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A set of concepts for modeling large real time systems is 
discussed informally. The concepts support the design of 
cenmtlized as well as distributed systems. They are object 
oriented in that they correspond to entities of the 'real world', 
and they are 'change oriented' in that they support not only the 
first development stage of a system but also its continuous 
change and evolution. In particularly, the concepts give a 
promising solution to 'on the fly' changes of exislzng, active 
entities. 

I. INTRODUCTION 

The work presented here was initiated in 1967, when a new set 
of concepts was proposed for the development of large 
telecommunication systems. The concepts were soon followed 
by a skeleton of a new design method, the use of which was 
fwst demonstrated in the development of the AgE system put in 
service in Rotterdam in 1971. 

In 1967 Ericsson had long traditions in the development and 
production of large electromechanical telecommunication 
systems. The original proposal can simply be summarized as 
an attempt to u0ify long experience from systems design with 
the possibilities offered by a dramatically new technology - 
computer technology. Since the two technologies were so 
different, this was not a self-evident approach, neither within 
Ericsson nor within computer science. There was rather a 
sm~ng attitude that the two represented unrelated, technological 
universes: the new one was so different that it would be 
meaningless and only burdening to make any attempt to learn 
from the old one. 

2. THE EARLY CONCEPTS 

A real time system is an open system communicating with its 
environment by signals only. A signal models the physical 
stimulus/response communication which a concrete system has 
when interacting with the outside world. Signals are typically 
directed one-way with a 'send/no-wait' semantics. Each signal 
has a unique name and carries a sequence of data objects, e.g. 
the signal 'digit: value', which corresponds to the stimulus 
sent when a subscriber dials a digit (with a particular value) in a 
telephone number. 
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A system offers, or is capable of performing, a set of services 
(the Ericsson terminology is functions). Given an input signal, 
a system performs internal actions such as executing 
algorithms, accessing internal information, storing results, and 
sending output signals to the environment. 
The model just described represents one view of a system - the 
most abstract view: the system as a black box. We call this 
view 'the centralized view' to be distinguished from 'the 
distributed view', which models the system as a set of  
interconnected blocks (not to be confused with blocks as used 
in sequential programming languages). Blocks arc modules 
which can be implemented in hardware or software or any 
combination of  both. A block communicates with its 
environment only through signals. Signals between two blocks 
are internal,  whereas signals modeling physical  
communication, i.e. signals between a block and the 
environment of  the system, are external. Internal signals are 
messengers conveying data from one block to another within 
the same system. In the original suggestion, an internal signal 
between two software blocks was proposed to be implemented 
as a subroutine call (the sending action) from one block to a 
labeled statement (the receiving action) representing the 
beginning of the subroutine. (Recall that the original proposal 
was given when programming real time systems in assembly 
languages.) 

Now, given the distributed view of a system, the sit, stem is a 
set of interconnected blocks jointly offering the services of the 
system. Each block has a program which it obeys on reception 
of an input signal, performing internal actions ( i.e. executing 
algorithms, storing and accessing block internal information), 
and sending internal and external signals to the environment. 

The acceptance of the proposal was based on an intuitive 
understanding of some very important features of blocks and 
signals: 

1) Blocks arc manageable units for the design, production, 
installation, operation, maintenance, etc. of large systems. 
This is a software engineering aspect of blc:ks, making 
possible the division of the work on a large system into 
parts that can be planned, worked, tested, produced ..... 
separately and then integrated as a system. 

2) Blocks are units of encapsulation. The only means of 
accessin~ the internals of a block is through a strictly 
standardized signal protocol. Only the signal protocol is 
visible from outside the block, the internal structure and 
implementation being hidden to the user of the block. 

3) Signals offer dynamic interconnection of blocks, for  
instance a given block A can be interconnected to many 
different other blocks, but in a given situation the receiver 
block B is dynamically know'n to A as a data object. When 
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A sends a signal to B, the actions taken is decided solely by 
the receiver block B, and the sender block A specifies only 
the signal name and the data object referring to B. 

Given a signal the receiver decides, entirely at run-time, 
what code to execute. 

4) Signal communication means that the sender does not 
walt for the receiver to be ready but continues with other 
actions. The receiver can, when busy, queue the received 
signal. The sender and the receiver work as two 
autonomous subsystems and do not synchronize their 
actions. Thus the risk of getting dead-locks is very small. 

