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1 Introduction

Recently, researchers have found that deep

LSTMs (Hochreiter and Schmidhuber, 1997)

trained on tasks like machine translation learn sub-

stantial syntactic and semantic information about

their input sentences, including part-of-speech

(Belinkov et al., 2017a,b; Blevins et al., 2018).

These findings begin to shed light on why pre-

trained representations, like ELMo and CoVe, are

so beneficial for neural language understanding

models (Peters et al., 2018; McCann et al., 2017).

We still, though, do not yet have a clear under-

standing of how the choice of pretraining objec-

tive affects the type of linguistic information that

models learn. With this in mind, we compare

four objectives—language modeling, translation,

skip-thought, and autoencoding—on their ability

to induce syntactic and part-of-speech informa-

tion, holding constant the quantity and genre of the

training data, as well as the LSTM architecture.

2 Methodology

We control for the data domain by exclusively

training on datasets from WMT 2016 (Bojar et al.,

2016). We train models on all tasks using the par-

allel En-De corpus, which allows us to make fair

comparisons across all tasks. We also augment the

parallel data with a large monolingual corpus from

WMT to examine how the performance of the un-

supervised tasks scales with more data.

We analyze representations learned by lan-

guage models and by the encoders of sequence-

to-sequence models.1 Following Belinkov et al.

(2017a), after pretraining, we fix the LSTM model

parameters and use the hidden states to train aux-

iliary classifiers on several probing tasks. We

1All our encoders are 2-layer, bidirectional LSTMs (500-
D in each direction)—except for our large forward language
models, which are 1000-D and unidirectional.

use two syntactic evaluation tasks: part-of-speech

(POS) tagging on Penn Treebank WSJ (Marcus

et al., 1993) and Combinatorial Categorical Gram-

mar (CCG) supertagging on CCG Bank (Hocken-

maier and Steedman, 2007). CCG supertagging

allows us to measure the degree to which models

learn syntactic structure above the word. We also

measure how much LSTMs simply memorize in-

put sequences with a word identity prediction task.

3 Results

Comparing Pretraining Tasks For all pretrain-

ing dataset sizes, bidirectional language model

(BiLM) and translation encoder representations

outperform skip-thought and autoencoder repre-

sentations on both POS and CCG tagging. Trans-

lation encoders, however, slightly underperform

BiLMs, even when both models are trained on

the same amount of data. Furthermore, BiLMs

trained on the smallest amount of data (1 mil-

lion sentences) outperform models trained on all

other tasks using larger dataset sizes (5 million

sentences for translation, and 63 million sentences

for skip-thought and autoencoding). Especially

since BiLMs do not require aligned data to train,

the superior performance of BiLM representations

on these tasks suggests that BiLMs (like ELMo)

are better than translation encoders (like CoVe) for

transfer learning of syntactic information.

Untrained Baseline Surprisingly, we find that

the untrained LSTM baseline—frozen after ran-

dom initialization—performs quite well on syn-

tactic tagging tasks (a few percentage points be-

hind BiLMs) when using all auxiliary data; how-

ever, decreasing the amount of classifier training

data leads to a significantly greater drop in the un-

trained encoder performance compared to trained

encoders. We hypothesize that the classifiers can

recover neighboring word identity information—
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Figure 1: POS accuracies when training on different amounts of encoder and classifier data. We show

results for the best performing layer of each model. The most frequent class baseline is word-conditional.

even from untrained LSTMs representations—and

thus perform well on tagging tasks by memorizing

word configurations and their associated tags from

the training data. We test this hypothesis directly

with the word identity task.

Word Identity For this task, we train classifiers

to take LSTM hidden states and predict the identi-

ties of the words from different time steps. For ex-

ample, for the sentence “I love NLP .” and a time

step shift of -2, we would train the classifier to take

the hidden state for “NLP” and predict the word

“I”. While trained encoders outperform untrained

ones on both POS and CCG tagging, we find that

all trained LSTMs underperform untrained ones

on word identity prediction. This finding confirms

that trained encoders genuinely capture substantial

syntactic features, beyond mere word identity, that

the auxiliary classifiers can use.

Effect of Depth Belinkov et al. (2017a) find

that, for translation models, the first layer con-

sistently outperforms the second on POS tagging.

We find that this pattern holds for all our models,

except BiLMs, where the first and second layers

perform equivalently. This pattern occurs even in

untrained models, which suggests that POS infor-

mation is stored on the lower layer not necessarily

because the training tasks encourage this, but due

to properties of the deep LSTM architecture. For

CCG supertagging though, the second layer per-

forms better than the first in some cases (first layer

performs best for untrained LSTMs). Which layer

performs best appears to be independent of abso-

lute performance on the supertagging task.

On word identity prediction, we find that for

both trained and untrained models, the first layer

outperforms the second layer when predicting the

identity of the immediate neighbors of a word.

However, the second layer tends to outperform

the first at predicting the identity of more distant

neighboring words. As is the case for convolu-

tional neural networks, our findings suggest that

depth in recurrent neural networks has the effect

of increasing the “receptive field” and allows the

upper layers to have representations that capture a

larger context. These results reflect the findings of

Blevins et al. (2018) that for trained models, upper

levels of LSTMs encode more abstract syntactic

information, since more abstract information gen-

erally requires larger context information.

4 Conclusion

By controlling for the genre and quantity of the

training data, we make fair comparisons between

several data-rich training tasks in their ability to

induce syntactic information. Our results suggest

that for transfer learning, bidirectional language

models like ELMo (Peters et al., 2018) capture

more useful features than translation encoders—

and that this holds even on genres for which data is

not abundant. Our work also highlights the inter-

esting behavior of untrained LSTMs, which show

an ability to preserve the contents of their inputs

better than trained models.
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