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ABSTRACT

We present Language-mediated, Object-centric Representation Learning (LORL),
a paradigm for learning disentangled, object-centric scene representations from
vision and language. LORL builds upon recent advances in unsupervised object
segmentation, notably MONet and Slot Attention. While these algorithms learn an
object-centric representation just by reconstructing the input image, LORL enables
them to further learn to associate the learned representations to concepts, i.e., words
for object categories, properties, and spatial relationships, from language input.
These object-centric concepts derived from language facilitate the learning of
object-centric representations. LORL can be integrated with various unsupervised
segmentation algorithms that are language-agnostic. Experiments show that the
integration of LORL consistently improves the object segmentation performance
of MONet and Slot Attention on two datasets via the help of language. We also
show that concepts learned by LORL, in conjunction with segmentation algorithms
such as MONet, aid downstream tasks such as referring expression comprehension.

1 INTRODUCTION

Cognitive studies show that human infants develop object individuation skill from diverse sources
of information: spatial-temporal information, object property information, and language (Xu, 1999;
2007; Westermann & Mareschal, 2014). Specifically, young infants develop object-based attention
that disentangles the motion and location of objects from their visual appearance features. Later
on, they can leverage the knowledge acquired through word learning to solve the problem of object
individuation: words provide clues about object identity and type. The general picture from cognitive
science is that object perception and language co-develop in support of one another (Bloom, 2002).

Our long-term goal is to endow machines with similar abilities. In this paper, we focus on how
language may support object segmentation. Many recent works have studied the problem of un-
supervised object representation learning, though without language. As an example, factorized,
object-centric scene representations have been used in various kinds of prediction (Goel et al., 2018),
reasoning (Yi et al., 2018; Mao et al., 2019), and planning tasks (Veerapaneni et al., 2020), but they
have not considered the role of language and how it may help object representation learning.

As a concrete example, consider the input images shown in Fig. 1 and the paired questions. From
language, we can learn to associate concepts, such as black, pan, and legs, with the referred object’s
visual appearance. Further, language provides cues about how an input scene should be segmented
into individual objects: a wrong parsing of the input scene will lead to an incorrect answer to the
question. We can learn from such failure that the handle belongs to the frying pan (Fig. 1a) and the
chair has four legs (Fig. 1b).

Motivated by these observations, we propose a computational learning paradigm, Language-mediated,
Object-centric Representation Learning (LORL), associating learned object-centric representations to
their visual appearance (masks) in images, and to concepts—words for object properties such as color,
shape, and material—as provided in language. Here the language input can be either descriptive
sentences or question-answer pairs. LORL requires no annotations on object masks, categories, or
properties during the learning process.

In LORL, four modules are jointly trained. The first is an image encoder, learning to encode an
image into factorized, object-centric representations. The second is an image decoder, learning to
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Figure 1: Two illustrative cases of Language-mediated, Object-centric Representation Learning.
Different colors in the segmentation masks indicate individual objects recognized by the model.
LORL can learn from visual and language inputs to associate various concepts: black, pan, leg with
the visual appearance of individual objects. Furthermore, language provides cues about how an input
scene should be segmented into individual objects: (a) segmenting the frying pan and its handle into
two parts yields an incorrect answer to the question (Segmentation II); (b) an incorrect parsing of the
chair image makes the counting result wrong (Segmentation II).

reconstruct masks for individual objects from the learned representations by reconstructing the input.
These two modules share the same formulation as recent unsupervised object segmentation research,
and may be realized as methods such as MONet (Burgess et al., 2019) and Slot Attention (Locatello
et al., 2020).

The third module in LORL is a pre-trained semantic parser that translates the input sentence into a
semantic, executable program, where each concept (i.e., words for object properties such as ‘red’)
is associated with a vector space embedding. Finally, the last module, a neural-symbolic program
executor, takes the object-centric representation from Module 1, intermediate representations from
Module 2, and concept embeddings and the semantic program from Module 3 as input, and outputs
an answer if the language input is a question, or TRUE/FALSE if it’s a descriptive sentence. The
correctness of the executor’s output and the quality of reconstructed images (as output of Module 2)
are the two supervisory signals we use to jointly train Modules 1, 2, and 4.

We integrate the proposed LORL with state-of-the-art unsupervised segmentation methods,
MONet (Burgess et al., 2019) and Slot Attention (Locatello et al., 2020). The evaluation is based
on two datasets: ShopVRB (Nazarczuk & Mikolajczyk, 2020) contains images of daily objects and
question-answer pairs; PartNet (Mo et al., 2019) contains images of furniture with hierarchical struc-
ture, supplemented by descriptive sentences we collected ourselves. We show that LORL consistently
improves existing methods on unsupervised object segmentation, much more likely to group different
parts of a single object into a single mask.

We further analyze the object-centric representations learned by LORL. In LORL, conceptually similar
objects (e.g. objects of similar shapes) appear to be clustered in the embedding space. Moreover,
experiments demonstrate that the learned concepts can be used in new tasks, such as visual grounding
of referring expressions, without any additional fine-tuning.

2 RELATED WORK

Unsupervised object representation learning. Given an input image, unsupervised object repre-
sentation learning methods segment objects in the scene and build an object-centric representation
for them. A mainstream approach has focused on using compositional generative scene models that
decompose the scene as a mixture of component images (Greff et al., 2016; Eslami et al., 2016; Greff
et al., 2017; Burgess et al., 2019; Engelcke et al., 2020; Greff et al., 2019; Locatello et al., 2020).
In general, these models use an encoder-decoder architecture: the image encoder encodes the input
image into a set of latent object representations, which are fed into the image decoder to reconstruct
the image. Specifically, Greff et al. (2019); Burgess et al. (2019); Engelcke et al. (2020) use recurrent
encoders that iteratively localize and encode objects in the scene. Another line of research (Eslami
et al., 2016; Crawford & Pineau, 2019; Kosiorek et al., 2018; Stelzner et al., 2019; Lin et al., 2020)
leverages object locality to attend to different local patches of the image. These models often use
a pixel-level reconstruction loss. In contrast, we propose to explore how language, in addition to
visual observations, may contribute to object-centric representation learning. There have also been
work that uses other types of supervisions, such as dynamic prediction (Kipf et al., 2020; Bear et al.,
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2020) and multi-view consistency (Prabhudesai et al., 2020). In this paper, we focus on unsupervised
learning of object-centric representations from static images and language.

