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ABSTRACT

Recent work using auxiliary prediction task classifiers to investigate the properties
of LSTM representations has begun to shed light on why pretrained representa-
tions, like ELMo (Peters et al., 2018) and CoVe (McCann et al., 2017), are so ben-
eficial for neural language understanding models. We still, though, do not yet have
a clear understanding of how the choice of pretraining objective affects the type
of linguistic information that models learn. With this in mind, we compare four
objectives—language modeling, translation, skip-thought, and autoencoding—on
their ability to induce syntactic and part-of-speech information. We make a fair
comparison between the tasks by holding constant the quantity and genre of the
training data, as well as the LSTM architecture. We find that representations from
language models consistently perform best on our syntactic auxiliary prediction
tasks, even when trained on relatively small amounts of data. These results sug-
gest that language modeling may be the best data-rich pretraining task for transfer
learning applications requiring syntactic information. We also find that the rep-
resentations from randomly-initialized, frozen LSTMs perform strikingly well on
our syntactic auxiliary tasks, but this effect disappears when the amount of train-
ing data for the auxiliary tasks is reduced.

1 INTRODUCTION

Representation learning with deep recurrent neural networks has revolutionized natural language
processing and replaced many of the expert-designed, linguistic features used previously. Recently,
researchers have begun to investigate the properties of learned representations by training auxiliary
classifiers that use the hidden states of frozen, pretrained models to perform other tasks. These
investigations have shown that when deep LSTMs (Hochreiter & Schmidhuber, 1997) are trained
on tasks like translation, they learn substantial syntactic and semantic information about their input
sentences, including part-of-speech (Shi et al., 2016; Belinkov et al., 2017a;b; Blevins et al., 2018).

These intriguing findings lead us to ask the following questions:

1. How does the training task affect how well models learn syntactic properties? Which tasks
are better at inducing these properties?

2. How does the amount of data the model is trained on affect these results? When does
training on more data help?

We investigate these questions by holding the data source and model architecture constant, while
varying both the training task and the amount of training data. Specifically, we examine mod-
els trained on English-German (En-De) translation, language modeling, skip-thought (Kiros et al.,
2015), and autoencoding, and also compare to an untrained LSTM model as a baseline. We con-
trol for the data domain by exclusively training on datasets from the 2016 Conference on Machine
Translation (WMT; Bojar et al., 2016). We train models on all tasks using the parallel En-De cor-
pus, which allows us to make fair comparisons across tasks. We also train models on a subset of the
this corpus to examine the effect of training data volume on learned representations. Additionally,
we augment the parallel dataset with a large monolingual corpus from WMT to examine how the
performance of the unsupervised tasks (all but translation) scale with more data.

Throughout our work, we focus on the syntactic evaluation tasks of part-of-speech (POS) tagging
and Combinatorial Categorical Grammar (CCG) supertagging. Supertagging is considered a build-

1



Under review as a conference paper at ICLR 2019

ing block for parsing as these tags constrain the ways in which words can compose, largely deter-
mining the parse of the sentence. CCG supertagging thus allows us to measure the degree to which
models learn syntactic structure above the word. We focus our analysis on representations learned by
language models and by the encoders of sequence-to-sequence models, as translation encoders have
been found to learn richer representations of POS and morphological information than translation
decoders (Belinkov et al., 2017a).

We find that for POS and CCG tagging, bidirectional language models (BiLMs)—created by sep-
arately training forward and backward language models, and concatenating their hidden states—
outperform models trained on all other tasks. Even BiLMs trained on relatively small amounts of
data (1 million sentences) outperform translation and skip-thought models trained on larger datasets
(5 million and 63 million sentences respectively).

Our inclusion of an untrained LSTM baseline allows us to study the effect of training on hidden
state representations of LSTMs. We find, surprisingly, that when we use all of the available labeled
tag data to train our auxiliary task classifiers, our best trained models (BiLMs) only outperform the
randomly initialized, untrained LSTMs by a few percentage points. When we reduce the amount of
classifier training data though, the performance of the randomly initialized LSTM model drops far
below those of trained models. We hypothesize that this occurs because training the classifiers on
large amounts of auxiliary task data allows them to memorize configurations of words seen in the
training set and their associated tags. We test this hypothesis by training classifiers to predict the
identity of neighboring words from a given hidden state, and find that randomly initialized models
outperform all trained models on this task. Our findings demonstrate that our best trained models
do well on the tagging tasks because they are truly learning representations that conform to our
notions of POS and CCG tagging, and not simply because the classifiers we train are able to recover
neighboring word identity information.