5) Blocks can be implemented using different techniques 
for different blocks, e.g. different programming languages, 
different computers or computer systems, different 
hardware techniques, etc. Block decomposition therefore 
supports adaptation to new technology without redesign (or 
with delimited redesign). 

The 2nd point is an important feature of data abstraction [15], 
and the 3rd is an important feature which is called dynamic 
binding in Smalltalk 80 ([7] and [20]) and similar languages 
such as Objective-C [4]. 

Decomposition was guided by the following rules. 

a) Service modularity or 'one service - one block' is the 
primary objective of the decomposition. This principle is 
especially easy to apply to optional services such as 
operation and maintenance services. 

However, a strict service modularity (one-to-one relation) 
can only rarely be achieved since services normally require 
access m the information of one another. Such accesses 
require a (small) part of the accessing service to be 
'allocated' to the block having the other service, and 
signalling to and from that part. 

b) Each type of input/output device is encapsulated by a 
block, for instance an incoming trunk or an outgoing mink 
line is enclosed by a block. Apart from the hardware of the 
physical device, an input/output block also encloses the 
(main) service defining the communication protocol of the 
line connected to the device, and all parts of other se~ices 
requiring access to data objects of the main service. An 
input/output block in AKE contains typically about 25 parts 
of services (primarily operation and maintenance services) 
other than the one defining the protocol. 

c) A data base should be enclosed by a block and thereby 
only be accessible through signals to the block. Examples 
are the analysis tree required to find the desired direction of 
a call, or the data base for the switching network keeping 
track of busy lines and busy interconnection paths. 

Essentially the system modeling concepts and the design 
method outlined in the late sixties are still in use in the design 
of the AXE system which is the successor of the AKE system. 
The main differences, and these are indeed very important [9], 
are that not only external signals but also internal signals have a 
'send/no-walt' semantics, that the program design activities use 
a programming language that features this signal 
communication, and that signalling has been implemented 
through micro-programming with a technique that characterizes 
capability-based computer systems (or object oriented 
architectures) [14]. The design method and its careful 
implementation have played an important role for the AXE- 
system. The key feature of the system is its general 
manageability over all related processes: marketing, projecting, 
design, production, installation, operation and maintenance. 

The system is considered remarkably easy to change: it 
supports functional evolution and adaptation to new technique. 

Apart from the AKE and the AXE systems, the concepts have 
also been used for the MD110 system which is a digital PABX, 
and for the AXB system which is a telex and data switching 
system. 

3. THE NEW CONCEPTS 

Based on our experience from the AKE/AXE systems we 
naturally would like to provide constructs to further decompose 
a block into lower level blocks, which in their turn could be 
decomposed...etc., until the lowest level blocks corresponded 
to primitives of some types. Unfortunately, signal 
communication, intended to model physical signaling with 
'send/no-walt' semantics, is too explicit and does not offer the 
desired abstraction. Instead another model was found, the 
object/message model used in object oriented programming 
(see survey in [19]), very close to our own block/signal 
paradigm. The two design techniques, developed 
independently and in parallel, have notably much in common 
but they solve basically two different problems - 'large scale' 
and 'small scale' systems. Blocks were only intended for the 
more abstract entities of the system and primarily developed in 
a top-down fashion from the requirements of an application. 
Objects were primarily (but with exceptions) developed to 
provide programmers with a tool-box used to meet the 
requirements from an application; new objects were designed 
on top of the existing ones. 

We now give an intuitive description of the new concepts 
developed since 1978 ([11] and [12]'). The concepts have 
been concretized in the form of an example language FDL ([12] 
and [13]). FDL is a programming language formally defined in 
VDM ([1] and [2]) extended with CSP like constructs [10] for 
specifying concurrency. 

For our previous concepts, the block concept was the 
cornerstone serving the combined purpose of supporting three 
distinct structuring needs: to represent autonomous sub- 
systems, m provide a service oriented structure, and m handle 
data objects. The new concepts support these three needs by 
three structural components reflecting the object orientation of 
the model, and they provide two methods for communicating 
among them. The structural components are three kinds of 
classes (or types): blocks, services, and objects, all three with 
dynamically created Instances.  The two communication 
methods are s ignals  and messages. From earlier we will 
recognize blocks and signals, although as will be described, 
blocks now have a different role in comparison with their 
earlier counterparts. 

