

Languages for analysis and testing of event sequences

Citation for published version (APA):
Engels, A. G. (2001). Languages for analysis and testing of event sequences. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR546567

DOI:
10.6100/IR546567

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.6100/IR546567
https://doi.org/10.6100/IR546567
https://research.tue.nl/en/publications/a3b50420-1d4d-4c7b-b392-50e458b8ab7c

Languages for Analysis and

Testing of Event Sequen
es

Engels, Andreas Gerhardus
Languages for Analysis and Testing of Event Sequen
es
Ph.D. thesis, Eindhoven University of Te
hnology, 2001

 Andreas Gerhardus Engels, 2001
IPA Dissertation Series 2001-07
druk: UniversiteitsDrukkerij, Eindhoven

The work in this thesis has been
arried out under the auspi
es of the resear
h
s
hool IPA (Institute for Programming resear
h and Algorithmi
s).

Languages for Analysis and

Testing of Event Sequen
es

PROEFSCHRIFT

ter verkrijging van de graad van do
tor aan de Te
hnis
he

Universiteit Eindhoven, op gezag van de Re
tor Magni�
us,

prof.dr. M. Rem, voor een
ommissie aangewezen door het

College voor Promoties in het openbaar te verdedigen op

dinsdag 29 mei 2001 om 16.00 uur

door

Andreas Gerhardus Engels

geboren te Borger

Dit proefs
hrift is goedgekeurd door de promotoren:

prof.dr.ir. L.M.G. Feijs

en

prof.dr. J.C.M. Baeten

Copromotor:
dr. S. Mauw

Prefa
e

S
ien
e is work of man. If there is one thing I have
ome to realize these last few
years, it is that. It has been a hard lesson. My four years here in Eindhoven as a PhD
student started out very well. Arti
les were written, sent in, published. A su

ess
story in the making, or so it seemed. But as time passed, things went less and less the
way we would want them to go. Proje
ts be
ame slow, or I even halted for a while {
only to �nd that starting again was even harder than
ontinuing was originally. We
all knew that something was wrong, or at least I did. But what it was be
ame
lear
only when things really got out of hand one day.

I had been under too mu
h stress. And although my work was not the main
ause,
my situation did make it impossible for me to keep working, and in fa
t had already
done so for several months. I spent most of the next half year on si
k leave for it.
Given these
ir
umstan
es, it is almost a mira
le that this booklet has
ome about
with only half a year's delay.

I would like to thank everybody who has helped me get through this period of my
life. In parti
ular, I would like to thank my parents, who provided me with a pla
e
where I
ould re
uperate and �nd the strength to
arry on. Also great thanks to all
my
olleagues. When times were bad, you
oped with me and helped me quiet down
again. When times were better, you were friends to me and we had fun together.
Very spe
ial thanks to Sjouke Mauw, who has always been a pleasure to work with,
both from a personal and from a professional point of view. Jos, Mar
ella (thank
you for the tea), Dragan, Martijn, Susanna and Tim, thanks for your help in keeping
or regaining quietness. Jan-Joris, you provided me with a very pleasant atmosphere
in the �rst phase of my times here. I would also like to thank IPA for �nan
ially
enabling my work, and the fa
ulty of mathemati
s and
omputer s
ien
e for various
support.

It is good to know that there are friends to support me, and I would like to thank
Pieter, Benedikt, Tim and Satomi and her family for giving me this support as well
as the pleasant times we
ould share.

Mu
h of the material in this thesis has
ome about in
ooperation with, or with
te
hni
al support from, other people. We mention Sjouke Mauw, Loe Feijs, Mi
hel
Reniers, Thijs Cobben en Rogier Vermeulen with whom we have worked together,
while other people who have given useful te
hni
al help with one or more
hapters,
are Piet Bakker, Roel Bloo, Vi
tor Bos, Jan Do
ekal, Herman Geuvers, Jan-Friso
Groote, �ysten Haugen, Thierry Jeron, Clive Jervis, Bart Knaa
k, Erik Kwast, Frans
Meijs, Ja
o van der Pol, M. de Vreugd, and espe
ially Joost-Pieter Katoen, whose

5

6

remarks did mu
h to improve the thesis.
A number of
hapters have already been published before. Chapter 2 has been

published as [EFM97℄. Chapter 5 has been published as [EMR97a℄ and in a shortened
form as [EMR97b℄. Chapter 6 has partly been published as [Eng00℄, and is partly
based on [EFM99℄. Chapter 7 has been published as [Eng98℄, and Chapter 8 as [CE98℄.
Chapter 3, whi
h is joint work with Thijs Cobben, Loe Feijs and Rogier Vermeulen,
Chapter 4 and part of Chapter 6 have not been published before.

The MSCs in this thesis have been
reated using the LaTeX MSC ma
ro pa
k-
age [BM99℄.

Contents

Prefa
e 5

Contents 7

1 Introdu
tion 11
1.1 Organisation of the Thesis . 13

2 Test Derivation Using Model Che
king 15
2.1 Introdu
tion . 15
2.2 Methodology . 16
2.3 Case Study: Testing Intelligent Networks 18

2.3.1 Intelligent Networks . 18
2.3.2 A Simple Model . 19
2.3.3 Generating a Test Sequen
e . 23

2.4 Con
lusions . 26
2.5 Related Work . 27

3 LOGAN: A LOG ANalysis Language 29
3.1 Introdu
tion . 29
3.2 Finding Call Tra
es in Log Files . 31

3.2.1 Chara
teristi
 Sequen
es . 31
3.2.2 Problem 1: Other Call Types 32
3.2.3 Problem 2: Coheren
e of Chara
teristi
 Sequen
es 34

3.3 A Pattern Language: LOGAN . 35
3.3.1 Syntax of LOGAN . 37
3.3.2 Tabular Form . 38

3.4 Formal Semanti
s of LOGAN . 39
3.5 Algorithm . 41
3.6 Variable Substitution . 43

3.6.1 Constraints . 44
3.6.2 An Algorithm with Variable Substitution 47

3.7 Implementation and Testing . 49
3.7.1 Some Test Results . 50

3.8 A Language Extension . 51
3.9 Con
lusions . 53

7

8 CONTENTS

4 The MSC Language 55
4.1 Introdu
tion . 55
4.2 History . 56
4.3 An Overview of the MSC Language . 58

4.3.1 Basi
 Constru
ts: Messages . 58
4.3.2 Lo
al A
tions . 59
4.3.3 Co-region . 60
4.3.4 MSC Referen
es . 60
4.3.5 Inline Expressions . 61
4.3.6 High-Level MSCs . 62
4.3.7 Further MSC Constru
ts . 64

4.4 Formal Semanti
s . 64

5 MSC and Communi
ation Models 69
5.1 Introdu
tion . 69

5.1.1 Basi
 Message Sequen
e Charts 71
5.2 Implementation Models . 72

5.2.1 Implementation Models for Communi
ation 72
5.2.2 Extending the Semanti
s . 74
5.2.3 Implementability . 76

5.3 Classi�
ation of Implementability of Tra
es 78
5.4 Classi�
ation of MSCs . 81

5.4.1 Strong Implementability . 82
5.4.2 Weak Implementability . 83
5.4.3 Combining the Strong and Weak Hierar
hies 90

5.5 Chara
terisations . 98
5.6 Related Work . 104
5.7 Con
luding Remarks and Future Resear
h 106

6 Data in MSC 109
6.1 Introdu
tion and History . 109
6.2 Reasons for Parameterisation . 110
6.3 Basi
 Prin
iples . 111
6.4 Choi
es . 112

6.4.1 Stati
 vs. Dynami
 Nature of a Variable 112
6.4.2 Binding of Variables . 115
6.4.3 Unde�ned Variables . 116
6.4.4 S
ope of a Variable . 117

6.5 Guards . 118
6.5.1 In
luding Guards in the Language 119
6.5.2 Semanti
 Proposals . 121
6.5.3 Stati
 Requirements as a Solution 125
6.5.4 Non-Data Guards . 127

6.6 The Interfa
e . 128
6.6.1 Example Language . 128
6.6.2 Stati
 Fun
tions . 128

CONTENTS 9

6.6.3 Dynami
 Fun
tions . 130
6.6.4 Changes in the Interfa
e . 132

6.7 Semanti
s for Data in MSC . 133
6.7.1 The State Variable 	 . 133
6.7.2 Lo
al A
tions . 134
6.7.3 Simple Messages . 136
6.7.4 Bindings and Gates in Messages 137
6.7.5 Stati
 Data . 137
6.7.6 Guards . 138

6.8 Con
lusions . 142

7 Message Re�nement in MSC 145
7.1 Introdu
tion . 145

7.1.1 Motivation . 145
7.1.2 Composition and Re�nement { A Histori
al Outline 145

7.2 Message Re�nement . 147
7.2.1 Proto
ol MSCs . 147
7.2.2 Message Re�nement . 148
7.2.3 When is Message Re�nement Allowed? 150
7.2.4 Syn
hronous Communi
ation 152

7.3 Semanti
s . 153
7.4 Con
lusions . 154

8 Interrupt and Disrupt in MSC 157
8.1 Introdu
tion . 157
8.2 Syntax . 157

8.2.1 Semanti
 Choi
es . 159
8.3 Semanti
s . 161
8.4 Con
lusions . 165

9 Con
lusions 167

Bibliography 169

Samenvatting 183

10 CONTENTS

Chapter 1

Introdu
tion

In
omputer s
ien
e, it is important to be able to des
ribe what a
omputer system
does, or what it should do. If a system or program is simple, or if only a very general
des
ription is ne
essary, a natural language su
h as English might suÆ
e, but when
systems grow to even moderate sizes, natural language gets too
umbersome to use.
Some of the disadvantages of natural language as a spe
i�
ation language are:

� Natural language des
riptions are often inexa
t. One text often has more than
one interpretation.

� When des
riptions be
omes long, it be
omes hard to �nd an overview.

� It is hard to de�ne with mathemati
al pre
ision whether a given system
orre-
sponds to a des
ription in natural language.

� Natural language des
riptions are not well-equipped to de
ide properties of a
system from its des
ription.

� The stru
tures of natural language do not
orrespond to the natural stru
tures
of
omputer systems.

To resolve these and similar problems, formal languages have been introdu
ed.
These are dedi
ated languages, based on mathemati
s, for the des
ription of
omputer
systems. A formal language
onsists of two parts, the �rst is a formal syntax, the
se
ond a formal semanti
s. The syntax de�nes what des
riptions in the language
look like, while the semanti
s de�ne what su
h a des
ription a
tually means. In most

ases, su
h semanti
s
onsist of a formal translation into some other mathemati
al
formalism.

