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ABSTRACT
In this paper, we propose two ways of improving image clas-
sification based on bag-of-words representation [25]. Two
shortcomings of this representation are the loss of the spa-
tial information of visual words and the presence of noisy
visual words due to the coarseness of the vocabulary build-
ing process. On the one hand, we propose a new representa-
tion of images that goes further in the analogy with textual
data: visual sentences, that allows us to “read” visual words
in a certain order, as in the case of text. We can there-
fore consider simple spatial relations between words. We
also present a new image classification scheme that exploits
these relations. It is based on the use of language mod-
els, a very popular tool from speech and text analysis com-
munities. On the other hand, we propose new techniques
to eliminate useless words, one based on geometric proper-
ties of the keypoints, the other on the use of probabilistic
Latent Semantic Analysis (pLSA). Experiments show that
our techniques can significantly improve image classification,
compared to a classical Support Vector Machine-based clas-
sification.

Categories and Subject Descriptors
I.4.10 [Computing Methodologies]: Image Processing
and Computer Vision—Image Representation;
I.2.7 [Computing Methodologies]: Artificial Intelli-
gence—Natural Language Processing

General Terms
Design, experimentation

Keywords
image categorization, language modeling, bag-of-visual
words, support vector machines, pLSA

1. INTRODUCTION
Classifying images and identifying objects in images is a
very challenging problem with many applications as im-
age retrieval or annotation. Nowadays approaches to this
problem rely more and more on the concept of visual words
and the bag-of-words model applied to images, as this tech-
nique showed very promising results in the case of video re-
trieval [25]. Some of the best image classification techniques
at this time are based on this scheme. However, we can
point at two major limitations of the bag-of-words model :

• the presence of many noisy words due to the coarse-
ness of the vocabulary construction process. The vo-
cabulary is built by clustering keypoint descriptors us-
ing algorithms such as k-means, which do not lead to
well adapted clusters. Moreover, in the case of large
datasets, and due to the high-dimensional nature of
keypoint descriptors, such algorithms require a very
high computation time. This leads us to use approxi-
mate algorithms instead, that quicken the clustering
process, but also result in more noise in the visual
words.

• the loss of spatial information: since the bag-of-words
model relies on a simple count of the visual word oc-
currences in the images, any spatial relations between
words are lost. Such a loss seems prejudicial to the
recognition of objects, because two different objects
can share similar words, but the layout of these words
is specific to each object.

We propose different techniques to overcome these difficul-
ties. First, we present a new image representation called
visual sentences that allows us to consider simple spatial re-
lations between visual words. We then propose a new classi-
fication technique relying on this representation, that takes
into account the sequential aspect of the sentences. It uses
Language Models (LM), a very efficient and effective tool
from the fields of speech recognition and text analysis. We
also present a new method to eliminate the noisiest visual
words, using probabilistic Latent Semantic Analysis (pLSA).

In the next section, we give an overview of the related work.
We then describe two complementary techniques to elimi-
nate useless words from images: a pLSA-based technique,
and a technique to eliminate redundant keypoints, which
aims at improving the quality of the visual sentences. In
Section 4, we describe the construction process of visual sen-
tences. In Section 5, we present language models and their



use in classification, then in Section 6 we test the parame-
ters of our system and compare its efficiency with Support
Vector Machines (SVM) classifiers.

2. RELATED WORK
In this section we first present actual classification tech-
niques using bag-of-words; then we review papers dealing
with the loss of spatial information in bag-of-words models;
on a third part, we briefly introduce language models, and
detail their use in image classification; finally, we present
visual word selection techniques.

2.1 Bag-of-visual words approaches to image

classification
Bags-of-visual words have first been introduced by Sivic in
the case of video retrieval [25]. Due to its efficiency and
effectiveness, it became very popular in the fields of im-
age retrieval and categorization. Image categorization tech-
niques rely either on unsupervised or supervised learning.
Unsupervised classification uses probabilistic Latent Seman-
tic Analysis (pLSA) [2, 24] and Latent Dirichlet Allocation
(LDA) [24] to compute latent concepts in images from the
cooccurrences of visual words in the collection. These tech-
niques can automatically discover image categories in a col-
lection; however, the best results are obtained when the
number of categories is known. Among supervised learning
techniques, the most popular in this context are Bayesian
classifiers [8, 11, 16] and Support Vector Machines (SVM) [8,
16, 29]. [3] also uses random forests. Actually, state-of-the-
art results are due to SVM classifiers: the method of [29],
which combines a local matching of the features and spe-
cific kernels based on the χ2 distance or the Earth Movers
Distance, yields the best results.