2 RELATED WORK

Evaluating Learned Representations Adi et al. (2016) introduce the idea of examining sentence
vector representations by training auxiliary classifiers to take sentence encodings and predict at-
tributes like word order. Belinkov et al. (2017a) build on this work by examining the hidden states
of LSTMs trained on translation and find that they learn substantial POS and morphological infor-
mation without direct supervision for these linguistic properties. Beyond translation, Blevins et al.
(2018) find that deep LSTMs learn hierarchical syntax when trained on a variety of tasks—including
semantic role labeling, language modeling, and dependency parsing. However, the models exam-
ined by Blevins et al. (2018) were also trained on different datasets, so it’s unclear if the differences
in syntactic task performance are due to the training objectives or simply differences in the training
data. By controlling for model size and the quantity and genre of the training data, we we are able
to make direct comparisons between tasks on their ability to induce syntactic information.

Transfer Learning of Representations Much of the work on sentence-level pretraining has fo-
cused on sentence-to-vector models and evaluating learned representations on how well they can
be used to perform sentence-level classification tasks. A prominent early success in this area with
unlabeled data is skip-thought (Kiros et al., 2015), the technique of training a sequence-to-sequence
model to predict the sentence preceding and following each sentence in a running text. InferSent
(Conneau et al., 2017)—the technique of pretraining encoders on natural language inference data—
yields strikingly better performance when such labeled data is available.

Work in transfer learning of representations has recently moved beyond strict sentence-to-vector
mappings. Newer models that incorporate LSTMs or Transformer networks pretrained on data-
rich tasks, like translation and language modeling, have achieved state-of-the-art results on many
tasks—including semantic role labeling, natural language inference, and coreference resolution (Pe-
ters et al., 2018; McCann et al., 2017; Howard & Ruder, 2018; Radford et al., 2018). Although
comparisons have previously been made between translation and language modeling as pretraining
tasks (Peters et al., 2018; Wang et al., 2018), we investigate this issue more thoroughly by controlling
for the quantity and content of the training data.
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Task Layer Size Attn. 1 Million 5 Million 15 Million 63 Million

Translation 2×500D Y 13.2 (17.6 BLEU) 9.1 (21.4 BLEU) – –
Translation 2×500D N 25.2 (6.8 BLEU) 13.0 (12.3 BLEU) – –
LM Forward 1×500D – 104.8 81.2 82.3 76.9
LM Backward 1×500D – 103.2 80.8 81.1 77.3
LM Forward 1×1000D – 103.8 73.6 69.2 66.5
Skip-Thought 2×500D Y 99.0 69.2 68.7 67.9
Skip-Thought 2×500D N 104.1 72.0 68.1 66.7
Autoencoder 2×500D Y 1.0 1.0 1.0 1.0
Autoencoder 2×500D N 1.0 1.1 1.2 1.1

Table 1: Perplexity of trained models by number of training sentences. All but the language models
are 1000D BiLSTMs (500D per direction). The 500D forward and backward language models are
combined into a single bidirectional language model for analysis experiments.

Training Dataset Size The performance of neural models depends immensely on the amount of
training data used. Koehn & Knowles (2017) find that when training machine translation models on
corpora with fewer than 15 million words (English side), statistical machine translation approaches
outperform neural ones. Similarly, Hestness et al. (2017) study the affect of training data volume
on performance for several tasks—including translation and image classification. They find that for
small amounts of data, neural models perform about as well as chance. After a certain threshold,
model performance improves logarithmically with the amount of training data, but this eventually
plateaus. With this in mind, we also vary the amount of training data to investigate the relationship
between performance and data volume for each task.

