% based on our
conservative all-or-nothing measure of production performance. This not only
underscores the usefulness of chunks and simple statistics such as BTPs, but serves to
demonstrate that the same sources of information can be useful for learning about
structure at multiple levels: a single distributional statistic (BTP) can be used to
segment words when calculated over syllables (e.g., Pelucchi et al., 2009), to discover
multiword sequences (or perhaps even “phrase structure’) when calculated over words
(demonstrated by the present model), and to construct utterances when calculated over
stored multiword chunks themselves (demonstrated in the current section).

Despite this success, the model nevertheless failed to account for 40% of the
child utterances, a significant proportion, and yielded a less dramatic advantage over
its baseline than was the case with comprehension. This pattern of results, when
considered alongside the idea of shallow processing as a central feature of a child's

language comprehension, has immediate implications for the
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comprehension/production asymmetry that has been so puzzling to developmental
psycholinguists. Through shallow processing of the sort captured by the model, a child
can give the appearance of having utilized a construction (such as a transitive
construction in canonical word order) in comprehension while still lacking the
sequential knowledge to use it in production. This is especially true if one considers
specific aspects of shallow processing in adults, as well as its ubiquitous nature in
language comprehension more generally. Take, for instance, passive sentences.
Ferreira (2003) found that when adults were exposed to anomalous sentences using
passive constructions ( “The dog was bitten by the man ) many readers utilized global
pragmatic information rather than the passive construction to identify agents and
patients of actions, and gave higher plausibility ratings than for the same content given
in active voice (i.e., they interpreted the passive sentence to mean the dog bit the man).
If even adults tend to interpret sentences according to local information, pragmatic
expectations, and background world knowledge rather than the actual constructions
used in the sentence, it seems likely that children also utilize such information, giving
the appearance of having fully exploited a grammatical construction when in actuality
they were able to interpret an utterance on a more superficial level.

Under such a view, children may understand specific utterances utilizing
passive voice without having mastered the passive construction; to actively sequence
the elements of its message into a passively voiced sentence, the child would
necessarily need to have full knowledge of the passive construction schema (such as
PATIENT is ACTION by AGENT) as well as knowledge of the pragmatic motivations

for using it (for a model which learns to produce sentences using such semantic role
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information, see Chang, Dell, & Bock, 2006). Thus, shallow processing allows a child
to make a great deal of progress towards understanding language input merely on the
basis of an ability to chunk parts of utterances and form associations between those
chunks and concrete parts of the world, as well as event schemas or scenarios; it is in
the sequencing of those chunks that the problem of production becomes more difficult
than that of comprehension. This idea is explored further using the CBL model by
Chater et al. (2016).

Interim summary: Learning English. We have shown that the CBL model is
able to approximate shallow parsing through the incremental, on-line discovery and
processing of multiword chunks, using simple statistics computed over local
information. The model is able to use the same chunks and statistics to produce
utterances in an incremental fashion, capturing a considerable part of children's early
linguistic behavior in the process. This is achieved through item-based learning,
without recourse to abstract categorical information such as that of word classes.
When the model learns class-based statistics, its ability to segment useful chunks is
impaired. Furthermore, the development of the model's chunk inventory offers the
novel prediction that subtle shifts in the “degree of chunkedness” of children's
linguistic units may impact on other areas of language development. Finally, the
model, which combines chunking with statistical cues, compares favorably to

exclusively recognition-based and exclusively prediction-based baselines.

Simulation 2: Modeling the Development of Complex Sentence
Processing Abilities
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Whereas the previous simulations examined the ability of CBL to discover
building blocks for language learning, in the present section we investigate the
psychological validity of these building blocks. We report simulations of empirical
data covering children's ability to process complex sentence types (Diessel &
Tomasello, 2005). Usage-based approaches predict that stored chunks play an integral
role in the development of complex grammatical abilities (e.g., Christiansen & Chater,
2016a; Tomasello, 2003), which have been argued to emerge from abstraction over
multiword sequences (e.g., Goldberg, 2006; for models, see Kolodny et al., 2015;

Solan et al., 2005).

Nevertheless, there is strong evidence of a role for concrete multiword chunks
in adult processing of grammatically complex sentences, such those featuring
embedded relative clauses (e.g., Reali & Christiansen, 2007), which in turn suggests
that children's ability to comprehend and produce complex sentences should be
influenced by the same type information. If this holds true, and if CBL provides a
reasonable approximation of children's discovery and use of chunks, the model should
be able to offer some insight into the development of complex grammatical abilities,
despite its lack of abstract grammatical knowledge. In order to test this notion, we
used CBL to model children's ability to produce different relative clause types (Diessel
and Tomasello, 2005), as a great deal of previous developmental work on
grammatically complex sentences has focused on relative clause constructions (see

Christiansen & Chater, 2016a, for a review).

This particular study was chosen because its stimuli were designed to reflect
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the types of relative constructions children actually produce in spontaneous speech
(specifically, those that attach to either the predicate nominal of a copular clause, or to
an isolated head noun; Diessel, 2004; Diessel & Tomasello, 2000). Prior to this study,
developmental work on relative clauses focused mainly on sentence types which
children rarely produce spontaneously, and which therefore may not adequately reflect
children's grammatical knowledge (e.g., Hamburger & Crain, 1982; Keenan &
Hawkins, 1987; Tavakolian, 1977). Of further importance is the study's focus on
children's production abilities as opposed to just comprehension; because the stimuli
consisted of whole sentences, this allowed us to model child performance using the

entire model architecture (comprehension as well as production).

Using a repetition paradigm, Diessel and Tomasello exposed a group of UK
English-speaking children (mean age: 4;7) to sentences featuring one of six relative
clause types (subject relatives featuring intransitive verbs, subject relatives featuring
transitive verbs, direct-object relatives, indirect-object relatives, oblique relatives, and
genitive relatives). An example of each relative clause type is shown in Table 2.
Following exposure to a sentence, the child was prompted to repeat it to the
experimenter. The authors found that children's ability to reproduce the relative
clauses closely mirrored the similarity of each clause type to simple non-embedded

sentences (with the greatest accuracy for subject relatives).

Table 2

Relative Clause Types from Diessel and Tomasello (2005)
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Type |Example

S There’s the boy who played in the garden yesterday.
A That’s the man who saw Peter on the bus this morning.
P That’s the girl who the boy teased at school this morning.

10 There’s the girl who Peter borrowed a football from.

OBL | That’s the dog that the cat ran away from this morning.

GEN | That’s the woman whose cat caught a mouse yesterday.

Method. We began by exposing CBL to a corpus of UK English. As the
original English study was conducted in Manchester, we focused on the dense Thomas
corpus (which was recorded in Manchester; Maslen et al., 2004). Following exposure
to the corpus, CBL was presented with the same test sentences heard by children in the
original study. Immediately following comprehension on a given test sentence, the
model simulated a repetition trial by attempting to produce the utterance (using the
bag-of-words task in an identical manner to the child utterances in our original natural
language simulations). If the utterance produced by the model matched the target
utterance in its entirety, a score of 1 was assigned; otherwise, a score of 0 was

assigned.

To order the test items, we used the same randomization procedure as was used
in the original study: items were organized into four consecutive blocks of six
randomly chosen sentences, with the constraint that each block included one sentence
from each condition (Diessel, personal communication). This randomization allowed
for small individual differences to arise between simulations (21 in total; a different

randomization/simulation pair for each child in the original study).
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Results and discussion. The children in the original study achieved the
following correct response rates, as shown in Figure 8: 82.7% (S-Rel), 59.5% (A-Rel),
40.5% (P-Rel), 31% (IO-Rel), 31.5% (OBL-Rel), and 2.5% (Gen-Rel). As also shown
in Figure 8, correct response rates for the model were 77.4% (S-Rel), 48.8% (A-Rel),
75% (P-Rel), 39.3% (I0-Rel), 34.5% (OBL-Rel), and 16.7% (GEN-Rel). As can be
seen, the model followed the same general pattern as the children in the original study,
with the exception of its performance on P-Relatives, which was almost as high as its

performance on S-Relatives.
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Fig. 8: Mean correct response rates for CBL model and the child subjects in Diessel & Tomasello

(2005). Error bars denote 2x standard error.

That the model was able to mirror the child repetition performance for most of

the clause types is unexpected, considering its complete lack of semantic/pragmatic
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information or distributional information spanning non-adjacent chunks (for a
connectionist simulation of Diessel & Tomasello, 2005 which incorporates semantic

information, see Fitz & Chang, 2008).

Despite the model's decent fit to the child data for 5 of the 6 relative clause
types, its over-performance on the P-Relatives serves as a reminder of the limits of a
purely distributional approach; semantics obviously plays a role not only in children's
on-line chunking of test utterances upon first exposure (corresponding to the
comprehension side of the model), but their incremental production during repetition
attempts (corresponding to the sequencing stage of production in the model), and their
recall of chunks throughout both (corresponding to recognition-based processing
during comprehension and the retrieval stage of production in the model). As the
model receives no input related to semantic roles, it received no information on the
patient role of the main clause subject within the P-Relatives, and hence no
interference from its deviation from the agent-action-patient sequence most
commonly encountered in simple non-embedded sentences. Instead, the model relied
on purely item-based similarity or dissimilarity to sentences in the child-directed
speech it initially learned from. Moreover, the model's high performance on P-Rel
trials might also stem in part from the nature of its input: P-Rels may be even more
common in English child-directed speech than A- and S-Rels. In an analysis by
Diessel (2004), 56.8% of all relative clauses produced by four English-speaking
parents were P-relatives, while 35.6% were S- or A-relatives, 7.6% were OBL-

relatives, and 10- and GEN-relatives did not occur.
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Diessel and Tomasello (2005), in accord with usage-based approaches, propose
that young children's ability to produce relative clauses depends on the degree of
similarity between the type of relative clause and simple non-embedded sentences of
the sort encountered most often in child-directed speech (an idea which has received
considerable empirical support in recent years; e.g., Brandt, Diessel, & Tomasello,
2008; see Christiansen & Chater, 2016a, for a review). This stands in contrast to the
hypothesis that the distance between filler and gap determines processing difficulty
(Wanner& Maratsos, 1978), which initially sought to explain the well-documented
phenomenon of greater processing difficulty for object relative as opposed to subject
relative clauses (as demonstrated in Dutch, English, and French; Wanner& Maratsos;
1978, Frauenfelder, Segui, &Mehler, 1980; Holmes & O’Regan, 1981; Ford, 1983;
Frazier, 1985; King & Just, 1991; Cohen &Mehler, 1996; though see also Brandt,
Kidd, Lieven, & Tomasello, 2009). Under this view, object relatives cause more
difficulties than subject relatives because they feature a greater distance between filler
and gap, and the filler must be retained in working memory until the gap is
encountered. The distance between filler and gap has also been hypothesized to play a
role in the ease of acquisition of relative clauses, favoring relative clauses with a short
distance between filler and gap (e.g., de Villiers et al., 1979; Clancy, Lee, &Zoh,
1986; Keenan & Hawkins, 1987).

In CBL, both comprehension and production rely on statistics computed over
adjacent chunks; the model has no “working memory,” and thus no sensitivity to the
distance between filler and gap in relative clause constructions. Nevertheless, we

observe better performance on the S-Rels (for which the distance between filler and
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gap is the smallest) than other relative clause types. At the same time, we fit the better
S- than A-Rel pattern exhibited by the children in the original study; as Diessel and
Tomasello note, the distance between filler and gap cannot account for this result, as
the distance is the same in both relative clause types. Furthermore, we observed the
worst performance with GEN-Rels (again, a pattern exhibited by the child subjects),
despite the small distance between filler and gap for these sentences. Our results
therefore have a direct bearing on the filler-gap hypothesis, beyond merely reinforcing
Diessel and Tomasello's findings, suggesting that children's item-specific knowledge
may play a greater role in relative clause processing than working memory constraints
(see Christiansen & Chater, 2016a; MacDonald & Christiansen, 2002; McCauley &
Christiansen, 2015, for extensions of this perspective to individual differences in adult
relative clause processing).

The results of this simulation also allow us to derive a novel prediction from
the model: the very factor driving the model's performance, item-based statistics
computed over adjacent chunks, may well be a factor in the apparent ease with which
children learn to produce certain kinds of sentences while encountering difficulties in
learning to produce others. Indeed, previous evidence from children's elicited question
formation indicates a role for such surface distributional statistics (Ambridge,
Rowland, & Pine, 2008). This prediction can be tested further with a simple repetition
paradigm such as that used by Diessel and Tomasello, using stimuli which
systematically pit adjacent chunk statistics against statistics derived from large corpora
of child and child-directed speech, in such a way that local information conflicts with

the global properties of coherent target utterances.
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Modeling Child Comprehension and Production across a

Typologically Diverse Array of Natural Languages

We have shown that CBL can capture a considerable part of children's early linguistic
behavior, in addition to making close contact with developmental psycholinguistic
data from a key study on children's item-based distributional learning. Nevertheless,
these findings—Ilike most of the psycholinguistic findings forming the basis for the
model—are based entirely on the use of English data; the computational approach we
have adopted may not actually characterize aspects of learning held in common by
learners of typologically different languages. In the next series of simulations, we
explore the question of whether the model can extend beyond English to cover a
typologically diverse set of languages.

The goal of attaining broad, cross-linguistic coverage extends beyond merely
building support for the model; we aim to address certain limitations of the
psycholinguistic literature. For instance, a potential problem with the view of
multiword chunks as an important feature of language use is that most of the directly
supporting psycholinguistic evidence has been gathered from English-speaking
subjects. Importantly, English is an analytic language; it has a low ratio of words to
morphemes, relative to synthetic languages, which have higher ratios due to the many
ways in which morphemes can be combined into words. What may apply to arguments
about unit size in the learning of analytic languages (such as Mandarin or English)

may not apply to the learning of synthetic languages (such as Tamil or Polish), and
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vice versa. It is therefore essential to test the predictions of both CBL and previous
empirical work with English-speaking subjects by modeling chunk-based learning
across a typologically diverse set of languages. The breadth of material in the
CHILDES database (MacWhinney, 2000) makes it possible to test the model on a
typologically diverse array of languages.

Following a description of the corpora used to simulate learning cross-
linguistically, we report comprehension performance for the languages for which an
automated scoring method was available. We then report sentence production

performance for 28 additional languages.

Corpus Selection and Preparation

Corpora were selected from the CHILDES database (MacWhinney, 2000), and
covered a typologically diverse set of languages, representing 15 genera from 9
different language families (Haspelmath, Dryer, Gil, & Comrie, 2005). As with the
English simulations, we sought to assess what could be learned by CBL from the input
available to individual children. We therefore selected, once more, developmental
corpora involving single target children, rather than aggregating data across multiple
corpora. However, due to the limited availability and size of corpora representing
several of the languages in the CHILDES database (MacWhinney, 2000), we relaxed

our criteria somewhat. Thus, we used corpora that met the following criteria:

Sufficient data — As we sought to use corpora of a sufficient density to offer input of

representative diversity in terms of both vocabulary and sentence types, we included
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only those corpora which contained at least 10,000 words.
2) Dyadic — Because we wished to model production for each child, we selected only
corpora which featured at least 1000 multiword child utterances, with a multiword

child-to-adult utterance ratio of no less than 1:20.

These criteria were met by corpora for 160 individual children (Afrikaans: 2,
Cantonese: 8, Catalan: 4, Croatian: 3, Danish: 2, Dutch: 12, Estonian: 3, Farsi: 2,
French: 15, German: 22, Greek: 1, Hebrew: 6, Hungarian: 4, Indonesian: 8, Irish: 1,
Italian: 8, Japanese: 10, Korean: 1, Mandarin: 7, Polish: 11, Portuguese: 2, Romanian:
1, Russian: 2, Sesotho: 3, Spanish: 11, Swedish: 5, Tamil: 1, Welsh: 6). We recorded,
for each child, the age range (mean age of 1;11 at the beginnings of the corpora, 3;10
at the ends), the number of months spanned by the corpus (mean: 23), the total number
of words in the corpus (mean: 103,555), the number of child utterances (mean:
14,248), the number of multiword child utterances (mean: 7,552.7), the number of
adult utterances (mean: 23,207), the multiword child-to-adult utterance ratio (mean:
0.49), and the mean words per child utterance (overall mean: 2.3). Since a method for
automated morpheme segmentation was not available for all 28 languages, we do not

include MLU calculations.

The final set of 28 languages (including English, 29) differed typologically
from one another in a number of important ways. Four dominant word orders were
represented: SVO (18), VSO (2), SOV (4), and no dominant order (5; Haspelmath et
al. 2005). The languages varied widely in their morphological complexity, ranging

from languages with no morphological case marking (e.g., Sesotho; Demuth, 1992) to
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languages with 10 or more cases (e.g., Estonian; Haspelmath et al., 2005). Table 3
shows the family, genus, dominant word order, and number of cases for each of the 28

languages, in addition to English.
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Table 3

Typological Properties of the 29 Languages

Language Family Genus (‘)‘::ire(:* # Cases
Irish Indo-European Celtic VSO 2
Welsh Indo-European Celtic VSO 0
English Indo-European Germanic SVO 2
German Indo-European Germanic N.D. 4
Afrikaans Indo-European Germanic N.D. 0
Dutch Indo-European Germanic N.D. 0
Danish Indo-European Germanic SVO 2
Swedish Indo-European Germanic SVO 2
Greek Indo-European Greek N.D. 3
Farsi Indo-European Iranian SOV 2
Romanian Indo-European Romance SVO 2
Portuguese Indo-European Romance SVO 0
Catalan Indo-European Romance SVO 0
French Indo-European Romance SVO 0
Spanish Indo-European Romance SVO 0
Italian Indo-European Romance SVO 0
Croatian Indo-European Slavic SVO 5
Russian Indo-European Slavic SVO 7
Polish Indo-European Slavic SVO 7

Estonian Uralic Finnic SVO 10+
Hungarian Uralic Ugric N.D. 10+

Sesotho Niger-Congo Bantoid SVO 0*
Hebrew Afro-Asiatic Semitic SVO 0

Tamil Dravidian S. Dravidian SOV 7 or 8**
Indonesian Austronesian Malayic SVO 0
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Cantonese Sino-Tibetan Chinese SVO 0

Mandarin Sino-Tibetan Chinese SVO 0
Korean Korean Korean SOV 7
Japanese Japanese Japanese SOV 9

Note: Information from Haspelmath et al. (2005), except where noted otherwise
*Demuth, 1992

**Schiffman, 1999

We sought to gauge the morphological complexity of the languages
quantitatively, thereby placing them on an analytic/synthetic spectrum (Greenberg,
1960). Analytic languages such as Mandarin or English have a low morpheme-to-
word ratio, whereas synthetic languages like Polish or Hungarian have a high
morpheme-to-word ratio. We therefore carried out an analysis of the type/token ratio
for each language (following Chang et al., 2008). This allowed us to approximate the
morpheme-to-word ratio differences between languages without the aid of an
automated method for morpheme segmentation: Morphological richness mirrors
type/token ratio in the sense that morphologically complex languages yield a greater
number of unique morpheme combinations, and thus a higher number of unique word
types, relative to the number of tokens, whereas analytic languages rely on a smaller

number of unique morpheme combinations.