The new modeling concepts will bepresented in a 'bottom-up' 
order as may be preferred by readers with some language 
design experience, and only when required by an unknown 
context will we distinguish a class such as an object from 
instances of that class, i.e. instances of that object. 

Objects 

Objects are models of 'real world' entities manipulated by 
services (or other objects) in the system. 

Some objects are primitive and similar m 'built-in' data types, 
e.g. integers, Booleans, etc. The other, non-primitive objects 
are defined by designers; these objects respond m messages 
from services and other objects and may refer to other objects, 

* The research has been reported as a Ph. D. thesis [12] developed within 
Ericsson, Stockholm, in cooperation with the Department of Computer 
Systems of the Royal Institute of Technology in Stockholm. 
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primitive or non-primitive, abstract objects. 

Each abstract object possesses a data item indicating a current 
node in a state transition graph (fig. 3) describing its overall 
behavior. An action on an object is represented by a transition 
between two state nodes in the graph. The transition is a 
sequence of actions on other objects - primitive or abstract 
(fig.l). 

Messages 

Actions on an object are invoked by receipt of messages 
appropriate to the object's era'rent state. Every action is 
acknowledged by a reply message to its invoker, possibly 
can'ying result data. Hence a 'remote procedm~ call' [17] effect 
occurs, with a state dependent selection of the appropriate 
action, i.e. transition, to apply. 

request 

( 
reply 

Abstract 
object 

I? 
Primitive 

~..J objects 

Fig. 1 Objects and messages. 

The sender of a message waits until the matching reply 
message is received before completing its own transition. This 
is termed 'send/wait' semantics, 

A message synchronizes its sender and receiver, but it also is a 
carrier of 'data' known to the sender and, after the 
communication act, also 'known' to the receiver. These 'data' 
are objects or services - instances as well as classes. 

Sitmals 

From this perspective - as a carrier of'data', a signal is similar 
to a message. However, a signal is directed one way, thus no 
reply message is required from the receiver. 

Furthermore, signals obey the 'send/no-wait' semantics 
described previously. To achieve this semantics the sender and 
the receiver, which are service instances, have an associated 
port. A port contains a queue of received but not yet treated 
signals and another queue of output signals not yet sent. 

Signals are used for communication external to a system. 
However, signals can be used within a system as well. Such 
internal use of signals is quite appropriate when the coupling 
between the sender and the receiver must not be synchronized 
in any direct manner. For our concepts, such communication is 
the basis for decomposing a system into blocks resulting in 
distributed systems. 

Services 

A system offms or is capable of performing a set of services. 

Services model the features of a system. Moreover, intuitively: 

Some services are directly connected to an external user, 
such as a subscriber, an operator, a maintenance person, 
etc. This ex':*xnal user participates in a dialogue with the 

service, triggering the step-by-step actions required to 
accomplish the desired service. 

Other services participate through another service in the 
dialogue with an already connected user. Such services 
represent an extended service to the user, e.g. the 
ablxeviated dialling service. 

Furthermore there are services, such as telephone calls, that 
serve the combined purpose of being a communicating 
panner to one user and an extended service to another. In 
this case the two users participate in one way or the other in 
the same course of events. 

Statically a service encloses or possesses a set of abstract 
objects. This 'possess' is used to facilitate putting together a 
system as a set of services. We configure a system, i.e. a 
block, by specifying the services only and do not need to 
specify any lower level objects, since these always follow their 
service. This 'possess' has nothing to do with how objects are 
used dynamically which soon will be discussed. 

ezterlml x2 

Fig.2 Services and signals. 

An input signal to the system triggers (fig.2) one of the 
services, which obeying its state transition graph (fig.3) 
performs actions on objects and, in its own turn, triggers 
services by sending output signals. Some of these signals 
cause the connection (or disconnection) of an extended sexvzce, 
whereas others Irigger an already connected service. 

G 

e l  

/ 
Fig.3 A state transition graph. 

A .graph specifies the transition of a service or an object given 
an input signal or a n:qnest message, respectively. A transition 
of a service causes actions on objects to which the service 
sends messages (and receives replies), and the delivery of 
output signals to other services. A transition of an object is 
restricted to actions on other objects and no signalling is 
allowed. 

Given an external input signal, the behaviour of the system is 
detcmninisdc. The acdons performed by services are atomic, 
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i.e. logically instantaneous [8]. Hence, even if executed with a 
high degree of concurrency (the usual case), the actions of the 
set of service instances involved in a course of events always 
appear to have been done in some overall sequential order. 
This serialization is applied to the reception of input signals 
with internal signals having a higher priority than external. 
Implementation ideas of atomicity, particularly inspired by 
[18], are discussed in [12]. 

