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Abstract

The pre-dominant approach to language mod-

eling to date is based on recurrent neural net-

works. Their success on this task is often linked

to their ability to capture unbounded context.

In this paper we develop a finite context ap-

proach through stacked convolutions, which can

be more efficient since they allow paralleliza-

tion over sequential tokens. We propose a novel

simplified gating mechanism that outperforms

Oord et al. (2016b) and investigate the impact

of key architectural decisions. The proposed ap-

proach achieves state-of-the-art on the WikiText-

103 benchmark, even though it features long-

term dependencies, as well as competitive re-

sults on the Google Billion Words benchmark.

Our model reduces the latency to score a sen-

tence by an order of magnitude compared to a

recurrent baseline. To our knowledge, this is the

first time a non-recurrent approach is competitive

with strong recurrent models on these large scale

language tasks.

1. Introduction

Statistical language models estimate the probability distri-

bution of a sequence of words by modeling the probability

of the next word given preceding words, i.e.

P (w0, . . . , wN ) = P (w0)
N∏

i=1

P (wi|w0, . . . , wi−1),

where wi are discrete word indices in a vocabulary. Lan-

guage models are a critical part of systems for speech

recognition (Yu & Deng, 2014) and machine translation

(Koehn, 2010).

Recently, neural networks (Bengio et al., 2003; Mikolov

et al., 2010; Jozefowicz et al., 2016) have been shown to
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outperform classical n-gram language models (Kneser &

Ney, 1995; Chen & Goodman, 1996). These classical mod-

els suffer from data sparsity, which makes it difficult to rep-

resent large contexts and thus, long-range dependencies.

Neural language models tackle this issue by embedding

words in continuous space over which a neural network is

applied. The current state of the art for language model-

ing is based on long short term memory networks (LSTM;

Hochreiter et al., 1997) which can theoretically model ar-

bitrarily long dependencies.

In this paper, we introduce new gated convolutional net-

works and apply them to language modeling. Convolu-

tional networks can be stacked to represent large context

sizes and extract hierarchical features over larger and larger

contexts with more abstractive features (LeCun & Bengio,

1995). This allows them to model long-term dependen-

cies by applying O(N
k
) operations over a context of size N

and kernel width k. In contrast, recurrent networks view

the input as a chain structure and therefore require a linear

number O(N) of operations.

Analyzing the input hierarchically bears resemblance to

classical grammar formalisms which build syntactic tree

structures of increasing granuality, e.g., sentences consist

of noun phrases and verb phrases each comprising further

internal structure (Manning & Schütze, 1999; Steedman,

2002). Hierarchical structure also eases learning since the

number of non-linearities for a given context size is reduced

compared to a chain structure, thereby mitigating the van-

ishing gradient problem (Glorot & Bengio, 2010).

Modern hardware is well suited to models that are highly

parallelizable. In recurrent networks, the next output de-

pends on the previous hidden state which does not enable

parallelization over the elements of a sequence. Convolu-

tional networks, however, are very amenable to this com-

puting paradigm since the computation of all input words

can be performed simultaneously (§2).

Gating has been shown to be essential for recurrent neural

networks to reach state-of-the-art performance (Jozefow-

icz et al., 2016). Our gated linear units reduce the vanish-

ing gradient problem for deep architectures by providing a

linear path for the gradients while retaining non-linear ca-

pabilities (§5.2).
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We show that gated convolutional networks outperform

other recently published language models such as LSTMs

trained in a similar setting on the Google Billion Word

Benchmark (Chelba et al., 2013). We also evaluate the abil-

ity of our models to deal with long-range dependencies on

the WikiText-103 benchmark for which the model is con-

ditioned on an entire paragraph rather than a single sen-

tence and we achieve a new state-of-the-art on this dataset

(Merity et al., 2016). Finally, we show that gated linear

units achieve higher accuracy and converge faster than the

LSTM-style gating of Oord et al. (2016; §4, §5).