Thus, type/token ratio was used to compute a Morphological Complexity score
for each language. For the type/token ratio calculation, we used only the adult
utterances in the included corpora. Because type/token ratios are highly sensitive to

the size of speech samples, we controlled for the lengths of individual corpora by
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calculating the mean type/token ratio per 2,000 words across all corpora representing a
given language. The results of these calculations are depicted on an analytic/synthetic
spectrum in Figure 9, and demonstrate the wide variation of the 29 languages,
including English, in terms of morphological complexity. While some languages had
relatively low Morphological Complexity scores (e.g., Cantonese), others had much
higher scores (e.g., Tamil), and others had scores falling between the two (e.g.,

Sesotho).
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Fig. 9: Morphological complexity scores for each of the 29 languages.
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Simulation 3: Modeling Child Comprehension of French and German

Shallow parsers (providing a gold standard for comprehension performance) were
only available to us for two of the additional languages: French and German.
TreeTagger (Schmid, 1995) was used to evaluate comprehension-related performance
(through shallow parsing) for both languages. In this section, we report shallow
parsing performance for French and German CBL simulations. Fifteen French and 22
German child corpora in the CHILDES database met our selection criteria and were
used to simulate aspects of comprehension and production in exactly the same model
architecture as used in the English simulations (as was also the case for the baseline

models).

French: Comprehension performance. Across all 15 French single-child
corpora, CBL achieved a mean F-score of 71.6, while the PARSER model reached a
mean F-score of 64.4. The Trigram model attained a mean F-score of 59.0.
Comprehension performance for each model is shown in Figure 10. As with the
English simulation, the model not only outperformed its baselines, but yielded a

tighter, more uniform distribution of scores.
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Fig. 10: Boxplots depicting shallow parsing F-score (%) for the CBL model and
its baselines for the French simulations. Boxes depict the median (thick line), with
upper and lower edges representing the respective quartiles. Whiskers depict the

range of scores falling within 1.5 IQR of the quartiles, while dots depict outliers.

The F-scores for the model and its baselines were logit-transformed and submitted to a
repeated-measures ANOVA including the factor Model (2: CBL vs. PARSER vs.
Trigram), with Child Corpus as a random factor. This yielded a significant effect of
Model [F(2,26) = 214.6, p < 0.0001], with post-hoc analyses confirming stronger

performance for CBL compared to the PARSER [t(14)=14.33, p<0.0001] and Trigram
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[t(14)=15.72, p<0.0001] models, as well as for PARSER compared to the Trigram
model [t(14)=11.99, p=0.0001].

As with the English simulations, we followed up this analysis by examining
accuracy separately. Across the 15 child corpora, CBL attained a mean accuracy rate
of 72.0%, while the PARSER model attained a mean accuracy rate of 61.8%. The
Trigram model attained a mean accuracy rate of 57.0%. For completeness, CBL
attained a mean score of 70.8%, while the PARSER model attained a mean
completeness rate of 73.5%. The Trigram model attained a mean accuracy rate of
66.1%. Detailed analysis of accuracy and completeness scores are provided in
Appendix A.

Therefore, similar to our English simulations, the best combination of accuracy
and completeness (as measured by the F-score), as well as the best accuracy
specifically, was achieved by CBLfor the French child corpora.

German: Comprehension performance. Across all 22 single-child corpora,
CBL attained a mean F-score of 75.7, while the PARSER model attained a mean F-
score of 73.4. The Trigram model reached a mean F-score of 67.4. Though CBL once
more attained the highest scores, its performance advantage over the PARSER model
was markedly smaller than in the English and French simulations. The distributions of

scores for the model and its baselines are shown in Figure 11.
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Fig. 11: Boxplots depicting shallow parsing F-score (%) for the CBL model and
its baselines for the German simulations. Boxes depict the median (thick line),
with upper and lower edges representing the respective quartiles. Whiskers
depict the range of scores falling within 1.5 IQR of the quartiles, while dots depict

outliers.

The F-scores for the model and its baselines were once more logit-transformed and
submitted to a repeated-measures ANOVA, including the factor Model (3: CBL vs.
PARSER vs. Trigram), with Child Corpus as a random factor. This yielded a
significant effect of Model [F(2,40) = 69.43, p < 0.0001], with post-hoc analyses

confirming stronger performance for CBL compared to the PARSER [t(21)=2.78,
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p<0.05] and Trigram [t(21)=17.67, p<0.001] models, as well as for PARSER
compared to the Trigram model [t(21)=6.8, p=0.0001].

As with the English and French simulations, we followed up this analysis by
examining accuracy separately. Across the 22 child corpora, CBL attained a mean
accuracy rate of 78.0%, while PARSER attained a mean accuracy rate of 69.4%. The
Trigram model attained an accuracy of 70.5%. For completeness, CBL attained a
mean score of 72.2%, while PARSER attained a mean completeness of 83.5%. The
Trigram model attained a completeness of 62.9%. Accuracy and completeness scores
are analyzed in Appendix A.

Thus, as with our English and French simulations, the best accuracy, as well as
the best combination of accuracy and completeness (as measured by the F-score), was
achieved by CBL across the German child corpora. PARSER tended to segment more
heavily than with English and French, leading to a drop in accuracy, relative to
baselines, and a boost in completeness.

Comparing CBL's French and German shallow parsing performance to
English performance: The CBL model's performance was highly similar across
English, French, and German. Beyond outperforming baseline models on all three
languages (both in terms of Accuracy and in terms of the overall F-score), the model
yielded mean scores which were highly similar across languages: mean F-scores of
75.4 (English), 71.6 (French), and 75.7 (German) were achieved, alongside mean
Accuracy rates of 76.4 (English), 72 (French), and 78 (German) and mean

completeness scores of 73.8 (English), 70.8 (French), and 72.2 (German).
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Thus, the model's ability to group related words together in an incremental, on-
line fashion was remarkably stable across the three languages, despite important
differences along a number of dimensions such as morphological complexity (French
and German are morphologically richer than English) and word order (while English
and French have an SVO word order, German has no dominant word order). This
result offers important cross-linguistic support not only for the importance of
multiword sequences, but for memory-based (as opposed to purely predictive) on-line
learning as well as the plausibility of shallow linguistic processing based on local
information.

Class-based simulations. We sought to test our item-based approach cross-
linguistically by once more creating form class corpora from the single-child corpora
used in the French and German simulations (using the same corpus preparation
procedure described for English). We then tested the comprehension performance of
the model and its baselines when learning from class-based statistics.

Figures 12 and 13 compare class- and item-based F-scores for comprehension
across the French and German corpora. For CBL, performance was considerably
worse when working with class-based statistics, with a sharp decrease in the mean F-
score for both French (from 71.6 to 53.5) and German (from 75.7 to 39.1). For
PARSER there was a similar decrease in performance for German (from 73.4 to 67.5),
but an increase in score for French, from a mean F-score of 64.4 to 68.6. In the case of
CBL, the lower comprehension performance when working with class statistics was
driven by a drastic drop in completeness scores (French: from 70.8 to 29.9; German:

from 72.2 to 21.4), owing partly to the use of the chunkatory in phrase segmentation;
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the relatively small number of possible class combinations in a sequence lead to the
automatic grouping of items together (based on chunkatory searches) with increasing
frequency throughout the models' pass through a corpus. As more combinations
exceeded the average TP threshold, the models placed progressively fewer phrase
boundaries. For CBL there were less drastic changes in accuracy (French: from 72 to
75.4; German: from 78 to 68.9).

PARSER actually increased French F-scores under class-based information,
owing to an increase in accuracy (from 61.8 to 71.9), though with a drop in
completeness (from 73.5 to 60.5), while German scores decreased due to a drop in
completeness (from 83.5 to 56.9), while accuracy scores increased (from 69.4 to 74.8).

The Trigram baselines showed less drastic changes in performance: the mean
F-score rose for French (from 59 to 66.2) while decreasing slightly for German (67.4
to 66). Though accuracy scores increased for sharply French (from 57 to 73.9),
completeness dropped (from 66.1 to 51.5). German accuracy increased (70.5 to 76.9)

while completeness also dropped (from 62.9 to 53.1).
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Fig. 12: Boxplots depicting class- vs. item-based comprehension performance (F-
scores) across French simulations for the CBL model and its baselines. Boxes
depict the median (thick line), with upper and lower edges representing the
respective quartiles. Whiskers depict the range of scores falling within 1.5 IQR of

the quartiles, while dots depict outliers.

We evaluated the effects of learning from French class-based information
using a two-way ANOV A with factors Statistic Type (2: item- vs. class-based) and

Model (3: CBL vs. PARSER vs. Trigram), with Child Corpus as a random factor, over
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logit-transformed F-scores. This yielded main effects of Statistic Type [F(1,14) = 6.09,
p<0.05], confirming stronger performance for item-based models, and of Model
[F(2,28)=19.91, p<0.0001], with an interaction between Statistic Type and Model
[F(2,28)=348.4, p<0.0001], due to a more drastic drop in performance for the CBL

model relative to the baselines when working with classes.

=
o« T
. |
o = || —
G i [}
3 o |
5 8 |
= '
» L
o
= B
o
E ——
= X
(7]
[
ﬁ- | .
= _
[}
| ] I [ I |
ltem Class ltem Class ltem Class
CBL PARSER Trigram

111



Fig. 13: Boxplots depicting class- vs. item-based comprehension performance (F-
scores) across German simulations for the CBL model and its baselines. Boxes
depict the median (thick line), with upper and lower edges representing the
respective quartiles. Whiskers depict the range of scores falling within 1.5 IQR of

the quartiles, while dots depict outliers.

We evaluated the effects of learning from German class-based information
using a two-way ANOV A with factors Statistic Type (2: item- vs. class-based) and
Model (3: CBL vs. PARSER vs. Trigram), with Child Corpus as a random factor, over
logit-transformed F-scores. This yielded main effects of Statistic Type [F(1,21) =
243.4, p<0.0001], confirming stronger performance for item-based models, and of
Model [F(2,42)=324, p<0.0001], with an interaction between Statistic Type and Model
[F(2,42)=301.3, p<0.0001], due to a more drastic drop in performance for the CBL
model relative to the baselines when working with classes.

As was the case with the English simulations, a reliance on word classes did
not improve the performance of the model; instead, the use of classes lead to a
decrease in performance. Though performance did increase for the baseline models
when using French class-based information, CBL still yielded the strongest
performance out of all simulations in its original item-based form. This result
reaffirms the item-based approach, as well as the broader notion that initial language
learning can take place without abstract syntactic categories. This also resonates with
our previous simulation of child artificial grammar learning (McCauley &

Christiansen, 2011), casting further doubt on to claims that children and adults can use
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transitional probabilities to segment phrases by calculating statistics over word classes
(e.g., Saffran, 2002; Thompson & Newport, 2007) rather than concrete items.

Case study: Learning grammatical gender: Cross-linguistically, children
master grammatical gender quite early in development (e.g., Slobin, 1986), and rarely
make the sort of gender agreement errors often made by second language learners
(e.g., Rogers, 1987; Holmes & de la Batie, 1999). Such findings resonate with the
proposal that children treat article-noun pairs as single units (e.g., MacWhinney, 1978;
Carroll, 1989), an idea which receives support from item-based patterns observed in
children's use of articles (e.g., Mariscal, 2008; Pine & Lieven, 1997). More recently,
Arnon and Ramscar (2012) used an artificial language learning paradigm to test the
idea that learning article-noun pairings as chunks imparts an advantage in the learning
of grammatical gender. They found that subjects receiving initial exposure to
unsegmented article-noun sequences, which was only later followed by exposure to
the noun labels in isolation, exhibited better mastery of grammatical gender in the
artificial language at test than did those subjects who underwent the very same
exposure phases in reverse order.

The findings of Arnon & Ramscar (2012), as well as children's item-based
patterns in article usage and the apparent ease with which they master grammatical
gender more generally, lead us to examine the model's ability to construct the right
article-noun pairings during production. While CBL does not possess chunks arrived
at via under-segmentation (the model initially recognizes articles and nouns as
separate entities by virtue of the fact that the input corpora are in the form of words),

the model may nevertheless learn to chunk articles and nouns together, leading to an
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item-based mastery of grammatical gender. To explore the model's learning of
grammatical gender and determine whether its production of article-noun pairs
exhibits the early mastery demonstrated by children, we analyzed the model's
productions from the simulation involving the largest German corpus from CHILDES
(Leo). We found that the model's article-noun pairings were correct over 95% of the
time. Out of those article-noun pairs produced by the target child in the corpus, the
model correctly captured 11,703, pairing the wrong article with a noun in only 557
cases. When we considered only those 513 utterances which featured multiple articles
(as in the sentence die Katzejagte den Hund), rather than two or more instances of the
same article being paired with different nouns (as in die Katzejagte die Maus), we
found that the model paired nouns with the wrong gender marker in only 14 cases (an
error rate of 2.7%). Thus, consistent with the findings of Arnon & Ramscar (2012), the
distributional learning of article-noun sequences as chunks leads the model to mirror
both children's early mastery of grammatical gender as well as the item-based nature

of children's early article usage.

Simulation 4: Modeling Child Production Performance across a
Typologically Diverse Set of 29 Languages
We conducted full simulations for each corpus from the additional languages, using
the same model architecture and baseline models as used in each of the previous

simulations. In the overall analysis of Sentence Production Performance, we include

the scores for the English corpora for a total of 204 individual child simulations. CBL
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achieved a mean sentence production accuracy of 55.3%, while the Trigram model
achieved a mean sentence production accuracy of 46%. The results for each language

are depicted in Figure 14.
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Fig. 14: Mean Sentence Production Accuracy scores for the CBL model

and its trigram baseline across all 29 languages, including English (shown at top).

Bars are non-cumulative (e.g., the Japanese CBL score was just over 60%, while

the Trigram score was near 45%).

As with the English-only production simulations, we submitted the production

scores to a repeated-measures ANOVA including, once more, the factor Model (2:

CBL vs. Trigram) with Child Corpus as a random factor. This yielded a significant
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effect of Model [F(1,203) = 575.2, p <0.0001], indicating better performance for
CBL.

When all utterances across the simulations were considered together, CBL was
able to produce the majority of those utterances. The same pattern held for all but five
of the individual languages, with CBL failing reach the 50% mark for Sesotho, Polish,

Farsi, Portuguese, and Swedish.

As can be seen, CBL outperformed its baseline for 26 of the 29 languages; the
exceptions were Russian, Romanian, and Korean for which the Trigram scored
highest. It should be noted that for two of the exceptions (Romanian and Korean),
there was only one child corpus; for Russian, there were only two available corpora.
Moreover, all three of these languages fall towards the extreme synthetic end of the
analytic/synthetic spectrum estimated by our morphological analyses. Below, we
explore the notion that the CBL model performed worse as a function of

morphological complexity.

Effects of morphological complexity and word order: To assess the effect of
morphological complexity on the model's performance, we fit a linear regression
model to the Sentence Production Accuracy scores across the 204 simulations using
the morphological complexity measure calculated for each language previously. This
yielded a significant negative value for morphological complexity [B=-0.17, t(202)=-
4.35, p<0.0001], indicating that the model's sentence production tended to be less
accurate when learning morphologically rich languages, although the amount of

variance explained by the linear model was moderate to low (Adjusted R-squared:
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0.08). Figurel5 depicts the Sentence Production Accuracy for each simulation

according to the morphological complexity score of the 29 languages.
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Fig. 15: Scatterplot depicting Sentence Production Accuracy (%) for each
simulation by the Morphological Complexity score for the corresponding
language.
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Because the three languages on which the word-based Trigram model
outperformed CBL were on the extreme synthetic end of the analytic/synthetic
spectrum, we tested whether the model's sentence production accuracy advantage over
the Trigram baseline decreased as a function of morphological richness. A linear
model with Morphological Complexity as a predictor of the difference between CBL
and Trigram scores for each simulation confirmed this to be the case [f=-0.4, t(201)=-
5.6, p<0.0001], with the overall model explaining a significant amount of variance in
the difference scores (Adjusted R-squared: 0.13).

That the advantage of a chunk-based model such as CBL would decrease as a
function of morphological complexity is perhaps unsurprising. However, segmenting
corpora into their component morphemes may better accommodate a chunk-based
model while helping to deal with data sparseness tied to high type/token ratios. Since
an automated method for morpheme segmentation was not available for many of the
languages, we were unable to test this intuition cross-linguistically. However, the
CHILDES segmentation system for one of the more synthetic languages, Japanese,
treats verb morphemes as separate words (Chang et al., 2008; Miyata, 2000; Miyata &
Naka, 1998). Interestingly, model performance, on average, is far stronger for
Japanese corpora than for languages of comparable morphological complexity,
especially relative to the Trigram baseline. Additionally, the greatest difference in
scores between the model and its baselines was seen for Japanese. Future work will
focus on comparing model performance on synthetic languages with morphologically

segmented vs. standard corpora.

119



Despite the effect of morphological complexity on model production
performance, there was no effect of word order (mean scores: SOV, 58.7; SVO, 55.5;
VSO, 63; no dominant order: 52.9). We used a linear model to test for a potential
effect of word order on model performance, while controlling for morphological
richness. As the effect of Morphological Complexity on model performance was
significant, we included it as a predictor alongside Word Order in the model.
However, no significant effect of word order emerged. Figure 16 depicts the mean

Sentence Production Accuracy score across each of the four word orders.
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Fig. 16: Barplot depicting the mean Sentence Production Accuracy (%) for each
of the four word orders represented across the 29 languages. Error bars depict
standard errors. While there were only two corpora tested with VSO word order
(precluding a statistical test), visual inspection of the error bars indicates that the

model's performance was highly similar across the four word orders represented.

