
Language Models with Meta-information

Yangyang Shi

.

Language Models with Meta-information

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 11 maart 2014 om 12:30 uur

door

Yangyang Shi

Master of Science in Mathematics Department, Southeast University, P. R. China

geboren te Yancheng, P. R. China.

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr. C. M. Jonker

Copromotor: Dr. M. Larson

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof.dr. C. M. Jonker Technische Universiteit Delft, promotor

Dr. M. Larson Technische Universiteit Delft, copromotor

Prof.drs.dr. L. J. M. Rothkrantz Technische Universiteit Delft

Prof.dr.-ing. E. Nöth Friedrich-Alexander Universität Erlangen-Nüremberg

Prof.dr. C. Witteveen Technische Universiteit Delft

Prof.dr.ir. A. P. de Vries Technische Universiteit Delft

Dr. M. Y. Hwang Microsoft

Prof.dr. A. Hanjalic Technische Universiteit Delft (reservelid)

SIKS Dissertation Series No. 2014-14.

The research reported in this thesis has been carried out under the auspices of SIKS, the

Dutch Research School for Information and Knowledge Systems.

This thesis has been completed in partial fulfillment of the requirements of the Faculty

of Electrical Engineering, Mathematics and Computer Science for graduate studies. The

research described in this thesis was supported by China Scholarship Council.

Published and distributed by: Yangyang Shi

E-mail: yangyang.shi@tudelft.nl

ISBN: 978-94-6186-278-5

Keywords: Recurrent Neural Networks, Language models, Meta-information.

Copyright c© 2013 by Yangyang Shi

v

All rights reserved. No part of the material protected by this copyright notice may be re-

produced or utilized in any form or by any means, electronic or mechanical, including pho-

tocopying, recording or by any information storage and retrieval system, without written

permission of the author.

Printed in The Netherlands

Preface

First of all I would like to express my deepest appreciation to Catholijn M. Jonker, my super-

visor and promoter, for her great encouragement, generous support and thoughtful guidance.

Research progress does not at all time progress smoothly. It were her words and guidance

that kept on encouraging me. Martha Larson, who made a major contribution to my super-

vision in the final two years of the PhD program also provided valuable suggestions and

helpful assistance. Pascal Wiggers provided the critical supervision that introduced me to

the language modeling area. It was his insights that made it possible for me to orient my-

self at the beginning of the thesis and become established in this fascinating and productive

topic.

I owe a lot of thanks to the excellent colleagues and support staff in the Interactive

Intelligence Group for the great atmosphere and sincere friendship. In particular, I would

like to thank Harold Nefs, who never hesitated in sharing his knowledge and helping me

understand Dutch culture; Chao Qu and Yun Ling who always understood me and offered

me a feeling of family; Changyun Wei, Tingting Zhang, Iulia Lefter, Tim Baarslag, Chang

Wang, Ni Kang, Junchao Xu, Yi Zhu, Wenxin Wang, Hani Alers, Hantao Liu, Zhenke Yang

and Nike Gunawan, who filled a lot of joys to my PhD life; Ruud de Jong, Bart Vastenhouw

and Anita Hoogmoed, without whom behind the scene nothing would be possible.

It was a great experience for me to do internship in Microsoft. Cordial appreciation goes

to the colleagues in Microsoft IPE, MSR and MSRA. In particular, I would like to thank

Mei-Yuh Hwang, not only for giving me the opportunity to do an inspiring and productive

internship in Microsoft, but also for close coaching and patient support. Despite a busy

schedule, she took time to read my thesis and to give detailed and insightful comments.

Sincere gratitude also goes to Kaisheng Yao for helpful instructions, inspiring discussion

and enjoyable cooperation.

Many other people also contributed to this thesis. It has been a delight for me to collab-

orate with Joris Pelemans, Patrick Wambacq from Catholic University of Leuven and Kris

Demuynck from University of Gent. Many thanks for kind help and insightful comments

and suggestions.

v

vi

The four years in Delft has been made so memorable and enjoyable due to my Chinese

friends. I would like to thank you all for the delicious Chinese food, for the pleasurable trips

around Europe and for the special moments and holidays we shared together.

Last but not least, I would like to give special thanks to my parents and wife. Without

their faithful support and endless love, I even would not have survived during these years.

Yangyang Shi,

Suzhou, February, 2014.

Contents

Preface v

1 Introduction 1

1.1 Motivation . 1

1.2 Language Models . 2

1.2.1 Measure . 4

1.2.2 N-gram language models . 6

1.2.3 Computation paradigm driven language models 8

1.2.4 Meta-information . 13

1.2.5 Meta-information driven language models 16

1.3 Research Questions . 19

1.4 Structure of the thesis . 21

1.5 Publication List . 22

2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses 25

2.1 Abstract . 25

2.2 Introduction . 26

2.3 Related work . 28

2.4 The Spoken Dutch Corpus . 30

2.5 Differences among discourses from varied socio-situational settings 32

2.6 Socio-situational setting classification by humans 33

2.7 Language socio-situational setting classification features 35

2.7.1 Sentence length . 36

2.7.2 Single occurrence word ratio . 37

2.7.3 Function words . 38

2.7.4 Words and POS-tags . 39

2.8 Static Socio-situational Setting Classification 40

2.9 Dynamic Bayesian document classification 43

2.9.1 Dynamic Bayesian networks . 44

vii

viii Contents

2.9.2 Dynamic Bayesian document classifier 44

2.9.3 Experiment . 48

2.10 Discussion . 51

2.11 Conclusion . 53

2.12 Acknowledgement . 54

3 Recurrent Neural Network Language Model Adaptation with Curriculum Learn-

ing 55

3.1 Abstract . 55

3.2 Introduction . 56

3.3 Related work . 60

3.3.1 Adaptive Language Modeling . 60

3.3.2 Curriculum Learning for Neural Networks 62

3.3.3 Recurrent Neural Network Language Models 64

3.4 Curriculum Learning For RNNLMs . 65

3.4.1 Recurrent Neural Network Language Models 65

3.4.2 Three Curriculum Learning Methods 65

3.4.3 Experimental Set-Up . 67

3.4.4 Evaluation . 67

3.4.5 RNNLM Framework . 68

3.5 Within-domain Language Model Adaptation 69

3.5.1 Sub-domain Information Known for Training Set 70

3.5.2 Experiment 2: Sub-domain Known for Training Set and Unknown

for Test Set . 76

3.5.3 Experiment 3: Sub-domain Unknown in both Training and Test Sets 77

3.6 Limited-data Within-Domain Adaptation 80

3.6.1 Experimental data set . 80

3.6.2 Experiments . 80

3.7 Conclusions . 82

4 Integrating Meta-Information into Recurrent Neural Network Language Mod-

els 85

4.1 Abstract . 85

4.2 Introduction . 86

4.3 Related work . 89

4.3.1 Meta-Information . 89

4.3.2 Language Models Integrating Information beyond Word Identity . . 91

Contents ix

4.4 Recurrent Neural Network Language Models 93

4.4.1 Recurrent Neural Network Tandem Language Models 94

4.5 Experimental Setup . 99

4.5.1 Data . 99

4.5.2 Part-Of-Speech And Lemma Prediction 99

4.5.3 Socio-Situational Setting and Topic Prediction 100

4.5.4 Generating The N-Best List . 101

4.5.5 Re-scoring The N-Best List With The RNNLMs Integrating Meta-

Information . 102

4.5.6 Evaluation Metrics . 102

4.6 Experimental Results . 103

4.7 Conclusions . 105

5 Exploiting the succeeding words in Recurrent Neural Network Language Mod-

els 109

5.1 Abstract . 109

5.2 Introduction . 110

5.3 Related work . 111

5.4 RNNLM with succeeding words information 112

5.4.1 Forward-Backward RNNLM . 113

5.4.2 Maximum Entropy Model Extension in RNNLM 114

5.4.3 Two-Pass Alternating Rescoring 114

5.5 Experiments . 115

5.6 Conclusion . 118

5.7 Acknowledgement . 120

6 Speed Up of Recurrent Neural Network Language Models 121

6.1 Abstract . 121

6.2 Introduction . 122

6.3 Related work . 123

6.4 Sentence Independent Subsampling Stochastic Gradient Descent Algorithm 124

6.4.1 Sentence Independence . 126

6.4.2 Running SGD inside each Slave 126

6.4.3 Subsampling . 126

6.4.4 Practical Tricks for Robustness . 127

6.5 Experiments . 127

6.5.1 Data Set . 127

x Contents

6.5.2 Sentence Independence Verification 129

6.5.3 Speed up with Multi Threads . 129

6.5.4 Speed up with Multi-Processors 130

6.5.5 Asynchronous SIS-SGD . 131

6.6 Conclusions . 131

6.7 Acknowledgements . 132

7 Conclusions and future research 133

7.1 Conclusions . 133

7.2 Future research . 136

Samenvatting 139

Summary 141

Bibliography 143

Curriculum vitae 161

Chapter 1

Introduction

In this chapter, we present the motivation and background for the research on language

models that is presented in this thesis. In Section 1.1, we motivate the thesis. In Section

1.2, we undertake a survey of language modeling, with emphasis on the integration of lin-

guistic, syntactic and socio-contextual features. Furthermore, we focus on various types of

meta-information and discuss the potential role that meta-information can play to boost the

performance of language models. Based on the findings in our literature survey, in Section

1.3, we formulate the main questions that we will answer in the thesis. The structure of the

thesis is summarized in Section 1.4.

1.1 Motivation

In this thesis, we present studies in the area of language modeling, especially about how

to improve language models using meta-information. Meta-information in the context of

this thesis is information about language that goes beyond the identity of the individual

word. We use meta-information to refer to all potential information that goes beyond text

information.

The idea to combine language models with meta-information of language has been in-

vestigated by many researchers working in the area of language modeling. Cache-based

language models [78] use a cache window to store statistical temporal information. The

motivation for cache-based language models is that language is characterized by the fact

that human tends to use language in a bursty way. In other words, a word that occurs in re-

cent history has a higher chance of occurring again in the near future. Class-based language

models [23] and topic-based language models [56] exploit the clustering of training data

to improve language models. Structured language models [25] directly embed the syntactic

1

2 1 Introduction

structure of language into language models. In this thesis, we also exploit different attributes

of language. In particular, we investigate different ways of integrating those attributes into

state-of-the-art language models.

The dominant approach of current language modeling is the empiricist approach [93].

The empiricist approach believes that language learning starts with general operations for

recognition, generalization and connection that are applied to learn more complicated struc-

ture. Most current probabilistic models only use the words themselves no other properties of

languages. The models cannot represent the complexity of human language. State-of-the-art

language models incorporate no knowledge reflecting the fact that what is being processed

is a natural language expression; to them it is a sequence of symbols. In human language

learning, word-symbols are associated with representations from different perspectives, e.g.,

the pronunciation of the word, the meaning, the word stem and the syntactic attributes. In

fact, the lexicon can be considered to consist of structured units rather than simple word

symbols.

In this thesis, we follow an empiricist approach that incorporates rich input information.

We explore discourse level, sentence level and word level representations of each language

unit in addition to a word. In order to integrate different levels of meta-information into

language models, we build on new architectures that have been recently developed, such

as recurrent neural network language models (RNNLMs). To integrate discourse level meta-

information, we propose to use component models in RNNLMs that are trained by curricu-

lum learning. To integrate sentence level meta-information, we use a forward-backward

language modeling strategy. For word-level meta-information, we propose an extended

RNNLM with more information in the input layer. Our motivation is not to train language

models on large quantities of data, but to extract more information from the existing data,

for example by moving the training of language models from simple to complex. In our

thesis, empirical results are presented based on which different language models are com-

pared and the usefulness of integrating meta-information into language models is shown.

Finally, a new parallelization technique is described, which has been developed to speed up

state-of-the-art language models.

1.2 Language Models

The objective of language models is to characterize, capture and exploit regularities in natu-

ral languages. Statistical language models attempt to tackle the task by assigning probabili-

ties to sequences of words in a given language. Well-formed, syntactically and semantically

plausible sentences receive high probabilities.

1.2 Language Models 3

Statistical language models are used in practical applications such as automatic speech

recognition, optical character recognition, handwriting recognition, spelling correction and

statistical machine translation ([22, 35, 62, 73, 94, 148]).

The most prominent usage of statistical language models is in automatic speech recog-

nition, which is the calculation of the most likely word sequence W with respect to a given

speech signal observation O. The task of speech recognition can be formulated as:

Ŵ = argmax
W

P(W |O). (1.1)

However, the conditional probability in (1.1) is difficult to calculate directly because, in

practice, each signal observation is almost unique due to environment noise and variations

in the speech characteristics of different speakers. Using Bayes’ law ([11]), equation (1.1)

can be transformed to:

Ŵ = argmax
W

P(O|W)P(W)

P(O)
, (1.2)

where P(W) is the probability of the sequence of words. P(O) is a normalization con-

stant. Since we are interested in the W that maximizes equation (1.2), we can simplify the

equation into:

Ŵ = argmax
W

P(O|W)P(W). (1.3)

The probabilities of word sequences can be defined in multiple ways. The commonly

adopted chain-rule presupposes that each word only depends on the previous words. The

probability of a sequence of words W is formulated as a product of the conditional proba-

bility of current word wi given the history of previous words h(wi):

P(W) = P(w1)
n

∏
i=2

P(wi|h(wi)), (1.4)

where wi is the i-th word in the sequence and h(wi) = w1w2...wi−1. This formula was first

used by Claude Shannon to calculate the entropy of printed English [136].

However, as can be seen from equation (1.4), the language model only makes use of

words rather than other properties of languages. In this thesis we adapt the proposition that

in order to achieve improvement, “We must put language back into language models” [126].

The assumption of statistical language modeling originates from the philosophy of statis-

tics that historical information can be used to predict the future. The parameters of language

models are learned from a preselected large number of word sequence samples. In order to

obtain the most reliable statistical estimation possible, learning should be based on rich

information. We can improve language models by adding information. In this thesis we

exploit the fact this can be achieved not exclusively by increasing sample size, but also by

extracting different types of information from samples.

4 1 Introduction

In Section 1.2.1, we present the metrics that are commonly used for assessing the quality

of language models. In the rest of Section 1.2, we give a survey of the most important lan-

guage models, from simple n-gram to computationally driven and meta-information driven

language models. Furthermore, we provide an introduction to meta-information and the

language models that are based on that meta-information.

1.2.1 Measure

To evaluate the performance of language models, the following measures have been defined.

Cross-entropy

To measure the quality of a language model, one method is to estimate the logarithm like-

lihood LP(W) of test data with n words, which are assumed to be drawn from the true data

distribution.

LP(W) =
1

n

n

∑
i

log2(P(wi)). (1.5)

The negative value of this quantity, i.e., −LP(W) is the cross-entropy. In information

theory [91], the cross-entropy H(p,q) of p and q measures how close a probability model q

comes to the true model p of some random variable X , which is formulated as:

H(p,q) =− ∑
x∈X

p(x) log2 q(x). (1.6)

Perplexity

The most commonly used measure for language models is perplexity. The perplexity PL

of a language model is calculated as the geometric average of the inverse probability of the

words on the test data:

PL = (
t

∏
i=1

P(wi|h(wi)))
− 1

t , (1.7)

where h(wi) = w1w2...wi−1. Perplexity is highly correlated with cross-entropy. It actually

can be seen as exponential of entropy. Note that in most cases, the true model is unknown.

Therefore perplexity can be viewed as an empirical estimate of the cross-entropy in (1.6).

Perplexity can be the measure for both the language and models. As the measure for

the language, it estimates the complexity of a language [23]. When it is considered as the

measure for models, it shows how close the model is to the “true” model represented by the

test data. The lower the perplexity, the better the model is.

It is important to keep in mind that perplexity is not suitable for measuring language

models using un-normalized probabilities. Also perplexity can not be used to compare

1.2 Language Models 5

language models that were constructed on different vocabularies. In these situations, other

measures should be chosen.

Word prediction accuracy

Word prediction has applications in natural language processing, such as augmentative and

alternative communication [175], spelling correction [34], word and sentence auto com-

pletion, etc. Typically word prediction provides one word or a list of words which fit the

context best. This function can be realized by language models as a side product. Looking

at this from the other side, word prediction accuracy provides a measure of the performance

of language models [159]. Word prediction accuracy is calculated as follows:

WPA =
C

N
, (1.8)

where C is the number of words that are correctly predicted. N is the total number of words

in the testing.

Similar to WER, word prediction accuracy (WPA) is also correlated with perplexity. In-

tuitively, perplexity can be thought of as the average number of choices a language model

has to make. The smaller the number of choices, the higher the word prediction accuracy

is. Usually low perplexity co-occurs with a high WPA. However, there are also counterex-

amples in the literature [159].

Compared with perplexity, WPA has less constraints. It can be applied to measure un-

normalized language models. It can also be applied to compare language models con-

structed from different vocabularies, which happens often in adaptive language models.

Compared with the computation of WER, WPA is much easier to calculate. Where WER

is speech recognizer dependent, WPA does not have extra dependencies, which makes it

suitable to compare language models used in different speech recognizers, i.e. at different

research sites.

Word error rate

In speech recognition, the performance of language models is also assessed by word error

rate (WER), which is defined as

WER =
S+D+ I

N
, (1.9)

where S, D and I are the number of substitutions, deletions and insertions, respectively,

when the prediction hypotheses are aligned with the ground truth according to a minimum

edit distance.

6 1 Introduction

WER is the measure that comes from speech recognition systems. In order to calculate a

WER, a complete speech recognizer is needed. Compared with the calculation of perplexity,

WER is more expensive. The WER results are noisy, because speech recognition performance

also depends on the quality of acoustic models. Usually low perplexity implies low word

error rate. However, this is not always true [29, 64]. Ultimately, the quality of language

models must be measured by their effect on real applications. When comparing different

language models on the same well constructed speech recognition systems, the WER is an

informative metric.

1.2.2 N-gram language models

N-gram language models are the most well known type of language models. They approx-

imate the probability of a word sequence as a product of conditional probabilities of the

current word wi given a history of the preceding n−1 words.

P(W = w1,w2...,wn) =
n

∏
i=1

P(wi|wi−n+1, ...,wi−1), (1.10)

where the n-gram probabilities are the relative frequencies of wi−n+1, ...,wi to wi−n+1, ..,wi−1

in the training data according to the maximum likelihood estimation:

P(wi|wi−n+1, ...,wi−1) =
C(wi−n+1, ...,wi−1,wi)

C(wi−n+1, ...,wi−1)
, (1.11)

where C(wi−n+1, ...,wi−1,wi) is the frequency count of the string wi−n+1, ...,wi−1,wi in the

training data.

N-gram language models have dominated the speech recognition area for years due to

their simplicity, efficiency and robustness. They are easy and efficient to train, and can be

embedded into a speech recognizer. Because of the local n-gram independence assumption,

they are robust to recognition distortions. However, n-gram language models are challenged

by data sparseness, and by across-domain brittleness. The independence assumption they

make does not completely capture word-dependencies in real world speech. We now discuss

each of these issues in more detail.

Data sparseness

The number of possible different word sequences grows exponentially with the length of

the n-gram chosen. For example, in a modest vocabulary with hundreds of thousands of

words, there are 1015 different trigrams (3-grams). For this reason the n-grams seen by the

language model in the test data can be mutually exclusive with the n-grams occurring in

the training data. As is shown in [125], even observing all trigrams from 38 million words

1.2 Language Models 7

of newspaper articles, more than 30 percent of the trigrams in new articles from the same

source are still novel. Additionally, maximum likelihood estimation suffers from the fact

that only a small percentage of n-grams occur frequently and a vast majority of the observed

n-grams in the training data have small counts.

The data sparseness problem is addressed by smoothing techniques [31] in n-gram lan-

guage models, which include discounting, interpolation and back-off approaches. The basic

idea is to reshape the probability distribution by redistributing probabilities over observed

events to unseen events. Discounting techniques [68, 90] achieve this by removing the

probability mass from observed events and redistributing it to unseen events. Linear in-

terpolation techniques [67] do so by approaching high order n-grams using a combination

of low order n-grams. In case that a high order n-gram is unseen, the lower order n-gram

still can provide valuable information. Back-off methods use a set of component models

to carry out smoothing. The most detailed model will be used, if enough data is available,

otherwise a general model is used. These techniques include Katz backing-off [72], Kneser-

Ney smoothing and its variants [31, 76]. Interpolated Kneser-Ney is widely acknowledged

as the best technique across training data sizes, corpora types and n-gram order [59].

False independence assumption

A false assumption is made in conventional language models, which gives them only in-

sufficient ability to model long-distance dependencies. This assumption is that the current

word only depends on the previous n− 1 words. The assumption simplifies the estimation

of n-gram language models, however it also is its main disadvantage. The following simple

example illustrates the problem this poses for n-gram language models.

THE DOG IN THE CORNER OF THE GARDEN BARKS.

According to the assumption of trigram language models, word ‘BARKS’ only depends on

‘THE GARDEN’. Usually, ‘THE GARDEN BARKS’ does not make sense. The actual depen-

dency we want to model is ‘THE DOG BARKS’. Furthermore, the probability of the trigram

‘THE GARDEN BARKS’ is likely to be low in the training data. Even though this is a well

formed sentence, the n-gram language model will assign it a low score.

Obviously, a trigram model is not able to model such long distance dependencies. Note

that increasing the order of the n-grams, e.g., to 7-gram, does not solve the problem. The

number of variants of the n-gram becomes so large that the amount of training data needed

to capture such long-distant dependency is prohibitively large.

8 1 Introduction

Cross-domain brittleness

As is pointed in [126], statistical language models are sensitive to the variations that occur

in natural language in topic or genre of the text on which the models are trained [13]. Dif-

ferent domains of a language tend to evolve as relatively closed systems with different word

sequence statistics. For example, the phrase ‘language models’ probably occurs more often

in this thesis than in theses on politics. The brittleness effect is strong even for small vari-

ations of the data that comes from the same domain. In [125], the perplexity of a language

model trained on Dow-Jones newswire is doubled when the language model is applied to

the similar Associated Press newswire text from the same time period.

In the past thirty years, a great number of techniques have been proposed to address

the challenges that we have just covered. In this introduction, we can not address all of

them. Instead, we focus on the milestone works and the techniques that are suitable for the

integration of meta-information.

1.2.3 Computation paradigm driven language models

A variety of other computation paradigms has inspired a range of other language models.

This subsection provides a survey of these models with special emphasis on neural network

language models, which are most relevant for this thesis.

Decision tree language models

Basically, a language modeling problem is a classification problem. Since decision trees

are well-known classifiers, it is natural to apply decision trees in language modeling. For

example, a decision tree was used in [10] to classify the preceding word history by ask-

ing questions about the history at every node. Actually n-gram language models can be

considered as kind of decision-tree-based language model. Theoretically, an optimally con-

structed decision tree is at least is as good as an n-gram language model. However, in

practice, a globally optimized decision tree is extremely difficult to construct. Usually a

heuristic greedy approach is applied to generate a suboptimal decision tree. The practical

performance of decision tree based language models in fact failed to outperform the n-gram

language models [118]. Better performance can be achieved by smoothing and combining

them with n-gram language models. A successful approach using an aggregation strategy

is the random forest language model [170], which obtains a significant improvement over

n-gram language models by linear interpolation of many randomly grown decision tree lan-

guage models.

One appealing feature of decision-tree-based language models and their variants is that

1.2 Language Models 9

they provide more freedom to classify word histories than conventional n-gram language

models. For example, decision-tree-based language models can be used to integrate the POS

information into language models [60] by asking the question about the history at current

word, “Is the last word a verb?” Morphological information, prosodic information, syntactic

information and topic information have been integrated into random forest language models

[153].

It should be noted that the improved performance of decision tree language models over

conventional n-gram language models comes at the cost of high consumption of computer

memory and computational time. The increased complexity is due not only to the decision

tree growing, but also to the computation of the probability of test data.

Dynamic Bayesian networks for language models

Bayesian networks originate in artificial intelligence as a method for reasoning with uncer-

tainty based on the formal rules of probability theory [113]. A Bayesian network represents

the joint probability distribution over a set of random variables X1,X2 . . .XN . It consists of

two parts:

1. A directed acyclic graph (DAG) G, i.e. a directed graph without any directed cycles.

There exists a one to one mapping between the variables in the domain and the nodes

of G, i.e. every node vi in G represents exactly one variable Xi and every variable

Xi is represented by exactly one node vi. The directed arcs in the network represent

the direct dependencies between variables. The absence of an arc between two nodes

means that the variables corresponding to the nodes do not directly depend on each

other.

2. A set of conditional probability distributions. A conditional probability distribution

P(Xi|Pa(Xi)) is associated with each variable Xi. The distribution quantifies how Xi

depends on Pa(Xi), the set of variables represented by the parents of node vi in G

representing Xi.

The probabilities are obtained from domain experts, learned from data or a combination of

both. Applying the chain rule of probability theory and the independence assumptions made

by the network, we can write the joint probability distribution represented by the network

in factored form as a product of the local probability distributions:

P(X1,X2, XN) =
N

∏
i=1

P(Xi|Pa(Xi)). (1.12)

Inference in Bayesian networks is the process of calculating the probability of one or more

random variables given some evidence, i.e., computing P(XQ|XE = xE) where XQ is a set

10 1 Introduction

of query variables and XE is a set of evidence variables. A number of efficient inference

algorithms that exploit the independence of variables in a network exist.

Dynamic Bayesian Networks (DBNs) [39, 105] offer a concise way to model processes

that evolve over time for which the number of steps is not known beforehand. A DBN can

be defined by two Bayesian networks: an a priori model P(X1) and a transition model that

defines how the variables at a particular time depend on the nodes at the previous time steps:

P(Xt |Xt−1) =
N

∏
i=1

P(Xi,t |Pa(Xi,t)), (1.13)

were Xt is the set of variables at time t and Xi,t is the ith variable in time step t. The parents

of a node can either be in the current or in a previous time slice. Typically, first order

Markov assumptions are made, i.e. the nodes in a time slice only depend on the nodes in the

previous time slice.

The potential of DBNs in language modeling is that they provide an ideal framework for

the construction of rich language models with additional information. As is shown in [137,

138, 165], the syntactic information, semantic relation and social background knowledge

can be specified as a variable in the belief network with its network structure in a declarative

way without the need for special-purpose inference routines.

However, DBNs are generalizations of n-gram models. Even though they make the con-

struction and comparison of rich information language models easier, basically, they still

suffer from the inherent problems that face n-gram language models, such as data sparse-

ness.

Exponential language models

The exponential language model has the following form to model the conditional probability

of word wi given context hi:

P(wi|hi) =
1

Z(hi)
exp([∑

j

λ j f j(hi,wi)]), (1.14)

where λ j are the parameters, f j(hi,wi) are arbitrary functions of the pair (hi,wi) and Z(hi)

is a normalization factor. The Z(hi) can be calculated as follows:

Z(hi) = ∑
wi∈V

exp([∑
j

λ j f j(hi,wi)]). (1.15)

The parameters are learned from the training data based on the Maximum Entropy prin-

ciple [66]. This type of language models are also referred as Maximum entropy language

1.2 Language Models 11

models. It was first introduced into language modeling by [117]. Later, it was systematically

investigated by Rosenfeld [125].

The strength of exponential language models is that they can incorporate an arbitrary

knowledge source hi. Using trigger and n-gram features, in [125] maximum entropy lan-

guage models achieved significant improvement over n-gram language models in terms of

perplexity and word error rate. Since then, maximum entropy language models have be-

come one of the most promising research avenues of language modeling and have witnessed

substantial success [3, 18, 30, 32, 127].

However, training a maximum entropy language model is computationally expensive,

as for each word wi, a normalization factor needs to be explicitly computed. Such a com-

putational challenge has been addressed by [58, 127]. In [58], every word is assigned to

an unique class. The prediction of a word given its history is decomposed to a prediction

of the class given the history and a prediction of the word given its class and history. In

[127], a whole sentence exponential language models are proposed. In these models, the

normalization factor is fixed to a true constant. However, the whole sentence exponential

model also brings its drawbacks. It is intractable for exact training. It has to take advantage

of sampling techniques.

Neural-network-based language models

Since Y. Bengio et al. published the work [16], neural networks have been widely consid-

ered as the most promising technique for language modeling. Even with a small amount

of data, neural network language models yield much better performance than the smoothed

n-gram language models. The superior capability of neural network language models and

their variants is their ability to map discrete words into a continuous space and express the

joint probability of a word sequence in this continuous space.

In [16], feed-forward neural network language models were proposed, which are de-

picted in Figure 1.1. Each word in the vocabulary is mapped by a shared parameter matrix

to a real-valued vector. The size of this real-valued vector is commonly chosen to be be-

tween 30 and 100, which is much smaller than the vocabulary size. The shared parameter

matrix is referred to as the projection layer. Following the projection layer is the hidden

layer, whose dimension is between 100 and 300. After the hidden layer, is the softmax out-

put layer. The input of a feed-forward neural network language model is the previous n-1

words wt−n+1, ...,wt−1. The output is the conditional probabilities p(wt |wt−n+1, ...,wt−1) of

word wt given its previous n−1 words.

An even bigger improvement boost has recently been achieved by Mikolov et al. [98].

In this work, it was proposed to use recurrent neural networks (RNN) [47, 122, 128, 129] in

12 1 Introduction

C(wt-1)

wt-1

edmatrix

Figure 1.1: Feed-forward neural network language models. Each word depends on the pre-

vious n-gram. Each word in the n-gram is mapped to a real value vector by the

shared parameter matrix. The real value vector can also be directly connected

to the output layer, which is shown as the directed dashed line in the figure.

language models. In order to exploit long distance history information, the approach equips

the network with a short memory. The input layer of the recurrent neural network language

models (RNNLMs) is constituted by previous one word wt−1 and a copy of previous activated

hidden layer ht−1. The loop architecture in RNN theoretically can cycle an arbitrarily large

amount of previous information up until the present. It also gives the RNN a deeper structure

than neural networks without the loop. As is shown in [7], the performance of RNNLMs can

be approached by neural network language models with more hidden layers.

In addition to their capability for generalization and for long-distance modeling, neural

network language models are flexible, allowing the addition of arbitrary features. From ma-

chine learning perspective, neural networks can be seen as a set of logarithmic regressions.

When additional features are integrated into neural network language models, the additional

features are embedded into a continuous space, which allows the language models to gener-

alize easily and makes them robust to noise from incorrect annotations. In [49] and [2], the

1.2 Language Models 13

contribution of syntactic or morphological information to neural network language mod-

els was investigated. Using Latent Dirichlet Allocation, topic information is also studied

in [97]. The performance RNNLMs integrating syntactic features, morphological features,

semantic features and social background features was studied in [140]. In this thesis, we

collectively refer to all these features as meta-information. In the following chapters, we

will focus on integrating these types of meta-information in language modeling.

However, the superior performance of neural-network-based language models is ob-

tained at the cost of expensive training. This is one of the reasons why neural networks

have only recently become popular in language modeling, despite the fact that they were

introduced to describe language 20 years ago [47]. The high computational complexity

severely constrained the early application of neural networks in language modeling. Basi-

cally, they were only applied to small amounts of data. In order to make neural networks

capable of handling large amounts of data, most previous research focused on reducing the

computation complexity. In [135], the output of an NNLM was constrained to a short list

of most frequent words. Bengio et al. [15] used an adaptive importance sampling strategy

to reduce the computation. Xu et al. [171] also used a subsampling strategy, but converted

the multi-class prediction problem to a binary class prediction problem. In [104], it was

proposed to use noise contrastive estimation to training NNLM. In [101], Mikolov proposed

the class trick to factorize the output layer in RNNLM. The class trick was once used by

[58] to reduce the computational complexity in Maximum Entropy language models. These

methods already reduced the computation of the weight learning between hidden layer and

output layer to less than 1%. In this thesis, we will also address the computational com-

plexity problems by take advantage of a parallelization strategy, which will be covered in

Chapter 6.

1.2.4 Meta-information

As we discussed before, state-of-the-art language models are in general based exclusively on

the collection of statistics of words. These models somehow implicitly, yet blindly capture

many of the phenomena of language. For example, n-grams indeed reflect many important

syntactic and semantic collocations. The neural network hidden layer using abstract way to

capture the similarities of different words [102].

However, current language modeling techniques still miss much potentially useful in-

formation that characterizes the language as it is. For example, language is a social product,

which is reflected in the fact that in different social contexts, we probably would use dif-

ferent ways of organizing language to express the same idea. Language is also historical

product, which is evidenced by the fact that some words appear, some words disappear,

14 1 Introduction

some words become shorter, and some words become longer, etc.

In this thesis, all the potential information is collectively called meta-information. We

use “meta-information, since such a broad term reflects that there are still many types of

information waiting to be exploited from language. The meta-information that we will

discuss in this thesis is only the tip of the iceberg.

In previous research, Wiggers [164] provided a comprehensive explanation of the influ-

ence of context in automatic speech recognition. In this thesis, we will exploit some types

of new meta-information as well as investigate methods to integrate meta-information into

language models. The meta-information used in this thesis can be categorized according to

different linguistic levels [55]:

Morphological features

In this thesis, we will exploit three types of morphological features. First, from the syntactic

perspective, each word takes on a grammatical role when it occurs in a sentence, referred to

as its part of speech (POS). It is the basic element of syntactic structure that constrains utter-

ances to follow grammatical rules. Syntactic rules based words POS encode the grammatical

relations among the words of a sentence, as well as their linear order and hierarchical orga-

nization. Language grammar allows humans to produce and understand sentences that they

have never encountered before. Because of this impact, taking POS into account in language

modeling can help to model long distance dependencies, as well as fight data sparseness. In

previous studies, POS played an important role in improving the performance of language

modeling and other natural language processing tasks [26, 93]

Second, from the semantic viewpoint, many different word entities bearing the same

meaning, which can be derived from the same sub-word. These sub-words are called lem-

mas in this thesis. In previous studies, word content has been integrated into language

models by taking the perspective of high level topic information [57]. Consider the fact that

meaningful words must follow semantic rules to become meaningful phases and sentences.

In addition to long-distance topic information, we believe that semantic rules can potentially

be modeled by integrating the lemma into language models. Furthermore, the number of

lemmas is smaller than vocabulary size. The usage of lemmas helps language models to

overcome data sparseness problems.

Third, the lexicon level feature which we attempt to integrate into language models is

word length. It initially appears to be a trivial feature, however, it actually reflects several

aspects of a word. According to a law proposed by Zipf to account for natural language

[116], the information can be conveyed as concisely as possible by giving the most fre-

quently used meanings with the shortest word forms. In [8], it was confirmed that human

1.2 Language Models 15

memory span is highly related to word length across a wide range of materials. Word length

also can reflect the number of syllables, number of phonemes and the POS to which the word

belongs. A short word usually has fewer syllables and phonemes. A noun usually is longer

than a determiner and a verb.

Sentence patterns of language

The sentence level information that we will exploit is sentence length as well as information

about the words that succeed the present word in current sentence.

Language models prefer short sentences, since usually the longer a sentence is, the

smaller its joint probability. For spontaneous spoken language this assumption is generally

correct, but for more formal, written language it does not hold. As is shown in [164], the

average sentence length varies according to different type of conversations.

People utter sentences with a plan. The present word in the sentence is not only de-

pendent on previous word history information but also predicable by the succeeding word

information in that sentence. In previous research on whole-sentence models [127], all the

words in a sentence are used in language modeling as a bag-of-words. In this thesis, we use

succeeding words as a source of information complementary to word-history information.

Information from the discourse level

Discourse level meta-information characterizes the relationships beyond the sentence level.

Topic and situational information can be exploited on this level.

Topic information captures the semantic relationship among sentences. Within a dis-

course, each sentence is affected by the preceding sentences in various ways. For example,

we often need to get the reference or meaning of pronouns according to the prior discourse.

Prior discourse can also disambiguate words like “fox” in that the discussion may be about

animal or crafty behavior.

Topic information has attracted a lot of attention from language modeling and natu-

ral language processing. Many methods such as latent semantic analysis [83, 84], Latent

Dirichlet Allocation [20] etc., have been proposed to derive topic information from dis-

course. In language modeling, [57, 137, 166] treated topic information as a latent variable

in language models. The number of topics is predetermined and the conditional probabili-

ties of both topic given previous words and present word given present topic is trained by

Expectation Maximization. In [65], a sentence level mixture model was proposed in which

each component model contains the n-gram statistics of a specific topic. Taking advantage

of recurrent neural networks, in this thesis (Chapter 3) we propose k-component incremental

learning of topic information in language models.

16 1 Introduction

Situational information is the non-linguistic environment in which a discourse happens.

In this thesis, we give special consideration to information on the socio-situational setting in

which speech is produced. The socio-situational setting reflects the social context of speech,

which involves the communicative goals, number of speakers, number of listeners and the

relationship among the speakers and the listeners. It is different from topic information,

which is related to the content of the discourse. Socio-situational settings reflects the social

restrictions on the discourse. An automatic classification method will be investigated in

Chapter 2. The different ways of integrating the socio-situational setting into language

models will be discussed in the Chapter 3 and Chapter 4.

