
Language Support for Changeable Large Real Time Systems

Ivar Jacobson

Ericsson Telecom or Swedish Institute of Computer Science
S-12625 Stockholm Box 1263
Sweden S-16313 Sp~lnga, Sweden

A set of concepts for modeling large real time systems is
discussed informally. The concepts support the design of
cenmtlized as well as distributed systems. They are object
oriented in that they correspond to entities of the 'real world',
and they are 'change oriented' in that they support not only the
first development stage of a system but also its continuous
change and evolution. In particularly, the concepts give a
promising solution to 'on the fly' changes of exislzng, active
entities.

I. INTRODUCTION

The work presented here was initiated in 1967, when a new set
of concepts was proposed for the development of large
telecommunication systems. The concepts were soon followed
by a skeleton of a new design method, the use of which was
fwst demonstrated in the development of the AgE system put in
service in Rotterdam in 1971.

In 1967 Ericsson had long traditions in the development and
production of large electromechanical telecommunication
systems. The original proposal can simply be summarized as
an attempt to u0ify long experience from systems design with
the possibilities offered by a dramatically new technology -
computer technology. Since the two technologies were so
different, this was not a self-evident approach, neither within
Ericsson nor within computer science. There was rather a
sm~ng attitude that the two represented unrelated, technological
universes: the new one was so different that it would be
meaningless and only burdening to make any attempt to learn
from the old one.

2. THE EARLY CONCEPTS

A real time system is an open system communicating with its
environment by signals only. A signal models the physical
stimulus/response communication which a concrete system has
when interacting with the outside world. Signals are typically
directed one-way with a 'send/no-wait' semantics. Each signal
has a unique name and carries a sequence of data objects, e.g.
the signal 'digit: value', which corresponds to the stimulus
sent when a subscriber dials a digit (with a particular value) in a
telephone number.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or diWibuted for direct commercial advantap.
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or q~'ific permission.

© 1986 ACM 0-89791-204-7/86/0900.0377 75g

A system offers, or is capable of performing, a set of services
(the Ericsson terminology is functions). Given an input signal,
a system performs internal actions such as executing
algorithms, accessing internal information, storing results, and
sending output signals to the environment.
The model just described represents one view of a system - the
most abstract view: the system as a black box. We call this
view 'the centralized view' to be distinguished from 'the
distributed view', which models the system as a set of
interconnected blocks (not to be confused with blocks as used
in sequential programming languages). Blocks arc modules
which can be implemented in hardware or software or any
combination of both. A block communicates with its
environment only through signals. Signals between two blocks
are internal, whereas signals modeling physical
communication, i.e. signals between a block and the
environment of the system, are external. Internal signals are
messengers conveying data from one block to another within
the same system. In the original suggestion, an internal signal
between two software blocks was proposed to be implemented
as a subroutine call (the sending action) from one block to a
labeled statement (the receiving action) representing the
beginning of the subroutine. (Recall that the original proposal
was given when programming real time systems in assembly
languages.)

Now, given the distributed view of a system, the sit, stem is a
set of interconnected blocks jointly offering the services of the
system. Each block has a program which it obeys on reception
of an input signal, performing internal actions (i.e. executing
algorithms, storing and accessing block internal information),
and sending internal and external signals to the environment.

The acceptance of the proposal was based on an intuitive
understanding of some very important features of blocks and
signals:

1) Blocks arc manageable units for the design, production,
installation, operation, maintenance, etc. of large systems.
This is a software engineering aspect of blc:ks, making
possible the division of the work on a large system into
parts that can be planned, worked, tested, produced
separately and then integrated as a system.

2) Blocks are units of encapsulation. The only means of
accessin~ the internals of a block is through a strictly
standardized signal protocol. Only the signal protocol is
visible from outside the block, the internal structure and
implementation being hidden to the user of the block.

3) Signals offer dynamic interconnection of blocks, for
instance a given block A can be interconnected to many
different other blocks, but in a given situation the receiver
block B is dynamically know'n to A as a data object. When

Septeml~ 1966 OOPSLA '86 Proceedings 377

A sends a signal to B, the actions taken is decided solely by
the receiver block B, and the sender block A specifies only
the signal name and the data object referring to B.