Production summary: The model outperformed its baseline for 26 of the 29
languages, correctly producing the majority of child utterances for 24 languages. The
usefulness of BTP-based chunking across so wide an array of languages is somewhat
surprising, given previous work demonstrating that the usefulness of forward vs.
backward probability calculations in word segmentation is highly sensitive to cross-
linguistic differences in distributional features (e.g., heavy suffixing in case of
Hungarian, phrase-initial function words in the case of Italian; Gervain& Guevara
Erra, 2012). While our model was somewhat sensitive to differences in morphological
complexity, tending to perform slightly better on morphologically simple languages, it
did not appear to be sensitive to differences in dominant word order. The fact that
multi-word units were useful even for the learning of morphologically rich languages
is of particular interest, considering the difficulties inherent in working with
morphologically rich languages in the field of computational linguistics (cf. Tsarfaty,
Seddah, Kiibler, & Nivre, 2012). Taken together with previous findings of item-based
patterns in children's learning of morphologically rich languages (e.g., MacWhinney,
1978), this result is quite encouraging in the context of future cross-linguistic item-

based modeling work.
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These results offer substantial cross-linguistic support for CBL, and, more
broadly, for the view that simple learning mechanisms underlie a large part of early
linguistic behavior. The outcome of our simulations strengthens previous
psycholinguistic evidence for chunk-based learning, which has been gained primarily
from English speakers (e.g., Bannard & Matthews, 2008), suggesting that multiword
sequences play an important role cross-linguistically, in analytic and synthetic

languages alike.

General Discussion

We have shown that the CBL model can approximate children's
comprehension and production of language by learning in a purely incremental fashion
through on-line processing. The model gradually builds up an inventory of chunks
consisting of one or more words, which unites aspects of comprehension and
production within a single framework. On the comprehension side, the model chunks
incoming words together to incrementally build an item-based “shallow parse” of each
utterance as it is encountered. Chunks discovered in this fashion are used to make
predictions about upcoming words in subsequent input, facilitating the model's on-line
processing. When the model encounters an utterance produced by the target child of
the input corpus, it attempts to generate an identical utterance using the same chunks
and statistics used in shallow parsing. Importantly, production is modeled as an
incremental, chunk-to-chunk process rather than one of whole-sentence optimization

(as would be the case by, e.g., choosing among candidate sentences based on whole-
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string probabilities).

The model achieves strong performance across English single-child corpora
from the CHILDES database, approximating the performance of a shallow parser with
high accuracy and completeness. In line with expectations derived from usage-based
theories, item-based information is shown to be more useful than statistics or chunks
computed over form classes. The model is also able to fit much of children's early
linguistic behavior, correctly generating the majority of the child utterances
encountered across the English corpora. The model exhibits similar shallow parsing
performance for 15 French and 22 German corpora alongside similar sentence
production performance for nearly 200 additional child corpora drawn from a
typologically diverse set of 28 languages (also from CHILDES). In each case, the
model outperforms baseline models.In addition to its strong cross-linguistic
performance in approximating aspects of comprehension and production, the model
provides close quantitative fits to children's production of complex sentences featuring

six different relative clause types (Diessel & Tomasello, 2005).

Together, these findings suggest that a fair amount of children's early language
use can be accounted for by incremental, on-line learning of item-based information
using simple distributional cues. In what follows, we discuss the limitations of the
model and directions for future modeling work addressing them. We then place the
model in the larger context of usage-based computational approaches to acquisition.
Finally, we highlight novel predictions made by the model which will be tested in

future psycholinguistic work.
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Limitations of the Model

As an initial step towards a comprehensive computational account of language
learning, CBL is not without limitations. Perhaps most immediately obvious is that the
model learns from segmented input. It does not confront one of the early challenges
facing language learners: that of segmenting an uninterrupted speech stream. The
problem of segmenting the speech stream (traditionally thought of as word
segmentation) and discovering useful multiword sequences are likely to impact one
another: Children do not learn about phonology, words, multiword sequences, and
meanings in discrete, separable stages, but instead learn about multiple aspects of
linguistic structure simultaneously and their interaction with each other (see also
Christiansen &Chater, 2016b). Indeed, many of children's earliest, unanalyzed chunks
are likely to stem from under-segmentation “errors,” which may offer insights into a
number of phenomena tied to early language learning (Arnon, 2009). Future work will
focus on using the model to learn from unsegmented corpora in ways that maintain a
fluid rather than rigid relationship between individual words, unanalyzed chunks, and

chunks which the model is capable of breaking down into its component words.

A further limitation stems from what may also arguably be one of the model's
greatest strengths: reliance on a single source of distributional information. CBL was
designed to be as simple as possible, in order to demonstrate that a model can
approximate aspects of comprehension and production through incremental, on-line

processing based on simple statistics. Though the model, which relies upon BTPs, is
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evaluated against a baseline which uses FTPs, it is clear from the modeling results that
both information sources are potentially useful. Infants, children, and adults have been
shown to be sensitive to TPs calculated in both directions (e.g., French et al., 2011;
Pelucchi et al., 2009; Perruchet &Desaulty, 2008). Future work should be based on a
principled, parameter-free method for seamlessly integrating TP calculations in both
directions (in addition to other potentially useful distributional and non-distributional

cues).

A limitation which is perhaps more difficult to address lies in the model's lack
of semantic information; the model never learns “meanings” corresponding to the
chunks it discovers, and is never called to interpret the meanings of utterances. We
have adopted the perspective that semantic/conceptual information—such as that tied
to event schemas, situational settings, and background world knowledge—is a key
factor in generalizing to unbounded productivity of the sort exhibited by mature
language users, superseding the importance of abstract “syntactic” knowledge, such as
that of form classes. We are currently expanding the model to incorporate such
information in idealized forms (for a review of the prospects and challenges of
incorporating semantic information into computational models of language

acquisition, see McCauley & Christiansen, 2014).

A further, related limitation of the model stems from its inability to produce
utterances “from scratch:” The randomly ordered bag-of-words which the model
attempts to sequence during production is always populated by words from one of the

target child's actual utterances. This means that the model cannot be used to capture
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children's systematic errors (the model can only commit errors which are made by the
target child). Previous models capable of producing novel utterances have successfully
captured such developmental trends, such as optional infinitive errors (e.g., MOSAIC;
Freudenthal et al., 2006, 2007). Future work will therefore seek to incorporate “free
production,” both on the basis of distributional input of the sort modeled here, as well

as semantic input (similar to production in the model of Chang et al., 2006).

Finally, work with adult subjects suggests that there is no frequency
“threshold” beyond which a multiword sequence is stored as a chunk, but rather that
the extent to which sequences cohere as multiword units is graded in nature (cf.
Caldwell-Harris et al., 2012). While CBL does not make use of raw whole-sequence
frequency information in chunk discovery, it does rely on the use of a running average
BTP as a threshold. Future work will emphasize the graded nature of “chunk” status
for multiword units, while also seeking to make predictions about part/whole
interactions (reflecting findings that stored multiword sequences both prime and are

primed by their component words; e.g., Sprenger et al., 2006).

Relationship to other Usage-Based Modeling Approaches

Despite its current limitations, the CBL model may be viewed as a possible foundation
for a comprehensive computational account of language acquisition. While previous
computational models within the usage-based tradition have boasted great success,
CBL possesses a number of features that have been largely absent from language

modeling, several of which represent desiderata for a fully comprehensive approach to
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acquisition.

Firstly, and perhaps most importantly, CBL takes usage-based theory to its
natural conclusion in making no distinction between language learning and language
use; the model learns solely by attempting to comprehend and produce language. That
is, the very processes by which input is interpreted and output is constructed are the
same processes involved in learning; at no point does the model engage in a separate
“grammar induction” process. This sets the present model apart from a number of
extant usage-based models that have focused on grammar induction (e.g., Bannard et

al., 2009) or conceived of learning and processing separately.

Also of great importance is that CBL learns incrementally, without batch
learning of the sort used by most existing computational approaches (e.g., Bannard et
al., 2009; Jones et al., 2004). While more sophisticated models of grammatical
development have captured incremental learning (e.g., Bod, 2009; Kolodny et al.,
2015), CBL is unique in offering an account of the on-line processes leading to
linguistic knowledge over time; the model learns incrementally not only from
utterance-to-utterance, but within individual utterances themselves as input is
received, on a word-by-word basis. Thus, its design reflects the constraints imposed by

the Now-or-Never bottleneck (Christiansen & Chater, 2016b).

While a number of previous usage-based models have captured the generation
of novel utterances (e.g., Jones et al., 2004; Solan et al., 2005), none have
simultaneously sought to approximate aspects of comprehension in an explicit fashion.

A further contribution of CBL is that it not only captures aspects of both
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comprehension and production, but also in unites them within a single framework.
Pickering and Garrod (2007; 2013) argue that comprehension and production should
not be seen as separate processes, a view compatible with usage-based approaches
more generally (cf. Chater et al., 2016; McCauley & Christiansen, 2013). While
connectionist models have utilized the same network of nodes to simulate
comprehension and production (e.g., Chang et al., 2006; see also MacKay, 1982), ours

is the first full-scale (taking full corpora as input) model to offer a unified framework.

Finally, CBL was designed to reflect psychologically parsimonious processing
and knowledge representation. Outside the realm of word segmentation, the model is
unique in its reliance solely on simple recognition-based processing and simple
statistics of a sort that infants, children, and adults have been shown to be sensitive to
(BTPs; French et al., 2012; Pelucchi et al., 2009; Perruchet &Desaulty, 2008). While a
number of more complex computational approaches have made use of transitional
probabilities (e.g., Kolodny et al., 2015; Solan et al., 2005), CBL relies solely on
transitional probabilities computed in an incremental, on-line fashion, and is not
supplemented by more complex processes. Furthermore, the model relies on local
information; rather than automatically storing entire utterances, the model shallow
parses and produces utterances in an incremental, chunk-to-chunk fashion rather than

relying on whole-sentence representation or optimization.

Predictions Derived from the Model

Beyond CBL's unique features, its ability to capture much of children's early linguistic
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behavior cross-linguistically, and its success in accounting for key psycholinguistic
findings, the model makes several explicit predictions that may be tested through

psycholinguistic research:

1) Simple distributional cues are useful at every level of language learning.
The model was able to use a simple distributional cue previously shown to be useful in
word segmentation (BTP; Pelucchi et al., 2009; Perruchet &Desaulty, 2008) in order
to segment speech into useful multiword units, as well as to combine them to create
sentences. Though based on this simple statistic, the model was able to make close
contact with psycholinguistic results on children's production of complex sentence

types (Diessel & Tomasello, 2005).

2) Previous artificial grammar learning results may reflect item-based rather
than class-based computations. The decision to focus on learning through purely
item-based statistics stands in contrast to several threads of argument within the
statistical learning literature, which hold that learners discover phrase structure by
computing statistics over form classes rather than individual words (e.g., Saffran,
2002; Thompson & Newport, 2007). As discussed above, we have found that the
discovery of useful chunks of local information (which, being as our model was
scored against a shallow parser, is analogous to phrase segmentation of the sort
discussed by Thompson & Newport, 2007) was actually enhanced as a consequence of
a reliance on item-based statistics, as was also often the case with the model's
baselines. The model performed worse when exposed to class-based information — a

pattern which was replicated in our simulation of Saffran's (2002) child artificial
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language learning experiment (McCauley and Christiansen, 2011).

We suggest, then, that artificial language learning results which have previously been
taken to reflect learners' sensitivity to the phrase-like structure of the stimuli be
reassessed to determine whether item-based calculations might be sufficient to capture
the learning of both children and adults. Previous modeling work on chunking has
been shown to better account for segmentation performance in artificial language
studies than more complex learning mechanisms (e.g., Perruchet et al., 2002; French et
al., 2011). This general approach may be extended to full-blown language

development.

3) Most of the difficulty faced by the learner lies outside the distributional
realm. The difficulty of learning from distributional information may be compounded
by the problem combining multiple probabilistic cues (which CBL, relying on a single
distributional cue, does not attempt to capture). However, given the rapidity with
which the model was able to learn how to identify useful chunks of local information,
as well as to sequence those chunks to create new utterances, we suggest that the
greatest difficulties children face in learning to process sentences may have less to do
with distributional information or even “linguistic structure,” but instead derive from
conceptual/semantic dimensions of the problem, such as learning event schemas and

scenarios to map chunks onto.

4) Multiword sequences remain important throughout development. The
model ultimately relied more heavily on multiword units over time, as shown in

various analyses of the model's chunk inventory. This leads us to suggest that instead
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of “starting big” by merely relying upon multiword units during the early stages of
learning (e.g., Arnon, 2009), learners continue to rely on chunks throughout
development; representations may actually become more chunk-like instead of less. At
the same time, subtle shifts in the “degree of chunkedness” of children's
representations, as suggested by the U-shaped development of the model's chunk
inventory, may interact with U-shaped trajectories observed in seemingly

disconnected areas, such as the learning of irregular forms.

5) Learners rely on multiword units even in morphologically rich languages.
The model benefited from the use of chunks in learning analytic and synthetic
languages alike. At the same time, chunk-to-chunk sequential information of the type
learned by the model clearly matters less in synthetic languages, where there may be
stronger pragmatic constraints on ordering. CBL lacks such information and this may
partly explain the lower performance of the model when learning morphologically rich

languages.

Conclusion

We have presented the foundations of a new approach to modeling language learning
in the form of the CBL model, which provides a computational framework based on
incremental, on-line learning from simple chunks and statistics. The model makes
close contact with psycholinguistic evidence for both multiword unit storage and
shallow, underspecified language processing; rather than attempting to induce a target

grammar, the model learns chunks of local information which are used to simulate
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aspects of comprehension and production. CBL approximates the performance of a
shallow parser by segmenting utterances into chunks of related words on-line, and
simultaneously uses the same chunks to incrementally produce new utterances. The
model's production abilities can account for a considerable part of children's early
linguistic behavior. The model offers broad, cross-linguistic coverage and successfully
accounts for key developmental psycholinguistic findings, in addition to making
several predictions on which to base subsequent psycholinguistic work. But, perhaps
most importantly, CBL demonstrates how language learning can modeled as language

use.

Appendix A: Shallow parsing accuracy and completeness statistics
for English, French, and German

English

In line with the developmental motivation for the model, we examined accuracy rates
independently. Across the 43 child corpora, CBL achieved a mean accuracy rate of
76.4%, while PARSER attained a mean accuracy of 65.2% and the Trigram model
reached a mean accuracy rate of 65.8%. The distributions are shown in box plots in
Figure Al. As can be seen, CBL not only outperformed its baselines, but once more

yielded a tighter, more uniform distribution of scores.
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Fig. 17: Boxplots depicting shallow parsing accuracy (%) for the CBL model and
its baselines. Boxes depict the median (thick line), with upper and lower edges
representing the respective quartiles. Whiskers depict the range of scores falling

within 1.5 IQR of the quartiles, while dots depict outliers.

As in our analysis of the overall comprehension performance scores, we
submitted the logit-transformed accuracy scores to a repeated-measures ANOVA,
including the factor Model (3: CBL vs. PARSER vs. Trigram) with Child Corpus as a
random factor. This yielded a significant main effect of Model [F(2,84) = 1877, p <

0.0001], with post-hoc analyses confirming stronger performance for CBL compared
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to the PARSER [t(42)=65.17, p<0.0001] and Trigram [t(42)=39, p<0.0001] models, as
well as stronger performance for the Trigram model compared to PARSER
[t(42)=2.63, p<0.05].

Finally, we looked at completeness scores. Across the 43 child corpora, CBL
achieved a mean completeness of 73.8%, while the PARSER attained a mean
completeness of 68.7% and the Trigram model reached a mean completeness rate of

66.5%. The distributions are shown in box plots in Figure A2.
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Fig. 18: Boxplots depicting shallow parsing completeness (%) for the CBL model
and its baselines. Boxes depict the median (thick line), with upper and lower
edges representing the respective quartiles. Whiskers depict the range of scores

falling within 1.5 IQR of the quartiles, while dots depict outliers.

134



As with accuracy, we submitted the logit-transformed completeness scores to a
repeated-measures ANOVA, including the factor Mode! (3: CBL vs. PARSER vs.
Trigram) with Child Corpus as a random factor. This yielded a significant main effect
of Model [F(2,84) =42.14, p < 0.0001], with post-hoc analyses confirming stronger
performance for CBL compared to the PARSER [t(42)=7.77, p<0.001] and Trigram
[t(42)=11.9, p<0.0001] models, with no significant difference in means for PARSER

relative to the Trigram model [t(42)=1.94, p=0.06].

French

As with the English simulations, we examined accuracy separately. Across the
15 child corpora, CBL attained a mean accuracy rate of 72.0%, while the PARSER
model attained a mean accuracy rate of 61.8%. The Trigram model attained a mean

accuracy rate of 57.0%. The distributions are shown in box plots in Figure A3.
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Fig. 19: Boxplots depicting shallow parsing accuracy (%) for the CBL model and
its baselines for the French simulations. Boxes depict the median (thick line), with
upper and lower edges representing the respective quartiles. Whiskers depict the

range of scores falling within 1.5 IQR of the quartiles, while dots depict outliers.

As with the previous analyses, we submitted the logit-transformed accuracy
scores to a repeated-measures ANOVA, including the factor Model (3: CBL vs.
PARSER vs. Trigram), with Child Corpus as a random factor. This yielded a
significant effect of Model [F(2,26) = 342.3, p <0.0001], with post-hoc analyses

confirming stronger performance for CBL compared to the PARSER [t(14)=24.54,
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p<0.0001] and Trigram [t(14)=18.69, p<0.0001] models, as well as for PARSER
compared to the Trigram model [t(14)=9.7, p=0.0001].

We also analyzed completeness: across the 15 child corpora, CBL attained a
mean completeness score of 70.8%, while the PARSER model attained a mean
completeness rate of 73.5%. The Trigram model attained a mean accuracy rate of
66.1%. The distributions are shown in box plots in Figure A4. As with accuracy, we
submitted the logit-transformed completeness scores to a repeated-measures ANOVA,
including the factor Model (3: CBL vs. PARSER vs. Trigram), with Child Corpus as a
random factor. This yielded a significant effect of Model [F(2,26) =21.96, p <
0.0001], with post-hoc analyses confirming stronger performance for PARSER
compared to the CBL [t(14)=2.54, p<0.05] and Trigram [t(14)=5.29, p<0.001] models,

as well as for CBL compared to the Trigram model [t(14)=6.35, p=0.0001].
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Fig. 20: Boxplots depicting shallow parsing completeness (%) for the CBL model
and its baselines for the French simulations. Boxes depict the median (thick line),
with upper and lower edges representing the respective quartiles. Whiskers
depict the range of scores falling within 1.5 IQR of the quartiles, while dots depict

outliers.