2. Approach

In this paper we introduce a new neural language model

that replaces the recurrent connections typically used in re-

current networks with gated temporal convolutions. Neu-

ral language models (Bengio et al., 2003) produce a repre-

sentation H = [h0, . . . ,hN ] of the context for each word

w0, . . . , wN to predict the next word P (wi|hi). Recurrent

neural networks f compute H through a recurrent function

hi = f(hi−1, wi−1) which is an inherently sequential pro-

cess that cannot be parallelized over i.1

Our proposed approach convolves the inputs with a func-

tion f to obtain H = f ∗ w and therefore has no tempo-

ral dependencies, so it is easier to parallelize over the in-

dividual words of a sentence. This process will compute

each context as a function of a number of preceding words.

Compared to recurrent networks, the context size is finite

but we will demonstrate both that infinite contexts are not

necessary and our models can represent large enough con-

texts to perform well in practice (§5).

Figure 1 illustrates the model architecture. Words are rep-

resented by a vector embedding stored in a lookup table

D
|V|×e where |V| is the number of words in the vocabulary

and e is the embedding size. The input to our model is a

sequence of words w0, . . . , wN which are represented by

word embeddings E = [Dw0
, . . . ,DwN

]. We compute the

hidden layers h0, . . . , hL as

hl(X) = (X ∗W + b)⊗ σ(X ∗V + c) (1)

where m,n are respectively the number of input and output

feature maps and k is the patch size, X ∈ R
N×m is the

input of layer hl (either word embeddings or the outputs of

previous layers), W ∈ R
k×m×n, b ∈ R

n, V ∈ R
k×m×n,

c ∈ R
n are learned parameters, σ is the sigmoid function

and ⊗ is the element-wise product between matrices.

When convolving inputs, we take care that hi does not

contain information from future words. We address this

by shifting the convolutional inputs to prevent the kernels

1Parallelization is usually done over multiple sequences in-
stead.

Input sentence

Text The    cat    sat    on    the    mat    .

w0     w1     w2     w3     w4     w5     w6

Lookup Table

E = D
wi

Convolution

A = E∗W + b

Gating

H
0

 = A⊗σ(B) 

σ

Softmax

Y = softmax(WH
L
)

B = E∗V + c

Stack L - 1 Convolution+Gating Blocks

Figure 1. Architecture of the gated convolutional network for lan-

guage modeling.

from seeing future context (Oord et al., 2016a). Specifi-

cally, we zero-pad the beginning of the sequence with k−1
elements, assuming the first input element is the beginning

of sequence marker which we do not predict and k is the

width of the kernel.

The output of each layer is a linear projection X ∗W + b

modulated by the gates σ(X ∗V + c). Similar to LSTMs,

these gates multiply each element of the matrix X∗W+b

and control the information passed on in the hierarchy.

We dub this gating mechanism Gated Linear Units (GLU).

Stacking multiple layers on top of the input E gives a repre-

sentation of the context for each word H = hL◦. . .◦h0(E).
We wrap the convolution and the gated linear unit in a pre-

activation residual block that adds the input of the block to
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the output (He et al., 2015a). The blocks have a bottleneck

structure for computational efficiency and each block has

up to 5 layers.

The simplest choice to obtain model predictions is to use

a softmax layer, but this choice is often computationally

inefficient for large vocabularies and approximations such

as noise contrastive estimation (Gutmann & Hyvärinen)

or hierarchical softmax (Morin & Bengio, 2005) are pre-

ferred. We choose an improvement of the latter known as

adaptive softmax which assigns higher capacity to very fre-

quent words and lower capacity to rare words (Grave et al.,

2016a). This results in lower memory requirements as well

as faster computation at both training and test time.

3. Gating Mechanisms

Gating mechanisms control the path through which infor-

mation flows in the network and have proven to be use-

ful for recurrent neural networks (Hochreiter & Schmidhu-

ber, 1997). LSTMs enable long-term memory via a sep-

arate cell controlled by input and forget gates. This al-

lows information to flow unimpeded through potentially

many timesteps. Without these gates, information could

easily vanish through the transformations of each timestep.

