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Language Model and Speaking Rate Adaptation for
Spontaneous Presentation Speech Recognition

Hiroaki Nanjo and Tatsuya Kawahara, Member, IEEE

Abstract—The paper addresses adaptation methods to lan-
guage model and speaking rate (SR) of individual speakers which
are two major problems in automatic transcription of sponta-
neous presentation speech. To cope with a large variation in
expression and pronunciation of words depending on the speaker,
firstly, we investigate the effect of statistical and context-depen-
dent pronunciation modeling. Secondly, we present unsupervised
methods of language model adaptation to a specific speaker and
a topic by 1) selecting similar texts based on the word perplexity
and TF-IDF measure and 2) making direct use of the initial
recognition result for generating an enhanced model. We confirm
that all proposed adaptation methods and their combinations
reduce the perplexity and word error rate. We also present a
decoding strategy adapted to the SR. In spontaneous speech, SR
is generally fast and may vary a lot. We also observe different
error tendencies for portions of presentations where speech is
fast or slow. Therefore, we propose a SR-dependent decoding
strategy that applies the most appropriate acoustic analysis, phone
models, and decoding parameters according to the SR. Several
methods are investigated and their selective application leads to
improved accuracy. The combined effect of the two proposed
adaptation methods is also confirmed in transcription of real
academic presentation.

Index Terms—Acoustic modeling, language model adaptation,
pronunciation modeling, speaking rate, spontaneous speech
recognition.

I. INTRODUCTION

A
UTOMATIC speech recognition (ASR) accuracy of read

speech exceeds 90% for a dictation system. The system,

however, assumes that users clearly utter grammatically correct

sentences with orthodox pronunciation for human-to-machine

interfaces. On the other hand, the ASR of human-to-human

spontaneous speech, which would make possible the automatic

transcription or translation of lectures and meetings, is very

poor and needs more extensive researches.

To further this end, the five-year project “Spontaneous

Speech Corpus and Processing Technology” has been con-

ducted since 1999 [1]. The foremost product of the project is

a large-scale spontaneous speech corpus [2]. The Corpus of

Spontaneous Speech (CSJ) consists of roughly seven million

words. Monologues such as lecture presentations and extem-

poraneous speeches are mainly recorded. The main goal of this

research is the automatic transcription of live talks such as oral

presentations for efficient digital archiving.
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As many previous studies point out, various factors in spon-

taneous speech affect ASR performance. They include acoustic

variation caused by fast speaking and imperfect articulation,

and linguistic variation such as colloquial expressions and

disfluencies. Using the large-scale database of CSJ, Shinozaki

and Furui investigated the correlations of various factors with

speech recognition accuracy [3]. They concluded that the

speaking rate (SR), out-of-vocabulary (OOV) rate, and the

self-repair rate (RR) are directly correlated with accuracy.

Other factors are mainly dependent on one of these three. For

example, word perplexity (PP) is correlated with the OOV rate.

In this work, we are more concerned with PP instead of OOV

because perplexity is a widely used measure. Shinozaki and

Furui also showed that PP and SR have large correlations with

WER and we also confirmed similar tendency using a different

test set [4]. Based on the analysis, we address adaptation

methods for variations of PP and SR among speakers, which

are the two major factors in spontaneous speech. Especially in

presentation speeches that have relatively long durations, these

two variations are prominent problems, and can be approached

by considering the characteristics of the presentation speech.

At first, we examine pronunciation modeling for spontaneous

speech, especially the effect of statistical and context-dependent

model of pronunciation variation. Then, we propose unsuper-

vised adaptation of the language model, which integrates the

pronunciation model. Conventional studies on language model

adaptation [5], [6] mainly deal with adaptation to the specific

domains or topics. As for lecture presentations, adaptation to

each speaker is required because the preference of expressions

and their pronunciation are quite different among speakers. For-

tunately, lecture presentations and their transcriptions are rela-

tively long, which will make the speaker adaptation possible.

Several methods are proposed and their combinations are ex-

plored in order to adapt to the speaker’s topic, characteristics in

expression and pronunciation as a whole.