Given a signal the receiver decides, entirely at run-time,
what code to execute.

4) Signal communication means that the sender does not
walt for the receiver to be ready but continues with other
actions. The receiver can, when busy, queue the received
signal. The sender and the receiver work as two
autonomous subsystems and do not synchronize their
actions. Thus the risk of getting dead-locks is very small.

5) Blocks can be implemented using different techniques
for different blocks, e.g. different programming languages,
different computers or computer systems, different
hardware techniques, etc. Block decomposition therefore
supports adaptation to new technology without redesign (or
with delimited redesign).

The 2nd point is an important feature of data abstraction [15],
and the 3rd is an important feature which is called dynamic
binding in Smalltalk 80 ([7] and [20]) and similar languages
such as Objective-C [4].

Decomposition was guided by the following rules.

a) Service modularity or 'one service - one block' is the
primary objective of the decomposition. This principle is
especially easy to apply to optional services such as
operation and maintenance services.

However, a strict service modularity (one-to-one relation)
can only rarely be achieved since services normally require
access m the information of one another. Such accesses
require a (small) part of the accessing service to be
'allocated' to the block having the other service, and
signalling to and from that part.

b) Each type of input/output device is encapsulated by a
block, for instance an incoming trunk or an outgoing mink
line is enclosed by a block. Apart from the hardware of the
physical device, an input/output block also encloses the
(main) service defining the communication protocol of the
line connected to the device, and all parts of other se~ices
requiring access to data objects of the main service. An
input/output block in AKE contains typically about 25 parts
of services (primarily operation and maintenance services)
other than the one defining the protocol.

c) A data base should be enclosed by a block and thereby
only be accessible through signals to the block. Examples
are the analysis tree required to find the desired direction of
a call, or the data base for the switching network keeping
track of busy lines and busy interconnection paths.

Essentially the system modeling concepts and the design
method outlined in the late sixties are still in use in the design
of the AXE system which is the successor of the AKE system.
The main differences, and these are indeed very important [9],
are that not only external signals but also internal signals have a
'send/no-walt' semantics, that the program design activities use
a programming language that features this signal
communication, and that signalling has been implemented
through micro-programming with a technique that characterizes
capability-based computer systems (or object oriented
architectures) [14]. The design method and its careful
implementation have played an important role for the AXE-
system. The key feature of the system is its general
manageability over all related processes: marketing, projecting,
design, production, installation, operation and maintenance.

The system is considered remarkably easy to change: it
supports functional evolution and adaptation to new technique.

Apart from the AKE and the AXE systems, the concepts have
also been used for the MD110 system which is a digital PABX,
and for the AXB system which is a telex and data switching
system.

3. THE NEW CONCEPTS

Based on our experience from the AKE/AXE systems we
naturally would like to provide constructs to further decompose
a block into lower level blocks, which in their turn could be
decomposed...etc., until the lowest level blocks corresponded
to primitives of some types. Unfortunately, signal
communication, intended to model physical signaling with
'send/no-walt' semantics, is too explicit and does not offer the
desired abstraction. Instead another model was found, the
object/message model used in object oriented programming
(see survey in [19]), very close to our own block/signal
paradigm. The two design techniques, developed
independently and in parallel, have notably much in common
but they solve basically two different problems - 'large scale'
and 'small scale' systems. Blocks were only intended for the
more abstract entities of the system and primarily developed in
a top-down fashion from the requirements of an application.
Objects were primarily (but with exceptions) developed to
provide programmers with a tool-box used to meet the
requirements from an application; new objects were designed
on top of the existing ones.

We now give an intuitive description of the new concepts
developed since 1978 ([11] and [12]'). The concepts have
been concretized in the form of an example language FDL ([12]
and [13]). FDL is a programming language formally defined in
VDM ([1] and [2]) extended with CSP like constructs [10] for
specifying concurrency.