A course of events, such as a telephone call, is an important 
entity of the 'real world' which we model by a special semantic 
conslruct simply called course. A course represents the set of 
service instances interacting among themselves and with an 
external user or a group of related external users. In an 
implementation the consequences of a failure can now be 
delimited to a course of events and does not require more 
severe recovery actions. Moreover, since functional changes 
can be made by changing each course of events atomically, the 
course concept simplifies making functional changes 'on the 
fly'. 

In concrete terms, services may be thought of as generalized 
objects that only communicate through signals with other 
services - external or internal to the system. However, data 
manipulated by services are generally separated into individual 
objects, e.g. for reasons of increased modularity and 
representation hiding. Objects play a totally internal role in 
system structuring, while services provide external, application 
oriented interfaces to them. Thus, to the external user, services 
constitute the logical structure of the system, internally 
manipulating objects which are invisible to the user for clarity 
and system evolvability. 

Blocks 

Blocks model autonomous sub-systems, communicating 
asynchronously with their environment. Compared with the 
earlier block concept, blocks now statically have a limited role: 
to model sub-systems, but not services or data bases. 
Dynamically blocks serve as serializers for input signals to its 
services. 

Actually, a system as in the preceding sections is a block. For 
instance, a telecommunication system is a block and a 
corresponding telephone exchange is an instance of that block. 

Therefore: 

A block offers or contains a set of services (fig.4). The 
communication between the block and its environment is 
carried out by its services, which as is known only 
communicate by using signals. Statically, a service contains 
a set of  service associated objects (fig.4) which are 
accessible from other services within the same block, but 
none is accessible to an external user. 

block 

services 

Fig.4 The static, cenwalized view of a block. 

Dynamically, a service (a service instance) participates in a 
dialogue with an external user during which the service 
performs actions on the objects and communicates with 
signals with its user or with other services - external or 

internal to the system. Actions are performed by sending 
and receiving messages to objects. 

'Data' carried by a message or a signal are references to objects 
or services, classes as well as instances, known to the sender. 
Accesses to primitive objects are allowed since these obj.ects are 
globally known. Accesses to abswact objects or services are 
restricted; the accessing one and the accessed one must both be 
contained by the same block. However a reference to an object 
or a service can without restrictions be used as 'data' in a 
forthcoming signal. 

We have now presented the centralized view of the block. 
Another view - the distributed view - models the block as a set 
of interconnected blocks. A block can be decomposed into 
sub-blocks (fig.5) which express a plan for the physical 
structure of a particular system implementation. Such 
decompositions are pragmatically crucial but semantically 
transparent. These 'lower level' blocks can also be modeled 
from the two points of view - the centralized and the distributed 
view. 

block 

V-1 
Fig.5 The static, distributed view of a block. 

A service of the 'top level' block is implemented by some of 
the lower level blocks in cooperation. Ideally, a service is 
implemented by one block only. However, since services can 
access abstract objects of one another but an object can be 
allocated to one block only, the larger services must be 
partitioned over two or more blocks. In such cases the service 
is partitioned into a number of service pans that are allocated to 
exactly one block each and then, being a service of that block, 
communicating with its 'siblings' through signals. Service 
parts are located in blocks in such a manner that if they deal 
with a particular object, they will as far as possible be allocated 
to the block possessing that object. 

Given the action atomicity and the decomposition transparency 
requirements above, it suffices for semantic purposes to define 
the effect of a single service responding to a single signal. This 
semantic 'factorability', by the way, is an indication of the 
simplified computational domain within which designers will 
operate: each will be permitted the logical luxury of believing 
he or she is the sole possessor of a stable data environment. Of 
course there is much detail involved in the careful delineation of 
all the steps in such an overall action. 

f ~ m . I n h u i l t ~ t  

Blocks, services and objects are structured in three different 
class hierarchies, let alone with a common root. A new class 
can be described in terms of an older, usually more general 
class through a technique generally called inheritance [20]. The 
new class (a sub-class) is specified by desc~bing how it differs 
from the older class. In this hierarchy, lower level classes 
inherit properties of higher level classes. A new block can be 
designed as a sub-class of another block and can be given some 
new or some changed services compared with that block. A 
new service can be based on an existing service but with an 
extended signal protocol, etc. 
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5. SYSTEM DEVELOPMENT 

The separation of individual services can be maintained 
throughout the specification and the design process. When 
changes in existing services are required or when new services 
are introduced, their specifications can easily be mapped into 
modifications of the existing system documentation. 
Therefore, this modularity is intended to be retained in current 
system implementations, thereby increasing the general system 
manageability. 