2.2 Finding spatial relations between key-

points
The problem of adding geometric information to the bag-of-
words model has been studied by some authors. [4] presents
some relations between interest keypoints, based on their re-
spective scale, position and orientation and uses them in a
general keypoint matching context. [13] uses these relations
in a bag-of-words context to build graphs of keypoints de-
scribing logos of hockey teams in sport photos. [30] proposes
to group visual words into visual phrases (pairs of words) by
pairwise grouping regions that cover each other. This im-
plies to test all possible keypoints pairs within an image:
they quicken their algorithm by only considering “frequent
pairs” whose frequency in the image collection is above a
given threshold. Finally, [28] builds visual phrases with an
arbitrary number of keypoints per phrase, using k-nearest
neighbors technique to group keypoints, and then uses sev-
eral post-treatments to extract the more relevant and gen-
eral patterns as possible.

These approaches require a quite high computation time as
they use structures like graphs or compare each keypoint
with all the others. In contrast, our approach is computa-
tionally very efficient, as it only requires to get an appro-
priate axis and to project keypoints on it, and more robust
with the use of smoothed language models.

2.3 Language modeling for image classifica-

tion and retrieval
Language modeling is very popular in the field of text cat-
egorization [1, 5] and retrieval [22]. It allows to model not
only independant words, but also sequences of n words,
called n-grams, so it can capture relations between several
words. Moreover, the use of smoothing techniques allows the
model to deal with n-grams that did not occur in the train-
ing data used to estimate it, confering good generalization
capabilities.

Language modeling has also been used in the case of image
classification [31, 26] and annotation [10]. Since it mod-
els neighborhood relations between symbols, the use of such
modeling in the case of images requires two things: repre-
senting image as a set of visual elements, and finding spatial
relations between these elements. The existing approaches
divide images in small patches, which are then described
by low-level features (color, texture. . . ). Since the patches
are arranged as a grid, spatial relations between them ap-
pear naturally. The n-gram model can then be used, if
adapted to two-dimensional neighborhoods, instead of the
one-dimensional neigborhoods considered in the case of text.
Among these approaches, to our knowledge, only [26] uses
some kind of smoothing.

Language modeling has also been used in the case of video
retrieval [17]. Video shots are divided into patches too, and
the patches are described by quantized low-level features
(color, texture, edges). In this work, the author uses clas-
sical smoothing techniques and interpolates language mod-
els to combine several types of information (visual features,
text, context of video shots. . . ), but he does not deal with
neighborhood relations between image patches.

Our proposition differs from these as it does not use regu-
larly defined patches but regions of interest detected by an
interest point detector. Quantizing these regions to obtain
visual words (as in bag-of-words models), we then find a
reading order for the words, so that we can use language
modeling exactly as in the case of text.

2.4 Elimination of noisy words in bag-of-

words approaches
In bag-of-words models for images, the vocabulary creation
process, based on clustering algorithms such as k-means, is
quite coarse and leads to many synonymic words (that share
the same meaning) or polysemic words (that have several
meanings). Such words add ambiguity in the representation
of the objects, and then reduce the effectiveness of classifica-
tion or retrieval processes. This problem has been addressed
in the first video-google paper by Sivic and Zisserman [25]:
they used, as an analogy with text retrieval models, stop-

lists that removed the most and least frequent words from
the collection, which were supposed to be the most noisy.
[27] points at the inefficiency of this method and proposes
several measures usually used in feature selection for ma-
chine learning or text retrieval : mutual information, χ2

statistics and document frequency. This selection measures
improve the average precision of retrieval systems. Another
way to deal with this problem is to consider specific clus-
tering methods to obtain relevant visual word vocabularies:



[16, 15, 20] propose various algorithms to build such special-
ized vocabularies but these approaches result either in the
use of supervised learning, or in a higher computation time
which becomes prohibitive when dealing with large datasets.

3. REDUCTION OF WORD NUMBER
In this section, we propose two complementary techniques
to reduce the number of visual words describing images. Re-
moving noisy or redundant words may improve the quality
of the visual word-based models, and so the performance
of classifiers using such models. The first technique aims
at eliminating redundant keypoints. It relies only on the
geometric properties of the keypoints, whatever the visual
word they represent. The second technique eliminates visual
words considered as noise. It is based on the distribution of
visual words over the images, using pLSA.