For our previous concepts, the block concept was the
cornerstone serving the combined purpose of supporting three
distinct structuring needs: to represent autonomous sub-
systems, m provide a service oriented structure, and m handle
data objects. The new concepts support these three needs by
three structural components reflecting the object orientation of
the model, and they provide two methods for communicating
among them. The structural components are three kinds of
classes (or types): blocks, services, and objects, all three with
dynamically created Instances. The two communication
methods are s ignals and messages. From earlier we will
recognize blocks and signals, although as will be described,
blocks now have a different role in comparison with their
earlier counterparts.

The new modeling concepts will bepresented in a 'bottom-up'
order as may be preferred by readers with some language
design experience, and only when required by an unknown
context will we distinguish a class such as an object from
instances of that class, i.e. instances of that object.

Objects

Objects are models of 'real world' entities manipulated by
services (or other objects) in the system.

Some objects are primitive and similar m 'built-in' data types,
e.g. integers, Booleans, etc. The other, non-primitive objects
are defined by designers; these objects respond m messages
from services and other objects and may refer to other objects,

* The research has been reported as a Ph. D. thesis [12] developed within
Ericsson, Stockholm, in cooperation with the Department of Computer
Systems of the Royal Institute of Technology in Stockholm.

378 OOPSLA '86 Proceedings September 1986

primitive or non-primitive, abstract objects.

Each abstract object possesses a data item indicating a current
node in a state transition graph (fig. 3) describing its overall
behavior. An action on an object is represented by a transition
between two state nodes in the graph. The transition is a
sequence of actions on other objects - primitive or abstract
(fig.l).

Messages

Actions on an object are invoked by receipt of messages
appropriate to the object's era'rent state. Every action is
acknowledged by a reply message to its invoker, possibly
can'ying result data. Hence a 'remote procedm~ call' [17] effect
occurs, with a state dependent selection of the appropriate
action, i.e. transition, to apply.

request

(
reply

Abstract
object

I?
Primitive

~..J objects

Fig. 1 Objects and messages.

The sender of a message waits until the matching reply
message is received before completing its own transition. This
is termed 'send/wait' semantics,

A message synchronizes its sender and receiver, but it also is a
carrier of 'data' known to the sender and, after the
communication act, also 'known' to the receiver. These 'data'
are objects or services - instances as well as classes.

Sitmals

From this perspective - as a carrier of'data', a signal is similar
to a message. However, a signal is directed one way, thus no
reply message is required from the receiver.

Furthermore, signals obey the 'send/no-wait' semantics
described previously. To achieve this semantics the sender and
the receiver, which are service instances, have an associated
port. A port contains a queue of received but not yet treated
signals and another queue of output signals not yet sent.

Signals are used for communication external to a system.
However, signals can be used within a system as well. Such
internal use of signals is quite appropriate when the coupling
between the sender and the receiver must not be synchronized
in any direct manner. For our concepts, such communication is
the basis for decomposing a system into blocks resulting in
distributed systems.

Services

A system offms or is capable of performing a set of services.

Services model the features of a system. Moreover, intuitively:

Some services are directly connected to an external user,
such as a subscriber, an operator, a maintenance person,
etc. This ex':*xnal user participates in a dialogue with the

service, triggering the step-by-step actions required to
accomplish the desired service.

Other services participate through another service in the
dialogue with an already connected user. Such services
represent an extended service to the user, e.g. the
ablxeviated dialling service.

Furthermore there are services, such as telephone calls, that
serve the combined purpose of being a communicating
panner to one user and an extended service to another. In
this case the two users participate in one way or the other in
the same course of events.

Statically a service encloses or possesses a set of abstract
objects. This 'possess' is used to facilitate putting together a
system as a set of services. We configure a system, i.e. a
block, by specifying the services only and do not need to
specify any lower level objects, since these always follow their
service. This 'possess' has nothing to do with how objects are
used dynamically which soon will be discussed.

ezterlml x2

Fig.2 Services and signals.

An input signal to the system triggers (fig.2) one of the
services, which obeying its state transition graph (fig.3)
performs actions on objects and, in its own turn, triggers
services by sending output signals. Some of these signals
cause the connection (or disconnection) of an extended sexvzce,
whereas others Irigger an already connected service.

G

e l

/
Fig.3 A state transition graph.