In this thesis, we will both look at the
onstru
tion of formal languages, with an
emphasis on the task of �nding a good semanti
s (that is, a semanti
s that in the
�rst pla
e
orresponds with the intended intuitive meaning of the language and in
the se
ond pla
e is easy to work with), and at their usage. For both tasks a few
ase
studies have been
ondu
ted. The language
onstru
tion part
onsists of a number of
extensions to an existing language as well as the
reation of a small, new language for
a small sub-domain, while the usage part
onsists of an attempt to derive properties

11

12 CHAPTER 1. INTRODUCTION

of a system from a formal spe
i�
ation and an attempt to use formal languages and
methods for the
reation of test sequen
es.

The work in this thesis is partly based on pra
ti
al problems that were en
oun-
tered over time. This holds in parti
ular for the Chapters 6 and 8. Both data and
disrupt/interrupt were felt within the ITU (International Tele
ommuni
ations Union)
to be possibly useful extensions to the MSC (Message Sequen
e Charts) language.
Partly on our own initiative and partly be
ause of questions from within the MSC

ommunity, the Eindhoven formal methods group explored espe
ially the semanti

onsequen
es of these
hanges. A similar ba
kground holds for Chapter 3. We have
studied the
urrent testing pro
ess at KPN (the largest Dut
h servi
e provider in
the area of tele
ommuni
ation), and the study started from an idea to improve this
pro
ess.

One language that we will in parti
ular look into is MSC (Message Sequen
e
Chart) [IT00, RGG96b℄. This is a graphi
al language whi
h in parti
ular des
ribes
the
ommuni
ation behaviour of a system. As su
h, it is very useful for the des
ription
of
ommuni
ation proto
ols, and for the spe
i�
ation of distributed systems where

ommuni
ation is the most important aspe
t. A strong point of MSC is that it

ombines a graphi
al syntax, whi
h is relatively easy to understand for humans, with
a stri
t formal semanti
s, whi
h enables automated analysis by
omputers.

In theory, one
ould derive a program from a spe
i�
ation in a formal way, or prove
its
orre
tness mathemati
ally, but in pra
ti
e systems are often built and then tested,
rather than proven
orre
t. Several reasons for this dis
repan
y between theory and
pra
ti
e
an be given:

Formal methods and their possibilities are often not known.

Many formal methods do not s
ale up very well.

Certain errors and properties, su
h as hardware errors and timing properties,
are hard or impossible to �nd without testing.

Corre
tness of a system must sometimes be as
ertained by
ompanies that do
not have the a
tual
ode, and
an only look at the system as a `bla
k box'.

Although testing often takes up a
onsiderable portion of the devekionebt pro
ess
(in some
ases more than half of it), it is often remarkably little formalised and auto-
mated. Test tra
es are still often designed by hand, and sometimes even the out
omes
are
he
ked by hand. If these
ould be automated, more, or more
ompli
ated, test
tra
es
ould be
he
ked in the same time, and thus the quality of testing
ould be
improved and/or the time needed for testing
ould be redu
ed. There already exists a
formal language for the spe
i�
ation of test tra
es, namely TTCN (Tree and Tabular
Combined Notation) [KW91℄. Deriving TTCN from a system des
ription is (in most

ases) not a
ompli
ated task, but �nding test tra
es or sets of test tra
es with
er-
tain properties (for example, being in some sense `
omplete' or �nding some spe
i�

errors) often is.

1.1. ORGANISATION OF THE THESIS 13

1.1 Organisation of the Thesis

This thesis roughly
onsists of two parts. The �rst part, dis
ussing the subje
t of
testing,
onsists of Chapters 2 and 3. The se
ond part, about MSC, is
omprised of
the Chapters 4 through 5.

The �rst part
ontains two Chapters. In the �rst (Chapter 2), we look at Model
Che
king as a possible tool for the derivation of test tra
es. The number of states
of a system is often very large, and �nding test tra
es with given properties
an
therefore be diÆ
ult. Be
ause model
he
king tools have many methods to deal with
this `state spa
e explosion', we look whether they
an be used to �nd test tra
es to

ertain behaviours of these systems. Chapter 3 looks at a later phase of the testing
pro
ess. We introdu
e LOGAN , a language developed at the Eindhoven University
formal methods group. It is originally developed for the testing of telephone systems,
to partly repla
e the manual
he
k of test logs. The idea of the language is that it

an be used to automati
ally �nd the events in a test log that
orrespond to a single

all.

Chapter 4 gives an introdu
tion of MSC, with a look into its history, an overview
of some of its main features and an introdu
tion to the formal semanti
s. The next

hapter shows, how formal language des
riptions of a system
an be used to determine
properties of that system. We will derive the bu�ering ar
hite
ture of a system from
its MSC des
ription. The Chapter
reates a hierar
hy of these ar
hite
tures.

The last three Chapters dis
uss some (existing or possible future) additions to
MSC. First, Chapter 6 dis
usses the introdu
tion of data in MSC. By this introdu
-
tion, it is now possible to use variables and parameters in MSC des
riptions. The
Chapter tells how this addition was done, and why it was done that way. There
is also a semanti
s of this aspe
t of MSC being developed. The next two Chapters
dis
uss some other extensions that
ould in the future be added to MSC. Chapter 7
introdu
es message re�nement, whi
h introdu
es a re�nement method that makes it
possible to look at proto
ols at di�erent levels of abstra
tion. Chapter 8 introdu
es
disrupt and interrupt, whi
h
an be used to des
ribe situations where one behaviour
is stopped half-way to start another type of behaviour, a situation that is
urrently
hard or impossible to des
ribe in MSC. Both Chapters
ontain a dis
ussion of the
semanti
s of the features that are introdu
ed.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Test Derivation Using Model

Che
king

2.1 Introdu
tion

In this
hapter, we will dis
uss test derivation, and more spe
i�
ally test derivation for
tele
ommuni
ation systems. Testing is ne
essary in several phases of a development
pro
ess. In the �rst pla
e there is the testing during the spe
i�
ation phase. Central
questions in this respe
t are whether the spe
i�
ation follows the requirements, and
whether any logi
al errors are present in the spe
i�
ation. In tele
ommuni
ation
systems a probable
ause for those logi
al errors is feature intera
tion [Mid94℄, that
is, the e�e
t that di�erent features (variations on the basi
 proto
ol) have on one
another. This
ould for example happen if one feature
hanges a variable another
feature uses or
hanges as well.

Se
ondly, it is also ne
essary to test whether the implementation
onforms to the
spe
i�
ation. Feature intera
tion is again an important subje
t, for example through
the sharing of (ne
essarily �nite) resour
es. It is this se
ond testing phase that will
be investigated in this
hapter.

One problem in testing is the
reation of a suitable test-set, a set of test tra
es
to be
he
ked. Manual generation of test tra
es is a lot of work, so it is natural to
look for
omputer support. In relatively small
ases this is perfe
tly feasible: there
are te
hniques and tools that, given a formal spe
i�
ation, generate a
omplete set of
test tra
es. See for example [Nah94℄. Assuming that the implementation has as many
states as the spe
i�
ation, a positive result of the test
an be
onsidered a
orre
tness
proof. In many pra
ti
al
ases there is a so-
alled state spa
e explosion, that
auses
the number and/or the length of the tra
es to be (mu
h) larger than
an be dealt
with. In this
ase one has to
hoose whi
h tra
es are and whi
h are not to be tested.
This sele
tion of interesting tra
es requires mu
h insight in the problem at hand, so

annot be automated. Still, support in this pro
ess will be useful.

Our aim is not to
reate yet more new tools, but to �nd and link existing tools
that suit this purpose. At present this also means we do not go beyond prototyping.

15

16 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

In parti
ular we will try to use tools from model
he
king to generate tra
es. model

he
king provides us with serious tools with a good theoreti
al foundation and the
possibility to work with large examples (so we
an more easily
ope with the problems
of the state spa
e explosion). Another important advantage is that tools to translate
the output of SPIN (the model
he
ker we used) [Hol96℄ into useful formats, either
exist or are easily
reated. In short, this
hapter will be about the usage of existing
tools for the purpose of test tra
e generation for implementation
he
king of systems.
We will use this for systems that are far beyond full state spa
e
he
king, that is,
where a full state spa
e
he
k
an not be rea
hed or even approximated.

As an example to apply our methods to we have
hosen Intelligent Networks. This
is an important appli
ation in whi
h
onforman
e testing, as well as other tests, are
a ne
essity. Be
ause of the regular addition of features these tests also have to be
repeated during the lifespan of the network. Moreover, these features
an have unex-
pe
ted intera
tions, so every time a test has to be done of the system as a whole. The
addition of features often
auses an exponential growth of the state spa
e, so a state
spa
e explosion will be almost a
ertainty. We used a model of a telephone servi
e,
with two features: Originating Call S
reening (OCS) and Hotline. We have su

ess-
fully applied our method, and the developed prototype, to this simpli�ed example.

2.2 Methodology

In this se
tion, we give an overview of the testing methodology that is proposed in
this
hapter.

The starting point will be the spe
i�
ation of the system under study. We have
taken an SDL [IT94, SRS89℄ spe
i�
ation as our input. The �rst step is to translate
this spe
i�
ation (manually) into a form understood by the model
he
ker. Sin
e
we used the model
he
ker SPIN [Hol96℄, we translated this SDL-spe
i�
ation into
Promela, the modeling language of SPIN. The stru
ture of a Promela model (several
parallel pro
esses, whi
h
an
ommuni
ate both through shared variables and through

hannels), also �ts neatly with SDL-des
riptions. The Promela-
ode was
reated from
the SDL-spe
i�
ation by hand, but a few ma
ros were used to bring the Promela
ode

loser to the SDL-
ode. Our
orre
tness
riterium for the implementation will be, that
every possible tra
e of the implementation must also be a tra
e of the SDL model
(and thus of the Promela model, whi
h is assumed to be equivalent), as far as its
external behaviour is
on
erned. Furthermore, the system may not deadlo
k if the
SDL model does not deadlo
k. Be
ause we will be assuming that the SDL des
ription
is deterministi
, this a
tually means that the tra
es must be equivalent.

During this translation, and even during the
reation of the spe
i�
ation itself,
it is a good thing to already start looking at the testing goals. Sometimes auxiliary
variables are ne
essary to
ount the number of times a
ertain step in the pro
ess has
been taken or is being taken (as the value of su
h a variable might be part of the
testing goal). Also the degree of simpli�
ation might di�er, depending on what is to
be tested.