1.2.5 Meta-information driven language models

In this subsection, we highlight several important advanced language models driven by the

meta-information such as class, information from the cache window, the trigger pattern, the

syntactic grammar and structure and topics. In this thesis, we will also propose discourse

level meta-information driven language models, namely, k-component recurrent neural net-

work language models.

Class-based language models

Class-based language models [23, 106] have the following format:

P(wi|h(wi)) = P(wi|ci)P(ci|h(ci)), (1.16)

where h(wi) is the word history of wi, ci the class information of present word wi and h(ci)

the class history of ci. The h(ci) can include the previous class information as well as the

word history information.

In contrast to smoothing techniques, class-based language models battle data sparseness

via mapping the words in the vocabulary onto a smaller number of classes. By exploit-

ing similarities with sequences of words that have already see seen, successfully assigned

classes can help the language model to make a reasonable prediction for a sequence of words

that have not yet been seen.

The vocabulary clustering trick has also shown its potential in speeding up the training

of advanced language models. The number of classes is smaller than the size of vocabulary.

For this reason, class-based language models have fewer parameter than their word-based

counterpart. As a result, the training of the model becomes faster and reliable. As previ-

ously mentioned, it can significantly speed up the maximum entropy model [58] and neural

networks language models [101].

1.2 Language Models 17

The quality of the class-based language models depends on the way in which the vo-

cabulary is clustered. Much previous research has investigated the best way to cluster the

vocabulary [14, 23, 106, 115, 158, 172]. Class-based language models usually benefit more

from automatic generated classes than manually constructed classes [108]. It was shown in

[60, 107] that class-based models can obtain decreased perplexity as well as word error rate,

especially when there is only small amount of training data available.

However, from the equation 1.16, it is obvious that compared with their word-based

counterparts, class-based language models actually lose information. Class-based language

models simplify the dependence between words to the dependence between classes, which

are less numerous than the number of words in the vocabulary. Better performance usually

is achieved by combining the class-based models with word-based models. Furthermore,

according to the empirical results in [59], with increased size of training data, the gain from

the class-based model would vanish.

The socio-situational settings and topics from the perspective of data clustering can be

viewed as specific classes. In Chapter 3, using the incremental learning, we propose an

alternative way of using these types of discourse level meta-information.

Cache-based language models

In order to capture the phenomena that a word used in the recent past is much more likely

to be used again sooner than predicted by its overall frequency in the vocabulary, [78] pro-

posed a cache-based language model for speech recognition. The cache-based model is a

dynamic model in which the probabilities are calculated as the relative frequency of the

words within the cache. This dynamic model is further linearly interpolated with standard

n-gram language models.

One advantage of cache-based model is that they can model longer term patterns, which

are inadequately captured by n-gram language models. The dynamic fluctuation of the prob-

abilities obtained from the static n-gram language model results in a significant reduction in

perplexity [63, 78].

However, the perplexity reduction of the cache-based language models did not translate

into the word error reduction in their application in speech recognition. As it is explained

in [59], the probable reason is that the cache-based model is based on the assumption that

previous words in the cache are known exactly, however, the real speech recognizer is not

perfect. An incorrectly recognized word in the cache can increase the chance of the same

error happening again.

Inspired by the cache-based model, there are a large number of variants that try to cap-

ture the long distance dependency. In [86] it was proposed to use the trigger-pair to capture

18 1 Introduction

the dependency within a sentence. wA → wB is a trigger pair, when a word wA is signifi-

cantly correlated with another word wB. In other words, if word wA occurs in the sentence,

the probability of the word wB will be increased. As the number of trigger-pairs are huge, the

mutual information criterion was used. However, as it is reported in [124], almost 68% of

the trigger-pairs selected according to this criterion are self-triggers, meaning that the word

wB in the trigger-pair is the same word as the word wA. For this reason, the trigger-based

models achieved only little improvement over the cache-based model.

Another important variant is to model the long-distance semantic relationships by inte-

grating Latent Semantic Analysis in language models [12]. In latent semantic analysis, each

word and document is represented by a modest size of vector, which to some degree reduces

the data sparseness issue in language modeling. One important property of this vector rep-

resentation is that semantically related words and documents are close in the vector space.

Unlike conventional n-gram language models, which are suitable for capturing short-span

patterns, language models using semantic analysis are good at modeling long-span patterns.

The combination of these two methods results in multi-span language models. As it is

shown in [12], multi-span language models achieve about 20% perplexity reductions, and

9% relative word error rate reductions when compared to a Katz trigram. Recently a similar

approach has been proposed to combine Latent Dirichlet Allocation with language models

[61], which also yielded promising results.

In Chapter 3, we will also use Latent Dirichlet Allocation to obtain latent topic infor-

mation for k-component recurrent neural network language models. Using Latent Dirichlet

Allocation, each sentence is represented by a real vector. Using the real vectors, k-means

clustering is applied to partition the data. The basic approach underlying Chapter 3 is an

approach that models long-distance dependency by exploiting data clustering.

Mixture models

As previous discussed, a language corpus may contain different topics and different styles.

Standard n-gram language models are very sensitive to topic or style changes. They are not

capable of modeling long-distance information. In order to capture this type of information,

mixture model strategies have been applied.

In [77], a mixture of models is constructed based on the word level for k different lan-

guage models, which are trained on different component of the data set. These specific

models are combined as follows:

P(wi|h(wi)) = ∑
k

λkPk(wi|h(wi)), (1.17)

1.3 Research Questions 19

where Pk(wi|h(wi)) is the conditional probability of specific model k. The linear interpola-

tion weights are tuned using held-out data.

In [63, 65], sentence mixture models are proposed in which the linear interpolation of

different component language models are based on the joint probabilities of each sentence.

P(s) = ∑
k

pk(s) = ∑
k

λk ∏
i

Pk(wi|h(wi)), (1.18)

where h(wi) is the history of wi in sentence s. If the component language models are n-gram

models then h(wi) = wi−n+1, ...,wi−1.

The first step of mixture modeling is to cluster the data set according to some criterion.

For data belonging to several topics or styles at the same time, soft-clustering can be applied

[63].

The performance of mixture models depends on the clustering of the data set. In [63],

a two-stage clustering process was used. The first stage used an agglomerative clustering

method, in which a similarity measure is combined with inverse document frequencies. The

second stage used an Expectation-Maximization method based on n-grams to re-estimate the

clustering [63]. To address the problem that a too aggressive partitioning of the data set may

aggravate the data spareness problem for component language model training, mentioned in

[63], the mixture probability is interpolated with an additional general model, as follows.

P(s) = ∑
k

λk ∏
i

[αiPk(wi|h(wi))+(1−αi)pg(wi|h(wi))]. (1.19)

Their experiments show that the sentence-mixture models can achieve a more than 20%

perplexity reduction and almost 4% word error rate reduction with a small number of com-

ponents (5 to 10). In [59], the sentence-mixture models achieved even better results when

they were used on a large number of components (up to 128).

In Chapter 3, we address the k-component mixture models. In our proposed approach,

the component language models are constructed according to incremental learning based on

recurrent neural networks, which can effectively deal with data sparseness. Furthermore, not

only the topic but also the socio-situational setting variation is considered in our proposed

mixture models.

1.3 Research Questions

In this thesis, we address language modeling with meta-information motivated by the fol-

lowing three assumptions.

• To use meta-information in language modeling, different meta-information prediction

methods need to be investigated.

20 1 Introduction

• Meta-information should be integrated into state of the art language models. For each

type of meta-information a suitable integration method has to be found.

• Meta-information integration will increase computational complexity. Methods of

speeding up language modeling need to be investigated.

Based on these three assumptions, in this thesis, we formulate the following research

questions and their motivations.

Research Question 1 How can we develop methods that classify socio-situational settings

of transcripts and that perform more accurately than human? (Chapter 2)

In the previous sections, we presented an overview of statistical language models,

meta-information and meta-information driven language models. From the overview,

we find that many types of meta-information have been investigated before in lan-

guage modeling, such as topics and part-of-speech tags. In this thesis, we not only

integrate topics and part-of-speech tags into language models using a new compu-

tational framework, but also apply meta-information from the social perspective to

language models. We propose to use socio-situational settings of languages in lan-

guage modeling. In practice, only text information is available for language modeling.

In order to use socio-situational settings in language modeling, we need to develop

methods to infer this type of meta-information from the text. This point is addressed

by our Research Question 1. In order to measure the performance of the proposed

method, the performance of human on a socio-situational setting classification task

can be treated as baseline.

Research Question 2 How to effectively integrate discourse level meta-information into

language modeling? (Chapter 3)

When we know the socio-situational setting, we still have to find an effective way

to integrate this kind of meta-information into language models. Socio-situational

settings are a form of discourse level meta-information, which characterizes the style

of sequences of words. An effective method needs to be developed to integrate such

kinds of discourse level meta-information into language modeling, which is addressed

by Research Question 2.

Research Question 3 How to effectively combine recurrent neural network language mod-

els with sentence level and word level meta-information? (Chapter 4, Chapter 5)

Recently, the paradigm of recurrent neural network language models has proven its

worth in two ways. Recurrent neural network language models have much better

generalization capabilities than other language models. Recurrent neural network

1.4 Structure of the thesis 21

language models also have flexible structures to include other features. As discussed

in the previous section, many types of meta-information have been applied in different

kinds of language models, but not yet in recurrent neural network language models.

Research Question 4 What is the effect of integrating word level meta-information into re-

current neural network language models on the performance of these models? (Chap-

ter 5)

Even though previous investigations have deployed different types of meta-information

in language modeling, a systematic analysis and comparison of different meta-information

is not available yet. In order to understand the contribution of different types of meta-

information to improve recurrent neural network language models, we should make

a systematic comparison of different recurrent neural network language model using

different types and combinations of meta-information.

Research Question 5 How to speed up the training of recurrent neural network language

models? (Chapter 6)

It is well-known that training of recurrent neural network language models is com-

putationally expensive. Although integration of meta-information into recurrent neu-

ral network language modeling provides better-performing models, it increases the

computational cost. To effectively use meta-information in recurrent neural network

language models, the computational cost have to be affordable.

1.4 Structure of the thesis

This section explains which chapter addresses which research question. The references of

the form [shi-x] refer to the publication list in Section 1.5.

Chapter 2, based on [shi-1], addresses the socio-situational setting of languages and its

automatic classification methods and describes the set-up and results of a subjective experi-

ment to obtain and analyze the cues mentioned by humans classifying the socio-situational

setting of the selected transcripts. Based on these cues, we propose a static and dynamic

classification method for socio-situational settings according to language use. Especially

our dynamic classification method is motivated by the need for the socio-situational setting

to be integrated into the language model on the fly, i.e., as the language model is used for

practice.

Chapter 3, based on [shi-2], proposes k-component adaptive recurrent neural network

language models using curriculum learning to incorporate language models with discourse

level meta-information such as topics and socio-situational settings. Basically, we empha-

22 1 Introduction

size sub-domain patterns in component models by scheduling the order of the training data.

We use a curriculum learning method to address two challenges of adaptive language mod-

eling, namely within domain adaptation and limited-data domain adaptation.

Chapter 4, based on [shi-3], proposes recurrent neural network tandem language models

to integrate meta-information in language modeling. The proposed model has two parts:

one part for meta-information prediction, the other part for integrating the predicted meta-

information into recurrent neural network language models. In Chapter 4, we also present

the systematic comparison of the contribution to language modeling that is made by differ-

ent types of meta-information in terms of perplexity, word prediction accuracy and word

error rates.

Chapter 5, based on [shi-4], proposes forward-backward recurrent neural network lan-

guage models to combine succeeding words information in language modeling. Several

heuristic integration methods are investigated.

Chapter 6, based on [shi-5], proposes a subsampling stochastic gradient descent par-

allelization algorithm for speeding up the training of recurrent neural network language

models.

Chapter 7 concludes the thesis and provides insights for future work.

1.5 Publication List

The work carried out by the author as a PhD student led to the following papers.

Journal papers

[shi-1] Yangyang Shi, Pascal Wiggers, Catholijn M. Jonker. Classifying the Socio-

Situational Settings of Transcripts of Spoken Discourses. Speech Communica-

tion. 55(10):988-1002, 2013. (Chapter 2. It is an extension of [shi-11] and

[shi-15])

[shi-2] Yangyang Shi, Martha Larson, Catholijn M. Jonker. Recurrent Neural Net-

work Language Models Adaptation with Curriculum Learning. Computer Speech

and Language. Under review. (Chapter 3. It is an extension of [shi-6])

[shi-3] Yangyang Shi, Martha Larson, Joris Pelemans, Catholijn M. Jonker, Patrick

Wambacq, Pascal Wiggers, Kris Demuynck. Integrating Meta-Information into

Recurrent Neural Network Language Models. Speech Communication. Under

review. (Chapter 4. It is an extension of [shi-10])

1.5 Publication List 23

Conference papers

[shi-4] Yangyang Shi, Martha Larson, Catholijn M. Jonker. Exploiting the suc-

ceeding words in Recurrent Neural Network Language Models. 14th Annual

Conference of the International Speech Communication Association (INTER-

SPEECH). 2013. (Chapter 5)

[shi-5] Yangyang Shi, Mei-Yuh Hwang, Kaisheng Yao, Martha Larson. Speed Up of

Recurrent Neural Network Language Models With Sentence Independent Sub-

sampling Stochastic Gradient Descent. 14th Annual Conference of the Interna-

tional Speech Communication Association (INTERSPEECH). 2013. (Chapter

6)

[shi-6] Yangyang Shi, Martha Larson, Catholijn M. Jonker. K-component Recurrent

Neural Network Language Models Using curriculum Learning. IEEE Workshop

on Automatic Speech Recognition and Understanding (ASRU) . 2013.

[shi-7] Kaisheng Yao, Geffrey Zweig, Mei-Yuh Hwang, Yangyang Shi, Dong Yu.

Recurrent Neural Networks for Language Understanding. 14th Annual Confer-

ence of the International Speech Communication Association (INTERSPEECH).

2013.

[shi-8] Yangyang Shi, Martha Larson, Pascal Wiggers, Catholijn M. Jonker. K-

component Adaptive Recurrent Neural Network Language Models. Text, Speech

and Dialogue. 8082:311-318, 2013.

[shi-9] Yangyang Shi, Pascal Wiggers, Catholijn M. Jonker. Adaptive Language

Modeling with A set of Domain Dependent Models. Text, Speech and Dialogue.

7499:472-479, 2012.

[shi-10] Yangyang Shi, Pascal Wiggers, Catholijn M. Jonker. Towards Recurrent

Neural Networks Language Models with Linguistic and Contextual Features.

13th Annual Conference of the International Speech Communication Associa-

tion (INTERSPEECH). 1664-1667, 2012.

[shi-11] Yangyang Shi, Pascal Wiggers, Catholijn M. Jonker. Dynamic Bayesian

Socio-situational Setting Classification. IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP). 5081-5084, 2012.

[shi-12] Yangyang Shi, Martha Larson, Pascal Wiggers, Catholijn M. Jonker. Me-

diaEval 2012 Tagging Task: Prediction based on One Best List and Confusion

Networks. MediaEval 2012. 2012.

24 1 Introduction

[shi-13] Peng Xu, Yangyang Shi, Martha Larson. TUD at MediaEval 2012 genre

tagging task: Multi-modality video categorization with one-vs-all classifiers.

MediaEval 2012. 2012.

[shi-14] Yangyang Shi, Pascal Wiggers, Catholijn M. Jonker. Combining Topic Spe-

cific Language Models. Text, Speech and Dialogue. 6836:99-106, 2011.

[shi-15] Yangyang Shi, Pascal Wiggers, Catholijn M. Jonker. Socio-Situational

Setting Classification based on Language Use. IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU). 455-460, 2011.

[shi-16] Yangyang Shi, Pascal Wiggers, Catholijn M. Jonker. Language Modelling

with Dynamic Bayesian Networks using Conversation Types and Part of Speech

Information. The 22nd Benelux Conference on Artificial Intelligence. 154-161,

2010.

Chapter 2

Classifying the Socio-Situational

Settings of Transcripts of Spoken

Discourses1

2.1 Abstract

In this paper, we investigate automatic classification of the socio-situational settings of tran-

scripts of a spoken discourse. Knowledge of the socio-situational setting can be used to

search for content recorded in a particular setting or to select context-dependent models

for example in speech recognition. The subjective experiment we report on in this pa-

per shows that people correctly classify 68% the socio-situational settings. Based on the

cues that participants mentioned in the experiment, we developed two types of automatic

socio-situational setting classification methods; a static socio-situational setting classifica-

tion method using support vector machines (S3C-SVM), and a dynamic socio-situational

classification method applying dynamic Bayesian networks (S3C-DBN). Using these two

methods, we developed classifiers applying various features and combinations of features.

The S3C-SVM method with sentence length, function word ratio, single occurrence word ra-

tio, part of speech (POS) and words as features results in a classification accuracy of almost

90%. Using a bigram S3C-DBN with POS tag and word features results in a dynamic classi-

fier which can obtain nearly 89% classification accuracy. The dynamic classifiers not only

1This chapter is an article published in Speech Communication. Y. Shi, P. Wiggers, C. M. Jonker. Classify-

ing the Socio-Situational Settings of Transcripts of Spoken Discourses [145]. A few supplementary remarks are

provided as footnotes.

25

26 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

can achieve similar results as the static classifiers, but also can track the socio-situational

setting while processing a transcript or conversation. On discourses with a static social

situational setting, the dynamic classifiers only need the initial 25% of data to achieve a

classification accuracy close to the accuracy achieved when all data of a transcript is used.

2.2 Introduction

“You shall know a word by the company it keeps” [54]. We also shall know a conversa-

tion by the situation which it is used. Language is situated. Conversations take place in a

particular social context and documents are written with, among other things, a particular

purpose and audience in mind. Knowledge of this socio-situational setting can greatly ben-

efit language processing applications. For example, a search engine may only return those

documents or videos that match a particular speech style. In automatic speech processing,

the socio-situational setting can be used to select dedicated language models and acoustic

models for that context.

The socio-situational setting can be characterized by situational features such as: com-

municative goals, the number of speakers participating, and the relationship between speak-

ers and listeners. It influences the way people speak. In different settings people use differ-

ent speaking styles and different words. Socio-situational setting is a concept that is related

to, but different from, the concepts of topic and genre that are well-known in the literature

on natural language processing.

The socio-situational setting of a spoken discourse is independent of the topic of the

discourse. For example, a professor lecturing on a particular topic may place emphasis

on important terms by repeating them and pronouncing them clearly. In a spontaneous

conversation with one of his students about the same topic, the professor may articulate less

carefully and use more informal language and when explaining the topic to a family member

the technical terms might be missing altogether. Different types of spoken discourses can

relate to the same topics. For example, in web search one might be looking for a lecture on

Western civilization, rather than a political debate which refers to Western civilization.

The socio-situational setting is related to but different from the genre. It can be seen as

an aspect of genre. However, a genre often denotes a particular set of stylistic and rhetoric

elements as well as some content related aspects to classify a text for example as fiction

or mystery [75]. Depending on the setting people may display differences in the acoustic

and prosodic aspects of their conversations as well as in the word use [6, 82]. The socio-

situational setting as we define it here relates to broad categories of spoken language use

such as spontaneous face-to-face conversations, debates or reading.

2.2 Introduction 27

In this paper, we address socio-situational setting classification by automatic classifiers

as well as humans. Two types of automatic classification methods are developed based on

the features from the literature on automated document classification, see e.g., [75], and

features that are based on the way humans do this classification task.

To obtain information about the performance of humans in this task and about the clues

in the text they use to do the classification we set up and performed an experiment. In

addition to the features, the subjective experiment of socio-situational setting classification

provides a baseline for the automatic classification of socio-situational settings.

Two types of socio-situational setting classification methods are presented in this pa-

per, which are a static socio-situational setting classification method using Support Vector

Machines (SVM) (which we call S3C-SVM) and a dynamic socio-situational setting classifi-

cation method using Dynamic Bayesian Networks (DBN) (which we call S3C-DBN). A set

of static classifiers is constructed by the S3C-SVM method using different features as well as

combinations of these features. In dynamic classifiers which are developed using the S3C-

DBN method, we investigate the impact to the performance of classification not only from

the perspective of different features but also from the perspective of dependencies among

these features.

In the static classification method, we investigate the effect of sentence length, single

occurrence word ratio, function word ratio, word, POS tags, POS trigrams and their com-

binations on the classification results. Static classifiers need to observe the complete dis-

course to do classification. When the context information is applied to language modeling

[65, 137], the static classification method usually separates the usage of context information

in language model testing into two sequential phases: one phase for context classification,

the other phase for combining the context information into language modeling. Static clas-

sifiers are unsuitable for online classification as they need the complete text to make classi-

fications. Therefore, in addition to the static classification methods, we propose a dynamic

classification method of the socio-situational settings of a spoken discourse.

The dynamic classification method developed in this paper is an online classification

method that sequentially processes text of a transcript. It reevaluates classification each

time a word in the transcript is observed. We investigate how much of the text information

is needed to achieve an acceptable classification accuracy. For example, guessing that the

conversation beginning with “In this class, we will discuss something” is a lecture can be

done with confidence, and the prediction that a conversation beginning with “Hello, this is

Mike speaking.”, is a spontaneous conversation by phone can also be made with confidence.

Therefore, classifying the socio-situational setting of a spoken discourse is a task for which

dynamic classification is highly appropriate. In fact, the results of dynamic classifiers in our

28 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

experiments, reach their final classification results having processed about 25% of the text.

The dynamic classification method can benefit context based adaptive language mod-

eling. Knowing the socio-situational setting of a spoken discourse would benefits context

based adaptive language modeling, as the socio-situational setting is a form of context infor-

mation. In addition, the dynamic socio-situational setting classification method introduced

in this paper can make classification of socio-situational settings on the fly. Therefore, the

dynamic classification method can be directly integrated into context based adaptive lan-

guage models in online prediction for next word.

The paper is organized as follows. In the next section, we give an overview of related

work. In Section 3, we describe the Spoken Dutch Corpus which we used as the test data set.

Section 4 discusses the possible differences of discourses in terms of their socio-situational

settings. Our subjective experiment is described in Section 5. Section 6 discusses the fea-

tures that we extracted from the discourse transcripts. Section 7 presents the S3C-SVM

classification methods and their classification results. Section 8 discusses the S3C-DBN

classification method, the structure of different models and the classification results. Fi-

nally, we compare the results from the human experiment with the results of our automatic

socio-situational stetting classifiers and draw conclusions.

2.3 Related work

In this section, we discuss related work in socio-situation setting classification, genre clas-

sification and the features used in genre classification. We also present some related work

on Support Vector Machines (SVMs) and probabilistic classifiers.

The socio-situational setting classification is related to traditional genre classification.

The fundamental problem of automatic genre classification is how to define genre. As noted

by [75] and used in some studies [88, 131, 149], the genre is the way a text is created, the

way it is distributed, the register of language it uses and the kind of audience it is addressed

to, such as Editorial, Reportage, Research articles etc. Some research [28, 132] focus on

internet-based document genre classification, in which the genre includes different types of

homepages, linklists, blogs etc. In [89, 121], they use the terminology activities rather than

the genre. They suppose that the choice of individual discourse is restricted by different

goals. They categorize the dialogues into story-telling, planning, discussion, etc. In this

paper, we propose the term of socio-situational setting which defines the social restriction

of a speaker’s utterances.

The genre classification can benefit practical applications. It is pointed out by [75] that

by taking genre into account, parsing accuracy, part-of-speech (POS) tagging accuracy and

2.3 Related work 29

word-sense disambiguation can be enhanced. In automatic speech recognition, language

models are sensitive to genre changes, even if the changes are subtle [126]. For example,

the performance of a language model trained on Dow-Jones newswire text will be seriously

degraded when it is applied to the Associated Press newswire [126].

In studies on automatic genre classification of discourse, various features have been pro-

posed. Some structural cues (such as adverb count, character count, sentence count), lexical

cues (“Me” count, “Therefore” count, etc) and token cues (chars per sentence average, char-

acter per word average, etc) have been used with discriminant analysis by [71]. Their work

has achieved a classification accuracy of 65% on a data set with 15 genres. In the work

done by [75], the cues have been classified in four categories: structural cues (passive, top-

icalized sentences and counts of part-of-speech tags, etc), lexical cues (words in expressing

date, title, etc), character-level cues (punctuation, separators, delimiters, etc) and derivative

cues (ratios and variation measures derived from measures of lexical and character level

features). Using the same data set as [71], around 78% classification accuracy has been re-

ported by [75]. Using the frequencies of occurrence of the common words and punctuation

markers of an entire written language instead of a certain training corpus, an automatic text

genre detection method for restricted text has been proposed by [149]. In the work by [149],

more than 97% classification accuracy has been reported on the Wall Street Journal corpus

of 1989 with 4 genres. The syntactic features in ten different genres in the British national

corpus have been exploited by [6]. More recently, the use of POS histograms instead of POS

n-grams in naive Bayes models has been proposed by [51]. However, all of this previous

work is based on edited text rather than on spoken discourses.

In additional to words and POS-tags, we use some simple and low computational cost

features such as: sentence length, single occurrence word ratio and function word ratio

in socio-situational setting classification in this paper. These features are in part inspired

by the work of [161], who analyzed the type-token ratio of a speaker’s utterances from

the socio-situational setting perspective. The type-token ratio is the ratio of the number of

different words to the number of total words in a text or speech. They show that the type

token ratio of texts is influenced by topic dependence as well as socio-situational effects.

Conversations containing more informal, dialogic and/or spontaneous speech typically have

lower type-token ratios than formal, monologic and/or prepared conversations.

Support Vector Machines (SVMs) [36] are well suited for text classification [70]. SVMs

separate the data with a functional margin, which is not dependent on the number of features.

In this paper, we apply the SVMs for the static classification of socio-situational settings.

Probabilistic classifiers offer alternative approaches to classification. One important

probabilistic classifier in document classification is the naive Bayesian classifier described

30 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

by [85]. The naive Bayesian classifier is extended by [114] to a chain augmented naive

Bayesian classifier, which can be viewed as a combination of a naive Bayesian classifier and

an n-gram language model. In this paper, we present a dynamic Bayesian (DB) approach to

socio-situational setting classification, and compare it with the static approach.

The performance of humans in a genre classification task is investigated before. In the

work done by [109], they investigated that whether participants use prosodic features in dis-

course genre identification. However, they did not propose to take advantage of this feature

in an automatic classification methods. In this paper, we investigate people’s performance in

socio-situational setting classification as well as the performance of the automatic classifiers

using the features mentioned by the participants in their classification task.

Table 2.1: Overview of the Spoken Dutch Corpus (CGN)

components socio-situational setting words discourse

comp-SC Spontaneous conversations (’face-to-face’) 2,626,172 1537

comp-IT Interviews with teachers of Dutch 565,433 160

comp-ST Spontaneous telephone dialogues 2,062,004 1230

comp-BN Simulated business negotiations 136,461 67

comp-DD Interviews/ discussions/debates 790,269 642

comp-PD (political) Discussions/debates/ meetings 360,328 248

comp-LR Lessons recorded in the classroom 405,409 265

comp-LS Live (eg sports) commentaries (broadcast) 208,399 325

comp-NR Newsreports/reportages (broadcast) 186,072 506

comp-NB News (broadcast) 368,153 5581

comp-CC Commentaries/columns/reviews (broadcast) 145,553 364

comp-CS Ceremonious speeches/sermons 18,075 16

comp-LE Lectures/seminars 140,901 78

comp-RS Read speech 903,043 1761

2.4 The Spoken Dutch Corpus

Previous genre classification studies focus on written text. Moreover, the corpora used are

not designed according to genre categories. For example, the Brown corpus needs to be

manually preprocessed to eliminate some texts that do not fall unequivocally into one of the

predefined genre categories [75].

In contrast, in the overall design of the Spoken Dutch Corpus (Corpus Gesproken Ned-

erlands, CGN) [110, 111] which we use in our experiments, the principal parameter is taken

2.4 The Spoken Dutch Corpus 31

Table 2.2: Overview of the experiment samples

comp sample socio-situational settings sentences words

SC 2 Spontaneous conversations (’face-to-face’) 67 574

IT 2 Interviews with teachers of Dutch 89 812

ST 2 Spontaneous telephone dialogues 65 622

BN 1 Simulated business negotiations 36 398

DD 2 Interviews/ discussions/debates 90 765

PD 2 (political) Discussions/debates/ meetings 117 1271

LR 1 Lessons recorded in the classroom 43 485

LS 1 Live (eg sports) commentaries (broadcast) 5 49

NR 1 Newsreports/reportages (broadcast) 11 114

NB 2 News (broadcast) 35 324

CC 1 Commentaries/columns/reviews (broadcast) 15 171

CS 1 Ceremonious speeches/sermons 31 314

LE 1 Lectures/seminars 38 405

RS 1 Read speech 42 315

Table 2.3: Confusion matrix of human classification on socio-situational setting

comp SC IT ST BN DD PD LR LS NR NB CC CS LE RS sum ac(%)

SC 15 5 20 75

IT 2 15 1 2 20 75

ST 10 10 20 50

BN 8 2 10 80

DD 16 1 2 1 20 80

PD 20 20 100

LR 7 1 1 1 10 10

LS 5 5 10 50

NR 6 3 1 10 60

NB 7 12 1 20 60

CC 1 4 5 1 10 50

CS 10 10 100

LE 2 5 2 1 10 20

RS 10 10 100

to be the socio-situational setting. The recordings were collected along with the socio-

situational settings. Details about the construction of the CGN can be found in [110].

32 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

The CGN contains audio recordings of standard Dutch spoken by adults in Netherlands

and Flanders. As shown in Table 2.1, it contains nearly 9 million words divided into 14

components that correspond to different socio-situational settings. Components from comp-

SC to comp-LR contain dialogues or multilogues and the components comp-LS to comp-RS

contain monologues.

We performed all experiments and analyses described below on the correct transcripts

of the recordings in the CGN. As these are transcripts of spoken language they do con-

tain ungrammaticalities, incomplete sentences, hesitations and broken-off words. To make

statistics reliable, we only selected words that appeared at least three times in the whole

data set. This resulted in a vocabulary of 44368 words. All other words were replaced by

an out-of-vocabulary token.

2.5 Differences among discourses from varied socio-situational

settings

Socio-situational settings depict the social restrictions for spoken discourses. In this section,

we analyze the differences among spoken discourses with different socio-situational settings

from the following aspects: the social roles and the social goal of the participants in the

discourses, and the social function of the discourses.

The social role of the participants in the discourse varies for the different socio-situational

settings listed in Table 2.1. From “Spontaneous conversations (’face-to-face’)” to “Lessons

recorded in the classroom”, the spoken discourses are dialogues or multilogues which need

the participation from at least two speakers. In the rest of the socio-situational settings,

usually there is only one speaker. In dialogue or mulitlogue situations, the participation of

each speaker varies according to his or her social role. For example, in “Lessons recorded

in the classroom” and “Interviews with teachers of Dutch”, there usually is one dominant

speaker, who speaks most of time. The others respond to the dominant speaker. However,

in “Simulated business negotiations” and “(political) Discussions/debates/meetings”, usu-

ally the dominant speaker is not easy to spot. In monologues, the differences in the social

roles of the participants can be reflected by their different immersion and involvement. For

example, in “News (broadcast)”, the speakers usually depict the News from third-person

perspective, in which the speakers have less immersion than the speakers in “Ceremonious

speeches/sermons”.

The social function of the discourse can also serve as a feature to characterize differ-

ent socio-situational settings. Public formal discourse is different from the private informal

discourse. For example, in “News (broadcast)”, the speakers hesitate less and there are

2.6 Socio-situational setting classification by humans 33

less incomplete sentences than in “Spontaneous conversations (’face-to-face’)” and “Spon-

taneous telephone dialogues”. For some special social events, discourses even have their

own distinguishable syntactic structures and terminologies. This is for example the case

in “Ceremonious speeches/sermons”. The discourses bearing the function to disseminate

knowledge usually have more repetitions than others, for example, “Lessons recorded in the

classroom” and “Lectures/seminars”.

The social goal of the participants also distinguishes some socio-situational settings

from others. For example, in “Interviews with teachers of Dutch”, the goal determines

that in most cases, there is one speaker asking questions and the other one answering the

questions. In “Spontaneous conversations (’face-to-face’)” and “Spontaneous telephone

dialogues”, the social goal requires the involvement from participants. So there are many

interruptions.

2.6 Socio-situational setting classification by humans

To get a feeling for the difficulty of the task and for possible features for classification, we

set up a small experiment to answer the following questions:

1. What is the average accuracy people obtain in socio-situational setting classification?

2. How do humans do socio-situational setting classification and what kind of cues do

people mention in socio-situational setting classification?

After reading a conversation thoroughly, a participant chose one of the 14 socio-situational

settings listed in Table 2.1. In addition, the participant had to answer an open question on

the kind of features which could help in socio-situational setting classification. Ten partic-

ipants with a Master degree or higher, were invited to do the experiment. The age of the

participants ranged from 27 to 44. Seven of them were male, the rest female.

As shown in Table 2.2, in total twenty samples were selected from the CGN. In comp-

SC, comp-IT, comp-ST, comp-DD, comp-PD and comp-NB, two transcripts were randomly

sampled. In the rest of the components, only one sample was randomly selected. Each

participant was asked to label exactly the same twenty pieces of transcripts in different

orders. All the selected samples are directly used without length normalization. In this way,

the classification made by participants is based on the same information as the automatic

classifiers.

Table 2.3 shows the confusion matrix of human performance in socio-situational set-

ting classification. The human prediction accuracy ranges from 30% to 75%. The average

34 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

Table 2.4: Features human reported in classification. “-” means this feature is not men-

tioned by participant in that classification.
√

indicates the feature is mentioned.

The symble “m” in the first row means the number of the speakers in the con-

versation is bigger than 2. In the row of “SL”, “S” and “L” stand for short and

long average sentence length, respectively. In the row “IS”, the “C” stands for

complete structure; “I” for incomplete structure. “II” means informal and in-

terruptive, “QA” refers to the question-answer style conversation like interview,

“FF” means formal and fluent. “time” column list the times people mention

these features in classification

F\C SC IT ST BN DD PD LR LS NR NB CC CS LE RS time

SN 2 2 2 m 2 m 2 - 1 1 - 1 1 1 51

SL S - S - L - - - - - - - - L 11

IS I C - I C - - - - C - C - C 11

SW
√ √ √ √ √ √

- - -
√

- -
√

- 20

SS -
√

- -
√ √

- - -
√ √ √ √

- 24

CT
√ √ √ √ √ √ √ √ √ √ √ √ √ √

47

FM II QA II II QA FF II - FF FF - FF II - 31

prediction accuracy of the participants is 68%. The standard deviation is 13.75%. Peo-

ple identified “(political) Discussions/debates/meetings”, “Ceremonious speeches/sermons”

and “Read speech” with 100% accuracy. People achieved low classification accuracy on

“Spontaneous telephone dialogues”, “Lessons recorded in the classroom”, “Live (e.g. sports)

commentaries (broadcast)”, “Commentaries/columns/reviews” and “Lectures/seminars”. Half

of the participants misclassified spontaneous telephone dialogues as spontaneous face to

face dialogue. Seventy percent of the participants classified the “Lessons recorded in class-

room”, as an “Interview with a teachers of Dutch”. In Table 2.3, we find that people could

tell news related broadcasting apart from other categories (eg. spontaneous conversation),

but they made mistakes in telling apart “Live (e.g. sports) commentaries (broadcast)”,

“News reports/reportages (broadcast)”, “News (broadcast)” and “Commentaries/columns/reviews

(broadcast)”.

Based on the answers of the participants to the second question, we compiled a list of

cues that were repeatedly mentioned.

SN gives the number of speakers involved in the conversation. For example, the speaker

number of a spontaneous conversation is two, while it is one in read speech. In 51 out

of 200 answers, the number of speakers is mentioned as an important cue.

2.7 Language socio-situational setting classification features 35

SL Stands for the average sentence length in a conversation. The average sentence length

is shorter in spontaneous conversation than in formal lectures or read speech. A third

of the answers related to spontaneous conversations mentioned this cue.

IS Depicts whether a spoken discourse has disfluency, hesitations and incomplete structures

or not. For example, in News reports or ceremonies, the discourse is well prepared

and contains less hesitation, disfluency and incomplete structure than spontaneous

conversations.

SW Special words or lexicons are also reported by participants in their classification. For

example, some participants identify a conversation as spontaneous because it contains

many short words like “ja”, “nee” , “uh” and “mm”.

SS Special sentences clearly characterize some socio-situational setting. For example,

all the participants correctly identify a discourse as an “Interview/discussion/debate

(broadcast)”, because they noticed a special sentence: “welkom in de studio” (wel-

come to the studio). In fact, 25 out 200 answers mentioned the special sentences in

classifying socio-situational settings.

CT Content and topic take 23.5% of all cues mentioned by participants in our experiments.

For example, in spontaneous conversation, some content reflects that speakers have

visual connection with each other. In a sermon, the content is religion related.