We also focus on the problem of SR, which is another

significant cause of accuracy degradation. In particular, fast

speaking often causes poor acoustic matching. Occasionally,

some phones themselves may disappear. Thus, it is necessary

to cope with fast speech segments. Moreover, we observe

that there are frequent changes in SR within a single oral

presentation and different error tendencies for fast and slow

speech segments. Therefore, handling slow speech as well as

fast speech should be considered. There have been studies

that consider the factor of SR [7], [8]. Some studies apply a

uniform method to all utterances, but they cannot cope with the

frequent changes of SR. There have also been studies that adopt

dedicated acoustic analysis [9], [10] or pronunciation entries
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[11], [12] for fast speech. These methods have effect on some

specific portions of utterances. However, any single method

is not effective for all varieties of utterances. In this paper,

we propose combinations of techniques of acoustic analysis,

phone modeling, and decoding parameters and their selective

application depending on the SR.

In this paper, this SR-dependent decoding is combined with

the language model adaptation as they are expected to give a

combined effect in improving the recognition performance of

spontaneous presentation speech.

II. BASELINE SYSTEM AND TEST SET

A. Corpus and Test Set

The CSJ developed by the project consists of academic oral

presentations at technical conferences and extemporaneous

public speeches on given topics such as hobbies and travels.

In this paper, the test-set which consists of 15 academic oral

presentations by male speakers is used because the CSJ does

not include enough female speakers’ speech for acoustic model

training as of January 2003. The specifications are shown in

Table I. We divide the recorded materials into the utterances

based on pause labels by human. They do not necessarily match

the linguistic sentences. The total number of utterances is 4603.

B. Language Model

For language model training, all transcribed data available (as

of January 2003) is used. There are 2592 talks excluding the

test set and the text size in total is 6.67 M words (= Japanese

morphemes).

We trained a backoff word trigram model as a baseline lan-

guage model using CMU-Cambridge SLM toolkit version 2

[13]. In Japanese texts, words are not delimited with spaces, and

transcription of the CSJ was done manually both in an ortho-

graphic notation form and a phonetic (kana) form for each utter-

ance unit. Thus, automatic alignment of the two by the word unit

is needed to obtain the word-pronunciation entries. This was in-

corporated as a post-processor of the morphological analyzer

[14]. Some heuristic thresholding is applied to eliminate erro-

neous patterns. We selected 30 820 word-pronunciation entries

that were found more than three times in the training data. In

the 30 820 word-pronunciation entries, there were 24 437 dis-

tinct word entries which were defined as the vocabulary. Test

set OOV rate is 1.2% with this vocabulary. In the baseline lan-

guage model, the variation of pronunciation is handled simply

by adding multiple entries in the dictionary. The pronunciation

entries for each word are extracted from the 30 820 word-pro-

nunciation entries.

C. Acoustic Model

As for acoustic model training, we use only academic presen-

tation speeches by male speakers because the test set was only

by male speakers. We use 781 presentations that amount to 106

hours of speech.

Acoustic models are based on continuous density

Gaussian-mixture HMM. Speech analysis is performed

TABLE I
TEST-SET PRESENTATIONS

every 10 ms and a 25-dimensional parameter is computed

. The number of phones

used is 43, and all of them are modeled with left-to-right HMM

of three states and state-skipping transitions are not allowed in

the baseline. We trained context-dependent triphone models.

Decision-tree clustering was performed to set up 3000 shared

states. We also adopted phonetic tied-mixture (PTM) modeling

[15], where triphone states of the same phone share Gaussians

but have different weights. Here, 129 codebooks of 192 mixture

components were used.

D. Results by the Baseline System

These models are integrated with the large vocabulary speech

recognition decoder that was developed at our

laboratory [16].

The average word error rate (WER) with the baseline system

is 31.4% and the average test-set perplexity is 65.8. For the

test-set perplexity computation, OOV words are not counted but

pause marks, which are used instead of periods or comma, are

included. For the calculation of WER, OOV words are included

but pause marks are excluded. The total number of pause marks

is 4572.

III. PRONUNCIATION MODELING

First, we investigate the modeling of pronunciation variation.

The baseline system coped with the pronunciation variation by

simply adding pronunciation variant entries to the dictionary.