A .graph specifies the transition of a service or an object given
an input signal or a n:qnest message, respectively. A transition
of a service causes actions on objects to which the service
sends messages (and receives replies), and the delivery of
output signals to other services. A transition of an object is
restricted to actions on other objects and no signalling is
allowed.

Given an external input signal, the behaviour of the system is
detcmninisdc. The acdons performed by services are atomic,

September 1986 OOPSLA '86 Proceedings 379

i.e. logically instantaneous [8]. Hence, even if executed with a
high degree of concurrency (the usual case), the actions of the
set of service instances involved in a course of events always
appear to have been done in some overall sequential order.
This serialization is applied to the reception of input signals
with internal signals having a higher priority than external.
Implementation ideas of atomicity, particularly inspired by
[18], are discussed in [12].

A course of events, such as a telephone call, is an important
entity of the 'real world' which we model by a special semantic
conslruct simply called course. A course represents the set of
service instances interacting among themselves and with an
external user or a group of related external users. In an
implementation the consequences of a failure can now be
delimited to a course of events and does not require more
severe recovery actions. Moreover, since functional changes
can be made by changing each course of events atomically, the
course concept simplifies making functional changes 'on the
fly'.

In concrete terms, services may be thought of as generalized
objects that only communicate through signals with other
services - external or internal to the system. However, data
manipulated by services are generally separated into individual
objects, e.g. for reasons of increased modularity and
representation hiding. Objects play a totally internal role in
system structuring, while services provide external, application
oriented interfaces to them. Thus, to the external user, services
constitute the logical structure of the system, internally
manipulating objects which are invisible to the user for clarity
and system evolvability.

Blocks

Blocks model autonomous sub-systems, communicating
asynchronously with their environment. Compared with the
earlier block concept, blocks now statically have a limited role:
to model sub-systems, but not services or data bases.
Dynamically blocks serve as serializers for input signals to its
services.

Actually, a system as in the preceding sections is a block. For
instance, a telecommunication system is a block and a
corresponding telephone exchange is an instance of that block.

Therefore:

A block offers or contains a set of services (fig.4). The
communication between the block and its environment is
carried out by its services, which as is known only
communicate by using signals. Statically, a service contains
a set of service associated objects (fig.4) which are
accessible from other services within the same block, but
none is accessible to an external user.

block

services

Fig.4 The static, cenwalized view of a block.

Dynamically, a service (a service instance) participates in a
dialogue with an external user during which the service
performs actions on the objects and communicates with
signals with its user or with other services - external or

internal to the system. Actions are performed by sending
and receiving messages to objects.

'Data' carried by a message or a signal are references to objects
or services, classes as well as instances, known to the sender.
Accesses to primitive objects are allowed since these obj.ects are
globally known. Accesses to abswact objects or services are
restricted; the accessing one and the accessed one must both be
contained by the same block. However a reference to an object
or a service can without restrictions be used as 'data' in a
forthcoming signal.

We have now presented the centralized view of the block.
Another view - the distributed view - models the block as a set
of interconnected blocks. A block can be decomposed into
sub-blocks (fig.5) which express a plan for the physical
structure of a particular system implementation. Such
decompositions are pragmatically crucial but semantically
transparent. These 'lower level' blocks can also be modeled
from the two points of view - the centralized and the distributed
view.

block

V-1
Fig.5 The static, distributed view of a block.

A service of the 'top level' block is implemented by some of
the lower level blocks in cooperation. Ideally, a service is
implemented by one block only. However, since services can
access abstract objects of one another but an object can be
allocated to one block only, the larger services must be
partitioned over two or more blocks. In such cases the service
is partitioned into a number of service pans that are allocated to
exactly one block each and then, being a service of that block,
communicating with its 'siblings' through signals. Service
parts are located in blocks in such a manner that if they deal
with a particular object, they will as far as possible be allocated
to the block possessing that object.