FM Formality characterizes the way a discourse is structured. It reflects the social status of

each speaker in the conversations. For example, spontaneous conversations are infor-

mal and involve many interruptions. In interviews, the conversation generally could

be in a question-answer style. According to the questionnaire results, we categorize

“FM” into the following 3 types: informal and interruptive (II), question-answer style

(QA), formal and fluent (FF).

2.7 Language socio-situational setting classification features

Based on the results described in the previous section and on the literature mentioned in

section 2, we extracted features at both the discourse level and the word level. The discourse

level features are sentence length, single occurrence word ratio and function word ratio. The

word level features are POS tags and words.

36 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3
comp−SC

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3
comp−BN

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3
comp−DD

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3
comp−LS

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3
comp−NB

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3
comp−RS

Figure 2.1: Sentence length distribution of components SC, BN, DD, LS, NB, and RS. The

distribution varies among all components. Here we use components SC, BN,

DD, LS, NB, and RS as examples. Horizontal direction stands for sentence

length. Vertical direction stands for the probability of the sentence length in

one component. Each bar represents the ratio of the number of sentences with

the given length to the total number of sentences in that component.

2.7.1 Sentence length

[167] show that the sentence length (SL) distribution varies for different socio-situational

settings. For example, in the CGN, for spontaneous speech (comp-SC, comp-ST) the average

sentence length is below 7. In spontaneous face-to-face conversations almost 25% of the

sentences contain only one word such as yes or no answers and interjections. In contrast,

the means of sentence length in “(political) Discussion/debates/meetings” (comp-PD) and

“Ceremonious speeches/sermons” (comp-CS), are 15 and 20, respectively. Fig 2.1 shows

the sentence length distribution of 6 CGN components.

2.7 Language socio-situational setting classification features 37

2.7.2 Single occurrence word ratio

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−SC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−BN

0 0.5 1
0

0.1

0.2

0.3
comp−DD

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−LS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−NB

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−RS

Figure 2.2: Single occurrence word ratio distribution of components SC, BN, DD, LS, NB,

and RS. The distribution varies among all components. Here we use components

SC, BN, DD, LS, NB, and RS as examples. Horizontal direction stands for

single occurrence word ratio. Vertical direction stands for the probability of the

single occurrence word ratio. Each bar represents the ratio of the number of

transcripts that have the given single occurrence word ratio to the total number

of transcripts in that component.

A word in the vocabulary that only appears once in a conversation is treated as a sin-

gle occurrence word (SW). We calculate the single occurrence word ratio (SWR) of a dis-

course as the number of single occurrence words divided by the total number of words

in the conversation. We find that the SWR distribution is different for different socio-

situational settings. Fig. 2.2 shows some examples. In spontaneous speech (comp-SC,

comp-BN), the SWR is less than for example broadcasted speech such as “(political) Dis-

cussion/debates/meetings” (comp-PD) and live commentaries and news report (comp-LS,

comp-NB). Compared with other components, “News(broadcasts)” (comp-NB) uses most

38 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

single occurrence words. The average SWR for news broadcasts is 0.627, while for ex-

ample the SWR in business negotiations is below 0.1. Based on this analysis, we believe

that the single occurrence word feature plays an important role in socio-situational setting

classification.

2.7.3 Function words

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−SC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−BN

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−DD

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−LS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−NB

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3
comp−RS

Figure 2.3: Function word ratio distribution of components SC, BN, DD, LS, NB, and RS.

The distribution varies among all components. Here we use components SC,

BN, DD, LS, NB, and RS as examples. Horizontal direction stands for function

word ratio. Vertical direction stands for the probability of function word ratio.

Each bar represents the ratio of the transcripts that have the given function

word ratio to total number of transcripts in that component.

While for topic classification function words are usually removed, function words can

serve as important cues in socio-situational setting classification.

Typically, the relative number of function words is higher in spontaneous speech than in

more formal speech [167]. For every discourse we calculate the function word ratio as the

2.7 Language socio-situational setting classification features 39

number of function words divided by the total number of words in that discourse. Fig 2.3

shows that the CGN news broadcast component (comp-NB) has the smallest function word

ratio, while business negotiations (comp-BN) have the highest average function word ratio.

Not only does the function word ratio vary over socio-situational settings, the distribu-

tions of specific function words also differ for different socio-situational settings. Fig 2.4

depicts the frequency distribution of six common function words over all components.

2.7.4 Words and POS-tags

a b cd e f g h i j k l m n o
0

0.05

0.1
word "de" distribution

a b cd e f g h i j k l m n o
0

1

2

3
x 10

−5 word "jij" distribution

a b cd e f g h i j k l m n o
0

0.01

0.02

0.03
word "het" distribution

a b cd e f g h i j k l m n o
0

0.005

0.01

0.015
word "hij" distribution

a b cd e f g h i j k l m n o
0

0.02

0.04

0.06
word "ik" distribution

a b cd e f g h i j k l m n o
0

0.005

0.01
word "u" distribution

Figure 2.4: The distribution of function words “de” (the), “het” (the), “ik” (I), “jij” (you),

“u” (you, formal), “hij” (he). Horizontal direction stands for components. Ver-

tical direction stands for the frequency of the special function word in each

component. In order to illustrate the distribution shape clearly, different verti-

cal direction scales were chosen.

The choice of words is context dependent. We can capture this by using the word fre-

quencies of all words in the vocabulary as features as is done for many text classification

40 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

tasks [51, 75, 88, 131, 149].

In addition to words, part-of-speech tag frequencies also give useful information. For

example, in spontaneous speech more adjectives are used on average than in formal speech,

while in more formal speech more nouns are used on average [167].

Rather than using the direct frequency counts we apply a modified version of the term

frequency inverse document frequency (tf-idf) metric, which is widely used in information

retrieval [9], to calculate the weights of POS-tag and word features. The (tf-idf) helps to

reduce the weight of common POS-tag 2 and word features which have little discriminative

power and to increase the weight of rare features which have much discriminative power.

The term frequency tfi, j is the number of times term i appears in document j. The document

frequency dfi is the number of documents that contain term i. Inverse document frequency

idf(i) can be calculated by:

idfi = log(
N

dfi

), (2.1)

where N is the total number of documents. The tf-idf weight is the combination of tfi, j and

idfi.

weight(i, j) =

{

(1+ log(tfi, j))idfi tfi, j > 0,

0 tfi, j = 0.
(2.2)

weight(i, j) indicates the importance of term i in discriminating document j from other

documents. To emphasize terms that are discriminative for socio-situational settings, we

heuristically modify the inverse document frequency as

idfi = log(

√

N

dfi

S

sfi

), (2.3)

where S is the total number of socio-situational settings in the CGN, sfi represents the num-

ber of socio-situational settings that contain term i. In fact, this modification is intend to

average the inverse document frequency with inverse socio-situational setting frequency in

terms of logarithm value.

Based on the extracted features such as sentence length, single occurrence word ratio,

function words, words and POS-tags discussed in this section, we will show two socio-

situational setting classification methods in the following sections.

2.8 Static Socio-situational Setting Classification

For static socio-situational classification, we chose Support Vector Machines (SVMs) as

these have shown good performance for high dimensional features spaces [155] and have

successfully been applied in several text classification tasks [70, 156].

2
POS-tags are provided with the CGN data set.

2.8 Static Socio-situational Setting Classification 41

We represented each spoken discourse as a feature vector. The dimension of the vector

is determined by the features used to represent the data. We experimented with several

subsets of the seven features discussed above: sentence length (SL), function word ratio

(FWR), function word (FW), single occurrence word ratio (SWR), POS tags, POS-trigrams

and words 3 . Table 2.5 shows each of the subsets and the dimensions of the corresponding

feature vectors.

Depending on the size of document vectors, different kernel functions are used in our

experiment. For small feature vectors, such as feature set 1, feature set 4 and feature set 8

4, we adopted the radial basis function (RBF)(2.4) as our kernel function:

K(xi,x j) = exp(−γ‖xi − x j‖2),γ > 0. (2.4)

For large size document vectors, we don’t need to map data to a higher dimensional space,

so the linear function (2.5) is applied as our kernel function:

K(xi,x j) = xT
i x j. (2.5)

The classifiers using feature set 1, 3, 5 were trained with Libsvm [24] using C-SVM,

the others were trained by Liblinear [50] using the L2-regularized L2-loss SVM. For small

data sets such as set 1, set 5, and set 9, the grid parameter search algorithm [24] is directly

applied to calculate the scale parameters and regularization weights. When dealing with

large data sets, a small subset is randomly selected to calculate the parameters by the grid

parameter search algorithm.

The results of these 18 SVM classifiers 5 using different feature sets, are shown in Table

2.5. The lowest prediction accuracy was obtained by only using SL, FWR and SWR features;

however, these features have the lowest computational cost. The highest prediction accuracy

of 89.55% is achieved by combining SL, FWR, SWR, POS and word features. This classifier

also gets the best accuracy of 88.62%, when 10 fold cross validation is used.

Table 2.6 shows the confusion matrix of the best classifier in our experiments. Each

column except the last one represents the label obtained from the automatic classification,

each row stands for the correct label. The last column depicts the classification accuracy of

the classifier on every component.

The third row in Table 2.6 shows that 32 of the conversations in comp-ST are incorrectly

classified as comp-SC (while all others are classified correctly). The misclassification be-

tween comp-SC and comp-ST is not surprising, as both contain spontaneous conversations.

3All of the features are represented by continuous values. The dimension of POS tags and words is determined

by original CGN data.
4Erratum: “feature set 8” should be “feature set 9”.
5In this experiment, we randomly selected 80% of the CGN data for training, 10% for cross validation, the rest

10% for testing. All the classifiers are trained and tested on the this setting.

42 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

Table 2.5: Selected feature sets and their related classifiers prediction accuracy.‘C/γ’ refers

to the penalty parameter C and the kernel parameter γ. Both C and γ can be

represented as exponentiation 2n. In the table, we show the power n of C and

γ. The ’dim’ stands for dimension and ‘ac’ column for the prediction accuracy

of the SVM classifiers on the test data. The ‘cv ac ’ gives the 10 folders cross

validation accuracy of the SVM classifiers.

set features dim C/γ ac(%) cv ac(%)

1 POS 326 5/-5 87.20 86.74

2 words 44,368 -3/0 82.45 81.08

3 FW 2,026 -2/0 83.65 85.25

4 POS-trigrams 8,466 -3/0 80.80 83.74

5 SL, FWR, SWR 4 7/3 74.05 74.48

6 SL, FWR, SWR and FW 2,030 -4/0 87.15 86.83

7 POS and FW 2,352 -1/0 86.15 87.58

8 POS and words 44,694 -1/0 88.85 88.56

9 SL, FWR, SWR and POS 330 1/-3 87.85 87.11

10 SL, FWR, SWR, FW and POS 2,356 -3/0 85.00 84.91

11 SL, FWR, SWR and word 44,372 -3/0 87.40 88.02

12 SL, FWR, SWR, FW and POS-trigrams 10,496 -5/0 85.40 86.72

13 SL, FWR, SWR, and POS-trigrams 8,470 -3/0 84.45 85.35

14 SL, FWR, SWR, POS-trigrams and words 52,838 -4/0 86.15 87.04

15 FW and POS-trigram 10,492 -1/0 83.10 86.87

16 POS-trigrams and words 52,834 -2/0 86.25 85.82

17 POS and POS-trigrams 8,792 -3/0 82.70 85.83

18 SL, FWR, SWR, POS and words 44,700 -3/0 89.55 88.62

The only difference is that comp-SC is face-to-face, while comp-ST is by telephone. As is

discussed earlier, we found the same confusion for human classification.

We can also see in Table 2.6 that comp-IT and comp-BN are 100% correctly classified

by our classifier. Component comp-CC has the lowest accuracy. It is confused most often

with comp-NR and comp-NB – which are also confused with each other several times. All

these three components contain news related broadcasts. The low accuracy of comp-CS

most likely indicates that this component contains too little data to train a reliable classifier.

Fundamentally the performance of the automatic classification is jointly determined by

the training data size as well as the distinguishability of corresponding components. In

general, the classifier can get better accuracy with more data to train on. A Large training

2.9 Dynamic Bayesian document classification 43

Table 2.6: Confusion matrix of type 11 classifier 6.

comp SC IT ST BN DD PD LR LS NR NB CC CS LE RS ac(%)

SC 209 6 5 1 2 93.72

IT 32 100.00

ST 32 166 83.84

BN 16 100.00

DD 3 78 1 1 10 2 2 80.41

PD 1 1 35 1 1 89.74

LR 2 1 8 37 1 1 74.00

LS 1 46 3 4 1 83.64

NR 1 12 1 2 43 23 9 2 46.24

NB 1 6 874 1 2 98.87

CC 4 2 4 15 15 6 8 11.11

CS 1 1 1 33.33

LE 1 1 8 80.00

RS 4 2 240 97.56

data set can improve the classification accuracy. For the distinguishable components, our

results seem to show that even a small data set is sufficient for training a good classifier. For

example, on the relatively small components such as comp-IT and comp-BN, the classifier

actually obtains 100% accuracy. However, when the training data becomes too small, the

distinguishability of the specific component is easy to be ignored by the automatic classifica-

tion. For example, all the automatic classification methods get low classification accuracy

on comp-CS, even though this component is obviously different from other components

from a human’s perspective.

2.9 Dynamic Bayesian document classification

The static classification method treats each document as a whole. For applications such as

adaptive language modeling, this is not desirable. Therefore, we also investigate a dynamic

classification method of socio-situational setting using dynamic Bayesian Networks (S3C-

DBN). This method updates the classification result for each word that is observed. Before

introducing the classifier, we briefly discuss DBNs.

6Erratum: “type 11 classifier” should be “type 18 classifier that using SL, FWR, SWR, POS and words”.

44 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

2.9.1 Dynamic Bayesian networks

Bayesian networks are methods for reasoning with uncertainty based on Bayes rule of prob-

ability theory [113]. A Bayesian network represents the joint probability distribution over a

set of random variables X = X1,X2 . . .XN . It consists of two parts:

1. A directed acyclic graph (DAG) G. The variables X i in the domain X are mapped

one-to-one to the nodes vi of G. The directed arcs in the network represent the direct

dependencies between variables. The absence of an arc between two nodes means

that the variables corresponding to the nodes do not directly depend on each other.

2. A set of conditional probability distributions (CPD). With each variable X i a con-

ditional probability distribution P(X i|Pa(X i)) is associated, which quantifies how X i

depends on Pa(X i), the set of variables represented by the parents of the node vi in G

representing X i.

Dynamic Bayesian networks (DBNs) [39, 105] are an extension of Bayesian networks. They

can model probability distributions of semi-infinite sequences of variables that evolve over

time. A DBN can be represented by two Bayesian networks: an a priori model P(X1) and a

two slice temporal Bayesian network which defines the dependence between the variables

at a particular step and the variables at the previous time step:

P(Xt |Xt−1) =
N

∏
i=1

P(X i
t |Pa(X i

t)) (2.6)

where Xt is the set of random variables at time t and X i
t is the ith variable at time step t.

Pa(X i
t) are the parents of X i

t .

2.9.2 Dynamic Bayesian document classifier

As before, we classify discourses based on their lexical transcripts. This can be seen as

document classification, which maps a document d to one of a set of predefined classes

C = {c1,c2, ...,cn}. In this paper, 18 different DB classification models are implemented.

Words, POS-tags and sentence length and their combinations are used as features without

calculating TF-IDF scores of these features.

Unigram DB classification

Fig 2.5 shows the graphical structure of the interpolated unigram DB classification model 7.

The interpolated conditional probability of words in the unigram DB classification method

7Fig 2.5 represent the interpolated unigram DB classification method using word, POS-tag and SL. Other

models using a subset of features are subgraphs of Fig 2.5.

2.9 Dynamic Bayesian document classification 45

is:

Pint(wt |ct) = λ1P(wt)+λ2P(wt |ct). (2.7)

In case of using the combination of words and POS-tags, the interpolated probability is:

Pint(wt |post ,ct) = λ1P(wt)+λ2P(wt |ct)

+λ3P(wt |post)+λ4P(wt |, post ,ct).
(2.8)

L in Fig 2.5 represents the current word position in a sentence. Together with the end of

sentence node E, it reflects the sentence length. The relation between C, L and E indicates

that different socio-situational settings have different sentence length distributions. The

interpolation method is also applied in computation of the conditional probabilities for Lt

and Et :

Pint(lt |lt−1,et−1) = α1P(lt |lt−1)

+α2P(lt |et−1)+α3P(lt),
(2.9)

Pint(et |lt , pt ,ct ,wt) = β1P(et |lt)+β2P(et |pt)

+β3P(et |ct)+β4P(et |wt)+β5P(et).
(2.10)

Bigram DB classification

The bigram DB classification using the combination of word, POS and sentence length, is

depicted in Fig 2.6. These models assume a 1-order Markov chain. The models which only

use some of these features are sub-graphs of Fig 2.6.

For bigram DB classification only using words or POS tags, the features at a particular

time step t only depend on the features at t − 1 and the current hidden variable ct . For

example, the following equation (2.11) gives the interpolated conditional probability of w

in the bigram DB classification model which only considers the word feature:

Pint(wt |wt−1,ct) = λ1P(wt |wt−1,ct)

+λ2P(wt |wt−1,ct)+λ3P(wt).
(2.11)

For bigram DB classification models using both word and POS features, the current word

wt depends on the previous word wt−1 as well as the current pt and socio-situational setting

ct . The interpolated conditional probability of current word wt is calculated by:

Pint(wt |wt−1, pt ,ct) = λ1P(wt)+λ2P(wt |ct)

+λ3P(wt |wt−1,ct)+λ4P(wt |pt)

+λ5P(wt |wt−1, pt)+λ6P(wt |wt−1, pt ,ct).

(2.12)

46 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

Figure 2.5: Unigram DB classification model with words, POS-tags and sentence length. Wi,

Pi, Ci and Li stand for current word, POS-tags, classification label and sentence

length, respectively. Ei indicates that whether current word is the end of a

sentence 8.

Trigram DB classification

A 2nd order Markov chain is applied in these models. Fig 2.7 shows the trigram DB classi-

fication model using word, POS and sentence length features. The word and POS features in

this case depend on the features of the previous two time slices.

The conditional probability of the current word wt given wt−1, wt−2 and ct is given by

(2.13).

Pint(wt |wt−1,wt−2,ct) = λ1P(wt |wt−1,wt−2,ct)

+λ2P(wt |wt−1,ct)+λ3P(wt |ct)+λ4P(wt).
(2.13)

In the trigram DB model combining word and POS features, the POS-tags are conditioned

on the previous two POS-tags and the current socio-situational setting. The conditional

8Sentence length actually is current word position in a sentence.

2.9 Dynamic Bayesian document classification 47

Wi-1 Wi Wi+1

CiCi-1 Ci+1

Ei+1
Ei

Ei-1

Li-1

Pi+1PiPi-1

Li Li+1

Figure 2.6: Bigram DB classification model with words, POS-tags and sentence length. Wi,

Pi, Ci and Li stand for current word, POS-tags, classification label and sentence

length, respectively. Ei indicates that whether current word is the end of a

sentence 9.

probability of POS can be calculated using equation (2.13). The wt in this case, depends on

wt−1, wt−2, as well as on the current post and socio-situational setting class label ct . The

following equation (2.14) gives the interpolation of the conditional probability of wt :

Pint(wt |wt−1,wt−2, post ,ct) = λ1P(wt)

+λ2P(wt |ct)+λ3P(wt |wt−1,ct)+λ4P(wt |post)

+λ5P(wt |wt−1,wt−2,ct)+λ6P(wt |wt−1, post)

+λ7P(wt |wt−1,wt−2, post)

+λ8P(wt |wt−1,wt−2, post ,ct).

(2.14)

In the equations (2.9)-(2.14), all interpolated parameters are treated as hidden variables

in DB models. These parameters are trained on the held-out development set10.

9Extra arcs are highlighted in the figure.
10The held-out development data is described in Section 2.9.3.

48 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

Wi-1 Wi Wi+1

CiCi-1 Ci+1

Ei+1
Ei

Ei-1

Li-1

Pi+1PiPi-1

Li Li+1

Figure 2.7: Trigram DB classification model with words, POS-tags and sentence length. Wi,

Pi, Ci and Li stand for current word, POS-tags, classification label and sentence

length, respectively. Ei indicates that whether current word is the end of a

sentence 11.

2.9.3 Experiment

To test the DB classifiers we once again used the CGN data set. Of the data set 80% was

randomly selected as training data, 10% was selected as developing data, and the remaining

10% was treated as testing data.

Fig 2.8 and 2.9 show the prediction accuracy of the 18 classifiers as a function of the

percentage of test data observed. The exact classification accuracies of the 18 classifiers

with 25, 50 and 100 percent data are listed in Table 2.7. In terms of overall performance, the

DB classifier using POS-tag and word bigrams, which achieves a classification accuracy of

88.71%, performs best among the 18 classifiers. Its confusion matrix is shown in Table 2.8.

As is indicated in Figure 2.8 and Figure 2.9, the classification accuracy increases rapidly for

the first 20% of the data, then flattens. The DB classifiers using only words are more stable

and precise than the classifiers that use only POS-tags. Based on 1% of the information, both

trigram and bigram DB classifiers using words can correctly classify 70% the discourses,

11Extra arcs are highlighted in the figure.

2.9 Dynamic Bayesian document classification 49

20 40 60 80 100
0.6

0.7

0.8

0.9

1

trigram only word

r(25)=0.97,y(100)=0.87
20 40 60 80 100

0.6

0.7

0.8

0.9

1

trigram only pos

r(25)=0.95,y(100)=0.85
20 40 60 80 100

0.6

0.7

0.8

0.9

1

trigram word and pos

r(25)=0.98,y(100)=0.88

20 40 60 80 100
0.6

0.7

0.8

0.9

1

bigram only word

r(25)=0.96,y(100)=0.88
20 40 60 80 100

0.6

0.7

0.8

0.9

1

bigram only pos

r(25)=0.96,y(100)=0.83
20 40 60 80 100

0.6

0.7

0.8

0.9

1

bigram word and pos

r(25)=0.96,y(100)=0.89

20 40 60 80 100
0.6

0.7

0.8

0.9

1

unigram only word

r(25)=0.95,y(100)=0.86
20 40 60 80 100

0.6

0.7

0.8

0.9

1

unigram only pos

r(25)=0.93,y(100)=0.79
20 40 60 80 100

0.6

0.7

0.8

0.9

1

unigram word and pos

r(25)=0.96,y(100)=0.85

Figure 2.8: Classification accuracy trend over percent of each conversation, x,y axis rep-

resent the percentage of a conversation and prediction accuracy, respec-

tively. y(100) represent prediction accuracy using 100% information, r(25) =

y(25)/y(100)

50 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

20 40 60 80 100
0.6

0.7

0.8

0.9

1

trigram word and sl

r(25)=0.95,y(100)=0.82
20 40 60 80 100

0.6

0.7

0.8

0.9

1

trigram pos and sl

r(25)=0.94,y(100)=0.86
20 40 60 80 100

0.6

0.7

0.8

0.9

1

trigram word pos and sl

r(25)=0.97,y(100)=0.88

20 40 60 80 100
0.6

0.7

0.8

0.9

1

bigram word and sl

r(25)=0.96,y(100)=0.88
20 40 60 80 100

0.6

0.7

0.8

0.9

1

bigram pos and sl

r(25)=0.95,y(100)=0.83
20 40 60 80 100

0.6

0.7

0.8

0.9

1

bigram word pos and sl

r(25)=0.96,y(100)=0.89

20 40 60 80 100
0.6

0.7

0.8

0.9

1

unigram word and sl

r(25)=0.94,y(100)=0.86
20 40 60 80 100

0.6

0.7

0.8

0.9

1

unigram pos and sl

r(25)=0.93,y(100)=0.80
20 40 60 80 100

0.6

0.7

0.8

0.9

1

unigram word pos and sl

r(25)=0.96,y(100)=0.85

Figure 2.9: Classification accuracy trend over percent of each conversation, x,y axis rep-

resent the percentage of a conversation and prediction accuracy, respec-

tively. y(100) represent prediction accuracy using 100% information, r(25) =

y(25)/y(100)

2.10 Discussion 51

Table 2.7: The prediction accuracy of 18 dynamic classifiers

models information
prediction accuracy

25%data 50%data 100%data

Trigram

word 84.33% 84.80% 86.83%

POS 80.72% 82.92% 85.11%

word, POS 86.05% 86.05% 87.93%

word, sl 78.06% 78.84% 81.82%

POS, sl 80.72% 82.76% 85.11%

word, POS, sl 84.95% 86.52% 87.77%

Bigram

word 84.33% 85.42% 88.24%

POS 79.15% 80.88% 82.45%

word, POS 85.27% 86.68% 88.71%

word, sl 84.33% 85.74% 87.77%

POS, sl 79.15% 81.19% 82.76%

word, POS, sl 84.95% 86.05% 88.40%

Unigram

word 81.19% 84.01% 85.89%

POS 73.82% 76.80% 79.31%

word, POS 81.66% 83.86% 84.95%

word, sl 80.41% 83.54% 85.42%

POS, sl 73.82% 77.12% 79.47%

word, POS, sl 81.82% 83.86% 85.11%

while systems that use only POS-tags achieve less than 65% accuracy.

In this section, we show and compare the 18 dynamic socio-situational setting classi-

fiers. In the following section, we discuss the relationship among the static classification,

dynamic classification and human classification.

2.10 Discussion

Comparing the confusion matrices of the static, dynamic, and human classification we find

three similarities and three differences. The similarities are:

1. The confusion between spontaneous face to face dialogue (comp-SC) and sponta-

neous telephone dialogue (comp-ST) is the main cause of misclassification in both

components. In both components, the spoken discourses have many short ungram-

matical sentences, repetitions and repairs. People usually use fewer determiners in

spontaneous conversations than in read speech.

52 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

Table 2.8: Confusion matrix of bigram DB classifier with word and POS

comp SC IT ST BN DD PD LR LS NR NB CC CS LE RS ac (%)

SC 72 2 11 84.71

IT 8 100.00

ST 8 55 1 0 85.94

BN 1 0 100.00

DD 3 1 29 1 85.29

PD 1 13 92.86

LR 1 11 91.67

LS 1 19 95.00

NR 5 6 1 5 4 1 22.73

NB 1 1 264 3 98.14

CC 1 2 7 1 2 5 5 21.74

CS 1 0.00

LE 1 4 2 57.14

RS 80 100.00

2. In all experiments, “Read speech” (comp-RS) is classified with high accuracy. Both

human and dynamic classifiers can correctly classify all the “Read speech” (comp-

RS). The static classification method can correctly classify more than 97% “Read

speech” (comp-RS).

3. The sub-matrix of comp-LS, comp-NR, comp-NB and comp-CC of each confusion

matrix has relative high density. There are non-zero values on non-diagonal elements.

In particular, in the human based experiment and static classification method, the

misclassification of these four news related components is caused by the confusion

with each other.

The differences are:

1. In classifying lectures in the classroom (comp-LR), humans performed much worse

than the static classifiers and the dynamic classifiers. In the confusion matrix in Table

2.3, seven out of ten people mistook the lectures in the classroom to be the interview

with a Dutch teacher. Even though participants knew that the content of the conversa-

tions was about teaching, most of them were still misled by the question/answer style

between teacher and one student.

2. In classifying interviews with teachers (comp-IT), both static and dynamic classifi-

cation methods got 100% classification accuracy. But in the subjective experiment,

2.11 Conclusion 53

participants only achieve a 75% classification accuracy. Table 2.3 shows that some

participants categorized the interview as a spontaneous conversation.

3. The participants got 100% accuracy in classifying ceremonious speech/sermons, but

both the static and dynamic classification method do not perform well in these cases.

The reason probably is that there is limited training data in these components of the

CGN12.

2.11 Conclusion

This paper studies the classification of socio-situational setting of a spoken discourse based

on word level transcripts by humans and by automatic classification methods. The dif-

ferences among socio-situational settings of discourses are discussed from the following

perspectives: the social role and the social goals of the participants in the discourse, and the

social function of the discourse.

In order to get a baseline for socio-situational setting classification, a subjective exper-

iment was performed in which participants were asked to classify the socio-situational set-

tings of discourses. The experimental results show that people can correctly classify 68% of

the socio-situational settings. Inspired by the features mentioned by the participants, we ex-

tracted the average sentence length, the single occurrence word ratio and the function word

ratio as features on the discourse level and TF-IDF counts of words, POS tags, POS-trigrams

and function words as features on the word level.

A static S3C-SVM classification method was constructed with these features. The exper-

iments on the static classifiers show that a combination of discourse level features and word

level features performed best with a classification accuracy of almost 90%.

In addition to the static S3C-SVM classification method, a S3C-DBN method was pro-

posed, which can achieve similar classification accuracy as the S3C-SVM method, but also

can make socio-situational setting classification on a word-by-word basis. We experimented

with 18 different S3C-DBN classifiers. In particular, the best S3C-DBN classifier we devel-

oped was the bigram DB classifier using word and POS tags which obtained a classification

accuracy of almost 89%.

Both the static and the dynamic classifiers can be applied to provide the context infor-

mation for language models. When the static classification methods are applied, the usage

of the socio-situational setting information in the language models needs two phases, one

phase for obtaining the socio-situational setting information by classifying the discourses,

12One difference is that humans actually use other prior knowledge they learned in their life. However, for

machine, the data is constrained to the training data.

54 2 Classifying the Socio-Situational Settings of Transcripts of Spoken Discourses

the other phase for applying the information in language modeling. The advantage of the

dynamic classifiers is that they can provide online classification results to word level lan-

guage models. The experimental results show that all the S3C-DBN classifiers using the

initial 25% of the text in the transcripts can get at least 93% of the accuracy which they

achieved on the complete transcripts.

In comparison, both the static and the dynamic classifiers outperform the human partic-

ipants. Our experiments show that some socio-situational settings, such as “read speech”,

are easy to identify, as both humans and all automated classifiers we developed scored 100%

accuracy on these discourses.

2.12 Acknowledgement

The authors would like to thank the anonymous reviewers for their excellent comments.

Chapter 3

Recurrent Neural Network

Language Model Adaptation with

Curriculum Learning1

3.1 Abstract

This paper addresses the issue of language model adaptation for Recurrent Neural Network

Language Models (RNNLMs), which have recently emerged as a state-of-the-art method for

language modeling in the area of speech recognition. Curriculum learning is an established

machine learning approach that achieves better models by applying a curriculum, i.e., a

well-planned ordering of the training data, during the learning process. Our contribution is

to demonstrate the importance of curriculum learning methods for adapting RNNLMs and to

provide key insights on how it should be applied. RNNLMs model language in a continu-

ous space and can theoretically exploit word-dependency information over arbitrarily long

distances. These characteristics give RNNLMs the ability to learn patterns robustly with rel-

atively little training data, implying that they are well suited for adaptation. In this paper,

we focus on two related challenges facing language models: within-domain adaptation and

limited-data within-domain adaptation. We propose three types of curricula that start with

general data, i.e., characterizing the domain as a whole, and move towards specific data, i.e.,

characterizing the sub-domain targeted for adaptation. Effectively, these curricula result in

a model that can be considered to represent an implicit interpolation between general data

1This chapter has been submited to Computer Speech and Language. Y. Shi, M. Larson, C. M. Jonker. Recur-

rent Neural Network Language Model Adaptation with Curriculum Learning

55

56 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

and sub-domain-specific data. We carry out an extensive set of experiments that investigates

how adapting RNNLMs using curriculum learning can improve their performance.

Our first set of experiments addresses the within-domain adaptation challenge, i.e., cre-

ating models which are adapted to specific sub-domains that are part of a larger, hetero-

geneous domain of speech data. Under this challenge, all training data is available to the

system at the time when the language model is trained. First, we demonstrate that curricu-

lum learning can be used to create effective sub-domain-adapted RNNLMs. Second, we show

that a combination of sub-domain-adapted RNNLMs can be used if the sub-domain of the

target data is unknown at test time. Third, we explore the potential of applying combinations

of sub-domain-adapted RNNLMs to data for which sub-domain information is unknown at

training time and must be inferred.

Our second set of experiments addresses limited-data within-domain adaptation, i.e.,

adapting an existing model trained on a large set of data using a smaller amount of data

from the target sub-domain. Under this challenge, data from the target sub-domain is not

available at the time when the language model is trained, but rather becomes available little

by little over time. We demonstrate that the implicit interpolation carried out by applying

curriculum learning methods to RNNLMs outperforms conventional interpolation and has

the potential to make more of less adaptation data.

3.2 Introduction

The task of statistical language models is to judge whether a sequence of words is well-

formed or not. Conventional n-gram language models factorize the joint probabilities of

all the words in a sequence into a product of probabilities of each word given information

about its history, i.e., the preceding n−1 words. By using word histories, n-gram language

models capture local regularities of languages. However, n-gram language models can only

exploit an n-gram if the exact string of n words is present in the training data. As n grows

large, the chance that an n-gram seen in the target data was also present in the training

data falls off sharply. For this reason, conventional n-gram language models easily suffer

from data sparseness. In practice, the history length n− 1 that can be effectively exploited

is quite limited. For this reason, n-gram language models lack adequate means to model

long-distance dependencies.

These known shortcomings are addressed by Recurrent Neural Network Language Mod-

els (RNNLMs). Recently, RNNLMs have been demonstrated to outperform n-gram language

models for speech recognition [98]. Their superior capabilities rely on two mechanisms.

First, RNNLMs map the discrete word-based vocabulary into a continuous space. As a re-

3.2 Introduction 57

sult, the model can exploit word sequences which are similar, without requiring them to be

exactly identical. This mechanism helps to reduce the effect of data sparseness. Second,

RNNLMs are explicitly equipped to handle long-distance dependencies. The recurrent loop

in their architecture constitutes a memory that allows them to model arbitrarily long word

histories theoretically.

In this paper, we investigate language model adaptation for RNNLMs, and specifically

address two central challenges for language model adaptation, within-domain adaptation

and limited-data within-domain adaptation, originally identified by Rosenfeld [124] and

explained later in depth. The main contribution of this paper is to demonstrate that curricu-

lum learning is an important technique for carrying out the adaptation of RNNLMs and to

provide insights on how it must be applied in order to be effective for improving speech

recognition.

Curriculum learning applies a specific, well-planned ordering of the training data, re-

ferred to as a ‘curriculum’, during the learning process and is an established approach in the

machine learning community. When conventional n-gram language models are trained, the

order in which the training data is processed has no impact on the outcome of the training

process. In contrast, Neural Networks are indeed sensitive to the differences in the order in

which the training data is presented to them. The work of Bengio et al. [17] attributes the

benefits of curriculum learning in Neural Network training to an ability of the curriculum

to guide the learner, in particular, directing it away from inappropriate local minima and

towards more suitable ones.

The advantages that curriculum learning offers to RNNLMs for speech recognition has

been previously established in the literature [98, 100]. The previous work has focused on

dynamically updating language models during the recognition process [98] and in optimal

reduction and sorting of the training data [100]. The existing work points out that training

data presented later in the training process has more influence on the final form of the

model than the initial part of the training data. As such, curriculum learning can be used to

accomplish an implicit interpolation of the training data, where certain parts of the data is

given more importance than others.

The specific issue of adaptation is particularly important for RNNLMs, and as such de-

serves dedicated attention. A key reason for its importance is the relatively high cost of

training RNNLMs, which can be attributed to a range of factors. Here, we mention in par-

ticular the fact that the whole training set is usually presented to the model multiple times

(referred to as ‘training epochs’). The relatively high cost of the training phase of RNNLMs

means that retraining the language model whenever new training data becomes available is

prohibitively costly.

58 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

Curriculum learning has several distinction advantages to offer for the adaptation of

RNNLM to specific sub-domains. First, curriculum learning provides a method to effectively

carry out implicit interpolation that does not require the parameter optimization needed for

conventional interpolation. Second, as has been pointed out by Iyer et al. [65], Iyer and

Ostendorf [63], and, more recently, by Mikolov and Zweig [97], one danger of adaptation

models that build individual component models on data sub-sets is fragmentation. Frag-

mentation refers to the fact that as more and more component models are built, relatively

less data is available to train each. Using curriculum learning to train sub-domain adapted

RNNLMs neatly circumvents the fragmentation issue. All training data can be used to train

each adapted model; it is the order in which the data is presented to the model during train-

ing that makes the difference. In short, although the potential of curriculum learning for

RNNLMs has been established and offers clear advantages, the challenges of curriculum

learning to language model adaptation for RNNLMs remains nearly entirely unaddressed.

The purpose of this paper is to fill that gap.

The key insight of this paper is that in order to carry out adaptation, curriculum learning

should be used to train language models from general patterns, characteristic of the training

data as a whole, to specific patterns characteristic of one specific sub-domain of the overall

data. The move from general patterns to specific patterns can be viewed as a special case of

a move from simple patterns to complex patterns, discussed in the literature, e.g., by Elman

[48].