The method has some significant disadvantages. False matching

is increased especially with short functional words which tend to

have more pronunciation variations. False matching resulted in

a tremendous increase of WER because all pronunciation vari-

ants were added to the dictionary; that is, the number of unigram

entries of the language model was 24 437 and the number of pro-

nunciation entries was 30 820. Therefore, pronunciation entries

whose occurrence probability in each lexical item is lower than

a threshold are eliminated. The result is shown in the left por-

tion of Fig. 1. When the threshold is set to a small value (0.01),

false matching is increased and so is WER. On the other hand,
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when the threshold is set to a large value (0.3), which is sim-

ilar what occurs when single pronunciation for each word in the

lexicon is used (“1-pron. per word” in Fig. 1),1 WER is also

increased (31.6%) because of removal of appropriate pronunci-

ation entries. The optimal threshold is 0.2 (number of pronun-

ciation entries: 25 161), which is used in the baseline system

(WER: 31.4%) in this paper.

Next, we introduce an approach in which the pronunciation

variation modeling is combined with the statistical language

model. Usually, this approach is implemented using a “unigram

modeling of pronunciation variation (pron-unigram)” (proba-

bility of baseform entries) for each lexical entry [17], [18].

Here we adopt “trigram modeling of pronunciation variation

(pron-trigram)” that predicts pronunciation of a word based on

the previous words [19]. Specifically, we use 30 820 word-pro-

nunciation entries as a token of trigram language model that en-

ables us to predict a word together with its pronunciation consid-

ering a contextual effect. The result is shown in the right-most

portion of Fig. 1. We reduced WER with a statistical modeling

of pronunciation variation and we achieved the largest WER re-

duction with the trigram modeling of pronunciation variation

(pron-trigram: 30.5%). The WER improvement (0.9%) from

the baseline pronunciation modeling is significant of 1% level,

where 2-sample test for equality of proportions was performed

(sample size ). Comparing the unigram and tri-

gram modeling of pronunciation variation (pron-unigram and

pron-trigram), we obtained a slight improvement with the pron-

trigram although the number of language model entries is in-

creased from 24 437 to 30 820 in the pron-trigram modeling and

so is the test-set perplexity from 65.8 to 74.9.

In the following sections, we use the language model with

trigram modeling of pronunciation variation, which is the model

that is simple and has the highest accuracy.

IV. UNSUPERVISED LANGUAGE MODEL ADAPTATION

TO TOPIC AND SPEAKER

Next, we address adaptation of the language model to indi-

vidual speakers by combining the pronunciation model in order

to reduce the PP and WER. We pay close attention to an unsu-

pervised adaptation which requires only test speeches and orig-

inal training texts for the baseline model.

Conventional studies on language model adaptation have

been mainly directed at adapting the model to the specific

domains or topics using a trigger model [20] or a cache

model [21], [22]. In spontaneous speech recognition, however,

adaptation to individual speakers is also required because the

preference of expressions and their pronunciation is quite

different among speakers. Academic presentations especially

have relatively longer speech and their transcriptions, which

will enable the adaptation to the speaker.

The proposed adaptation methods are performed in an off-line

(not dynamic) manner, thus are more robust against recognition

errors than the on-line adaptation methods because the whole

recognition result can be used to suppress influences of local

1For each baseform, the most frequent pronunciation in the training data is
assigned, thus, the pronunciation may differ from canonical one.

Fig. 1. Comparison of pronunciation modeling.

recognition errors. The pronunciation variation model is also

adapted in the framework.

A. Language Model Adaptation Based on Text Selection

In this section, we present an adaptation method to enhance

the language model by weighting texts similar to a test-set

presentation based on the initial recognition result. There is a

method that selects similar texts based on a priori knowledge

such as the use of preprints of the corresponding presentation

and transcriptions of former presentations by the same speaker.

We once tried incorporating preprinted texts for adaptation [23]

and improved accuracy by 0.5% to 3.0% absolute for other

test presentations of the CSJ. However, we cannot assume

that preprints are always available. In this paper, we explore

a method without a priori knowledge. Specifically, we use

PP and statistics of content word occurrences as a similarity

measure [24], [25].

1) Language Model Adaptation Scheme: For adaptation, we

perform linear interpolation according to

(1)

where is a probability for word sequence by

the speaker-independent language model ( baseline language

model), and is a probability by the lan-

guage model trained with small texts which are similar to the

test speaker’s presentation and selected based on TF-IDF or PP.