Given the action atomicity and the decomposition transparency
requirements above, it suffices for semantic purposes to define
the effect of a single service responding to a single signal. This
semantic 'factorability', by the way, is an indication of the
simplified computational domain within which designers will
operate: each will be permitted the logical luxury of believing
he or she is the sole possessor of a stable data environment. Of
course there is much detail involved in the careful delineation of
all the steps in such an overall action.

f ~ m . I n h u i l t ~ t

Blocks, services and objects are structured in three different
class hierarchies, let alone with a common root. A new class
can be described in terms of an older, usually more general
class through a technique generally called inheritance [20]. The
new class (a sub-class) is specified by desc~bing how it differs
from the older class. In this hierarchy, lower level classes
inherit properties of higher level classes. A new block can be
designed as a sub-class of another block and can be given some
new or some changed services compared with that block. A
new service can be based on an existing service but with an
extended signal protocol, etc.

380 OOPSLA '86 ProoNdlngs September 1908

5. SYSTEM DEVELOPMENT

The separation of individual services can be maintained
throughout the specification and the design process. When
changes in existing services are required or when new services
are introduced, their specifications can easily be mapped into
modifications of the existing system documentation.
Therefore, this modularity is intended to be retained in current
system implementations, thereby increasing the general system
manageability.

A system soecification, possibly narrative, is the input to the
system design work (fig.6). We require from this document
that each service should be facgged out and specified separately
in a service stw,.cification. What constitutes a service is not
primarily a design decision, but a decision taken from a more
general management point of view, i.e. that services are the
handling units of the many important activities mentioned
previously.

system s p e c i f i c a ~

blaocC~nwitm~s~S.ces andYStem i . ~ ~

Fig.6 The system development steps using FDL.

1) Each specified service is directly, with a one to one
mapping, implemented by an FDL-service and its ~ct of
abstract objects. The FDL system can be verified and validated
against the system specification.

There arc occasions, however, when a system must be
implemented as a distributed system in the form of loosely
connected autonomous blocks, for instance a switching system
that must be divided into a subscriber sub-system and a group
selector sub-system. In such cases, the design process will be
divided into two more steps:

2) First, the system is decomposed into the requested set of
sub-blocks, and the services and objects arc allocated to these
sub-blocks. Objects are allocated as a whole, whereas services
may first need partitioning. The partitioning of services into
service parts and the allocation o f the parts to the sub-blocks
can, due to the support given by FDL, be done automatically
or with very little designer assistance. Note that top level
transitions will still be performed atomically even if several
sub-blocks participate and communicate through signals.

3) Next, we must loosen the interaction between the sub-blocks
and not requite transitions with two or more participating sub-
blocks to be atomic. Therefore, each sub-block is transformed
into an autonomous sub-system, i . e . a block 'loosely'
connected to the rest of the system. Since sub-blocks already

conununicate with signals, the designer's task is to take cam of
the problems that arise from changing the scope of atomicity.
Top level transitions are not atomic over different autonomous
blocks, only between the sub-blocks within a block. However,
this task can be greatly simplified by an appropriate tool.

The use of a formal language similar to FDL, fully supported
by tools, will result in systems with only a few number of
blocks, considerably fewer than was advocated by the early
design method. Services and objects are expected to replace
and even highly improve the modularity, which earlier only
could be given by blocks.

6. FUNCTIONAL EVOLUTION

Large systems will be subjected to continuous changes during
their entire lifetime. These changes originate both from
requirements of new or changed services and from
incorporation of new hardware techniques.

In an object oriented system, only two kinds of items cxist and
are relevant for changes: object classes and object instances.
This is due to the uniformity of the object world. Furthermore,
names in this world have the same form regardless whether
they refer to a primitive object instance or to an abstract object
instance.

The introduction of new classes followed by the creation of
new instances is easily explained in object oriented systems.
Such changes are naturally offered by these systems.

Apart from object classes and object instances, an FDL-system
is Inhabited by some more items: block Instances, services,
service instances and courses. A change in a system has
impact on almost all activities, two of the more important are
the system development activities and the operation and
maintenance activities of an installed system.

System development

Underlining the change orientation of the methodology, we
view the system development as a change activity, changing an
existing system into a new system. Thus, the first
development cycle is a change from 'nothing' to 'something'
(see [121).