German

As with the English and French simulations, we examined German accuracy
separately. Across the 22 child corpora, CBL attained a mean accuracy rate of 78.0%,
while PARSER attained a mean accuracy rate of 69.4%. The Trigram model attained

an accuracy of 70.5%. The distributions are shown in box plots in Figure AS.

138



o

[} ]

= :
= 00
S _
E ]
= i -
9
<T o T
s " ,
E [
N o
3 g
[y}
=
7]

=

ua

I I
CBL PARSER Trigram

Fig. 21: Boxplots depicting shallow parsing accuracy (%) for the CBL model and
its baselines for the German simulations. Boxes depict the median (thick line),
with upper and lower edges representing the respective quartiles. Whiskers
depict the range of scores falling within 1.5 IQR of the quartiles, while dots depict

outliers.

We once more submitted the logit-transformed accuracy scores to a repeated-measures
ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram), with Child
Corpus as a random factor. This yielded a significant effect of Model [F(2,40) =475.2,

p <0.0001], with post-hoc analyses confirming stronger performance for CBL
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compared to the PARSER [t(21)=29.4, p<0.0001] and Trigram [t(21)=20.05,
p<0.0001] models, as well as for the Trigram model compared to PARSER
[t(21)=4.23, p=0.001].

As with the English and French simulations, we also examined completeness
separately. Across the 22 child corpora, CBL attained a mean completeness of 72.2%,
while PARSER attained a mean completeness of 83.5%. The Trigram model attained a

completeness of 62.9%. The distributions are shown in box plots in Figure A6.
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Fig. 22: Boxplots depicting shallow parsing completeness (%) for the CBL model
and its baselines. Boxes depict the median (thick line), with upper and lower

edges representing the respective quartiles. Whiskers depict the range of scores
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falling within 1.5 IQR of the quartiles, while dots depict outliers for the German

simulations.

We once more submitted the logit-transformed completeness scores to a repeated-
measures ANOVA, including the factor Model (3: CBL vs. PARSER vs. Trigram),
with Child Corpus as a random factor. This yielded a significant effect of Model
[F(2,40) = 61.7, p < 0.0001], with post-hoc analyses confirming stronger performance
for PARSER compared to the CBL [t(21)=5.49, p<0.0001] and Trigram [t(21)=8.59,
p<0.0001] models, as well as for CBL compared to the Trigram model [t(14)=11.3,

p=0.0001].

Appendix B: Evaluating the Effects of Forwards vs. Backwards
Transitional Probability

Baseline Models
We created three baseline models in order to explore a 2 x 2 design, depicted in Table

B1, including the factors unit type (chunks vs. n-grams) and direction (backward vs.

forward transitional probability).

Table 4
Contrasting Direction and Unit Type
Chunks N-grams
BTP CBL BTP3G
FTP FTP-Chunk FTP3G
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As previous work in the statistical learning literature has focused on FTP as a
cue to phrase structure (e.g., Thompson & Newport, 2007), an alternate model was
created to compare the usefulness of this cue against the BTPs used by CBL. Thus, the
first baseline model, hereafter referred to as the FTP-Chunk model, was identical to
CBL, with the sole exception that all BTP calculations were replaced by FTP
calculations.

As the Trigram model described in the main paper relied on FTPs, we created
an otherwise identical baseline model which relied on BTP rather than FTP
calculations. Both models learned trigram statistics in an incremental, on-line fashion,
in the style of CBL, while simultaneously processing utterances through the placement
of chunk boundaries. In the present appendix we refer to the Trigram baseline as the
FTP3G baseline, and the backwards transitional probability version as the BTP3G
baseline.

In the case of the FTP3G baseline, if the FTP between the first bigram and the
final unigram of a trigram fell below the running average for the same statistic, a
chunk boundary was inserted. For instance, as the model encountered Z after seeing
the bigram XY, it would calculate the FTP for the trigram by normalizing the
frequency count of the trigram XYZ by the count of the bigram XY, and comparing
the result to the running average FTP for previously encountered trigrams (inserting a
chunk boundary if the running average was greater). In the case of the BTP3G
baseline, a chunk boundary was placed if the BTP between the first unigram and the
final bigram of the trigram fell below the running average. The start-of-utterance

marker made it possible for the 3G baselines to place a boundary between the first and
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second words of an utterance. During production attempts, which were also
incremental and on-line in the style of CBL, both trigram models began constructing
an utterance by choosing from the bag-of-words the word with the highest TP (FTP for
the FTP3G model, and BTP for the BTP3G model), given the start-of-utterance
marker (in other words, bigram statistics were used to select the first word). Each
subsequent word was chosen according to trigram statistics, based on the two most
recently placed words (or the initial word and the start-of-utterance marker, in the case
of selecting the second word in an utterance). For the FTP3G model, this meant the
word with the highest FTP given the two preceding words was chosen; for the BTP3G
model, the word resulting in the highest BTP between the final bigram and the first
unigram of the resulting trigram was chosen. Thus, like CBL and its FTP-based
counterpart, both trigram baseline models relied on identical statistics during

comprehension and production (either BTPs or FTPs, computed over trigrams).

Shallow Parsing Results
Shallow parsing results for the same English child corpora are shown for the model
and its baselines in Table B2.

Table 5: English Shallow Parsing F-Scores

Chunks N-grams
BTP 75.4 61.3
FTP 67.5 65.9
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We submitted the shallow parsing F-scores (logit-transformed) to a repeated-measures
ANOVA with the factors Unit Type (2: Chunks vs. n-grams)and Direction (2: BTP vs.
FTP), with Child Corpus as a random factor. This yielded main effects of Unit Type
[F(1,42) = 1184, p < 0.0001] and Direction [F(1,42) = 78.01, p <0.0001], indicating
better performance for chunk-based models and BTPs, respectively, and a significant
Unit Type x Direction interaction [F(1,42) = 792.5, p < 0.0001], indicating better
performance for the CBL model’s combination of BTPs and chunks.

The French shallow parsing scores, depicted in Table B3, followed the same

qualitative pattern as the English data.

Table 6: French Shallow Parsing F-Scores

Chunks N-grams
BTP 71.6 51.6
FTP 61.7 59.0

We submitted the French shallow parsing F-scores (logit-transformed) to a
repeated-measures ANOVA with the factors Unit Type (2: Chunks vs. n-grams)and
Direction (2: BTP vs. FTP), with Child Corpus as a random factor. This yielded main
effects of Unit Type [F(1,14) = 573.5, p <0.0001] and Direction [F(1,14) =14.7,p <
0.01], indicating better performance for chunk-based models and BTPs, respectively,
and a significant Unit Type x Direction interaction [F(1,14) =234.2, p < 0.0001],

indicating better performance for the CBL model’s combination of BTPs and chunks.
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The German shallow parsing scores, shown in Table B4, followed once more
the same general pattern.

Table 7: German Shallow Parsing F-Scores

Chunks N-grams
BTP 75.7 53.2
FTP 71.0 67.4

We submitted the German shallow parsing F-scores (logit-transformed) to a
repeated-measures ANOVA with the factors Unit Type (2: Chunks vs. n-grams)and
Direction (2: BTP vs. FTP), with Child Corpus as a random factor. This yielded main
effects of Unit Type [F(1,203) = 890.2, p <0.0001] and Direction [F(1,203) =47.5, p
< 0.0001], indicating better performance for chunk-based models and BTPs,
respectively, and a significant Unit Type x Direction interaction [F(1,203) =389.8, p <
0.0001], indicating better performance for the CBL model’s combination of BTPs and

chunks.

Sentence Production Performance Results
The sentence production performance results for the CBL model, the FTP-Chunk

model, and the two 3G baselines are shown in Figure B1.
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Fig. 23: Mean Sentence Production Accuracy scores for the CBL model and its

trigram baseline across all 29 languages, including English (shown at top). Bars

are non-cumulative

We submitted the sentence production performance F-scores (logit-transformed) to a

repeated-measures ANOVA with the factors Unit Type (2: Chunks vs. n-grams)and

Direction (2: BTP vs. FTP), with Child Corpus as a random factor. This yielded main

effects of Unit Type [F(1,21) =801.4, p <0.0001] and Direction [F(1,21) = 128.4, p <
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0.0001], indicating better performance for chunk-based models and BTPs,

respectively.
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CHAPTER 3

ACQUIRING FORMULAIC LANGUAGE8

Formulaic expressions have long been held to be a key component of language use
within cognitive linguistics (e.g., Croft, 2001; Langacker, 1987; Wray, 2002).9
Lending support to this perspective, a number of psycholinguistic studies have
demonstrated that adults are sensitive to the frequency of multiword sequences. These
include reaction time studies (Arnon & Snider, 2010; Jolsvai, McCauley, &
Christiansen, 2013), as well as studies of complex sentence comprehension (Reali &
Christiansen, 2007), self-paced reading and sentence recall (Tremblay, Derwing,
Libben, & Westbury, 2011), and event-related brain potentials (Tremblay & Baayen,
2010). Similar findings have been shown for production, with naming latencies
decreasing as a function of phrase frequency (Janssen & Barber, 2012) and reduced
phonetic duration for frequent multiword strings in spontaneous and elicited speech
(Arnon & Cohen-Priva, 2013). Together, these studies suggest the active use of fixed
multiword sequences as linguistic units in their own right, which implies a far greater
role for formulaic language processing than has previously been assumed.

Importantly, such results have been mirrored in psycholinguistic studies with
young children (Arnon & Clark, 2011; Bannard & Matthews, 2008). In addition to

lending support to usage-based approaches (which hold that linguistic productivity

8 An abridged version of this paper was published as McCauley, S.M. & Christiansen, M.H.
(2014). Acquiring formulaic language: A computational model. Mental Lexicon, 9, 419-436.
9 For the purposes of the present paper, we define “formulaic expression” according to Wray

(1999): a sequence, continuous or discontinuous, of words or other meaning elements, which is, or
appears to be, prefabricated: that is, stored and retrieved whole from memory at the time of use, rather
than being subject to generation or analysis by the language grammar.
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emerges from abstraction over multiword sequences; e.g., Tomasello, 2003), such
findings suggest that children's item-based linguistic units—and their active use during
processing—do not diminish, but persist throughout development and into adulthood.
If this is indeed the case, it holds that researchers can better understand the role of
formulaic sequences in adult language by studying the processes and mechanisms
whereby children discover and use multiword units during the acquisition process.
The aim of the present paper is to take the first steps toward establishing the
computational foundations of a developmental approach to adult formulaic language
use. To this end, we describe two simulations performed using a computational model
of acquisition which instantiates the view that the discovery and on-line use of
concrete multiword units forms the backbone for children's early language processing.
The model tests explicit mechanisms for the acquisition of formulaic language and is
used to evaluate the extent to which children's linguistic behavior can be accounted for
using concrete multiword units. Importantly, the role of multiword sequences in the
model grows rather than diminishes over time, in keeping with the perspective that
children's linguistic units persist throughout development and into adulthood.
Moreover, the model takes usage-based theory to its natural conclusion; the model
learns by attempting to comprehend and produce utterances, such that no distinction is
made between language learning and language use. By avoiding a separate process of
grammar induction, the model captures the usage-based notion that linguistic
knowledge arises gradually through what is learned during concrete usage events (the

notion of learning by doing).
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In what follows, we first discuss the psychological and computational features
of the model, as well as its inner workings'’, before evaluating the model's ability to

account for key psycholinguistic findings on young children's formulaic language use.

The Chunk-Based Learner (CBL) Model

As our model is primarily concerned with the learning and use of concrete
multiword linguistic units, or “chunks,” we refer to it as the Chunk-Based Learner
(CBL; McCauley & Christiansen, in preparation; McCauley, Monaghan, &
Christiansen, 2015; see also McCauley & Christiansen, 2011). We designed CBL with
a number of key psychological and computational features in mind:
Incremental, on-line processing: In the model, all input and output is processed in a
purely incremental, on-line, word-by-word fashion, as opposed to involving batch
learning or whole-utterance optimization, reflecting the incremental nature of human
sentence processing (e.g., Altmann & Steedman, 1988; Borovsky, Elman, & Fernald,
2012). At any given point in time, the model can only rely on what has been learned
from the input encountered thus far.
Psychologically inspired learning mechanisms and knowledge representation:
The model learns by calculating simple statistics tied to backward transitional
probabilities, to which both infants (Pelucchi, Hay, & Saffran, 2009) and adults
(Perruchet & Desaulty, 2008) have been shown to be sensitive. Moreover, the model
learns from local linguistic information as opposed to storing entire utterances, in

accordance with evidence for the primacy of local information in sentence processing

10 All source code for the model and simulations will be made publicly available in the near
future. Interested parties can contact the authors for model-specific code.
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(e.g., Ferreira & Patson, 2007). In keeping with evidence for the unified nature of
comprehension and production (Pickering & Garrod, 2013), comprehension and
production are two sides of the same coin in the model, relying on the same statistics
and linguistic knowledge.

Usage-based learning: In the model, the problem facing the learner is characterized
as one of learning to process language. All learning takes place during individual
usage events; that is, specific attempts to comprehend and produce utterances.
Naturalistic linguistic input: To ensure representative, naturalistic input, the model is
trained and evaluated using corpora of child and child-directed speech taken from the
CHILDES database (MacWhinney, 2000).

This combination of features makes CBL unique among computational models
of language development, in terms of psychological plausibility. Language
development in the CBL model involves learning—in an unsupervised manner—to
perform two tasks: 1) “comprehension,” which is approximated by the segmentation
of incoming utterances into phrase-like units useful for arriving at the utterances'
meanings, and 2) “production,” which involves the incremental generation of
utterances using the same multiword units discovered during comprehension.
Importantly, comprehension and production in the model form a unified framework, as
they rely on the same sets of chunks and statistics (cf. McCauley & Christiansen,
2013).

Architecture of the Model

Comprehension. The model processes input word-by-word as it is

encountered, from the very beginning of the input corpus. At each time step, the model
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updates frequency information for words and word-pairs, which is used on-line to
track the backward transitional probability (BTP) between words''. While processing
each utterance incrementally, the model maintains a running average of the mean BTP
calculated over the words encountered in the corpus so far. Peaks are defined as those
BTPs which match or rise above this average threshold, while dips are defined as
those which fall below it (allowing the avoidance of a free parameter). When a peak in
BTP is encountered between two words, the word-pair is chunked together such that it
forms part (or all) of a chunk. When a dip in BTP is encountered, a “boundary” is
placed and the resulting chunk (which consists of the one or more words preceding the
inserted boundary) is placed in the model's chunkatory, an inventory of chunks
consisting of one or more words.

Importantly, the model uses its chunk inventory to assist in segmenting input
and discovering further chunks as it processes the input on-line. As each word-pair is
encountered, it is checked against the chunk inventory. If the sequence has occurred
before as either a complete chunk or part of a larger chunk, the words are
automatically chunked together regardless of their transitional probability. Otherwise,
the BTP is compared to the running average threshold with the same consequences as
usual (see McCauley & Christiansen, 2011, for further detail).

Because there are no fixed limits on the number or size of chunks that the

model can learn, the resulting chunk inventory contains a mixture of words and

11 BTPs were chosen over forward transitional probabilities because BTPs
involve evaluating the probability of a sequence based on the most recently
encountered item, as opposed to moving back one step in time (as is necessary when
calculating forward transitional probabilities).
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multiword units. Aside from the aforementioned role of the chunk inventory in
processing input, chunks stored in the model's inventory are treated as separate and
distinct units; chunks may contain overlapping sequences without interference.
Moreover, chunks do not weaken or decay due to overlap or disuse. These
representational properties allow the model to function without free parameters (in
contrast to other well-known computational models of distributional learning, such as
PARSER; Perruchet & Vinter, 1998).

The model's comprehension performance can be evaluated against the
performance of shallow parsers (sophisticated tools widely used in natural language
processing), which segment texts into series of non-overlapping, non-embedded
phrases. We chose to focus on shallow parsing in evaluating the model in accordance
with a number of recent psycholinguistic findings suggesting that human sentence
processing is often shallow and underspecified (e.g., Ferreira & Patson, 2007; Frank &
Bod, 2011; Sanford & Sturt, 2002), as well as the item-based manner in which
children are hypothesized to process sentences in usage-based approaches (e.g.,
Tomasello, 2003).

Production. As the model makes its way through a corpus, segmenting
utterances and discovering chunks in the service of comprehension, it encounters
utterances made by the target child of the corpus, which are the focus of the
production task. The production task begins with the idea that the overall message the
child wishes to convey can be roughly approximated by treating the utterance as an
unordered bag-of-words (cf. Chang, Lieven, & Tomasello, 2008). The model's task,

then, is to reproduce the child's utterance by outputting the items from the bag in a
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sequence that matches that of the original utterance. Importantly, the model can only
rely on the chunks and statistics it has previously learned during comprehension to
achieve this.

Following evidence for children's use of multiword units in production, the
model utilizes its chunk inventory when constructing utterances. To allow this, the
bag-of-words is populated by comparing parts of the child's utterance to the model's
chunk inventory; word combinations from the utterance that are represented as
multiword chunks in the model's chunk inventory are placed in the bag-of-words. The
model then begins producing a new utterance by selecting the chunk in the bag which
has the highest BTP, given the start-of-utterance marker (which marks the beginning
of each utterance in the corpus). The selected chunk is then removed from the bag and
placed at the beginning of the utterance. At each subsequent time step, the chunk with
the highest BTP given the most recently placed chunk is removed from the bag and
produced as the next part of the utterance. This process continues until the bag is
empty. Thus, the model's production attempts are based on incremental, chunk-to-
chunk processing, as opposed to whole-sentence optimization.

Each utterance produced by the model is scored against the child's original
utterance. Regardless of grammaticality, the model's utterance receives a score of 1 for
a given utterance if (and only if) it matches the child utterance in its entirety; in all
other cases, a score of 0 is received. The model's production abilities can then be
evaluated on any child corpus in any language, according to the overall percentage of
correctly produced utterances.