Randomly Initialized Models Conneau et al. (2018) use randomly initialized LSTMs as a base-
line when studying sentence-to-vector embedding models. They find that untrained models outper-
form many trained models on several auxiliary tasks, including predicting word content. Similarly in
vision, untrained convolutional networks have been shown to capture many low-level image statis-
tics and can be used for image denoising (Ulyanov et al., 2017). Our method of training auxiliary
classifiers on randomly initialized RNNs builds on the tradition of reservoir computing, in which
randomly initialized networks or “reservoirs” are fixed and only “read-out” classifier networks are
trained (Lukoševičius & Jaeger, 2009). Echo state networks—reservoir computing with recurrent
models—have been used for tasks like speech recognition, language modeling, and time series pre-
diction (Verstraeten et al., 2006; Tong et al., 2007; Sun et al., 2017).

3 METHODS

3.1 MAIN TRAINING DATA

We use the parallel English-German (En-De) dataset from the 2016 ACL Conference on Machine
Translation (WMT) shared task on news translation (Bojar et al., 2016). This dataset contains 5
million ordered sentence translation pairs. We also use the 2015 English monolingual news dis-
cussion dataset from the same WMT shared task, which contains approximately 58 million ordered
sentences. To examine how the volume of training data affects learned representations, we use four
corpus sizes: 1, 5, 15, and 63 million sentences (translation is only trained on the smaller two sizes).
We create the 1 million sentence corpora from the 5 million sentence dataset by sampling (i) sen-
tence pairs for translation, (ii) English sentences for autoencoders, and (iii) ordered English sentence
pairs for skip-thought and language models1. Similarly, we create the 15 million sentence corpora
for the unsupervised tasks by sampling sentences from the entire corpus of 63 million sentences.
We use word-level representations throughout and use the Moses package (Koehn et al., 2007) to
tokenize and truecase our data. Finally, we limit both the English and German vocabularies to the
50k most frequent tokens in the training set.

1Note, in training we initialize the language model LSTM hidden states with the final state after reading the
previous sentence.
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Figure 1: An annotated PTB example sentence.

3.2 MODEL ARCHITECTURE AND TRAINING

We train all our models using OpenNMT-py (Klein et al., 2017) and use the default options for model
sizes, hyperparameters, and training procedure—except we increase the size of the LSTMs, make
the encoders bidirectional, and use validation-based learning rate decay instead of a fixed sched-
ule. Specifically, all our models (except language models) are 1000D, two-layer encoder-decoder
LSTMs with bidirectional encoders (500D per direction) and 500D embeddings. We train models
both with and without attention (Bahdanau et al., 2015). For language models, we train a 1000D
forward language model and a bidirectional language model—two 500D language models (forward
and backward) trained separately, whose hidden states are concatenated. All models, including our
untrained baseline, are initialized from a uniform distribution (−0.1, 0.1), the default in OpenNMT.

We use the same training procedure for all our models. We evaluate on the validation set every
epoch when training on the 1 and 5 million sentence datasets, and evaluate approximately every 5
million sentences when training on the larger datasets. We use SGD with an initial learning rate
of 1. Whenever a model’s validation loss increases relative to the previous evaluation, we halve
the learning rate and stop training when the learning rate reaches 0.515. For each training task and
dataset size, we select the model with the lowest validation perplexity to perform auxiliary task
evaluations on. We report model performance in terms of perplexity and BLEU (Papineni et al.,
2002) in Table 1. For translation we use beam search (B = 5) when decoding.

3.3 CLASSIFIER DATA AND ARCHITECTURE

POS and CCG For Part-of-Speech (POS) tagging evaluation, we use the Wall Street Journal
(WSJ) portion of the Penn Treebank (PTB; Marcus et al., 1993) We follow the standard WSJ split
(train 2-21; dev 22; test 23). The dataset contains approximately 50k sentences and 45 tag types.

For CCG supertagging, we use CCG Bank (Hockenmaier & Steedman, 2007), which is based on
PTB WSJ. CCG supertagging provides fine-grained information about the role of each word in its
larger syntactic context and is considered almost parsing, since sequences of tags map sentences to
small subsets of possible parses. The entire dataset contains approximately 50k sentences and 1327
tag types. We display POS and CCG tags for an example sentence in Figure 1.