Since the service concept directly models features or functions,
the design method supports functional evolution in a
straightforward manncr. In some cases a new service can be
designed without changing existing services. This case
includes a large number of functional changes due to the
dynamic binding of signals. This category also includes
chan~es where a new service only requires accesses to the
existing objects of another service. In other cases a new
service needs to bc invoked by an existing service. Such
changes, not required by the existing service itself but required
to introduce a new service, should be defined in association
with the new service. In the remaining cases, an existing
service must comply with new requirerocnts, and thus its
definition or, if a minor change, an object clef'tuition only must
be altered. Such a change will be made as an increment,
specifying what is removed and what is added, before
intc~r.ating the existing clef'tuition with the increment into a
resulting definition.

Ooemtion and maintenar~e

The first functional change of a concrete system is the
installation of a that system (change from 'nothing' to
'something'). First a new block (instance) is created to
represent the new system. The created block is originally
'empty', but will be changed by 'filling' it with behaviour. If

September 1986 OOPSLA '86 Proceedings 381

the block is undecompose& it will be 'f'dled' by creating a new
service class for each new, required service, and then each
service is given its expected behaviour. For each abstract object
contained by the service, a new object class is created and
given its specified behaviour. If the block is decomposed, it
will be 'filled' by creating instances of its lower level blocks,
and then these are 'filled' as a block in general is 'filled' with
the service perts making up the services of the block.

A subsequent functional change should be brought into the
system as an atomic action not 'disturbing' the externally
visible behaviour of the system. The following types of
changes must be covered by our method: (i) a new service is
incorporated, not requiting any change of the existing services,
(ii) an existing service or any of its objects must be changed,
but existing instances can follow the behaviour specified by the
old class, (iii) as the second case, but the existing instances
must be transformed into new instances following their new
classes. This is a most difficult problem.

Therefore we firmly believe that constructs must be provided to
precisely define the semantics of transforming an existing
version of a block instance into a new version of the same
block instance. We will in the following carefully describe the
support for functional evolution offered by our concepts. At
present, however, the formal definition of FDL does not
incorporate the full extended change facility - cases (ii) and (iii)
am not yet covered.

Functional evolution is of two types:

Extensions of existing behaviour, by which we mean that
new services are introduced but the existing services are not
changed. These changes are called/unct/ona/extensions.

Existing services are changed, which we simply call
functional changes. A new version of an existing service is
installed.

Functional Extensions

Let us refer to an existing set of services with their objects by
the invented word 'existion', and refer to the extended set of
services as an extension. There are only two kinds of relations
between an existion and an extension.

The extension requires no accesses or read accesses only to
an existion.

The extension requires control access (i.e. the extension
causes additional instructions to be executed) from an
existion, without changing the existion.

The first case means that the extension can use existing actions
on an object instance provided these actions do not change the
state of the object instance. This kind of changes is directly
supported by the service concept of FDL. A feature or a
function can be directly mapped onto an FDL-service.

The second case means that while an existion is executed
atomically, the extension may 'intervene' at specified points.
When the extension is executed, the control will be returned to
the existion which now continues its atomic action. More than
one extension may intervene in the execution of an existion. A
probe specifies where the intervention is required in the
execution of an existion.

We must provide such constructs so that the extension can be
described without changing the existion, i.e. the existing
service and object definitions. They must not be changed, since
they describe well working existing services which in this case
must not change. In fact, our design methodology advocates

that also the initial system design work makes use of this
technique for extensions when describing optional services.
Other languages, such as Ada [3], CHILL [6], CLU [16]
but also Smalltalk-80 [20] require that the second kind of
extensions make changes in existing, well working programs.
The result is often very messy after some extensions.

The idea is toprovide an extension service (or object) with a
list of probes (fig.7). A probe specifies an insertion point in
the graph of the extended service (or object). During
interpretation of a transition path, a service instance or an object
instance in the existion allows the desired statements of the
extension (service or object) to intervene.

AnExistlon Extensionl

3"

Extension2

Fig.7 Functional extensions.

An extension may itself be treated as an existion and be
intervened by another extension.