3.1 Elimination of redundant regions

Figure 1: An example of 4 redundant regions de-

tected on a motorbike image

The common detectors of interest points, such as Harris-
affine or Hessian-affine detectors [19], often detect several
regions of the picture for only one given interesting key-
point, as shown on figure 1. Such regions have comparable
position, orientation and shape, but are detected at differ-
ent scales. This results in redundant information in the de-
scription of images, since one given keypoint is described by
several regions. This redundancy is damaging when trying
to find spatial relationships between visual words in bag-of-
words approaches, because one given word is found several
times at the same position in an image, instead of occuring
only once. In particular, elimination of redundant words is
needed when using the visual sentence representation of im-
ages, as shown by experiments in Section 6.3. We propose
here to filter the detected keypoints according to their ge-
ometric properties, so that only one region of interest per
keypoint is kept. Our technique relies on three of the geo-
metric properties of the elliptical regions of interest:

• position pr: the coordinates of the center of the region
in the picture, given by the detector;

• angle ar: the orientation of the region, given by the
detector;

• shape sr: computed as the ratio between the major
axis length and the minor axis length of the elliptical
region.

Given two regions r1 and r2, we define the redundancy re-
lation R(r1, r2) (r1 is redundant with r2) as follows:

R(r1, r2) ⇔

(

d(pr1 , pr2) ≤ θp

|ar1 − ar2 | ≤ θa

|sr1 − sr2 | ≤ θs

where θp, θa, θs are manually chosen thresholds and d(s, t)
is a distance function, the Euclidean distance in our case.
The use of thresholds allows us to deal with small variations
in each of the properties, making comparison more flexible.
Setting all thresholds to zero results in detecting only perfect
geometric doubles.

Figure 2 shows the same image without filtering and after fil-
tering using the following thresholds: θp = 5, θa = 0.2, θs =
0.5. Generally, these threshold values allow to remove about
two thirds of the regions describing a picture.

Figure 2: The same image before and after redun-

dant region filtering. The first one contains 970 re-

gions, the second one 318.

3.2 pLSA to eliminate noisy words
In this section, we introduce another method to eliminate
presumed useless visual words. This method aims at elim-
inating the most noisy words generated by the vocabulary
building process, using pLSA. As seen in section 2.1, pLSA
has been used to classify images as it is able to discover top-
ics among the data. The principle of pLSA [12] is, given a set
of probabilities Pr(wi|dj)

1 that word wi occurs in document
dj , to compute latent concepts zk from the data, following
this probabilistic model:

Pr(wi|dj) =
X

k

Pr(wi|zk) Pr(zk|dj)

This decomposition is computed on training documents us-
ing the EM algorithm. Given the joint probabilities of words
and concepts, we can therefore compute for any unseen doc-
ument the underlying concepts in that document. Using it
in classification is simple: assigning one category per con-
cept, the category of an image is found by taking the most
probable concept detected in this image.

Here we propose a method using pLSA to select the most
relevant words among all the visual words computed on the
data. Given a set of concepts Z and a vocabulary W, pLSA
provides a set of probabilities Pr(w|z), for each w ∈ W and
for each z ∈ Z. Our idea is that words w whose proba-
bility Pr(w|z) is low for every z ∈ Z are irrelevant, since
they are not informative for any concept. We therefore pro-
pose to keep only the most significative words for each con-
cept. We could use a threshold T and keep only the words
whose probability is above this threshold. Since the proba-
bility values Pr(w|z) depend on the data (number of words

1Computed on a training set from the matrix of word-
document occurrences.



and concepts), we cannot use a fixed threshold. We then

choose to keep only the |W|
|Z|

most probable words per con-

cept. About one third of the words are eliminated using
this criteria. Figure 3 shows examples of eliminated or kept
words. Experiments reported in Section 6.3 show that this
technique improves the performance of classifiers.

Figure 3: On the left, visual words kept using pLSA

criteria. On the right, visual words that are to be

eliminated. Patches on a same line represent sam-

ples of the same visual word.

4. DESCRIBING PICTURES AS VISUAL

SENTENCES
In this section, we introduce visual sentences as a new rep-
resentation of images. Given a bag-of-words representation,
our goal is to describe an image as a sequence of ordered
symbols, which is a way to consider very simple spatial rela-
tions between words and use text-related techniques in the
case of image retrieval and classification.

The visual sentence construction process is the following, as
illustrated in figure 4:

1. Construction of a visual vocabulary and representation
of the pictures as visual word sets.

2. Definition of an axis consistent with the position of the
object in the picture.

3. Projection of the visual words from the image to the
axis to obtain a sequence of visual words: visual sen-
tence.

The rest of this section precisely describes each of these
stages.