We propose three types of curricula created with three different strategies: Start-from-

Vocabulary (SV), Data Sorting (DS) and All-then-Specific (AS). Our experiments are de-

signed to give insight into which types of curriculum learning are best in which situations

and which other factors influence the performance of curriculum learning for RNNLM adap-

tation. When RNNLMs are applied in practice to improve speech recognition, they are usu-

ally applied to the task of rescoring the N-best output produced by a speech recognizer that

has carried out an initial pass over the spoken data. For this reason, all our experiments

either produce word prediction results or rescoring results.

Our first set of experiments addresses the challenge of within-domain adaptation. As

characterized by Rosenfeld [124], within-domain adaptation can be used to deal with het-

erogeneous data sets that contain different sub-domains. Different sub-domains are charac-

terized by different word-usage patterns, which are, in turn, reflected by different n-gram

distributions. For example, sub-domains in the Spoken Dutch Corpus, one of the corpora

used for experiments in this paper, which is described in detail later, different speech styles

(e.g., spontaneous conversation, lecture and read speech) form different sub-domains. Note

that we focus our investigation on within-domain adaptation rather than cross-domain adap-

3.2 Introduction 59

tation, since, as mentioned by Rosenfeld [124], it is relatively rare that a speech recognizer

would be trained on one domain and used in a different one, i.e., for recognizing speech with

radically different characteristics than the input speech. Under the within-domain adapta-

tion challenge, the totality of the training data becomes available at the same time, and the

goal is to create models that are adapted to specific sub-domains.

Our first within-domain adaptation experiment investigates the oracle situation in which

sub-domain information is known during both training and testing. This experiment demon-

strates that sub-domain-adapted RNNLMs indeed outperform both general RNNLMs as well

as RNNLMs that have been adapted to the sub-domain using linear interpolation between the

general model and a sub-domain specific model. The second experiment investigates the

situation in which sub-domain information is known during training, but unknown during

testing. Here, we investigate two methods of combining sub-domain-adapted RNNLMs. The

third experiment investigates the situation in which no sub-domain information is known for

either training or testing. We use Latent Dirichlet Allocation with k-means clustering [119]

on the sentence level to automatically build sub-domains in the training data. Curriculum

learning is applied to create sub-domain-adapted RNNLMs for each sub-domain, which are

combined using the combination methods in the previous experiment.

Our second set of experiments addresses the challenge of limited-data within-domain

adaptation. This challenge corresponds to the situation often faced by speech recognizers:

a relatively large amount of data is available to train an initial model, and, with time, more

and more data becomes available that can be used to update the model. The new data is from

the same domain, but can be considered to be from a different sub-domain because of shifts

in data characteristics over time. Here, we test a sub-domain adapted RNNLM, but focus

particularly on the fact that the amount of adaptation data is limited and also on the fact that

the vocabulary of the adaptation data is unknown at the time of training of the initial model.

The rest of the paper is organized as follows. Section 3.3 discusses related work in

the areas of adaptive language modeling, curriculum learning and other advanced language

models such as RNNLMs, mixture models and class based language models. In Section 3.4,

we present the three types of curriculum learning that we use to train the sub-domain-

adapted RNNLMs. We then present the experiments addressing the challenge of within-

domain adaptation (Section 3.5) and the challenge of limited-data within-domain adapta-

tion (Section 3.6). The final section concludes and presents an outlook.

60 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

3.3 Related work

The approaches presented in this paper related to previous work that has been carried out

in areas of adaptive language modeling, curriculum learning for recurrent neural networks,

and recurrent neural network language modeling, are covered in this section in turn.

3.3.1 Adaptive Language Modeling

Approaches to the adaptation of statistical language models have been characterized by

[13] as belonging to three categories: model interpolation, constraint specification, and

topic information. We discuss each category and mention its relationship to the approach

proposed in this paper.

Cache-based statistical language models [69, 79] carry out dynamic adaptation during

the process of recognition and fall under the category of model interpolation. These models

represent one of the initial attempts to model long-distance dependency in language mod-

els. Basically, they involve the linear interpolation of an n-gram model and a dynamic cache

component model. These models are based on the assumption that a word used recently has

bigger probability than its overall probability. Cache-based statistical language models face

the challenge of uncertainty of the adaptation data that is introduced by speech recognition

errors occurring in the window of recent words that is used as the cache. This challenge

was mentioned by Mikolov et al. [98] in their investigation of dynamic RNNLMs, which

continue to update their weights during the test process. More recently, Mikolov and Zweig

[97] proposed a dynamically updating RNNLM that uses an LDA representation of recently

recognized words in order to increase the amount of topic-related context information ex-

ploited by the language model. We limit our treatment of cache-based language models

to this relatively brief mention, since our focus here is set on language model adaptation

methods that are applied during training rather than during testing.

Constraint specification methods are mainly associated with maximum entropy language

models. The process by which the constraint features are integrated into the model during

training is forced to respect the maximum entropy criterion. [125] showed that maximum

entropy language models, using trigger and n-gram features, achieve a significant improve-

ment over n-gram language models in terms of perplexity and word error rate. Since their

introduction, maximum entropy language models have enjoyed substantial success in adap-

tive statistical language modeling [3, 18, 30, 127]. Actually, from the neural network lan-

guage modeling perspective, the maximum entropy model can be viewed as a neural net-

work language model with no hidden layer. In this paper, some of the RNNLMs are built

with maximum entropy extensions [100].

3.3 Related work 61

Topic information methods for language model adaptation include topic-based language

models and mixture models. Many of these models employ a model interpolation strategy,

but are discussed here as topic information models rather than interpolation models because

they attempt to incorporate explicit representation of topics.

The topic-based language models of Gildea and Hofmann [56] can be viewed as variants

of class-based language models [23]. These models map the words in the vocabulary to a

smaller number of classes. Topic-based language models use the same mathematical format

as class-based models, except that in topic-based models the topic is treated as a hidden

variable that is calculated according to the expectation maximization algorithm. Exploiting

the same basic insight, topics have been treated as hidden nodes in Dynamic Bayesian Net-

works [137, 165]. In Tam and Schultz [154], Latent Dirichlet Allocation (LDA) language

models were proposed. These models integrate topic information by interpolating the n-

gram model with LDA unigram. Specifically, the LDA unigram is a combination of the topic

probabilities with a conditional probability of present word given the latent topics which

were estimated by LDA [20].

In the work of Iyer et al. [65] and Iyer and Ostendorf [63] on topic mixture models,

the joint probability of each sentence is calculated as a linear interpolation of the sentence

probabilities from k component language models, Pk, each modeling a separate topic,

P(s) = ∑
k

λkPk(s) = ∑
k

λk ∏
i

Pk(wi|h(wi)). (3.1)

Here, h(wi) is the history of wi in sentence s. The component models are trained on sub-sets

of the training data, each containing the data that corresponds to an individual topic. The

sub-sets are obtained by clustering the training data. In [63], a two-stage clustering process

is used to partition the data. The quality of the clustering, i.e., the suitability of the resulting

partitions, is essential for the performance of the model.

Our approach exploits many of the same mechanisms as this work. We use a mixture

of component models, as in Eq. (3.1), as a soft decision method to combine individual sub-

domain adapted RNNLMs. Because the sub-domain-adapted RNNLM is able to make a highly

accurate prediction of the sub-domain, we compare the topic mixture model with a hard

decision method. Instead of using interpolation, this method makes a definitive decision

about the sub-domain to which a given sentence belongs, and uses the corresponding sub-

domain-adapted RNNLM to score that sentence.

We also use a clustering method in order to create sub-domains in cases in which sub-

domain information is not available in the training data. However, instead of using a two-

stage clustering method, we make use of LDA. Our choice is motivated by the status of

LDA as the state of the art in topic representation [20]. We form sub-domains by applying

62 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

k-means clustering to LDA-based topic representations of the sentences in our data.

Finally, we would like to point out that our sub-domain adaptation method confronts the

same challenge of fragmentation facing other topic-based adaptation approaches. Iyer et al.

[65] and Iyer and Ostendorf [63] point out that a too aggressive partitioning of the training

data may aggravate data spareness issues for the component language models, which are

trained on the individual partitions. In order to address this issue, they interpolate the topic-

specific models with a general model trained on the entire data set,

P(s) = ∑
k

λk ∏
i

[αiPk(wi|h(wi))+(1−αi)Pg(wi|h(wi))], (3.2)

where Pk is a topic model and Pg a general model.

The key insight of our paper is that explicit interpolation as in Eq. (3.2) is not necessary

for RNNLMs. Rather, we can make use of a well-planned curriculum that exploits the fact

that training data presented later in the training process contribute more to the final state of

the RNNLM.

We plan this curriculum so that it starts with general data, corresponding to the overall

collection, and moves to specific data, corresponding to the individual sub-domains. Sparse

data issues are alleviated by allowing all available training data to contribute to the compo-

nent model corresponding to each individual sub-domain. The arrangement of the ordering

of the training data implicitly adjust the weights between general model and component

models. Because curriculum learning provides this possibility for implicit interpolation,

explicit interpolation, as in Eq. (3.2), is not needed in order to train sub-domain-adapted

RNNLMs. As previously mentioned, because the curricula make use of all available training

data, only changing the order of presentation, our sub-domain-adapted RNNLMs are able

to avoid the dangers of fragmentation. In the next section, we go on to discuss curriculum

learning in more detail.

3.3.2 Curriculum Learning for Neural Networks

An investigation at the intersection of cognitive science and machine learning carried out

by [48] is credited with laying the groundwork for curriculum learning. The goal of this

work was to understand the contributions of restrictions existing early in the learning process

to the final success of learning.

The topic was taken up again in the machine learning community by Bengio et al. [17]

under the label ‘curriculum learning’. Here, the interest was not generally on restrictions

during the learning process, but rather on restrictions on the input data. Specifically, Bengio

et al. [17] shows that final ability improves if the learner is first presented with simple input

and then moved to more complex input. Curriculum learning is connected to many other

3.3 Related work 63

techniques used for learning, such as boosting and transfer learning. Bengio et al. [17] char-

acterizes the special emphasis of curriculum learning as guiding the optimization process,

especially in a way that steers it towards better local minima. The discussion in Bengio

et al. [17] opens some intriguing vistas of inquiry. First, the notion that curriculum learn-

ing ‘guides the optimization process’ contributes a valuable insight into why curriculum

learning works, but a more concrete understanding could be useful for applying curriculum

learning in practice. Second, the notions of ‘simple’ and ‘complex’ are very general, and

have multiple useful interpretations. Bengio et al. [17] provides a statistical formalization

of a curriculum that moves from ‘simple’ to ‘complex’ based on the idea that the entropy

of the data should increase so that the diversity of the training data increases. However, the

experiments also show that naively creating two classes of ‘simple’ and ‘complex’ samples

already provides improvement.

Our work is based on the idea that in a language model adaptation scenarios, ‘simple’

can be productively equated with ‘general’ and ‘complex’ can be equated with ‘specific’.

We take the difference between ‘general’ and ‘specific’ to be related to differences of both

word choice and word usage, which are in term reflected in different n-gram distributions.

However, in application scenarios it will not be practical to predict what this differences

would be, or, expect to be able to calculate them precisely. For this reason, we keep our

definition of ‘general’ vs. ‘specific’ naive, and assume nothing more than that the difference

reflects the variations within a particular domain that lead to that domain being considered

heterogeneous.

This assumption is consistent with the discussion in [48] on the reasons for which a

language model is able to benefit from a particular ordering of training data to improve

its ability for predicting words. According to [48], in the first learning stage the network

learns a functional representation scheme that encodes an underlying structure of the data.

Then, in the second learning stage, the learner moves to learn the surface reflexes of this

underlying structure. Based on the initial ‘simple’ examples, the learner is able to create

an approximation of the solution space that constrains the learner from making ‘mistakes’

when it is presented with more complex data. In our case we assume that by presenting

the RNNLM first with ‘general’ input, it will learn overall patterns in the language, and that

these will allow it to derive maximum benefit from the ‘specific’ input for the sub-domain,

since it will be be protected from over-fitting as it adapts to the sub-domain.

The application of curriculum learning to RNNLMs proposed in [100] can be consid-

ered a progenitor of our work. [100] interprets ‘simple’ to mean ‘closest to the target data’.

Results are reported on two experiments in which the data presented to the RNNLM or-

dered by increasing perplexity with respect to the development data. The first experiment

64 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

demonstrates that data ordering can lower the convergence time. The second experiment

demonstrates that a combination of data ordering and filtering of high perplexity data leads

to a reduction of the perplexity of the resulting RNNLM measured on the evaluation data.

Considering the second experiment as a proof-of-concept, our work explores in depth the

application of curriculum learning to RNNLM adaptation. Specifically, we establish that the

benefits of curriculum learning go beyond an optimization of the training set to be useful

to address two further challenges facing language models for speech recognition: within-

domain adaptation and limited-data within-domain adaptation.

This paper builds on and extends our previous work [143], in which we first introduced

the idea of applying curriculum learning to adapt RNNLMs. This work provided an initial

exploration of curriculum learning for within-domain adaptation. Here, we examine the

issue of within-domain adaptation in greater depth and detail and also extend the idea of

curriculum learning for RNNLMs to limited-data within-domain adaptation.

3.3.3 Recurrent Neural Network Language Models

The pre-cursor of the today’s RNNLMs can be considered to be [16], which proposed feed-

forward neural network language models. In these models, each word in the vocabulary

is mapped by a shared parameter matrix to a real vector. [98, 101] further extended the

feed-forward neural network language model to a recurrent neural network by incorporating

history information into the input layer. In his RNNLM, the input layer consists of the input

word and also the activated hidden layer associated with the previous word.

As is shown in [99], RNNLMs outperform other advanced language models currently

in common use. As previously mentioned, the superior performance of RNNLMs can be

attributed to two properties. First, RNNLM projects each word from a large discrete vo-

cabulary space to a small continuous vector space. The mapping from the discrete to the

continuous space enables the model to learn generalization. The continuous representation

of words can be effectively used to capture the similarities between different words and

reduce the effect from data sparseness [102]. Second, the recurrent structure of RNNLMs

equips them with a compact memory. Theoretically, recurrent neural networks can store

relevant information from previous time steps for an arbitrarily long period of time, making

it possible to learn long-term dependencies.

Curriculum learning can be applied to different types of neural network language mod-

els, however, in this paper, we only focus on applying curriculum learning to RNNLMs. As

is stated in [96], state of the art results based on several benchmark data sets are achieved

by RNNLMs.

Recently, Mikolov and Zweig [97] proposed a context dependent RNNLM, in which the

3.4 Curriculum Learning For RNNLMs 65

context information is a latent topic vector obtained from the preceding text using LDA. In

this paper, we also use LDA to create topical representations. However, instead of integrating

latent topic information into one general model, we use it in order to produce a clustering

of the data that serves as the basis for producing a series of sub-domain-adapted RNNLMs,

which are then applied in combination.

3.4 Curriculum Learning For RNNLMs

In this section, we introduce three different methods of applying curriculum learning in

constructing sub-domain-adapted models. At the beginning of the section, we describe the

basic structure of a RNNLM. Then we give the details about the curriculum learning methods

used in this paper.

3.4.1 Recurrent Neural Network Language Models

The recurrent neural network language models adopted in our work originated from [98].

As shown in Fig. 3.1 (solid line parts represent conventional RNNLM), it has three layers:

an input layer x, a hidden layer h and an output layer y. It is characterized by the loop

between the input layer and hidden layer, which plays the role as a short abstract memory

to store the previous information. At each time t, the input vector xt is constituted by the

current word one-hot vector wt as well as a copy ht−1 from the previous hidden neurons.

The output layer yt is factorized to two parts: one is word part wt+1, the other one is class

part ct+1. The sigmoid function and softmax function are used as the activation functions

in the hidden layer and output layer, respectively. The weight matrix between the input

layer and hidden layer is estimated by backpropagation-through-time (BPTT)[101], which

actually unfolds the loop as the deep neural network.

3.4.2 Three Curriculum Learning Methods

In this paper, we propose three different curriculum learning strategies for the training of

sub-domain-adapted RNNLMs. The commonality of the three strategies is that they move

from presenting the RNNLM with general data to presenting it with specific data. The strate-

gies progressively give general patterns in the data more influence during model training.

Start-from-Vocabulary (SV) This curriculum uses the entire training data set to construct

the vocabulary of the sub-domain-adapted RNNLM, but then uses only the training

data from the corresponding sub-domain for training.

66 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

Figure 3.1: Recurrent Neural Network Language Models with Maximum Entropy Exten-

sion. Dash line parts represent the Maximum Entropy Extension.

3.4 Curriculum Learning For RNNLMs 67

Data sorting (DS) This curriculum uses the entire data set to train the sub-domain-adapted

RNNLM. The data is sorted such that the final data presented during training is the

data from the target sub-domain. The validation data is also selected from the corre-

sponding sub-domain.

All-then-Specific (AS) Each sub-domain-adapted model starts with a number of epochs

training on the whole data and then learns from its specific sub-domain data. In the

general training period, we choose the validation data that covers all the sub-domains.

In the specific training period, the validation data is selected from its corresponding

sub-domain.

We now briefly discuss the rationale for these models and the difference between the

three strategies. Of the three, the SV method uses the least general pattern information.

The resulting sub-domain-adapted RNNLM model has only been exposed to patterns from

its target sub-domain during the training process. Both the DS and the AS strategies use the

whole training data including the sub-domain data. The strategies differ with respect to the

point at which they move from general patterns to specific patterns. DS makes the transition

inside each epoch, but AS makes the transition outside of the epochs. Under the DS strategy,

the model is shaped to approach a domain-specific optimum within each training epoch.

Under the AS strategy, the model is first fully optimized with respect to general patterns,

and then pulled from this point to a domain-specific optimum.

3.4.3 Experimental Set-Up

In this section, we explain the design of our experiments and provide the details of the

implementation of the experimental framework that we used.

3.4.4 Evaluation

Our experiments compare our proposed curriculum learning methods with two baselines.

The first, is the unadapted baseline (‘base’). This baseline is an sRNNLM that has been

trained on the entire data set in its natural order. The second is conventional linear interpo-

lation (‘int’). The ‘int’ models are sentence level mixtures of individual sub-domain-adapted

models, cf. Eq (3.2). Each sub-domain-adapted model is a linear interpolation of a general

model with a specific model trained only using the data in the training set belonging to its

specific sub-domain.

We use several metrics to report the results of our experiments. The perplexity (PPL) is

a commonly used metric for measuring language models. It is calculated as the geometric

68 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

average of the inverse probability of the words on the test data.

PPL = (
t

∏
i=1

P(wi|h(wi)))
− 1

t , (3.3)

where h(wi) = w1w2...wi−1. Word prediction accuracy WPA [159] is a measure of the per-

formance of language models in practice.

WPA =
C

N
, (3.4)

where C is the number of correctly predicted words and N the number of total words. Many

applications in the area of natural language process, such as spell checking and sentence

completion, use WPA. Word Error Rate (WER) is used for those experiments for which we

carry out N-best re-scoring, described in more detail below. Based on a speech recognition

system, using minimum edit distance, the prediction sentence is compared with reference

sentence to get the number of substitutions S, the number of deletions D and the number of

insertions I.

WER =
S+D+ I

N
, (3.5)

where N is the number of total words.

3.4.5 RNNLM Framework

In the experiments, the language models are applied to two closely related, but different

tasks, word prediction and N-best rescoring. In word prediction, a word that gets maximum

probability in the output layer is chosen as the predicted word. In N-best rescoring, the

weighted combination of acoustic model score, language model score and word insertion

penalty is used to select one best hypothesis sentence. The weight of the combination is

determined by a held-out development N-best list data set through grid search.

Because of the differences between the different strategies for curriculum learning, dif-

ferent stopping criteria for training are applied. Start-from-Vocabulary (SV) and Data sorting

(DS) stop when the sub-domain-adapted model can not achieve additional PPL improvement

on the validation data. In each case, the validation data set is selected from the sub-domain,

but mutually is exclusive with the training and test sets. AS training consists of two phases,

one for whole data training, the other for sub-domain data training. In all data training, we

specify the number of training epochs. The sub-domain training starts when the all data

training finishes the specified number of epochs. The sub-domain training stops when the

model can not achieve additional improvement on the sub-domain validation data.

The experiments are carried out using the RNNLM toolkit 2. The detail of setting basic

parameters of this toolkit such as class size and block size can refer to the website of this

2http://www.fit.vutbr.cz/ imikolov/rnnlm/

3.5 Within-domain Language Model Adaptation 69

toolkit. In some experiments, we apply the Maximum Entropy Extension to RNNLMs, which

uses a weight matrix that directly connects input features to the output layer. The structure

of the Maximum Entropy Extension of RNNLMs are shown in Fig 3.1. The dash line in the

figure represents the Maximum Entropy Extension part of RNNLMs. When the extension is

applied to a condition it is applied to all experiments carried out for that condition and also

indicated clearly in the text. By applying this extension, we are able to report the state of

the art optimal values that are reachable by RNNLMs on our data.

3.5 Within-domain Language Model Adaptation

This section presents our investigation of the use of curriculum learning to address the chal-

lenge of within-domain adaptation for RNNLMs. Table 3.1 presents an overview of the

experiments. As is shown in table, the experiments start from the situation that the sub-

domain information is known during both training and testing, move to the situation that

the sub-domain information is only known during training, and end with the situation that

sub-domain information is unknown during both training and testing. Condition 1, in which

sub-domain information is known during testing, is an oracle condition that lets us test the

sub-domain-adapted RNNLMs individually on their domains, and gives us insight into their

power to predict sub-domains. Condition 2 and 3 address the real-world case in which the

sub-domain labels of the test data are unknown. In these cases, we use combinations the

individual sub-domain-adapted RNNLMs. We experiment with a hard decision combination

and a soft decision combination, described in more detail below.

Table 3.1: Within-domain adaptation experiments (Section 3.5): Overview of experimental

conditions.

Condition 1 Condition 2 Condition 3

Training data known known unknown

sub-domain

Test data known unknown unknown

sub-domain

Language sub-dom.-adapted combinations of combinations of

Model RNNLM sub-dom- sub-dom-

adapted RNNLMs adapted RNNLMs

70 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

3.5.1 Sub-domain Information Known for Training Set

In this section, we investigate the case in which sub-domain information is known for the

training data. Such situations occur naturally in cases that the sub-domain information can

be obtained at the time that the data is collected. For example, if a sub-domain is associated

with a certain phone, microphone or known-location. In this situation, sub-domain-adapted

RNNLMs are trained on sub-domain-labeled data. We first present the data set and then go

on to present the results of our experiments on Conditions 1 and 2.

Sub-domain Known Data Set: Spoken Dutch Corpus (Conditions 1 and 2)

For our investigation of cases involving known sub-domains, we choose the Spoken Dutch

Corpus (Corpus Gesproken Nederlands, CGN) [110, 111]. This corpus is representative of a

heterogenous data set consisting of data that has been recorded in multiple social-situational

settings. In previous work we investigated the characteristics of the CGN corpus [139]. This

work revealed that different socio-situational settings are characterized by different word

distributions and different syntactic constructions.

Table 3.2 presents a detailed description of the CGN data set. The data set contains

audio recordings of standard Dutch spoken by adults in Netherlands and Flanders. It com-

prises nearly 9 million words divided into 14 sub-domains that correspond to different socio-

situational settings. The data sets contain recordings ranging from read speech to lectures

and including spontaneous conversations. comp-i to comp-o involve a single speaker and

comp-a to comp-h contain dialogues or multilogues. In the table, the column labeled “To-

kens” gives the number of running words in each sub-domain.

From the CGN data, we randomly selected 80% for training, 10% for validation and

10% for testing. Note that comp-m is too small, this sub-domain is not randomly selected

for the test data. In the test data, those words that are not in the language model vocabulary

are replaced by an out-of-vocabulary token (the OOV rate is 3.8%). All RNNLMs trained on

CGN data have a hidden layer of 300 neurons, and use 100 classes and 4 times BPTT with

a block size of 10.

Condition 1: Sub-domain Known for Training and Test Set

Our investigation of the oracle condition, i.e., sub-domain information is known at train-

ing and testing time, allows us to understand the improvements that sub-domain-adapted

RNNLMs achieve over our baseline, an unadapted RNNLM (‘base’) and over adapted models

created using conventional linear interpolation (‘int’)(Eq (3.2)). The experiments reveal the

relative improvements that sub-domain-adapted RNNLMs are able to achieve as well as their

3.5 Within-domain Language Model Adaptation 71

Table 3.2: Overview of the Spoken Dutch Corpus (CGN).

Label Socio-situational setting Tokens

comp-a Spontaneous conversations (‘face-to-face’) 2,626,172

comp-b Interviews with teachers of Dutch 565,433

comp-c&d Spontaneous telephone dialogues 2,062,004

comp-e Simulated business negotiations 136,461

comp-f Interviews/ discussions/debates 790,269

comp-g (political) Discussions/debates/ meetings 360,328

comp-h Lessons recorded in the classroom 405,409

comp-i Live (eg sports) commentaries (broadcast) 208,399

comp-j Newsreports/reportages (broadcast) 186,072

comp-k News (broadcast) 368,153

comp-l Commentaries/columns/reviews (broadcast) 145,553

comp-m Ceremonious speeches/sermons 18,075

comp-n Lectures/seminars 140,901

comp-o Read speech 903,043

predictive power for sub-domains.

The results of the experiments are reported Table 3.3 (perplexity) and 3.4 (WPA). These

results were produced by testing each sub-domain-adapted RNNLM (corresponding to each

of the three curriculum learning strategies SV, DS, and AS) on its corresponding sub-domain.

SV and DS were trained for until the convergence criteria were met. AS was trained with

general data for 10 epochs and further with sub-domain specific data until the convergence

criterion was met.

The results in Table 3.3 and 3.4 allow us to make several important observations. First,

consulting the total WPA at the bottom of Table 3.4, we can see that baseline model (base),

which is a RNNLM that has been trained on the whole data set without using curriculum

learning, is outperformed by both conventional linear interpolation (int) and also the sub-

domain-adapted RNNLMs trained with the AS or DS strategies for curriculum learning. This

result confirms that language models are very sensitive to differences in sub-domain, and il-

lustrates the importance of taking sub-domain information into consideration. In some cases

the benefits of adapting to sub-domains are particularly dramatic. For example, for “News”

(comp.-k), all the adapted models achieve an over 50% reduction in terms of perplexity and

more than 30% of improvement in terms of WPA.

Second, the results in Table 3.3 and 3.4 demonstrate that overall the AS and DS curricu-

72 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

Table 3.3: The perplexity (PPL) comparison of conventional general RNNLM (base), sub-

domain-adapted models in sentence level mixture models using linear interpo-

lation (int) and sub-domain-adapted models using different strategies of cur-

riculum learning on CGN data set under the oracle situation. SV is Start-from-

Vocabulary, DS is Data-Sorting, and AS is All-then-Specific. The sub-domains

indicated in bold are those for which the sub-domain-adapted models achieve

substantial improvement.

comp base base-int SV DS AS

a 82.6 80.4 90.6 81.0 80.4

b 104.2 100.2 120.2 91.9 89.6

c&d 73.1 69.7 81.2 69.3 67.8

e 80.1 52.3 62.2 47.6 47.8

f 157.4 142.3 180.1 133.6 129.2

g 283.4 190.6 245.2 180.0 179.4

h 141.9 133.4 177.0 120.4 117.6

i 341.3 141.5 189.8 146.9 145.8

j 222.8 202.3 338.8 176.0 174.3

k 553.1 222.4 292.9 221.6 230.3

l 293.3 347.6 486.8 236.0 235.5

n 289.1 23.2 411.8 228.2 228.3

o 480.2 274.1 328.4 269.2 261.3

3.5 Within-domain Language Model Adaptation 73

Table 3.4: The percent word prediction accuracy (WPA) comparison of conventional general

RNNLM (base), sub-domain-adapted models in sentence level mixture models

using linear interpolation (int), and sub-domain-adapted models using different

strategies of curriculum training on the CGN data set under the oracle situation.

SV is Start-from-Vocabulary, DS is Data-Sorting, and AS is All-then-Specific.

The sub-domains indicated in bold are those for which the sub-domain-adapted

models achieve substantial improvement.

comp base int SV DS AS

a 24.0 24.2 23.5 24.3 24.3

b 20.2 19.4 19.0 21.0 21.0

c&d 25.5 25.4 24.5 25.8 25.9

e 24.5 25.0 23.7 26.6 25.9

f 18.6 18.3 17.4 19.1 19.3

g 15.9 16.5 16.0 17.6 17.7

h 20.9 20.5 18.7 21.6 21.7

i 16.5 19.9 18.8 19.7 19.8

j 17.3 16.6 13.4 18.3 18.5

k 14.5 20.0 19.7 19.9 19.8

l 15.2 13.7 12.8 17.2 17.0

n 14.8 13.0 12.4 16.5 16.3

o 14.2 15.6 15.2 16.3 16.4

total 20.6 21.3 20.0 23.0 23.3

74 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

lum learning strategies outperform conventional linear interpolation. As previously men-

tioned, a priori, the implicit interpolation carried out by curriculum learning is superior to

conventional linear interpolation since it achieves a balance between general and specific

data without requiring weights to be tuned on the validation data, as is the case for conven-

tional linear interpolation. The results provide evidence that in addition to being easier to

apply in practice, curriculum learning also delivers a performance improvement over con-

ventional linear interpolation.

Third, these experimental results reveal that among the three curriculum learning strate-

gies, SV performs the worst consistently over sub-domains. Recall that SV adopts only

the vocabulary of the full training data set, and otherwise trains each sub-domain-adapted

RNNLM only on sub-domain specific data. Apparently, SV does not offer enough exposure

to general data during the training process and sub-domain data are insufficient to allow the

RNNLM to generalize robustly. The low performance of SV can be attributed to data frag-

mentation, i.e., as mentioned above, a single topic-specific domain can easily fail to contain

enough data to train a topic-specific model. Fourth, in Table 3.3 and 3.4 it can be seen that

the performance of sub-domain-adapted RNNLMs using the DS curriculum learning is simi-

lar to the performance of those trained with the AS strategy. Recall that in each epoch of DS

training, the data is sorted, meaning that within each epoch the RNNLM is first trained by

the general data and then further trained by the specific sub-domain data. In contrast, AS is

trained using a certain number of epochs of the general data set followed by an additional

number of epochs of specific sub-domain until the convergence criterion is met. Table 3.5

presents results showing the impact of the number of general-data epochs used before be-

ginning specific-data epochs. It can be seen that the maximum performance is reached with

10 epochs, i.e., the largest number of general training epochs. It should be noted that 10

epochs represents nearly a completely trained general model, which would otherwise reach

its convergence criterion after 12 training epochs. This result confirms the importance of

the contribution of the general data to training the sub-domain adapted RNNLMs.

To summarize, this section has shown the importance of adaptation in general, and also

illustrated the superiority of curriculum learning for language model adaptation with respect

to conventional interpolation. In the next section, we move on to investigate whether the

performance improvements offered by curriculum learning can be extended to a condition

in which the sub-domain of the test data is not known.

3.5 Within-domain Language Model Adaptation 75

Table 3.5: The perplexity (PPL) and word prediction accuracy (WPA) comparison using AS

curriculum learning with increased number of epochs of general data training

(gen.).

comp 2 4 6 8 10

gen. epochs gen. epochs gen. epochs gen. epochs gen. epochs

PPL WPA PPL WPA PPL WPA PPL WPA PPL WPA

a 83.8 24.0 83.4 24.0 81.6 24.1 81.2 24.2 80.4 24.3

b 96.6 20.3 94.7 20.8 90.6 21.0 90.3 21.1 89.6 21.0

c&d 73.2 25.1 71.5 25.4 69.3 25.6 68.6 25.8 67.8 25.9

e 49.0 26.3 48.1 26.6 46.4 26.0 46.4 26.2 47.8 25.9

f 142.6 18.4 139.2 18.7 133.1 18.9 132.1 19.1 129.2 19.3

g 196.6 17.1 186.5 17.3 178.5 18.0 177.9 17.9 179.4 17.7

h 131.3 20.7 125.1 21.0 120.0 21.3 118.9 21.5 117.6 21.7

i 151.2 19.7 144.3 20.1 140.4 20.4 141.4 20.0 145.8 19.8

j 212.1 16.8 196.9 17.2 182.5 17.9 178.1 17.9 174.3 18.5

k 238.5 20.2 228.7 20.3 221.7 20.3 223.8 20.1 230.3 19.8

l 287.7 15.7 271.8 16.2 247.8 16.6 242.3 17.0 235.5 17.0

n 273.5 15.3 261.1 15.1 241.5 16.1 233.9 16.3 228.3 16.3

o 278.1 15.9 269.9 16.2 260.0 16.4 260.2 16.5 261.3 16.4

76 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

3.5.2 Experiment 2: Sub-domain Known for Training Set and Un-

known for Test Set

We now turn to the case in which sub-domain information is known for the training data,

but not for the test set. In this case, we do not know in advance which sub-domain-adapted

language model should be applied to a given segment of speech, which in the case of the

CGN data set, is a sentence. For this reason, instead of applying a single sub-domain-adapted

language model, we make use of approaches that combine sub-domain-adapted language

models.

The first approach makes a soft decision about the correct sub-domain of the input sen-

tence using a linear combination of the scores generated for a given sentence by all of the

sub-domain-adapted language models. We use the conventional form for a sentence-level

mixture, given above in Eq (3.1). In our implementation, the interpolation weights λk are

dynamically determined according to the following heuristic method:

λk(s) =
pk(s,hs)

∑i pi(s,hs)
, (3.6)

where pk(s,hs) is the joint probability from the kth sub-domain-adapted for the present

sentence s and its history hs. Basically, the sub-domain-adapted model that assigns higher

probability for current sentence receives more weight to determine the next word.

The second approach makes a hard decision for each input sentence. Our previous work

has examined the relative advantages of the hard decision vs. the soft decision for other

types of language models, and revealed it to be important [138, 141]. Here, we investigate

both with respect to the combination of RNNLMs. In order to motivate the use of the hard

decision to combine sub-domain adapted RNNLMs, we carried out an analysis of the ability

of RNNLMs to predict the identity of sub-domains. Sub-domain-adapted RNNLMs can be

used to predict the sub-domain of a sentence s C(s) as follows:

C(s) = argmax
k

pk(s,hs), (3.7)

where hs is the history of sentence s. pk(s,hs) is the joint probability of sentence s with

its history, which is assigned by the kth sub-domain-adapted model. Our experiments with

sub-domain prediction yielded very good results. For nine of the thirteen sub-domains

in the CGN data set, the prediction accuracy was above 95%. This result suggests that the

hard decision method for combining sub-domain-adapted RNNLMs could possibly approach

the neighborhood of the performance observed in Section 3.5.1 under the oracle condition

where the identity of the sub-domain is known for the test data.

Table 3.6 shows perplexity and word prediction accuracy results of soft and hard deci-

sion on CGN data, in which sub-domain context is not available to the models during the

3.5 Within-domain Language Model Adaptation 77

Table 3.6: Perplexity and word prediction accuracy result of the Spoken Dutch Corpus

(CGN). The sub-domain of the test data is unknown.

models PPL WPA (%)

base 114.8 20.6

int 98.1 20.7

SV-soft 118.9 19.8

DS-soft 103.4 21.8

AS-soft 104.1 22.7

int-hard - 21.3

SV-hard - 20.1

DS-hard - 22.1

AS-hard - 23.2

testing. The soft decision perplexity results show that the soft decision combination of the

sub-domain-adapted models using interpolation achieves the lowest perplexity. However,

this performance does not transfer to the word prediction accuracy. Using soft decision

combination method, AS with 10 epochs of general training obtains the best WPA. Based

on sentence level WPA, “AS-hard” achieves significant improvement over baseline model.

Although “DS-soft” also achieves substantial improvement over baseline model, it did not

achieve statistical significant improvement.

Comparing the soft and hard combinations, we find that the hard combination performs

better than soft combination method in terms of WPA. In addition, the hard combination

method is also computationally less complex than soft combination one in word prediction

task. Using soft decision method for word prediction, the system needs to put the hidden

layer and output layer of each sub-domain-adapted RNNLM into memory. In addition, with

the soft decision method, all the output layers of sub-domain-adapted RNNLMs have to be

linear interpolated together to do prediction. However, the main disadvantage of the hard

decision method is that it does not produce a normalized probability.

3.5.3 Experiment 3: Sub-domain Unknown in both Training and Test

Sets

We now turn to the case in which sub-domain information is known for neither the training

nor the test set. We are interested in exploring the abilities of curriculum learning in cases in

which sub-domain information is not collected at the time that the data is captured, but in-

78 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

stead must be inferred. In this section, we present an additional experiment about using the

proposed RNNLM adaptation method to a benchmark testing data set which is Wall Street

Journal (WSJ). WSJ data set is a well-known data set that has been used in previous work

by [97, 98]. In previous sections, it shows that RNNLMs adaptation using curriculum learn-

ing can outperform both the conventional RNNLM and the sentence level mixture models

on CGN data. However, we notice that the CGN covers many speech sub-domains. Each of

these sub-domains actually is dramatically different with other sub-domains in style. WSJ is

about newspaper articles, which we can assume belong to different topics, making it a rea-

sonable choice to investigate topical structure. However, in WSJ the style is same, providing

an interesting contrast with CGN. In this section, we will investigate the speech recognition

performance of the proposed method for WSJ data set using latent topic clustering for the

training data.