To study the impact of auxiliary task training data volume, for both datasets we create smaller
classifier training sets by sampling 10% and 1% of the sentences. We truecase both datasets using
the same truecase model trained on WMT and restrict the vocabularies to the 50k tokens used in
pretraining our LSTM models. In addition to the untrained LSTM baseline, we also compare to the
word-conditional most frequent class (WC-MFC)—the most frequently assigned tag class for each
distinct word in the training set. For this baseline we restrict the vocabulary to that of our LSTM
models and map all out-of-vocabulary words to a single UNK token. Note that while PTB and WMT
are both drawn from news text, there is slight genre mismatch.

Word Identity For this task, the classifier takes a single LSTM hidden state as input and predicts
the identity of the word at a different time step. For example, for the sentence “I love NLP” and
a time step shift of -2, we would train the classifier to take the hidden state for “NLP” and predict
the word “I”. We use the WSJ dataset for this task. Following Conneau et al. (2018), we take all
words that occur between 100 and 1000 times (about 1000 words total) as the possible targets for
neighboring word prediction.
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Figure 2: POS and CCG tagging accuracies for different amounts of LSTM encoder and classifier
training data. We show results for the best performing layer of each model. Note, BiLMs are dis-
played with the attention models and forward LMs are displayed with the models without attention.

Classifier Training Procedure We train multi-layer perceptron (MLP) classifiers that take an
LSTM hidden state (from one time step and one layer) and output a distribution over the possi-
ble labels (tags or word identities). The MLPs we train have a single 1000D hidden layer with a
ReLU activation. For classifier training, we use the same training and learning rate decay procedure
used for pretraining the LSTM encoders.

4 COMPARING PRETRAINING TASKS

In this section we discuss the main POS and CCG tagging results displayed in Figure 2. Overall,
POS and CCG tagging accuracies tend to increase with the amount of data the LSTM encoders are
trained on, but the marginal improvement decreases as the amount of training data increases.

Language Modeling and Translation For all pretraining dataset sizes, bidirectional language
model (BiLM) and translation encoder representations perform best on both POS and CCG tagging.
Translation encoders, however, slightly underperform BiLMs, even when both models are trained on
the same amount of data. In fact, even BiLMs trained on the smallest amount of data (1 million sen-
tences) outperform models trained on all other tasks and dataset sizes (up to 5 million sentences for
translation, and 63 million sentences for skip-thought and autoencoding). Especially since BiLMs
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(a) WC-MFC baselines for different amounts of PTB
training data: 1% PTB: 81.8%; 10% PTB: 88.6%;
100% PTB: 89.9%.

(b) WC-MFC baselines for different amounts of CCG
training data: 1% CCG: 62.3%; 10% CCG: 68.3%;
100% CCG: 71.6%.

Figure 3: POS and CCG tagging accuracies for different amounts of classifier training data in terms
of percentage points over the word-conditional most frequent class (WC-MFC) baseline. We show
results for the best performing layer and model for each task.

do not require aligned data to train, the superior performance of BiLM representations on these tasks
suggests that BiLMs (like ELMo; Peters et al., 2018) are better than translation encoders (like CoVe;
McCann et al., 2017) for transfer learning of syntactic information. One reason BiLMs perform rel-
atively well on these syntactic tasks could be that in contrast to the encoders for the other tasks, LM
encoders have a per-token loss. Note also that since our evaluation tasks also predict a single label
for each token, this could be one reason that BiLMs perform so well on these tasks in particular.

For all amounts of training data, the BiLMs significantly outperform the 1000D forward-only lan-
guage models. The gap in performance between bidirectional and forward language models is
greater for CCG supertagging than for POS tagging. When using all available auxiliary training
data, there is a 2 and 8 percentage point performance gap in POS and CCG tagging respectively.
This difference in relative performance suggests that bidirectional context information is more im-
portant for identifying syntactic structure than for identifying part of speech.

Figure 2 illustrates how the best performing BiLMs and translation models tend to be more robust to
decreases in classifier data than models trained on other tasks. Also, when training on less auxiliary
task data, POS tagging performance tends to drop less than CCG supertagging performance. For the
best model (BiLM trained on 63 million sentences), when using 1% rather than all of the auxiliary
task training data, CCG accuracy drops 9 percentage points, while POS accuracy only drops 2 points.
Further examinations of the effect of classifier data volume are displayed in Figure 3.