4.1 Construction of the visual vocabulary
We construct the visual vocabulary as described in the video-

google paper by Sivic and Zisserman [25]:

1. Detection of regions of interest using a keypoint de-
tector. We use the Hessian-affine detector as it shows
good performances in many situations [19].

2. Description of the detected regions as a vector of val-
ues. We use SIFT descriptor, which is considered as
the reference descriptor at this time [18]. At this stage
each region is described by a 128-dimension vector.

3. Clustering of the descriptors to obtain a vocabulary
of visual words: each cluster corresponds to a visual
word. We use the hierarchical k-means algorithm in-
troduced by Nister and Stewenius [21] as it allows very
fast clustering with an acceptable accuracy.

At this stage, each image can be described by a set of visual
words by assigning each region descriptor of the image to
the nearest cluster in the description space. We obtain the
so-called bag-of-visual words representation, i.e. an image is
described by a limited set of features (visual words), ignoring
the spatial relationships linking them.

Figure 4: The visual sentence construction process

4.2 Choosing an axis
Given several pictures of an object, we want to build visual
sentences ordering the words in the same way from one im-
age to another. Therefore, the axis we choose to project
words on must have the two following properties:

• an orientation fitting the orientation of the object in
the image, so that visual words are projected in the
same order independantly of the rotation or translation
of the object in the image;

• a direction fitting the direction of the object, so the
words can be read in the same order, whatever the
object is oriented from left to right or reversly.

Since the regions detected using most detectors (in our case,
the Hessian-affine detector) have certain repeatability and
invariance properties [19], we can rely on the spatial distri-
bution of the keypoints in the image to compute the axis.
Principal Component Analysis (PCA) [14] gives us a solu-
tion, as, for a given set of points, it finds the direction vectors
of the axes that best explain the distribution of the points.



In our two-dimensional case, PCA gives us two axes. We
choose to keep only the one with the most important con-
tribution, i.e. the axis that best explains the distribution of
the points. Then, given an object (a set of points), we can
find an axis whose orientation and direction fit the ones of
the object, whatever the position, orientation or direction
changes of the object from one image to another. Moreover,
the axis computation remains fast because PCA can be per-
formed very efficiently for a limited set of points (about 1,000
per image) in a few dimensions (2 for keypoint coordinates).
Figure 5 shows a few examples of axes obtained using PCA.
We can note that this technique seems well suited for images
containing one object. If there are two or more objects in
the picture, results of the PCA can be biased by the rela-
tive positions of the objects. This point is discussed in the
conclusion.

We can also explore the possibility to use several axes, and
so to produce several sentences per image, as it might give
additional spatial information compared to a unique axis.
In Section 6.2, we test several axis configuration:

• using the main axis given by the PCA.

• using the x-axis, since, in the datasets we use, object
are mostly aligned with this axis.

• using the two axes given by the PCA. They are or-
thogonal so they may bring complementary informa-
tion about the spatial relationships between keypoints.

• using a set of axes generated by rotating the initial
axis from 0 to 90 degrees. Rotations of more than 90
degrees should not be considered, since it would give
axis with contradictory reading directions.

• using a random axis, to compare with specific axes
(PCA axis and x-axis).

4.3 Word projection
Once the axis is computed, we simply project the words
on it, using orthogonal projection. It is important to note
that redundant regions must be filtered before projecting
them, according to section 3.1 : keeping such regions would
bring unrelevant spatial information as several regions would
represent the same part of the image. We can also use a
technique to eliminate noisy words, like the one we proposed
in section 3.2, but this is not essential.

5. CLASSIFICATION USING LANGUAGE

MODELS

5.1 Language models
Firstly used in the field of speech recognition, language
modeling has become very popular in text classification [1,
5] and text retrieval [22] as it can model sequences of n

words instead of independant words. A sequence of n words
w1w2 . . . wn is called a n-gram, and a language model deal-
ing with this kind of sequences is called a n-gram model.

A n-gram model is a probabilistic model that estimates for
any word wn the probability Pr(wn|w1 . . . wn−1) that wn

occurs in the language given the n − 1 preceeding words.
Thus, it is able to model not only occurrences of independant
words (in the case of a unigram model (n = 1)), but also the

fact that several words often occur together. This ability is
very interesting in text analysis because words used together
(e.g. White House) can have a different meaning than the
same words used independantly.

The probabilities are estimated in a statistical way, by count-
ing the n-gram occurrences in a set of training documents.
So, for a given language model L computed from a training
set T , the probability that a n-gram w1w2 . . . wn occurs is
basically:

PrL(wn|w1w2 . . . wn−1) =
C(w1w2 . . . wn)

P

wi∈T

C(w1w2 . . . wi)
(1)

where CW is the number of occurrences of W in T .