As a result of linear interpolation, the speaker-adapted language

model , which gives a probability for

word sequence , is generated. The interpolation coefficient

is estimated using EM algorithm denoted in

(2)

where is the th word of the correct transcription of the corre-

sponding test presentation, which is actually unavailable. In this

paper, a development-set is used for the estimation of . Fifteen

test-set presentations were randomly divided into three groups

GA, GB, and GC. Then, for testing with five presentations of
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Fig. 2. Flowchart of language model adaptation.

each group, ten presentations of the other two groups are used

as a development set so as to estimate the interpolation coef-

ficient . For example, when we adapt the language model to

a certain presentation X, which belongs to group GA, we used

a value of which was estimated with ten presentations of GB

and GC. The estimation is performed according to (2) for each

presentation of the development set until convergence, and then

their average is set to the final value.

2) Text Selection Using Word Perplexity: At first, we defined

PP as a measure of similarity and then selected similar texts. The

adaptation process is shown in Fig. 2, and described in detail

below.

A) Using the speaker-independent language model

(LM0), ASR is performed to generate an initial recog-

nition result.

B) A language model LM1 using the initial recognition

result is set up for text selection.

C) PP of each training text (by utterance unit) is computed

using LM1, and texts that have lower perplexity than a

threshold th are selected and a language model LM2 is

generated.

D) Linear interpolation with LM0 is performed to generate

an adapted model LM4. In this process, LM0, LM2

and LM4 correspond to ,

and in (1), respectively.

The values of the threshold th and coefficient are set up

to minimize the development-set perplexity. With the adapted

model (LM4), the overall test-set perplexity was reduced from

74.9 to 68.7. We also reduced WER by 0.8% absolute, as shown

in Table II. We investigated texts selected for adaptation and

found that they contained many carrier and filler phrases which

often appear at the beginning and end of sentences in Japanese,

such as “desu ne”, “de ano:”, and “e: ma:”. They are consid-

ered to represent a speaker’s characteristic expression. Also,

they vary among speakers. These data suggest that the proposed

adaptation method properly extracts such features.

3) Text Selection Using TF-IDF: In this section, we explore

another text-selection method based on TF-IDF which is widely

used as an information retrieval measure. Term frequency

is defined as the occurrence counts of a word in a docu-

ment . Inverse document frequency is defined as the

total number of documents divided by the number of docu-

ments containing the word . For each noun of document

, is calculated and a vector

for the document is generated. Similarity

between two documents and is defined as the cosine of

the angle between the corresponding vectors as denoted in (3).

(3)

The adaptation process is described below and also shown in

Fig. 2.

A) Using the speaker-independent language model

(LM0), ASR is performed to generate an initial recog-

nition result.

B) The TF-IDF vector for the test-set presentation [ in

(3)] is calculated.

C) Text (document unit, which is the whole transcription

of one presentation) that has higher similarity

than a threshold th is selected and a language model

LM3 is generated.

D) Linear interpolation with LM0 is performed to generate

an adapted model LM5. In this process, LM0, LM3

and LM5 correspond to ,

and in (1), respectively.
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Also, the values of the threshold th and coefficient are set

up to minimize the development-set perplexity. With the adapted

model (LM5), the overall test-set perplexity was reduced from

74.9 to 70.2 and WER was reduced by 1.4% absolute, as shown

in Table II. Selected texts with the TF-IDF measure contain a lot

of topic-dependent words. This shows that the language model

is adapted to the topic. Compared with the text selection based

on PP, the text selection based on TF-IDF achieved larger WER

reduction although the test-set perplexity reduction is smaller.

This suggests that the content words have more effect on overall

WER in spite of less frequent occurrence.

4) Combination of Text-Selection Methods: Then, a combi-

nation of both text-selection methods is performed. The lan-

guage model is adapted to the speaker’s characteristic expression

(LM4) using PP as a similarity measure, while it is adapted to

the topic (LM5) using TF-IDF as a similarity measure. Inter-

polating these models (LM6), the language model is adapted to

both speakers’ characteristics and the topic. The interpolation

coefficient is also set up to minimize the development-set

perplexity. The result is also shown in Table II. The combi-

nation effect is confirmed. With the unsupervised language

model adaptation based on the text selection, perplexity, and

WER are reduced by 13.1% and 5.6%, respectively, from the

LM0. A WER of 28.8% was achieved.

B. Language Model Adaptation Using Initial

Recognition Result

Next, we introduce another adaptation method by making di-

rect use of the initial recognition result. We do this because pre-

sentations are relatively long and their transcriptions contain the

speaker’s characteristic expressions and topics. The adaptation

process is shown in part of Fig. 2.