WSJ Data

In WSJ, we use 100-best speech recognition list from the DARPA WSJ’92 and WSJ’93

test data sets, as used by [98, 162]. In the 100-best list set, 333 sentences are used as

development data for tuning the interpolation of language models score and acoustic model

score (DEV). The rest, 465 sentences, are used for evaluation (EVAL). The oracle WER of

100-best lists for development data and evaluation data are 6.1% and 9.5%, respectively.

The training corpus, referred to as the NYT data set, contains 37M words of running text

from the New York Times section of English Gigaword. The validation data set contains

186K words. A held-out set of 230K words is used for testing (TEST). The vocabulary size

is 194K.

Experiments

We use Latent Dirichlet Allocation (LDA) [20] to generate the latent topics for the training

data. LDA is a probabilistic generative model, which use bag-of-words strategy to assign

each document with latent topic representation. In this paper, each document is a sentence.

Basically, we generate the latent topic representation for each sentence in the training data.

In the training data, each sentence is treated as a document. The topic distribution can be

viewed as a reduced latent topic representation for each sentence. Based on this normalized

continuous representation of each sentence, we then use the k-means clustering method to

partition the training data.

In the N-best list rescoring experiment, all RNNLMs have a hidden layer of 200 neurons,

and use 100 classes and 4 times BPTT with a block size of 10. Additionally, we make use

3.5 Within-domain Language Model Adaptation 79

of the Maximum Entropy extension in the form of 1 billion elements that directly connect

the input features to output layers using maximum entropy extension.

Table 3.7 shows the word error rate performance of the proposed RNNLM adaptation

method in N-best rescoring. The models using DS curriculum learning achieves 0.2% im-

provement over the conventional RNNLM in terms of word error rate. Although this im-

provement is too small to be significant (based on the evaluation N-best list with 465 sen-

tences, a paired t-test shows that mean = 0.025%, t = 0.146, p = 0.886), we note that the

gains we obtained here are comparable in magnitude to those reported on another type of

RNNLM extension, namely context based RNNLM [97].

Compared with the experiment results on the CGN data, the RNNLM adaptation using

curriculum learning can only gain small improvement over the conventional RNNLM on the

WSJ data set. One reason is that, in the WSJ data, both the training data (NYT section of

English Gigaword) and N-best list are news related. We suspect these data sets represent

only very limited diversity. In addition, the training data is NYT section of English Giga-

word, but the N-best list is WSJ data. The latent topic we constructed from training data is

not applicable to the N-best data.

Table 3.7: The word error rate (WER) comparison on WSJ data set. ‘base’ is the conven-

tional RNNLM. ‘kn-5’ is a Keneser-Ney 5-gram language model. ‘int’ is a con-

ventional linear interpolation of sentence level mixture models (Eq. (3.1,3.2)).

“SV”, “DS” and “AS” are RNNLM adaptation using different types of curricu-

lum learning. “T” column represent the number of topics. “hard” and “soft”

represent hard decision (Eq. (3.7)) and soft decision (Eq. (3.1) and (3.6)), re-

spectively.

models T dev (%) eval (%) T dev (%) eval (%)

kn-5 12.1 17.3

base 10.3 14.9

base-int-soft 5 11.2 15.3 10 11.3 15.9

base-int-hard 5 11.5 15.8 10 11.2 16.2

SV-soft 5 11.6 16.1 10 11.5 16.3

SV-hard 5 11.3 16.3 10 11.5 16.5

DS-soft 5 10.2 14.7 10 10.3 15.2

DS-hard 5 10.4 14.7 10 10.2 15.2

AS-soft 5 10.3 15.1 10 10.4 15.0

AS-hard 5 10.1 15.1 10 10.3 14.9

80 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

3.6 Limited-data Within-Domain Adaptation

Next we turn to our second set of experiments, in which we investigate the ability of cur-

riculum learning to adapt language models in the face of the limited-data within-domain

adaptation challenge. Limited-data domain adaptation is necessary in many real-world sce-

narios, since language models that are used in practical applications generally need fre-

quent updating. In many cases, updates are carried out by retraining language models from

scratch, adding a small amount of new, yet-unseen training data to the original large existing

training data set.

3.6.1 Experimental data set

Our choice of data sets is intended to emulate the real-world situation, in which the system

has already been trained on a relatively large amount of existing data and a smaller amount

of yet-unseen data becomes available. In this experiment, the large existing data we choose

is the NYT section of English Gigaword (see Section 3.5.3), which we used in previous

section. The yet-unseen data set is the Penn Treebank (PTB) text data set. We use section

00-20 for training (972K word tokens), section 21-22 for validation (77K word tokens) and

section 23-24 for testing (84K word tokens).

3.6.2 Experiments

In the experiment, we use the AS curriculum learning method for limited-data domain adap-

tation. We make this choice because neither the SV nor DS methods is fit to the limited-data

domain adaptation. SV is not suited because it requires the vocabulary to be calculated on

the entirety of the training data, and the adaptation data is not available to the system at the

moment in which the original model is trained. DS is not suited because it requires the en-

tirety of the training data be presented to the RNNLM in every training epoch. Using the AS

curriculum learning method, we basically continue to train the existing language model on

yet-unseen data. In the experiment, we compare this approach with a baseline that uses con-

ventional linear interpolation to combine the existing language model with a new language

model trained on the yet-unseen data. The models produced by conventional linear inter-

polation and by AS curriculum learning both maintain the same vocabulary as the existing

language model.

In our experiment, the vocabulary of the existing language model, determined by the

NYT, contains 194k words. All the words in the yet-unseen data that are not in the vocab-

ulary are treated as OOV words. In the yet-unseen data set, the OOV rate for training data

is 9.3%, for validation data 7.1% and for testing data 7.9%. During testing, the probability

3.6 Limited-data Within-Domain Adaptation 81

of OOV words is set to 10−8. All the models in this subsection are trained with the same

settings as models from subsection 3.5.3.

Table 3.8: Comparison of RNNLMs trained by only yet-unseen data (PTB base), RNNLMs

trained on existing data (NYT base), linear interpolation of RNNLMs trained

on existing and yet-unseen data (int NYT +PTB), and implicit interpolation of

existing and yet-unseen data using the AS curriculum learning method (AS CL

NYT +PTB). Results (PPL and WPA) are reported on yet-unseen test data. The

percentage of yet-unseen data used in training is given in the column marked

‘ratio’.

models ratio PPL WPA

PTB base 1.0 125.9 24.6

NYT base 0.0 180.7 21.7

int NYT + PTB 0.2 121.5 23.7

int NYT + PTB 0.4 113.5 24.1

int NYT + PTB 0.6 107.8 24.7

int NYT + PTB 0.8 107.4 24.8

int NYT + PTB 1.0 104.5 25.0

AS CL NYT +PTB 0.2 113.3 24.2

AS CL NYT +PTB 0.4 108.4 24.6

AS CL NYT +PTB 0.6 105.5 24.8

AS CL NYT +PTB 0.8 104.6 25.0

AS CL NYT +PTB 1.0 103.5 25.0

Table 3.8 shows the existing language model can achieve substantial improvement on

PTB testing data in terms of perplexity and WPA by specific training on the PTB training

data. If only 20% of the PTB training data is used, using AS curriculum learning the existing

language models can achieve 37.7% reduction in terms of PPL and 11.5% relative improve-

ment in terms of WPA. The performance of the language models can be improved by using

more PTB data in the training process. As is shown in the table, curriculum learning applied

for limited-data domain adaptation can produce RNNLMs that are better, in terms of WPA,

than conventional RNNLMs trained only on PTB data.

Table 3.8 also shows that the model trained by AS curriculum learning using 80% of

yet-unseen data achieves similar performance as that achieved by a model that uses the

interpolation of the existing language model and a language model trained on yet-unseen

data based on the same vocabulary as existing model. This result suggests that curriculum

learning can be used as an effective method to implicitly weight the patterns in the existing

82 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

training and the pattern in the yet-unseen training data. The results of only using 20%

yet-unseen training data suggests that curriculum learning is better in taking advantage of

taking limited training data than linear interpolation. By using 80% yet-unseen training data,

the adapted model trained using curriculum learning achieves the same performance as the

adapted model trained using interpolation methods. In addition, using curriculum learning,

only one final model is returned rather than two models as the interpolation method is based

on. In other words, using curriculum learning method to deal with limited-data adaptation,

we always only need to focus on one model. However, using interpolation method, we

probably need to deal with the risk to handle more models when more unseen data available.

The results confirm the potential of curriculum learning to improve performance for

limited-domain data adaptation of RNNLMs. In practice, the update of RNNLMs can be ac-

complished by the proposed AS curriculum learning method only on the yet-unseen training

data rather than retrain the RNNLMs using the combination of the existing training data and

the yet-unseen training data.

3.7 Conclusions

In this paper, we investigated the use of curriculum learning for the adaptation of RNNLMs.

We focus on two situations for language model adaptation, namely, within-domain adapta-

tion and limited-data within-domain adaptation.

To address within-domain adaptation, we use a component model method. Each com-

ponent model is a sub-domain-adapted RNNLM trained by curricula that were scheduled

from general patterns to specific patterns. For within-domain adaptation, three different

experiments has been used to investigate three different situations, namely the oracle sit-

uation (sub-domain information is known during training and testing), the situation that

sub-domain information is known only in training and the situation that the sub-domain

information is unknown both in training and testing.

Three different curriculum learning methods were proposed and analyzed, namely start-

ing from the same vocabulary (SV), data sorting (DS) and all then specific training (AS).

We compared the sub-domain-adapted models that are trained by these methods with con-

ventional RNNLMs using a heterogeneous spoken Dutch data set. The results under the

oracle condition under which sub-domain information is known at test time show that sub-

domain-adapted models that were trained using DS and AS outperform the conventional

RNNLM. Especially on the “News” sub-domain, the sub-domain-adapted models achieved

an over 50% reduction in terms of perplexity and a more than 30% improvement in terms of

word prediction accuracy. The results reveal that curriculum learning can be used to shape

3.7 Conclusions 83

the final RNNLMs to emphasize the specific patterns in the sub-domains.

When the sub-domain information is not available in testing, the sub-domain-adapted

models need to be combined to make final prediction. On the sentence level, two com-

bination methods were used. Using hard decision method, for each sentence, one sub-

domain-adapted model that gave the maximum probability was selected. Using soft decision

method, for each sentence, a heuristic dynamic linear interpolation was used to combine the

different sub-domain-adapted models. Experimental results show that the proposed model

using these two methods outperform conventional RNNLMs.

Under the situation that the sub-domain information is unknown both in training and

testing, the proposed models were tested using WSJ data set in N-best rescoring. During

the training, sub-domain information was obtained by using Latent Dirichlet Allocation in

conjunction with k-means clustering. The experimental results show that RNNLM adaptation

using DS curriculum learning can achieve a limited, but not entirely unpromising, reduction

in terms of word error rate.

To sum up, the set of experiments on within-domain adaptation shows that curricu-

lum learning method can be used to train sub-domain-adapted models that emphasize the

patterns characterizing specific sub-domains. Sub-domain-adapted models trained using

curriculum learning outperform conventional RNNLMs on the corresponding sub-domains.

When sub-domain information is unknown during testing, the combinations of the sub-

domain-adapted models using a soft combination or a hard combination outperforms con-

ventional RNNLMs and sentence level mixture RNNLMs.

To address limited-data within-domain adaptation, we use curriculum learning as an

implicit interpolation method to combine patterns characteristic of existing training data

with patterns characteristic of yet-unseen data. The results from our experiment on limited-

data domain adaptation reveal that curriculum learning methods are more effective than

conventional interpolation methods. The experiment also shows that updating of the existing

RNNLMs with curriculum learning requires training only on the yet-unseen data without

retraining models from scratch by adding the yet-unseen data to the existing data.

The comparison of these three types of curriculum learning proposed in this paper re-

veals that good performance is achieved by the curricula that are designed to be appropriate

for specific data and specific challenges. In this paper, results on the WSJ data set and on

the CGN data set did not achieve comparable improvement. For this reason, our future work

will focus on the relationship between the design of the currculum and the characteristic of

the target data.

In this paper, we have chosen RNNLMs to be representative of neural network language

models, under the assumption that the application of curriculum learning to other neural

84 3 Recurrent Neural Network Language Model Adaptation with Curriculum Learning

network language models would yield similar behavior. Our future work will explore this

assumption in greater detail, allowing further insight onto how the method put forth in this

paper should best be operationalized.

Chapter 4

Integrating Meta-Information

into Recurrent Neural Network

Language Models1

4.1 Abstract

Due to their advantages over conventional n-gram language models, recurrent neural net-

work language models (RNNLMs) recently have attracted a fair amount of research attention

in the speech recognition community. These advantages include their ability to learn gen-

eralizations in the face of sparse data conditions and their capacity to capture long-distance

word dependencies. In this paper, we explore another advantage of RNNLMs, namely, the

ease with which they allow the integration of additional knowledge sources. We concen-

trate on features that provide complementary information w.r.t. the lexical identities of the

words. We refer to such information as meta-information. We single out three cases and

investigate their merits by means of N-best list re-scoring experiments on a challenging cor-

pus of spoken Dutch (referred to as CGN). First, we look at Parts of Speech (POS) tags and

lemmas, two sources of word-level linguistic information that are known to make a contri-

bution to the performance of conventional language models. We confirm that RNNLMs can

profit from these sources as well. Second, we investigate Socio-situational Settings (SSSs)

and topics, two sources of discourse-level information that are also known to benefit lan-

1This chapter has been submited to Speech Communication. Yangyang Shi, Martha Larson, Joris Pelemans,

Catholijn, M. Jonker, Patrick Wambacq, Pascal Wiggers, Kris Demuynck. Integrating Meta-Information into

Recurrent Neural Network Language Models

85

86 4 Integrating Meta-Information into Recurrent Neural Network Language Models

guage models. SSSs can be seen as a proxy for the language register. For the purposes of

our investigation, we assume that information on the SSS can be captured at the moment

at which speech is recorded. Topics refer to the subject matter of speech and are inferred

automatically. In order to predict POS, lemmas, SSS and topic, a second RNNLM is coupled

to the main RNNLM. We refer to this architecture as a Recurrent Neural Network Tandem

Language Model (RNNTLM). Our experimental findings show that if high-quality meta-

information labels are available, both word-level and discourse-level information improve

performance. However, deriving high-quality labels automatically from unlabelled data

proved to be challenging. Third, we investigate sentence length and word length (i.e., token

size), two sources of intrinsic information that are readily available for exploitation because

they are known at the time of re-scoring. Intrinsic information has been largely overlooked

by language modeling research. Since sentence length and word length are known to cor-

relate with Socio-Situational Setting, they hold promise for improving the performance of

language models as well. RNNLMs allow these features to be incorporated with ease, and

obtain improved performance.

4.2 Introduction

Language models capture the extent to which a sequence of words can be considered well

formed. Most state-of-the-art language models treat language as a sequence of symbols,

and ignore the fact that this sequence also reflects the underlying structure of the language.

Language structure is evident on multiple levels. In this work, we focus particularly on

its manifestations at the word level and at the discourse level. We refer to language-related

information that goes beyond the lexical identities of the spoken words as meta-information.

Examples that are relevant to our investigation include word-level meta-information such as

Part of Speech (POS) or lemmas and discourse-level information such as the setting in which

the speech is delivered (referred to as the Social-Situational Setting) and topic.

Past efforts in language modeling have demonstrated that incorporating additional language-

related information at different levels can improve the performance of language models.

Conventional n-gram language models, however, offer relatively limited possibilities for

incorporating meta-information. In order to predict the next word of a word sequence, a

conventional n-gram language model relies solely on the n− 1 words that precede it. This

strategy is simple and robust, but is limitted in its ability to capture long distance dependen-

cies between words and doesn’t generalize well from sparse data.

Recently, recurrent neural network language models (RNNLMs) [98, 101] have demon-

strated potential to address these shortcomings. The success of RNNLMs can be attributed to

4.2 Introduction 87

two factors. First, RNNLMs map the discrete, word-based vocabulary to a continuous space.

This mapping makes it possible to learn generalizations over word sequences that are not

completely identical, thus reducing the effect of data sparsity. Second, the recurrent loop in

the RNNLM architecture, which feeds the hidden layer back into the input layer at every time

step, constitutes a memory that serves to capture long-distance dependencies. In this paper,

we focus on a third advantage of RNNLMs that has received relatively little attention in the

literature. Incorporating meta-information into n-gram language models is cumbersome.

Generally, it is necessary to design specialized architectures, to create hand-crafted models,

or to train weighting parameters. In contrast, integrating meta-information into RNNLMs

just requires adding the extra features to the input layer. Viewing recurrent neural networks

as a set of logarithmic regressions helps to make clear that adding extra information can be

accomplished elegantly: no special changes to the architecture of the model must be made

in order to accommodate the new information.

In practice, RNNLMs are applied in the last pass of a multi-pass speech recognition

system. In our experiments this was implemented as a N-best list re-scoring task. We

choose to work with data drawn from a large and challenging corpus of spoken Dutch. This

corpus contains, by design, very diverse material. In particular, the data has been captured

in different Social-Situational Settings (SSSs), i.e. different settings that affect language

register and correlate with different topics. This allows us to extend our investigation of

discourse-level meta-information beyond the level of automatically derived topics.

Our investigations cover three cases of meta-information. First, we investigate word-

level linguistic information, represented by Part of Speech (POS) tags and lemmas. Previous

work has established the contribution that these sources make to enhancing the performance

of conventional language models. We confirm that RNNLMs also benefit from these sources.

Second, we look at discourse-level information, more specifically SSSs and topics. These

sources of meta-information are also known to benefit conventional language models. Here

again, we demonstrate their ability to improve the performance of RNNLMs. Finally, a

third case concerns meta-information that can be considered intrinsic. In other words, the

information is inherent in words and word-sequences and does not need to be inferred.

Specifically, we investigate sentence length and token size, two features that are readily

available for exploitation, but which have been largely overlooked in previous work on

conventional language models. It is difficult to identify a single factor responsible for the

lack of attention to intrinsic features in the literature. Most likely, the oversight is due

to the combination of the relatively large overhead required to integrate meta-information

into conventional language models, already mentioned above, and the a priori impression

that intrinsic information is trivial. When RNNLMs are used, the incorporation of extra

88 4 Integrating Meta-Information into Recurrent Neural Network Language Models

information is straightforward and elegant, and our experiments demonstrate that trivial

information can be exploited to achieve performance gains that are themselves non-trivial.

In our investigation, the information on the SSS was captured at the moment at which

speech is recorded. As a contrastive condition, we also investigate a setup where no such

labels are available, and hence a logic labelling system must be learned unsupervised. For

this work, we investigate the integrating SSS and topics. The SSS is available for training but

not for testing. Topics in this paper are automatically detected word usage patterns, which

are unavailable in training and teasing. Therefore, we first use an unsupervised method to

obtain the topics for the training data. The topic information obtained by the unsupervised

method is further used to train a meta-information predictor that is used to predict topics for

testing data.

In general, meta-information to be exploited by language models is not known in ad-

vance, but rather must be predicted on the fly. Recurrent Neural Networks have shown

good results compared to conventional methods on natural language processing tasks such

as named entity recognition and syntactic analysis [95, 173]. We therefore opted to in-

fer the required meta-information by training an additional recurrent neural network. The

RNN that extracts the meta-information feeds into the RNN that models the word sequences

(the RNNLMs), resulting in an architecture that we refer to as a Recurrent Neural Network

Tandem Language Model (RNNTLM). The first network takes the entries in the N-best list

as input and outputs meta-information for each word. The output of the first network in

combination with the N-best word sequence feeds into the main network, which outputs

a prediction of the probability of the next word, given the history. We demonstrate how

a second RNNLM which predicts POS, lemma, SSS and topic can be coupled to the main

RNNLM.

Our experimental findings indicate that both word-level and discourse-level information

can improve performance. However, in order to obtain a tangible performance improve-

ment the meta-information must be accurate. In our challenging task, information obtained

via unsupervised training did not attain a high enough accuracy and hence incorporating

this information showed little to no improvement. For this reason, we turn to the intrinsic

information such as sentence length and token size.

The rest of the paper is organized as follows. Section 4.3 discusses related work on

inferring meta-information and on previous methods that have exploited the integration of

meta-information into language models. In Section 4.4, we describe our approach for incor-

porating meta-information into RNNLMs, including the RNNTLM architecture. Section 4.5

and 4.6 describe the experimental setup and present the experimental results on the spoken

Dutch data that we used for our investigation. The final section provides conclusions and an

4.3 Related work 89

outlook.

4.3 Related work

In this section, we present work related to two key aspects of our approach. First, we survey

various forms of meta-information. Next, we discuss previous work that has integrated

meta-information into language models and explain how our work builds on and extends

these approaches.

4.3.1 Meta-Information

We use the term meta-information to refer to information that goes beyond the identity of

the word itself. In this section, we briefly survey the types of meta-information that we

focus on in this paper.

Word-Level Meta-Information

The word-level meta-information we consider includes Part-of-Speech (POS) tags, lemmas

and token size (i.e., word length). As is discussed in further detail in the next section, POS

information benefits language modeling. POS tag sequences provide a limited amount of

syntactic information to language models. They, for example, allow the language model to

capture regularities such as the fact that adjectives are often followed by nouns.

POS information is not an intrinsic property of a word, and for this reason, if it is to be

used in language modeling it must be predicted. Both the task of labeling words with POS

tags [5, 37] and methods to integrate POS with language models [25, 103] have received

considerable research attention. In this paper, the prediction of POS tags as well as the

integration of POS tags into language modeling is achieved by using the proposed RNNTLMs.

A lemma is the set of all word-forms that share the same meaning. The citation form

of a word that is used in the dictionary, represents a lemma. Lemmas provide the language

model with morphological information about each word. The number of lemmas is much

larger than the number of POS.

Word length, referred to here as token-size (TS), is the size of the word. Here, we mea-

sure token size by counting the number of letters in the written form of the word. Token size

reflects information about other properties of words. For example, the average token size of

content words is bigger than the average token size of function words. Another important

characteristic was pointed out by Zipf [178], namely that token size reflects the frequency

with which a word is used in a language. For these reasons token size is an interesting quan-

90 4 Integrating Meta-Information into Recurrent Neural Network Language Models

tity to divide words into classes. Surprisingly, token size has not been exploited extensively

in previous work on language modeling.

Adding word-level information to a language model can be seen as a form of smooth-

ing, especially in conventional n-gram language modeling. For word sequences for which

there is little or no evidence in the training data, the model can fall back on information

concerning the classes to which words belong.

Sentence Length (SL)

Sentence length is defined as the number of words in a sentence. It is a indicator of discourse

style and genre. This relationship was established even before the advent of the Digital

Age in the field of authorship attribution [157]. Recent work observing the relationship

between sentence length and genre includes [146] and [167] for the spoken Dutch data used

in this work. In particular, sentence length distribution varies for different conversation

styles. For example, for spontaneous speech the average sentence length is below 7. In

spontaneous face-to-face conversations almost 25% of the sentences contain only one word

such as yes or no answers and interjections. In contrast, the mean length of sentences in

political discussion/debates/meetings is 15, and in ceremonious speeches/sermons, it is 20.

Language models have yet to exploit information on sentence length fully. An isolated

exception may be [21], who demonstrated that combining separate language models, each

created for sentences of different lengths, improves recognition performance in the domain

of voice search. In our paper, we aim to exploit the benefits of sentence length in a more

general domain.

Topic and Socio-Situational Settings

Both the topic being spoken about and the situation in which language is used, referred to

here as Socio-situational Setting (SSS), impact word distributions. The topic is related to

the subject under discussion by the speaker or speakers. In contrast, the SSS is more of

a proxy for the language register (style of speech), which is influenced by the goal of the

conversation, the relationship between speakers and listeners, and the number of speakers

and listeners involved. Certain topics may be more typical for some SSSs than others, so

in general it is not useful to assume that the two are independent. The main distinction in

the context of this paper is that the SSS can be captured at the time of recording whereas

regularities that are discovered automatically in the data are considered to be topic related.

In research where topic is expected to mainly reflect the subject matter under discussion,

the topic models almost invariably differentiate between topics based on the distribution of

content words only, ignoring function words. In this work, we are interested in modeling

4.3 Related work 91

underlying clusters in general, and are agnostic if they are related to style or subject matter.

Hence, all words are allowed to contribute to the topic model.

Table 4.1 shows the 14 different SSSs used in this paper. Our previous research [145]

investigated the dynamic classification of SSSs using Dynamic Bayesian Networks. In this

paper, a recurrent neural network is used to predict the SSS and topic for each sentence of the

input data. This information is then fed into the RNNLM for the purpose of word prediction

and N-Best re-scoring.

Table 4.1: Overview of the Spoken Dutch Corpus (CGN)

components socio-situational setting words

a Spontaneous conversations (‘face-to-face’) 2,626,172

b Interviews with teachers of Dutch 565,433

c&d Spontaneous telephone dialogues 2,062,004

e Simulated business negotiations 136,461

f Interviews/ discussions/debates 790,269

g (political) Discussions/debates/ meetings 360,328

h Lessons recorded in the classroom 405,409

i Live (e.g., sports) commentaries (broadcast) 208,399

j News reports/reportages (broadcast) 186,072

k News (broadcast) 368,153

l Commentaries/columns/reviews (broadcast) 145,553

m Ceremonious speeches/sermons 18,075

n Lectures/seminars 140,901

o Read speech 903,043

4.3.2 Language Models Integrating Information beyond Word Iden-

tity

Previous research has established the usefulness of information that goes beyond the identity

of words in improving language models. In this sub-section, we survey some of the most

successful work exploiting this information and explain its relationship to our work.

Decision-tree-based language models [10] are one of the earlier language modeling

methods that integrate meta-information with information about word identity. For example,

part-of-speech (POS) information can be integrated into language models by asking ques-

tions about the word history such as, “Is the last word a verb?” [60]. In [153], the Random

Forest Language models of [170] are extended with morphological, prosodic, syntactic, and

92 4 Integrating Meta-Information into Recurrent Neural Network Language Models

topic information.

Class-based language models [23] can be viewed as language models that integrate

meta-information. Since the quality of the class-based language models depends on how

the vocabulary is grouped into clusters, much previous research has been devoted to under-

standing the best way to cluster the vocabulary [14, 23, 106–108, 115, 158, 172]. Language

models that group words according to POS tag, allow easy integration of POS information

with n-gram language models [106, 108]. In this work, we show that automatic deter-

mination of the categories yields improved performance over the original POS categories,

presumably because it allows control over the category size and composition.

Structured language models [25, 27] represent another important technique to exploit

information beyond the word level. These language models incorporate information con-

cerning the syntactic structure of a language as well as the grammatical function of words

in the form of their POS class.

Some language models have integrated meta-information in an effort to better encode

information about long distance dependencies between words.

Language models incorporating latent topics [12, 61] are a key example. These models

use a topical representation of the data created by a method such as latent semantic analysis

[12] or latent Dirichlet allocation [61]. In this paper, we also employ Latent Dirichlet Al-

location to construct a representation of documents that captures generalizations over topic.

We then create topics by using k-means clustering.

Dynamic Bayesian Networks (DBNs) [39, 105] offer a concise method to integrate ad-

ditional features into a language model. Syntactic information, semantic relationships and

social background knowledge can be simply specified as a variable into the network struc-

ture of the belief network [137, 138, 165]. However, DBNs are generalizations of n-gram

language models, and as such share some of their drawbacks. In particular, because they

model exact sequences, they tend to suffer in the face of sparse data.

Maximum entropy language models [117, 125] are among the best existing methods for

integrating additional information into a language model. These models exploit the maxi-

mum entropy principle [66] in order to incorporate additional knowledge sources, which can

be completely arbitrary in nature. In [125] maximum entropy language models using trig-

ger and n-gram features are shown to achieve significant improvement over n-gram language

models in terms of perplexity and word error rate. Maximum entropy language models can

be viewed as a variety of neural network language models which include no hidden layer.

In this paper, we use the maximum entropy extension of the RNNLM (RNNME) proposed

by [101], to incorporate meta-information into RNNLMs. The so called RNNME includes a

direct connection between the input layer and the output layer effectively incorporating a

4.4 Recurrent Neural Network Language Models 93

maximum entropy language model into the RNNLM architecture.

Neural network based language models, which include feed-forward neural network lan-

guage models [16] and recurrent neural network language models [98], are representative

of the current state of the art in language modeling. As previously mentioned, neural net-

work language models are acknowledged for their ability to generalize and their ability to

capture long-distance dependencies. Here, we focus on a third advantage, namely their flex-

ible structure, which allows the integration of arbitrary features. [49] and [2] investigated

the incorporation of syntactic or morphological information into neural network language

models.

Factored language models proposed by [19] treat each word as a vector of factors. In

[168], the RNNLM is extended to a factored RNNLM. However, in [168], only word-level

information is used. In this paper, we investigate not only word-level information, but also

sentence-level and discourse-level information. Furthermore, we investigate the incorpo-

ration of intrinsic information such as word and sentence length, which initially gives the

impression of being trivial, but actually has the ability to improve language models. The

usefulness of integrating topic information, derived via Latent Dirichlet Allocation, into

RNNLMs has been studied by [97]. Here, we significantly expand on both [97] and our

own previous work on integrating linguistic and contextual information into RNNLMs [140].

A full range of different types of meta-information is investigated. Further, we go be-

yond [140] in that we evaluate our models applied not only to the task of word prediction, but

also to the task of N-best re-scoring. Lastly, we propose a recurrent neural network tandem

language model (RNNTLM) which employs RNNLMs both for inferring meta-information

and for predicting the probability of the next word.

4.4 Recurrent Neural Network Language Models

The original RNNLMs proposed by [98], consist of three layers: an input layer x, a hidden

layer h and an output layer y. RNNLMs are characterized by a loop that integrates a delayed

copy of the previous hidden layer into the current input layer at each time step. This loop

acts as a short abstract memory that stores previous information. In the hidden layer, the

output of a neuron i is:

hi(t) = ϕ(∑
j

ui jx j(t)), (4.1)

where the activation function ϕ(z) is a sigmoid function:

ϕ(z) =
1

1+ e−z
. (4.2)

94 4 Integrating Meta-Information into Recurrent Neural Network Language Models

The activation function φ(zm) in the output layer is a softmax function:

φ(zm) =
ezm

∑k ezk
, (4.3)

with the index m corresponding to one of the words in the vocabulary. The weight ui, j

between input layer context part and hidden layer is estimated by backpropagation-through-

time (BPTT) [101], which actually unfolds the loop as a deep neural network.

In [100], a maximum entropy extension of RNNLMs (RNNMEs) is proposed. As is shown

in Fig. 4.1, an additional weight matrix directly connects the n-gram features to the output

layer,

p(w|hist) =
exp∑N

i=1 λi fi(hist,w)

∑w exp∑N
i=1 λi fi(hist,w)

, (4.4)

where f j is one feature, λi is the weight for feature i and hist is the history of features. The

feature f j includes bigrams (wt−1), trigrams (wt−2,wt−1) up to n-grams. The problem with

such feature representation is that for high order n-gram, it has impractically large feature

set. Most of the features in the feature set will never show in the data. So to reduce the

complexity of the huge weight matrix connecting the input features to the output layer, a

hash function is used to map every n-gram to a single value in a hash array.

f (wt−2,wt−1) = ((wt−2)∗P1 ∗P2 +wt−1 ∗P1)%SIZE. (4.5)

Where P1 and P2 are large prime numbers. SIZE is the size of the hash array. % is a module

function.

In [101], a class-based RNNLM is proposed. The class-based RNNLM factorizes the

output layer using classes. The classes are determined according to the word frequency in

the training data. Using a class-based RNNLM, the probability of a word wt+1 at time t +1

given its history histt+1 is calculated in the following way:

p(wt+1|histt) = p(wt+1|ct+1,histt)p(ct+1|histt), (4.6)

where ct+1 is the class to which word wt+1 belongs. Switching to a class-based RNNLM

substantially reduces the computations for updating the weight matrix between hidden layer

to output layer. Instead of updating a H ×V weight matrix (H is the hidden layer size, V

is the vocabulary size), the class-based RNNLM only updates a H ×C weight matrix (C is

the class size) connecting hidden layer with class part of output layer as well as a H ×VC

sub-matrix (VC is the number of words belongs to class ct+1). As shown in [101], the

class-based RNNLM achieves 15 times speedup at a cost of 1% accuracy degradation.

4.4.1 Recurrent Neural Network Tandem Language Models

Our approach to integrating meta-information into RNNLMs consists of models containing

two parts, one part uses a recurrent neural network for predicting the meta-information, and

4.4 Recurrent Neural Network Language Models 95

Figure 4.1: Class-based Maximum Entropy extension of RNNLMs. The dashed arrows rep-

resent the direct connection of n-gram features in the input to the output.

the other part integrates the predicted meta-information into RNNLMs.

Different types of meta-information predictors are needed to extract the various types

of meta-information used in this research. Meta-information such as token size and sen-

tence length, is ‘intrinsic’, meaning that it can be derived directly by inspecting the data.

However, to obtain the word-level information (POS, lemma) and the discourse-level in-

formation (Socio-Situational Settings and topics) for the test data, we need the aid of a

meta-information predictor. In the following subsections, we discuss the two cases in turn.

Integrating Word-Level Meta-Information

Word-level meta-information is predicted using the history of the current word. In order

to incorporate word-level meta-information, we use the Recurrent Neural Network Tandem

Language Model(RNNTLM) architecture that is illustrated in Fig 4.2. The meta-information

prediction component is an RNNLM as well. In order to predict meta-information m(t) for

the current word w(t), the previous meta-information m(t − 1), the current word w(t) and

the copied hidden layer hm(t −1) are fed into the network.

x(t) = [w(t)T m1(t −1)T . . .mp(t −1)T h(t −1)T]T , (4.7)

96 4 Integrating Meta-Information into Recurrent Neural Network Language Models

where p is the number of types of meta-information. The word vector w(t) and all meta-

information vectors m1...p(t − 1) are represented using a 1-of-N encoding. Because the

maximum entropy extension is used, as is shown in equation (4.4), the previous n−1 words

with current word and the previous n− 1 meta-information with current meta-information

are directly connected to the meta-information output layer. Both the sequences of previous

n − 1 words with current word and previous n − 1 meta-information with current meta-

information are encoded as large hash based vectors using encoding 1-of-N. In this paper,

both word sequence and meta-information sequence are represented by hash vectors with

1 billion elements. Note that the input to the maximum entropy extension part is different

from the input to the RNNLMs part. Actually, the input to the maximum entropy part is much

larger than the input to the RNNLMs. For convenience, in Fig 4.2, we indicate the maximum

entropy extension by using dashed lines that directly connect the input layer of the RNNLMs

to the output layer of the RNNLMs. The maximum entropy extension adds information to

the RNNLMs about the ordering of the word sequence ending with the current word. Hence,

the usage of the maximum entropy extension helps RNNLMs to capture local regularities. In

the output layer of the meta-information predictor, the meta-information m∗(t) that obtains

the highest probability is selected and encoded in a 1-of-N representation, which is fed to

the RNNLM:

m∗(t) = argmax
m(t)

p(m(t)|w(t),m(t −1),hist(t −1)). (4.8)

When the meta-information is unknown, the current predicted meta-information m∗(t) is

copied to the input of the meta-information predictor in order to predict next meta-information

m∗(t +1).

As is shown in Fig 4.2, the part above the horizontal dashed line is also a recurrent

neural network. It uses the current word w(t), and the predicted meta-information for the

current word m∗(t) and the copied hidden layer hw(t −1), to predict the next word w(t +1).

In the proposed RNNTLM, the structures of the two recurrent neural network are basically

the same; they differ only in their input and output.

Integrating Discourse-Level Meta-Information

Discourse-level information is predicted using a recurrent neural network as well, when the

information is not available in testing. However, since discourse-level meta-information is

predicted for a full segment rather than individually for each word, the architecture from

Fig 4.2 is no longer suitable.

Because the RNNLM is applied within an N-Best rescoring framework, segment infor-

mation is available at the moment the language model is applied. This information has been

generated by the speech recognition system that produced the N-Best lists. By looking at

4.4 Recurrent Neural Network Language Models 97

Copy

Copy
Meta-information

predictor

RNNLM using

meta-information

Figure 4.2: Recurrent neural network tandem language models integrating word-level in-

formation. The part under the dashed line is used for predicting meta-

information on word level. The part above the dashed line is used for incor-

porating meta-information in the RNNLM. The dashed arrows represent the

direct connection of n-gram features in the input to the output.

the full segment instead of only at the preceeding words (cf. Fig 4.1), a better prediction of

the discourse-level information can be obtained.

We test under known and unknown conditions. In known conditions the information

about the correct discourse-level meta-information category is available at test time. As

such, this condition constitutes an oracle.