Previous Results Using the CBL Model
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While the focus of the present paper is on simulations that directly capture
psycholinguistic data, we note here that previous work using CBL has underscored the
robustness and scalability of the model more generally. Thus, McCauley et al. (2015)
described the results of over 40 simulations of individual children from the CHILDES
database (MacWhinney, 2000). On the comprehension task, the model was shown to
learn useful multiword units, approximating the performance of a shallow parser (e.g.,
Punyakanoth & Roth, 2001) with high accuracy and completeness. In production, the
model was able to produce the majority of the child utterances encountered in each
corpus. Furthermore, McCauley & Christiansen (in preparation; see also McCauley &
Christiansen, 2011) demonstrated that the model is capable of producing the majority
of child utterances across a typologically diverse array of 28 additional languages
(also from the CHILDES database). Importantly, the CBL model outperformed more
traditional bigram and trigram models (cf. Manning &

Schiitze, 1999) cross-lingustically in both comprehension and production.

In what follows, we evaluate the model according to its ability to account for

key psycholinguistic findings on children's distributional learning of multiword units,

as well as their use in early comprehension and production.

Modeling Developmental Psycholinguistic Data
Whereas previous simulations have examined the ability of CBL to discover
building blocks for language learning, in the current paper we investigate the
psychological validity of these building blocks. We report simulations of empirical

data covering two key developmental psycholinguistic findings regarding children's
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distributional and item-based learning. The first simulation demonstrates CBL's ability
to capture child artificial grammar learning (Saffran, 2002). The second simulation
shows CBL's ability to capture child sensitivity to multiword sequence frequency
(Bannard & Matthews, 2008) while the third concerns the learning of formulaic

sequences and their role in morphological development (Arnon & Clark, 2011).

Simulation 1: Modeling Comprehension in Child Artificial Grammar Learning
If CBL offers a reasonable developmental account of learning from the distributional
information available in language input, it should make contact with available
developmental psycholinguistic data involving the learning of distributional
information from language-like artificial stimuli. We therefore attempted to model
data from an artificial language learning experiment (Saffran, 2002) using the CBL
model. This particular study was chosen because it was purported to involve the use of
predictive dependencies on the part of learners to group words into phrase-like units;
as such, it provided the means to test the model's ability to learn phrase-level units
based on BTPs. We focused solely on Experiment 2 because it involved child subjects
(the other experiments described in Saffran, 2002 involved adult subjects). Children
ranging in age from 7;6 to 9;8 were exposed to items from one of two artificial
languages; one contained predictive dependencies between words within phrases
(Language P), while the other lacked this cue to phrase structure (Language N). As
illustrated by Table 8, sentences in the two languages were generated by a set of
rewrite rules, with A, C, D, F, and G corresponding to separate categories of

nonwords. In Language P the items from categories D and G were always preceded by
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items from categories A and C, respectively (though the same relationship did not hold
in reverse; A and C items were not dependent on a subsequent appearance by D and G
items). Language N featured no such predictive dependencies; items from either
category making up a phrase could appear either together, or independently. On a
forced-choice task between pairs of grammatical and ungrammatical items, children

exposed to Language P outperformed those exposed to Language N.

Table 8

Rewrite rules underlying Language P and Language N

Language P Language N

S — AP +BP + (CP) S — AP + BP
AP —- A+ (D) AP — [(A) + (D)]

BP —- CP +F BP —- CP +F
CP—-C+(Q) CP — [(O) + (G)]

Note: Parentheses denote optional elements.

Method. The model architecture was identical to that used with natural
languages. Importantly, this meant that the model continued learning during exposure
to test items. For each language, 15 simulations were performed, corresponding to the
30 child subjects from the original study. The model received the same amount of
exposure to the original stimuli as the subjects did (for each language, 50 sentences
repeated 8 times for a total of 400 training items, followed by 24 test item pairs). As

the original presentation order was no longer available (Saffran, personal
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communication), 10 random orderings of the training items were generated (5 for each
language), and 3 simulations run on each. Each test item pair consisted of one
sentence which was grammatical, and one which was ungrammatical. The languages
from the original study were structured such that the same set of test items could be
used for both groups. Five random presentation orders of the test item pairs were
generated for each language, and were counterbalanced such that the grammatical item
came first in exactly half of the item pairs. The model was evaluated against a version
of the test items which contained the correct phrase boundaries, as defined by the
rewrite rules used to generate the sentences in the original study. Boundaries were
placed between phrases in a non-embedded fashion that emulated the shallow parsing

technique used to evaluate the model’s performance on natural languages.

To further contrast the usefulness of item-specific vs. class-based distributional
information, a separate set of simulations was performed after each word had been
replaced by the corresponding class symbol from the rewrite rules in the original

study.

Scoring. We introduced a new scoring method in order to model the two-
alternative forced choice (2AFC) task used in the original study. Each item in a given
test pair was scored according to the number of correctly placed phrase boundaries,
and the item with the higher score was selected as the response. If the model scored
the same number of hits (including zero) for both items, a choice was made at random,

allowing individual differences across simulations.

Results and discussion. The child subjects in Saffran (2002) had overall
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correct response rates of 71.8% for Language P and 58.3% for Language N. The
model provided a close quantitative fit, with overall correct response rates of 70.5%
for Language P, and 57.5% for Language N (as shown in Figure 24). In neither case
did the model's correct response rate differ significantly from that of the children in
the original study (Language P, t[14] =-0.94, p = 0.36; for Language N, t[14] = -

0.612, p=0.55)"%.

12 Because the standard deviations and individual subjects scores were not reported in the
original study and were no longer available (Saffran, personal communication), we report t-tests (two-
tailed) against the mean child correct response rate for each language. We use this particular test
because Saffran used it in her analyses of the original results.

182



Child Subjects
= Model

Accuracy (%)
40
|

Language P Language N

Fig. 24: Child subject and CBL accuracy rates for the forced-choice task in

Saffran (2002). Error bars denote standard error.

However, when the model learned information on word classes instead of concrete
items, it provided a poor fit to the child data, with 81.1% accuracy for Language P and
39.7% accuracy for Language N (as shown in Figure 25). In both cases, the overall
correct response rates differed significantly from those of the child subjects [Language
P, t(14) = 5.75, p < 0.001; Language N, t(14) =-10.81, p < 0.001]. This runs counter
to a common assumption in the statistical learning literature: that subjects in AGL

studies calculate statistics over form classes as opposed to concrete items (cf. Saffran,
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2002; Thompson & Newport, 2007).
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Fig. 25: Child subject and class-based model accuracy rates for the forced-choice

task in Saffran (2002).

To further explore the model's sensitivity to the phrase-like structure of the
stimuli, we conducted an analysis of the model's responses to specific properties of the
grammar, in accordance with an analysis reported by Saffran in the original study.
These properties, along with examples of test item pairs designed to test subject

sensitivity to them, are shown in Table 9.

184



Table 9
Rules Tested in Saffran (2002)

Rule

1 Sentences must contain an A phrase.
BIFF KLOR SIG PILK JUX [A-D-C-G-F]
*SIG PILK JUX [C-G-F]

2 D words follow A words, while G words follow C words.
HEP PELL LUM PILK JUX [A-D-C-G-F]
*HEP PILK LUM PELL JUX [A-D-C-D-F]

3 Sentences must contain an F word.
MIB LUM PILK VOT [A-C-G-F]
*MIB LUM PILK [A-C-G]

4 C phrases must precede F words.
RUD PELL NEB DUPP [A-D-C-F]
*RUD PEL DUPP [A-D-F]

In Saffran's study, children's correct responses after exposure to Language P were
numerically above chance for items exhibiting each these properties, though the
difference only reached significance for properties 1, 3, and 4. In a similar fashion,
CBL's overall correct response rate for each of the four item types was numerically
above chance, though the difference reached significance in all four cases
(significance tests reported in Table 10). For Language N, children's correct response

rates were once more numerically above chance for all four properties, though this
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was only significant for properties 3 and 4. Similarly, CBL's correct response rates did

not differ significantly from chance for the first two properties, and significantly

exceeded chance for property 3. However, the model's correct response rate was at

chance for property 4 (see Table 10).

Table 10

Mean Scores and Significance Tests (Two-tailed) against Chance (Three of Six

Possible), for Language P and Language N

Language Subjects/Model Rule1 Rule2 Rule3 Rule4

P Children 4.60**  3.20 5.20%*  4.27%*
CBL 3.60%* 4.60**  4.67** 4.07**

N Children 3.07 3.33 3.80*  3.80*
CBL 3.26 2.67 4.93**% 293

*p <0.05, **p < 0.01

Thus, when trained on the exact same items encountered by subjects, the

model not only provided a close numerical fit to the data but was able to capture

differences in children's sensitivity to specific properties of the grammar across the

two languages. Nevertheless, the model's performance did not match that of the child

subjects perfectly; it scored above chance on Rule 2 for Language P (children were
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numerically above chance but statistically at chance level), and was statistically at
chance level for Rule 4 for Language N (whereas children were statistically above
chance). These differences may stem in part from various features of the stimuli which

the model is not sensitive to, such as sequence length.

The model's close fit to child performance expands CBL's coverage of
distributional learning, and suggests that an ability to group words into larger units can
indeed account for subject performance in the original study. While predictive
dependencies between word classes were a potentially useful cue, the calculation of
statistics over classes in the present model could not account for subject performance
as well as could the item-based approach. This resonates with the superior
performance of the model on natural languages when working with words as opposed

to lexical categories.

Simulation 2: Modeling Children's Sensitivity to Phrase Frequency

Bannard & Matthews (2008) provide some of the first direct evidence that
children store frequent multiword sequences and that such sequences may be
processed differently than similar, less frequent sequences. Their study contrasted
children's repetition of four-word compositional phrases of varying frequency (based
on analysis of a corpus of child-directed speech; Maslen, Theakston, Lieven, &
Tomasello, 2004). For instance, go fo the shop formed a high-frequency phrase which
was contrasted with a low-frequency phrase, go fo the top. Two and 3-year-olds were

more likely to repeat an item correctly when its fourth word combined with the
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preceding trigram to form a frequent chunk, and 3-year-olds were significantly faster
to repeat the first three words. As the stimuli were matched for the frequency of the
final word and final bigram, only the frequencies of the final trigram and entire four-
word phrase differed across conditions, suggesting that children do, in some sense,

store multiword sequences as units.

If CBL provides a reasonable account of children's multiword chunk
formation, it should show similar phrase frequency effects to those found in the
Bannard and Matthews study, despite the fact that it is not directly sensitive to raw
whole-string frequency information (the frequency of a sequence is only maintained if
it has first been discovered as a chunk). To test this prediction, we exposed CBL to a
corpus of child-directed speech and computed the “chunkedness” of the test items'

representations in the model's chunkatory.

Method. The model architecture was identical to that used in prior simulations
(e.g., McCauley & Christiansen, 2011). We began by exposing the model to the dense
corpus of child-directed speech that was previously used in our natural language
simulations (Maslen, Theakston, Lieven, & Tomasello, 2004). This corpus was chosen
not only because of its density, but also because it was recorded in Manchester, UK,
where the Bannard and Matthews study was carried out. To capture the difference
between the 2- and 3-year-old subject groups in the original study, we tested the model
twice: once after exposure to the corpus up to the point at which the target child's age
matched the mean age of the first subject group (2;7), and once after exposure up to

the point at which the target child's age matched that of the second group (3;4).
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Following exposure, the chunkedness of each test item's representation in the model's

chunkatory was determined.

Scoring. Our previous analyses of the chunkatories built by CBL during
exposure to various corpora in previous natural language simulations showed that
most of the model's multiword chunks involved 2- or 3-word sequences. As the stimuli
in Bannard and Matthews all consisted of 4-word phrases, we focused on the chunk-
to-chunk statistics that would be used by the model to construct each phrase during
production, thereby offering a simulation of children's production attempts. A phrase's
score was calculated as the product of the BTPs linking each chunk in the sequence,
yielding the degree of chunkedness for that sequence. If a sequence happened to be
stored as a 4-word chunk in the chunkatory, the model received a chunkedness score
of 1, indicating a BTP of 1 (as no chunk-to-chunk probability calculation was
necessary). In the case of an item represented as two separate chunks, the degree of
chunkedness for the test item was calculated as the chunk-to-chunk BTP between the

two chunks.

Results and discussion. Two-year-olds in the original study were 10% more
likely to repeat a high-frequency phrase correctly than a phrase from the low-
frequency condition, while 3-year-olds were 4% more likely (both differences were
significant). There was also a duration effect found for the 3-year-olds, who were
significantly faster to repeat the first three words on high-frequency trials. CBL

exhibited phrase frequency effects that were graded appropriately across the three
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frequency bins used in the original study."” In the 2-year-old simulation, the mean
degree of chunkedness (BTP) scores were: 0.4 (high-frequency), 0.2 (intermediate-
frequency), and 0.008 (low-frequency). In the 3-year-old simulation, the mean BTP
scores were: 0.38 (high-frequency), 0.21 (intermediate-frequency), and 0.08 (low-
frequency). Thus, CBL was able to capture the general developmental trajectory
exhibited across subject groups: the difference in performance between high- and low-
frequency conditions was lower in our 3-year-old simulation, just as in Bannard and

Matthew's child subject group.

Thus, the model not only captured the graded phrase frequency effect exhibited
by the child subjects, but also fit the overall pattern of a less dramatic difference in
performance between high- and low-frequency conditions for the 3-year-old subject
group. As the stimuli in the original study were matched for unigram and bigram
substring frequencies, a simple bigram model could not produce a phrase frequency
effect like the one exhibited by the model; the result necessarily stems from CBL's
ability to discover multiword chunks. This is despite the fact that many of the test
items, even in the high-frequency group, were stored as two separate chunks in the
model's chunkatory. The chunk-to-chunk BTPs linking two-word chunks like a drink
and of milk (chunks forming a high-frequency phrase) were higher than the BTPs
linking chunks like a drink and of tea (chunks forming a low-frequency phrase),
despite the fact that of milk and of tea had nearly identical token counts in the

chunkatory. This is not a trivial consequence of overall phrase frequency in the

13 Note that while items in the Intermediate condition were listed by Bannard and Matthews, they
reported no results or analyses for children's repetition of them, beyond inclusion in a regression
analysis. We report CBL's performance for these items to emphasize the graded nature of the phrase
frequency effect exhibited by the model.
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corpus; because the model relies on backward rather than forward transitional
probabilities, the raw frequency count of the entire sequence was not the only
important factor (and was never utilized by the model). Of greater importance was the
number of different chunks that could immediately precede the non-initial chunks in
the sequence. For instance, because the bigrams of milk and of tea are matched for
frequency, and the sequence a drink immediately precedes of milk with greater
frequency than of tea, there are necessarily a greater number (in terms of token rather
than type frequency) of different two-word sequences that precede of tea which are not
a drink, resulting in a lower chunk-to-chunk BTP linking stored chunks like a drink
and of tea than a drink and of milk'?. Importantly, this difference in the statistical
properties of the sequences suggests that the overall cohesiveness of the sequence (as
captured by BTPs in the current instance) may be as important as overall phrase
frequency when it comes to the representation of multiword sequences. Future

behavioral work with children (and adults) should target this issue.

As noted above, the model captured the general finding that the high- and low-
frequency stimuli were processed more similarly by the older children. That this
counter-intuitive pattern was exhibited by the model supports the view that CBL does
indeed offer a psychologically plausible and informative account of children's
discovery and use of multiword chunks. Moreover, this result also resonates with the

developmental trajectory of the model's chunk inventory, in which the importance of

14 Because the stimuli were not matched for trigram substring frequency (the final trigram in
high-frequency phrases being of higher frequency that that of low-frequency phrases), the same pattern
would hold even if a and drink, in the previous example, were not represented as a single chunk by the
model; the BTP between drink and of milk would still be higher than that between drink and of tea, for
the same reasons discussed above.
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multiword sequences grows, rather than diminishes, over time. Figure 26 depicts the
number and size of the chunk types learned by the model during training up to 2;7 and
3;4 on the dense corpus. Importantly, while the number of types grows consistently
across chunks of various sizes, chunks of size four and greater are discovered at an
increased rate during the period between 2;7 and 3;4. Thus, while Bannard and
Matthews' (2008) finding of a less dramatic difference between conditions for the
older children might appear to suggest a decreased reliance on multiword sequences,
the model's ability to capture this pattern is actually driven by an increased reliance on
chunks. Because the model already has strong coverage of the items in the high-
frequency condition at 2;7, the discovery of new chunks between 2;7 and 3;4 primarily
increases the model's coverage of the test sequences in the low-frequency condition.
This leads us to reaffirm our prediction that the importance of multiword units may
actually grow, rather than diminish, throughout development. In this context, the
chunking mechanism made explicit in the model could help explain the apparent
pervasiveness of multiword units in adult language processing (as reviewed in the

introduction).
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Fig 26: Number and size (in words) of chunk types in the chunk inventory at the early and late
stages of Simulation 2. Each stage corresponds to the average age of the children in each age
group in Bannard and Matthews (2008).

Our results also have implications for approaches to multiword chunk storage
more generally: the fact that the model was able to capture phrase-frequency effects by
learning to form chunks over pre-segmented input underscores the idea that not all of

children's stored chunks need stem from initial “under-segmentation” of the speech
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stream (see also Arnon & Christiansen, in preparation, for discussion).

Simulation 3: Modeling the Role of Multiword Units in Children's Morphological

Development

Arnon and Clark (2011) examined the impact of multiword sequences on
children's morphological development, specifically with respect to patterns of over-
regularization when producing irregular noun plurals. American English speaking
children (mean age: 4;6) were tested in an elicitation paradigm in which images
depicting items corresponding to irregular plurals (e.g., a group of mice) were
displayed, followed by either a spoken lexically specific frame (e.g., three blind ) or
non-specific frame (e.g., so many ), which the child was then asked to complete
(e.g., by saying mice, or mouses in the case of an over-regularization error). A third
condition involved a general question (What are all these?). Children produced
irregular plurals more accurately, and with fewer over-regularization errors, when
prompted with lexically specific frames, though the so many frame did provide some
advantage over the general question. The facilitatory role of lexically specific frames
demonstrated by this study implies not only that children store multiword units,
consistent with the findings of Bannard and Matthews (2008), but also that such units

may play an active role in morphological development.

As this study demonstrates child sensitivity to frame+plural chunks of much
lower frequency than the sequences used by Bannard and Matthews (2008), with
several of the noun plurals being relatively infrequent in child-directed speech to begin

with (such as mice, which occurs only 8 times in the largest single corpus of American
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English in CHILDES)), the ability to fit the child data from this study stands as a
strong challenge for a computational account of multiword unit discovery. A current
limitation of CBL is that it cannot over-regularize independently of the utterances it
attempts to produce (i.e., during production, the model is simply faced with the task of
retrieving and sequencing chunks from a random collection of words corresponding to
the words in the child's utterances, only some of which include over-regularized
plurals). We were nevertheless able to model Arnon and Clark's results by looking at
the pattern of chunk-to-chunk BTPs linking together the stimuli used in the study,

using the exact same method as employed in Simulation 2.