Skip-Thought Although skip-thought encoders consistently underperform both BiLMs and trans-
lation encoders in all data regimes we examine, skip-thought models improve the most when increas-
ing the amount of pretraining data, and are the only models whose performance does not seem to
have plateaued by 63 million training sentences. Since we train our language models on ordered sen-
tences, as we do for skip-thought, our language models can be interpreted as a regularized versions
of skip-thought, in which the weights of the encoder and decoder are shared. The increased model
capacity of skip-thought, compared to language models, could explain the difference in learned
representation quality—especially when these models are trained on smaller amounts of data.

Random Initialization For our randomly initialized, untrained LSTM encoders, we use the de-
fault weight initialization technique in OpenNMT-py, a uniform distribution between -0.1 and 0.1;
the only change we make is to set all biases to zero. We find that this baseline performs quite well
when using all auxiliary data, and is only 3 and 8 percentage points behind the BiLM on POS and
CCG tagging, respectively. We find that decreasing the amount of classifier data leads to a signif-
icantly greater drop in the untrained encoder performance compared to trained models. In the 1%
classifier data regime, the performance of untrained encoders on both tasks drops below that of all
trained models and below even the word-conditional most-frequent class baseline.
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(a) POS tagging baseline: 89.9% (b) CCG supertagging baseline: 71.6%

Figure 4: POS and CCG tagging accuracies in terms of percentage points over the word-conditional
most frequent class baseline. We display results for the best performing models for each task.

We hypothesize that the randomly initialized baseline is able to perform well on tagging tasks with
large amounts of auxiliary task training data, because the classifier can learn the identity of neigh-
boring words from a given time step’s hidden state, and simply memorize word configurations and
their associated tags from the training data. We test this hypothesis directly in Section 6 and find that
untrained LSTM representations are in fact better at capturing neighboring word identity information
than any trained model.

Autoencoder Models trained on autoencoding are the only ones that do not consistently improve
with the amount of training data, which is unsurprising as unregularized autoencoders are prone to
learning identity mappings (Vincent et al., 2008). When training on 10% and 1% of the auxiliary
task data, autoencoders outperform randomly initialized encoders and match the word-conditional
most frequent class baseline. When training on all the auxiliary data though, untrained encoders
outperform autoencoders. These results suggest that autoencoders learn some useful structure that
is useful in the low auxiliary data regime. However, the representations autoencoders learn do not
capture syntactically rich features, since random encoders outperform them in the high auxiliary
data regime. This conclusion is further supported by the extremely poor performance of the second
layer of an autoencoder without attention on POS tagging (almost 10 percentage points below the
most frequent class baseline), as seen in Figure 4a.

5 COMPARING LAYERS

Embeddings (Layer 0) We find that randomly initialized embeddings consistently perform as
well as the word-conditional most frequent class baseline on POS and CCG tagging, which serves
as an upper bound on performance for the embedding layer. As these embeddings are untrained, the
auxiliary classifiers are learning to memorize and classify the random vectors. When using all the
auxiliary classifier data, there is no significant difference in the performance of trained and untrained
embeddings on the tagging tasks. Only for smaller amounts of classifier data do trained embeddings
consistently outperform randomly initialized ones.

Upper Layers Belinkov et al. (2017a) find that, for translation models, the first layer consistently
outperforms the second on POS tagging. We find that this pattern holds for all our models, except
in BiLMs, for which the first and second layers perform equivalently. The pattern holds even for
untrained models, suggesting that POS information is stored on the lower layer, not necessarily
because the training task encourages this, but because of properties of the deep LSTM architecture.

We also find that for CCG supertagging, the first layer also outperforms the second layer on untrained
models. For the trained models though, the second layer performs better than the first in some cases.
Which layer performs best appears to be independent of absolute performance on the supertagging
task. Our layer analysis results are displayed in Figure 4.
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Figure 5: Performance of classifiers trained to predict the identity of the word a fixed number of
timesteps away. Note, the forward LM has asymmetrical access to this information in its input.