A system soecification, possibly narrative, is the input to the 
system design work (fig.6). We require from this document 
that each service should be facgged out and specified separately 
in a service stw,.cification. What constitutes a service is not 
primarily a design decision, but a decision taken from a more 
general management point of view, i.e. that services are the 
handling units of the many important activities mentioned 
previously. 

system s p e c i f i c a ~  

blaocC~nwitm~s~S.ces andYStem i . ~ ~  

Fig.6 The system development steps using FDL. 

1) Each specified service is directly, with a one to one 
mapping, implemented by an FDL-service and its ~ct of 
abstract objects. The FDL system can be verified and validated 
against the system specification. 

There arc occasions, however, when a system must be 
implemented as a distributed system in the form of loosely 
connected autonomous blocks, for instance a switching system 
that must be divided into a subscriber sub-system and a group 
selector sub-system. In such cases, the design process will be 
divided into two more steps: 

2) First, the system is decomposed into the requested set of 
sub-blocks, and the services and objects arc allocated to these 
sub-blocks. Objects are allocated as a whole, whereas services 
may first need partitioning. The partitioning of services into 
service parts and the allocation o f  the parts to the sub-blocks 
can, due to the support given by FDL, be done automatically 
or with very little designer assistance. Note that top level 
transitions will still be performed atomically even if several 
sub-blocks participate and communicate through signals. 

3) Next, we must loosen the interaction between the sub-blocks 
and not requite transitions with two or more participating sub- 
blocks to be atomic. Therefore, each sub-block is transformed 
into an autonomous sub-system, i . e .  a block 'loosely' 
connected to the rest of the system. Since sub-blocks already 

conununicate with signals, the designer's task is to take cam of 
the problems that arise from changing the scope of atomicity. 
Top level transitions are not atomic over different autonomous 
blocks, only between the sub-blocks within a block. However, 
this task can be greatly simplified by an appropriate tool. 

The use of a formal language similar to FDL, fully supported 
by tools, will result in systems with only a few number of 
blocks, considerably fewer than was advocated by the early 
design method. Services and objects are expected to replace 
and even highly improve the modularity, which earlier only 
could be given by blocks. 

6. FUNCTIONAL EVOLUTION 

Large systems will be subjected to continuous changes during 
their entire lifetime. These changes originate both from 
requirements of  new or changed services and from 
incorporation of new hardware techniques. 

In an object oriented system, only two kinds of items cxist and 
are relevant for changes: object classes and object instances. 
This is due to the uniformity of the object world. Furthermore, 
names in this world have the same form regardless whether 
they refer to a primitive object instance or to an abstract object 
instance. 

The introduction of new classes followed by the creation of 
new instances is easily explained in object oriented systems. 
Such changes are naturally offered by these systems. 

Apart from object classes and object instances, an FDL-system 
is Inhabited by some more items: block Instances, services, 
service instances and courses. A change in a system has 
impact on almost all activities, two of the more important are 
the system development activities and the operation and 
maintenance activities of an installed system. 

System development 

Underlining the change orientation of the methodology, we 
view the system development as a change activity, changing an 
existing system into a new system. Thus, the first 
development cycle is a change from 'nothing' to 'something' 
(see [121). 

Since the service concept directly models features or functions, 
the design method supports functional evolution in a 
straightforward manncr. In some cases a new service can be 
designed without changing existing services. This case 
includes a large number of functional changes due to the 
dynamic binding of signals. This category also includes 
chan~es where a new service only requires accesses to the 
existing objects of another service. In other cases a new 
service needs to bc invoked by an existing service. Such 
changes, not required by the existing service itself but required 
to introduce a new service, should be defined in association 
with the new service. In the remaining cases, an existing 
service must comply with new requirerocnts, and thus its 
definition or, if a minor change, an object clef'tuition only must 
be altered. Such a change will be made as an increment, 
specifying what is removed and what is added, before 
intc~r.ating the existing clef'tuition with the increment into a 
resulting definition. 