In this model we also in
orporate a so-
alled stimulation pro
ess. This is an
added pro
ess, that regulates the external inputs and/or the independent a
tions of
the system to be tested. It sends messages to the other pro
esses, either through a

2.2. METHODOLOGY 17

spe
ialised
hannel or through the
hange of some variable, that normally work as
a trigger for performing some a
tivity. For example, in our test
ase, a model of a
telephony servi
e, the stimulation pro
ess regulates whi
h
alls are to be attempted.
The stimulation pro
ess is restri
ted to only those parts of the system that a
tually
are under outside
ontrol. Every message that is in the stimulation pro
ess, must

orrespond to a
ommuni
ation from the outside world, or an outside-
ontrolled part
of the system, to the system.

Next, we have to develop a test purpose. This
onsists of the desired
hara
teristi
s
of the test tra
es to be developed. Of
ourse, these
hara
teristi
s have to be
hosen
su
h that the test tra
es to be found have a high
han
e of
at
hing implementation
errors, that is, they should des
ribe a situation where the system is likely to behave
di�erently from the spe
i�
ation in the
ase of errors. Be
ause of this, it is important
to guess whi
h kind of errors are most likely to o

ur, or most important to be found.

In their most simple form these testing purposes
onsist of a property or a set of
properties for the �nal state of the tra
e, but they
ould also be more
ompli
ated, for
example a series of states (distinguished by their properties) that have to be traversed,
or an added restri
tion on the states before the �nal one. The only
onsideration is
that it must be possible to write the testing purposes down in (temporal) logi
.

These two additions (stimulation pro
ess and testing purpose) give two ways of

ontrolling the test tra
e developed. The stimulation pro
ess des
ribes the sear
h
spa
e for tra
es, while the testing purpose regulates whi
h kind of tra
es are a
tually
generated. Of
ourse these two will be
onne
ted: On the one hand one
an
ause
the stimulation pro
ess to make only those a
tions happen whi
h bring the testing
purpose
loser, thus making the number of possibilities
he
ked smaller, or one
an
disallow the most trivial ways of rea
hing the testing purpose, thus �nding other,
possibly more interesting, tra
es. Finally, one
an re-use the same testing purpose by
using it together with di�erent stimulators.

We now take a model
he
ker (in our example SPIN), and take the negation of
the testing purpose as a so-
alled never-
laim. In normal usage of model
he
kers
the never-
laim is an asserted logi
al invariant of the model, and should therefore
never be
ome false (hen
e the name never-
laim). The model
he
ker then runs the
model,
he
king whether the never-
laim ever be
omes false, and presenting a tra
e
that makes the never-
laim false if this is the
ase. Here we take the negation of the
testing purpose, whi
h will
ause the tra
e found to be one in whi
h the negation of
the testing purpose is false, and hen
e the testing purpose itself is rea
hed. In general
there will be more than one test tra
e possible that ful�lls the testing purpose. In
that
ase the model
he
ker will make an essentially nondeterministi

hoi
e (although
some model
he
kers might allow one to �nd all tra
es, or one parti
ular (su
h as the
shortest)).

From an output of SPIN (whi
h
ontains all the information about the tra
e
that is found) we
reate Interworkings (IW) [MvWW93℄, a (TUE and Philips) lo
al
variant of syn
hronous MSC-like diagrams (see Chapter 4 for a detailed introdu
tion
of MSC). The reason we do this, is that our �nal goal is to derive a test des
ription
in TTCN [KW91℄, and there is a tool available [FJ96℄ to translate IW into TTCN.
The SPIN-output also
ontains some MSCs, whi
h
an be used for a qui
k s
an of the
tra
e found, and thus
an give help for human
ontrol of the test generation pro
ess.

18 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

SPIN

(SDL)

specification

stimulator model
(Promela)

testing
purpose

never
claim

(InterWorking)

IW TTCN

Figure 2.1: General method

A s
heme of the method
an be found in Figure 2.1. The part on the left left of
the dashed line is mainly manual work, the part on the right is done by tools.

2.3 Case Study: Testing Intelligent Networks

In this se
tion we apply our method to an example from the �eld of Intelligent Net-
works (IN). We have modeled a telephony servi
e with two features, OCS (Originating
Call S
reening) and HOT (Hotline). Using our methods, we will derive a single test
tra
e.

2.3.1 Intelligent Networks

Be
ause of the ever-growing amount of possibilities of telephone servi
es, a new
paradigm for telephony and
onne
ted tele
ommuni
ation has been developed: Intel-
ligent Networks. The following
itation from [SMC+96℄
hara
terises the IN-
on
ept:

Intelligent Network (IN) servi
es are
ustomised telephone servi
es, like
e.g., 1) `Free-Phone', where the re
eiver of the
all
an be billed if some

onditions are met, 2) `Universal Private Telephone', enabling groups of

ustomers to de�ne their own private net within the publi
 net, or 3)
`Partner Lines', where a number of menus leads to the satisfa
tion of all
desires. The realisation of these servi
es is quite
omplex and error prone.

The
urrent trend in advan
ed IN servi
es
learly evolves towards de
ou-
pling Servi
e Pro
essing Systems from the swit
h network (see e.g. [CK94℄).
The reasons for this tenden
y lie in the growing need for de
entralisation
of the servi
e pro
essing, in the demand for qui
k
ustomisation of the of-
fered servi
es, and in the requirement of rapid availability of the modi�ed
or re
on�gured servi
es.

2.3. CASE STUDY: TESTING INTELLIGENT NETWORKS 19

Servi
e Creation Environments for the
reation of IN-servi
es are usually
based on
lassi
al `Clipboard-Ar
hite
ture' environments, where servi
es
are graphi
ally
onstru
ted,
ompiled, and su

essively tested. Two ex-
treme approa
hes
hara
terise the state of the art: The �rst approa
h
guarantees
onsisten
y, but the
reation pro
ess is strongly limited in its

exibility to
ompose Servi
e Independent Building Blo
ks (SIBs) to new
servi
es. The se
ond approa
h allows
exible
ompositions of servi
es,
but there is little or no feedba
k on the
orre
tness of the servi
e under

reation during the development: the validation is almost entirely lo
ated
after the design is
ompleted. Thus the resulting test phase is lengthy and

ostly.

For more information on IN we refer to e.g. [BW94, CK94℄.
In [VWK95℄ the need for servi
e testing in the
ontext of IN is explained and

a framework for testing tele
ommuni
ation servi
es is presented, where it is stressed
that next to the servi
e itself, the underlying platform and the already existing servi
es
should be tested as well.

2.3.2 A Simple Model

We will model an Intelligent Network with two spe
ial servi
es (whi
h we
all 'fea-
tures'), namely OCS (Originating Call S
reening) and a simpli�ed version of HOT
(Hotline). In Originating Call S
reening, phone
alls
an be blo
ked by the re
eiver
depending on the originator of the
all. In Hotline, the dialing of frequently used
numbers is made easier by
ausing another (smaller) number to result in the same

onne
tion. In our model, the Hotline will be established on dialing any number that
is not a servi
e number. Adding a feature
an be done without mu
h problems (al-
though it will in
rease the size of the spa
e state, and thus might
ause the generation
time for the test tra
e to in
rease slightly).

In our model we will de
ouple the SSP (Servi
e Swit
hing Point), whi
h
onne
ts
the user with the servi
es, and the SCP (Servi
e Control Point), whi
h physi
ally

ontains the servi
es. This de
oupling is suggested within the literature (see above),
be
ause the implementation and maintenan
e of the system is easier if the (stable)
basi
 fun
tions are de
oupled from the (dynami
ally added) features. For the model
there would be only little
hange if we had not implemented this de
oupling, but for
the test tra
e generation this might very well be important, sin
e an overload of the

onne
tion between SSP and SCP might be a
ause of errors.

In Figure 2.2 we see the ar
hite
ture of an Intelligent Network as it is represented
by our model. The SSP is responsible for the
onne
tions between the telephones,
and the
onne
tions between the telephones and the SCP. It
an be modeled in for
example SDL.

Through a spe
ial
hannel, ss7, the SSP is
onne
ted to the SCP. The SCP
he
ks
whi
h, if any, features have to be used in a given
all. In our model the SDP (Servi
e
Data Point), whi
h does the maintenan
e of the features, that is, keeping tra
k of
whi
h features are enabled for whom and how they are
on�gured, and the SCP
have been
ombined into one pro
ess. The SCP is normally modeled by Servi
e
Independent Building Blo
ks (SIBs) [SMC+96℄.

20 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

SSP
service switching point

SCP

service control point

OCS HOT

INAP messages

SS7

SDP

service data point

switching

logic modelled

in SDL notation

service modelled as

composition of SIBs

digits
on hook
off hook

dial tone
busy tone

ringing tone
ringing current

bls bls

Figure 2.2: IN ar
hite
ture

In Figure 2.3 we see an SDL-model of the SSP as we have modeled it. This model
is based on [RV94℄. Identi�er A here stands for the person attempting to make the

all, B for the person being
alled. The SSP is idle until there is an o�-hook message
(A o� hook), after whi
h a dial tone is sent to phone A, and then the SSP is in the
await digits-state. This one
an end in two ways, namely by A putting the phone on
hook, and by A dialing a number. In the �rst
ase the (attempted)
all ends, and the
SSP be
omes idle again. In the se
ond
ase, the SSP
he
ks whether the line
alled is
busy; if it is it generates a busy tone and waits for an on hook, otherwise the se
ond
phone starts ringing and a
onversation is attempted. The rest of the �gure reads
likewise.

This s
heme is simpli�ed from the form we used in our model in a few ways:
Firstly, there
an be more than one attempt for making a talk. Be
ause of this,
many
opies of this s
heme are running at the same time, one for ea
h
all attempted.
Se
ondly, not all a
tions (the sending of tones and talk a
ross the telephone lines) are
shown. In the third pla
e, this only spe
i�es the behavior in absen
e of any spe
ial
features. The presen
e of features in
uen
es the e�e
t in the following ways:

� Hotline
hanges the line with whi
h a
onne
tion is attempted.

� OCS makes `
alled line busy?' true even when the line is not busy.

2.3. CASE STUDY: TESTING INTELLIGENT NETWORKS 21

A
on hook

idle B

B
on hook

A
off hook

await digits

dial tone

timing

A
on hook

called
line busy

?

A
on hook

idle

busy tone

path set-up

digits

no

yes

A
on hook

ringing

off hook
B

conversation

on hook
B

timing

time

out

parked

A
on hook

on hook
A

Figure 2.3: SDL-model of the SSP

22 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

� After the digits are dialed, it is �rst
he
ked whether they are the digits for
adding or removing a feature. If so, the feature is enabled/disabled/
hanged,
and the phone waits for an on hook.