6 WORD IDENTITY PREDICTION

Our results on word identity prediction are summarized in Figure 5 and given in more detail in
Appendix A. While trained encoders outperform untrained ones on both POS and CCG tagging, we
find that all trained LSTMs underperform untrained ones on word identity prediction. This finding
confirms that trained encoders genuinely capture substantial syntactic features, beyond mere word
identity, that the auxiliary classifiers can use.

We find that for both trained and untrained models, the first layer outperforms the second layer
when predicting the identity of the immediate neighbors of a word. However, the second layer
tends to outperform the first at predicting the identity of more distant neighboring words. This
effect is especially apparent for the randomly initialized encoders. Our finding suggests that, as
is the case for convolutional neural networks, depth in recurrent neural networks has the effect
of increasing the receptive field and allows the upper layers to have representations that capture a
larger context. These results reflect the findings of Blevins et al. (2018) that for trained models,
upper levels of LSTMs encode more abstract syntactic information, since more abstract information
generally requires larger context information.

7 CONCLUSION

By controlling for the genre and quantity of the training data, we make fair comparisons between
several data-rich training tasks in their ability to induce syntactic information. We find that bidirec-
tional language models (BiLMs) do better than translation and skip-thought encoders at extracting
useful features for POS tagging and CCG supertagging. Moreover, this improvement holds even
when the BiLMs are trained on substantially less data than competing models. Our results suggest
that for transfer learning, BiLMs like ELMo (Peters et al., 2018) capture more useful features than
translation encoders—and that this holds even on genres for which data is not abundant.

We also find that randomly initialized encoders extract usable features for POS and CCG tagging—
at least when the auxiliary POS and CCG classifiers are themselves trained on reasonably large
amounts of data. The performance of untrained models drops sharply relative to trained ones when
using smaller amounts of the classifier data. We investigate further and find that untrained models
outperform trained ones on the task of neighboring word identity prediction, which confirms that
trained encoders do not perform well on tagging tasks because the classifiers are simply memorizing
word identity information. We also find that both trained and untrained LSTMs store more local
neighboring word identity information in lower layers and more distant word identity information in
upper layers, which suggests that depth in LSTMs allow them to capture larger context information.
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Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical Machine
Translation. ACL, 2007. URL http://www.statmt.org/moses/.

9

http://arxiv.org/abs/1608.04207
http://arxiv.org/abs/1608.04207
https://arxiv.org/abs/1801.07772
http://arxiv.org/abs/1704.03471
http://arxiv.org/abs/1704.03471
http://arxiv.org/abs/1712.00409
http://arxiv.org/abs/1712.00409
http://www.aclweb.org/anthology/J07-3004
http://www.aclweb.org/anthology/J07-3004
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1506.06726
http://arxiv.org/abs/1506.06726
https://doi.org/10.18653/v1/P17-4012
http://www.statmt.org/moses/


Under review as a conference paper at ICLR 2019
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A RANDOMLY INITIALIZED ENCODERS

Figure 6: Here we display results for the word identity prediction task with randomly initialized
LSTM encoders with up to 4 layers. Lower layers have a more peaked shape and upper layers a
more flat shape, meaning that the lower layers encode relatively more nearby neighboring word
information, while upper layers encode relatively more distant neighboring word information.
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B POS AND CCG EVALUATION FULL RESULTS

B.1 TRAINING CLASSIFIERS ON ALL DATA

Training task Data Attention POS L2 POS L1 POS L0 CCG L2 CCG L1 CCG L0

Random Init 1 None N/A 90.5 93.7 90.2 83.5 85.4 71.6
Random Init 2 None N/A 90.3 93.8 90.1 83.3 85.3 71.5

Translation 1M Yes 95.6 95.7 90.0 91.4 91.2 71.5
Translation 1M No 92.5 95.0 90.0 88.2 90.1 71.3
LM (Bidir) 1M No 96.4 96.1 90.2 92.5 92.0 71.6
LM (Forward) 1M No 94.3 94.5 90.1 83.5 83.1 71.5
Skip-thought 1M Yes 44.3 88.6 89.9 45.3 81.0 71.1
Skip-thought 1M No 78.1 90.8 89.9 74.5 84.4 71.1
Autoencoder 1M Yes 80.8 92.4 89.6 73.6 83.7 71.2
Autoencoder 1M No 79.8 90.8 89.9 79.2 84.0 71.1