Ooemtion and maintenar~e 

The first functional change of a concrete system is the 
installation of a that system (change from 'nothing' to 
'something'). First a new block (instance) is created to 
represent the new system. The created block is originally 
'empty', but will be changed by 'filling' it with behaviour. If 
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the block is undecompose& it will be 'f'dled' by creating a new 
service class for each new, required service, and then each 
service is given its expected behaviour. For each abstract object 
contained by the service, a new object class is created and 
given its specified behaviour. If the block is decomposed, it 
will be 'filled' by creating instances of its lower level blocks, 
and then these are 'filled' as a block in general is 'filled' with 
the service perts making up the services of the block. 

A subsequent functional change should be brought into the 
system as an atomic action not 'disturbing' the externally 
visible behaviour of the system. The following types of 
changes must be covered by our method: ( i)  a new service is 
incorporated, not requiting any change of the existing services, 
(ii) an existing service or any of its objects must be changed, 
but existing instances can follow the behaviour specified by the 
old class, (iii) as the second case, but the existing instances 
must be transformed into new instances following their new 
classes. This is a most difficult problem. 

Therefore we firmly believe that constructs must be provided to 
precisely define the semantics of transforming an existing 
version of a block instance into a new version of the same 
block instance. We will in the following carefully describe the 
support for functional evolution offered by our concepts. At 
present, however, the formal definition of FDL does not 
incorporate the full extended change facility - cases (ii) and (iii) 
am not yet covered. 

Functional evolution is of two types: 

Extensions of existing behaviour, by which we mean that 
new services are introduced but the existing services are not 
changed. These changes are called/unct/ona/extensions. 

Existing services are changed, which we simply call 
functional changes. A new version of an existing service is 
installed. 

Functional Extensions 

Let us refer to an existing set of services with their objects by 
the invented word 'existion', and refer to the extended set of 
services as an extension. There are only two kinds of relations 
between an existion and an extension. 

The extension requires no accesses or read accesses only to 
an existion. 

The extension requires control access (i.e. the extension 
causes additional instructions to be executed) from an 
existion, without changing the existion. 

The first case means that the extension can use existing actions 
on an object instance provided these actions do not change the 
state of the object instance. This kind of changes is directly 
supported by the service concept of FDL. A feature or a 
function can be directly mapped onto an FDL-service. 

The second case means that while an existion is executed 
atomically, the extension may 'intervene' at specified points. 
When the extension is executed, the control will be returned to 
the existion which now continues its atomic action. More than 
one extension may intervene in the execution of an existion. A 
probe specifies where the intervention is required in the 
execution of an existion. 

We must provide such constructs so that the extension can be 
described without changing the existion, i.e. the existing 
service and object definitions. They must not be changed, since 
they describe well working existing services which in this case 
must not change. In fact, our design methodology advocates 

that also the initial system design work makes use of this 
technique for extensions when describing optional services. 
Other languages, such as Ada [3], CHILL [6], CLU [16] . . . .  
but also Smalltalk-80 [20] require that the second kind of 
extensions make changes in existing, well working programs. 
The result is often very messy after some extensions. 

The idea is toprovide an extension service (or object) with a 
list of probes (fig.7). A probe specifies an insertion point in 
the graph of the extended service (or object). During 
interpretation of a transition path, a service instance or an object 
instance in the existion allows the desired statements of the 
extension (service or object) to intervene. 

AnExistlon Extensionl 

3" 

Extension2 

Fig.7 Functional extensions. 

An extension may itself be treated as an existion and be 
intervened by another extension. 

Since functional extensions do not change the behaviour of 
existing services, these changes can be introduced in a single 
step. 

Linguistically, an extension can at first glance be viewed as a 
new class inheriting its existion. However, there is a very 
important difference. The normal class inheritance mechanism 
allows the construction of a completely new service by using 
an older class. This new service only uses the older class to 
specify the behaviour of its instances. Instances of the new 
service and instances of the old one may exist independently of 
one another and they can execute independently of one another 
in a system. For instance, a Call service can in this way be 
used to defne a more specialised service, for simplicity called 
Call+. Now, the Call service and the Call+ service can be 
installed and executed independently. 

However, class inheritance is not the phenomenon desired 
here. Instead, an extension must exist together with its 
existion; it always requires its.existion to be installed and it will 
only be executed when its existioil is executed. 