In unknown conditions the information must be predicted. In order to predict discourse-

level meta-information, we train one sub-domain-specific RNNLM for each SSS or topic (also

referred to as a component). This model is trained using the curriculum learning method for

training domain-adapted RNNLMs. Our previous work has demonstrated the effectiveness

of this method for creating RNNLMs for a heterogeneous domain that is composed of a

number of sub-domains [143]. Curriculum learning [17, 48] makes use of the fact that

neural networks are sensitive to the order in which data is presented to them during training.

98 4 Integrating Meta-Information into Recurrent Neural Network Language Models

By presenting the RNNLM first with general domain data and only later in the training phase

with sub-domain data, we create models which emphasize the patterns in the sub-domain

data. Curriculum learning can be regarded as a form of implicit interpolation between a

domain model and a sub-domain model. It achieves the same goal as conventional linear

interpolation, but does so with a single, continuously trained model that dispenses with the

need to explicitly train weights of individual sub-models. Discourse-level labels, which are

predicted at the segment level, are propagated to the word level in order to be integrated into

the RNNLM.

The first type of discourse-level information that we consider is SSS. As previously

mentioned, this information is captured at the time the speech is recorded and hence is

available to train the language model.

The predicted discourse level meta-information c(s) of a sentence s is derived from the

probabilities returned by the different component models as follows:

c(s) = argmax
k

pk(s), (4.9)

where pk(s) is the probability of segment s given by the kth component model. Each com-

ponent model is an RNNLM, so the probability of segment s is calculated as follows:

pk(s) = pk(w0)pk(w1|w0)...pk(wt |w0, ...,wt−1), (4.10)

where pk(wt |w0, ...,wt−1) is the output of the kth component RNNLM for word wt .

For each word, the predicted discourse-level meta-information for the segment to which

that word belongs is fed into the language modeling part of the RNNTLM and used to predict

the next word.

The second type of discourse-level information considered in this work are topics. The

topics are derived automatically from the training data using Latent Dirichlet Allocation

(LDA) [20] in conjunction with k-means clustering. LDA is a probabilistic model that de-

scribes the generation process of documents. A document is considered to be a mixture of

underlying topics that give rise to the words it contains. LDA applies a bag-of-words strat-

egy, allowing each document to be represented as a latent topic vector whose components

reflect the relative contributions of the individual latent topics. We choose to make use of

LDA since it represents the state of the art in topic representations. We construct latent topic

representations by considering each segment to be a document. We then apply k-means

clustering in order to cluster the data. The result is a set of topic clusters. Each word in a

segment bears the topic label of the cluster the segment belongs to.

4.5 Experimental Setup 99

4.5 Experimental Setup

In this section, we describe the setup used to carry out our experiments. We evaluate our

language models using two types of experiments, N-best rescoring and Word Prediction.

4.5.1 Data

Our language model training and test data comes from the Spoken Dutch Corpus (Corpus

Gesproken Nederlands, CGN) [111], which contains recordings of standard Dutch spoken

by adults in the Netherlands and Flanders in a variety of language usage settings. As shown

in Table 4.1, the entire corpus contains nearly 9 million words divided into 14 components.

We used the component as a proxy for the socio-situational setting. Each component is

further divided into segments that contain one or more sentences. Segments may be as large

as 1,000 words.

Components a to h contain dialogues or multilogues and components i to o contain

monologues. Our experiments are carried out on a test set that contains 10% of the data

randomly selected from components h, g, n and o. The choice of these components was

informed by practical considerations, which included the need to exclude the data used to

train the acoustic models for the speech recognition system that generated the N-best list

(further described in Section 4.5.4).

In total the test set contains 974K running words and 149 segments. For language model

training, 80% of the CGN data, mutually exclusive from the test set, was used. Another

mutually exclusive set of 10% of the data was used for validation.

4.5.2 Part-Of-Speech And Lemma Prediction

CGN provides (manually verified) Part of Speech (POS) tags and lemmas for each word [160].

There are 281 POS tags represented in the training data. The POS tags consist of a basic set

(i.e., including ‘noun’, ‘adjective’, ‘verb’) enriched by further information. Examples of the

further information include, for nouns, the type of noun (common noun or proper noun),

the number (plural or singular), the degree (whether or not the noun is diminutive), and

case (e.g., genitive or dative). The RNNLM trained to predict parts of speech achieves an

accuracy of 93.5 when 180 hidden units are used. Changing the number of hidden units has

negligible impact on the performance.

The process of lemmatization involves mapping the inflected forms of words, as they

occur in text, to their basic forms, i.e., the way that the word would be cited in the dictio-

nary. Several forms of a word map to the same basic form, for example, the singular and

100 4 Integrating Meta-Information into Recurrent Neural Network Language Models

the plural of a word both map to the singular form. There are 84k lemmas (also plural-

ized ‘lemmata’) represented in our training data. Note that although many lemmas can be

uniquely determined by inspecting the form of a word token, there exist some word tokens

in the Dutch language that are ambiguous. In these cases, the context must be considered

in order to determine the correct lemma. Because of the large number of lemmas that must

be predicted, we use a class-based recurrent neural network [101] to speed up the training

of the lemma predictor, the classes are determined according to the lemma frequency in the

training data. Prediction proceeds in two steps. First, we predict the class using Eq. 4.11.

cl∗ = argmax
cl

p(cl|w), (4.11)

Then, we predict the lemma according to the predicted class using Eq. 4.12.

lemma∗ = arg max
lemma

p(lemma|w,cl). (4.12)

Using a hidden layer with 30 neurons, the RNN based lemma predictor achieves a 96.3%

prediction accuracy. Increasing the number of hidden units causes the performance to decay

slightly, attributable to the relatively smaller number of examples available per lemma in the

training data. In the experiments, we test the ‘known’ condition (i.e., oracle condition) in

which the POS or the lemma label for a word is known at test time, as well as the ‘unknown’

condition for which the labels are predicted at test time.

4.5.3 Socio-Situational Setting and Topic Prediction

Both SSS and topic we mentioned in this paper are simply ways of dividing the data set

into subsets that can be helpful. The SSS was collected when the data was recorded (see

Section 4.5.1). The topic information is derived by LDA and clustering was described at the

end of Section 4.4.1. The topic we used in this paper may also contain other information

(e.g. style). We refer the output from LDA and clustering algorithm as topic because these

algorithms are generally used to find topics. Prediction of SSS and topic for the N-best

lists returned by the recognizer is carried out using the RNNLM-based prediction method

described in Figure 4.2. It is important to note that this method achieves good performance

in predicting SSS. The average accuracy on the test data covers all of the components in the

CGN corpus is 76.2%. Nine out of thirteen components achieve above 95% accuracy. The

performance for the components that are used for N-best lists is: 98%, 96%, 93% and 100%

for components h, g, n and o, respectively.

4.5 Experimental Setup 101

4.5.4 Generating The N-Best List

For the automatic speech recognition (ASR) experiments we used a Large Vocabulary Con-

tinuous Speech Recognition (LVCSR) system. The system, which is an updated version

of [43], was built by ESAT using their state-of-the-art ASR toolkit SPRAAK [40, 42]. It

was initially developed for the Dutch N-Best evaluation benchmark [74]. The system is

a speaker independent speech recognizer that has the capability to select components and

adjust parameter settings on the fly, based on observed conditions in the audio. The in-

stallation used here distinguishes between two conditions, studio quality broadband speech

containing mainly prepared speech and telephone interviews which are expected to contain

more spontaneous speech.

The acoustic models employ 49 three-state acoustic units (46 phones, silence, garbage

and speaker noise) and one single-state phone (short schwa), which are modeled using

SPRAAK’s default tied Gaussian approach. Under this approach, the density function for

each of the 4k cross-word context-dependent tied states is modeled as a mixture of an arbi-

trary subset of Gaussians drawn from a global pool of 50k Gaussians. The mixtures use on

average 180 gaussians to model a 36 dimensional observation vector of MIDA features [40].

These were obtained by means of a mutual information based discriminant linear transform

(MIDA) on vocal-tract length normalized (VTLN) and mean-normalized MEL-scale spec-

tral features and their first and second order time derivatives. The acoustic models are

trained on Broadcast News (components f, i, j, k, l in Table 4.1) and Conversational Tele-

phone Speech (components c, d in Table 4.1).

Using a lexicon of 400k words, 5-gram language models (LMs) with modified Kneser-

Ney discounting were trained on 4 main text components: 12 Southern Dutch newspapers,

10 Northern Dutch newspapers and transcriptions of broadcast news (component f, i, j, k, l

in Table 4.1) and conversational telephone speech (component c, d in Table 4.1)(Northern

Dutch refers to the Dutch spoken in the Netherlands; Southern Dutch refers to the Dutch

spoken in Belgium). This training data set is exclusive with the testing data we used in all

the experiments. The four LMs were interpolated linearly and perplexity minimization was

done to find the optimal interpolation weights on the N-best development data. Lexicon

creation was handled by an updated version of the system described in [41]. Dutch has

a substantial amount of (regional) pronunciation variation, which was addressed by using

phonological rules to generate the likely pronunciation variants. This resulted in a median of

3.8 pronunciations per word or 1.13 variants per phone in the canonical word transcriptions.

Since Dutch compounds are always written as a single word, the word recognition re-

sults are post-processed for compounding. Two subsequent words are replaced by their

compound if the following criteria are met: 1) the words are longer than 3 letters, 2) the

102 4 Integrating Meta-Information into Recurrent Neural Network Language Models

words are not very rare, 3) the unigram count of the compound is higher than the bigram

count of the individual words. This approach effectively extends the 400k lexicon to a 6M

lexicon.

The main parameters of the system control hypothesis pruning and combining the lan-

guage model and the acoustic models. To combine the model scores, we employ our stan-

dard way of handling this problem [40], by having a LM scaling factor and a word startup

cost. Beam search pruning was applied to control the amount of hypotheses in the search

space [150]: a threshold indicates how much the score of a hypothesis can drop below the

score of the most likely hypothesis; if most hypotheses have a similar score, a beam width

parameter is applied to indicate how many hypotheses can be retained, keeping only the best

ones.

Adopting the pruning parameters that yield recognition in real time, we create a lattice

with the most likely word sequence hypotheses for each speaker turn in each component.

Using SRI’s lattice tool, each lattice is converted into an N-best list containing the 10000

best sentences, disregarding filler words and silences.

4.5.5 Re-scoring The N-Best List With The RNNLMs Integrating Meta-

Information

The RNNLM models that we test in our experiments all use the maximum entropy extension

(RNNMEs), as mentioned in Section 4.4. They use 300 hidden neurons and one weight

matrix with 1 billion elements that directly connect input to output. All the models are

trained using Backpropagation Through Time (BPTT) with 5 steps.

4.5.6 Evaluation Metrics

We evaluate our language models in terms of perplexity (PPL), word prediction accuracy

(WPA), and word error rate (WER). Both the PPL and word prediction accuracy WPA are

calculated using the language model directly. In other words, the speech recognition sys-

tem, which is described in Section 4.5.4, is not involved in calculating these evaluation

metrics. PPL is the geometric average of the inverse probability of the words on the test

data. WPA [159] is a practical measure of language models. It is defined as the accuracy

achieved when the language model is provided with information about preceding words and

required to predict the word that would occur next. Word prediction is important for natural

language processing tasks, such as spelling correction and auto completion. WER is evalu-

ated by carrying out a rescoring experiment that takes as input the N-best list generated by

the speech recognition system.

4.6 Experimental Results 103

4.6 Experimental Results

In this section, we present the results obtained with our proposed approach for integrating

meta-information into RNNLMs. We compare our models to two baselines, KN5GRAM,

which is a conventional Kneser-Ney 5-gram language model and also RNNME, which is the

same RNNLM that we use in our approach, except for the fact that it does not integrate any

meta-information. A conventional Kneser-Ney 5-gram language model achieves a WER of

40.1 on our data set.

First, we discuss our experiments that integrate word-level information (POS and lem-

mas). The results are reported in the lines labeled ‘POS’ and ‘lemma’ in Table 4.2 for two

test conditions: the ‘known’ condition, which is an oracle condition under which the in-

formation is known at test time, and the ‘unknown’ condition, under which the RNNTLM

architecture in Fig 4.2 is used, to predict the information at test time.

Table 4.2: Perplexity (PPL), word prediction accuracy (WPA) and word error rate (WER)

results with one feature under the condition that meta-information is unknown

and known during testing.

Model Known Unknown

PPL WPA PPL WPA WER

KN5GRAM 140 - 140 - 40.1

RNNME 112 21.3 112 21.3 38.7

POS 97 22.8 104 22.0 38.9

lemma 109 21.8 114 21.7 38.3

SSS 105 22.2 107 22.1 37.8

T30 96 22.9 118 21.3 38.6

TS 110 21.7 110 21.7 38.2

SL 109 21.9 109 21.9 37.9

Looking at the WPA for the ‘known’ and the ‘unknown’ conditions, we see that both

improve over the RNNLM baseline. The WPA deteriorates when the meta-information must

be predicted at test time (i.e., under the ‘Unknown’ condition). However, the difference

is relatively small, reflecting the strong performance of the underlying meta-information

predictors in the RNNTLM. In the lemma case, the improvement translates into a small

improvement in WER when rescoring, however, adding POS information deteriorates rather

than improves WER performance. In conclusion, the contribution of word-level information

is very modest and quite fragile. However, our results suggest that errors introduced by

meta-information prediction do not have a large impact over the theoretical performance

104 4 Integrating Meta-Information into Recurrent Neural Network Language Models

achievable under the oracle situation.

Next, we turn to the experiments that integrate discourse-level information (SSS and

topic). For the model integrating information on SSS, we see that whether SSS labels are

known at test time, or must be predicted has relatively little impact on the WPA. In both

cases, the integration of SSS information achieves an improvement in WPA over the baseline

RNNME. This improvement also translates into a reduction in WER in the N-best rescoring

experiment. Comparing the case of SSS to the model integrating topic information (reported

in the line labeled ‘T30’ in Table 4.2), we notice that topic information is more difficult

to exploit. In the oracle case in which topics are known at test time, an improvement in

WPA can be achieved. However, the improvement that the integration of topics offers in the

‘unknown’ conditions is very slim, noticeable in the WER, but not the WPA. Note that we

know the topic labels for the oracle condition because the topics were created by clustering

all the data simultaneously into 30 topics. Hence the topics of the oracle condition were

created on more data (all data in one segement of the CGN database) than the topics of the

‘unknown’ condition (one ‘sentence’ as returned by the N-best list module). As shown in

Table 4.3, the improvement offered by integrating topics varies somewhat with the number

of topics chosen, reaching its maximum with 30 topics. This result suggests that the opti-

mization of the number of topics is an aspect of meta-data information that must be taken

into consideration when integrating topic as meta-information into an RNNLM.

Table 4.3: Perplexity, word prediction accuracy (WPA) and word error rate (WER) results

using different numbers of topics, conditioned on that meta-information is un-

known and known during testing.

Model Known Unknown

PPL WPA PPL WPA WER

T10 102 22.5 121 20.7 38.9

T20 99 22.7 126 19.7 39.7

T30 96 22.9 118 21.3 38.6

T40 98 22.7 121 21.0 38.7

In sum, the results suggest that SSS has potential as a source of meta-information to

improve RNNLMs and if it has been captured at recording time, it can be used, either directly

on the test data, or for training SSS predictors. In cases in which no information has been

captured at recording time, topic discovery can be applied, but it seems that it is only worth

the effort in cases in which enough data is available to create high quality clusters.

Table 4.2 shows that under the oracle situation, both topic and POS improve the RNNME

4.7 Conclusions 105

the most when looking at WPA. However, neither topic nor POS help in speech recognition

N-best rescoring. This contradiction reveals that the small errors in topic and POS prediction

impact the performance of language models.

Finally, we turn to the topic of integrating ‘intrinsic’ meta-information into RNNLMs.

These results are reported in the line labeled TS (token size) and SL (sentence length) in

Table 4.2. Recall that intrinsic meta-information is particularly interesting since its use

has been largely overlooked in the literature on conventional language models. It is ‘free’

information in the sense that it can be derived directly, without the need for prediction.

Both with respect to WPA and with respect to WER, intrinsic meta-information is able to

achieve performance improvement over the RNNME baseline. The performance is slightly

more in the case of SL than in the case of TS. In conclusion, these results suggest that

intrinsic information, although trivial to derive, should not be considered trivial when it

comes to integrating meta-data into RNNLMs. Instead, this sort of ‘free’ information should

be exploited. It is capable of yielding a performance improvement of the same magnitude

of the one attainable by more costly methods that require the training of a meta-information

predictor.

We finish this section by noting the potential of combining multiple sources of meta-

information in order to achieve further improvement. Our experiments revealed, for exam-

ple, that combining predicted SSS information with SL information yields a WER of 37.7%,

a full 1% absolute improvement over the RNNME baseline.

4.7 Conclusions

In this paper, we investigated the integration of meta-information into RNNLMs. We looked

at three cases, the integration of word-level information using a Recurrent Neural Network

Tandem Language Model (RNNTLM) architecture, the integration of discourse level infor-

mation, and the integration of ‘intrinsic’ information, which can be derived directly without

prediction.

Our results yield interesting insights. First, we noted that performance improvement

that can be attained by using word-level meta-information is limited. However, the source

of these limitations appears to be a function of the information itself. Errors introduced by

the prediction of word-level information do not appear to be the limiting factor.

Second, we found that information on SSSs improves the performance. Again here,

prediction is not a limiting factor. Our results revealed that discourse-level information

is very difficult to exploit effectively in cases in which discourse-level information is not

recorded at the time the data was captured, automatically derived topics showed close to no

106 4 Integrating Meta-Information into Recurrent Neural Network Language Models

Table 4.4: Perplexity, word prediction accuracy (WPA) and word error rate (WER) results

with two or more features under the condition that meta-information is unknown

and known during testing.

Model Known Unknown

PPL WPA PPL WPA WER

POS +SSS 94 23.0 102 22.0 39.1

POS +SL 99 22.6 106 22.1 38.8

POS +lemma 96 22.7 107 22.1 38.7

POS +T30 89 23.6 115 21.8 39.2

POS +TS 97 22.7 108 21.9 38.3

SSS +T30 94 23.1 119 21.4 38.6

lemma+T30 97 23.0 113 21.6 38.8

TS +SL 110 21.8 110 21.8 38.2

SSS +SL 105 21.7 110 21.7 37.7

SSS +lemma+TS 104 22.3 106 22.3 37.6

POS +SSS +T30 85 24.1 109 22.0 38.3

POS +lemma+T30 88 23.7 115 21.6 38.4

POS +SSS +SL +lemma+TS +T30 84 23.9 105 21.8 38.4

4.7 Conclusions 107

improvement.

Finally, we have noted that the contribution that can be made by ‘intrinsic’ meta-information

should not be overlooked. In fact, information sources such as word and sentence length,

which are trivial to derive, can make a contribution to RNNLMs that rivals that of meta-

information that must be predicted. The best results can be achieved by judicious combina-

tion of intrinsic and predicted meta-information sources, with the combination of SSS and

sentence length achieving a full 1% absolute improvement over the RNNME baseline.

Chapter 5

Exploiting the succeeding words

in Recurrent Neural Network

Language Models 1

5.1 Abstract

In automatic speech recognition, conventional language models recognize the current word

using only information from preceding words. Recently, Recurrent Neural Network Lan-

guage Models (RNNLMs) have drawn increased research attention because of their ability to

outperform conventional n-gram language models. The superiority of RNNLMs is based in

their ability to capture long-distance word dependencies. RNNLMs are, in practice, applied

in an N-best rescoring framework, which offers new possibilities for information integra-

tion. In particular, it becomes interesting to extend the ability of RNNLMs to capture long

distance information by also allowing them to exploit information from succeeding words

during the rescoring process. This paper proposes three approaches for exploiting succeed-

ing word information in RNNLMs. The first is a forward-backward model that combines

RNNLMs exploiting preceding and succeeding words. The second is an extension of a Max-

imum Entropy RNNLM (RNNME) that incorporates succeeding word information. The third

is an approach that combines language models using two-pass alternating rescoring. Exper-

imental results demonstrate the ability of succeeding word information to improve RNNLM

1This chapter is a lightly modified version of the paper appearing in the Proceedings of Interspeech 2013. Y.

Shi, M. Larson, P. Wiggers, C. M. Jonker. Exploiting the succeeding words in Recurrent Neural Network Language

Models [144]. We would like to thank Xunying Liu and Geoffrey Zweig for their comments.

109

110 5 Exploiting the succeeding words in Recurrent Neural Network Language Models

performance, both in terms of perplexity and Word Error Rate (WER). The best performance

is achieved by a combined model that exploits the three words succeeding the current word.

5.2 Introduction

Most statistical language models decompose the probability of a word sequence into a prod-

uct of conditional probabilities of each word given its history, i.e., the preceding words. The

conventional n-gram language models use the previous n− 1 words as history. State-of-

the-art recurrent neural networks language models (RNNLM) [98, 101] theoretically can use

word information from arbitrarily long distances. However, conventional language models

use the assumption that the word wi is dependent only on words preceding it. In fact, any

given word within a sentence can be considered to be conditioned not only on preceding

words, but on succeeding words as well. For example, in the sentence “the dog barks”, the

occurrence of the word “dog” is strongly correlated with the occurrence of the succeeding

word “barks”. The conditional probability of “dog” given “the” is much smaller than the

conditional probability of “dog” given the succeeding word “barks”. This example demon-

strates the predictive potential of succeeding words, and motivates our use of both preceding

and succeeding words in language models.

This study investigates methods for integrating the predictive ability of succeeding words

of a sentence into RNNLM. Recent studies [98, 99, 101] have demonstrated that RNNLMs can

outperform the conventional n-gram language models. RNNLMs offer a unique opportunity

for exploiting succeeding words. Due to considerations of high computational complex-

ity, in most applications for automatic speech recognition, RNNLMs must be applied during

N-best rescoring. In other words, RNNLMs are, in practice, used to deal with complete sen-

tences or utterances. For this reason, information from succeeding words is available to be

exploited by RNNLMs.

This paper proposes new variety of RNNLMs that extend the ability of conventional

RNNLMs to integrate long-distance information from preceding words to also include in-

formation about succeeding words. Three approaches are discussed in this paper. The first

is a forward-backward model that combines RNNLMs exploiting preceding and succeeding

words. The second is an extension of a Maximum Entropy RNNLM (RNNME) that incorpo-

rates succeeding word information. The third is an approach that combines language models

using two-pass alternating rescoring.

The forward-backward model is the aggregation of a conventional forward RNNLM with

a backward RNNLM at the sentence level. In the second method, the present word wt and the

succeeding words wt+k (k ≥ 2) are used as input to the RNNLM to predict the next word wt+1.

5.3 Related work 111

In this case, the recurrent hidden layer in the RNNLM cannot be used to store information

from the succeeding words, because the information in the hidden layer will be further used

to predict succeeding words. For this reason, we propose a maximum entropy model that is

applied to combine the succeeding words by directly connecting the input to the output.

The rest of the paper is organized as follows. The next section covers relevant related

work. Section 3 introduces our approaches: forward-backward RNNLM, RNNME with suc-

ceeding words, and the two-pass alternating rescoring. Section 4 presents the results of the

evaluation of these models in term of perplexity and word error rate. Based on the experi-

ment results, Section 5 presents the conclusions.

5.3 Related work

In 2003, Bengio et al. [16] proposed a feed-forward neural networks language model, in

which they projected the vocabulary to a continuous feature vector space and directly ap-

plied the previous n− 1 word feature vectors as the input. Recurrent neural network lan-

guage models [98, 101] avoid this explicit modeling of the word history, by copying the

previous hidden layer into the current input layer. This equips the language model with a

compact memory to store previous long term history information. Additionally the RNNLM

maps the discrete vocabulary to a continuous space, which allows the language model to

better handle sparse data. In this paper, taking advantage of the fact that information from

the entire sentence is available when an RNNLM is applied for rescoring, we propose three

ways of integrating succeeding words into the language model in order to improve the per-

formance of the RNNLM.

One way to use the succeeding words in language models is to apply a forward-backward

modeling strategy. The bidirectional strategy has been applied in phoneme classification

[123, 133]. In language modeling, Duchateau et al. [46] showed that both the forward and

backward smoothed n-gram language models yielded nearly the same perplexity. However,

they did not use the backwards model to improve the word error rate (WER) performance of

n-gram language models in an automatic speech recognition task. Instead, they illustrated

the performance of backwards n-gram confidence measure using the metric described by

[147]. When a confidence measure is combined with the score from a backward language

model, a significant increase in terms of cross entropy was observed. The practical usage of

the backward n-gram language models for machine translation was demonstrated by Finch

and Sumita [53]. In this work, the scores from the forward decoder and the backward de-

coder are linearly interpolated with equal weights. Their bidirectional decoding got substan-

tial improvement over 272 different language pairs from 17 languages. The improvement

112 5 Exploiting the succeeding words in Recurrent Neural Network Language Models

that can be achieved in statistical machine translation by using a backward n-gram model

was demonstrated by Deyi Xiong et al. [169], who proposed to use a backward n-gram

language model and a mutual information trigger models to enhance language models in

phrase-based statistical machine translation. The novelty of our work is that we propose a

forward and backward strategy for RNNLM to the task of automatic speech recognition, and

specifically to rescoring N-best lists.

One of the methods that we propose to exploit succeeding words in RNNLMs makes

use of maximum entropy language models. These models have been applied to model the

whole sentence in speech recognition [127]. Each sentence is represented as a “bag of

features”. In fact, maximum entropy language models can be viewed as neural networks

with no hidden layer. Instead, they use a weight matrix directly connecting the input to

output layer [100]. Mikolov et al. [100] proposed to apply the maximum entropy model to

n-gram feature histories and use the result to update output of the RNNLM. However, they

do not take advantage of the succeeding-word information. In this paper, we extend the use

of maximum entropy language models in the RNNLM with succeeding words.

As already mentioned, our proposed approaches for integrating information from suc-

ceeding words is applied in speech recognition, for N-best rescoring. As is discussed in [4],

it becomes computationally challenging to incorporate language models that capture long

distance dependencies into a speech recognizer. Two-pass N-best rescoring is currently the

method most widely used to apply RNNLMs to the speech recognition. The standard rescor-

ing approach was proposed in [112]: one system computed the N-best hypotheses, a second

system rescored these hypotheses, and all the scores were combined to improve the overall

performance. Subsequently, in [152] the standard approach was modified to optimize the

combination weight with regards to average WER. In this paper, we propose a two-pass

alternating rescoring method for rescoring the N-best list. The advantage of our method

is that it helps to protect against the danger that combination weights for different models

falling into a local optimum.

5.4 RNNLM with succeeding words information

Our approaches are based on a state-of-the-art language model–RNNLM. The RNNLM has

an input layer x, a hidden layer h and an output layer y. Each time t, the input vector x(t)

consists of the current word vector w(t) as well as a copy h(t − 1) of the previous hidden

neurons. The activation function in the hidden layer is a sigmoid function. In the output

layer, the activation function is a softmax function. The weight matrix between layers is

estimated by back-propagation-through-time [100, 163].

5.4 RNNLM with succeeding words information 113

In this section, we present our proposed approaches: a forward-backward RNNLM, an

extension of RNNME with succeeding words, and an additional two-pass alternating rescor-

ing method for decoding that integrates succeeding words into sentence hypotheses scoring.

5.4.1 Forward-Backward RNNLM

Given a word sequence W = w1,w2, ...,wn, the RNNLM assigns the probability to W as

follows.

p(W) = ∏
i

p(wi|hi), (5.1)

where hi is the word history of word wi. As it is shown in the Equation 5.1, the RNNLM

predicts a word in the forward direction. We refer to this RNNLM as the forward RNNLM.

Different from the forward RNNLM, the backward RNNLM assigns the probability to W

in the reverse direction.

p(W) = ∏
i

p(wi|si), (5.2)

where si is the set 2 of succeeding words of wi in the word sequence W . The training of

the backward RNNLM uses the same algorithm as the forward RNNLM, but the order of the

words in the sentence is reversed during training.

There are many possibilities to combine the forward RNNLM and backward RNNLM.

This paper studies the following heuristic methods:

1. Sentence level linear interpolation (SI):

p(W) = λb ∏
i

p(wi|si)+λ f ∏
i

p(wi|hi). (5.3)

2. Word level geometric interpolation (WG)3:

p(W) = ∏
i

(p(wi|si)
αb p(wi|hi)

α f)
1

αb+α f , (5.4)

where αb ≥ 0 and α f ≥ 0.

3. Sentence level Maximization (SM):

p(W) = max{∏
i

p(wi|si),∏
i

p(wi|hi)}. (5.5)

2Not just the set (bag of words), but also the sequence of words are taken into consideration.
3It is actually also sentence level log linear combination.

114 5 Exploiting the succeeding words in Recurrent Neural Network Language Models

Method 1 treats the sentence as the basic unit which is scored by the forward RNNLM as

well as the backward RNNLM. Methods 2 and 3 may not generate the proper probabilities.

However, in perspective of N-best rescoring, method 2 simply is the linear interpolation of

language model logarithm scores. The interpolation weights in method 1 and 2 are tuned on

the development data set. Exploratory experimentation revealed that linear interpolation de-

teriorated the performance, supporting the conclusion that the logarithmic scale is the most

appropriate for interpolating the forward and backward probabilities. Method 3 actually is

an extreme case of method 2 under which one weight is zero in the interpolation.

5.4.2 Maximum Entropy Model Extension in RNNLM

In a maximum entropy model, the conditional probability of the current word given the

history features works as follows:

p(w|h) = exp∑N
i=1 λi fi(h,w)

∑w exp∑N
i=1 λi fi(h,w)

, (5.6)

where fi is one feature, λi is the weight for feature i and h is the history of features. In fact, it

can be viewed as a neural network language model, with the difference that the features are

continuous value and automatically learned from the history. Mikolov [100] implemented

the RNNME as an extension of RNNLM integrating the maximum entropy model that takes

advantage of the preceding n-gram features.

In this paper, we extend the RNNME with the succeeding words as it is depicted in Fig

5.1. The preceding word wt is treated as the input to recurrent neural networks as well as the

feature in the maximum entropy model. As we can see in Fig. 5.1, the succeeding words s

are connected by a dashed line to the output, which indicates that the succeeding words are

only treated as features to maximum entropy model. With the succeeding information, the

maximum entropy model has the following form:

p(w|c) =
exp(∑i λi fi(h,w)+∑ j λ jg j(s,w))

∑w exp(∑i λi fi(h,w)+∑ j λ jg j(s,w))
, (5.7)

where c contains the preceding and succeeding information. s are the succeeding word

features.

5.4.3 Two-Pass Alternating Rescoring

In addition to extending the RNNLM with succeeding words, we propose a two-pass alternat-

ing rescoring method to combine the conventional RNNLM with the RNNLM with succeed-

ing words in speech recognition. In the N-best rescoring paradigm [112], the combination

5.5 Experiments 115

weight is learned from held-out data, and then applied to the evaluation data. Finding the

optimal combination weight for each model is an unconstrained nonlinear global optimiza-

tion problem. The resulting optimum also determined using held-out data is typically a local

optimum. In order to avoid this situation, the two-pass alternating rescoring strategy uses a

filtering method to solve an optimization problem. As is discussed in [151], a global opti-

mization problem is better treated as a filtering problem when the objective function cannot

be exactly evaluated.

The two-pass alternating rescoring strategy works as follow. For two different language

models m1 and m2, N-best hypotheses N and ratio α ∈ (0,1),

1. The language model m1 is used to rescore the N-best hypotheses N, and the top α

portion of the best hypotheses are selected. N := α∗N,

2. The selected hypotheses are rescored by m2. The size of the N-best list is reduced

again, yielding a new N := α ∗N. Repeat begining with step (1) until only one hy-

pothesis is left, the best one.

In fact, at each iteration, a language model provides an optimized search space for the

next language model. An advantage is that this strategy can be directly applied to the target

data, as it does not require predetermined weights, which would need to be learned from an

additional source of data (i.e., held out data).

5.5 Experiments

The experiments are based on the Wall Street Journal (DARPA WSJ’92 and WSJ’93) data

sets, which is the same data sets used by Mikolov in [98]. The training corpus contains 37M

words from the New York Times section of the English Gigaword set with a vocabulary

of 195K words. An independent set of 230K words is used for testing (i.e., measuring

perplexity).

In the 100-best list set, 333 sentences are used as development data for tuning the in-

terpolation weights language model scores and the acoustic model score. The rest, 465

sentences, is used for evaluation.

Table 5.1 shows the perplexity and WER results of the baseline models and the proposed

models. ‘WER rescore’ designates the WER for the individual models. ‘WER alternating’ is

the word error rate after applying the two-pass alternating rescoring strategy to combine the

conventional RNNLM and the model indicated in the row.

There are four parts in Table 5.1. The top part is the results of the Kneser-Ney 5 order

n-gram language model (KN5) and the forward (conventional) RNNLM. A 5-gram model

116 5 Exploiting the succeeding words in Recurrent Neural Network Language Models

Table 5.1: Word error rate results on WSJ with 100 hidden neurons.

model WER(%) WER(%)

rescore alternating

KN5 17.30 -

RNNLM 16.83 -

RNNLM-B 16.55 16.03

RNNLM-SI 16.38 16.18

RNNLM-WG 15.69 15.44

RNNLM-SM 16.56 16.27

RNNME-P3 15.23 14.98

RNNME-S1 16.60 16.21

RNNME-S2 16.55 16.18

RNNME-S3 16.47 16.18

RNNME-P3S3 15.07 14.97

RNNME-B-P3S3 15.53 15.30

RNNME-SI-P3S3 15.24 15.04

RNNME-WG-P3S3 14.62 14.44

RNNME-SM-P3S3 15.48 15.24

5.5 Experiments 117

Figure 5.1: RNNME combine with succeeding words. wt denotes the preceding word,

wt+2, ...,wt+k the succeeding word. Dash represent that the preceding word

and the succeeding words are treated as features in maximum entropy langauge

models.

has been shown to provide good n-gram model performance on this data [52] and is used in

[98, 99, 101]. The second part gives the results from the backward RNNLM as well as three

different combinations of the backward RNNLM with the forward RNNLM. The results from

the RNNME and an extension of RNNME with succeeding words are given in the third part of

the table. The bottom part of the table shows the performance of the forward and backward

strategy in the RNNME with succeeding words. All the RNNLM models listed in the table

use 100 classes and 100 neurons in hidden layer. The weights of these models are trained

by 4 times backpropagation through time (BPTT) with block size 10. In two-pass alternating

rescoring, the decay ratio α is 0.9. In RNNME, all the models use 1 billion parameters to

represent preceding n-gram and succeeding words.

In the second part of Table 5.1, the results show that all the forward-backward RNNLM

improve over the RNNLM in terms of WER. The individual backward RNNLM (RNNLM-B)

achieves similar perplexity as the conventional RNNLM, but it reduces the WER by 0.28%

absolutely. Among the three forward-backward combination strategies, the word level ge-

ometric interpolation performs best. Used alone, it achieves 1.14% absolute reduction in

118 5 Exploiting the succeeding words in Recurrent Neural Network Language Models

WER. The additional two pass alternating rescoring further increases the reduction to 1.39%.

The third part of Table 5.1 gives the results from the RNNME and RNNME with succeed-

ing words. The ‘RNNME-P3’ designates a conventional RNNME that uses the preceding three

words. The ‘RNNME-S3’ designates an RNNME that uses the succeeding three words. The

‘RNNME-P3S3’ designates an RNNME that uses both the preceding and the succeeding three

words. The results indicate that using the maximum entropy model to integrate succeeding

words reduces the WER of the RNNLM. The RNNME with preceding and succeeding words

performs best, achieving a 1.86% absolute reduction in WER using the additional two-pass

alternating rescoring.

The bottom of Table 5.1 shows the results of combining the forward-backward strategy

with the maximum entropy model in the RNNLM. The RNNME with the preceding and

succeeding three words using word level geometric interpolation achieves the best result. It

reduces the WER from 16.83% to 14.62%.

Table 5.2 shows the results based on the neural networks with 200 hidden neurons. In

this table, we only focus on the combination of the forward-backward strategy and RNNME

with succeeding words, which obtains better performance than conventional RNNLM. How-

ever, ‘RNNME-WG-P3S3’ only gets small improvement over itself with 100 hidden neurons.

With an increased hidden layer size, both the forward-backward strategy and the maximum

entropy method are more effectively in exploiting succeeding information. The advantage

of the combination nearly vanishes.

To sum up, the three approaches proposed here to integrate succeeding words with

RNNLM all achieve improvement. In language model training, in terms of WER, the max-

imum entropy modeling performs better than a forward-backward strategy. However, the

forward-backward strategy in practice is more efficient than maximum entropy modeling:

under the forward-backward strategy, both forward RNNLM and backward RNNLM can be

trained in parallel, as they do not share parameters with each other. In RNNME, both the

succeeding words and preceding words are treated as features of the whole sentence, which

share the same huge size of hash vector. As we see from the two tables, in the decoding, the

additional two-pass alternating rescoring also helps to reduce the WER.