Visual concept learning. Learning visual concepts from language and other forms of supervisions
provides useful representations for various downstream tasks, such as cross-modal retrieval (Wu et al.,
2019), visual-question answering (Yi et al., 2018; Mao et al., 2019), and scene manipulation (Prab-
hudesai et al., 2020). Previous work has been focusing on various types of representations (Ren
et al., 2016; Wu et al., 2017), training algorithms (Faghri et al., 2018) and supervisions (Johnson
et al., 2016; Yang et al., 2018). In this paper, we focus on learning visual concepts that can be
grounded on object-centric representations. Recent works on object-centric grounding of visual
concepts (Wu et al., 2017; Mao et al., 2019; Prabhudesai et al., 2020) have shown great success in
achieving high performance in downstream tasks and strong generalization from a small amount of
data. However, these methods assume pre-trained object detectors to generate object proposals in the
scene. In contrast, our LORL learns to individuate objects and associates concepts with the learned
object-centric representations without any annotations on object segmentation masks or properties.

3 PRELIMINARIES

Before delving into our language-mediated object-centric representation learning paradigm, we first
discuss a general formulation that unifies multiple concurrent unsupervised object representation
learning methods and a neuro-symbolic framework for learning visual concepts from language.

3.1 UNSUPERVISED OBJECT-CENTRIC REPRESENTATION LEARNING

Given an image I , a typical unsupervised object representation learning model will decompose
the scene into a series of slot profiles {(z1, x1,m1), . . . , (zK , xK ,mK)}, where each slot profile is
expected to represent an object (or nothing, as the number of slots may be greater than the actual
number of objects in the scene). Here zi is the object feature, xi is the object image, and mi is the
object mask specifying its location in the scene.

In our paper, we focus on two recent models, MONet (Burgess et al., 2019) and Slot Attention
(Locatello et al., 2020). MONet uses a recurrent spatial attention network (Ronneberger et al., 2015)
to segment out objects in the scene, and adopts a variational autoencoder (Kingma & Welling, 2014)
to encode objects as well as reconstructing object images for self-supervision. At a very high level,
its objective function is calculated as
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where the first term is a pixel-wise L2 reconstruction loss and the second term computes the KL
divergence between the distribution of zk’s and a prior Gaussian distribution.

Slot Attention uses a transformer-like attention network (Vaswani et al., 2017) to extract object
features, and decode them with convolutional neural networks to component images and object masks.
The model is trained by the same reconstruction loss in the form of L2-norm:
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3.2 NEURO-SYMBOLIC CONCEPT LEARNING

The neuro-symbolic concept learner (NS-CL; Mao et al., 2019) learns visual concepts by looking at
images and reading paired questions and answers. NS-CL takes a set of segmented objects in a given
image as its input, extracts their visual features with a ResNet (He et al., 2015), translates the input
question into an executable program by a semantic parser, and executes the program based on the
object-centric representation to answer the question. The key idea of NS-CL is to explicitly represent
individual concepts in natural language (colors, shapes, spatial relationships, etc.) as vector space
embeddings, and associate them with the object embeddings.

NS-CL answers the input question by executing the program based on the object-centric representation.
For example, in order to query the name of the white object in Fig. 2, NS-CL first filters out the object
by computing the cosine similarity between the concept white and individual object representations,
which produces a “mask” vector where each entry denotes the probability that an object has been
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Figure 2: Our LORL contains four modules. (a) An image encoder encodes the input image into a
factorized, object-centric representation. (b) An image decoder learns to reconstruct the image from
the learned representations. It also decodes an objectness score based on the representation. (c) A
pre-trained semantic parser translates the input sentence into an executable program and associates
concepts with learnable vector embeddings. (d) A neuro-symbolic program executor takes the object-
centric representation, the objectness scores, the parsed program, and concept embeddings as input to
predict the answer (if the input is a question) or TRUE/FALSE (if the input is a descriptive sentence).

selected. The output “mask” on the objects will be fed into the next module and the execution will
continue. The last query operation will produce the answer to the question. The vector embeddings
of individual objects and the concepts will be jointly trained based on language supervision.

4 LANGUAGE-MEDIATED, OBJECT-CENTRIC REPRESENTATION LEARNING

Marrying the ideas of unsupervised object-centric representation learning and neuro-symbolic concept
learning, we are able to learn an object-centric representation using both visual and language
supervision. Fig. 2 shows an overview of Language-mediated, Object-centric Representation Learning
(LORL). In LORL, four modules are optimized jointly: an image encoder, an image decoder, a
semantic parser, and a neuro-symbolic program executor.

Image encoder. Given an input image, we first use the image encoder (Fig. 2a) to individuate
objects in the scene and extract an object-centric scene representation. It takes the input image as its
input, individuates objects in the scene, and produces a collection of latent slot embeddings {zi}.

Image decoder. The decoder (Fig. 2b) takes the object-centric representation produced by the
image encoder and produces a 3-tuple for each individual slot (xk,mk, sk), where xk reconstructs the
RGB image of the slot, mk reconstructs the mask, and sk ∈ [0, 1] is a scalar indicating the objectness
of the slot. That is, whether k-th slot corresponds to a single object in the scene. Here, we have
extended the general pipeline we described in Section 3.1 with an objectness indicator. It serves dual
purposes. First, it weights each reconstructed component image while generating the reconstructed

image. Mathematically, the reconstructed image I ′ is computed as: I ′ =
∑K

k=1
sk · (mkxk). Second,

it mediates the output of all filter operations in the program executor.