Given a language model L, the probability of generating a
document d = w1 . . . wk is:

PrL(d) =
k

Y

i=1

PrL(wi|w1 . . . wi−1)

It is approximated, using the n-grams, as:

PrL(d) ≈

k
Y

i=1

PrL(wi|wi−n+1 . . . wi−1)

5.2 Smoothing
One problem in language modeling is to deal with n-grams
that did not occur in the data used to build the model.
Given a language model L and an unknown n-gram Wunk =
w1w2 . . . wn, the probability that Wunk occurs according to
L will be PrL(wn|w1 . . . wn−1) = 0 because Wunk did not oc-
cur in the training data. So the probability to be generated
by L is, for any document d so that Wunk ∈ d, PrL(d) = 0,
whatever the other n-grams occuring in d are. The idea of
smoothing is to automatically assign a non-zero probability
to unknown n-grams so that documents containing never
seen n-grams will not be assigned a null score. To do so, the
probability mass of known n-grams is shared between known
and unknown n-grams. Smoothing methods are based on
two elements:

• the discounting strategy: it is the way n-grams occur-
rences are counted in the training data. The count
CW in equation 1 is replaced by a new count C∗

W so
that the probability mass of known n-grams is reduced.
This is done by weighting the initial count CW by a
discounting factor D: C∗

W = CW D, with D < 1. The
value of D depends on the discounting strategy;

• the use of lower order n-grams: taking into account
n-grams of size n − 1, n − 2. . . can help dealing with
unseen n-grams because, if a given sequence of words
Wunk = w1 . . . wn did not occur in the training data,
maybe w2 . . . wn or w3 . . . wn did, so we can use their
probability of occurence to extrapolate the probabil-
ity of w1 . . . wn. Doing this, we assign to unknown n-
grams the probability mass removed from the known
n-grams by discounting. This can be done in two
ways: interpolation and back-off. Interpolation com-
putes PrL(wn|w1w2 . . . wn−1) as a linear combination
of lower order n-grams:

PrL(wn|w1w2 . . . wn−1) =
α1PrL(wn|w2 . . . wn−1)
+α2PrL(wn|w3 . . . wn−1)
+ . . . + αn−1PrL(wn)



Figure 5: Examples of axes obtained by performing a PCA on the coordinates of the keypoints. The main

axis is red, the second is blue.

In back-off, the probability of an unknown n-gram
Wunk = w1w2 . . . wn is simply computed as a modi-
fied probability of the direct lower order n-gram:

PrL(wn|w1w2 . . . wn−1) = αn−1PrL(wn|w2 . . . wn−1)

αn−1 is computed so that
P

w∈T

PrL(w|w1 . . . wn−1) = 1,

where T is the training data.

A given smoothing technique is the joint use of a discount-
ing strategy and interpolation or back-off. We describe here
some popular smoothing techniques [7] that we tested in our
context in Section 6.4(see [6] for a discussion about smooth-
ing techniques and the motivation behind them). In the fol-
lowing, ν(k) is the number of n-grams occurring exactly k

times in the training data.

• linear discounting: it combines back-off with the
following discounting factor:

D = 1 −
ν(1)

P

W ′∈T

CW ′

• absolute discounting: it combines back-off with the
following discounting factor:

D =
CW − b

CW

Setting b = ν(1)
ν(1)+2ν(2)

is approximatively optimal.

• Katz smoothing: it combines Good-Turing discount-
ing with back-off. Good-Turing discounting factor D

is:

D =

(

(CW +1)ν(CW +1)

CW ν(CW )
−

(k+1)ν(k+1)
ν(1)

1−
(k+1)ν(k+1)

ν(1)

if CW < k

1 otherwise

with, typically, k = 7.

• Witten-Bell smoothing: it combines linear interpo-
lation with the following discounting factor:

D =

P

W ′∈T

CW ′

t +
P

W ′∈T

CW ′

where t is, given a n-gram w1w2 . . . wn, the number of
distinct n-grams beginning with w1w2 . . . wn−1 in T .

5.3 Use in classification
The use of LM in classification is quite simple: given a set
of classes C and a training set of labeled documents T , we
build, for each class c ∈ C, a language model Lc computed
on the training subset Tc = {d|d ∈ T ∧ d ∈ c}. Then
given an unknown document dunk, its class c(dunk) can be
predicted as :

c(dunk) = argmax
c∈C

(PrLc
(dunk))

In the case of image classification, LM can be used exactly
in the same way as in the text case, using an adapted im-
age representation like the visual sentences we described in
Section 4.