5.6 Conclusion

In order to make use of information both preceding and succeeding the present word in re-

current neural network language models for automatic speech recognition, three different

approaches were proposed in this paper. They were a forward-backward RNNLM, a RNNME

with succeeding words in language model training, and the two-pass alternating rescoring

5.6 Conclusion 119

Table 5.2: Word error rate results on WSJ with 200 hidden neurons

model WER(%) WER(%)

rescore alternating

RNNLM 15.48 -

RNNME-P3 14.91 14.89

RNNME-B-P3 15.02 14.91

RNNME-SI-P3 14.68 14.70

RNNME-WG-P3 14.75 14.51

RNNME-SM-P3 14.88 14.83

RNNME-P3S3 15.10 15.01

RNNME-B-P3S3 15.14 14.98

RNNME-SI-P3S3 14.75 14.54

RNNME-WG-P3S3 14.78 14.40

RNNME-SM-P3S3 15.02 14.80

in speech decoding. As variants of the forward-backward RNNLM, we implemented word

level geometric interpolation, sentence level linear interpolation and sentence level maxi-

mum selection to combine the forward RNNLM with backward RNNLM. The word level

geometric interpolation achieved the best results. Individually, with a hidden layer of size

100, it achieved an absolute WER reduction of 1.14%. It obtained an extra 0.25% of absolute

reduction when it was combined with the RNNLM using the two-pass alternating rescoring

approach. The integration of the RNNLM with succeeding words using maximum entropy

(RNNME) achieved an even larger improvement than the forward-backward RNNLM. When

the RNNME integrated the succeeding three words and used 100 hidden neurons the WER

was reduced by 11% relative to that of RNNLM. The combination of the three approaches ob-

tained the highest performance over RNNLM. It reduced the WER from 16.83% to 14.44%.

With an increased hidden-layer size, the combination of the three approaches still yielded

the best performance. However, it did not get noticeable improvement over itself probably

because of the duplication in the exploiting of succeeding word information.

This work has also opened some interesting questions for future investigation. The com-

parison of Table 5.1 and Table 5.2 reveals that with a larger hidden-layer size, the improve-

ment effect over the baseline model becomes smaller. We note that integrating information

from succeeding words information in RNNME also increases memory consumption. In

order to avoid hash table collision, a large hash vector has to be used. Our future work

120 5 Exploiting the succeeding words in Recurrent Neural Network Language Models

will investigate techniques to address this challenge. Furthermore, we will study the per-

formance of our proposed method under conditions in which the amount of training data is

severely limited. Under such conditions, we anticipate that the contribution of succeeding

words could be especially useful.

5.7 Acknowledgement

Many thanks to Tomas Mikolov for making the RNNLM Toolkit publicly available and for

helpful discussions.

Chapter 6

Speed Up of Recurrent Neural

Network Language Models1

6.1 Abstract

Recurrent neural network based language models (RNNLM) have been demonstrated to out-

perform traditional n-gram language models in automatic speech recognition. However,

the superior performance is obtained at the cost of expensive model training. In this pa-

per, we propose a sentence-independent subsampling stochastic gradient decent 2 algorithm

(SIS-SGD) to speed up the training of RNNLM using parallel processing techniques under

the sentence independent condition. The approach maps the process of training the overall

model into stochastic gradient descent training of submodels, of which the update directions

are aggregated and used as the weight update for the whole model. In the experiments, syn-

chronous and asynchronous SIS-SGD are implemented and compared. Using a multi-thread

technique, the synchronous SIS-SGD can achieve a 3-fold speed up without losing perfor-

mance in terms of word error rate (WER). When multi-processors are used, a nearly 11-fold

speed up can be attained with a relative WER increase of only 3%.

1This chapter is published in Interspeech 2013. Y. Shi, M, Hwang, K. Yao, M. Larson. Speed Up of Recurrent

Neural Network Language Models With Sentence Independent Subsampling Stochastic Gradient Descent [142].

A few supplementary remarks are provided as footnotes.
2Erratum: “decent” should be “descent”

121

122 6 Speed Up of Recurrent Neural Network Language Models

6.2 Introduction

Statistical language models play a crucial role in applications such as automatic speech

recognition, machine translation, spelling correction. They model probability distributions

over all possible word sequences in a language. Conventional n-gram language models have

dominated automatic speech recognition for years due to their simplicity, good performance

and robustness. However, they suffer in face of sparse data and their ability to capture long-

distance dependencies is insufficient.

It has been shown that both of these problems can be addressed by recurrent neural

network language models (RNNLM) [98, 101]. Conventional n-gram language models are

discrete in nature, and despite of smoothing techniques [31, 76], their ability to generalize

remains limited. In contrast, better generalization can be achieved by RNNLMs, which map

a discrete word to a point in a continuous space. In most practical applications, n-gram

language models predict the next word by conditioning only on two or three previous words.

However, in RNNLM, the recurrent connections between the input layer and hidden layer

theoretically can allow the information to cycle for an arbitrary length of time [98].

However, RNNLMs achieve their performance at the cost of expensive training. It is

also well known that it is difficult to speed up a RNNLM with parallel processing without

degrading performance because the SGD algorithm needs to update the weight of RNNLM

word by word. Because of the recurrent structure of an RNNLM, it is necessary to copy the

activations of the hidden layer from the previous word to the current input layer. In order to

support the copying process, RNNLMs are trained sequentially.

In order to make the parallel training of RNNLM possible, we propose a sentence-

independent subsampling stochastic gradient descent method (SIS-SGD) in this paper. In

SIS-SGD, we constrain RNNLM by imposing the condition of sentence independence. The

novel contribution of our approach is that it imposes a constraint on the history of a word

in a way that is shown to both enable parallelization and also retain the ability of RNNLM

to benefit from information cycling in the network. A second contribution is the trick of

subsampling to minimize perplexity increase.

This paper is organized as follows. In the next section, we present the relevant related

work. In Section 6.4, we explain the details of the SIS-SGD approach. In Section 6.5, we

use the Penn Treebank and the Wall Street Journal data sets to show its effectiveness. The

final section gives the conclusion.

6.3 Related work 123

6.3 Related work

In this section, we discuss the NNLM, RNNLM and SGD algorithms and speed up strategeies

that have been applied in the literature. Bengio et al. [16] proposed a neural probabilistic

language model using feed forward neural networks, in which the input is the preceding

n− 1-words. Their experiments showed that a NNLM can yield lower perplexity than con-

ventional smoothed n-gram language models. Even though NNLM is easier to speed up

by parallel processing [80, 134], compared with RNNLM, NNLM has two drawbacks. One

is that the length of preceding context information that NNLM uses to predict next word

is fixed. It is usually constrained to five to ten words, which is less the context used for

RNNLM. 3
NNLMs are shallower than RNNLMs in terms of contextual history. The recurrent

hidden layer effectively equips RNNLM with multiple hidden layers, which can learn more

abstract representation of the input. This effect is confirmed by the fact that an NNLM is

able to approach the performance of an RNNLM, when additional hidden layers are added

[7].

Most of the previous studies on speeding up NNLMs have focused on reducing the learn-

ing of the weight matrix from the hidden layer to output layer. In [135], the output of NNLM

was constrained to a short list of most frequent words. Bengio et al. [15] used an adap-

tive importance sampling strategy to reduce the computation. Xu et al. [171] also used a

subsampling strategy, but converted the multi-class prediction problem to a binary class pre-

diction problem. However, the subsampling strategy is influenced by noisy samples, which

make the model training unstable and difficult to adjust. Alternative to subsampling, [104]

proposed to use noise contrastive estimation to training NNLM. In [101], Mikolov proposed

the class-based RNNLM which used a simple and stable class trick to factorize the output

layer in RNNLM. These methods already reduced the computation of the weight learning

between the hidden layer and output layer to less than 1%. This class trick has been adopted

in NNLM parallel training by [80]. However, the parallelization in RNNLM has not been

addressed due to the constraints from recurrent neural networks and the SGD. In this paper,

we focus on the speed up of class-based RNNLMs via parallelization.

The online stochastic gradient descent (SGD) algorithm [81] has been extensively ap-

plied in neural networks, especially for large scale problems. Recently, [33] applied the

Map-Reduce for SGD parallelization. Under Map-Reduce, a master machine distributes the

computation of gradients to multiple slave machines, and then aggregates all the gradients

to perform a global update. However, this algorithm requires many passes of scanning

through the training data and many synchronization sweeps for convergence. In [92], the

3Erratum: “which is less the context used for RNNLM” should be “which is less than the context used by

RNNLM”.

124 6 Speed Up of Recurrent Neural Network Language Models

authors proposed to use a full batch SGD in each slave machine. Each slave machine thus

holds the data necessary to compute one update direction. In the end, the master machine

averages all the directions to get a final update direction. In this way, it significantly reduces

the cost of communication among processors. However, in each processor full batch SGD

was used and in practice the resulting perplexity performance was much worse than the sin-

gle machine SGD4. In [44, 45, 174], a similar parallel strategy for the deep neural network

learning is used. The parallel SGD proposed in [177] improved the algorithm in [92] by us-

ing online SGD in each slave processor rather than the full-batch SGD. In this paper, we also

use a similar algorithm to [177], in which each slave uses SGD to get an update direction,

the master aggregates all the directions to perform one iteration of parameter update. One

major difference in our SIS-SGD is that it uses subsampling instead of partitioning of the

training data. Our experimental results reflect the importance of subsampling.

In order to reduce the latency among processors, the paper [1, 38, 80, 120, 176] pro-

posed a variant parallel SGD algorithm—the asynchronous SGD—in which each slave per-

forms SGD to calculate each direction independently of the others and updates the shared

parameters on the master asynchronously. Specifically, each slave updates a delayed pa-

rameter vector. In [176] it was shown that the large delay, due to the fact that each slave

handles a significant subset of the training data, in fact degraded the model quality. In other

words, it is better if the slave can send parameter update directions to the master regularly

after a small number of SGD steps are performed. In many applications, such overhead is

acceptable. However, in RNNLM, the model has a huge number of parameters. The fre-

quent communication of parameters among processors will dilute the gain from parallel

processing. The parallelization approach in this paper attempts to minimize the overhead. 5

6.4 Sentence Independent Subsampling Stochastic Gradi-

ent Descent Algorithm

RNNLMs [98] generally have three layers: an input layer x, a hidden layer h and an output

layer y. At each time t, the input vector x(t) is constituted by the current word vector w(t)

as well as a copy h(t − 1) from the previous hidden neurons. The sigmoid function and

softmax function are used as the activation functions in the hidden layer and output layer,

respectively. In [101], the output layer consists of two groups of output units. The first

group represents the vocabulary; hence there are V output units if V is the vocabulary size

(UNK can be included). The second group represents classes; usually there are about 100-

4Here SGD means single machine sequential SGD.
5At the same time with no or minimum degradation on model quality.

6.4 Sentence Independent Subsampling Stochastic Gradient Descent Algorithm 125

200 class units used. For each input word w(t), it is mapped to a unique class, which is

connected to a constrained, fixed subset of output units in the first group that possibly can

be activated and thus, computed. 6

In the traditional RNNLM, the matrix weights between different layers are trained ac-

cording to the stochastic gradient descent algorithm. To apply RNNLM to large data sets, we

propose SIS-SGD.

Figure 6.1: The SIS-SGD algorithm

The SIS-SGD algorithm uses a master/slave scheme to carry out message passing among

different threads or processors. As shown in Figure 6.1, at each Map-Reduce iteration t,

all slaves start from the same parameter, W (t). Each slave randomly samples a subset of

the training data as its own training set, and runs the regular online SGD. After finishing

up its own samples, it computes the gradient direction from the initial W (t) to the currently

converged point at its own data set. These directions are then weighted and aggregated by

the master to compute the new parameter W (t +1):

W (t +1) =W (t)+
α

n
∗

n

∑
k=1

λk(t)∆Wk(t) (6.1)

6For each predicted word w(t +1), it is mapped to a unique class, which in turn activates and updates a subset

of connections from all hidden units to a subset of output units. The subset of output units correspond to all the

words that belong to the same class as w(t +1).

126 6 Speed Up of Recurrent Neural Network Language Models

where n is the number of slaves. ∆Wk(t) is the overall update direction that slave k learned

from its training subset. λk(t) is the weight for the direction from slave k.

In neural network training, the model benefits more from new patterns in the training

data. In this paper, we apply the following heuristic method to determine the weight λk.

λk(t) =
ln(Ek(t))

∑n
l=1(ln(El(t)))

, (6.2)

where Ek is the entropy of the subset training data in slave k. Usually new patterns of

training data are revealed by high entropy, and the directions calculated on the basis of

these new patterns should get more weight in the final update direction.

6.4.1 Sentence Independence

SIS-SGD operates under the assumption of sentence independence. In a standard RNNLM,

the prediction of the next word is based on the history information including previous sen-

tences. In fact, however, an infinite history is unnecessary in many applications. For ex-

ample, in voice search, there is not necessarily a strong relationship among sentences. At

the same time, although theoretically information in an RNNLM can cycle for an arbitrary

length of time, in practice, the span of the back-propagation-through-time algorithm that is

used to learn the weights, is limited. The study in [101] shows that after 4 to 5 steps, back

propagation through time has very little benefit.

At the same time, due to the random sampling at each slave, sentence dependency has

no real relevance. Section 6.5.2 will verify that assuming sentence independence has a

barely noticeable effect on the the perplexity of the trained model. Although in this work

we use sentence-level sampling, we expect our results to be generalizable to different units

of approximately the same size, e.g., utterances.

6.4.2 Running SGD inside each Slave

As we mentioned before in SIS-SGD, each slave updates its model replica by the standard

online SGD algorithm. It does not communicate with the master until it finishes training on

its own subset of samples, hence avoiding frequent messaging between slaves and master.

The master waits for all slaves to finish one iteration of training. Within each slave, the

direction is effectively computed via SGD, rather than mini-batch SGD or batch SGD.

6.4.3 Subsampling

An important principle of the subsampling in SIS-SGD is to make sure that the subsampled

sentences from each slave overlap with each other and that the union of all subsamples cover

6.5 Experiments 127

the original entire training set. Instead of doing true data parallelism, allowing overlaps

regularizes parallel SGD. After each iteration of parameter update at the master, we re-

shuffle the whole training data and continue to do subsampling, for additional regularization.

In SIS-SGD, we use subsampling instead of disjoint partitioning for two reasons: One

factor is determined by the special structure of RNNLM. In RNNLM, both the weight matrix

from the input word to the hidden layer and hidden layer to output word, are sparse and huge.

Partitioning leads to a situation in which each slave confronts a data sparseness problem in

producing an effective direction from its own subset. The other factor is the diversity of the

directions from each slave. Each partition of the training data can be quite different from

each other, which means that the directions from different partitions can conflict with each

other. The aggregation of these diverse directions from disjoint partitions can result in a very

small update for the overall parameter learning. The performance observed during our initial

exploratory experimentation was so severely degraded in the case of disjoint partitions, that

we did not consider the possibility further in the main experiments.

6.4.4 Practical Tricks for Robustness

In SIS-SGD, we use a smaller learning rate for the lower layer weight update [87]. Funda-

mentally, neural networks can be viewed as a combination of many different regressions.

Theoretically weights from different layers should use different learning rates. However, in

practice, only one learning rate is used for all the weights. However, the higher layer usually

has a larger gradient than the lower layer. A smaller learning rate on the lower layer avoids

divergence during training.

To accelerate the training of SIS-SGD, momentum [130] is applied in the master weight

update in SIS-SGD. The basic approach of momentum is to interpolate current weight up-

dates with the weight update history. The idea is that if the current updates are close to the

historical updates, the momentum will increase the current updates. Otherwise, current up-

dates will be reduced by the historical weight updates. This trick makes the training tolerant

to noise and also speeds up training.

6.5 Experiments

6.5.1 Data Set

To evaluate the proposed SIS-SGD algorithm, we use two different data sets. The first one is

Penn Treebank text data set (refered to as PTB). We use section 00-20 (972K word tokens)

for training, section 21-22 (77K words) for validation during the training, section 23-24

128 6 Speed Up of Recurrent Neural Network Language Models

Table 6.1: The perplexity and WER results of the sentence dependent (DEP) RNNLM and

sentence independent (INDEP) RNNLM reported on PTB and WSJ. RAND means

randomized training sequences.

model PPL WER(%) WER(%)

TEST DEV EVAL

PTB-RNN-DEP 138.7 - -

PTB-RNN-INDEP 136.6 - -

PTB-RNN-DEP-RAND 137.4 - -

PTB-RNN-INDEP-RAND 135.3 - -

WSJ-RNN-DEP 138.3 11.36 15.48

WSJ-RNN-INDEP 144.0 11.17 15.54

WSJ-RNN-DEP-RAND 139.4 10.88 15.66

WSJ-RNN-INDEP-RAND 140.6 11.15 15.69

(86K words) for testing. The vocabulary size for our experiment is 10K. We will measure

only the perplexity on the Penn Treebank data set.

The second data set is WSJ, for which we use 100-best speech recognition list from the

DARPA WSJ’92 and WSJ’93 data sets, as used by [98, 162]. In the 100-best list set, 333

sentences are used as development data for tuning the interpolation of language model score

and acoustic model score (DEV). The rest, 465 sentences, are used for evaluation (EVAL).

The oracle WER for development data and evaluation data are 6.1% and 9.5%, respectively.

The training corpus contains 37M words of running text from the NYT section of English

Gigaword. The validation data set contains 186K words. A held-out set of 230K words is

used for testing (TEST). The vocabulary size is 194K. Our experiments rescore the N-best

lists to compare various RNNLM models VS the baseline.

All the RNNLM models in our experiments have 200 hidden neurons and are trained us-

ing 4-step back propagation through time (BPTT). The baseline model is obtained using the

most recent version of RNNLM toolkit, in which the class-based SGD [101] is implemented.

We use 100 word-classes in all of our experiments. The other baseline model is a Kneser-

Ney 5-gram model, which has been shown to provide good n-gram model performance on

this data [52] and is used in [98, 99, 101]

6.5 Experiments 129

Table 6.2: The perplexity and N-best rescored WER results of RNNLM trained by parallel

SIS-SGD via multi-thread architecture on WSJ data. The ‘training data size’

column stands for the relative size of the slave training subset, compared to the

whole training data set. ’PPL’ shows the perplexity results on the test data.

model training data size training time PPL WER WER

(%) (hours) TEST DEV(%) EVAL(%)

KN5-base 100 - 174.5 12.09 17.30

RNNLM-base 100 77.5 140.6 11.15 15.69

8 threads 100 78.4 140.5 11.00 16.10

8 threads 50 65.9 138.5 10.77 15.84

8 threads 40 46.1 140.4 11.01 15.71

8 threads 25 33.6 144.4 11.07 15.99

16 threads 12.5 26.1 151.0 11.14 15.66

6.5.2 Sentence Independence Verification

As we discussed in previous sections, SIS-SGD imposes the condition of sentence indepen-

dence 7. Table 6.1 verifies that disrupting the sequences of sentences barely degrades the

performance of RNNLM. As a matter of fact, going from DEP to INDEP-RAND, there is a

small improvement in perplexity on PTB and a small degradation on WSJ. These experi-

ments provide evidence to support the strategies of our SIS-SGD: sentence independence

with randomization. Equally importantly, the randomization seems to regularize the con-

vergence, especially under sentence independent training.

6.5.3 Speed up with Multi Threads

On a single machine, we can apply our proposed parallel SIS-SGD to train RNNLM via

multi-thread architecture. The last row in Table 6.2 shows that the RNNLM model trained

by 16 parallel SIS-SGD threads achieves the best training speed without losing performance

in terms of word error rate (WER). Each slave thread trains a model replica on a subset of

12.5% of the whole training data. That is, the 16 threads together train twice (16∗12.5% =

2) as much the original data, yet with a 3-fold speedup. The price is the increased memory

requirement, as now 16 replicas of the models must be accommodated in memory, along

7This means that in the training on each sentence, we always start from a fresh sentence-begin symbol < s >,

and re-initialize the copied hidden part at the input layer.

130 6 Speed Up of Recurrent Neural Network Language Models

Table 6.3: The perplexity and WER results of RNNLMs trained by the parallel SIS-SGD on

WSJ data with different numbers of processors. ’*’ denotes that the model is

trained with more iterations (a lower stopping criterion).

model Training data size Training time PPL WER WER

WSJ (%) (hours) TEST DEV(%) EVAL(%)

KN5-base - 174.5 12.09 17.30

RNNLM-base 100 77.5 140.6 11.15 15.69

8p 25 33.7 146.9 11.19 15.70

16p 12.5 23.8 150.3 11.03 15.73

24p 8.3 27.2 148.9 11.01 15.67

32p 7.8 15.4 159.5 11.21 16.03

40p 5 19.7 154.7 11.10 15.92

48p 4.2 18.1 156.4 11.17 16.09

100p 2 11.2 172.5 11.41 16.16

*100p 2 27.4 142.0 11.14 15.62

with an additional copy on the master. In our case, our machine is an HP Z600 workstation

with 12GB of RAM and 4 cores.

6.5.4 Speed up with Multi-Processors

The single machine has limited resources in terms of both cores and memory. In order to

fully take advantage of distributed hardware architecture, we implemented a multi-process

version of the parallel SIS-SGD. The models listed in Table 6.3 are trained by an HPC cluster

via MPI processes.

In Table 6.3, the SIS-SGD models actually subsample the whole training data twice,

except for the one with 32 processes, where the original train data is processed 2.5 times.

When we used 32 processors, we achieved a 5-fold speed up with a relative 2% degradation

on the evaluation data in terms of WER. If we use 100 processors, we can speed up the

training by almost 7 times with relative 3% WER increase on evaluation data. We note

that the model can be further improved by additional 16 hours of training iterations. As it

is shown on the bottom of the table, SIS-SGD uses almost one third of the standard SGD

training time but results in a model with approximately the same quality performance.

6.6 Conclusions 131

6.5.5 Asynchronous SIS-SGD

Parallel SIS-SGD can also be implemented in an asynchronous manner. In [80, 176], the

master immediately updates the model when it receives the direction from any slave. Af-

terwards, the master directly sends the updated model back to the corresponding slave.

Basically, the master suffers extremely low inter-process latency as it does not require syn-

chronization among slaves. However, asynchronous communication introduces model pa-

rameter delay among slaves during training. In [176] it is shown that a small delay to the

master in fact improved the performance of the model as well as accelerated the training.

Large delay from the slave to the master in fact degraded the quality of the model. That is,

one would like to send updates to the master as frequently as possible8.

Figure 6.2 shows the whole training data entropy of our proposed synchronous SIS-SGD,

asynchronous SIS-SGD and baseline model against wall clock time. In both the synchronous

and asynchronous SIS-SGD, we use 8 processors, of which each has 25% of the whole

training data. Asynchronous SIS-SGD is implemented in the round-robin way in order to

obtain a deterministic result across different training runs. Hence it could have been faster

if no round-robin constraint were enforced.

As we can see in Figure 6.2, the synchronous SIS-SGD converges faster than the asyn-

chronous one. The probable reason is that with asynchronous SIS-SGD, model delay is too

large. The delay in this case is one model learned from the 25% of the whole training data.

Although asynchronous SIS-SGD reduces the inter-processor latency, the large model delay

actually slows the parameter convergence.

6.6 Conclusions

This paper has presented a sentence-independent subsampling stochastic gradient descent

method (SIS-SGD), in which RNNLM is trained in parallel under the condition of sentence

independence. In SIS-SGD, each slave trains a replica of the model on its own training data

subset, which is generated by subsampling instead of disjoint partitioning. In order to mini-

mize the data communication overhead, each slave sends its update to the master only after

it finishes one pass of SGD learning on its own training subset. The master aggregates all the

directions in a heuristic weighted way to perform the final model update, and then broad-

cast the updated model to all slaves to start the next iteration of training. The experimental

results showed that using a multi-thread technique, SIS-SGD can achieve a 3-fold speed up

without losing performance. Using the multi-process technique and taking advantage of 100

8However, this incurs high communication cost.

132 6 Speed Up of Recurrent Neural Network Language Models

0 50 100 150 200 250 300 350 400 450
6

7

8

9

10

11

12

wall clock time (20 sec)

P
T
B
tr
a
in
in
g
d
a
ta

e
n
tr
o
p
y

synchronous SSGD

asychronous SSGD

SGD

Figure 6.2: Whole training data entropy (Penn Treebank) of asynchronous parallel SIS-

SGD, synchronous parallel SIS-SGD and standard SGD against the wall clock

time. The parallel SIS-SGD use 8 processors, each of which has 25% of training

data.

processors, it can obtain a 7-fold speed up with a 3 percent relative degradation in terms of

WER by taking advantage of 100 processors.

6.7 Acknowledgements

The authors are grateful for the insights and discussions from Dong Yu, Frank Seide, Tomas

Mikolov and Puyang Xu, in addition to the technical help from Yong Ni.

Chapter 7

Conclusions and future research

7.1 Conclusions

In this section, the research questions in Chapter 1 will be answered, which were inspired

by the observation that “Language should be put back into language models” [126]. With

recently proposed advances and flexible computational paradigms, it becomes possible to

take into account additional information rather than just the word itself. This thesis proposes

language models with meta-information.

This thesis discusses different types of meta-information along with their corresponding

uses, such as discourse level information, sentence level information and word level infor-

mation. To apply meta-information in language models, we propose k-component adaptive

recurrent neural network language models (RNNLMs) using curriculum learning, recurrent

neural network tandem language models and forward and backward RNNLMs, which are

discussed in detail in Chapter 3, 4 and 5, respectively.

The discourse level meta-information discussed in this thesis includes topics and socio-

situational settings. The topics define the content of a discourse. The socio-situational

settings define the social restrictions of a discourse. The definition and classification of topic

information has been extensively investigated in e.g., information retrieval, natural language

understanding. However, only a few studies discuss the classification and application of

socio-situational settings in language modeling.

As is stated in Research Question 1, having the socio-situational settings and having a

method to classify the socio-situational setting, is a prerequisite for the usage of this infor-

mation in language models. In Chapter 2, on the basis of an experiment, we analyze and

extract the features that were used in human manual classification task of socio-situational

settings. These features include word tokens, function word tokens, part-of-speech tags,

133

134 7 Conclusions and future research

n-grams of part-of-speech tags, sentence length, function word ratio and single occurrence

word ratio. Based on these features, we propose a static automatic classification method

for socio-situational settings using support vector machines. This static method achieves

89.55% classification accuracy. Furthermore, according to the attributes of socio-situational

settings, we propose a dynamic socio-situational setting classification method using a Dy-

namic Bayesian Network that has the following advantages. One is that it can provide online

classification results to language modeling. The other one is that using the initial 25% of

the whole data, it obtains 95% of the accuracy achieved by classifiers that use the whole

data. The results in Chapter 2 also show that the proposed static and dynamic classification

methods achieve better classification accuracy than humans. Note that the dynamic clas-

sification method is specialized for socio-situational settings. More research is needed to

determine whether this dynamic classification method also achieves good results for other

types of meta-information. In order to use meta-information in language modeling, meta-

information needs to be available. Therefore, in this chapter, we not only propose methods

for socio-situational setting classification, but also propose a method to classify the socio-

situational setting on the fly.

In order to address Research Question 2 on how to effectively use discourse level meta-

information in language modeling, we propose k-component adaptive recurrent neural net-

work language models using a curriculum learning method. Using the curriculum learning

method, each component model is trained following a curriculum that starts from general

patterns, characteristic of the training data as a whole, to specific patterns, characteristic

of one specific sub-domain of the overall data. In Chapter 3, we propose three curriculum

learning methods, namely, Start-from-Vocabulary (SV), Data Sorting (DS) and All-then-

Specific (AS). The results confirm that by using curriculum learning methods, discourse

level meta-information adaptive RNNLMs outperform conventional RNNLMs. In Chapter 3,

we also show that implicit interpolation carried out by curriculum learning methods out-

performs traditional linear interpolation. As an implicit interpolation method, curriculum

learning can be used to update existing language models using only the newly collected

data, without retraining models from scratch by adding the yet-unseen data to the existing

data. Additionally, the results in this chapter also indicate that the performance of the pro-

posed methods is suitable for highly diverse data sets. This fact requires us to make sure

that the design of curricula should be based on the characteristics of the target data sets.

Part of Research Question 3 concerns combining sentence level meta-information into

recurrent neural network language models. The sentence level meta-information which we

address in this thesis is about the whole sentence word information. In Chapter 5, we focus

on handling the whole sentence information in RNNLMs. Conventional RNNLMs predict

7.1 Conclusions 135

the next word according to previous history information. In other words, the problem of

dealing with whole-sentence information basically concerns how to integrate information

on succeeding words into language models. In this thesis, three approaches for exploiting

succeeding-word information in RNNLMs are proposed. The first is a forward-backward

bidirectional recurrent neural network language model that exploits preceding and succeed-

ing words. The second approach uses a Maximum Entropy method that incorporates suc-

ceeding word information in recurrent neural network language models. The third one is

a two pass alternating rescoring method to combine the models exploiting both preceding

and succeeding words. In Chapter 5, the results show that the combination of these ap-

proaches generates best performance. The proposed approaches in this chapter are based

on the assumption that whole-sentence information is available in advance for language

models. This assumption may not be satisfied for other language models. RNNLMs offer a

unique opportunity to satisfy this assumption. Due to their high computational complexity,

in most applications for automatic speech recognition, RNNLMs are applied during N-best

rescoring. In N-best rescoring, the whole sentence information is available.

Research Question 3 also addresses how to integrate word level meta-information into

recurrent neural network language models. We attempt to represent each word by a set of

information that includes the part-of-speech of the word, the lemma of the word, the topic

which the word belongs to and the socio-situational setting in which the word occurs. The

application of meta-information from the word level in language modeling is addressed by

the proposed recurrent neural network tandem language models in Chapter 4. The RN-

NTLMs have two parts: one part for meta-information prediction from words, the other part

for integrating the predicted meta-information into RNNLMs. In the integration part of the

RNNTLMs, the input layer of RNNLMs is expanded with predicted meta-information. Not

only the current word, but also the current predicted meta-information is fed into RNNLMs.

Research Question 4 is addressed in Chapter 4. According to the results in this chapter,

using an oracle to provide the correct word level meta-information, all the proposed types

of meta-information help to improve RNNLMs. Especially, RNNLMs with POS and RNNLMs

with topics perform better than RNNLMs with other types of meta-information in terms of

perplexity and word prediction accuracy. Under the oracle situation, the experimental re-

sults also show that by combining more types of meta-information, RNNLMs can achieve

better performance. However, if the meta-information is unknown during testing, a meta-

information predictor has to be used. This holds for some types of meta-information such

as topics, socio-situational settings, and POS. The experimental results show that using the

predicted meta-information instead of the correct meta-information degrades the improve-

ment. Therefore, improving the prediction accuracy of meta-information predictors is an

136 7 Conclusions and future research

important direction of research in the future.

Note that some meta-information such as token size and sentence length, can be directly

obtained from the text without using a meta-information predictor. Although easy to extract,

the experiments show that these trivial features contribute in a non-trivial and robust way

in improving the performance of RNNLMs. In N-best rescoring, the best performance is

achieved by incorporating socio-situational settings, lemma and token size into RNNLMs.

As is shown in previous chapters, using meta-information improves the effectiveness of

RNNLMs, but it decreases the efficiency. In order to use RNNLMs in practice, the efficiency

problem has to be solved, which is addressed by Research Question 5. The computational

complexity of training RNNLMs is linear in the size of data set, however, the size of a

practical data set is prohibitively large for training RNNLMs. For example, on the WSJ data

set with 37M of words, the training of RNNLMs costs 77.5 hours. In practice, the size of

training data sets can be tens of billions of words. Training on such big data sets can cost

hundreds of days. Chapter 6 addresses this problem by using parallel processing techniques.

We propose a sentence-independent subsampling stochastic gradient descent algorithm to

speed up the training of RNNLMs. The approach maps the process of training the overall

model into stochastic gradient descent training of submodels. The update directions of

submodels are aggregated and used as the weight update for the whole model. Using a

multi-thread technique, the proposed algorithm can achieve a 3-fold speed up without losing

performance in terms of word error rate. When multi-processors are used, a nearly 11-fold

speed up can be attained with a relative small degradation of word error rate. In addition,

the proposed method has the potential to increase speed up in relation to the size of the data

set, i.e., the bigger the data, the bigger the speed up.

7.2 Future research

During our investigation of language modeling with meta-information, we found a number

of interesting problems worthy of further research work. In this section, we discuss a section

of the challenges that set the scene for future work.

In this thesis, we basically use discourse level meta-information such as socio-situational

settings and topics, sentence-level meta-information including succeeding words, and sen-

tence length and token-level meta-information such as part-of-speech tags, lemmas and to-

ken size, to improve recurrent neural network language models. However, there is other

meta-information that we could exploit to make language models better. One possible type

of meta-information is word encoding information. For example, in language such as En-

glish the sequence of letters within words carries information that reflects meaning and

7.2 Future research 137

syntactic function. It would be productive to further investigate how word encoding infor-

mation can benefit language models. Another potential type of meta-information is the word

embedding vector. The embedding vector for word i is defined as the vector of connections

from the input unit that represent word i to all the hidden units. Mikolov [102] shows that

semantically similar words have close embedding vectors.

Different model structures can be investigated to integrate meta-information. In this the-

sis, we use the forward-backward training strategy to put the succeeding word information

into recurrent neural network language models. An alternative method is to directly use

bi-directional recurrent neural networks [133]. In bi-directional recurrent neural networks,

the combination of the forward model and the backward model is optimized by the neural

network. This approach can possibly provide better optimization than our proposed models

described in Chapter 5.

New model structures can be exploited to improve the language models. The recurrent

neural network language model is a successful example of how a good model structure

can benefit language modeling. The structure of recurrent neural networks can improve

language models in terms of effectiveness, however it becomes time consuming to train such

a structure. The effective loop structure in RNNLMs forces the training of language models

in a sequential way, which makes it difficult to use parallel processing. New structures can

be investigated to balance effectiveness and efficiency.

One of the most challenging problems for recurrent neural network language models

is how to integrate them into real time speech recognition systems. Strategies and meth-

ods should be investigated from the perspective of using computationally complex language

models for online speech recognition. The recurrent neural network language models show

superior capability in language modeling. However, in practice they can only be applied

into speech recognition by a two-pass rescoring strategy. The speech recognition per-

formance can possibly achieve further improvement by embedding RNNLMs directly into

speech recognition.

In Chapter 3, Curriculum Learning is also used as an implicit interpolation method to

update the existing language models with newly collected data. This type of experimenta-

tion can be further extended to enable language models to learn new words that are not in

the old vocabulary. When new words appear, using curriculum learning, recurrent neural

network language models can be updated with new neurons and new connections related to

these new neurons by only learning from small amount of yet-unseen data containing these

new words.

Samenvatting

Taalmodellen spelen een cruciale rol in natuurlijke taalverwerking en -begrip. Beginnend

met de algemene structuren, taalmodellen zijn in staat natuurlijke taal te leren met rijke in-

voergegevens. Maar de meest avanceerde taalmodellen maken alleen gebruik van de woor-

den zelf, welke niet voldoende zijn om een taal te karakteriseren. In dit proefschrift ver-

beteren we recurrent neural networks voor taalmodellen (RNNLM) door ze te trainen met

additionele informatie. Verschillende methoden om de verschillende typen van additionele

informatie te integreren, worden in dit proefschrift voorgesteld.

Alle potentiele informatie afgezien van het woord zelf, die kan worden gebruikt om

taal te karakteriseren, wordt meta-informatie genoemd. In dit proefschrift stellen we voor

verschillende soorten meta-informatie te gebruiken zoals gespreksniveau informatie, welke

het gehele gesprek reflecteert, het zinsniveau, welke de structuur van de zin beschrijft en

morfologische informatie die het woord vanuit verschillende standpunten beschrijft.

Bijvoorbeeld, we bekijken de volgende Nederlandse paragraaf. < s > staat voor het

begin van de zin, < /s > staat voor het einde van de zin.

< s > kan allemaal nog natuurlijk < /s >

< s > maar ze ontlopen dan de groepswinnaar in elk geval in de kwartfinale < /s >

< s > en vooral Nederland wil graag in Rotterdam die kwartfinale spelen < /s >

< s > en dan moet er groepswinst behaald worden < /s >

< s > anders verhuizen ze naar Brugge en krijgt het Jan Breydelstadion Oranje dus op be-

zoek < /s >

< s > we gaan er even uit < /s >

< s > slotfase zit eraan te komen < /s >

< s > twee minuten nog tot het einde plus de toegevoegde tijd < /s >

< s > dat is uh toch nog ook wel een paar minuten denk ik < /s >

< s > maar de wedstrijd is gespeeld < /s >

Op gespreksniveau is deze paragraaf geclassificeerd als “Live commentaries (broad-

139

140 Samenvatting

cast)” vanuit het sociale situatie “SSS” perspectief en als “sport” vanuit het onderwerps-

perspectief. Op zinsniveau is elk woord behalve het begin woord < s > en het eindwoord

< /s >, geannoteerd met informatie over zijn voorafgaande woord en het volgende woord.

