Language Models Based on Semantic Composition

Jeff Mitchell and Mirella Lapata

Matija Hanževački, Saarland University

Recent Advances in Computational Semantics Seminar

December 2013

Introduction

Language Models Related Work

Composition Models Experiments Conclusion

Introduction

Language Models Related Work

Introduction

- Proposed a novel statistical language model to capture long-range semantic dependencies.
- Applied to the problem of constructing predictive history representations of upcoming words.
- Effects measured as reductions in *perplexity*.

Language Models Related Work

Language Models

- Assign probabilities to sequences of words.
- Estimated as the product of conditional probabilities of words given their history of preceding words:

$$P(w_i|h_i) \qquad h_i \equiv w_1^{i-1}$$

In practice, history spans up to 3-5 words back.

Language Models Related Work

Related Work

- Language models have compromised ability of capturing long-range dependencies (given local history).
- Handled in the literature using modulation of probabilities by dependencies which extend to words beyond the *n*-gram horizon.
- Various ways of capturing syntactic and semantic dependencies on a word level.
- Authors propose composing the meaning of history using their vector composition framework described in (Mitchell and Lapata, 2008).

Composition Framework The Probabilistic Argument Language Modelling

Composition Models

Composition Framework The Probabilistic Argument Language Modelling

Composition Framework

- Using the framework formulated as a function of two vectors.
- Addition lumps the contents of the vectors together.
- Multiplication picks out the content relevant to their combination by scaling each component of one with the strength of the corresponding component of the other vector.

$$\mathbf{h} = f(\mathbf{u}, \mathbf{v}) \quad h_i = u_i + v_i \quad h_i = v_i \cdot u_i$$

Composition Framework The Probabilistic Argument Language Modelling

The Probabilistic Argument

• Define semantic vector components as:

$$v_i = \frac{p(context_i | target)}{p(context_i)}$$

 Multiplicative model represents distributional properties of the phrase w1 and w2 and the additive model represents w1 or w2.

Composition Framework The Probabilistic Argument Language Modelling

Estimating Probabilities

Semantic coherence commonly measured using the cosine measure:

$$sim(\mathbf{w}, \mathbf{h}) = \frac{\mathbf{w} \cdot \mathbf{h}}{|\mathbf{w}||\mathbf{h}|} \quad \mathbf{w} \cdot \mathbf{h} = \sum_{i} w_{i}h_{i}$$

• Using the former definition of vector components:

$$\mathbf{w} \cdot \mathbf{h} = \sum_{i} \frac{p(c_{i}|w)}{p(c_{i})} \frac{p(c_{i}|h)}{p(c_{i})}$$
$$\mathbf{h}_{n} = f(\mathbf{w}_{n}, \mathbf{h}_{n-1})$$
$$\mathbf{h}_{1} = \mathbf{w}_{1}$$
$$\mathbf{h}_{i} = \sum_{i} p(w|c_{i})p(c_{i}|h)$$
$$\mathbf{h}_{i} = \frac{\hat{h}_{i}}{\sum_{j} \hat{h}_{j} \cdot p(c_{i})}$$

Composition Framework The Probabilistic Argument Language Modelling

Integrating with Other Language Models

Based on the previous language model:

$$p(w|h) = p(w) \cdot \Delta(w,h)$$
$$\Delta(w,h) = \sum_{i} \frac{p(c_i|w)}{p(c_i)} \frac{p(c_i|h)}{p(c_i)} p(c_i)$$

• Integrating the *n*-gram model:

$$\hat{p}(w_n) = p(w_n | w_{n-2}^{n-1}) \cdot \Delta(w_n, h)$$
$$p(w_n | w_{n-2}^{n-1}, h) = \frac{\hat{p}(w_n)}{\sum_w \hat{p}(w)}$$

Experimental Setup Results

Experiments

Experimental Setup Results

Experimental Setup

- Experimenting with additive and multiplicative composition functions, and with two semantic representations (LDA and the Simple Semantic Space Model).
- Models compared against a structured language model by (Roark 2001).
- Evaluated using *perplexity* quantified degree of unpredictability in a probability distribution (lower is better).
- Trained on the BLLIP corpus (news texts) of about 38.5 million words.

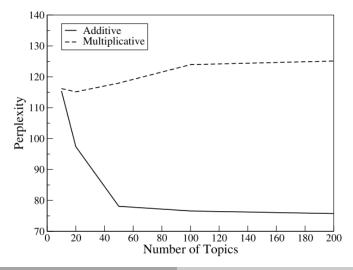
Experimental Setup Results

Results

Model	Perplexity
<i>n</i> -gram	78.72
<i>n</i> -gram+Add _{SSM}	76.65
<i>n</i> -gram + Multiply _{SSM}	75.01
<i>n</i> -gram+Add _{LDA}	76.60
<i>n</i> -gram+Multiply _{LDA}	123.93
parser	173.35
<i>n</i> -gram + parser	75.22
n-gram + parser + Add _{SSM}	73.45
n-gram + parser + Multiply _{SSM}	71.32
n-gram + parser + Add _{LDA}	71.58
n-gram + parser + Multiply _{LDA}	87.93

Experimental Setup Results

Results Cont.



Conclusion

Conclusion

- Proposed the use of vector composition models for language modelling.
- Enhanced a trigram model with long-range semantic dependencies.
- Compared addition and multiplication based models and examined the influence of the underlying semantic space on the composition task.
- Best results with multiplicative composition function in a simple semantic space.

Thank you! Questions?