We translated this SDL-model into PROMELA-
ode. We will not give the
om-
plete (5-page) PROMELA-
ode of our model here, but only a few representative parts.
First, we give a part of the SSP-
ode:

STATE(ringing)

:: signal[A℄?on_hook -> atomi
 {

line[A℄ = silent;

line[B℄ = silent;

busy[A℄ = false;

busy[B℄ = false;

NEXTSTATE(idle)

}

:: intern[B℄?off_hook -> atomi
 {

line[A℄ = blabla(B);

line[B℄ = blabla(A);

BCP_a

ount[A℄++;

NEXTSTATE(
onversation)

}

ENDSTATE

In Figure 2.3 this state ('ringing')
an be found a bit above the middle (below
the a
tion `path set-up'). Take spe
ial noti
e of the variable BCP a

ount[A℄. It is
in
remented ea
h time A has made a su

essful attempt to engage in a talk. It has
no fun
tion in the model, but we in
lude it be
ause (part of) our testing goal will be
that the number of
alls by one subs
riber ex
eeds a
ertain number.

The model of the SCP is shown below (OCS is a 5 times 5 boolean array, HOT is
an integer array of length 5):

do

:: ss7?feature(A,B) -> if

:: B/100 == 66 -> HOT[A℄ = (B - 6600)

:: B/100 == 88 -> OCS[B - 8800,A℄ = true

:: B/100 == 89 -> OCS[B - 8900,A℄ = false

fi

:: ss7?
he
k(A,B) -> s = OCS[A,B℄;

ss7!
he
ked(!s,_);

if

:: (s == 1) -> IN_a

ount[B℄++

:: else -> skip

fi

:: ss7?lookup(A,B) -> if

:: (HOT[A℄ == A) -> ss7!lookuped(A,B)

:: (HOT[A℄ != A) -> ss7!lookuped(A,HOT[A℄)

fi

od

First, there are a few arrays: OCS[A,B℄ is true i� B is blo
king messages from A;
HOT[A℄ is the Hotline A has (if it has A as its value, A does not have a Hotline).
These arrays are �lled in the skipped part.

The SCP gets its orders from the SSP through the ss7-
hannel. The message
'feature(A,B)' adds or removes a feature, the message `
he
k(A,B)' asks whether A

2.3. CASE STUDY: TESTING INTELLIGENT NETWORKS 23

is allowed to
all B, and the message `lookup(A,B)' tells A has dialed the number B,
and asks with whi
h phone a
onne
tion should a
tually be attempted.

Through this same
hannel the SCP sends the results ba
k to the SSP. If the order
was a
he
k, it sends `
he
ked(!s,)', where s is true i� B is blo
king messages from
A, while the se
ond one (' ') is a dummy variable, whi
h is only needed be
ause the
ss7 is a 3-variable
hannel. If the order was a lookup, then `lookuped(A,H)' is sent,
where H is A's hotline if any, and B otherwise, so in fa
t it is sending the number
that will be the real re
eiver of the message.

As before, there is an auxiliary variable: IN ACCOUNT[B℄, whi
h
ounts the
number of
alls to B that have been blo
ked by B.

The stimulation pro
ess
ontrols the amount of non-determinism in the system.
An example of a stimulation pro
ess
an be found below:

pro
type stimula()

{

all[2℄!6603; /* 2 has Hotline to 3 */

all[4℄!8801; /* 1 should not
all 4 */

do

::
all[4℄!8901 /* 1 may
all 4 again */

::
all[1℄!4

od

}

The a
tion
all[A℄!B sends a message to phone A, telling it to attempt to make a

all in whi
h it dials number B. So the stimulation pro
ess above �rst orders phone 2
to
reate a Hotline to 3, then orders phone 4 to
reate an OCS towards 1, and then
goes through a
y
le, every time either ordering phone 4 to stop its OCS towards 1,
or ordering phone 1 to attempt a
all to phone 4.

This is of
ourse just one example of a stimulation pro
ess. We have worked with
several di�erent pro
esses in order to get di�erent tra
es.

2.3.3 Generating a Test Sequen
e

As an example, we will generate an interesting tra
e. As a working hypothesis we
assumed that problems were likely to arise due to mistaken allo
ation of shared re-
sour
es, espe
ially if some resour
e was used too extensively. This leads to testing
goals like `There are n SDP-a

esses taking pla
e' However, be
ause our main goal
was the testing of the feasibility of the general method, we have only used the simplest

ases in pra
ti
e, su
h as:

� Phone A has made a su

essful
all

� Phone A has made two su

essful
alls

� Phone A and B have been
onne
ted in a su

essful
all

� An SDP-a

ess is taking pla
e

In pra
ti
e more
omplex situations have to be
he
ked. This might
ause a
longer
omputation time, be
ause the minimal length of a tra
e that has the desired

24 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

properties is longer, and the testing purpose is more
ompli
ated. Neither seems to
be really problemati
, though.

As an example we take the testing goal `Phone 1 has made a su

essful
all', with
the stimulation pro
ess as des
ribed above.

In SPIN the testing goal
an be implemented as a \never-
laim".

#define ALWAYS(P) never { do :: P :: !(P) -> break od }

#define CLAIM(A) (BCP_a

ount[A℄ < 1)

ALWAYS(CLAIM(1))

SPIN will look for tra
es in whi
h the pro
ess de�ned by the never-
laim has
ended. In our de�nition of ALWAYS(P) this means that P has been false at some
pla
e of the tra
e { in fa
t, at the last step of the tra
e. So if we make our
laim
ALWAYS(P), then SPIN will be looking for a tra
e that ends with a situation in
whi
h P is NOT true. As we want to have a tra
e in whi
h phone 1 has made a
(su

essful)
all, this P must be `Phone 1 has not made a
all', whi
h, be
ause of
the addition of the variable BCP a

ount[A℄ into our model, simply translates into
`BCP a

ount[1℄<1'.

This model was run using SPIN (XSpin). It did �nd a tra
e to a state in whi
h the
BCP-a

ount of telephone 1 is at least 1. The main part of the SPIN-output
onsists
of listings of the following form. It is in fa
t a
omplete list of the a
tions taken by
the various pro
esses, with some information added (the line of
ode where the a
tion
is des
ribed, the value of variables that have
hanged, et
etera).

1: pro
 - (:never:) line 319 "pan_in" (state 1) [((BCP_a

ount[1℄<1))℄
2: pro
 1 (:init:) line 323 "pan_in" (state 1) [(run phone(0))℄
3: pro
 - (:never:) line 319 "pan_in" (state 1) [((BCP_a

ount[1℄<1))℄
4: pro
 2 (phone) line 93 "pan_in" (state 1) [self = self℄

phone(2):friend = 0
phone(2):state = 0
phone(2):self = 0

5: pro
 - (:never:) line 319 "pan_in" (state 1) [((BCP_a

ount[1℄<1))℄
6: pro
 2 (phone) line 94 "pan_in" (state 2) [((self==0))℄
et
.

TESTER 0 1 2 3 4

signal(off_hook)

 dial_tone

digits(8801)

 accept_tone

signal(off_hook)

 dial_tone

signal(off_hook)

digits(2)

 ringing_tone

 ringing_cu1

 bla_bla

 bla_bla

 ringing_cu1 = ringing_current

Figure 2.4: Interworking of test run after inversion

2.3. CASE STUDY: TESTING INTELLIGENT NETWORKS 25

XSpin enables us to inspe
t this tra
e as an MSC, whi
h we will not display here.
We used a series of Unix shell-s
ripts and existing tools to transform the tra
e into an
Interworking. To this Interworking we applied an `inversion' [FJ96℄, whi
h transforms
the output lines of the various pro
esses into input lines. This fa
ilitates the use in a
testing environment, be
ause we
an now regard them as orders to do
ertain a
tions,
instead of the a
tions themselves. We de
ided to re
eive line-states as (observation)
a
tions. This resulted in the Interworking shown in Figure 2.4.

Tools exist to translate this into TTCN. For the
ase at hand the TTCN looks as
follows:

+---+
|Test Case FEATURE_INTERACTION_TEST 1 |
+---+
|Test Case Name : FIT 1 |
|Group : \1 |
|Purpose : 1st demo use SPIN FI TESTING |
|Default : |
|Comments : |
+---+
|Nr | Label | Behavior Des
riptions | Constraints Ref | Verdi
t |

4!signal(off_hook)
[line 4 = dial_tone℄ (PASS)
4!digits(8801)
[line 4 = a

ept_tone℄ (PASS)
1!signal(off_hook)
[line 1 = dial_tone℄ (PASS)
2!signal(off_hook)
1!digits(2)
[line 1 = ringing_tone℄ (PASS)
[line 2 = ringing_
urrent℄ (PASS)
[line 1 = bla_bla℄ (PASS)
[line 2 = bla_bla℄ PASS
[OTHERWISE℄ FAIL
[OTHERWISE℄ (FAIL)
[OTHERWISE℄ (FAIL)
[OTHERWISE℄ (FAIL)

[OTHERWISE℄ (FAIL)
[OTHERWISE℄ (FAIL)

[OTHERWISE℄ (FAIL) |
+---+

In general it is not the
ase that the TTCN generated from the tra
e in su
h
a straightforward manner is dire
tly
orre
t as a test. The problem is the
orre
t
assignments of verdi
ts to the alternatives, all of whi
h are made FAIL initially. We
dis
uss three approa
hes to deal with this problem.

The �rst approa
h is as follows: subdivide the tra
e into two parts, an initial part
whi
h serves for setting-up the servi
es and
ontextual
onne
tions, followed by a
se
ond part, usually mu
h shorter, whi
h
hara
terises the intended behaviour of the
system. For example in the test
ase FIT1 given above, the two observation a
tions
[line1 = bla bla℄ and [line2 = bla bla℄ should be interpreted as a
hara
terisation of
the intended behaviour (
all established), so the alternatives of the se
ond part
ould
keep the assigned FAIL verdi
ts. The verdi
ts of the alternatives of the steps of the
�rst part
an be turned into INCONCLUSIVE.

The se
ond approa
h is a further re�nement of this. The generated TTCN is only

onsidered as a draft of the
orre
t test
ase, whi
h is to be obtained by
he
king the

26 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

verdi
ts and adding more alternatives (some of whi
h may also get PASS). This is the
approa
h of [FJ96℄, where it is shown in detail how a simulator is used (during multiple
runs of the simulator) to �nd out in how far the
ru
ial steps are deterministi
, and
if not, what the interesting alternative behaviours are (in the step-by-step method
of [FJ96℄, these are the steps 13, simulate alternatives and 14,
omplete the TTCN
des
ription).

The third approa
h to the problem of verdi
t assignment to alternatives is to adapt
the Model Che
ker and make it produ
e trees or graphs rather than sequen
es. This
is the approa
h of the tool TGV [FJJV97℄.