Beschouw bijvoorbeeld het woord “slotfase” in de volgende zin:

< s > slotfase zit eraan te komen < /s >

Dit woord heeft als voorgaande informatie “< s > dus de wonderen” en als volgende

informatie “zit eraan te komen </s>”. Op het woordniveau, zoals in Tabel 7.1 is weergege-

ven, is het woord “slotfase” geannoteerd door een vector met sommige van de voorgestelde

meta-informatie.

Tabel 7.1: woordniveau meta-informatie van het woord ”slotfase”

woord slotfase

SSS Live commentaries (broadcast)

onderwerp sport

token grootte 8

zinslengte 6

Op het gespreksniveau onderzoeken we classificatiemethoden voor sociale situaties en

onderwerp. Op het zinsniveau concentreren we ons op volgende-woord informatie en gehele-

zin informatie. In dit proefschrift is elk woord geannoteerd door een vector van verzamelde

meta-informatie.

Verschillende methoden worden voorgesteld om meta-informatie in taalmodellen op te

nemen. Op het gespreksniveau is een methode om het curriculum te leren gebruikt om

de sociale situatie en het onderwerp te combineren. Op het zinsniveau werden forward-

backward recurrent neural networks voor taalmodellen voorgesteld om volgende-woord en

gehele-zin informatie in taalmodellen op te nemen. Op het woordniveau werd elke woord

bewerkt op basis van zowel voorgaande woorden als voorgaande meta-informatie.

De resultaten laten zien dat meta-informatie kan worden gebruikt om de effectiviteit

van taalmodellen te verbeteren. Maar de resultaten laten ook zien dat het gebruik van meta-

informatie de trainingsefficiëntie van de taalmodellen doet dalen. We pakken dit probleem

aan door parallelle-verwerkingstechnieken toe te passen. Een subsampling stochastic gra-

dient descent algorithm is voorgesteld om de training van recurrent neural networks voor

taalmodellen te versnellen.

Yangyang Shi

Summary

Language modeling plays a critical role in natural language processing and understanding.

Starting from a general structure, language models are able to learn natural language pat-

terns from rich input data. However, the state-of-the-art language models only take ad-

vantage of words themselves, which are not sufficient to characterize the language. In this

thesis, we improve recurrent neural network language models (RNNLM) by training them

with additional information. Different methods of integrating the different types of additio-

nal information into RNNLMs are proposed in this thesis.

All the potential information beyond the word itself that can be used to characterize

the language is called meta-information. In this thesis, we propose to use different types

of meta-information to represent languages such as discourse level information, which is

reflected from the whole discourse, sentence level information which characterize the pat-

terns of sentences and morphological information which represents the word from different

perspectives.

For example, we consider the following Dutch paragraph. < s > represents sentence

beginning. < /s > stands for the sentence ending.

< s > kan allemaal nog natuurlijk < /s >

< s > maar ze ontlopen dan de groepswinnaar in elk geval in de kwartfinale < /s >

< s > en vooral Nederland wil graag in Rotterdam die kwartfinale spelen < /s >

< s > en dan moet er groepswinst behaald worden < /s >

< s > anders verhuizen ze naar Brugge en krijgt het Jan Breydelstadion Oranje dus op

bezoek < /s >

< s > we gaan er even uit < /s >

< s > slotfase zit eraan te komen < /s >

< s > twee minuten nog tot het einde plus de toegevoegde tijd < /s >

< s > dat is uh toch nog ook wel een paar minuten denk ik < /s >

< s > maar de wedstrijd is gespeeld < /s >

On the discourse level, this paragraph is labeled as “Live commentaries (broadcast)” from

141

142 Summary

the socio-situational setting (SSS) perspective and “sport” from the topic perspective. On

the sentence level, each word except for the beginning word < s > and ending word < /s >,

is annotated with its preceding word information and succeeding word information. For

example, we consider word “slotfase” in the following sentence.

< s > slotfase zit eraan te komen < /s >

This word has preceding information “< s >” and succeeding information “zit eraan te

komen </s>”. On the word level, as is shown in Table 7.2, the word “slotfase” is annotated

by a vector containing some of the proposed meta-information.

Tabel 7.2: word level meta-information of word “slotfase”

word slotfase

SSS Live commentaries (broadcast)

topic sport

token size 8

sentence length 6

On the discourse level, we investigate classification methods for socio-situational set-

tings and topics. On the sentence level, in this thesis, we focus on information such as

succeeding words information and whole sentence information. In this thesis, each word is

annotated by a vector containing the meta-information collected.

Different methods are proposed in this thesis to integrate the meta-information into lan-

guage models. On the discourse level, a curriculum learning method has been used to

combine the socio-situational settings and topics. On the sentence level, forward-backward

recurrent neural network language models have been proposed to integrate the succeeding

word information and whole sentence information into language models. On the word le-

vel, each word has been conditioned on its preceding words as well as on preceding meta-

information.

The results reported in this thesis show that meta-information can be used to improve the

effectiveness of language models at the cost of increasing training time. In this thesis, we

address this problem by applying parallel processing techniques. A subsampling stochastic

gradient descent algorithm has been proposed to accelerate the training of recurrent neural

network language models.

Yangyang Shi

Bibliography

[1] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In

Proceedings of the 51th IEEE Conference on Decision and Control, pages 5451–

5452, 2012.

[2] Andrei Alexandrescu and Katrin Kirchhoff. Factored neural language models. In

Proceedings of the Human Language Technology Conference of the NAACL, pages

1–4, 2006.

[3] Fredy A. Amaya and José M. Benedı́. Improvement of a whole sentence maximum

entropy language model using grammatical features. In Proceedings of 39th Annual

Meeting of the Association for Computational Linguistics, pages 10–17. Association

for Computational Linguistics, July 2001.

[4] Tomas Mikolov Anoop Deoras and Kenneth Church. A fast re-scoring strategy to

capture long-distance dependencies. In Proceedings of the 2011 Conference on Em-

pirical Methods in Natural Language Processing, pages 1116–1127, 2011.

[5] Juan Antonio, Perez-Ortiz, and Mikel L. Forcada. Part-of-speech Tagging with Re-

current Neural Networks. In Proceedings of International Joint Conference of Neural

Networks, pages 1588–1592, 2001.

[6] Shlomo Argamon, Moshe Koppel, and Galit Avneri. Routing documents according

to style. In Proceedings of First International Workshop on Innovative Information

Systems, 1998.

[7] Ebru Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. Deep

neural network language models. In Proceedings of the NAACL-HLT 2012 Work-

shop: Will We Ever Really Replace the N-gram Model? On the Future of Language

Modeling for HLT, pages 20–28, 2012.

143

144 Bibliography

[8] Alan D. Baddeley, Neil Thomson, and Mary Buchanan. Word length and the structure

of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14(6):575

– 589, 1975.

[9] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Ad-

dison Wesley, May 1999. ISBN 020139829X.

[10] Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and Robert Mercer. A tree-based

statistical language model for natural language speech recognition. IEEE Transac-

tions on Acoustics, Speech and Signal Processing, 37(7):1001–1008, 1989.

[11] Tomas Bayes. An essay towards solving a problem in the doctrine of chances. Phil.

Trans. of the Royal Soc. of London, 53:370–418, 1763.

[12] Jerome R. Bellegarda. A multispan language modeling framework for large vocabu-

lary speech recognition. IEEE Transactions on Speech and Audio Processing, 6(5):

456–467, 1998.

[13] Jerome R. Bellegarda. Statistical language model adaptation: review and perspec-

tives. Speech Communication, 42(1):93–108, 2004.

[14] Jerome R. Bellegarda, John W. Butzberger, Yen-Lu Chow, Noah B Coccaro, and

Devang Naik. A novel word clustering algorithm based on latent semantic analysis.

In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing, pages 172–175, 1996.

[15] Yoshua Bengio and Jean Sebastien Senecal. Adaptive importance sampling to accel-

erate training of a neural probabilistic language model. IEEE Transactions on Neural

Networks, 19(4):713 –722, april 2008.

[16] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Janvin. A neural

probabilistic language model. Journal of Machine Learning Research, 3:1137–1155,

2003.

[17] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of International Conference on Machine Learning, pages

41–48. ACM, 2009. ISBN 978-1-60558-516-1.

[18] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maximum

entropy approach to natural language processing. Computational Linguistics, 22:

39–71, 1996.

Bibliography 145

[19] Jeff A. Bilmes and Katrin Kirchhoff. Factored language models and generalized

parallel backoff. In Proceedings of the Conference of the North American Chapter

of the Association for Computational Linguistics on Human Language Technology,

pages 4–6, 2003.

[20] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

[21] Enrico Bocchieri, Diamantino Caseiro, and Dimitrios Dimitriadis. Speech recogni-

tion modeling advances for mobile voice search. In Proceedings of IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, pages 4888–4891,

2011.

[22] Peter F. Brown, John Cocke, Stephen Della Pietra, Vincent J. Della Pietra, Freder-

ick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A statistical

approach to machine translation. Computational Linguistics, 16(2):79–85, 1990.

[23] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and

Jenifer C. Lai. Class-based n-gram models of natural language. Computational Lin-

guistics, 18:467–479, 1992.

[24] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,

2011.

[25] Ciprian Chelba. A structured language model. In Association for Computational

Linguistics, pages 498–500, 1997.

[26] Ciprian Chelba and Frederick Jelinek. Exploiting syntactic structure for language

modeling. In Proceedings of the 17th international conference on Computational

linguistics, pages 225–231, 1998.

[27] Ciprian Chelba and Frederick Jelinek. Structured language modeling. Computer

Speech & Language, 14(4):283–332, 2000.

[28] Guangyu Chen and Ben Choi. Web page genre classification. In Proceedings of the

2008 ACM symposium on Applied computing, pages 2353–2357, 2008.

[29] Stanley Chen, Douglas Beeferman, and Ronald Rosenfeld. Evaluation Metrics for

Language Models. In DARPA Broadcast News Transcription and Understanding

Workshop (BNTUW), February 1998.

146 Bibliography

[30] Stanley F. Chen. Shrinking exponential language models. In Proceedings of Human

Language Technologies: The 2009 Annual Conference of the North American Chap-

ter of the Association for Computational Linguistics, pages 468–476. Association for

Computational Linguistics, 2009.

[31] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques

for language modeling. Technical report, 1998.

[32] Stanley F Chen, Kristie Seymore, and Ronald Rosenfeld. Topic adaptation for lan-

guage modeling using unnormalized exponential models. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 681–

684, 1998.

[33] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu, Gary R. Bradski, Andrew Y.

Ng, and Kunle Olukotun. Map-Reduce for Machine Learning on Multicore. In

Advances in Neural Information Processing Systems, pages 281–288, 2006.

[34] Kenneth W. Church and William A. Gale. Probability scoring for spelling correction.

Statistics and Computing, 1(2):93–103, 1991.

[35] Kenneth Ward Church. A stochastic parts program and noun phrase parser for unre-

stricted text. In Proceedings of the second conference on Applied natural language

processing, ANLC ’88, pages 136–143, Stroudsburg, PA, USA, 1988. Association

for Computational Linguistics.

[36] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20:273–297, 1995.

[37] Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical part-

of-speech tagger. In Proceedings of The Third Conference On Applied Natural Lan-

guage Processing, pages 133–140, 1992.

[38] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, MarcAurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,

and Andrew Y. Ng. Large scale distributed deep networks. In Advances in Neural

Information Processing Systems, 2012.

[39] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and

causation. Computational Intelligence, 5(3):142–150, 1989.

[40] Kris Demuynck. Extracting, Modelling and Combining Information in Speech

Recognition. PhD thesis, K.U.Leuven ESAT, 2001.

Bibliography 147

[41] Kris Demuynck, Tom Laureys, and Steven Gillis. Automatic generation of phonetic

transcriptions for large speech corpora. In Proceedings of Interspeech, volume I,

pages 333–336, 2002.

[42] Kris Demuynck, Jan Roelens, Dirk Van Compernolle, and Patrick Wambacq.

SPRAAK: An open source SPeech Recognition and Automatic Annotation Kit. In

Proceedings of Interspeech, pages 495–498, 2008.

[43] Kris Demuynck, Antti Puurula, Dirk Van Compernolle, and Patrick Wambacq. The

ESAT 2008 system for N-Best Dutch speech recognition benchmark. In IEEE work-

shop on automatic speech recognition and understanding, pages 339–343, 2009.

[44] Li Deng, Brian Hutchinson, and Dong Yu. Parallel training for deep stacking net-

works. In Proceedings of Interspeech, pages 2598–2601, 2012.

[45] Li Deng, Dong Yu, and John C. Platt. Scalable stacking and learning for building

deep architectures. In Proceedings of the IEEE International Conference on Acous-

tics, Speech and Signal Processing, pages 2133–2136, 2012.

[46] Jacques Duchateau, Kris Demuynck, and Patrick Wambacq. Confidence scoring

based on backward language models. In Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal Processing, pages 221–224, 2002.

[47] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[48] Jeffrey L. Elman. Learning and development in neural networks: the importance of

starting small. Cognition, 48(1):71 – 99, 1993.

[49] Ahmad Emami and Frederick Jelinek. A neural syntactic language model. Machine

Learning, 60(1-3):195–227, 2005.

[50] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

Liblinear: A library for large linear classification. Journal of Machine Learning

Research, 9:1871–1874, August 2008.

[51] Sergey Feldman, Marius A. Marin, Mari Ostendorf, and Maya R. Gupta. Part-of-

speech histograms for genre classification of text. In Proceedings of the IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, pages 4781 –4784,

april 2009.

[52] Denis Filimonov and Mary Harper. A joint language model with fine-grain syntac-

tic tags. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing, pages 1114–1123, 2009.

148 Bibliography

[53] Andrew Finch and Eiichiro Sumita. Bidirectional phrase-based statistical machine

translation. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing, pages 1124–1132, 2009.

[54] John R. Firth. A synopsis of linguistic theory, 1930-1955. Studies in Linguistic

Analysis, pages 1–32, 1957.

[55] Victoria Fromkin and Robert Rodman. An Introduction to language. New York:

Harcourt Brace Jovanovich, 1993.

[56] Daniel Gildea and Thomas Hofmann. Topic-based language models using EM. In

Proceedings of EUROSPEECH, pages 2167–2170, 1999.

[57] Daniel Gildea and Thomas Hofmann. Topic-based language models using EM. In

Proceedings of EUROSPEECH, pages 2167–2170, 1999.

[58] Joshua Goodman. Classes for fast maximum entropy training. In Proceedings of

IEEE International Conference onAcoustics, Speech, and Signal Processing, vol-

ume 1, pages 561–564 vol.1, 2001.

[59] Joshua T. Goodman. A bit of progress in language modeling. Computer Speech &

Language, pages 403–434, 2001.

[60] Peter A. Heeman. Pos tags and decision trees for language modeling. In Proceed-

ings of The Joint SIGDAT Conference on Empirical Methods in Natural Language

Processing and Very Large Corpora, pages 129–137, 1999.

[61] Aaron Heidel, Hung An Chang, and Lin Shan Lee. Language model adaptation using

latent dirichlet allocation and an efficient topic inference algorithm. In Proceedings

of Interspeech, pages 2361–2364, 2007.

[62] Jonathou Hull. Combining syntactic knowledge and visual text recognition: A hidden

markov model for part of speech tagging in a word recognition algorithm. In AAAI

symposium: Probabilistic Approaches to Natural Language, pages 77–83, 1992.

[63] Rukimini Iyer and Mari Ostendorf. Modeling long distance dependence in language:

Topic mixtures vs. dynamic cache models. IEEE Transactions on Speech and Audio

Processing, 7(1):236–239, 1999.

[64] Rukimini Iyer, Mari Ostendor, and Marie Meteer. Analyzing and predicting language

model improvements. In Proceedings of the IEEE Workshop on Automatic Speech

Recognition and Understanding., pages 254 – 261, 1997.

Bibliography 149

[65] Rukmini Iyer, Mari Ostendorf, and Jan Robin Rohlicek. Language modeling with

sentence-level mixtures. In Proceedings of the workshop on Human Language Tech-

nology, pages 82–87, 1994.

[66] Edwin Thompson Jaynes. Information Theory and Statistical Mechanics. Physical

Review Online Archive (Prola), 106(4):620–630, May 1957.

[67] Frederick Jelinek and Robert L. Mercer. Interpolated estimation of Markov source

parameters from sparse data. pages 381–397, May 1980.

[68] Frederick Jelinek and Robert L. Mercer. Probability distribution estimation from

sparse data. IBM Technical Disclosure Bulletin, 28:2591–2594, 1985.

[69] Frederick Jelinek, Bernard Mrialdo, Salim Roukos, and Martin J Strauss. A dynamic

language model for speech recognition. In Proceedings of the workshop on Speech

and Natural Language, pages 293–295. Association for Computational Linguistics,

1991.

[70] Thorsten Joachims. Text categorization with support vector machines: learning with

many relevant features. In Proceedings of 10th European Conference on Machine

Learning, pages 137–142, 1998.

[71] Jussi Karlgren and Douglass Cutting. Recognizing text genres with simple metrics

using discriminant analysis. In Proceedings of the 15th conference on Computational

linguistics, pages 1071–1075, 1994.

[72] Slava M. Katz. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. In IEEE Transactions on Acoustics, Speech and

Signal Processing, pages 400–401, 1987.

[73] Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction

program based on a noisy channel model. In Proceedings of the 13th conference on

Computational linguistics, pages 205–210, 1990.

[74] Judith Kessens and David A. van Leeuwen. N-Best: the Northern- and Southern-

Dutch benchmark evaluation of speech recognition technology. In Proceedings of

Interspeech, pages 1354–1357, 2007.

[75] Brett Kessler, Geoffrey Numberg, and Hinrich Schütze. Automatic detection of text

genre. In Proceedings of the eighth conference on European chapter of the Associa-

tion for Computational Linguistics, pages 32–38, 1997.

150 Bibliography

[76] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language

modeling. In Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing, pages 181–184, 1995.

[77] Reinhard Kneser and Volker Steinbiss. On the dynamic adaptation of stochastic lan-

guage models. In Proceedings of Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing-93, Minnapolis(USA), volume II, pages

586–589, April 1993.

[78] Roland Kuhn and Renato de Mori. A cache-based natural language model for speech

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12

(6):570–583, 1990.

[79] Roland Kuhn and Renato de Mori. A cache-based natural language model for speech

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12

(6):570–583, 1990.

[80] Hong-Kwang Jeff Kuo, Ebru Arisoy, Ahmad Emami, and Paul Vozila. Large scale

hierarchical neural network language models. In Proceedings of Interspeech, 2012.

[81] Harold Joseph Kushner and G. George Yin. Stochastic Approximation Algorithm and

Applications. New York: Springer-Verlag, 1997.

[82] William Labov. Sociolinguistic patterns. University of Pennsylvania Press, 1972.

[83] Thomas K Landauer and Susan T. Dutnais. Solution to Plato’s Problem: The Latent

Semantic Analysis Theory of Acquisition, Induction and Representation of Knowl-

edge. Psychological Review, (104), 1997.

[84] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An Introduction to Latent

Semantic Analysis. Discourse Processes, (25):259–284, 1998.

[85] Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of Bayesian classifiers.

In proceedings of the tenth national conference on artificial intelligence, pages 223–

228, 1992.

[86] Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Trigger-based language mod-

els: a maximum entropy approach. In Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal Processing, volume 2, pages 45 –48 vol.2,

april 1993.

Bibliography 151

[87] Yann LeCun, Leon Bottou, Genevieve B Orr, and Klaus Robert Müller. Efficient

BackProp. In G. Orr and K. Müller, editors, Neural Networks—Tricks of the Trade,

volume 1524, pages 5–50. Springer Verlag, 1998.

[88] Yong-Bae Lee and Sung Hyon Myaeng. Text genre classification with genre-

revealing and subject-revealing features. In Proceedings of the 25th annual interna-

tional ACM SIGIR conference on Research and development in information retrieval,

pages 145–150, 2002.

[89] Stephen C. Levinson. Activity types and language. Linguistics, 17.5-6:365–400,

1979.

[90] George James Lidstone. Note on the general case of the Bayes–Laplace formula for

inductive or a posteriori probabilities. Transactions of the Faculty of Actuaries, 8:

182–192, 1920.

[91] David J. C. Mackay. Information Theory, Inference and Learning Algorithms. Cam-

bridge University Press, first edition edition, 2003.

[92] Gideon Mann, Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, and Daniel D.

Walker. Efficient large-scale distributed training of conditional maximum entropy

models. In Advances in Neural Information Processing Systems, pages 1231–1239,

2009.

[93] Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural

language processing. MIT Press, Cambridge, MA, USA, 1999.

[94] Eric Mays, Fred J. Damerau, and Robert L. Mercer. Context based spelling correc-

tion. Information Processing and Management, 27(5):517–522, 1991.

[95] Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua Bengio. Investigation of

recurrent-neural-network architectures and learning methods for spoken language un-

derstanding. In Proceedings of Interspeech, page to appear, 2013.

[96] Tomas Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis,

Brno University of Technology, 2012.

[97] Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network

language model. In IEEE Workshop on Spoken Language Technology, pages 234–

239, 2012.

152 Bibliography

[98] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernocký, and Sanjeev Khudan-

pur. Recurrent neural network based language model. In Proceedings of Interspeech,

pages 1045–1048, 2010.

[99] Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukas Burget, and Jan ernock.

Empirical evaluation and combination of advanced language modeling techniques.

In Proceedings of Interspeech, pages 605–608, 2011.

[100] Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas Burget, and Jan Cernocký.

Strategies for training large scale neural network language models. In IEEE Work-

shop on Automatic Speech Recognition and Understanding, pages 196–201, 2011.

[101] Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan Cernocky, and Sanjeev Khu-

danpur. Extensions of recurrent neural network language model. In Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 5528 –5531, 2011.

[102] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. CoRR, abs/1301.3781, 2013.

[103] Piotr Mirowski, Sumit Chopra, Suhrid Balakrishnan, and Srinivas Bangalore.

Feature-rich continuous language models for speech recognition. In Proceeding of

IEEE Spoken Language Technology Workshop, pages 241–246, 2010.

[104] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural

probabilistic language models. In Proceedings of the 29th International Conference

on Machine Learning, pages 1751–1758, 2012.

[105] Kevin Patrick Murphy. Dynamic Bayesian Networks: Representation, Inference and

Learning. PhD thesis, University of California, Berkeley, 2002.

[106] Hermann Ney, Ute Essen, and Reinhard Kneser. On Structuring Probabilistic de-

pendencies in stochastic language modelling. Computer Speech and Language, 8,

1994.

[107] Thomas Niesler and Philip C. Woodland. Combination of word-based and category-

based language models. In Proceedings of International Conference on Spoken Lan-

guage, volume 1, pages 220–223 vol.1, 1996.

[108] Thomas R. Niesler, Edward W. D. Whittaker, and Philip C. Woodland. Compari-

son of part-of-speech and automatically derived category-based language models for

Bibliography 153

speech recognition. In Proceedings of the IEEE International Conference on Acous-

tics, Speech and Signal Processing, pages 177–180 vol.1, 1998.

[109] Nicolas Obin, Volker Dellwo, Anne Lacheret, and Xavier Rodet. Expectations for

discourse genre identification: a prosodic study. In Proceedings of Interspeech, pages

3070–3073, 2010.

[110] Nelleke Oostdijk. Building a corpus of spoken Dutch, 1999. URL http://lands.let.

kun.nl/cgn/.

[111] Nelleke Oostdijk, Wim Goedertier, Frank Van Eynde, Louis Boves, Jean Pierre

Martens, Michael Moortgat, and Harald Baayen. Experiences from the Spoken Dutch

Corpus project. In Araujo (eds), Proceedings of the Third International Conference

on Language Resources and Evaluation, pages 340–347, 2002.

[112] Marl Ostendorf, Ashvin Kannan, Steve Austin, Owen Kimball, Rich Schwartz, and

Jan Robin Rohlicek. Integration of diverse recognition methodologies through reeval-

uation of n-best sentence hypotheses. In Proceedings of the workshop on Speech and

Natural Language, pages 83–87, 1991.

[113] Judea Pearl. Probabilistic Reasoning in Intelligent Systems - Networks of Plausible

Inference. Morgan Kaufmann Publishers, Inc., 1988. ISBN 0-934613-73-7.

[114] Fuchun Peng and Dale Schuurmans. Combining naive Bayes and n-gram language

models for text classification. In 25th European Conference on Information Retrieval

Research, pages 335–350, 2003.

[115] Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of En-

glish words. In Association for Computational Linguistics, pages 183–190, 1993.

[116] Steven T. Piantadosi, Harry Tily, and Edward Gibson. Word lengths are optimized

for efficient communication. Proceedings of the National Academy of Sciences, 108

(9):3526–3529, January 2011.

[117] Stephen A. Della Pietra, Vincent J. Della Pietra, Robert L. Mercer, and Salim Roukos.

Adaptive language modeling using minimum discriminant estimation. In Proceed-

ings of the workshop on Speech and Natural Language, pages 103–106, 1992.

[118] Gerasimos Potamianos and Frederick Jelinek. A study of n-gram and decision tree

letter language modeling methods. 24(3):171–192, 1998.

154 Bibliography

[119] Lin Qiu and Jungang Xu. A chinese word clustering method using latent dirichlet al-

location and k-means. In International Conference on Advances in Computer Science

and Engineering, 2013.

[120] Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hogwild: A

lock-free approach to parallelizing stochastic gradient descent. In Advances in Neural

Information Processing Systems, pages 693–701, 2011.

[121] Klaus Ries, Lori Levin, Liza Valle, Alon Lavie, and Alex Waibel. Shallow discourse

genre annotation in callhome Spanish. In in Proceecdings of the International Con-

ference on Language Ressources and Evaluation, 2000.

[122] Tony Robinson and Frank Fallside. Word recognition from the DARPA resource

management datadata with the Cambridge recurrent error propagation network

speech recognition system. Computer Speech and Language, 5:362–367, 1991.

[123] Tony Robinson, Mike Hochberg, and Steve Renals. The use of recurrent networks

in continuous speech recognition. In C. H. Lee, K. K. Paliwal, and F. K. Soong,

editors, Automatic Speech and Speaker Recognition – Advanced Topics, pages 233–

258. Kluwer Academic Publishers, 1996.

[124] Ronald Rosenfeld. Adaptive Statistical Language Modeling: A Maximum Entropy

Approach. PhD thesis, School of Computer Science, Carnegie Mellon University,

1994.

[125] Ronald Rosenfeld. A maximum entropy approach to adaptive statistical language

modeling. Computer, Speech and Language, 10(3):187–228, 1996.

[126] Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go

from here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

[127] Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu. Whole-sentence exponential

language models: a vehicle for linguistic-statistical integration. Computer Speech

and Language, 15(1):55 – 73, 2001.

[128] Leon J. M. Rothkrantz and Dann Nollen. Speech recognition using elman neural

networks. In Text, Speech and Dialogue, pages 146–151, 1999.

[129] David E. Rumelhart, James L. McClelland, and CORPORATE PDP Research Group,

editors. Parallel Distributed Processing: Explorations in the Microstructure of Cog-

nition. MIT Press, Cambridge, MA, USA, 1986.

Bibliography 155

[130] Ralf Salomon and J. Leo Van Hemmen. Accelerating backpropagation through dy-

namic self-adaptation. Neural Networks, 9:589–601, 1996.

[131] Marina Santini. A shallow approach to syntactic feature extraction for genre classifi-

cation. In 7th Annual CLUK Research Colloquium, 2004.

[132] Marina Santini. Some issues in automatic genre classification of web pages. In In

JADT 2006 - 8mes Journes, 2006.

[133] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions of Signal Processing, 45(11):2673–2681, 1997.

[134] Holger Schwenk. Efficient training of large neural networks for language modeling.

In Proceedings of IEEE International Joint Conference on Neural Networks, pages

3059–3064.

[135] Holger Schwenk. Continuous space language models. Computer Speech and Lan-

guage, 21(3):492–518, 2007.

[136] Claude Elwood Shannon. Prediction and entropy of printed english. Bell Systems

Technical Journal, 30:50–64, 1951.

[137] Yangyang Shi, Pascal Wiggers, and Catholijn M Jonker. Language modelling with

dynamic bayesian networks using conversation types and part of speech information.

In The 22nd Benelux Conference on Artificial Intelligence, pages 154–161, 2010.

[138] Yangyang Shi, Pascal Wiggers, and Catholijn M. Jonker. Combining topic specific

language models. In Proceedings of the International Conference on Text, Speech

and Dialogue, pages 99–106, 2011.

[139] Yangyang Shi, Pascal Wiggers, and Catholijn M. Jonker. Socio-situational setting

classification based on language use. In IEEE workshop on automatic speech recog-

nition and understanding, pages 455 – 460, 2011.

[140] Yangyang Shi, Pascal Wiggers, and Catholijn M Jonker. Towards recurrent neural

networks language models with linguistic and contextual features. In Proceedings of

Interspeech, pages 1664–1667, 2012.

[141] Yangyang Shi, Pascal Wiggers, and Catholijn M. Jonker. Adaptive language mod-

eling with a set of domain dependent models. In Proceedings of the International

Conference on Text, Speech and Dialogue, pages 472–479, 2012.

156 Bibliography

[142] Yangyang Shi, Mei-Yuh Hwang, Kaisheng Yao, and Martha Larson. Speed up of

recurrent neural network language models with sentence independent subsampling

stochastic gradient descent. In Proceedings of Interspeech, page to appear, 2013.

[143] Yangyang Shi, Martha Larson, and Catholijn M Jonker. K-component recurrent neu-

ral network language models using curriculum learning. In IEEE workshop on auto-

matic speech recognition and understanding, page to appear, 2013.

[144] Yangyang Shi, Martha Larson, Pascal Wiggers, and Catholijn M. Jonker. Exploiting

the succeeding words in recurrent neural network language models. In Proceedings

of Interspeech, page to appear, 2013.

[145] Yangyang Shi, Pascal Wiggers, and Catholijn M. Jonker. Classifying the socio-

situational settings of transcripts of spoken discourses. Speech Communication, 55

(10):988 – 1002, 2013.

[146] Bengt Sigurd, Mats Eeg-Olofsson, and Joost Van Weijer. Word length, sentence

length and frequency—Zipf revisited. Studia Linguistica, 58(1):37–52, 2004.

[147] Man-Hung Siu and Herbert Gish. Evaluation of word confidence for speech recogni-

tion systems. Computer Speech & Language, 13(4):299–319, 1999.

[148] Rohini Srihari and Charlotte Baltus. Combining statistical and syntactic methods in

recognizing handwritten sentences. In AAAI symposium: Probabilistic Approaches

to Natural Language, pages 121–127, 1992.

[149] Efstathios Stamatatos, Nikos D. Fakotakis, and George K. Kokkinakis. Text genre

detection using common word frequencies. In Proceedings of the 18th conference on

Computational linguistics - Volume 2, pages 808–814, 2000.

[150] Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. Improvements in beam search.

In Proceedings of the International Conference on Spoken Language Processing,

pages 2143–2146, 1994.

[151] Panos Stinis. Stochastic global optimization as a filtering problem. Journal of Com-

putational Physics, 231(4):2002 – 2014, 2012.

[152] Andreas Stolcke, Yochai Knig, and Mitchel Weintraub. Explicit word error mini-

mization in n-best list rescoring. In Proc. EUROSPEECH, pages 163–166, 1997.

[153] Yi Su. Knowledge Integration Into Language Models: A Random Forest Approach.

BiblioBazaar, 2011.

Bibliography 157

[154] Yik-Cheung Tam and Tanja Schultz. Dynamic language model adaptation using vari-

ational bayes inference. In Proceedings of Interspeech, pages 5–8, 2005.

[155] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Academic

Press, 4th edition edition, 2009.

[156] Simon Tong and Daphne Koller. Support vector machine active learning with appli-

cations to text classification. Journal of Machine Learning Research, 2:45–66, March

2002.

[157] G. Udny Yule. On sentence-length as a statistical characteristic of style in prose:

With application to two cases of disputed authorship. Biometrika, 30(3/4):363–390,

1939.

[158] Joerg P. Ueberla. More efficient clustering of n-grams for statistical language mod-

eling. In Proceedings of EUROSPEECH, pages 1257–1260, 1995.

[159] Alan van den Bosch. Scalable classification-based word prediction and confusible

correction. Traitement Automatique des Langues, 46(2):39–63, 2006.

[160] Frank Van Eynde. Part of speech tagging en lemmatisering van het corpus gesproken

nederlands. Technical report, K.U.Leuven, 2004.

[161] Sofie Van Gijsel, Dirk Speelman, and Dirk Geeraerts. Locating lexical richness :

a corpus linguistic, sociovariational analysis. Les journes internationales danalyse

des donnes textuelles JaDT Proceedings of the 8th International Conferene on the

statistical analysis of textual data JADT, 2:961–972, 2006.

[162] Wen Wang and Mary P. Harper. The superARV language model: Investigating the

effectiveness of tightly integrating multiple knowledge sources. In Proceedings of

Conference of Empirical Methods in Natural Language Processing, pages 238–247,

2002.

[163] Paul J. Werbos. Backpropagation through time: what it does and how to do it. Pro-

ceedings of the IEEE, 78(10):1550–1560, 1990.

[164] Pascal Wiggers. Modelling Context in Automatic Speech Recognition. PhD thesis,

2008.

[165] Pascal Wiggers and Leon J. M. Rothkrantz. Dynamic bayesian networks for language

modeling. In Text and Speech and Dialogue, page 555–562, 2006.

158 Bibliography

[166] Pascal Wiggers and Leon J. M. Rothkrantz. Topic-based language modeling with

dynamic bayesian networks. In Proceedings of the Ninth International Conference

on Spoken Language Processing, pages 1866–1869, 2006.

[167] Pascal Wiggers and Leon J. M. Rothkrantz. Exploratory analysis of word use and

sentence length in the spoken Dutch corpus. In Proceedings of the International

Conference on Text, Speech and Dialogue, pages 366–373, 2007.

[168] Youzheng Wu, Xugang Lu, Hitoshi Yamamoto, Shigeki Matsuda, Chiori Hori, and

Hideki Kashioka. Factored language model based on recurrent neural network. In

Proceedings of International Conference of Computational Linguistics, pages 2835–

2850, 2012.

[169] Deyi Xiong, Min Zhang, and Haizhou Li. Enhancing language models in statisti-

cal machine translation with backward n-grams and mutual information triggers. In

Association for Computational Linguistics, pages 1288–1297, 2011.

[170] Peng Xu and Frederick Jelinek. Random forests in language modeling. In Proceed-

ings of EMNLP, pages 325–332, 2004.

[171] Puyang Xu, Asela Gunawardana, and Sanjeev Khudanpur. Efficient subsampling for

training complex language models. In Proceedings of EMNLP, pages 1128–1136,

2011.

[172] Hirofumi Yamamoto and Yoshinori Sagisaka. Multi-class composite n-gram based

on connection direction. In Proceedings of 1999 IEEE International Conference on

Acoustics, Speech, and Signal Processing, pages 533–536, 1999.

[173] Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang Shi, and Dong Yu. Re-

current neural networks for language understanding. In Proceedings of Interspeech,

pages 2524–2528, 2013.

[174] Dong Yu and Li Deng. Deep convex net: A scalable architecture for speech pattern

classification. In Proceedings of Interspeech, pages 2285–2288, 2011.

[175] Carole Zangari, Lyle Lloyd, and Beverly Vicker. Augmentative and alternative com-

munication: An historic perspective. Augmentative and alternative communication,

10(1):27–59, 1994.

[176] Martin Zinkevich, Alex Smola, and John Langford. Slow Learners are Fast. In

Advances in Neural Information Processing Systems 22, pages 2331–2339, 2009.

Bibliography 159

[177] Martin Zinkevich, Markus Weimer, Alex Smola, and Lihong Li. Parallelized stochas-

tic gradient descent. In Advances in Neural Information Processing Systems 23, pages

2595–2603, 2010.

[178] George K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley

(Reading MA), 1949.

Curriculum vitae

Yangyang Shi was born on June 19, 1983 in city of Yancheng, Jiangsu, P. R. China. He ob-

tained his BSc in Mathematics from Nanjing University of Information Science and Tech-

nology in 2006. He received his MSc in Mathematics from Southeast University in 2009.

From October, 2009 to October, 2013, he was a PhD student in Interactive Intelli-

gence Group, Delft University of Technology, the Netherlands. He was supervised by Prof.

Catholijn M. Jonker and Assist Prof. Pascal Wiggers from Interactive Intelligence Group,

and Assist Prof. Martha Larson from Multimedia Computing Group. His research topics

are data mining, machine learning and language modeling in automatic speech recogni-

tion. In 2012, Yangyang did an internship in Microsoft Asia on the use of multi-thread,

multi-processor and GPU techniques to speed up the training of RNNLMs, mentored by Dr.

Mei-Yuh Hwang and Dr. Kaisheng Yao.

161