6. EXPERIMENTS

6.1 Global experimental settings

6.1.1 Datasets
We perform these experiments on two datasets, so we get
results on datasets of different scale and difficulty. These
datasets contain images that are widely used in image clas-
sification papers.

6 Caltech categories: we use 6 Caltech categories2: car
rears (1155 images), airplanes (1074), backgrounds (900),
motorbikes (826), faces (450) and guitars (1030). The first
five categories are widely used in image classification exper-
iments, and we choose the last instead of the car side data
commonly used, since it was not available anymore.

Caltech-101: to obtain more general results, we also test
our method on a larger dataset, the Caltech-101 dataset [9],
containing 8,697 images divided into 101 categories, each
category containing from 31 to about 800 images.

6.1.2 Visual vocabulary
We build our visual vocabulary using a hierarchical k-means
algorithm. The word number is set to 6,556 for the 6-
category dataset, and to 61,687 for the Caltech-101 dataset.
We choose these values as they provide optimal results in
terms of recall and precision in an image retrieval context.

2Available at http://www.robots.ox.ac.uk/ vgg/data/data-
cats.html



6.1.3 Baseline : Support Vector Machines
We choose SVM as a baseline because, as mentioned in
Section 2.1, they provide state-of-the-art results and SVM
software is easily available. We tested several kernels and
weighting schemes, best results are obtained with linear ker-
nel and tf.idf [23] weighting, like the results in [8]. We used
two versions of the vectors, normalized or not, since the
two versions give different results on some image categories.
Non-normalized vectors are refered as SVM and normalized
vectors are refered as SVM-N.

We carry out the SVM experiments ourselves instead of com-
paring with available results as we must use the same param-
eters (detector, clustering algorithm, word number) to make
a consistent comparison. To perform SVM experiments we
use Joachims’ multiclass SVM software3.

6.1.4 Performance measure
In the following experiments, we classically measure the per-
formance of the system as the number of test images whose
category is correctly predicted. The performance score Sc

of classifier c is computed as a percentage:

Sc =
|{test images well classified by c}|

|{test images}|

6.1.5 LM software
For these experiments we use the Carnegie Mellon Univer-

sity Statistical Language Modeling toolkit [7], developped
by Philip Clarkson and Ronald Rosenfeld. It is available at:
http://www.speech.cs.cmu.edu/SLM/toolkit.html.

6.2 Choice of axis

6.2.1 Experimental settings
For this experiment, we use the 6-category dataset, divided
into a training set (1200 images, 200 per category) and a test
set (4215 images), Katz smoothing, and a 3-gram model.
We test several axis configurations to know which one is the
most beneficial to image classification. We use:

• one axis obtained by PCA as explained in section 4.2;

• two orthogonal axes obtained by PCA;

• ten axes obtained by successive rotations of 10 degrees
of the main axis given by PCA, from 0 to 90 degrees;

• the x-axis;

• one random axis (the same for all images).

6.2.2 Results
training set test set

PCA axis 66.75 66.90
2 axes 100 37.60
10 axes
x-axis 83.67 68.68

random axis

Table 1: Classification performance against the

number and nature of axis used for the visual sen-

tence construction

3http://svmlight.joachims.org/

Results are shown in table 1. It presents the classification
performance for all images in each subset considered. The
approach using the x-axis performs better than the PCA ap-
proach. Since the objects are all aligned with the x-axis in
this dataset, the x-axis can be considered as the best axis:
it is always well aligned with the objects, independently of
the detected regions. The PCA axis is less robust because it
is biaised by the background clutter in some images. To be
effective, the PCA approach would require to better elim-
inate background visual words. However, the good results
of the PCA approach compared to the use of a random axis
show that it is a promising way to choose the axis: the use of
any axis is not suited to take account of the spatial relations
between visual words whereas PCA axis yields acceptable
results. The use of more than one axis results in overfitting:
the more axes we use, the better the classification is on the
training set and the worse it is on the testing set.

6.3 Reduction of word number
We test the efficiency of the word elimination techniques we
introduced in Sections 3.1 and 3.2. However, we do not ex-
pect the same results for the two methods. Our pLSA-based
technique, which aims at eliminating the noisiest words due
to the approximative clustering algorithm used, should im-
prove classification performance with our LM-based tech-
nique as well as any other classification method such as
SVM because it reduces noise in the data. The elimination
of redundant keypoints, on the contrary, should only im-
prove classification using our LM-based method, or another
symbolic-related method, since we eliminate these regions to
have consistent sentences and to avoid n-grams containing
n times the same word. In the case of numerical classifica-
tion methods such as SVM, this method may not improve
results because the redundancy of words can enhance image
description, using a weighting scheme such as tf.idf which
give more importance to the words with a high intra-image
frequency (tf term).