So far we have only used temporal
laims of a parti
ularly simple kind, viz. invari-
ants (su
h as ALWAYS(INV(1))). So we ought to dis
uss whether temporal
laims in
general are useful as well. In the
lassi
al usage of a Model Che
ker, i.e. for veri�
a-
tion purposes, it will attempt to falsify
laims like: \it is always true that when the
sender transmits a message, the re
eiver will eventually a

ept it". For test generation
purposes however, the temporal
laim
ould be used to say for example: \it is always
true that when A is in state trying-to-rea
h-B, the SSP (Servi
e Swit
hing Point) will
eventually
onne
t A and B". Of
ourse this
laim need not be true, e.g. be
ause it is
pre
isely the purpose of
ertain servi
es (like OCS) to prevent
onne
tions from A to
B to happen. Therefore, su
h a temporal
laim, when falsi�ed, results a tra
e leading
to a state where this `prevention' servi
e has been put into operation.

2.4 Con
lusions

Model
he
king
an be useful as a te
hnique for generating test tra
es. This
an be
done using existing tools, at least on prototype level. A reservation has to be made on
the point of the s
aling-up of the tools, be
ause we have only tested small examples.
Also the time and memory
onsumption of the method have not yet been investigated.
If we want to use this in pra
ti
e we will probably need more spe
ialised tools, and
we must be able to
onne
t them to servi
e-
reation environments.

We found that our way of working (sele
ting a tra
e leading to an interesting
state) is a promising one. This way, a part of the hard work of the
reation of test
tra
es
an be automated. Tra
es
an be sele
ted to agree with given testing purposes
without having to step down too far in abstra
tion.

A restri
tion to the appli
ability of the method, at least in the
urrent form, is
that the appli
ation to be tested should rea
t deterministi
ally to the test input. The
reason for this is that otherwise a tra
e in whi
h an error has o

urred
annot be
distinguished from one in whi
h the internal non-determinism has
aused the system
to rea
t di�erent from the derived test tra
e, but still within the spe
i�
ation. If the
system is not deterministi
, the method is still useful, but in that
ase more manual
work is needed to
omplete the test
ase. This step
ould of
ourse also be automated.
One possibility
ould be to
he
k all supposed failure tra
es with the model
he
ker
again to see whether they still �t on the system. This method is des
ribed more
extensively in [CSE96℄.

Our method supports a part of the test traje
t, namely the derivation of a test
tra
e from a given test purpose. Formulating the test purpose, the stimulation pro
ess

2.5. RELATED WORK 27

and the model remains a task that has to be done by hand, and requires an amount
of domain spe
i�
 knowledge.

Another way of working might be introdu
ing deliberate errors in the SPIN pro-
gram, whi
h are supposed to model possible errors in the design, and
reating a tra
e
in whi
h the error o

urs. We
ould
all this 'negative testing', be
ause in this
ase
we are
onstru
ting tra
es we want the real design NOT to be able to follow, while in
the
onstru
ts given until now, we wanted the design to follow the tra
e we gave it.
An example of su
h a negative test is a tra
e that leads to a
onne
tion between two
subs
ribers while the
alled party is refusing
alls from the
alling party by using the
OCS feature.

However, we think that positive testing is more suitable to
ombination with the
given method, be
ause for negative testing we need to make many more assumptions
about the kind of errors that might o

ur. In negative testing we need a rather spe
i�

idea about WHAT errors
an o

ur, in positive testing we only need to hypothesise
on WHEN they o

ur. When looking for spe
i�
 errors, negative testing is the way
to go, but if the purpose is to make a general
he
k of a system, positive testing is
mu
h more useful.

One obje
tion to our method
ould be that in order to generate a tra
e satisfying
the property
he
ked, the Model Che
ker risks sear
hing the entire state spa
e, whi
h
may be infeasible (the problem of the state spa
e is often stated as an argument for
the need of testing in the �rst pla
e). Although this is true in prin
iple, the important
observation is that a Model Che
ker su
h as SPIN has powerful te
hniques built into
it (su
h as the supertra
e algorithm) to
ope with the state spa
e problem. In our
opinion it is important that (if testing
annot be made super
uous by other means,
for any reason whatsoever), the testers should use powerful and high-level tools as
well; in parti
ular this holds for the intermediate situation where fully automated
testing is infeasible and where fully manual test generation is too
ostly.

2.5 Related Work

Several other authors have made attempts to use Model Che
king for test generation.
Although di�erent methods are proposed, the basi
 idea is always that model
he
king
tools are used to easily �nd tra
es to a state with some given desired properties.

In [CSE96℄, no
omplete method is given for using model
he
king for testing.
Rather, the authors mention model
he
king's possibilities for the generation of test

ases as well as for other aspe
ts of testing (
he
king of the validity of test tra
es
and sele
ting test tra
es among a greater number of them). The methodology that
would
ome most
losely to the ideas in this
hapter would be to derive a number n
of boolean variables on the system state, and �nd tra
es to ea
h of the 2n possible

ombinations of values of these variables that
an a
tually o

ur, taking these as test
tra
es. The advantage over more random methods of test generation is that there is
likely a better
overage of all aspe
ts of the system.

The method in [ABM98℄ is
losely related to the abovementioned idea of 'negative
testing'. In these arti
les, so-
alled mutation operators
reate a variant of the original
spe
i�
ation, and these mutated spe
i�
ations are then
ompared to see whether there
is a tra
e to make them diverge from the original spe
i�
ation. These tra
es are then

28 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

used as test tra
es. In [BOY00℄, a number of mutation operators are de�ned, and it
is
he
ked whi
h one gives the best
overage when applied to an example system.

Two methods are proposed in [GH99℄. The �rst is to use the negation of some
known properties of the system. The se
ond, in our opinion more interesting, method
is to
he
k a path to every bran
h of a de
ision. An extra variable is added, whi
h
gets a di�erent value in every bran
h, and paths are found that lead to the various
values of these variables.

Unlike the abovementioned arti
les, in [VT00℄ model
he
king is not used to
rapidly �nd tra
es with a
ertain property. Rather, Promela is here used mostly
as a spe
i�
ation language, and the main reason that model
he
king tools have been

hosen in favour of other tools, is that they provide methods to store the state spa
e
eÆ
iently.

The various methodologies have di�erent appli
ation domains. Most of the above-
mentioned methods are espe
ially adapted to medium-sized systems, where a test set
that is more or less exhaustive is still possible. Our method is more appli
able for
large systems, where su
h an ideal is far out of rea
h, and tests have to be restri
ted
by ne
essity to just a part of the system, and where it is therefore of great importan
e
that tests are fo
used on those situations that are most likely to show errors.

Chapter 3

LOGAN: A LOG ANalysis

Language

3.1 Introdu
tion

Tele
ommuni
ation systems are very
omplex, whi
h makes testing important. Test-
ing typi
ally involves the design or automati
 generation and sele
tion of suitable test

ases, i.e. tests that
over mu
h of the system's behavior, the appli
ation of these tests
to the system, and analysis of the test results. Ideally, the expe
ted out
ome of a
test
ase is spe
i�ed when that test
ase is
reated, so that analysis of the test results
boils down to
omparing the real out
ome of a test
ase with its expe
ted out
ome.

We will examine a real life test result analysis problem whi
h arises from a non
ideal method of testing. At the Test&Release
enter of KPN Tele
om, a representative

opy of the Dut
h publi
 telephony network,
alled TESTNET, is used to test the
exe
ution of tariÆng and
all registration. Figure 3.1 shows how these tests are

arried out. Firstly, a test s
ript, whi
h des
ribes a
ertain test
ase, is made. This
s
ript
an then be exe
uted by a Call Generator, a system that
an make
alls via the
TESTNET network. TESTNET produ
es so-
alled Call Data Re
ords (CDRs). A
CDR is
reated ea
h time a su

essful
all is terminated (a su

essful
all being a
all
in whi
h a
onne
tion was established between two or more subs
ribers). It
ontains
information about that
all whi
h is used for tariÆng, su
h as the subs
ribers that
were involved and the duration of the
all. Test result analysis for this type of test

onsists of
he
king the
orre
tness of the
ontents of the CDRs that were produ
ed
during the test.

If the `ideal' testing pro
ess were followed, ea
h test s
ript would be a

ompanied
by the CDRs that are expe
ted to be produ
ed by TESTNET. These
ould then be

ompared with the CDRs that were a
tually produ
ed during the test. At KPN T&R,
however, no expe
ted CDRs are spe
i�ed before the exe
ution of a test; a possible
reason for this, is that system spe
i�
ations, on whi
h test predi
tion should be based,
are missing or un
lear. Instead, the CDRs are
ompared with other data produ
ed
during the test, namely a log �le that
ontains the signals that the Call Generator and

29

30 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

Test Script TESTNET Call
Data
Records

Expected
Call
Data
Records

Automated
Log Analysis

Call Generator

Log File Analysis Test Verdict

Comparison

Figure 3.1: CDR testing on TESTNET, and a proposal to automate the analysis of
test results

TESTNET ex
hanged. The analysis
onsists of �nding signal tra
es of su

essfully
terminated
alls in the log �le, mat
hing these with the
orresponding CDRs, and
determining if the information in a CDR is
orre
t, based on the information in the
tra
e. This analysis is
arried out manually.

A

epting the fa
t that real test predi
tion for the CDR testing pro
ess is not
something that
an be implemented in the near future, we will investigate the possi-
bility of automated analysis of log �les. Figure 3.1 (the dashed box) shows how this

ould �t in the
urrent analysis pro
edure. Given a log �le, the automated analysis
produ
es `expe
ted' CDRs whi
h
an be
ompared with the real CDRs.

We will only
on
ern ourselves with �nding signal tra
es
orresponding to su

ess-
ful
alls, as the
onstru
tion of a CDR, given a tra
e, should not be that diÆ
ult.
What is left is a type of pattern mat
hing problem, whi
h leaves us in fa
t with two
problems: what is a pattern in our
ase, so, what kind of tra
es do we want to �nd,
and how do we do the mat
hing , so, how do we a
tually �nd them?

We de�ne a pattern des
ription language that enables us to des
ribe the properties
of the tra
es we are interested in, and present an algorithm that, given a pattern
des
ription and a log �le, �nds all the tra
es in that log �le that mat
h the pattern.

3.2. FINDING CALL TRACES IN LOG FILES 31

3.2 Finding Call Tra
es in Log Files

The pro
ess that we want to automate is the sear
h for su

essful
alls in a log �le.
Figure 3.2 shows a fragment of a log �le. It is a sequen
e of signals, where ea
h signal
is sent by a user (Call Generator) to the system (TESTNET), or re
eived by a user
from the system. The number with whi
h ea
h signal starts identi�es the user; it is
his telephone number. The form of a signal does not show if it was sent or re
eived by
a user. For anybody familiar with telephony, the name of a signal should be a
lear
indi
ation of its dire
tion. Moreover, the dire
tion of signals is not important for our
problem.