Method. To model the Arnon and Clark results, we first constructed an
aggregated corpus from the entire US English portion of CHILDES (we focused on
American English because the original study was conducted in the US). The
aggregated US corpus was used instead of a single corpus because of the infrequency
of irregular noun plurals. The aggregated corpus was constructed by interweaving the
individual recording files chronologically by the age of the target child at the start of
each individual recording session, with the aim of approximating a naturalistic
developmental trajectory. Files featuring multiple target children of different ages
were excluded (to preserve a realistic developmental trajectory). The resulting
aggregated corpus was stripped of tags and punctuation, leaving only the original
sequence of words in each utterance (cf. McCauley & Christiansen, 2011). Proper

names (including the names of individual target children) were preserved.

We then exposed CBL to the aggregated corpus, stopping at a point that met
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the corpus target child age corresponding to the mean subject age in the original study
(4:6). To simulate the test, we treated each frame+plural combination as a sequence
(e.g., brush your teeth in the case of a lexically-specific frame sequence, and so many
teeth in the case of the corresponding general plural frame sequence) and examined its
representation in the model's chunkatory. As the target sequences consisted of 3
words, we focused on the chunk-to-chunk statistics which would be used by the model
to construct each sequence during production, thereby offering a simulation of
children's production attempts which relied on a probabilistic rather than all-or-
nothing measure. An item's score was calculated as the product of the BTPs linking
each chunk in the sequence (in the case of an item represented as two separate chunks,
the score for the test item was calculated as the chunk-to-chunk BTP between the two
chunks). If a sequence happened to be stored as a 3-word chunk in the chunkatory, the
model received a score of 1, indicating a BTP of 1 (as no chunk-to-chunk probability
calculation was necessary). In order to simulate the general question trials, which
featured no frame, we simply normalized the target irregular plural's count in the
chunkatory by the total number of chunk tokens represented by the model (this would
correspond to the model's likelihood of selecting the target irregular in the absence of

distributional/frame or semantic information).

Results and discussion. The children in the Arnon and Clark study attained
accuracy rates of 72% for the lexically-specific frame condition, 53% for the so many
frame condition, and 32% for the general question condition (all differences
significant, with accuracy defined as the proportion of trials in which irregular plurals

were named correctly). The mean CBL BTP scores for the items in each condition are

196



shown in Figure 26. Because so many did not immediately precede several of the
plurals as a chunk, the path from so to many to the irregular plural was necessarily
relied upon in certain instances (thus, the mean BTP for the so many condition was
quite low). For this reason, log BTP scores are given in Figure 27; in order to depict
the results in an intuitive format, we divided -1 by the mean log BTP for each

condition.’

15 As the materials across conditions in Arnon & Clark (2012) were not controlled for substring
frequency, we carried out a series of bigram analyses to ensure that a comparable effect could not be
gained with simple word-to-word transitional probabilities. As the stimuli in Bannard & Matthews
(2008) were controlled for substring frequencies, we did not perform a bigram analysis of the materials
used in Simulation 1.
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Fig. 27: Mean degree of chunkedness (-1/mean log(BTP)) for the each of the three conditions in

Simulation 3.

As can be seen in Figure 27, the model was able to capture the facilitatory
effect of lexically-specific frames on irregular production through its chunking of
frame+plural sequences, despite the relatively low occurrence of such sequences in the
corpus. Similarly to our simulation of the Bannard and Matthews (2008) study, this
implies that the overall cohesiveness of a sequence is no less important than frequency
when it comes to chunk discovery. In other words, whether something is chunked

together with the material preceding it depends as much on how likely the preceding
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material is, given the item being considered (as predicted by CBL's reliance on BTPs),
as on how strongly it is predicted by the preceding material (as would be predicted by
a reliance on FTPs). It is important to note that transitional probabilities offer a
measure of how likely a sequence is given the frequency of its component parts. Thus,
CBL does not rely on raw frequency of co-occurrence. This can be related to the
learning-theoretic notion of background rate: the more frequently an event occurs, the
less informative it is about the events it sometimes co-occurs with (for a thorough
discussion of background rates in language acquisition, see Ramscar, Dye, &

McCauley, 2013).

Despite this promising result, the model nevertheless exaggerated the
difference between the lexically-specific and general frame conditions. As noted
above, this stems from the lack of a path from the so many chunk to specific irregulars
throughout the corpus (mostly due to a lack of the relevant trigram's appearance in the
aggregated corpus to begin with), forcing the model to rely, instead, on a path across
three single-word chunks in such instances. Enhanced child performance in the so
many frame condition may have more to do with semantic than purely distributional
information at the word level. For instance, retrieval of the correct irregular form may
be easier in a context that clearly requires a plural (cf. Ramscar et al., 2013; Ramscar
& Yarlett, 2007). Nevertheless, distributional information of the sort learned by the
model clearly played a role in children's performance. For instance, in the original
study, there was no facilitatory effect of the so many frame for only one of the plurals
(geese); in a similar fashion, so many geese was the only sequence for which no path

through the chunkatory was found in the simulation (both findings clearly reflect the
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relatively low frequency of geese in child-directed speech and, therefore, the corpora

available in CHILDES).

Further modeling work incorporating information about the nonlinguistic cues
available to children (in the case of the above study, the images depicting irregular
plurals) and semantic information (such as the notion of plurality), in concert with the
types of linguistic distributional information used by CBL, will be necessary in order
to fully capture children's performance on this study (for a discussion of the prospects
and challenges of incorporating semantic information into models of language

development, see McCauley & Christiansen, 2014).

Conclusion

Our previous simulations have shown that the CBL model can account for a
considerable part of children's early linguistic behavior by using multiword units as
building blocks for learning to comprehend and produce sentences (McCauley and
Christiansen, 2011; McCauley et al., 2015). In the present paper, we have
demonstrated the psychological validity of these building blocks, showing that CBL
can also capture key psycholinguistic findings on children's discovery of multiword
units in the speech stream as well as their use in language processing (Arnon & Clark,
2011; Bannard & Matthews, 2008). Importantly, CBL functions by computing simple
statistics—to which infants and adults have been shown to be sensitive—in a purely
incremental, on-line fashion. That so much of children's distributional learning can be

accounted for by such a simple architecture is encouraging for the prospect of
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developing more comprehensive computational accounts of formulaic language
learning and use, as well as of language development and sentence processing more

generally.

The developmental findings we model here are mirrored in a number of recent
studies on adult comprehension (e.g., Arnon & Snider, 2010), production (e.g.,
Janssen & Barber, 2012), and artificial language learning (e.g., Arnon & Ramscar,
2012). This points to an intriguing hypothesis: the pervasive role of formulaic
language in adult processing may reflect the prior importance of multiword sequences
for language acquisition—especially when considering the difficulties adult second
language learners experience with formulaic language (e.g., Wray, 2002). That is,
multiword units may be so crucial for acquisition that they become key building
blocks of the emerging language system (see also Arnon & Christiansen, in
preparation). This idea contrasts with traditional approaches to language, which
incorporate sharp distinctions between lexicon and grammar (e.g., Chomsky, 1957),
but fits quite naturally with theoretical frameworks emerging from cognitive
linguistics, such as cognitive grammar (e.g., Langacker, 1987) and construction
grammar (e.g., Croft, 2001), which eschew the distinction between lexicon and
grammar. The parallels between psycholinguistic findings on children and adults'
multiword linguistic units suggests that we can reach a fuller understanding of
formulaic language by adopting a developmental perspective. In the present paper, we
have sought to provide the initial steps towards a developmental approach to studying
adults' formulaic language use, one which has its basis in explicit computational

mechanisms that are psychologically plausible and can account for developmental

201



psycholinguistic data.
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CHAPTER 4

COMPUTATIONAL INVESTIGATIONS OF MULTIWORD CHUNKS IN

LANGUAGE LEARNING'°
Despite clear advantages over children in a wide variety of cognitive domains, adult
language learners rarely attain native proficiency in pronunciation (e.g., Moyer, 1999),
morphological and syntactic processing (e.g., Felser & Clahsen, 2009; Johnson &
Newport, 1989), or the use of formulaic expressions (e.g., Wray, 1999). Even highly
proficient second-language users appear to struggle with basic grammatical relations,
such as the use of articles, classifiers, and grammatical gender (DeKeyser, 2005;
Johnson & Newport, 1989; Liu & Gleason, 2002), including L2 speakers who are
classified as near-native (Birdsong, 1992).

Previous approaches to explaining the differences between first-language (L1)
and second-language (L2) learning have often focused on neural and cognitive
differences between adults and children. Changes in neural plasticity (e.g., Kuhl,
2000; Neville & Bavelier, 2001) and the effects of neural commitment on subsequent
learning (e.g., Werker & Tees, 1984) have been argued to hinder L2 learning, while
limitations on children's memory and cognitive control have been argued to help guide
the trajectory of L1 learning (Newport, 1990; Ramscar & Gitcho, 2007).

While these approaches may help to explain the different outcomes of L1 and

L2 learning, we explore an additional possible contributing factor: that children and

16 An abridged version of this paper has been resubmitted after an initial round of reviews:
McCauley & Christiansen (under review). Computational investigations of multiword chunks in
language learning.
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adults differ with respect to the concrete linguistic units, or building blocks, used in
language learning. Specifically, we seek to evaluate whether L2-learning adults may
rely less heavily on stored multiword sequences than L1-learning children, following
the “starting big” hypothesis of Arnon (2010; see also Arnon & Christiansen, this
issue), which states that multiword units play a lesser role in L2, creating difficulties
for mastering certain grammatical relations. Driving this perspective on L2 learning
are usage-based approaches to language development (e.g., Lieven, Pine, & Baldwin,
1997; Tomasello, 2003), which build upon earlier lexically-oriented theories of
grammatical development (e.g., Braine, 1976) and are largely consistent with previous
theoretical alternatives to dual-system models proposed by linguists (e.g., Langacker,
1987). Within usage-based approaches to language acquisition, linguistic productivity
is taken to emerge gradually as a process of storing and abstracting over multiword
sequences (e.g., Tomasello, 2003; Goldberg, 2006). Such perspectives enjoy mounting
empirical support from psycholinguistic evidence that both children (e.g., Arnon &
Clark, 2011; Bannard & Matthews, 2008) and adults (e.g., Arnon & Snider, 2010;
Jolsvai, McCauley, & Christiansen, 2013) in some way store multiword sequences and
use them during comprehension and production. Computational modeling has served
to bolster this perspective, demonstrating that knowledge of multiword sequences can
account for children's on-line comprehension and production (e.g., McCauley &
Christiansen, 2011, 2014, 2016), as well as give rise to abstract grammatical
knowledge (e.g., Solan, Horn, Ruppin, & Edelman, 2005).

In the present paper, we compare L1 and L2 learners’ discovery and use of

multiword sequences using large-scale, corpus-based modeling. We do this by using a
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model of on-line language learning in which multiword sequences play a key role: the
Chunk-Based Learner model (CBL; McCauley & Christiansen, 2011, 2014, 2016).
Our approach can be viewed as a computational model-based variation on the
“Traceback Method” of Lieven, Behrens, Speares, and Tomasello (2003). Using
matched corpora of L1 and L2 learner speech as input to the CBL model, we compare
the model's ability to discover multiword chunks from the utterances of each learner
type, as well as its ability to use these chunks to generalize to the on-line production of
unseen utterances from the same learners. This modeling effort thus aims to provide
the kind of “rigorous computational evaluation” of the Traceback Method called for
by Kol, Nir, & Wintner (2014).

In what follows, we first introduce the CBL model, including its the key
computational and psychological features. We then report results from two sets of
computational simulations using CBL. The first set applies the model to matched sets
of L1 and L2 learner corpora in an attempt to gain insight into the question of whether
there exist important differences between learner types in the role played by
multiword units in learning and processing. Following these initial simulations, we
apply network-theoretic analyses to the resulting multiword chunk inventories in order
to better understand the extent to which they might support processes not yet captured
by CBL, such as abstraction to item-based schemas (e.g., Tomasello, 2003) or
constructions (e.g., Goldberg, 2006). In the second set of simulations, we use a slightly
modified version of the model, which learns from raw frequency of occurrence rather
than transition probabilities, in order to test a hypothesis based on a previous finding

(Ellis, Simpson-Vlach, & Maynard, 2008) suggesting that while L2 learners may

210



employ multiword units, they rely more on sequence frequency as opposed to
sequence coherence (as captured by mutual-information, transition probabilities, etc.).

We conclude by considering the broader implications of our simulation results.

The Chunk-based Learner Model

The CBL model is designed to reflect constraints deriving from the real-time nature of
language learning (cf. Christiansen & Chater, 2016). Firstly, processing is incremental
and online. In the model, all processing takes place item-by-item, as each new word is
encountered, consistent with the incremental nature of human sentence processing
(e.g., Altmann & Steedman, 1988). At any given time-point, the model can rely only
upon what has been learned from the input encountered thus far. This stands in stark
contrast to models which involve batch learning, or which function by extracting
regularities from veridical representations of multiple utterances. Importantly, these
constraints apply to the model during both comprehension-related and production-
related processing.

Secondly, CBL employs psychologically-inspired learning mechanisms and
knowledge representation: the model's primary learning mechanism is tied to simple
frequency-based statistics, in the form of backwards transitional probabilities
(BTPs)'”, which both infants (Pelucchi, Hay, & Saffran, 2009) and adults (Perruchet &
Desaulty, 2008) have been shown to be sensitive to (cf. McCauley & Christiansen,

2011 for more about this choice of statistic, and for why the model represents a

17 We compute backward transition probability as P(X]Y) = F(XY) / F(Y), where F(XY) is the
frequency of an entire sequence and F(Y) is the frequency of the most recently encountered item in that
sequence.
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departure from standard n-gram approaches, despite the use of transitional
probabilities). Using this simple source of statistical information, the model learns
purely local linguistic information rather than storing or learning from entire
utterances, consistent with evidence suggesting a primary role for local information in
human sentence processing (e.g., Ferreira & Patson, 2007). Following evidence for the
unified nature of comprehension and production processes (e.g., Pickering & Garrod,
2013), comprehension- and production-related processes rely on the same statistics
and linguistic knowledge.
Thirdly, CBL implements usage-based learning. All learning arises from individual
usage events in the form of attempts to perform comprehension- and production-
related processes over utterances. In other words, language learning is characterized as
a problem of learning to process, and involves no separate element of grammar
induction.

Finally, CBL is exposed to naturalistic linguistic input. It is trained and
evaluated using corpora of real learner and learner-directed speech taken from public

databases.

CBL Model Architecture

The CBL model has been described thoroughly as part of previous work (e.g.,
McCauley & Christiansen, 2011, 2016). Here, we offer an account of its inner
workings sufficient to understand and evaluate the simulations reported below. While

comprehension and production represent two sides of the same coin in the model, as
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noted above, we describe the relevant processes and tasks separately, for the sake of
simplicity.

Comprehension. The model processes utterances on-line, word by word as they
are encountered. At each time step, the model is exposed to a new word. For each new
word and word-pair (bigram) encountered, the model updates low-level distributional
information on-line (incrementing the frequency of each word or word-pair by 1). This
frequency information is then used on-line to calculate the BTP between words. CBL
also maintains a running average BTP reflecting the history of encountered word pairs,
which serves as a “threshold” for inserting chunk boundaries. When the BTP between
words rises above this running average, CBL groups the words together such that they
will form part (or all) of a multiword chunk. If the BTP between two words falls
below this threshold, a “boundary” is created and the word(s) to the left are stored as a
chunk in the model's chunk inventory. The chunk inventory also maintains frequency
information for the chunks themselves (i.e., each time a chunk is computed, its count
in the chunk inventory is incremented by 1, provided it already exists; otherwise, it is
initialized with a count of 1).

Once the model has discovered at least one chunk, it begins to actively rely
upon the chunk inventory while processing the input in the same incremental, on-line
fashion as before. The model continues calculating BTPs while learning the same
frequency information, but uses the chunk inventory to make on-line predictions about
which words should form a chunk, based on existing chunks in the inventory. When a
word pair is processed, any matching sub-sequences in the inventory's existing chunks

are activated: if more than one instance is activated (either an entire chunk, or part of a
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larger one), the words are automatically grouped together (even if the BTP connecting
them falls below the running-average threshold) and the model begins to process the
next word. Thus, knowledge of multiple chunks can be combined to discover further
chunks, in a fully incremental and on-line manner. If less than two chunks in the
chunk inventory are active, however, the BTP is still compared to the running average
threshold, with the same consequences as before. Importantly, there are no a priori
limits on the size of the chunks that can be learned by the model.

Production. While the model is exposed to a corpus incrementally, processing
the utterances on-line and discovering/strengthening chunks in the service of
comprehension, it encounters utterances produced by the target child of the corpus (or,
in the present study, target /earner, which is not necessarily a child) — this is when the
production side of the model comes into play. Specifically, we assess the model's
ability to produce an identical utterance to that of the target learner, using only the
chunks and statistics learned up to that point in the corpus. We evaluate this ability
using a modified version of the bag-of-words incremental generation task proposed by
Chang, Lieven, and Tomasello (2008), which offers a method for automatically
evaluating a syntactic learner on a corpus in any language.

As a very rough approximation of sequencing in language production, we
assume that the overall message the learner wishes to convey can be modeled as an
unordered bag-of-words, which would correspond to some form of conceptual
representation. The model's task, then, is to produce these words, incrementally, in the
correct sequence, as originally produced by the learner. Following evidence for the

role of multiword sequences in child production (e.g., Bannard & Matthews, 2008),
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and usage-based approaches more generally, the model utilizes its chunk inventory
during this production process. The bag-of-words is thus filled by modeling the
retrieval of stored chunks by comparing the learner's utterance against the chunk
inventory, favoring the longest string which already exists as a chunk for the model,
starting from the beginning of the utterance. If no matches are found, the isolated word
at the beginning of the utterance (or remaining utterance) is removed and placed into
the bag. This process continues until the original utterance has been completely
randomized as chunks/words in the bag.