6.3.1 Experimental settings
To take account of the above remarks, we test our techniques
with our LM-based classification technique and a SVM clas-
sification. The SVM parameters are set as described in Sec-
tion 6.1.3. The LM parameters are: x-axis, Katz smoothing
and n-grams with n = 1 . . . 4. We use our 6-category dataset
for this experiment.

We test each classification method with: no elimination of
the keypoints (refered as NE), elimination of redundant key-
points (RK), elimination of noisy words (NW), elimination
of the two (RK+NW).

6.3.2 Results
Results are shown in table 2. As expected, the two meth-
ods behave differently. On the one hand, the pLSA-based
noise reduction improves the classification results, no matter
which classification technique is used. On the other hand,
the elimination of redundant keypoints only improves the re-
sults of LM-based classification with n ≥ 2, where the pres-
ence of a given word is more important than its frequency
within the image. On the contrary, it worsens the results
of the SVM-based classification because, as written earlier,
the frequency is an important aspect in such numerical ap-
proaches. It also worsens the results of the LM classification



when n = 1, because in this model, words are considered
independant, so only their frequency is used by the model,
not their order in the sentence.

NE RK NW RK+NW
LM n = 1 73.59 67.35 73.90 69.42
LM n = 2 50.23 68.09 52.19 77.72
LM n = 3 50.44 67.85 52.34 68.68
LM n = 4 50.15 65.29 52.00 73.17
SVM-N 56.20 55.75 56.56 55.90
SVM 54.23 25.52 56.73 42.06

Table 2: Classification performance on the test set

according to the keypoints and words used

6.4 Choice of LM
Choosing a good language model is essential to model cor-
rectly image categories and, so, to correctly classify images.
The two elements determining the model have to be tested:
the length n of the n-grams and the smoothing strategy.

6.4.1 Experimental settings
We first test several values of n, from n = 1 to n = 10. With
n = 1, words are considered independant, so no spatial in-
formation between them is taken into account. This allows
us to compare the relative importance of the two contribu-
tions of language modeling: taking spatial information into
account and taking unknown data into account via smooth-
ing. The use of values of n from 2 to 10 shows the advantages
of the use of several neighbor keypoints as image description
instead of independant keypoints. The tests are performed
using visual words after elimination of redundant and noisy
words, one PCA axis and Katz smoothing. We divide the
6-category image set into two sets: a training set containing
1200 images (200 from each category) and a testing contain-
ing the rest of the data (4215 images).

We then test the smoothing methods we presented in section
5.2 to see which is the most performant to classify images.
As in the above experiment, we use visual words after elimi-
nation of the redundant and noisy words, x-axis, 6-category
image dataset (200 training images per category and 4215
test images). We use language models with relevant values
of n considering the results of the previous experiment: from
1 to 4.

6.4.2 Results
Results of the experiments for the choice of n are shown
in table 3. On the one hand, we see that the unigram
model (n = 1) does not provide the best results. We can
therefore affirm that our visual sentence model allows us to
consider spatial relationships between keypoints, and that
taking such relationships into account in image classifica-
tion is relevant. On the other hand, the results with n ≥ 2
suggest that considering too long sequences of words does
not improve classification: beyond 4-grams, the classifica-
tion becomes even worse than with a unigram model. Such
long n-grams are too specific given an object to express the
variability of the object among many images: they cannot
deal with small variations from one image to another, such
as the elimination of a word or the substitution of one word
by another, so the model loses his capacity to generalize

from a small training set to every image. These variations
can be induced by any of the stages of our process preceed-
ing the training itself: the detector does not always detect
exactly the same keypoints from one image to another (for
two reasons: the algorithm is not perfect and images have
various backgrounds), the vocabulary construction process
often results in many polysemous or synonymic words, the
axis definition suffers from the irregularities of the detector
and the elimination of noisy words is itself approximative
and prone to previous errors. These are sufficient reasons
to explain that n-grams longer than 4-grams yield bad re-
sults, as well as it would be chimerical to look for a perfect
matching between complete sentences.

n 1 2 3 4 5
training set 95.58 99.92 83.67 31.42 83.33
testing set 69.06 77.72 68.68 73.17 30.49

n 6 7 8 9 10
training set 66.67 83.33 100 100 16.67
testing set 23.77 14.73 23.82 26.24 1.00