The backoff word trigram model (LM1) trained with the ini-

tial recognition result contains several errors. Thus, bigram and

trigram entries found only once are discarded. This LM1 is the

same as the one described in the previous section except there

is a cutoff of bigram and trigram entries. The interpolation is

performed for adaptation in the same manner as described in

the previous section. In this process, LM0, LM1, and LM7 cor-

respond to , , and in (1), re-

spectively. For this procedure (interpolation of LM0 and LM1),

we use the complementary backoff algorithm [16], which works

well when there is a large difference in the N-gram entries be-

tween the models. The result is shown in Table III. The simple

adaptation method using the ASR result reduced WER by 1.7%

absolute.

Finally, all proposed adaptation methods are combined. This

process is described below.

(A) Using the adapted model by both text-selection

methods, speech recognition is performed again and a

more accurate ASR result is generated.

(B) A word trigram model (LM1 ) is trained with the ASR

result.

(C) Linear interpolation with LM6 is performed to generate

an adapted model LM8. In this process, LM6, LM1

and LM8 correspond to ,

and in (1), respectively.

TABLE II
RESULT OF LANGUAGE MODEL ADAPTATION USING TEXT SELECTION

TABLE III
RESULT OF LANGUAGE MODEL ADAPTATION USING INITIAL

RECOGNITION RESULT

TABLE IV
EFFECT OF COMBINATIONS OF PROPOSED LANGUAGE MODEL

ADAPTATION METHODS

Fig. 3. WER for each test presentation.

The results are summarized in Table IV. The combination

effect was confirmed and we got a WER of 27.6%. Fig. 3 shows

WER for each test presentation with the proposed methods.

A WER reduction of 5.8% to 0.6% absolute is achieved.

Even for the test presentations that have higher WERs such

as A03M0156, A03M0106, and A03M0016, the proposed

methods could reduce WER; namely, it worked robustly with

respect to recognition errors.

V. ACOUSTIC MODELING AND DECODING CONSIDERING

SPEAKING RATE

In acoustic modeling of spontaneous speech, the SR, espe-

cially the fast speech, is considered to be one of the most sig-

nificant causes of degradation [3]. Fast speaking often causes
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incomplete articulation, thus poor acoustic matching. The spec-

tral patterns change and moreover the phone itself may disap-

pear. In this section, we present several acoustic modeling for

fast speech and a decoding strategy depending on the current

SR. It is also observed that there are frequent changes in SR in

a single presentation. These changes cause significant problems

when decoding with uniform models and parameters. Actually,

it has been found that the tendency of recognition errors dif-

fers for fast and slow utterances. Thus, we propose to selectively

apply appropriate decoding methods according to the SR.

A. Analysis of Speaking Rate

1) Distribution of Speaking Rate: Distributions of SR

in spontaneous speech corpus (CSJ—academic presentation

speech: 35 h) and read speech corpus (JNAS—newspaper

reading: 40 h) are plotted in Fig. 4. SR is estimated for every

utterance that is segmented manually based on long pauses and

defined as the mora count divided by the utterance duration

(in seconds). For both corpora, phonetic transcription is given

manually, thus used for defining morae. An utterance whose SR

is is classified to , where .

The mean and standard deviation of the SR of the JNAS

corpus are 6.27 and 0.97 and those of the CSJ are 8.70 and 2.10,

respectively. It is confirmed that spontaneous speech (CSJ) is

faster than read speech (JNAS) and the SR variation of sponta-

neous speech is larger than that of read speech.

2) Distribution of Phone Duration: Distribution of phone

duration in spontaneous and read speech is also plotted in Fig. 5.

Phone duration is estimated based on the Viterbi algorithm for

given phone transcriptions. As we use three-state phone HMMs

without state-skipping, the minimum duration is three frames

. Many segments in the CSJ data may have shorter

duration, but are forcedly aligned to three frames. This may have

caused a serious mis-match. Moreover, a fast SR suggests that

these segments are poorly articulated and cause problems during

recognition.

3) Relationship With Recognition Errors: The relationship

between the WER and SR is plotted for the test set in Fig. 6.

Shinozaki et al. [26] and Okuda et al. [27] studied this relation-

ship, in which the SR was averaged by the speaker level for the

whole presentation talk although the SR changes frequently in

one presentation talk. Here, we investigate the relationship in

more detail, specifically by the utterance unit.