30:Off_Hook
30:Dial_Tone
10:Off_Hook
30:Dial(32)
10:Dial_Tone
30:Busy_Tone
10:Dial(20)
10:Ringing_Tone
30:On_Hook
20:Ringing
30:Off_Hook
20:Ringing
30:Dial_Tone
20:Off_Hook
30:Dial(20)
30:Busy_Tone
10:On_Hook
30:On_Hook
20:On_Hook

Figure 3.2: Fragment of a log �le

In reality the signals in a log �le are a

ompanied by time stamps, but we do not
show these be
ause they do not play a role in the problem of �nding su

essful
alls
(they do play a role in the problem of generating CDRs for these su

essful
alls).

The log �le shown in Figure 3.2
ontains one su

essfully terminated
all, from
user 10 to user 20 to be pre
ise. In Figure 3.3(A) the same log �le is depi
ted, but
with the
all tra
e of that su

essful
all highlighted. With ea
h su

essful
all made
during the test
orresponds a sequen
e of signals, a
all tra
e, in the log �le that was
produ
ed. Finding su

essful
alls means �nding su
h tra
es.

3.2.1 Chara
teristi
 Sequen
es

So how do we re
ognise a sequen
e of signals as the tra
e of a su

essful
all? As
a �rst attempt, we noti
e that the tra
e of a su

essful
all will
ontain a
ertain
subsequen
e of events that identi�es it as su
h. Su
h a subsequen
e we will
all a

hara
teristi
 sequen
e. A
hara
teristi
 sequen
e of a su

essful phone
all
ould for
example be the pattern:

32 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

A:Dial Tone; A:Dial(B); B:Off Hook; (A:On Hook or B:On Hook);

The variables A and B here stand for two di�erent subs
ribers. They fun
tion as
parameters of the pattern, and must mat
h phone numbers in a log �le. We will thus
need some kind of parametri
 pattern mat
hing [Bak96℄.

In the pattern above, one
an re
ognise the typi
al s
enario of a normal phone

all: the A party re
eives a dial tone, it dials the phone number of the B party, whi
h
responds by going o� hook, and, �nally, the
all is terminated by one of the parties
going on hook. In Figure 3.3(B) a
hara
teristi
 sequen
e mat
hing this des
ription
is highlighted. It identi�es the tra
e highlighted in Figure 3.3(A) as a su

essful
all.

30:Busy_Tone

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook
20:On_Hook

30:Dial(32)

30:Dial_Tone
30:Off_Hook

10:Off_Hook

10:Dial_Tone

10:Dial(20)
10:Ringing_Tone

20:Ringing

20:Ringing

20:Off_Hook

10:On_Hook

30:Busy_Tone

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook
20:On_Hook

30:Dial(32)

30:Dial_Tone
30:Off_Hook

10:Dial_Tone

10:Dial(20)

20:Off_Hook

10:On_Hook

10:Off_Hook

10:Ringing_Tone

20:Ringing

20:Ringing

(A) (B)

Figure 3.3: (A) A
all tra
e in a log �le, (B) A
hara
teristi
 sequen
e in a
all tra
e

However, �nding
hara
teristi
 sequen
es is not enough to solve the problem of
�nding su

essful
alls. On the one hand, they re
ognise too little, be
ause
ertain
legitimate
alls will not mat
h the above pattern. On the other hand, they re
ognise
too mu
h, be
ause events that are a
tually unrelated might 'a

idently' form a pattern
like the one des
ribed above.

3.2.2 Problem 1: Other Call Types

In present day telephony, `normal' phone
alls are not the only
alls being made.
Telephony systems have been enhan
ed, and keep being enhan
ed, with all kinds of
spe
ial servi
es like
all forwarding,
all waiting, and automati
 ring ba
k. The use of
su
h a servi
e in a
all
an lead to a su

essful
all that does not mat
h the pattern we
have given. We will illustrate this by giving an example of the use of
all forwarding.

In
all forwarding, a subs
riber
an issue the system to forward all
alls made to
his telephone to another telephone. He
an do this by dialing the
ode *21, followed
by the phone number of the new destination. We will use the signal A:Dial*21(B) to

3.2. FINDING CALL TRACES IN LOG FILES 33

denote the a
tivation of the
all forwarding servi
e, where A is the subs
riber, and B

the new destination, and A:Dial#21 for the dea
tivation of the
all forwarding feature
by subs
riber A.

(A) (B)

30:Busy_Tone

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook

30:Dial(32)
10:Off_Hook

10:Dial_Tone

10:Dial(20)
10:Ringing_Tone

10:On_Hook

50:Ringing

50:Ringing

50:Off_Hook

50:On_Hook

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook

10:Dial_Tone

10:Dial(20)

10:On_Hook

10:Off_Hook

10:Ringing_Tone

50:Off_Hook

50:Ringing

50:Ringing

50:On_Hook

20:Dial*21(50)
30:Off_Hook

30:Busy_Tone

30:Dial(32)

Figure 3.4: (A) A
all tra
e of a forwarded
all, (B) A
hara
teristi
 sequen
e of
signals for
all forwarding in a
all tra
e

Figure 3.4(A) shows the tra
e of a forwarded
all. Although this is a legal
all, it
does not
ontain a mat
h for the pattern we have de�ned. The only di�eren
e of this
tra
e with the normal
all tra
e depi
ted in Figure 3.3(A), is the phone that answers
the
all, 50 instead of 20. Apparently, phone 20 has been forwarded to phone 50.
If the a
tivation of the servi
e took pla
e before the test was exe
uted, there is no
re
ord of the a
tivation in the log �le and there is little hope of identifying the
all
tra
e of Figure 3.4(A) as a su

essful (forwarded)
all. If the a
tivation took pla
e
during the test, the log �le will show this. The following pattern then seems a good

andidate for identifying forwarded
alls:

B:Dial*21(C); A:Dial Tone; A:Dial(B); C:Off Hook; A:On Hook or

C:On Hook;

In Figure 3.4(B) a subsequen
e of the tra
e of a forwarded
all is highlighted that
mat
hes this pattern.

This example shows that di�erent
all types require di�erent patterns. There is
however the well known problem of feature intera
tion [CV93, Mid94℄. Servi
es, also
known as features,
an intera
t with ea
h other in a
all, and it is possible that this
results in a
all tra
e that
an not be re
ognised with any of the patterns designed
for the individual servi
es. So, a
ombination of servi
es
an, in a way, give rise to
yet another
all type, and sin
e servi
es
an be
ombined in many ways, if we want
to �nd all su
h
alls, we will need to de�ne a lot of patterns, maybe even an in�nite
number of them.

34 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

A good example of a feature intera
tion
ausing problems, is the intera
tion of

all forwarding with itself. Using
all forwarding, it is possible to make a
hain of
forwarded phones. A phone
an be forwarded to a phone that is forwarded to yet
another phone that is forwarded to. . . , and so on. In our forwarded
alls in Figure
3.4, phone 20 was forwarded to phone 50. Had phone number 50 been forwarded to
yet another phone itself, then our
all forwarding pattern would have been re
ognised
by neither a normal
all s
enario nor our
all forwarding s
enario.

As a matter of fa
t, the kind of pattern mat
hing that we want to do, whi
h is
related to string mat
hing and sequen
e mat
hing [KMP77, BM77, Wat95, DFG+97℄,
is not really suited for �nding
alls that are forwarded through long forwarding
hains.
If one wants to �nd
alls with any number of forwardings (or whi
hever other
ombina-
tion of (unrestri
tedly) many servi
es), only methods that go beyond merely pattern
mat
hing will be able to dete
t all possible
ombinations.

3.2.3 Problem 2: Coheren
e of Chara
teristi
 Sequen
es

The �rst problem mentioned at the end of Se
tion 3.2.1, i.e. that of re
ognizing too
little with our pattern,
an thus be solved by de�ning di�erent patterns for di�erent

all types, at least to some extent. We will now deal with the se
ond problem men-
tioned at the end of Subse
tion 3.2.1, i.e. that of re
ognizing unrelated events as if
they were part of a pattern.

30:Dial_Tone
30:Off_Hook

30:Busy_Tone

30:Dial(32)
10:Dial_Tone

10:Off_Hook

30:Off_Hook

10:Dial(20)
20:Off_Hook

30:Dial_Tone
30:Dial(20)
10:On_Hook
30:Busy_Tone
30:On_Hook
20:On_Hook

30:On_Hook

50:Off_Hook

50:Dial_Tone

10:Busy_Tone

20:Dial*21(50)
50:Dial*21(60)
10:Off_Hook
10:Dial_Tone
10:Dial(20)
30:Off_Hook
60:Off_Hook
50:Off_Hook
50:Dial_Tone
30:Dial_Tone
10:On_Hook
60:On_Hook
50:Dial(80)
30:Dial(32)
30:Busy_Tone
50:Busy_Tone
50:On_Hook
30:On_Hook
10:Off_Hook

(A) (B)

Figure 3.5: Erroneous re
ognition of a normal
all (A), and a forwarded
all (B)

Examine the log �les shown in Figure 3.5. Log �le (A)
ontains a
hara
teristi

signal sequen
e of a normal
all, but it does not
ontain a su

essful normal
all.
The off hook signal, in this
ase, is not the response to the in
oming
all but the
initiation of another
all. So, a number of unrelated signals are mistaken as a witness

3.3. A PATTERN LANGUAGE: LOGAN 35

of the presen
e of the
all tra
e of some su

essful normal
all. Something similar
holds for log �le (B), where a forwarded
all is erroneously re
ognised.

We want to be able to determine whether a
hara
teristi
 signal sequen
e in a log
�le really is part of one
all, or is just a
olle
tion of signals from di�erent (su

essful
or unsu

essful)
alls. Figure 3.5 shows how this
ould be done. The 10:Busy Tone

signal in log �le (A) indi
ates that the highlighted sequen
e
an never be a witness
of a normal
all. Its o

urren
e between the 20:Off Hook and 10:On Hook signals
shows that something other than a su

essful
all from 10 to 20 is taking pla
e. In
log �le (B), both the 50:Dial*21(60) and the 50:Dial Tone signals indi
ate that
the sequen
e indi
ated does not a
tually signify a su

essfully forwarded
all.

So, the presen
e of
ertain signals at
ertain positions within the log �le segment
o

upied by a
hara
teristi
 sequen
e,
an tell us that that
hara
teristi
 sequen
e is
not a witness of a su

essful
all. The pattern language that we de�ne in the next
se
tion features su
h signals, whi
h we will
all negative signals (as opposed to the
positive signals in a
hara
teristi
 sequen
e).