In contrast, convolutional networks do not suffer from the

same kind of vanishing gradient and we find experimentally

that they do not require forget gates.

Therefore, we consider models possessing solely output

gates, which allow the network to control what informa-

tion should be propagated through the hierarchy of lay-

ers. We show this mechanism to be useful for language

modeling as it allows the model to select which words or

features are relevant for predicting the next word. Par-

allel to our work, Oord et al. (2016b) have shown the

effectiveness of an LSTM-style mechanism of the form

tanh(X∗W+b)⊗σ(X∗V+c) for the convolutional mod-

eling of images. Later, Kalchbrenner et al. (2016) extended

this mechanism with additional gates for use in translation

and character-level language modeling.

Gated linear units are a simplified gating mechanism based

on the work of Dauphin & Grangier (2015) for non-

deterministic gates that reduce the vanishing gradient prob-

lem by having linear units coupled to the gates. This retains

the non-linear capabilities of the layer while allowing the

gradient to propagate through the linear unit without scal-

ing. The gradient of the LSTM-style gating of which we

dub gated tanh unit (GTU) is

∇[tanh(X)⊗ σ(X)] = tanh′(X)∇X⊗ σ(X)

+σ′(X)∇X⊗ tanh(X). (2)

Notice that it gradually vanishes as we stack layers because

of the downscaling factors tanh′(X) and σ′(X). In con-

trast, the gradient of the gated linear unit

∇[X⊗ σ(X)] = ∇X⊗ σ(X) +X⊗ σ′(X)∇X (3)

has a path ∇X ⊗ σ(X) without downscaling for the ac-

tivated gating units in σ(X). This can be thought of

as a multiplicative skip connection which helps gradients

flow through the layers. We compare the different gating

schemes experimentally in Section §5.2 and we find gated

linear units allow for faster convergence to better perplexi-

ties.

4. Experimental Setup

4.1. Datasets

We report results on two public large-scale language mod-

eling datasets. First, the Google Billion Word dataset

(Chelba et al., 2013) is considered one of the largest lan-

guage modeling datasets with almost one billion tokens and

a vocabulary of over 800K words. In this dataset, words

appearing less than 3 times are replaced with a special un-

known symbol. The data is based on an English corpus

of 30, 301, 028 sentences whose order has been shuffled.

Second, WikiText-103 is a smaller dataset of over 100M

tokens with a vocabulary of about 200K words (Merity

et al., 2016). Different from GBW, the sentences are con-

secutive which allows models to condition on larger con-

texts rather than single sentences. For both datasets, we

add a beginning of sequence marker <S > at the start of

each line and an end of sequence marker </S> at the end

of each line. On the Google Billion Word corpus each

sequence is a single sentence, while on WikiText-103 a

sequence is an entire paragraph. The model sees <S>

and </S > as input but only predicts the end of sequence

marker </S>. We evaluate models by computing the per-

plexity e
1

N

∑
N

i
− log p(wi|...,wi−1) on the standard held out

test portion of each dataset.

4.2. Training

We implement our models in Torch (Collobert et al., 2011)

and train on Tesla M40 GPUs. The majority of our models

are trained on single GPU, as we focused on identifying

compact architectures with good generalization and effi-

cient computation at test time. We trained larger models

with an 8-GPU setup by copying the model onto each GPU

and dividing the batch such that each worker computes

1/8th of the gradients. The gradients are then summed us-

ing Nvidia NCCL. The multi-GPU setup allowed us to train

models with larger hidden units.