Table 3: Classification rate for several values of n

using Katz smoothing

We test our approach using the smoothing methods de-
scribed in Section 5. Classification rates for each method
and several values of n are shown in tables 4 and 5. The
results are quite similar from one technique to another, only
the linear discounting with back-off offers a small improv-
ment compared to other methods.

n 1 2 3 4
absolute 95.67 99.92 99.83 32.67
linear 95.42 100 100 50.58
Katz 95.58 99.92 83.67 31.42

Witten-Bell 95.42 100 100 100

Table 4: Classification performance on training set

for several smoothing methods

n 1 2 3 4
absolute 70.20 77.88 77.91 77.88
linear 72.12 80.50 80.45 80.33
Katz 68.16 77.72 68.68 73.17

Witten-Bell 72.12 76.63 77.84 77.79

Table 5: Classification performance on testing set

for several smoothing methods

6.5 Classification performance

6.5.1 Experimental settings
We compare classification performance of our technique with
SVM performance on two datasets: our dataset containing
6 categories of Caltech images, and the Caltech-101 dataset.
We used the following parameters:

• 6-category dataset: we use LM with n from 2 to 4,
linear smoothing, projection on the x-axis and elimi-
nation of redundant keypoints. For LM and SVM clas-
sification, we remove noisy words using the technique
described in Section 3.2. We varied the number of
training images per category, from 50 to 300.



• Caltech-101: we use a LM classifier with the follow-
ing parameters: n = 2 and n = 3, linear smoothing,
projection on the x-axis and elimination of redundant
keypoints. We use several numbers of training images
per category, from 10 to 30.

6.5.2 Results

Figure 6: Classification performance on 6-category

dataset

Figure 7: Classification performance on Caltech-101

dataset

Results are shown in figures 6 and 7. On the 6-category
dataset, our LM approach clearly outperforms the SVM clas-
sifiers in terms of average classification performance. Fig-
ure 8 compares the performance of the best LM (n = 2) and
SVM when using 200 training images per category. SVM ap-
proaches, and especially SVM-N, have very variable results
from one category to another. SVM-N has very good results
on car rears, but very negative results on backgrounds and
airplanes. SVM is also very bad on backgrounds. One ex-
planation is that much less keypoints are detected on back-
grounds, with more variable visual words. So SVM cannot
generalize well on this category. On the contrary, LM clas-
sification gives more steady results, and best performs on 4
of the 6 categories. It yields much better results on back-
grounds than SVM classifiers. This can be explained by the
ability of LM to take into account unseen words, and the fact
that less words, so less n-grams, characterize backgrounds:

Figure 8: Classification performance on 6-category

dataset with 200 training images per category

since background images do not fit any n-grams of the other
category models, this category is taken as default. LM shows
the same behavior when using too long n-grams: most of the
pictures are classified in one category. In particular, when
n = 9 and n = 10, all pictures are classified as backgrounds.

On the Caltech-101 dataset, which proposes a more diffi-
cult classification problem, LM-based classification yields
also better results than any SVM-based classification.

7. CONCLUSION
In this paper, we presented two contributions to bag-of-
words-based image classification. On the one hand, we pro-
pose a visual word selection technique relying on pLSA. Ex-
periments show that this selection improves classification
results whatever the classifier is, LM or SVM. On the other
hand, we proposed a new image representation, visual sen-
tences, that makes it possible to add simple spatial infor-
mation to the bag-of-words model, and to use text-related
techniques for image classification or retrieval. With this
representation, we have trained language models to perform
image classification. These classifiers perform better than
SVM classifiers thanks to their ability to generalize (via
smoothing) and the joint use of several visual words (via
n-grams).

One problem of the visual sentence representation is to
choose a consistent axis. The model performs well if we
know a suited axis (the x-axis for our dataset), but we do
not have any automatic method to choose it yet. The use of
PCA over the coordinates of the visual words yields promis-
ing results but requires to eliminate background visual words
effectively. Moreover, in the case of images containing sev-
eral objects, the use of PCA is certainly not the best choice,
as the relative positions of the objects may change from one
image to another. Methods to group the keypoints of each
object have to be investigated. Using the density of key-
points in the image may help, since objects contain more
keypoints than backgrounds. pLSA may also give a solution
by grouping the words according to their cooccurrence in



the dataset.

Future work on this field also includes using LM for other
image applications. We will investigate the use of LM in the
case of image retrieval, as it is already done in the case of
text data. We will also study the use of LM to perform image
annotation, as finding relations between visual n-grams and
keywords, or between visual n-grams and textual n-grams,
may lead to good annotation results.
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