In Fig. 6, the breakdown of recognition errors is shown for

each SR. It is confirmed that faster utterances are generally

harder for recognition. Moreover, we observe different tenden-

cies in the errors according to the SR. In fast utterances, sub-

stitution errors are increased as well as deletion errors. On the

other hand, there are many insertion errors in slower segments.

Therefore, we explore methods to deal with these error tenden-

cies according to the SR.

B. Automatic Estimation of Speaking Rate

Several methods to estimate SR have been studied, such

as detecting phone boundaries with multilayer perceptorons

(MLP) [28], using a Gaussian mixture model (GMM) [29],

and detecting vowels using speech features such as loudness,

zero-cross counts, and energy envelope [30], [31]. In this paper,

Fig. 4. SR distribution of CSJ and JNAS corpus.

Fig. 5. Phone duration distribution of CSJ and JNAS corpus.

Fig. 6. Ratio of substitution, deletion, and insertion errors for each SR.

we introduce mora decoding [32], [33] to estimate SR. Since

Japanese has a regular moraic structure, mora decoding is

widely used for initial decoding for fast match [34] or unknown

word modeling [35]. Moreover, mora decoding method that

uses only a simple phonotactic syllable constraint and an
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acoustic model used in ASR system does not require special

training compared with other methods such as MLP and GMM.

We define 292 syllables for Japanese: 10 vowels, 280 conso-

nant+vowel pairs, the double consonant , and the syllabic

. These syllables and a short pause can be connected

freely. The mora count is calculated from the syllable recogni-

tion result. In calculating the mora count from the recognition

result, we do not count and regard a long vowel as one mora.

Fig. 7 plots the relationship between the actual and estimated

SR. There is high correlation between the two: the correlation

coefficient is 0.88. The result verifies the feasibility of SR es-

timation. The estimated SR is adjusted according to the linear

regression equation of estimated and actual SR, which is

where and are estimated and actual SR. The

main reasons why the estimated SR is smaller than the actual SR

are that: 1) we do not count because it causes a lot of false

matchings with a pause segment and degrades the SR estimation

accuracy and 2) we regard a long vowel as one mora because a

long vowel and a short vowel are often falsely matched with

each other and this degrades the SR estimation accuracy.

C. Speaking-Rate-Dependent Acoustic Modeling and

Decoding

1) Framework: Based on these analyses, we propose ap-

plying different decoding methods according to the SR within

a multiple-pass recognition framework. The SR in the current

speech segment is estimated in the initial recognition with

the baseline speaker-independent acoustic model. Then, the

most adequate acoustic analysis, phone models and decoding

parameters are applied.

Specifically, the following processes are investigated. The

first three are intended for fast speech and the last one is for

slow speech.

• Shorter frame length and shift: To cope with fast speech

segments, where the spectral pattern changes rapidly, the

frame length and shift for spectral analysis are shortened.

After preliminary experiments, we set the frame length of

20 ms and the shift of 8 ms from the baseline of 25 and

10 ms in decoding.

• State-skipping transitions in phone models: Another way

to cope with fast speech is to add state-skipping transitions

in phone models. This allows flexible matching with less

than three frames. Here, transition from the first state to

the third (last) state is added and all parameters of means,

variances and state transition probabilities are re-trained.

• Syllable models: Since several phone segments may disap-

pear in spontaneous speech, we model them with syllables

of a phone sequence. We select syllables by considering

both their duration and training data amount. The fol-

lowing statistic (4) is defined as a criterion for selection:

(4)

where is a sample of syllable , is an average

probability of self-looping transition , and

is the number of frames with which is

Fig. 7. Relationship of actual and estimated SRs.

Fig. 8. Tied-mixture syllable modeling.

aligned. The more fast segments that occur, the larger

value gets.

We selected 30 syllables which have a larger value of

based on the criterion. They are all concerned with func-

tional words. The syllable HMMs are made by concate-

nating phone HMMs by adding state skipping transitions

(Fig. 8). Then, only transition probabilities and weights

for Gaussian mixtures are re-estimated. This tied-mixture

modeling will ease the problem of data sparseness of the

long unit. Actually, simple introduction of the syllable

model with separate model training degraded the accuracy

[36].

• Changing insertion penalty: For slow speech segments,

an increase of insertion errors is observed. Thus, a larger

word insertion penalty is used in order to suppress inser-

tion errors.