We train using Nesterov’s momentum (Sutskever et al.,

2013). While the cost in terms of memory is storing an-

other vector of the size of the parameters, it increases the

speed of convergence significantly with minimal additional
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Name GCNN-13 GCNN-14B GCNN-9 GCNN-8B GCNN-8 GCNN-14

Dataset Google Billion Word wikitext-103

Lookup 128 280

Conv1 [4, 1268]× 1 [5, 512]× 1 [4, 807]× 1 [1, 512]× 1 [4, 900]× 1 [6, 850]× 3

Conv2.x

[

4, 1268

4, 1268

]

× 12







1, 128

5, 128

1, 512






× 3

[

4, 807

4, 807

]

× 4







1, 128

5, 128

1, 512






× 3 [4, 900]× 7 [1, 850]× 1

Conv3.x







1, 512

5, 512

1, 1024






× 3







1, 256

5, 256

1, 512






× 3 [5, 850]× 4

Conv4.x







1, 1024

5, 1024

1, 2048






× 6







1, 1024

1, 1024

1, 2048






× 1 [1, 850]× 1

Conv5.x







1, 1024

5, 1024

1, 4096






× 1 [4, 850]× 3

Conv6.x [4, 1024]× 1

Conv7.x [4, 2048]× 1

AdaSoftmax 10k,40k,200k 4k,40k,200k 2k,10k,50k 10k,20k,200k

Table 1. Architectures for the models. The residual building blocks are shown in brackets with the format [k, n]. “B” denotes bottleneck

architectures.

computation compared to standard stochastic gradient de-

scent. The speed of convergence was further increased with

gradient clipping (Pascanu et al., 2013) and weight normal-

ization (Salimans & Kingma, 2016).

Pascanu et al. (2013) argue for gradient clipping because it

prevents the gradient explosion problem that characterizes

RNNs. However, gradient clipping is not tied to RNNs, as

it can be derived from the general concept of trust region

methods. Gradient clipping is found using a spherical trust

region

∆θ∗ = argmin
s. t. ‖∆θ‖≤ǫ

f(θ) +∇fT∆θ

= −max(‖∇f‖, ǫ)
∇f

‖∇f‖
. (4)

Empirically, our experiments converge significantly faster

with the use of gradient clipping even though we do not use

a recurrent architecture.

In combination, these methods led to stable and fast con-

vergence with comparatively large learning rates such as 1.

4.3. Hyper-parameters

We found good hyper-parameter configurations by cross-

validating with random search on a validation set. For

model architecture, we select the number of residual

blocks between {1, . . . , 10}, the size of the embed-

dings with {128, . . . , 256}, the number of units between

{128, . . . , 2048}, and the kernel width between {3, . . . , 5}.

In general, finding a good architecture was simple and the

rule of thumb is that the larger the model, the better the per-

formance. In terms of optimization, we initialize the lay-

ers of the model with the Kaiming initialization (He et al.,

2015b), with the learning rate sampled uniformly in the

interval [1., 2.], the momentum set to 0.99, and clipping

set to 0.1. Good hyper-parameters for the optimizer are

quite straightforward to find and the optimal values do not

change much between datasets.

5. Results

LSTMs and recurrent networks are able to capture long

term dependencies and are fast becoming cornerstones in

natural language processing. In this section, we compare

strong LSTM and RNN models from the literature to our

gated convolutional approach on two datasets.

We find the GCNN outperforms the comparable LSTM re-

sults on Google billion words. To accurately compare these

approaches, we control for the same number of GPUs and

the adaptive softmax output model (Grave et al., 2016a), as

these variables have a significant influence on performance.

In this setting, the GCNN reaches 38.1 test perplexity while

the comparable LSTM has 39.8 perplexity (Table 2).