In this paper, we will experiment with two image encoder-decoder options: MONet (Burgess et al.,
2019) and Slot Attention (Locatello et al., 2020). They are both compatible with the learning paradigm
described above. For both models, we use a single linear layer to predict the objectness score for
each slot on top of the second-last layer of their image decoders.

Semantic parser. A pre-trained semantic parser (Fig. 2c) will translate the input question into an
executable program composed of primitive operations, such as filter, which filters out objects
with certain concepts and query, which queries the attribute of the input object. We use roughly
the same domain-specific language (DSL) for representing programs as CLEVR (Johnson et al.,
2017a, see also Appendix A for details). All concepts that appear in the program, such as white, are
associated with distinct, learnable concept embedding vectors.

Neuro-symbolic program executor. The program executor (Fig. 2d) takes the object-centric rep-
resentation from the image encoder {zk}, the objectness score {sk} from the image decoder, the
concept embeddings and the program generated by the semantic parser as its input. It executes the
program based on the visual and concept representations to answer the question.
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Q: The small plate is 
what color?

P:scene, 

filter[small], 

filter[plate], 

query[color]

A: purple

Q: What number of 

ceramic things are there?

P:  scene, 

filter[ceramic], 

count

A: 1

D: There is a part 

left of the cyan seat, 

its color is red.

P:  scene, 

filter[cyan, 

seat], 

relate[left], 

equal[red]

D: The number of 

legs there is 4.

P:  scene, 

filter[leg], 

count, 

equal[4]

D: The color of 

the back is brown. 

P:  scene, 

filter[back], 

query[color], 

equal[brown]

(a) Examples on Shop-VRB-Simple (b) Examples on PartNet-Chairs

Q: There is a plastic thing; 

are there any heavy metal 

things behind it?

P:  scene, 

filter[plastic], 

relate[behind], 

filter[heavy, 

metal], exist

A: True

Figure 3: In Shop-VRB-Simple, questions involve seven different attributes of objects in the scene:
name, size, weight, material, color, shape, mobility. In PartNet-Chairs, images are paired with
sentences describing the names and colors of the parts in the scene, and their relationships.

The original program executor in NS-CL (Section 3.2) assumes a pre-trained object detector for gener-
ating object proposals. In LORL, we associate each object representation with an objectness score sk.
Recall that a filter operation in NS-CL produces a mask vector indicating whether an object has
been selected. Here, we mediate the output of an filter(c) operation as min(sk,filter(c)).
Intuitively, a slot will be selected only if, first, it has concept c and, second, it corresponds to a single
object in the scene.

Training paradigm. During training, we jointly optimize the image encoder, the image decoder,
and the concept embeddings. They are trained by minimizing the loss L:

L = α · Lperception + β · Lreasoning.

For MONet-based image encoder-decoder, we use Equation 1 as the perception loss Lperception, while
for Slot Attention-based encoder-decoder, we use Equation 2. The neuro-symbolic program executor
produces a distribution over candidate answers to the input question. We use the cross-entropy loss
between the predicted answer and the ground truth answer as Lreasoning.

We use a three-stage training paradigm in LORL. First, we train the model with only visual inputs
with Lperception for N1 epochs. Next, we fix the image encoder and the image decoder, and optimize
the concept embeddings with the loss term Lreasoning for N2 epochs. During this second stage, the
image encoder and the decoder can already produce descent object segmentation results. Finally,
we jointly optimize all three modules for N3 epochs. We provide detailed information about the
hyperparameters for different models in Appendix B.

5 EXPERIMENTS

We first evaluate whether the representations learned by LORL lead to better image segmentation
with the help of language. We then evaluate how these representations may be used for instance
retrieval, visual reasoning, and referring expression comprehension.

5.1 IMAGE SEGMENTATION

Data. We use two datasets for image segmentation evaluation. The first, Shop-VRB-Simple, is
based on Shop-VRB (Nazarczuk & Mikolajczyk, 2020), a dataset of complex household objects and
question-answer pairs. The second is based on chairs in PartNet (Mo et al., 2019), a dataset where
the objects are different parts of a chair. Fig. 3 shows some examples from the two datasets.

Shop-VRB is a visual reasoning dataset, similar to CLEVR (Johnson et al., 2017a), but with complex
household objects of different sizes, weights, materials, colors, shapes, and mobility. Because
the original Shop-VRB dataset includes very small and highly transparent objects and complex
backgrounds, which current unsupervised representation learning models cannot handle, we generate
10K images with a clean background ourselves using large objects from the dataset. We also pair
every image with 9 questions, resulting in 90K questions in total. The test split has 960 images and
8.6K questions. We name this variant Shop-VRB-Simple.
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(a) ARI ↑ GT Split ↓ Pred Split ↓

Slot Attention (SA) 83.51±2.3 15.68±1.9 13.19±1.5
LORL + SA 89.23±1.6 9.95±1.6 10.18±1.3

(b) Slot Attn. LORL + SA

Coffee maker 39.4±7.0 21.9±8.3

Blender 38.9±11.5 17.7±3.4

Toaster 33.4±3.9 16.4±7.2

Table 1: (a) Results on Shop-VRB-Simple. LORL helps to improve Slot Attention Locatello et al.
(2020) in all metrics. (b) The Ground Truth split ratio for the three object categories where Slot
Attention most commonly fail. LORL helps Slot Attention to reduce the ratio by 50%.

Image

Slot Attention

LORL + SA

Figure 4: Visualization on Shop-VRB-Simple. Pixels with the same color represent a mask produced
by the models. The Slot Attention model often fails to segment blenders, coffee makers, and toasters.
LORL helps to greatly improve its results.