Since functional extensions do not change the behaviour of
existing services, these changes can be introduced in a single
step.

Linguistically, an extension can at first glance be viewed as a
new class inheriting its existion. However, there is a very
important difference. The normal class inheritance mechanism
allows the construction of a completely new service by using
an older class. This new service only uses the older class to
specify the behaviour of its instances. Instances of the new
service and instances of the old one may exist independently of
one another and they can execute independently of one another
in a system. For instance, a Call service can in this way be
used to defne a more specialised service, for simplicity called
Call+. Now, the Call service and the Call+ service can be
installed and executed independently.

However, class inheritance is not the phenomenon desired
here. Instead, an extension must exist together with its
existion; it always requires its.existion to be installed and it will
only be executed when its existioil is executed.

Here an existion is to be transformed into a new existion
(filg.8). The intention is to change the functional behaviour of
cresting services, retaining the same names. The new existion
can be viewed as a set of classes of normal type, inheriting the
behavionr of the older existion which is to be replaced.

In an active system, old existions must be transformed into
new existions.

1) As long as the change is not retroactive (existing instances
obey old classes), this is a simple problem. The existing class
coexists with the new class until no instances of the existing
class are alive. The meaning of a name must be extended.
Instead of one component, it should consist of two
components: the 'new' name and a version number. A

382 OOPSLA '86 Proceedings September 1986

Old Existion New Existion

f f ~ _ . _ " ~ An Increment

~ ~ A A D e c r e m e n t

Fig.8 Functional changes.

definition with a given name can exist in several versions; only
the last one is available for new installations. Formally, the 0th
version is 'empty'. The 1st version defines the change from an
empty definition to one that defines a released behavionr. The
2nd version defines an 'approved' change from the I st version.
Each new version is described as an increment to and a
decrement from the previous one (fig.8). When a new version
has been installed successfully, its definition can be integrated
with the previous one to a new definition which is efficient for
interpretation and which can be used for subsequent changes.

When two classes with the same name are in operation
simultaneously, all new creations are directed to the new class.
For instances with a short lifetime, the change will be in power
when all 'old' instances have been removed from the system.
For long-living instances, more powerful means must be used:

2) The problem is much worse i f existing instances must also
be changed to obey the new class. The solution to this problem
~is supported by the course concept of FDL. In an FDL system
the computational objects are instances of services and objects
within a block instance. Since the ongoing, independent
activities correspond uniquely to courses, it is sufficient to
change in one single step what is involved in a course.

To change a service instance or an object instance is to change
its class reference, its state and its variable references. Due to
the uniform reference mechanism, the semantics of a change
performed as an atomic action is seemingly easy to formalize.

For other conventional languages this would be a very hard
task since this simple mapping relation is not supported.
Changes must often be carried out simultaneously on several
objects. It is therefore very difficult to know exactly at any
given moment on which objects computation is carried out. In
languages like CHILL or Argus [17], the ongoing activities
are performed by processes (or guardians), but normally
several processes (guardians) jointly implement a course of
event. Therefore, simultaneous changes have to be made in
several processes (guardians).

6. Conclusions

From a general computer science perspective, FDL combines
several techniques currently believed to be useful for system
specification, design and implementation. These techniques
include object orientation, message based control, and atomic
actions.

In addition, FDL contains several new ideas which include:

The role of services for the logical structuring of real time
systems corresponding to a feature or a function,

The use of messages and signals iri combination,

The organization of an ongoing user activity as a course,
reducing the consequences of a failure and facilitating
functional evolution,

The idea of transparent service decomposition over sub-
blocks,

The modeling of a system from two related aspects: the
centalizod view and the distributed view,

The inclusion of source langua~gee features for system
evolution offering change orientation.

The new concepts are not only theoretically sound but, most
important, they can rely upon the long expertence from the use
of similar concepts for the development, operation and
maintenance of several large real time systems. Every single
design decision can be evaluated, at least through common
sense reasoning, against the firm experience from the whole
life cycle of several systems.

Therefore, the new modeling concepts concretized in the form
of a method supported by appropriate tools should result in a
significant reduction of the system life time costs. But, most
important, the customers of FDL designed systems should
discover that it is remarkably simple to perform functional
extensions and changes.