Finally, Figure 3.6 shows how the approa
h of using positive and negative signals
relates to the system under test, TESTNET. If we regard this system as a huge state
ma
hine, the positive signals identify state transitions on some path that eventually
leads to a desired �nal state (where a su

essful
all (of some type) is terminated, so
where a CDR should be
reated by TESTNET), whereas the negative signals
ause
state transitions that \lead away from the path".

p0 p1 p2

n0
n1 n2

n3

‘‘a successful call is terminated’’

TESTNET

Figure 3.6: How positive and negative signals relate to the system under test

3.3 A Pattern Language: LOGAN

These
on
epts of positive and negative signals have been in
orporated in a pattern
des
ription language, whi
h we wall
all LOGAN (LOG ANalysis). We will introdu
e
this language �rst by giving an example pattern for a normal
all. A formal de�nition
will follow later in this
hapter.

PATTERN normal_
all

36 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

BEGIN

A:Dial_Tone;

NOT A:Busy_Tone,A:On_Hook;

A:Dial(B);

NOT A:Busy_Tone,A:On_Hook;

B:Off_Hook;

NOT A:Busy_Tone,B:Busy_Tone,A:On_Hook,B:On_Hook;

A:On_Hook,B:On_Hook;

END

In this pattern we
learly re
ognise the spe
i�
ation of the
hara
teristi
 sequen
es
of normal
alls that we presented earlier. Although we have already presented some
spe
i�
ations of
hara
teristi
 sequen
es, we have not yet de�ned what kind of spe
i�-

ations we use. Any formalism in whi
h a set of tra
es
an be spe
i�ed
ould be used,
for example, regular expressions, �nite state ma
hines, grammars, Message Sequen
e
Charts (MSC) [IT00, RGG96a℄, pro
ess algebra [BW90℄ or a large number of other
formalisms. LOGAN uses a very simple, but be
ause of that same reason also rather
weak formalism, that of a list of signal sets. The normal
all pattern above uses a list
of signal sets to spe
ify the
hara
teristi
 sequen
es of a normal
all: fA:Dial Toneg;
fA:Dial(B)g; fB:Off Hookg; fA:On Hook, B:On Hookg. If S0; : : : ;Sn is a list of signal
sets, it represents a set of tra
es fs0; : : : ; sn j 8 i : 0 � i � n : si 2 Sig.

What is really new in the pattern des
ription, is the spe
i�
ation of negative
signals. In between the positive signal sets of the pattern, sets of negative signals
are spe
i�ed, whi
h are pre
eded with the keyword NOT to distinguish them from sets
of positive signals. The idea is that not only the list of positive signals should '�t',
but also no negative signals should appear on the pla
e where they are spe
i�ed. For
example, between the signals A:Dial(B) and B:Off Hook the signals A:Busy Tone

and A:On Hook may not o

ur. The log �le in Figure 3.5A should not be
onsidered
to
ontain the pattern des
ribed above, be
ause of the o

urren
e of a 10:Busy Tone

signal between the 20:Off Hook and 10:On Hook signals.
The reader
an easily verify that all the negative signals in this pattern are signals

that, when en
ountered within a
hara
teristi
 sequen
e, indi
ate that the sequen
e is
not
oherent. It is more diÆ
ult to see whether all possible in
oherent
hara
teristi

sequen
es of a normal
all in a log �le, are indeed `reje
ted' by the pattern.

Before we give the formal syntax of LOGAN , we will �rst give a se
ond example,
a pattern for
all forwarding:

PATTERN
all_forward

BEGIN

NOT C:Dial*21(*);

B:Dial*21(C);

NOT B:Dial*21(*),B:Dial#21,C:Dial*21(*);

A:Dial_Tone;

NOT A:Busy_Tone,A:On_Hook,B:Dial*21(*),B:Dial#21,C:Dial*21(*);

A:Dial(B);

NOT A:Busy_Tone,A:On_Hook,B:Dial*21(*),B:Dial#21,C:Dial*21(*);

C:Off_Hook;

3.3. A PATTERN LANGUAGE: LOGAN 37

NOT A:Busy_Tone,C:Busy_Tone,A:On_Hook,C:On_Hook;

A:On_Hook,C:On_Hook;

END

Again, the spe
i�
ation of the
hara
teristi
 sequen
es of forwarded
alls that we
gave earlier,
an be re
ognised in this pattern. There are however two new elements
in this pattern,
ompared to the last one: A negative signal set pre
edes the �rst
positive signal set, and wild
ards (*) are used to denote any subs
riber.

The NOT C:Dial*21(*) that starts o� the pattern states that C, whi
h is the
destination to whi
h B is going to forward his
alls, is not forwarded itself (to anyone)
before B forwards his
alls to C. So, a negative signal set pre
eding the �rst positive
signal set makes perfe
tly good sense and is very useful, as this example shows. We
will not allow a negative signal set after the last positive signal set. Though from a
`pattern mat
hing' point of view, there is nothing wrong with this, it does not make
mu
h sense from the `state ma
hine' point of view (Figure 3.6). From this point of
view, we want to dete
t that TESTNET has rea
hed some state where a su

essful

all is terminated. If we are not already in su
h a state we
an only get there if
something happens, not if something will not happen in the future. From a pra
ti
al
point of view su
h a restri
tion seems reasonable: we do not want to have to wait
inde�nitely long in the future before de
iding whether or not something is a valid
all.

3.3.1 Syntax of LOGAN

The syntax of LOGAN is given in Table 3.1, in the form of a
ontext-free grammar.
The grammar is rather straightforward. The two LOGAN pattern examples we have
given
over most of the language, so the grammar does not reveal anything radi
ally
new. Worth mentioning perhaps is that signals
an have an arbitrary number of argu-
ments, as is expressed by the rules for ACT and ARGs, and that
on
rete telephone
numbers
an be used wherever a variable or wild
ard
an be used, as is expressed by
the rule for SUB.

PAT ::= PATTERN NAM BEGIN BOD END

NAM ::= [a : : :z; A : : :Z; 0 : : :9; ℄+

BOD ::= [NEG POS ℄�

NEG ::= " j NOT SIGs ;
POS ::= SIGs ;
SIGs ::= SIG j SIG,SIGs
SIG ::= SUB:ACT
SUB ::= ID j * j [0 : : :9℄+

ID ::= A. . . Z
ACT ::= SIGNAM j SIGNAM(ARGs)
SIGNAM ::= [a : : :z; A : : :Z; 0 : : :9; ; �;# ℄+

ARGs ::= SUB j SUB,ARGs

Table 3.1: The syntax of LOGAN

38 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

3.3.2 Tabular Form

For pra
ti
al purposes, we propose an alternative notation for LOGAN patterns whi
h
we will
all tabular form. Here is the tabular form of normal
all:

normal
all
Busy Tone On Hook

A:Dial Tone A A
A:Dial(B) A A
B:O� Hook A,B A,B
A:On Hook,B:On Hook

The
orresponden
e between textual and tabular form should not be hard to grasp.
The name of the pattern is in the upper left �eld of the table. The positive signal sets
are all in the �rst
olumn. The negative signal sets are represented by the se
ond,
third, et
.
olumns. Ea
h negative signal is split in its `subje
t', i.e. the re
eiving or
sending subs
riber, and the name of the signal. So the A in the third row and se
ond

olumn of the table means that A:Busy Tone may not o

ur between A:Dial Tone

and A:Dial(B). We feel that, with its two-dimensional representation of patterns,
the tabular format provides a more user friendly way of writing and reading patterns.
The main reason for this is that subsequent negative signal sets often
ontain the
same signals, and this property is readily apparent from the tabular format. If this
was not a property of patterns, then the tabular format would probably be mu
h less
readable.

The following example in tabular format is a pattern des
ribing a su

essful
all
in whi
h the Call Waiting Hook
ash servi
e is a
tivated. This means that while
subs
riber B is
onne
ted to subs
riber A, a third person, say C,
an
all B. B will then
hear a soft warning tone, and when B hook
ashes, A will be put `on hold' and B and
C
an talk. B
an swit
h many times between A and C by hook
ashing. The example
des
ribes the situation where B swit
hes on
e from A to C and after termination of
the
all with C, swit
hes ba
k to A. Of
ourse, many other
all waiting s
enarios are
possible. In order to �nd these, we would have to write other patterns, or, better, �nd
one pattern that
aptures the essen
e of all, or at least a lot of,
all waiting s
enarios.
We will
ome ba
k to this issue in Se
tions 3.7 and 3.8.

3.4. FORMAL SEMANTICS OF LOGAN 39

all w hk
sh
Busy Tone On Hook

A:Dial Tone A A
A:Dial(B) A A
B:O� Hook A,B A,B
C:Dial Tone A,B,C A,B,C
C:Dial(B) A,B,C A,B,C
B:Warning Tone A,B,C A,B,C
B:Hook
ash A,B,C A,B,C
A:Hold Tone A,B,C A,B,C
C:On Hook A,B A,B
B:Hook
ash A,B A,B
A:On Hook,B:On Hook

Note, that the normal
all pattern is present in this
all waiting hook
ash pattern
(rows 3, 4, 5 and 13). The �rst leg of the
all, i.e. the
onversation between A and B

will therefore also be dete
ted by the normal
all pattern, but this is not the
ase for
the se
ond leg, i.e. the
onversation between C and B. This se
ond leg does not mat
h
the normal
all pattern be
ause B responds to the in
oming
all with a Hookflash

instead of an Off Hook.

3.4 Formal Semanti
s of LOGAN

We will know pro
eed to a formal semanti
s of LOGAN . In the pre
eding se
tions we
have more than on
e used the term witness of a pattern, meaning a sequen
e of signals
in a log �le that indi
ates the presen
e of the pattern. This term will be
entral in
our de�nition of a formal semanti
s. However, before giving a formal de�nition of the
witness
on
ept for LOGAN patterns, we will �rst give a mathemati
al des
ription
of LOGAN patterns.

De�nition 3.4.1 (LOGAN pattern) With a LOGAN pattern,
ontaining k pos-
itive signal sets, we asso
iate a pair (P;N), where P = (P0; P1; : : : ; Pk�1) is a list of
non-empty sets of signals, and N = (N0; N1; : : : ; Nk�1) is a list of, possibly empty,
sets of signals. For all 0 � i < k, Pi
ontains the signals of the i-th positive signal set
of the LOGAN pattern, and Ni
ontains the signals of the negative signal set that
pre
edes Pi. In the remainder of this
hapter we will simply
all su
h (P;N) pairs
LOGAN patterns.

In order to mat
h a LOGAN pattern with a signal sequen
e in a log �le we have to
establish a relation between the variables in that pattern, whi
h represent telephone
numbers, and the a
tual telephone numbers in the log �le. For this, we will use
valuations.