While the previous literature on unsupervised object segmentation mainly focuses on settings where
objects are spatially disentangled, we also explore how language may help when objects of interest
are different parts of a global shape. To this end, we collect a new dataset, PartNet-Chairs, using
chair shapes from PartNet. Every image here shows a chair, where each part of the chair (legs, seat,
back, arms) is randomly assigned a color. We select six different chair shapes with one or four legs
and zero or two arms. We generate 5K images for training. Each image is paired with 8 descriptive
sentences generated from human-written templates, resulting in 40K examples in total. The test split
has 960 images. Each sentence describes the name and color of parts. We provide all templates in
Appendix C. We are interested in whether object-centric representation learning models may separate
these parts and whether and how language may help in this scenario.

Baselines. We use MONet (Burgess et al., 2019) and Slot Attention (Locatello et al., 2020) as the
image modules (Modules 1 and 2), and evaluate how the incorporation of language may improve
their performance. Because MONet is color-sensitive, and on Shop-VRB-Simple, many objects have
diverse colors and specular reflection, it does not produce meaningful results there. Thus we only
show results with MONet on PartNet-Chairs. We show results with Slot Attention on both datasets.

Metrics. We use three metrics for evaluation. Following Greff et al. (2019), we first use the Adjusted
Rand Index (ARI; Rand, 1971; Hubert & Arabie, 1985). It treats segmentation as a clustering problem:
each mask is the cluster index that the pixels within belong to. ARI is computed as the similarity
between the predicted and ground truth clusters, and ranges from 0 (random) to 1 (perfect match).

In practice, we found this pixel-wise metric is sensitive to the size of objects: a model that infrequently
makes mistakes on large objects will have lower ARI than one that frequently mis-segments small
objects. Thus, we in addition design two object-centric metrics:

• Ground Truth Split Ratio (GT Split) measures the ratio of objects (GT masks) that are
covered by more than one prediction mask.

• Prediction Split Ratio (Pred Split) measures the ratio of prediction masks that cover more
than one object (GT mask).

Concretely, we first assign each pixel to the prediction mask with the maximum value at the pixel.
We say a prediction mask covers an object if it covers at least 20% of the object’s pixels. The GT and
Pred Split ratios are thus defined as:
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ARI ↑ GT Split ↓ Pred Split ↓

MONet 91.41±3.7 10.3±5.1 14.09±5.2

LORL + MONet 94.91±2.1 4.95±0.7 4.02±2.5

Slot Attention 87.32±3.6 12.54±6.6 22.99±5.0

LORL + Slot Attention 95.81±1.0 3.39±1.1 2.92±1.0

Table 2: Quantitative results on PartNet-Chairs. All numbers are in percentage. LORL consistently
improves MONet’s and Slot Attention’s performance on segmentation.

Image

Slot

Attention

LORL 

+ SA

Image

MONet

LORL 

+ MONet

Figure 5: Visualization on PartNet-Chairs. Pixels with the same color represent a mask produced by
the models. LORL successfully recognizes different parts in various situations.

GTSplit =
# of objects that are covered by > 1 masks

# of objects that are covered by > 0 masks
; PredSplit =

# of masks that cover > 1 objects

# of masks that cover > 0 objects
.

Ideally, there is a one-to-one correspondence between objects and predicted masks, with both GT
Split and Pred Split being 0.

Results. The quantitative results on SHOP-VRB-Simple are summarized in Table 1. We show the
mean and standard error on each metric over 3 runs. Since our semantic parsing module is trained
on paired question-program pairs, it achieves nearly perfect accuracy (> 99.9%) on test questions.
Thus, in later sections, we will focus on evaluating object segmentation, concept grounding, and
downstream task performances. LORL helps Slot Attention achieve better segmentation results in all
three metrics. From visualizations in Fig. 4, we find that the original Slot Attention model struggles
with metallic objects; but with LORL, it performs much better in those cases.

To further explore how LORL helps Slot Attention on failure cases, we calculate the Ground Truth
Split Ratio for each object category, and find that Slot Attention most often fail to segment coffee
makers, blenders, and toasters as a whole. These objects have complex sub-parts and their appearance
changes quickly when the viewpoint changes. With the help of language, Slot Attention improves
consistently over its ablative variants across all the three metrics we have, reducing the GT split ratio
by 50% on average, as shown in Table 1b.

On PartNet-Chairs, LORL also helps both MONet and Slot Attention improve with a large margin,
as shown in Table 2. The results are averaged over 4 runs. MONet in general performs well on this
dataset, though it still sometimes merges different parts with the same color into a single mask. An
example can be found in Fig. 5, column 3, where the blue arm and the blue bottom in the input image
are put into the same mask by MONet. Such an issue is alleviated in LORL + MONet. Fig. 5 also
includes examples to show how LORL helps Slot Attention.

As shown in Table 2, the improvement on Slot Attention is larger and more consistent, compared
with the improvement on MONet. We hypothesize that this is because the two models adopt
different approaches for aligning object features and masks. While MONet uses separate modules for
segmentation and object representation learning, Slot Attention obtains masks by directly decoding
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k = 1 k = 3 k = 5

Slot Attention 54.07±2.6 43.70±1.7 37.02±1.7
LORL + SA 94.03±0.6 91.03±1.3 87.71±1.7

Table 3: The percentage (%) of retrieved objects that
belong to the same category as the query object. With
LORL, objects within the same category are more likely
to be close to each other in the feature space. The results
are averaged over 3 runs.

QA Accuracy

LORL + SA (No FT) 62.79±1.6
LORL + SA 92.72±1.0

Table 4: Our three-stage train-
ing paradigm improves visual concept
learning. Without fine-tuning (i.e., the
third training stage), the question an-
swering accuracy drops by 30%. The
results are averaged over 3 runs.

object representations. Having a shared representation might have allowed Slot Attention to gain
more from language supervision.