Further, the GCNN obtains strong performance with much

greater computational efficiency. Figure 2 shows that our

approach closes the previously significant gap between

models that use the full softmax and models with the usu-

ally less accurate hierarchical softmax. Thanks to the adap-
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Model Test PPL Hardware

Sigmoid-RNN-2048 (Ji et al., 2015) 68.3 1 CPU

Interpolated KN 5-Gram (Chelba et al., 2013) 67.6 100 CPUs

Sparse Non-Negative Matrix LM (Shazeer et al., 2014) 52.9 -

RNN-1024 + MaxEnt 9 Gram Features (Chelba et al., 2013) 51.3 24 GPUs

LSTM-2048-512 (Jozefowicz et al., 2016) 43.7 32 GPUs

2-layer LSTM-8192-1024 (Jozefowicz et al., 2016) 30.6 32 GPUs

BIG GLSTM-G4 (Kuchaiev & Ginsburg, 2017) 23.3∗ 8 GPUs

LSTM-2048 (Grave et al., 2016a) 43.9 1 GPU

2-layer LSTM-2048 (Grave et al., 2016a) 39.8 1 GPU

GCNN-13 38.1 1 GPU

GCNN-14 Bottleneck 31.9 8 GPUs

Table 2. Results on the Google Billion Word test set. The GCNN outperforms the LSTMs with the same output approximation.
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Figure 2. In comparison to the state-of-the-art (Jozefowicz et al.,

2016) which uses the full softmax, the adaptive softmax approxi-

mation greatly reduces the number of operations required to reach

a given perplexity.

tive softmax, the GCNN only requires a fraction of the op-

erations to reach the same perplexity values. The GCNN

outperforms other single model state-of-the-art approaches

except the much larger LSTM of Jozefowicz et al. (2016),

a model which requires more GPUs and the much more

computationally expensive full softmax. In comparison,

the largest model we have trained reaches 31.9 test per-

plexity compared to the 30.6 of that approach, but only re-

quires training for 2 weeks on 8 GPUs compared to 3 weeks

of training on 32 GPUs for the LSTM. Note that these re-

sults can be improved by either using mixtures of experts

(Shazeer et al., 2017) or ensembles of these models.

Another relevant concern is if the GCNN’s fixed context

size can thoroughly model long sequences. On Google Bil-

∗appeared after submission

Model Test PPL Hardware

LSTM-1024 (Grave et al., 2016b) 48.7 1 GPU

GCNN-8 44.9 1 GPU

GCNN-14 37.2 4 GPUs

Table 3. Results for single models on the WikiText-103 dataset.

lion Word, the average sentence length is quite short —

only 20 words. We evaluate on WikiText-103 to determine

if the model can perform well on a dataset where much

larger contexts are available. On WikiText-103, an input se-

quence is an entire Wikipedia article instead of an individ-

ual sentence - increasing the average length to 4000 words.

However, the GCNN outperforms LSTMs on this problem

as well (Table 3). The GCNN-8 model has 8 layers with

800 units each and the LSTM has 1024 units. These results

show that GCNNs can model enough context to achieve

strong results.

We evaluated on the Gigaword dataset following Chen et al.

(2016) to compare with fully connected models. We found

that the fully connected and convolutional network reach

respectively 55.6 and 29.4 perplexity. We also ran pre-

liminary experiments on the much smaller Penn tree bank

dataset. When we score the sentences independently, the

GCNN and LSTM have comparable test perplexity with

108.7 and 109.3 respectively. However, it is possible to

achieve better results by conditioning on previous sen-

tences. Unlike the LSTM, we found that the GCNN over-

fits on this quite small dataset and so we note the model is

better suited to larger scale problems.

5.1. Computational Efficiency

Computational cost is an important consideration for lan-

guage models. Depending on the application, there are a

number of metrics to consider. We measure the throughput
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Figure 3. Learning curves on WikiText-103 (left) and Google Billion Word (right) for models with different activation mechanisms.

Models with gated linear units (GLU) converge faster and to a lower perplexity.

Throughput Responsiveness

(CPU) (GPU) (GPU)

LSTM-2048 169 45,622 2,282

GCNN-9 121 29,116 29,116

GCNN-8 Bottleneck 179 45,878 45,878

Table 4. Processing speed in tokens/s at test time for an LSTM

with 2048 units and GCNNs achieving 43.9 perplexity on Google

Billion Word. The GCNN with bottlenecks improves the respon-

siveness by 20 times while maintaining high throughput.

of a model as the number of tokens that can be processed

per second. Throughput can be maximized by processing

many sentences in parallel to amortize sequential opera-

tions. In contrast, responsiveness is the speed of process-

ing the input sequentially, one token at a time. Through-

put is important because it indicates the time required to

process a corpus of text and responsiveness is an indicator

of the time to finish processing a sentence. A model can

have low responsiveness but high throughput by evaluating

many sentences simultaneously through batching. In this

case, such a model is slow in finishing processing individ-

ual sentences, but can process many sentences at a good

rate.