Translation 5M Yes 96.0 95.9 90.2 92.2 91.6 71.5
Translation 5M No 92.9 95.8 90.2 89.6 91.2 71.5
LM (Bidir) 5M No 96.6 96.2 90.3 92.6 92.4 71.6
LM (Forward) 5M No 94.6 94.7 90.2 84.0 83.5 71.5
Skip-thought 5M Yes 76.4 92.2 90.0 68.4 86.4 71.1
Skip-thought 5M No 86.1 94.3 90.0 81.2 88.6 71.2
Autoencoder 5M Yes 88.1 91.8 89.6 76.5 82.5 70.8
Autoencoder 5M No 70.7 92.1 89.8 72.7 83.7 71.0

LM (Bidir) 15M No 97.0 96.8 90.6 93.1 92.9 72.0
LM (Forward) 15M No 95.3 95.3 90.6 84.9 84.5 72.0
Skip-thought 15M Yes 82.3 93.8 90.2 70.4 87.6 71.6
Skip-thought 15M No 90.1 95.1 90.3 85.8 89.8 71.5
Autoencoder 15M Yes 91.9 93.1 90.1 82.6 84.5 71.4
Autoencoder 15M No 71.6 92.0 89.8 71.0 83.7 71.2

LM (Bidir) 63M No 96.9 96.7 90.6 93.1 93.0 72.0
LM (Forward) 63M No 95.3 95.4 90.6 84.9 84.5 72.0
Skip-thought 63M Yes 90.6 95.5 90.3 80.9 90.1 71.6
Skip-thought 63M No 91.6 95.6 90.3 86.8 90.3 71.6
Autoencoder 63M Yes 89.4 91.8 89.6 78.4 83.2 71.2
Autoencoder 63M No 70.2 91.7 89.9 70.5 83.1 71.3

Table 2: Here we display results for training on all of auxiliary task data. Word-conditional most
frequent class baselines for this amount of training data are 89.9% for POS tagging and 71.6% for
CCG supertagging. For each task, we underline the best performance for each training dataset size
and bold the best overall performance.
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B.2 TRAINING CLASSIFIERS ON 10% OF DATA

Training task Data Attention POS L2 POS L1 POS L0 CCG L2 CCG L1 CCG L0

Random Init 1 None N/A 85.0 90.5 88.3 71.8 77.0 68.3
Random Init 2 None N/A 84.9 90.6 88.3 72.7 77.0 68.3

Translation 1M Yes 93.4 94.3 89.1 88.4 87.6 69.5
Translation 1M No 89.9 93.4 89.0 82.9 86.0 69.5
LM (Bidir) 1M No 95.5 95.2 89.7 89.4 88.6 70.1
LM Forward 1M No 93.2 93.5 89.5 80.8 80.2 69.9
Skip-thought 1M Yes 34.3 84.1 88.2 36.7 74.0 68.3
Skip-thought 1M No 71.3 86.9 88.2 64.9 78.0 68.1
Autoencoder 1M Yes 77.9 89.6 87.7 71.5 77.4 68.3
Autoencoder 1M No 71.2 87.9 88.6 71.8 78.1 68.8

Translation 5M Yes 94.1 94.8 89.5 88.9 88.2 69.8
Translation 5M No 89.2 94.4 89.5 85.4 87.6 69.9
LM (Bidir) 5M No 95.7 95.3 89.8 89.6 88.9 70.2
LM Forward 5M No 93.3 93.7 89.7 81.4 80.6 70.1
Skip-thought 5M Yes 66.8 89.6 88.7 60.8 81.0 68.7
Skip-thought 5M No 81.2 92.1 88.7 73.4 83.7 68.7
Autoencoder 5M Yes 84.9 89.0 87.6 71.8 76.1 67.9
Autoencoder 5M No 65.6 89.6 88.4 65.8 77.9 68.3

LM (Bidir) 15M No 96.1 95.9 90.2 89.7 89.9 70.6
LM Forward 15M No 94.1 94.5 90.1 82.1 81.8 70.6
Skip-thought 15M Yes 72.8 91.4 89.0 63.2 82.6 68.9
Skip-thought 15M No 84.6 93.2 89.0 79.8 85.5 69.1
Autoencoder 15M Yes 88.3 90.3 88.4 76.6 78.9 68.7
Autoencoder 15M No 68.5 89.2 88.3 68.6 78.1 68.6