5.2 INSTANCE RETRIEVAL

We now analyze the learned object representations on Shop-VRB-Simple. We first use them for
instance retrieval: for each model, we randomly select a segmented object and use its learned
representation to search for its k nearest neighbors in the feature space. Then, for each selected object,
we compute how many of the k nearest neighbors belong to the same category. During searching,
we only consider object representations whose corresponding mask, after decoding, has at least an
Intersection over Union (IoU) of at least 0.75 with a ground truth object mask. We sample 1,000
object features from each model for evaluation.

Table 3 includes results with k = 1, 3, 5, suggesting that the object representations learned by LORL
+ Slot Attention are better for retrieval, compared with features learned by Slot Attention alone
without language. This is because Slot Attention often confuses categories that are visually similar
but conceptually different, such as baking tray and chopping board.

5.3 VISUAL REASONING

As another analysis, we also evaluate how the learned representation of LORL +Slot Attention
performs on visual question answering on the Shop-VRB-Simple dataset. Here we compare with
an ablated version of LORL, where we only train the model for the first two stages, as stated at the
end of Section 4. We do not train the model for the third stage—jointly optimizing or fine-tuning
all three trainable modules. We name this ablation LORL + SA (No FT). Through this analysis, we
hope to understand the importance of joint training of the vision modules (Modules 1 and 2) and the
reasoning module (Module 4).

Table 4 shows that joint training is crucial for visual reasoning. This resonates with the previous result,
where visually similar objects are clustered together in the latent space, impeding the usefulness of
the information encoded.

5.4 REFERRING EXPRESSION COMPREHENSION

Finally we evaluate the representations learned by LORL on referring expression comprehension,
where given an expression referring to a set of objects in the scene, like “The white plates”, the model
is expected to return all of the corresponding object masks. After learning all needed concepts from
question-answer pairs, LORL can naturally handle referring expression without any further training,
if we assume a pre-trained semantic parser.

We choose the IEP-Ref model (Liu et al., 2019) as our baseline. It uses a module approach and
receives direct segmentation supervision. On Shop-VRB, we adapt the code provided by Liu et al.
(2019) to generate 17K training examples, only for IEP-Ref, and 1.7K testing referring expressions for
evaluating both LORL and IEP-Ref. Measured in Recall@0.5 (the ratio of the recalled objects based
on an IoU threshold of 0.5), IEP-Ref performs better than LORL, but the margin is small (90.1% vs.
84.4%). Note that while IEP-Ref has been trained on 17K training examples with ground truth object
segmentations, LORL does not require any training data on referring expression comprehension.
The relatively comparable results are strong evidence that the representations learned by LORL also
transfer to a new task.
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6 CONCLUSION

We have proposed Language-mediated, Object-centric Representation Learning (LORL), a paradigm
for learning object-centric representations from vision and language. Experiments on Shop-VRB-
Simple and PartNet-Chairs show that language significantly contributes to learning better representa-
tions. This behavior is consistent across two unsupervised image segmentation models.

Through systematic studies, we have also shown how LORL helps models to learn object represen-
tations that encode conceptual information, and are useful for downstream tasks such as retrieval,
visual reasoning, and referring expression comprehension.
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A DOMAIN-SPECIFIC LANGUAGE (DSL)

LORL extends the domain-specific language of the CLEVR dataset (Johnson et al., 2017a) to
accommodate descriptive sentences. Specifically, we add an extra primitive operation: Equal(X,
y). It takes two inputs. In our case, the first argument X is the output of a Query, Exist, or Count
operation. All three operations output a distribution over possible answers. The second argument y is
either a word or number, such as TRUE, white, or 4. The Equal operation computes the probability
of X=y. In LORL, models are trained to maximize the output probability.

B HYPERPARAMETERS

For optimization hyperparameters, we largely adopt original settings in Burgess et al. (2019) and
Locatello et al. (2020). Table 5 summarizes the hyperparameters for the loss weights (α and β), the
number of training epochs of different stages (N1, N2, N3), and the batch size. We early-stop the
training when QA performance converges. We were skipping the second training phase on PartNet-
Chairs because the first training phase (vision-only) yields very poor segmentation performance on
this dataset. Establishing a meaningful grounding of concepts could be hard in this case. If we keep
the second training phase for LORL + Slot Attention on PartNet-Chairs, the model converges slower
in the third training phase (15 more epochs in our experiments), but the final performance remains
the same.

Shop-VRB-Simple PartNet-Chairs
Slot Attention MONet Slot Attention

α 1 0.01 1
β 0.1 1 0.1

Batch Size 64 64 64
N1 800 800 400
N2 20 0 0
N3 80 200 200

Table 5: Hyperparameters of LORL

Learning rate scheduling For Slot Attention models, during the first training stage (perception-
only), we use the learning rate schedule described in the original paper on both datasets. Specifically,
the initial learning rate is 4 × 10−4, and is fixed 10K iterations. After that, we decay the learning
rate by 0.5 for every 100K iterations. On PartNet-Chairs, after the first stage, Slot Attention models
continue to use the same learning rate scheduling. For Shop-VRB-Simple, we switch to a fixed
learning rate of 0.001 during N2 phase, which takes 20 epochs. After 20 epochs, we decrease the
learning rate to 2× 10−4. We further decrease the learning rate to 2× 10−5 after another 65 epochs.
We use the Adam optimizer (Kingma & Ba, 2015) for Slot Attention models.

For MONet models, we use RMSProp with a learning rate of 0.01 during the first stage, and use
0.001 for the second and the third stage.

Meanwhile, we also follow NS-CL (Mao et al., 2019) to use curriculum learning. Specifically, in the
second training stage, we limit the number of objects in the scene to be 3. In the third training stage,
we gradually increase the number of objects in the scene and the complexity of the questions.