Here an existion is to be transformed into a new existion 
(filg.8). The intention is to change the functional behaviour of 
cresting services, retaining the same names. The new existion 
can be viewed as a set of classes of normal type, inheriting the 
behavionr of the older existion which is to be replaced. 

In an active system, old existions must be transformed into 
new existions. 

1) As long as the change is not retroactive (existing instances 
obey old classes), this is a simple problem. The existing class 
coexists with the new class until no instances of the existing 
class are alive. The meaning of a name must be extended. 
Instead of one component, it should consist of two 
components: the 'new' name and a version number. A 
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Fig.8 Functional changes. 

definition with a given name can exist in several versions; only 
the last one is available for new installations. Formally, the 0th 
version is 'empty'. The 1st version defines the change from an 
empty definition to one that defines a released behavionr. The 
2nd version defines an 'approved' change from the I st version. 
Each new version is described as an increment to and a 
decrement from the previous one (fig.8). When a new version 
has been installed successfully, its definition can be integrated 
with the previous one to a new definition which is efficient for 
interpretation and which can be used for subsequent changes. 

When two classes with the same name are in operation 
simultaneously, all new creations are directed to the new class. 
For instances with a short lifetime, the change will be in power 
when all 'old' instances have been removed from the system. 
For long-living instances, more powerful means must be used: 

2) The problem is much worse i f  existing instances must also 
be changed to obey the new class. The solution to this problem 
~is supported by the course concept of FDL. In an FDL system 
the computational objects are instances of services and objects 
within a block instance. Since the ongoing, independent 
activities correspond uniquely to courses, it is sufficient to 
change in one single step what is involved in a course. 

To change a service instance or an object instance is to change 
its class reference, its state and its variable references. Due to 
the uniform reference mechanism, the semantics of a change 
performed as an atomic action is seemingly easy to formalize. 

For other conventional languages this would be a very hard 
task since this simple mapping relation is not supported. 
Changes must often be carried out simultaneously on several 
objects. It is therefore very difficult to know exactly at any 
given moment on which objects computation is carried out. In 
languages like CHILL or Argus [17], the ongoing activities 
are performed by processes (or guardians), but normally 
several processes (guardians) jointly implement a course of 
event. Therefore, simultaneous changes have to be made in 
several processes (guardians). 

6. Conclusions 

From a general computer science perspective, FDL combines 
several techniques currently believed to be useful for system 
specification, design and implementation. These techniques 
include object orientation, message based control, and atomic 
actions. 

In addition, FDL contains several new ideas which include: 

The role of services for the logical structuring of real time 
systems corresponding to a feature or a function, 

The use of messages and signals iri combination, 

The organization of an ongoing user activity as a course, 
reducing the consequences of a failure and facilitating 
functional evolution, 

The idea of transparent service decomposition over sub- 
blocks, 

The modeling of a system from two related aspects: the 
centalizod view and the distributed view, 

The inclusion of source langua~gee features for system 
evolution offering change orientation. 

The new concepts are not only theoretically sound but, most 
important, they can rely upon the long expertence from the use 
of similar concepts for the development, operation and 
maintenance of several large real time systems. Every single 
design decision can be evaluated, at least through common 
sense reasoning, against the firm experience from the whole 
life cycle of several systems. 

Therefore, the new modeling concepts concretized in the form 
of a method supported by appropriate tools should result in a 
significant reduction of the system life time costs. But, most 
important, the customers of FDL designed systems should 
discover that it is remarkably simple to perform functional 
extensions and changes. 

The object orientation of the language allows the different 
system life time activities to deal with 'thin~' corresponding to 
real world entities. For instance, our servtces correspond to 
real world features or functions, service instances to uses of a 
feature or a function, objects to externally perceived device 
types of different kinds, etc. This simplifies the total system 
handling activities by not requiring complicated translations 
between internal and external enddes. 

As a result, services corresponding to features or functions 
will be the basic handling unit for not only design and 
implementation but also for marketing, production, 
installation, operation and maintenance. 

Blocks, trust of all having the role to model asynchronous 
sub-systems, will be composed products used to package 
services into manageable sub-systems. 

Objects, modeling device types, etc., will be lower level, 
reusable components in the design of new services. 

The early and new concepts have not only had an impact on 
several systems developed within Ericsson, but they have also 
inspired some of the more important language features of the 
CCITT Specification and Description Language SDL [5]. This 
circumstance has encouraged and convinced us about the 
common usefulness of the model and its accompanying method 
for large real time systems. 
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