LM (Bidir) 63M No 96.1 96.0 90.2 90.0 90.1 70.7
LM Forward 63M No 94.3 94.4 90.2 82.3 81.8 70.6
Skip-thought 63M Yes 85.0 94.0 89.2 73.9 86.0 69.4
Skip-thought 63M No 88.0 94.0 89.3 81.6 86.1 69.3
Autoencoder 63M Yes 82.8 88.9 87.4 72.7 77.3 68.4
Autoencoder 63M No 67.2 89.5 88.5 66.1 77.2 68.5

Table 3: Here we display results for training on 10% of auxiliary task data. Word-conditional most
frequent class baselines for this amount of training data are 88.6% for POS tagging and 68.3% for
CCG supertagging. For each task, we underline the best performance for each training dataset size
and bold the best overall performance.
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B.3 TRAINING CLASSIFIERS ON 1% OF DATA

Training task Data Attn. POS L2 POS L1 POS L0 CCG L2 CCG L1 CCG L0

Random Init 1 None N/A 68.7 74.5 79.1 54.4 60.9 59.3
Random Init 2 None N/A 68.8 74.5 79.5 55.5 62.0 58.8

Translation 1M Yes 90.8 91.7 87.2 79.1 81.0 65.4
Translation 1M No 82.5 89.9 86.9 69.0 78.3 65.0
LM (Bidir) 1M No 93.5 93.8 89.0 82.8 81.6 67.1
LM Forward 1M No 90.8 91.8 88.5 74.3 74.1 66.5
Skip-thought 1M Yes 27.2 73.2 81.4 28.7 63.3 60.7
Skip-thought 1M No 57.8 77.5 81.3 47.4 67.9 61.0
Autoencoder 1M Yes 71.2 81.4 81.8 59.0 67.4 61.9
Autoencoder 1M No 62.2 78.7 84.2 60.2 69.4 63.5

Translation 5M Yes 92.1 92.9 88.2 77.3 81.2 65.7
Translation 5M No 82.7 91.7 88.0 73.5 80.7 65.9
LM (Bidir) 5M No 93.7 94.0 89.1 83.0 82.4 67.1
LM Forward 5M No 90.7 92.1 88.8 74.3 74.3 66.7
Skip-thought 5M Yes 55.3 83.4 84.8 44.5 72.4 63.0
Skip-thought 5M No 69.6 86.0 84.4 53.5 75.1 62.7
Autoencoder 5M Yes 67.6 79.5 80.8 58.8 64.6 61.0
Autoencoder 5M No 60.7 81.1 82.6 56.0 68.7 61.8

LM (Bidir) 15M No 94.4 94.7 89.6 82.8 83.7 67.5
LM Forward 15M No 91.7 93.1 89.3 74.8 75.8 67.3
Skip-thought 15M Yes 50.7 85.4 84.9 29.6 73.8 63.5
Skip-thought 15M No 75.2 88.1 84.9 63.5 77.4 63.7
Autoencoder 15M Yes 77.9 82.3 81.9 66.9 68.7 62.6
Autoencoder 15M No 61.2 80.4 82.3 56.6 69.8 62.0

LM (Bidir) 63M No 94.3 94.8 89.7 82.9 83.9 67.5
LM Forward 63M No 92.1 93.3 89.4 74.9 76.2 67.6
Skip-thought 63M Yes 69.8 90.2 86.3 55.4 78.1 64.4
Skip-thought 63M No 77.9 89.6 86.1 64.8 78.4 64.0
Autoencoder 63M Yes 72.1 80.1 81.5 58.7 66.8 61.3
Autoencoder 63M No 60.6 80.6 82.3 55.7 68.6 61.7

Table 4: Here we display results for training on 1% of auxiliary task data. Word-conditional most
frequent class baselines for this amount of training data are 81.8% for POS tagging and 62.3% for
CCG supertagging. For each task, we underline the best performance for each training dataset size
and bold the best overall performance.
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