C PARTNET-CHAIRS DATASET

Table 6 illustrates all templates that we use to generate descriptive sentences on the PartNet-Chairs
dataset. We also show the corresponding latent programs for each template.

In PartNet-Chairs, all programs for descriptive sentences end with an Equal operator, which
evaluates to true iff. both of its arguments are equal to each other. We train our model with paired
images and sentences, by maximizing the probability that the first argument equals to the second
argument.
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Table 6: All templates that we use to generate descriptive sentences on the PartNet-Chairs dataset.
The question mark indicates that the attribute preceding it is optional. “X/Y” means choosing either X
or Y.

Template Example Sentence Example Program

There is/are <number>
<color>?

(<part name>/part).

There are 4 legs. Scene, Filter[Leg],

Count, Equal[4]

The number of <color>?
(<part name>/part) there is
<number>.

The number of legs there is 4. Scene, Filter[Leg],

Count, Equal[4]

There is a <color>? (
<part name>/part).

There is a brown seat. Scene, Filter[Brown,

Seat], Exist,

Equal[True]

There is no <color>? (
<part name>/part).

There is no brown seat. Scene, Filter[Brown,

Seat], Exist,

Equal[False]

A <color>? (
<part name>/part) is
visible.

A brown seat is visible. Scene, Filter[Brown,

Seat], Exist,

Equal[True]

No <color>? (
<part name>/part) is
visible.

No brown seat is visible Scene, Filter[Brown,

Seat], Exist,

Equal[False]

The name of the <color>
part is <part name>.

The name of the yellow part is
arm.

Scene,

Filter[Yellow],

Query[Part Name,

Equal[Arm]

The <color> part is called
<part name>.

The yellow part is called arm Scene,

Filter[Yellow],

Query[Part Name,

Equal[Arm]

There is a <color> part;
its name is <part name>.

There is a yellow part; its
name is arm.

Scene,

Filter[Yellow],

Query[Part Name,

Equal[Arm]

There is a <color> thing
called <part name>.

There is a yellow part called
arm.

Scene,

Filter[Yellow],

Query[Part Name,

Equal[Arm]

The color of the
<part name> is <color>.

The color of the back is
purple.

Scene, Filter[Back],

Query[Color],

Equal[Purple]

The <part name> has
<color> color.

The back has purple color. Scene, Filter[Back],

Query[Color],

Equal[Purple]
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Table 6 (Continued)

Template Example Sentence Latent Program

There is a <part name>; its
color is <color>.

There is a back; its color is
purple.

Scene, Filter[Back],

Query[Color],

Equal[Purple]

The <part name> is
<color>.

The back is purple. Scene, Filter[Back],

Query[Color],

Equal[Purple]

There is/are <number>
<color>?

(<part name>/part)
<relation> the
<color>? (
<part name>/part).

There is a green seat and a
yellow leg is behind it.

Scene, Filter[Green,

Seat], Unique,

Relate[Behind],

Filter[Yellow, Leg],

Exist, Equal[True]

There is/are <number>
<color>?

(<part name>/part)
<relation> the
<color>? (
<part name>/part).

There is a green seat and no
yellow leg is behind it.

Scene, Filter[Green,

Seat], Unique,

Relate[Behind],

Filter[Yellow, Leg],

Exist, Equal[False]

<number> <color>?

(<part name>/part) is/are
<relation> the
<color>? (
<part name>/part).

0 leg is behind the brown leg. Scene, Filter[Brown,

Leg], Unqiue,

Relate[behind],

Filter[Leg], Count,

Equal[0]

There is a <color>? (
<part name>/part);
<number> <color>

<part name> is/are
<relation> it.

There is a brown leg; 0 leg is
behind it.

Scene, Filter[Brown,

Leg], Unqiue,

Relate[behind],

Filter[Leg], Count,

Equal[0]

The number of <color>?
(<part name> /part) that
is/are <relation>
<color>?

(<part name>/part)is
<number>.

The number of leg that is
behind the brown leg is 0.

Scene, Filter[Brown,

Leg], Unqiue,

Relate[behind],

Filter[Leg], Count,

Equal[0]

There is a <color>?
(<part name> /part)
<relation> the
<color>? (<part name>

/part).

There is a blue back behind
the seat.

Scene, Filter[Seat],

Unqiue,

Filter[Blue, Back],

Relate[behind],

Exist, Equal[True]

There is no
<color>?<part name>

<relation> the
<color>? (
<part name>/part).

There is no blue back to the
right of the seat.

Scene, Filter[Seat],

Unqiue,

Relate[right],

Filter[Blue, Back],

Exist, Equal[False]
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Table 6 (Continued)

Template Example Sentence Latent Program

There is a <color>? (
<part name>/part) and a
<color>?

(<part name>/part) is
<relation> it.

There is a seat and a blue
back is to the right of it.

Scene, Filter[Seat],

Unqiue,

Relate[Right],

Filter[Blue, Back],

Exist, Equal[True]

There is a <color>? (
<part name>/part); there is
no <color>?
<part name>

<relation> it.

There is a green seat; there is
no blue back to the right of it.

Scene, Filter[Seat],

Unqiue,

Relate[Right],

Filter[Blue, Back],

Exist, Equal[False]

The color of the
<part name> (that is)?
<relation> the
<color>? (
<part name>/part) is
<color>.

The color of the leg left of the
red arm is blue.

Scene, Filter[Red,

Arm], Unique,

Relate[Left],

Filter[Leg],

Query[Color],

Relate[behind],

Equal[Blue]

There is a <part name>

<relation> the
<color>? (
<part name>/part); its
color is <color>

There is a leg to the left of the
red arm; its color is blue.

Scene, Filter[Red,

Arm], Unique,

Relate[Left],

Filter[Leg],

Query[Color],

Equal[Blue]

The name of the <color>?
( <part name>/part) (that
is)? <relation> the
<color>? (
<part name>/part) is
<part name>.