The object orientation of the language allows the different
system life time activities to deal with 'thin~' corresponding to
real world entities. For instance, our servtces correspond to
real world features or functions, service instances to uses of a
feature or a function, objects to externally perceived device
types of different kinds, etc. This simplifies the total system
handling activities by not requiring complicated translations
between internal and external enddes.

As a result, services corresponding to features or functions
will be the basic handling unit for not only design and
implementation but also for marketing, production,
installation, operation and maintenance.

Blocks, trust of all having the role to model asynchronous
sub-systems, will be composed products used to package
services into manageable sub-systems.

Objects, modeling device types, etc., will be lower level,
reusable components in the design of new services.

The early and new concepts have not only had an impact on
several systems developed within Ericsson, but they have also
inspired some of the more important language features of the
CCITT Specification and Description Language SDL [5]. This
circumstance has encouraged and convinced us about the
common usefulness of the model and its accompanying method
for large real time systems.

ACKNOWLEDGEMENTS

The author is indepted to the L.M. Ericsson Telephone Co. for
funding this research. He is also very grateful to professor
Lars-Erik Thorelli for his personal and professional support
and for his constructive criticism of the work.

REFERENCES

I 1] D. Bj~mer & C. B. Jones, The Vienna Development
Method: The Meta-Language, Springer-Verlag, 1978.

[21 D. Bjerner & P. Folkj~, A Formal Model of a
Generalized CSP-like Language, Proceedings of IFIP
80, 1980.

Septernl~or 1986 OOPSLA ~ Pr0ceedings 383

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[l l]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

O. Booch, Software Engineering with Ada" The
Benjamin/Cummings Publishing Company Inc., 1983.

B. Cox, Message/Object Programming: An
Evolutionary Change in Programming Technology,
IEEE Software, Voi.l, No. 1, Jan 1984.

C.C.I.T.T., Fascicle vi.ll, Functional Specification
and Description Language (SDL), Rec. z.100-z.104,
Geneva, 1984.

C.C.I.T.T., Fascicle vi.12, CHILL, Rec. z.200,
Geneva, 1984.

A. Goldberg & D. Robson, Smalltalk-80 The Language
and its Implementation, Adison-Wesley Publishing
Company, 1983.

J. Gray, The Transaction Concept: Virtues and
Limitations, IEEE Proceedings of the Seventh
International Conference on Very Large Data Bases,
Sept 1981.

G. Hemdal, AXE I0 - Software Structure and
Features, Ericsson Review 53, 1976.

C. A. R. Hoare, Communicating Sequential Processes,
Comm. of ACM, Voi. 21, No. 8, Aug 1978.

1. Jacobson, On the Development of an Experience-
based Specification and Description Language, IEE
Proceedings of Software Engineersng for
Telecommunication Switching Systems, July 1983.

I. Jacobson, Concepts for Modeling Large real Time
Systems, Department of Computer Systems, The Royal
Institute of Technology, Stockholm, Sept. 1985.

I. Jacobson, FDL: A Language for Designing Large
Real Time Systems, Proceedings of IFIP 86, Sept.
1986.

H. Levy, Capability-Based Computer Systems, Digital
Press, 1984.

B. Liskov & N. Zilles, Specification Techniques for
Data Abstractions, IEEE, Trans. on Software
Engineering, March 1975.

B. Liskov, et. al., CLU Reference Manual, MIT-
TR225, Oct 1979.

B. Liskov & R. Scheifler, Guardians and Actions:
Linguistic Support for Robust, Distributed Programs,
Massachusetts Institute of Technology, ACM
Transactions on Programming Languages and Systems,
Vol. 5, No. 3, July 1983.

D. Reed, Implementing Atomic Actions on
Decentralized Data, ACM Transactions on Computer
Systems, Vol. 1, No. 1, Feb 1983.

T. Rentsch, Object Oriented Programming, SIGPLAH
Nodces, Vol. 17, No. 9, 1982.

The Xerox Re~_rch Learning Group, The Smalltalk-80
System, Byte, Aug 1981.