2) Combination of Model Adaptation: Unsupervised

acoustic and language model adaptation methods are also com-

bined with SR-dependent decoding framework. For the acoustic

model adaptation, the MLLR adaptation [37] is performed. A

phone transcription for adaptation is generated from the initial

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



398 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 12, NO. 4, JULY 2004

TABLE V
WER WITH DIFFERENT DECODING ACCORDING TO SR (%)

recognition result. For the language model adaptation, we use

the method proposed in the previous section.

3) Experimental Results: These techniques and their com-

binations are evaluated in the test set. They are compared with

the baseline system that adopts uniform decoding. The recogni-

tion results are listed in Table V.2

The unsupervised acoustic model adaptation reduced WER

by 4.9% absolute, from 30.9% to 26.0%, and the combination

with the language model adaptation methods reduced it further

2.1% absolute to 23.9%.

For fast speech segments, all proposed methods (1, 2, 3) are

shown to be effective and improved the overall accuracy. Adding

state-skipping transition and syllable modeling improved the ac-

curacy for fast speech, as well as normal speech, except for very

slow speech ( 5 mora/s). Their combination is more effective.

Use of shorter frame length and shift is also effective for fast

speech, but less effective for normal speech. The combination

of all proposed methods has an effect on the very fast speech

(9 mora/s or faster), but results in an increase of errors in slow

speech, which cancels this effect. For slow utterances, the use

of a severe insertion penalty reduces errors as expected.

Then, selective application of these methods according to the

SR is implemented, as indicated in bold font in Table V. The

SR is classified into three categories based on the experimental

result. If the SR is known and the best techniques are chosen ac-

cordingly (oracle case), the overall accuracy could be improved

by 2.2% absolute. In actuality, we estimate the SR with the syl-

lable constraint and apply the dedicated decoding methods in

the second pass. This strategy enables an improvement of 1.9%

absolute from 23.9% to 22.0% (the last row of Table V). This

result demonstrates that the automatic estimation brings about

comparable performance to the oracle case.

D. Experimental Results With Open Test Set

Finally, we evaluate proposed methods and their combination

with a different test set (ten presentations), which is not used for

tuning the parameters and deciding the selection algorithm. The

specification is listed in Table VI.

2Baseline WER is different from the one of the previous section as we change
some decoding parameters in this section.

TABLE VI
TEST-SET PRESENTATIONS (OPEN DATA) FOR EVALUATION

OF SR-DEPENDENT DECODING

For the language model adaptation, we used the interpolation

coefficient which was estimated with the previous test set

(15 presentations). The estimated SR was adjusted according

to the linear regression equation which was derived with the

previous test set (15 presentations) in Section V-B. For the

SR-dependent decoding, the selection of techniques (models

and parameters) was performed based on the experimental

result of previous section.

The result is shown in Table VII. The same tendencies are

observed in this set. Language model adaptation led improve-

ment of WER by 1.5% absolute and the SR-dependent decoding

strategy achieved improvement by 1.4% absolute.

The result shows that our proposed language model adapta-

tion method and SR-dependent decoding are effective.

VI. CONCLUSION

We presented adaptation methods for variations of linguistic

expressions and speaking rate of individual speakers which are

the two major factors affecting the presentation speech recogni-

tion accuracy.

First, we presented methods that adapt a language model

to speakers’ characteristic expression, topic, and pronuncia-

tion variation. Several language model adaptation methods

combined with pronunciation variation modeling have been

investigated. Specifically, we proposed several methods based

on the similar text selection and the direct use of the initial

recognition result. All proposed methods effectively reduced
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TABLE VII
OPEN DATA RESULT (WER WITH DIFFERENT DECODING ACCORDING TO SR (%)

the perplexity and WER, and their combinations reduced WER

from 31.4% to 27.6% (a total error reduction rate of 12.1%).

Next, we have proposed a SR-dependent decoding strategy

that adaptively applies the most adequate acoustic analysis,

phone models, and decoding parameters depending on the

current estimated SR. We investigated several techniques and

demonstrated that their selective application is effective. This

strategy achieved the reduction of WER by 1.9% absolute for

the test set and 1.4% absolute for ten other presentations (open

set).

As a whole, these adaptation methods have significantly im-

proved accuracy and achieved a WER of 22.0% in automatic

transcription of spontaneous lecture presentations. Moreover,

the adaptation methods were performed in completely unsuper-

vised manners.
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