The name of the cyan part
that is in front of the yellow
seat is leg.

Scene,

Filter[Yellow,

Seat], Unique,

Relate[Front],

Filter[Cyan],

Query[Part Name,

Equal[Leg]

The <color>? (
<part name>/part) (that
is)? <relation> the
<color>? (
<part name>/part) is
called <part name>.

The cyan part that is in front
of the yellow seat is called
leg.

Scene,

Filter[Yellow,

Seat], Unique,

Relate[Front],

Filter[Cyan],

Query[Part Name,

Equal[Leg]
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(a) There are 4 objects in the scene, and
one of them is split into 3 masks. So GT

Split = 1/4 = 0.25.

(b) There are 5 masks in the scene, and
one of them covers two objects. So Pred

Split = 1/5 = 0.2

Figure 6: A simple example on how GT/Pred Ratios are computed

ARI: 82.5

Pred Split: 0.0

GT Split: 0.67 

ARI: 70.7

Pred Split: 0.0

GT Split: 0.33

ARI: 96.0

Pred Split: 0.5

GT Split: 0.0

ARI: 60.6

Pred Split: 0.2

GT Split: 0.0

(a.1)

(a.2) (b.2)

(b.1)

Figure 7: Comparison of ARI and GT/Pred Split Ratio on individual images. Pixels with the same
color represent a mask produced by the models. We can see ARI is very sensitive to the size of
objects, while Split Ratios capture object level failures where an object is split or multiple objects are
merged.

D IMPLEMENTATION DETAILS

In this section, we provide additional implementation details of our experimental setups and metrics.

GT and Pred split ratios. In this paper, we have introduced two new metrics for evaluating the
performance of unsupervised object segmentation: namely, the GT split ratio and and the Pred split
ratio.

A simple example of how we can compute GT/Pred split ratios is shown in Fig. 6. At a high level,
the GT split ratio computes the percentage of objects that are split into multiple parts in model
segmentation. Meanwhile, Pred split ratio computes the percentage of objects that are merged into a
single object in model segmentation. We introduce these two new metrics because the ARI score is
evaluated at the pixel level and does not account for the variance of object sizes. By contrast, GT
split and Pred split metrics are computed at the object level. This difference is illustrated in Fig. 7.

For concrete examples, in the Fig. 6 (a.1), two objects, the chopping board and the thermos, are
wrongly segmented. In Fig. 6 (a.2), only one object mis-segmented. However, the ARI score of the
first image is much higher because the coffee maker has a large size. GT split ratio is evaluated on the
object level and thus favor the second one. Similarly, in the Fig. 6 (b.1) , the four legs are merged into
two masks, while in Fig. 6 (b.2), the seat and the back of the chair are merged into a single object.
However, the first segmentation result has a significantly higher ARI score because the chair legs
only contribute to a small area in the image. In this paper, we propose to jointly use ARI scores and
the proposed GT/Pred split ratio to evaluate segmentation masks.
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Thres = 0.1 Thres = 0.3

GT Split Pred Split GT Split Pred Split

SA (Locatello et al., 2020) 23.71±1.5 23.45±4.1 8.91±0.7 7.47±0.9

LORL + SA 17.74±1.4 18.15±1.2 5.86±1.3 5.67±0.7

Table 7: GT/Pred split ratios on Shop-VRB-Simple using different IoU thresholds. The results are
averaged over 3 runs.

ARI ↑ GT Split ↓ Pred Split ↓

SA (Locatello et al., 2020) 83.51±2.3 15.68±1.9 13.19±1.5

SA + Obj score 83.4±1.8 16.57±1.5 12.71±0.8

Table 8: Ablation study of the objectness score module on Shop-VRB-Simple. The results are
averaged over 3 runs.

Throughout the paper, we have been using IoU=0.2 as the threshold while computing the GT/Pred split
ratios. Table 7 summarizes the results with different IoU thresholds. LORL consistently improves the
baseline.

Referring expression comprehension. In this experiment, the data is generated using the code
adapted from Liu et al. (2019). It contains two types of expressions, the first one directly refers to an
object by its properties: for example, “the white plate”. The second type of sentences refers to the
object by relating it with another object: for example, “the object that is in front of the mug.” The
output of the model is the masks of all referred objects. The dataset is composed of the same set of
concepts and same DSL as in the Shop-VRB-Simple.

We use the IEP-Ref model proposed in Liu et al. (2019) as a baseline. It is adapted from its prior
work IEP (Johnson et al., 2017b). IEP-Ref first translates the referring expression into a sequence of
primitive operations, which are implemented as different modular networks. The model takes the
image feature extracted by a CNN as input and executes the program by chaining these component
networks. It outputs a segmentation mask on objects being referred to. During training, groundtruth
segmentation masks are needed.

For all methods, including ours and the baseline, we assume a pretrained semantic parser. Since the
neuro-symbolic program executor outputs a distribution over all objects indicating whether they are
selected, we directly multiply its output with the object segmentation masks to get the final output.

E ADDITIONAL RESULTS

The following section presents a collection of ablation studies on different modules of LORL, as well
as a few extensions.

Objectness score. To validate the effectiveness of the proposed objectness score module, we hereby
compare two models: the original Slot Attention model and the Slot Attention model augmented
with the proposed objectness score module. Both models are trained using images only (there is no
language in the loop), on the Shop-VRB-Simple dataset. The Table 8 summarizes the result. The
objectness module alone does not contribute to the segmentation performance.