We evaluate the throughput and responsiveness for mod-

els that reach approximately 43.9 perplexity on the Google

Billion Word benchmark. We consider the LSTM with

2048 units in Table 2, a GCNN-8Bottleneck with 7 Resnet

blocks that have a bottleneck structure as described by (He

et al., 2015a) and a GCNN-8 without bottlenecks. A bot-

tleneck block wedges a k > 1 convolution between two

k = 1 layers. This designs reduces computational cost by

reducing and increasing dimensionality with the k = 1 lay-

ers so that the convolution operates in a lower dimensional

space. Our results show that the use of bottleneck blocks is

important to maintaining computational efficiency.

The throughput of the LSTM is measured by using a large

batch of 750 sequences of length 20, resulting in 15, 000 to-

kens per batch. The responsiveness is the average speed to

process a sequence of 15, 000 contiguous tokens. Table 4

shows that the throughput for the LSTM and the GCNN

are similar. The LSTM performs very well on GPU be-

cause the large batch size of 750 enables high paralleliza-

tion over different sentences. This is because the LSTM

implementation has been thoroughly optimized and uses

cuDNN, whereas the cuDNN implementation of convolu-

tions is not been optimized for the 1-D convolutions we use

in our model. We believe much better performance can be

achieved by a more efficient 1-D cuDNN convolution. Un-

like the LSTM, the GCNN can be parallelized both over

sequences as well as across the tokens of each sequence,

allowing the GCNN to have 20x higher responsiveness.

5.2. Gating Mechanisms

In this section, we compare the gated linear unit with

other mechanisms as well as to models without gating.

We consider the LSTM-style gating mechanism (GTU)

tanh(X ∗W+ b)⊗ σ(X ∗V+ c) of (Oord et al., 2016b)

and networks that use regular ReLU or Tanh activations.

Gating units add parameters, so for fair comparison, we

carefully cross-validate models with a comparable number

of parameters. Figure 3 (left) shows that GLU networks

converge to a lower perplexity than the other approaches

on WikiText-103. Similar to gated linear units, the ReLU

has a linear path that lets the gradients easily pass through

the active units. This translates to much faster convergence

for both the ReLU and the GLU. On the other hand, neither

Tanh nor GTU have this linear path, and thus suffer from

the vanishing gradient problem. In the GTU, both the in-

puts as well as the gating units can cut the gradient when

the units saturate.

Comparing the GTU and Tanh models allows us to measure
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Figure 4. Test perplexity as a function of context for Google Billion Word (left) and Wiki-103 (right). We observe that models with

bigger context achieve better results but the results start diminishing quickly after a context of 20.

the effect of gating since the Tanh model can be thought of

as a GTU network with the sigmoid gating units removed.

The results (Figure 3, left) show that the gating units make

a vast difference and provide useful modeling capabilities,

as there is a large difference in the performance between

GTU and Tanh units. Similarly, while ReLU unit is not

an exact ablation of the gating units in the GLU, it can be

seen as a simplification ReLU(X) = X ⊗ (X > 0) where

the gates become active depending on the sign of the input.

Also in this case, GLU units lead to lower perplexity.

In Figure 3 (right) we repeat the same experiment on the

larger Google Billion Words dataset. We consider a fixed

time budget of 100 hours because of the considerable train-

ing time required for this task. Similar to WikiText-103,

the gated linear units achieve the best results on this prob-

lem. There is a gap of about 5 perplexity points between

the GLU and ReLU which is similar to the difference be-

tween the LSTM and RNN models measured by (Jozefow-

icz et al., 2016) on the same dataset.