During the sequencing phase of production, the model attempts to reproduce
the learner's actual utterance using this unordered bag-of-words. This is captured as an
incremental, chunk-to-chunk process, reflecting the incremental nature of sentence
processing (e.g., Altmann & Steedman, 1988; see Christiansen & Chater, 2016, for
discussion). To begin, the model removes from the bag-of-words the chunk with the
highest BTP given a start-of-utterance marker (a simple hash symbol, marking the
beginning of each new utterance in the prepared corpus). At each subsequent time-
step, the model selects from the bag the chunk with the highest BTP given the most
recently placed chunk. This process continues until the bag is empty, at which point
the model's utterance is compared to the original utterance of the target child.

We use a conservative measure of sentence production performance: the
model's utterance must be identical to that of the target child, regardless of
grammaticality. Thus, all production attempts are scored as either a 1 or a 0, allowing
us to calculate the percentage of correctly-produced utterances as an overall measure

of production performance.
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SIMULATION 1: MODELING THE ROLE OF MULTIWORD CHUNKS IN
L1 VS. L2 LEARNING

In Simulation 1, we assess the extent to which CBL, after processing the speech of a
given learner type, can “generalize” to the production of unseen utterances.
Importantly, we do not use CBL to simulate language development, as in previous
studies, but instead as a psychologically-motivated approach to extracting multi-word
units from learner speech. The aim is to evaluate the extent to which the sequencing of
such units can account for unseen utterances from the same speaker, akin to the
Traceback Method of Lieven et al. (2003).

To achieve this, we use a leave-10%-out method, whereby we test the model's
ability to produce a randomly-selected set of utterances using chunk-based knowledge
and statistics learned from the remainder of the corpus. We compare the outcome of
simulations performed using L2 learner speech (L2 — L2) to two types of L1
simulation: production of child utterances based on learning from that child's own
speech (C — C) and production of adult caretaker utterances based on learning from
the adult caretaker’s own speech (A — A). The C — C simulations provide a
comparison to early learning in L1 vs. L2 (as captured in the L2 — L2 simulations),
while the A — A simulations provide a comparison of adult L1 language to adult
speech in an early L2 setting. The third type of L1 simulation is included as a control,
allowing comparison to model performance in a more typical context: production of
child utterances after learning from adult caretaker speech (A — C). Crucially, the L2

— L2, C — C, and A — A simulations provide an opportunity to gauge how well
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chunk-based units derived from a particular speaker’s corpus generalize to unseen
utterances from the same speaker, while the A — C simulations provide a comparison
to a more standard simulation of language development.

If L2 learners do rely less heavily on multi-word units, as predicted, we would
expect for the chunks and statistics extracted from the speech of L2 learners to be less
useful in predicting unseen utterances than for L1 learners, even after controlling for

factors tied to vocabulary and linguistic complexity.

Methods
Corpora: For the present simulations, we rely on a subset of the European Science
Foundation (ESF) Second Language Database (Feldweg, 1991), which features
transcribed recordings of L2 learners over a period of 30 months following their
arrival in a new language environment. We employ this particular corpus because its
non-classroom setting allows better comparison with child learners. The data was
transcribed for the L2 learners in interaction with native-speaker conversation partners
while engaging in such activities as free conversation, role play, picture description,
and accompanied outings. Thus, the situational context of the recorded speech often
mirrors the child-caretaker interactions found in corpora of child-directed speech.

For child and L1 data, we rely on the CHILDES database (MacWhinney,
2000). We selected the two languages most heavily represented in CHILDES (German
and English), which allowed for comparison with L2 learners of these languages (from
the ESF corpus), while holding the native language of the L2 learners constant

(Italian). We then used an automated procedure to select, from the large number of
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available CHILDES material, corpora which best matched each of the available L2
learner corpora in terms of size (when comparing learner utterances) for a given
language. Thus, we matched one L1 learner corpus to each L2 learner corpus in our
ESF subset. The final set of L2 corpora included: Andrea, Lavinia, Santo, and Vito
(Italians learning English); Angelina, Marcello, and Tino (Italians learning German).
The final set of matched CHILDES corpora included: Conor and Michelle (English,
Belfast corpus); Emma (English, Weist corpus); Emily (English, Nelson corpus);
Laura, Leo, and Nancy (German; Szagun corpus). Because utterance length is an
important factor, we ran tests to confirm that neither the L1 child utterances [t(6) = -
1.3, p = 0.24] nor the L1 caretaker utterances [t(6) = 0.82, p = 0.45] differed
significantly from the L2 learner utterances in terms of number of words per utterance.
Thus, we included all utterances from the original corpora, which remained unfiltered
with respect to utterance length.

While limitations on the number of available corpora made it impossible to
match the corpora along every relevant linguistic dimension, we controlled for these
factors in our statistical analyses of the simulation results. In particular, we were
interested in controlling for linguistic complexity and vocabulary range: as a proxy for
linguistic complexity, we used mean number of morphemes per utterance (MLU),
while type-token ratio (TTR) served as a measure of vocabulary range, as the corpora

were matched for size. Details for each corpus and speaker are presented in Table 11.
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Table 11: Details of Corpora and Speaker Types

Corpus Speaker Language MLU TTR
Type

Conor Child English 3.10 0.10
Emily Child English 4.13 0.09
Emma Child English 3.32 0.07
Michelle Child English 4.60 0.09
Laura Child German 2.51 0.13
Leo Child German 2.41 0.10
Nancy Child German 1.92 0.08
Conor Adult English 5.26 0.05
Emily Adult English 7.20 0.10
Emma Adult English 3.67 0.06
Michelle Adult English 6.07 0.05
Laura Adult German 3.90 0.09
Leo Adult German 3.78 0.10
Nancy Adult German 3.33 0.09
Andrea L2 English 3.98 0.10
Lavinia L2 English 5.32 0.08
Santo L2 English 4.60 0.10
Vito L2 English 3.05 0.12
Angelina L2 German 3.70 0.13

219




Marcello L2 German 4.72 0.15

Tino L2 German 5.10 0.12

Each corpus was submitted to an automated procedure whereby tags and
punctuation were stripped away, leaving only the speaker identifier and original
sequence of words for each utterance. Importantly, words tagged as being spoken by
L2 learners in their native language (Italian in all cases) were also removed by this
automated procedure. Long pauses within utterances were treated as utterance

boundaries.

Simulations: For each simulation, we ran ten separate versions, each using a different
randomly-selected test group consisting of 10% of the available utterances. In each
case, the model must attempt to produce the randomly withheld 10% of utterances
after processing the remaining 90%. For each L1-L2 pair of corpora, we conduct four
separate simulation sets: one in which the model is exposed to the speech of the L.2
learner and must subsequently attempt to produce the withheld subset of 10% of the
L2 learner utterances (L2 — L2), and three simulations involving the L1 corpus (one
in which the model is tasked with producing the left-out 10% of the child utterances
after exposure to the other child utterances [C — C], one in which the model must
attempt to produce L1 caretaker utterances after exposure to the other L1
adult/caretaker utterances [A — A], and one in which the model must attempt to

produce a random 10% of the child utterances after exposure to the adult/caretaker
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utterances [A — C]). Thus, we seek to determine how well a chunk inventory built on
the basis of a learner's speech (or input) helps the model generalize to a group of

unseen utterance types.

Results and Discussion

As can be seen in Figure 28, the model achieved stronger mean sentence production
performance for all three sets of L1 simulations than for the L2 simulations (Child —
Child: 49.6%, SE: 0.8%; Adult — Child: 47.5%, SE: 0.9%; Adult — Adult: 42.1, SE:
0.7%; L2 — L2: 36.3%, SE: 0.6%). To examine more closely the differences between
the speaker types across simulations while controlling for linguistic complexity and
vocabulary breadth, we submitted these results to a linear regression model with the
following predictors: Learner Type (L1 Adult vs. L1 Child vs. L2 Adult, with L1
Adult as the base case), MLU, and TTR. The model yielded a significant main effect
of L2 Adult Type [B=-5.67, t=-1.98, p<0.05], reflecting a significant difference
between the L2 performance scores and the base case (L1 Adult). The Child L1 Type
did not differ significantly from the Adult L1 Type. While there was a marginal effect
of TTR [B=-0.7, t=-1.7, p=0.08], none of the other variables or interactions reached

significance. The model had an adjusted R-squared value of 0.83.
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Fig. 28: Graph depicting the mean sentence production accuracy scores on the leave-10%-out

task for each of the four simulation types.

Thus, CBL's ability to generalize to the production of unseen utterances was
significantly greater for L1 children and adults, relative to L2 learners. This suggests
that the type of chunking performed by the model may better reflect the patterns of L1
speech than those of L2 speech. This notion is consistent with previous hypotheses
suggesting that adults rely less heavily than children on multiword chunks in learning,
and that this can negatively impact mastery over certain aspects of grammar (see
Arnon & Christiansen, this issue, for discussion). It also fits quite naturally alongside
findings of differences in L2 learner use of formulaic language and idioms (e.g., Wray,
1999).

In addition, CBL exhibited no significant difference in its ability to capture L1

adult vs. child speech, once linguistic factors tied to MLU and TTR were controlled
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for. This is consistent with previous work using the CBL model, which suggests that
multiword chunks discovered during early language development do not diminish, but
may actually grow in importance over time (McCauley & Christiansen, 2014),
reflecting recent psycholinguistic evidence for the use of multiword chunks in adults
(e.g., Arnon & Snider, 2010; Jolsvai et al., 2013).

It is important to reiterate that the aims of Simulation 1 are to compare the
extent to which multiword units extracted from the speech of L1 vs. L2 learners can
generalize to unseen utterances from the same speakers; though CBL could
theoretically be used to do so, the present simulations are not intended to provide an
account of L2 acquisition. For such an endeavor, it would be necessary to account for
a variety of factors, such as the influence of pre-existing linguistic knowledge from a
learner’s L1 (cf. Arnon, 2010; Arnon & Christiansen, this issue) and the role of overall
L2 exposure (e.g., Matusevych, Alishahi, & Backus, 2015).

In what follows, we use network analyses to explore the actual structure of the
chunk inventories discovered by the model during these simulations, following the
notion that greater overlap between chunks can better support the gradual process of
abstraction from which linguistic productivity is taken to emerge in usage-based
approaches (e.g., Tomasello, 2003; Goldberg, 2006; Solan et al., 2005). If L2 learners'
knowledge of multiword chunks—as estimated by our simulations—differs
structurally from that of L1 learners, this could be an important factor in some of the
qualitative and quantitative differences observed for actual L2 vs. L1 learning

outcomes.
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NETWORK ANALYSIS OF MODEL CHUNK INVENTORIES

In usage-based approaches to language, knowledge of multiword sequences is
taken to be an important starting point for the emergence of linguistic productivity
(e.g., Arnon, 2010; Tomasello, 2003). While the version of CBL used in the present
study does not capture processes of abstraction, being limited solely to the discovery
and use of concrete units, the structure of this knowledge provides a window onto the
potential utility of such in scaffolding the acquisition of more abstract and productive
units, such as grammatical constructions (e.g., Goldberg, 2006).

Given that the underlying motivation for this study was to determine whether
corpus-based modeling can provide clues about the role of multiword units in L2 vs.
L1 speech, and given that differences in such a role have been hypothesized to
contribute to diverging learning outcomes observed for L2 vs. L1 speakers (e.g.,
Arnon, 2010; Arnon & Christiansen, this volume), the present section seeks to further
explore the structure of the chunk inventories extracted from the speech of each
learner type in Simulation 1.

In accordance with usage-based approaches to language development, we seek
to determine whether the L2 learners' chunk inventories—as estimated by our
simulations—differ in structural properties such as connectivity and local structure,
which could support early steps towards abstract knowledge, such as the development
of lexical frames or item-based schemas (e.g., Tomasello, 2003; Theakston & Lieven,
this issue). Thus, we are primarily focused on overlap between chunks, from which a

considerable amount of productivity may emerge.
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As an example of such a process, consider the learning of a schema with a
single slot: 7 want to [process] it. Through storage of overlapping multi-word
sequences matching this pattern (e.g., I want to get it; I want to change it; I want to
smash it) the [process] slot may begin to emerge, while at the same time reinforcing a
semantic relationship between process verbs (for a computational approach to abstract
grammar emerging from processes of “alignment and comparison,” see Solan et al.,
2005). Once the learner has established the 7 want fo [process] it schema, novel
utterances can be produced through the insertion of a process verb.

In what follows, we analyze the chunk inventories of each learner from
Simulation 1 by conceiving of the inventories as networks of partially overlapping
chunks. We analyze the inventories of each learner type according to three graph-
theoretic measures of network structure, which are seen to measure the connectivity of
the chunk inventory, and therefore the extent to which it may support—or reflect—
productivity in the form of item-based schemas and constructions. If the types of
multi-word units evident in L2 learner speech exhibit less overlap, this may be an

important source of differences in learning outcomes.

Methods

We built 21 different networks: one for each L2 learner (L2 — L2), L1 child (C — C),
and L1 caretaker (A — A) corpus (7 of each type). Following exposure of the CBL
model to a given corpus, we treated each chunk in the model's chunk inventory as a
vertex. Edges were drawn between chunks in the case of multiword overlap between

chunks, with multiword overlap defined as sharing a sub-sequence of at least two
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words. For example, the chunks in the box and in the bag would be connected by an
edge because of the overlapping subsequence in the, while open the bag and empty the
bag would be connected because of the overlapping subsequence the bag.

For each of the 21 simulations, we calculated three network statistics which
were averaged over all nodes in the network. These were: path length, clustering
coefficient, and degree (for an overview of these statistics, see Baronchelli, Ferrer-i-
Cancho, Pastor-Satorras, Chater, & Christiansen, 2013). Path length describes the
average shortest path length between any two nodes in the network. The clustering
coefficient of a node is the overall proportion of connections between its immediate
neighbors out of all those possible. Degree simply describes the number of edges
connecting a node to other nodes. Together, these network statistics provide a sense of
the interconnectedness and structure of a graph: average degree provides a measure of
overall connectivity, while path length offers a measure of global access across the
network, and clustering coefficient offers a measure of local interconnectedness and
structure.

For each network, we constructed 100 undirected Erdos-Rényi (ER) random
graphs (Erdds & Rényi, 1960), which were equivalent in the number of nodes and
edges, but with connections made at random, thereby removing any structure inherent
in the chunk inventories themselves. This provided a baseline against which to
compare each network's actual statistics: we rely upon the difference between each
average statistic and the average for that statistic across all 100 matching ER graphs as
a measure of how much the statistic deviates from what would be expected based

merely on network size (note, however, that average degree is necessarily identical for
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the chunk-based and random networks, since they are matched for number of nodes
and edges; for this reason we report the actual number rather than the difference in

what follows).

Results and Discussion
The difference between each average network statistic and that of the matched set of
ER random graphs is shown in Table 12, averaged across each learner/corpus type. As
can be seen, there were remarkable similarities between the L1 child and L2 adult
networks, while the L1 adult networks displayed higher degree and clustering
coefficient, but with much less marked difference from the ER random graphs in
average path length relative to the other two network types.

Table 12:

Mean network statistics for each simulation / learner type

Learner Type Path Length Clustering Degree
Coefficient
L1 Adult -0.62 0.14 7.76
L1 Child -5.99 0.12 2.83
L2 Adult -5.75 0.12 2.99

Note: Path Length and Clustering Coefficient reflect differences between the average
network statistics and the average for the matched ER random graphs, while degree

describes the actual degree.
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The overall closeness of the network statistics for the L1 child and L2 adult
networks, as well as their differences compared with the L1 adult networks, were
statistically reliable: for degree, a one-way ANOV A confirmed significant differences
across learner types: [F(1,18) = 9.67, p<0.01], with pairwise comparisons confirming a
higher degree for adults relative to child learners [t(12) = 3.28, p < 0.01] and L2
learners [t(12) = 3.29, p < 0.01], but no difference between child and L2 learners
[t(12) = 0.22, p = 0.83]. For clustering coefficient, a one-way ANOV A also yielded
significant differences across learner types: [F(1,18) = 5.34, p<0.05], with pairwise
comparisons confirming a higher clustering coefficient (relative to the paired ER
graphs) for adults relative to child learners [t(12) =2.94, p < 0.05] and L2 learners
[t(12) =3.1, p < 0.01], but no difference between child and L2 learners [t(12) = 0.24, p
= 0.81]. For path-length, a one-way ANOV A once-more confirmed significant
differences across learner types: [F(1,18) = 9.1, p<0.01], with pairwise comparisons
confirming a higher path length (relative to the paired ER graphs) for adults relative to
child learners [t(12) = 3.24, p < 0.01] and L2 learners [t(12) = 3.05, p < 0.05], but no
difference between child and L2 learners [t(12) = 0.22, p = 0.83].

Thus, there were no significant differences between the L1 child and L2 adult
networks in terms of connectivity, global access, or local structure. However, there
were marked differences when comparing either network type to those of the L1
adults, which displayed greater connectivity (as reflected by degree) and local
structure (reflected by clustering coefficient; adult networks more closely approached
a small-world structure), but with less global access (as reflected by path length). The

difference in path length may be due in part to the heavier tail of the distribution of
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words (and therefore chunks) for the L1 adults: chunk types containing infrequent
words may be less likely to overlap with other chunks.

We would expect for L1 children's chunk inventories to come to more closely
resemble those of the L1 adults as language experience increases; from the perspective
of usage-based approaches, in which the importance of multiword linguistic units is
paramount, connectivity and local structure would be necessary to support abstraction
over chunks. This could support greater linguistic productivity through the formation
of lexical frames or schemas (e.g., Tomasello, 2003), an important stepping stone
towards more fully abstract grammatical constructions (e.g., Goldberg, 2006). Such
network properties may also support the “alignment and comparison” of sequences,
which could give rise to a considerable amount of grammatical knowledge (e.g., as
implemented in Solan et al., 2005).

However, there may be reason to expect that L2 learner chunk inventories
drawn from more experienced L2 speakers would not grow to resemble the L1 adults,
as we might expect of older L1 children's networks. While previous work has shown
that adults can learn fixed “phrases” in an artificial language (Ellis, 1996), consistent
with the present analyses, other evidence suggests that adult learners do not use
multiword sequences to support grammatical development to the same extent as
children do (e.g., Wray, 1999). Future work of the sort described in the present paper
is called for, following access to more longitudinal corpora of L2 learner speech which
can be matched to larger corpora in the CHILDES database.