Question type. In this section, we investigate how different types of questions affect LORL. We
use the Shop-VRB-Simple dataset for evaluation. There are three types of questions in the dataset,
counting (e.g., how many plates are there?), existence (e.g., is there a toaster?), and query (e.g., what
is the color of the mug?). We train LORL +SA with only one single type of questions (the number of
total questions is the same).
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ARI ↑ GT Split ↓ Pred Split ↓

SA (image-only) 83.51±2.3 15.68±1.9 13.19±1.5

Count only 85.52±1.7 13.86±2.0 12.56±1.4

Exist only 86.29±2.2 15.34±2.9 10.33±1.1

Query only 88.79±1.1 10.64±1.7 9.03±0.5

All types 89.23±1.6 9.95±1.6 10.18±1.3

Table 9: Ablation study of using different types of questions to train LORL + SA on Shop-VRB-
Simple. The results are averaged over 3 runs.

ARI ↑ GT Split ↓ Pred Split ↓

25% (22.5K) 81.01 14.31 15.34

50% (45K) 84.39 14.79 9.37

75% (67.5K) 86.53 11.67 11.52

100% (90K) 89.23 9.95 10.18

Table 10: Ablation study of using different number of questions to train LORL + SA on Shop-VRB-
Simple.

Results are summarized in Table 9. In general, training on all three types of questions improves the
segmentation accuracy. The largest gain comes from the query question. Interestingly, the best result
is achieved when trained on the original dataset, where the ratio of counting, existence, and query
questions is 1:1:7. Note that all these models are trained with the same number of questions and thus
they are directly comparable with each other.

Data efficiency. In addition, we provide another analysis by comparing models trained with dif-
ferent number of question-answer pairs. The results are shown in Table 10. Adding more language
data consistently improves the result. All results are based on the LORL +SA model trained on the
Shop-VRB-Simple dataset.

Visual reasoning baselines. To establish a baseline for visual reasoning tasks, we present the
results of two visual reasoning approaches IEP (Johnson et al., 2017b) and NS-CL (Mao et al., 2019)
for reference on the Shop-VRB-Simple dataset, as shown in Table 11. All models are trained with the
same set of question-answer pairs. Note that NSCL has the access to a pretrained object detection
module, while LORL +SA and IEP do not. LORL +SA outperforms IEP, which is trained with
exactly the same amount of supervision as ours. It also achieves a comparable result as NS-CL.

Integration with SPACE. SPACE (Lin et al., 2020) is another popular method for unsupervised
object-centric representation learning. SPACE uses parallel spatial attention to decompose the input
scene into a collection of objects, and it is also compatible with the proposed learning paradigm
LORL. We include additional results of LORL +SPACE on the CLEVR dataset. Shown in the Table
12, LORL +SPACE shows a significant advantage over the vanilla SPACE model. Additionally, we
find that SPACE shows poor segmentation results on Shop-VRB-Simple and ParNet-Chairs, no matter
whether it is integrated with LORL. For example, it frequently segments complex objects into too
many fragments on Shop-VRB-Simple. We conjecture that this is because SPACE was designed for
segmenting objects of similar sizes.

Baseline using language supervision. We also conducted an additional baseline model that uses
language supervision in a different way. Specifically, based on the Slot Attention model, we use a
GRU to directly encode question and answer, and concatenate it with the image feature to obtain the
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QA Accuracy

LORL + SA (No FT) 62.79±1.6

IEP (Johnson et al., 2017b) 78.3±0.1

NSCL (Mao et al., 2019) 97.9±0.0

LORL + SA 92.72±1.0

Table 11: Question answering accuracy of baseline models and our model on the Shop-VRB-Simple
dataset. The results are averaged over 3 runs.

ARI ↑ GT Split ↓ Pred Split ↓

SPACE (Lin et al., 2020) 72.34 29.2 12.38

LORL + SPACE 97.82 2.04 2.17

Table 12: Segmentation performance of SPACE and LORL +SPACE on CLEVR. The integration of
LORL improves the result.

Precision Recall

@0.5 @0.75 @1 @0.5 @0.75 @1

LORL + SA (NO) 59.52±0.7 54.13±2.2 36.36±3.6 94.96±1.2 86.4±3.6 58.07±5.7

LORL + SA 89.47±0.7 79.37±1.2 52.48±1.6 94.72±0.1 84.02±0.6 55.55±1.2

Table 13: Concept quantification evaluation. The number after @ indicates the IoU threshold. The
results suggest that objectness score improves the precision of concept quantification.The results are
averaged over 3 runs.

object representation. On Shop-VRB-Simple, this model does not show improvement over the Slot
Attention baseline: ARI=76.4%, GT Split=29.2%, Pred Split=13.6%. This suggests the effectiveness
of LORL.

Concept quantification. Although LORL without the objectness score can achieve a comparable
result in terms of QA accuracy, objectness score is crucial if we want to evaluate how models
discover objects in images. Here, we show that, on the Shop-VRB-Simple dataset, LORL +SA shows
significant improvement in recovering a holistic scene representation.

Specifically, we extract a scene graph for each scene, where each node corresponds to a detected
object. We represent each node i as a set of concepts Ci associated with the object (e.g., {large, brown,
wooden, chopping board}). We associate a concept with a detected object if its cosine similarity with
the object representation is greater than 0. We heuristically remove nodes that are not associated with
any concepts (by treating them as “background” objects) or have objectness scores that are smaller
than 0.5. This results in a scene graph, where each node corresponds to a detected object. In the
following, we compare it against the groundtruth scene graph.

For each pair of groundtruth node i and detected node j, we compute the concept IoU score based on
their associated concepts Ci and Cj as:

IoUij =
|Ci ∩ Cj |

|Ci ∪ Cj |

Next, we perform a maximum weight matching between the detected scene graph and the groundtruth
scene graph with the Hungarian algorithm. We use the IoU score as the weight for every edge and
remove edges whose IoU score is smaller than a given threshold. Finally, based on the macthing, we
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can compute the precision and recall of the detected scene graph. We show the average precision and
recall over the entire test set images in Table 13. The results suggest that objectness score significantly
improves the precision of the extracted concepts.
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