5.3. Non-linear Modeling

The experiments so far have shown that the gated linear

unit benefits from the linear path the unit provides com-

pared to other non-linearities. Next, we compare networks

with GLUs to purely linear networks and networks with

bilinear layers in order to measure the impact of the non-

linear path provided by the gates of the GLU. One mo-

tivation for this experiment is the success of linear mod-

els on many natural language processing tasks (Manning

& Schütze, 1999). We consider deep linear convolutional

networks where the layers lack the gating units of the GLU

and take the form hl(X) = X ∗ W + b. Stacking sev-

eral layers on top of each other is simply a factorization of

the model which remains linear up to the softmax, at which

point it becomes log-linear. Another variation of GLUs are

bilinear layers (Mnih & Hinton, 2007) which take the form

hl(X) = (X ∗W + b)⊗ (X ∗V + c).
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Figure 5. Learning curves on Google Billion Word for models

with varying degrees of non-linearity.

Figure 5 shows that GLUs perform best, followed by bilin-

ear layers and then linear layers. Bilinear layers improve

over linear ones by more than 40 perplexity points, and the

GLU improves another 20 perplexity points over the bilin-

ear model. The linear model performs very poorly at per-

plexity 115 even compared to 67.6 of a Kneser-Ney 5-gram

model, even though the former has access to more con-

text. Surprisingly, the introduction of the gated linear units

is enough to reach 61 perplexity on Google Billion Word,

which surpasses both Kneser-Ney 5-gram models and the

non-linear neural model of (Ji et al., 2015).

5.4. Context Size

Figure 4 shows the impact of context size for the gated

CNN. We tried different combinations of network depth

and kernel widths for each context size and chose the best

performing one for each size. Generally, larger contexts
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improve accuracy but returns drastically diminish with win-

dows larger than 40 words, even for WikiText-103 where

we may condition on an entire Wikipedia article. This

means that the unlimited context offered by recurrent mod-

els is not strictly necessary for language modeling. Fur-

thermore, this finding is also congruent with the fact that

good performance with recurrent networks can be obtained

by truncating gradients after only 40 timesteps using trun-

cated back propagation through time. Figure 4 also shows

that WikiText-103 benefits much more from larger context

size than Google Billion Word as the performance degrades

more sharply with smaller contexts. WikiText-103 pro-

vides much more context than Google Billion Word where

the average sentence size is 20. However, while the average

size of the documents is close to 4000 tokens, we find that

strong performance can be achieved with a context size as

low as 30 tokens.

5.5. Training

In this section, we perform an ablation study of the impact

of weight normalization and gradient clipping. We sepa-

rately cross-validate the hyper-parameters of each configu-

ration to make the comparison fair. Due to the high cost of

each of these experiments, we only consider a single itera-

tion over the training data. Figure 6 shows that both meth-

ods significantly speed up convergence. Weight normal-

ization in particular improves the speed by over two times.

This speedup is partly due to the ability to use much larger

learning rates (1 instead of 0.01) than would otherwise be

possible. Both clipping and weight normalization add com-

putational overhead, but it is minor compared to the large

gains in convergence speed.
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Figure 6. Effect of weight normalization and gradient clipping on

Google Billion Word.

6. Conclusion

We introduce a convolutional neural network for language

modeling with a novel gating mechanism. Compared to

recurrent neural networks, our approach builds a hierarchi-

cal representation of the input words that makes it easier

to capture long-range dependencies, similar in spirit to the

tree-structured analysis of linguistic grammar formalisms.

The same property eases learning since features are passed

through a fixed number of layers and non-linearities, un-

like for recurrent networks where the number of processing

steps differs depending on the position of the word in the

input. The results show that our gated convolutional net-

work achieves a new state of the art on WikiText-103. On

the Google Billion Word benchmark, we show competitive

results can be achieved with significantly fewer resources.
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