Despite the much greater connectivity and structure of the L1 adult networks,

the L1 child and L2 adult networks nevertheless displayed a considerable amount of
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connectivity, structure, and access. While the lack of a statistically significant
difference between the two network types lends support to the notion that the amount
of overall language exposure may be a key source of the differences between L1 and
L2 learning outcomes (cf. Matusevych et al., 2015), the results of Simulation 1 support
the idea that L1 and L2 learners learn different types of chunk-based information or
use that information differently. In our simulations, L2 chunk inventories were less
useful in generalizing to unseen utterances, despite their similarity to child L1
inventories in terms of structure.

One intriguing possibility is that L2 learners are less sensitive to coherence-
related information (such as transition probability, in this instance), and may rely more
on raw frequency of exposure. Thus, a model based on raw co-occurrence frequencies
may provide a better account of L2 learner chunking than the CBL model. It is to this

possibility that we turn our attention in what immediately follows.

SIMULATION 2: EVALUATING THE ROLE OF RAW FREQUENCY VS.
COHERENCE

The chunk inventories learned by the CBL model for L2 learners are structurally quite
similar to those learned for L1 children. Nevertheless, the results of Simulation 1
strongly suggest that there may be important differences in the utility of these chunks,
as well as the extent to which they are relied on by the two types of learner. Here, we
turn our attention to exploring a possible difference in the means by which the two
learner types arrive at chunk-based linguistic units: in a study conducted by Ellis et al.

(2008), L2 learners were shown to rely more heavily on raw sequence frequency,
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while L1 adult subjects displayed a sensitivity to sequence coherence (as reflected by
mutual information). Following this finding, we explore the hypothesis that raw
frequency-based chunks may provide a better fit to the speech of L2 learners than
those discovered through transition probabilities (as in the CBL model), while yielding
the opposite result for L1 child and adult speakers. Thus, the purpose of Simulation 2
is to determine the extent to which the move to a purely raw frequency-based style of
chunking affects performance when compared to the transition probability-based
chunking of CBL.

To this end, we conduct a second round of production simulations, identical to
those of Simulation 1, but with a modified version of the model in which chunks are
acquired through the use of raw frequency rather than transitional probabilities. If the
findings of Ellis et al. (2008) do indeed correspond to a greater reliance on raw
frequency—as opposed to overall sequence coherence—in L2 learners, we would
expect that a raw frequency-based version of the model would improve production

performance in the L2 simulations while lowering across the L1 simulations.

Method
Corpora: The corpora and corpus preparation procedures were identical to those

described for Simulation 1.

Model Architecture: We implemented a version of the model which was identical in
all respects, save one: all BTP calculations were replaced by the raw frequency of the

sequence in question (i.e., Frequency[XY] as opposed to
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Frequency[XY]/Frequency[Y]). Thus, boundaries were inserted between two words
when their raw bigram frequency fell below a running average bigram frequency,
while they were grouped together as part of a chunk if their raw bigram frequency was
above this running average. During production, incremental chunk selection took
place according to raw frequency of two chunks' co-occurrence in sequence (as
opposed to using the BTPs linking them): at each time step, the chunk in the bag
which formed the highest-frequency sequence when combined with the preceding

chunk was chosen.

Simulations: Using the modified, raw frequency-based version of the model, we ran a
parallel series of simulations (one simulation corresponding to each simulation in

Simulation 1). The outcomes of both sets of simulations were then compared to assess
whether the switch to raw frequency-based chunking affected the outcomes of L1 and

L2 learner simulations differently.

Results and Discussion

The aim of Simulation 2 was to determine how much the switch to raw frequency-
based chunking affected performance for a parallel version of each original CBL
simulation (as before, 10 simulations for each corpus and simulation type). We
compare the two model/simulation sets directly by calculating the difference in
performance scores between Simulations 2 and 1. As predicted, this switch tended to
improve L2 performance scores while decreasing L1 adult and child scores. While the

differences in overall means calculated across learner types were small (L2 — L2:
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+1%, A — A: -1%, C — C: -2%), there were considerable individual differences
across simulations (Std. Dev of 4%, with change sizes ranging from 0% to 11%). The
mean differences across learner types were statistically reliable: a three-way
ANCOVA with Learner Type (Adult L1, Child L1, and Adult L2), MLU, and TTR as
factors confirmed a significant main effect of Type [F(1,198)=12.78, p<0.001], with
post-hoc tests confirming greater improvement for L2 simulations over Adult L1
[t(129.6)=2.39,p<0.05] and Child L1 simulations [t(119.6)=4.39,p<0.001].

Therefore, as hypothesized, the raw frequency-based chunking model was
better able to capture the speech of the L2 adult learners, while the transition
probability-based chunking of the CBL model provided a better fit to the L.1 child and
L1 adult learners alike. Why might this be the case? It is clear that both types of
information are highly complementary: for instance, McCauley and Christiansen
(2014) show that developmental psycholinguistic results which appear to stem from
overall sequence frequency (e.g., Bannard & Matthews, 2008) can also be accounted
for using transition probability-based chunking of the sort performed by CBL. If
amount of exposure to the target language was the primary driving factor, we would
expect the L1 child speech to behave more similarly to that of the L2 adults in this
context. This supports the notion that L2 learning adults learn from the input
differently, in ways that go beyond mere exposure. Pre-existing knowledge of words
and word-classes may lead L2 learners to employ different strategies than those used
in L1—and while such knowledge is not factored into our simulations explicitly, it is
implicitly reflected in the nature of the L2 speech being chunked and sequenced by the

model. Nevertheless, the network analyses reported above bear out remarkable
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similarities in the L1 Child vs. L2 learner chunk inventories, suggesting that
knowledge of multiword sequences could still play an important role in the speech of
our L2 sample. It may merely be that these sequences are discovered and used in ways

that are less closely captured by the CBL model.

GENERAL DISCUSSION
This study represents an initial step towards the use of large-scale, corpus-based
computational modeling to uncover similarities and differences in the linguistic
building blocks used by L1 and L2 learners. Together, our findings suggest that
multiword sequences play a role in L1 and L2 learning alike, but that these units may
be arrived at through different means and employed to different extents by each type
of learner.

The first set of simulations shows that a chunk-based model of acquisition,
CBL (McCauley & Christiansen, 2011, 2014, 2016), better generalizes to the
production of unseen utterances when exposed to corpora of children and adults
speaking their L1 than when exposed to corpora of L2 learners. Our subsequent
network-theoretic analyses of chunk inventories learned by the model for each corpus
showed considerably more connectivity and local structure in the networks of L1
adults than those of the L1 children and L2 adults, which were statistically
indistinguishable from one another along the considered dimensions. We interpret the
greater connectivity and local structure of the adult L1 networks according to usage-
based approaches which underscore the importance of stored multiword sequences in

abstraction: greater overlap supports the learning of item-based schemas, lexically
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specific frames, and construction-like units (e.g., Tomasello, 2003; Goldberg, 2006).
Because the chunks in these networks were based on the actual speech of each learner
type (as opposed to passive input), the higher overlap can also be interpreted as
reflecting greater use of schemas or frames in the L1 adults. If we follow previous
evidence that L2 learners do not use multiword sequences to support grammatical
development to the same extent as children do (e.g., Wray, 1999), we might expect
networks built from the speech of more experienced L2 adults to resemble the adult
L1 networks to a lesser extent than those of more experienced L1 children.

Finally, we tested the notion, derived from the findings of Ellis et al. (2008),
that L2 learners may arrive at knowledge of multiword chunks through different
means than L1 learners. The study of Ellis et al. (2008) showed that L2 learners were
sensitive to raw sequence frequency but not the overall coherence of a sequence (such
as would be reflected by mutual information, transition probabilities, etc.), in contrast
to L1 adults. As expected, we found that the switch to a raw frequency-based version
of the CBL model lead improved scores on L2 simulations to a statistically significant
extent, while models of L1 child and adult speech were significantly stronger when
using the transition probabilities (as in the original set of simulations).

Thus, taken together, our findings support the notion that there may be
important differences in the building blocks typically involved in L1 vs. L2 learning,
and that these differences cannot be explained away merely on the basis of amount of
exposure: despite similarities in the structure of the chunk inventories learned by CBL
when exposed to L1 child and L2 adult speech, those chunks were more useful for

production of the child utterances, with further simulations supporting the notion that
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multiword units may be arrived at through different means in L1 vs. L2. While these
findings can be taken to support the hypothesis that multiword units play a lesser role
in L2, creating difficulties for mastering certain grammatical relations (e.g., Arnon,
2010; Arnon & Christiansen, this issue), further work using longitudinal corpora of L2
learner speech will be necessary in order to gain a clearer picture of the development
of multiword units in L2. Another potential contributing factor to the differences
observed in the present study is that knowledge of semantic and/or syntactic categories
tied to words in a learner's L1 may shape the types of units drawn upon in their L2
learning. Implicit attempts to overlay L2 words upon L1 categories and constructions
may lead to sensitivity to statics over abstract categories—for instance, statistics
computed over word classes (e.g., Thompson & Newport, 2007)—which could
account for L2 learners' lesser sensitivity to item-based coherence, as observed by
Ellis et al. (2008) and in the present simulations. The present study serves to
demonstrate the promise of large-scale, corpus-based modeling for exploring these and
other questions related to the differences between L1 and L2 learning.

APPENDIX

Table 13

Top Ten Most Frequent Chunks for English Learners

LEARNER TYPE TOP TEN CHUNKS

Emma Child L1 this is; you can; I think; I want; and
then; I don’t; in there; how about; I’m

gonna; you tell
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Conor Child L1 I’ve got; that one; I have; in there;
Jurassic Park; this is; look at; I don’t;
you see; a big
Michelle Child L1 I don’t know; that one; I don’t; I have;
and then; this one; in there; my
mummie; this here; my bed room
Emily Child L1 and then; I want; I need; go to; I think;
I don’t know; I don’t; my daddy; my
back; my bed
Andrea Italian Speaker I don’t know; I think; there are; I
L2 have; the door; in Italy; we have; the
bag; in front; the table
Lavinia Italian Speaker you know; I don’t know; I think; I
L2 don’t; my husband; I have; this one;
you have; to find; to go
Santo Italian Speaker | I think; in Italy; for me; this is; I don’t
L2 know; I see; I mean; I don’t; I go; you
know what
Vito Italian Speaker I dunno; I don’t know; I think; the

L2

house; too much; come back; in Italy;

in the; the left; this girl
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CHAPTER 5

TESTING PREDICTIONS, ADDRESSING LIMITATIONS, AND CHARTING
DIRECTIONS FOR FUTURE WORK

While the computational modeling work presented in this dissertation succeeds along
a number of lines, its limitations are readily apparent. First and foremost is the fact
that it never moves beyond purely item-based processing to capture the sort of
productivity linguistic theories ultimately aim to explain. While Chapters 2 and 4
discuss, at length, the ways in which the chunk-based linguistic knowledge built up by
the model can serve as an ideal starting point for abstracting to partially productive
frames, schemas, and constructions, the transition to a more comprehensive account of
grammatical development is an area of ongoing research and will remain a priority for
future work. Computationally more complex models such as the ADIOS model of
Solan, Horn, Ruppin, and Edelman (2005) have served to demonstrate the power of
item-based learning in abstracting over sequences to arrive at grammatical

constructions.

The second greatest limitation of the CBL approach is that it cannot be said to
actually model comprehension or production on the level of meaning. Rather, it
captures specific aspects of comprehension and production, but—absent extra-
linguistic information—does not actually form semantic representations during
comprehension, or use semantic information in the incremental production of its

utterances. This, of course, is a limitation of most usage-based computational accounts
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of grammatical development, which have primarily focused on what can be learned
from distributional information. While the distributional approach has met with
considerable success, as outlined in the introduction of Chapter 2, it cannot provide a
complete account of children's language use: the child must learn to compute
meanings based on previously unencountered utterances, and to generate novel

utterances conveying meanings they themselves wish to communicate.

The relative lack of semantic information in computational accounts of
grammatical development stems in part from the difficult challenge of simulating
naturalistic semantic representations that children may use. Moreover, the disciplinary
segregation within developmental psycholinguistics further exacerbates the problem:
separate sub-fields have typically focused on largely distinct areas, along traditional
boundaries, such as those dividing phonology from word learning, word learning from
grammatical development, and grammatical development from semantic development.
As a result, much of the computational work on grammatical development has focused

on structural considerations.

Because the linguistic theories which form the basis for usage-based
approaches to language acquisition hold that grammatical development is
fundamentally tied to form-meaning mappings (e.g., e.g., Croft, 2001; Fillmore, 1985;
Goldberg, 1995, 2006; Langacker, 1987, 2008), the relative dearth of computational
cognitive modeling work on grammatical development to incorporate semantics
presents a serious challenge for usage-based approaches to overcome more broadly.

Initial progress, however, has been made in two key areas tied to early grammatical

244



development: verb-argument structure and semantic role assignment (e.g., Alishahi &
Stevenson, 2010; Chang, 2008; Chang, Dell, & Bock, 2006; Dominey, Hoen, & Inui,
2006; Perfors, Tenenbaum, & Wonnacott, 2010; Shayan, 2008). The success of these
models is encouraging with respect to future work in modeling semantics-driven
grammatical development more broadly. For a review of computational models of
language development which incorporate semantic representations, as well as the
prospects and challenges of extending these approaches, see McCauley and

Christiansen (2014).

Testing Key Predictions of Chunk-based Learning and Processing

Future experimental work with human subjects will aim to test predictions drawn from
the modeling work presented in this dissertation as well as the theoretical approach
underpinning it. Initial work along these lines has met with promising results.
McCauley and Christiansen (2015) tested a key prediction of the theoretical
perspective embodied by the CBL model: that chunking ability shapes individual
differences in on-line sentence processing abilities. In the initial part of the study, we
tested a novel twist on a paradigm previously used to study chunking: the serial recall
task. The stimuli consisted of triplets and pairs of letter consonants which appear in
naturally occurring text at varying frequencies, and were designed to avoid
resemblance to syllables or words (as there were no vowels). The results revealed
considerable variation in participants’ ability to successfully generalize previous

knowledge of these sub-lexical chunks of letter consonants to novel contexts. In the
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second half of the experiment, subjects processed complex sentences, featuring two
relative clause types (object- and subject-relative clauses), in a self-paced reading task.
Chunking performance from the initial part of the study was then used to predict
reaction times at the critical main verb for both relative clause types. Chunking ability
successfully predicted processing times for both complex sentence types.

These findings confirm the modeling approach taken in this dissertation,
demonstrating that chunking is relevant for understanding language processing, in line
with the notion that chunking takes place at multiple levels: low-level chunking of
sub-lexical letter sequences successfully predicted complex sentence processing
abilities, consistent with the idea that chunking may reduce the computational burden
imposed by long-distance dependencies during sentence processing.

This work is also of relevance to understanding language acquisition more
broadly: as described in Chapters 1 and 2, the Now-or-Never bottleneck (Christiansen
& Chater, 2016) requires that language learning take place in an incremental, on-line
fashion, suggesting an integral role for chunking. This is consistent both with the
modeling work described in this dissertation, and with previous computational
modeling work showing that chunking can account for key findings relevant to
children’s phonological knowledge and word learning abilities (e.g., Jones, Gobet,
Freudenthal, Watson, & Pine, 2014). Future behavioral work will examine individual
differences in chunking ability in a developmental context, attempting to trace the
impact of chunking on specific aspects of acquisition, including the early development

of complex sentence processing.
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The need for further individual differences work with adults is underscored by
the finding that good chunkers had fewer difficulties in relative clause processing,
while poor chunkers were shown to have greater difficulties in object-relative clause
processing relative to subject-relative clause processing, consistent with previous
findings from individual differences studies on statistical learning (Misyak et al.,
2010) and verbal working memory (King & Just, 1991). This raises the intriguing
possibility that experience-based chunking may partly mediate the relationship
between those more nebulous constructs and sentence processing, consistent with the
finding that individual differences in language experience are tied to similar subject-
relative vs. object-relative effects (Wells et al., 2009; cf. Christiansen & Chater,
2016a). Future work will seek to gauge the relative importance of chunking for
language processing in individual differences studies which examine chunking ability

alongside measures of working memory and statistical learning.

Conclusion

The computational modeling work described in this dissertation has served to
demonstrate the power simple learning and memory mechanisms, such as chunking, in
accounting for key facets of children's linguistic behavior. In Chapter 2, I presented
the CBL model. In this chapter, I compared CBL's simple framework for statistically-
based chunking to other on-line models, including a purely recognition-based
chunking model (PARSER; Perruchet & Vintner, 1998) as well as a purely statistical

model. CBL not only outperformed both of these baselines, but achieved strong, stable
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shallow parsing performance while accounting for the majority of child utterances
across corpora drawn from a typologically diverse set of 29 Old World languages.
Having shown, in Chapter 1, that the CBL model is capable of discovering and
using chunk-based building blocks to perform aspects of comprehension and
production, in Chapter 3 I test the psychological validity of these building blocks.
Studies covering several key developmental psycholinguistic findings regarding
children's distributional and item-based learning are simulated. It is shown that CBL
can capture developmental data from a range of findings spanning from child artificial
language learning (Saffran, 2002) to child sensitivity to multiword sequence frequency
(Bannard & Matthews, 2008) to morphological development (Arnon & Clark, 2011).
These results are discussed in the context of their significance for understanding
formulaic language use over the course of development, spanning into adulthood.
Chapter 4 explores the notion that children rely more heavily on multiword
units in language learning than do adults learning a second language. To this end, I
take an initial step towards using large-scale, corpus-based computational modeling as
a tool for exploring differences between the linguistic units of different learner types.
The CBL model is used to compare the usefulness of chunk-based knowledge in
accounting for the speech of second-language learners vs. children and adults speaking
their first language. In the same vein as the TraceBack method (Lieven, Behrens,
Speares, & Tomasello, 2003), I compare the CBL model's ability to use chunks
discovered in the speech of single learners to generalize to the on-line production of
unseen utterances from the same learners. This modeling effort thus aims to provide

the kind of “rigorous computational evaluation” of the Traceback Method called for
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by Kol, Nir, & Wintner (2014). Moreover, I explore the nature of the chunk
inventories acquired by the model for each learner type, using a network-theoretic
approach. Together, these findings suggest that while multiword units are likely to
play an important role in second-language learning, adults may learn less useful
chunks, rely on them to a lesser extent, and arrive at them through different means
than children learning a first language.

Finally, Chapter S explored the limitations and future directions for the
modeling work presented in this dissertation, highlighting the need to incorporate
semantic representations in future extensions. Ongoing behavioral research testing key

predictions of the theoretical foundations of the CBL model was described.
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