De�nition 3.4.2 (Valuation) Let (P;N) be a LOGAN pattern. A valuation for
this pattern is a partial inje
tion v : vars(P)!+ Ext , where Ext is the set of extensions,

40 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

i.e. telephone numbers, and vars(P) denotes the set of variables that appear in the
positive signal sets of the pattern.

So, a valuation assigns telephone numbers to variables in a pattern. The fa
t
that valuations are inje
tions implies that di�erent variables in a pattern represent
di�erent telephone numbers. They are partial fun
tions, be
ause in order to mat
h a
pattern with a parti
ular signal sequen
e in a log �le not all variables in the positive
signal sets need to have an assignment.

We now de�ne how variables and wild
ards in a pattern
an be repla
ed by a
tual
telephone numbers, whi
h will allow us to mat
h a
tual signals from a log �le with
signal sets of a pattern (whi
h may
ontain variables and wild
ards).

De�nition 3.4.3 (Substitution and mat
hing) Let (P;N) be a LOGAN pat-
tern, and v a valuation for that pattern. Let S be some signal set in (P;N) (positive
or negative). Applying the valuation v to the signal set S yields a signal set v(S)
obtained from S by substituting extensions for variables as is pres
ribed by v and
`expanding' all wild
ards.

By expanding, we mean that all possible substitutions of extensions for wild
ards
are in
luded in v(S). Here is an example of a substitution, where valuation v = fA 7!
1024; D 7! 1060g.

v(fA:Dial(B); D:Dial(*)g) = f1024:Dial(B); 1060:Dial(e) j e 2 Extg

So, given the valuation v, 1060:Dial(1914) mat
hes fA:Dial(B); D:Dial(*)g, be-

ause 1060:Dial(1648) 2 v(fA:Dial(B); D:Dial(*)g). Note, that under the valu-
ation v, 1024:Dial(1918) does not mat
h this signal set (although we
an easily
extend the valuation so that it does).

Now that we have a
onvenient mathemati
al notation for LOGAN patterns,
valuations that assign extensions to the variables in a pattern, and the notion of
signals mat
hing signal sets (given a valuation), we are able to give a formal de�nition
of a witness of a LOGAN pattern.

De�nition 3.4.4 (Witness) Let (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk)) be a LOGAN
pattern, and L = [s0; : : : ; sn℄ a log �le. A witness of (P;N) on L is a pair (f; v), where
f : f0; : : : ; kg ! f0; : : : ; ng is a so-
alled witness fun
tion, and v : vars(P) !+ Ext is
a valuation, su
h that for all i (0 � i � k), j (0 � j � k) and x (0 � x � n):

1. i < j) f(i) < f(j)

2. sf(i) 2 v(Pi)

3. minimal (v; f; P)

4. f(i� 1) < x < f(i)) sx 62 v(Ni) (de�ne f(�1) = �1).

where minimal(v; f; P) � (8w � v :: :(8 i : 0 � i � k : sf(i) 2 w(Pi))). The
demand that a valuation is \minimal" assures that all the variable assignments in the
valuation are ne
essary. As shorthand for \(f; v) is a witness of (P;N) on L" we will
use (f; v) : L j= (P;N).

3.5. ALGORITHM 41

 NOT {}

{A:Dial_Tone}

 NOT {A:Busy_Tone, A:On_Hook}

{A:Dial(B)}

 NOT {A:Busy_Tone, A:On_Hook}

{B:Off_Hook}

{A:On_Hook, B:On_Hook}

 NOT {A,B:Busy_Tone, A,B:On_Hook}

2. 5020:Off_Hook

3. 7777:Dial_Tone

4. 5020:Dial_Tone

5. 5020:Dial(5157)

6. 7777:Busy_Tone

7. 5020:Ringing_Tone

8. 5157:Ringing

9. 7777:On_Hook

10. 5157:Ringing

11. 5157:Off_Hook

12. 5157:On_Hook

13. 5020:On_Hook

1. 7777:Off_Hook

Figure 3.7: a witness with valuation fA 7! 5020; B 7! 5157g

Figure 3.7 depi
ts witness (f0 7! 4; 1 7! 5; 2 7! 11; 3 7! 12g; fA 7! 5020; B 7!
5157g). Be
ause the domain of a witness fun
tion is a �nite initial segment of the
natural numbers, we identify witness fun
tions with lists over the natural numbers.
We
an say that Figure 3.7 depi
ts witness (h4; 5; 11; 12i; fA 7! 5020; B 7! 5157g) and
in the sequel we will also use list operators on witness fun
tions, yielding expressions
like jf j (length of a list), tail(f) (tail of a list), and f++g (
on
atenation of two lists).

3.5 Algorithm

In this se
tion we will show an algorithm to �nd all the witnesses of a LOGAN pattern
in a log �le. We will �rst look at an algorithm for a subset of LOGAN whi
h we will

all LOGAN
. LOGAN
 is equivalent to LOGAN ex
ept for not using variables and
wild
ards. Thus, synta
ti
ally, LOGAN
 is like LOGAN ex
ept for the rule SUB ::=
ID j * j [0 : : :9℄+, whi
h is repla
ed by the rule SUB ::= [0 : : :9℄+. On this subset
we
an
onstru
t a basi
 algorithm for sequen
es mat
hing LOGAN -style 'pos-neg'
patterns, and leave the extra
ompli
ation of variable substitution for later.

Be
ause LOGAN
 patterns do not
ontain variables and wild
ards, valuations do
not play a role in �nding witnesses. All witnesses of su
h a pattern are of the form
(f; ;). A witness for a LOGAN
 pattern is a
tually just a witness fun
tion, and we
will therefore write f : L j= (P;N), thereby meaning (f; ;) : L j= (P;N).

The pre-
ondition and post-
ondition for our algorithm will be:

on L: log �le, (P;N): a LOGAN
 pattern
var F : set of witness fun
tions

PRE: L = [s0; : : : ; sn℄ ^ (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk))
POST: F = ff j f : L j= (P;N)g

42 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

Basi
ally, the algorithm works as follows: it traverses the log �le and maintains
the set of witness fun
tions of pre�xes of the pattern on the part of the log �le s
anned
so far. We will use the following notation to denote pattern pre�xes: (P;N) � m =
((P0; : : : ; Pm�1); (N0; : : : ; Nm�1)). We will a
tually design an algorithm that satis�es
the following post-
ondition:

POST': F = ff j f : L j= (P;N) �jf jg

The intended post-
ondition POST
an easily be rea
hed from POST' by the
rule F := ff j f 2 F ^ jf j= k + 1g.

We introdu
e variables l1 and l2, representing the part of L already pro
essed and
the part that still has to be done, respe
tively. The following invariants will hold
during the appli
ation of the algorithm:

var l1; l2 : log �le

INV0: l1++l2 = L
INV1: F = ff j f : l1 j= (P;N) �jf j ^ extra(f; l1; N)g

where extra(f; l; N) � jf j= k + 1 _ (8 j : f(jf j �1) < j <j l j: l(j) =2 Njfj).
The extra(f; l1; N)
lause in INV1 is an extension of
lause (4) of de�nition 3.4.4,

and it expresses that for all witness fun
tions f 2 F that are not
omplete witnesses
yet, the part of the log �le pro
essed after the last signal witnessed by f , may not

ontain signals in the `lookahead' negative signal set Njfj.

For l2 = hi the post-
ondition follows from these invariants, so l2 6= hi will be a
suitable guard for the algorithm. Be
ause the empty pattern is the only pattern that
mat
hes the empty log �le, and the empty witness fun
tion the only
orresponding
witness, F := fhig, l1 := hi, and l2 := L will do as initialization.

Now, for within the repetition of the algorithm, we have to �nd assignments to F ,
l1 and l2, that satisfy the invariants and assure termination of the algorithm. Heading
for termination we
hoose l1 := l1++hl2(0)i and l2 := tail(l2), whi
h leaves us with
the task of
omputing ff j l1++hl2(0)i j= (P;N) �jf j ^ extra(f; l1++hl2(0)i; N)g. By
splitting this set in two sets, one
ontaining the witness fun
tions f that refer to the
j l1 j-th element of the log �le (i.e. l2(0), the signal
urrently being inspe
ted), and
the other one
ontaining the ones that do not, we
an derive the following equivalent
expression:

ff++hj l1 ji j f 2 F ^ jf j� k ^ l2(0) 2 Pjfjg [
ff j f 2 F ^ (jf j= k + 1 _ l2(0) =2 Njfj)g

The �rst set of this union shows how witness fun
tions in F
an be extended, with
a referen
e to the signal under inspe
tion. The se
ond set expresses that a witness
fun
tion in F remains in F unless it is an in
omplete witness and the signal under
inspe
tion is in the `lookahead' negative signal set. Here is the
omplete algorithm:

l1 := hi; l2 := L; F := fhig;
while l2 6= hi do

F := ff++hj l1 ji j f 2 F ^ jf j� k ^ l2(0) 2 Pjfjg [

3.6. VARIABLE SUBSTITUTION 43

ff j f 2 F ^ (jf j= k + 1 _ l2(0) =2 Njfj)g;
l1 := l1++hl2(0)i; l2 := tail(l2)

od

For pra
ti
al usage it is better to transform this algorithm into a more readable
form, where a number of set operations have been eliminated. The assignment to F is
repla
ed by a sequen
e of assignments for ea
h element of the set in a straightforward
manner. We also get rid of the two lists l1 and l2 in the representation of the algorithm,
instead introdu
ing an integer variable m = jl1j.

F := fhig;
for m = 0 to n

G := ;;
for ea
h f 2 F

l :=jf j;
if l � k
and sm 2 Pl then G := G [ff++hmig;
if l = k + 1
or sm 62 Nl then G := G [ffg

next
F := G

next

3.6 Variable Substitution

We now get to the problem of adding variables and wild
ards to the algorithm derived
in the previous se
tion. Extending the algorithm so that it
an handle wild
ards is
a
tually quite easy. When we de�ned substitution in Se
tion 3.4, we introdu
ed the
notion of expanding a signal set to get rid of wild
ards. If we apply this expansion
to the signal sets present in the algorithm, we have an algorithm that also works
for patterns with wild
ards (In an implementation of this algorithm the `expansion'
will, of
ourse, have to be implemented by a simple pattern mat
hing pro
edure, and
not an a
tual expansion pro
edure). Extending the algorithm so that it
an handle
variables is more diÆ
ult. The major diÆ
ulty, as we will see, is that before a value
is assigned to a variable in order to mat
h a signal from the log �le to a signal in a
positive signal set, a negative signal set
an already have imposed some restri
tions
on the values that the variable may attain.

First, we give a spe
i�
ation for the algorithm. It is basi
ally the spe
i�
ation of
the previous algorithm, but with witness fun
tions repla
ed by
omplete witnesses,
i.e. witness fun
tions and valuations.

on L: log �le, (P;N): a LOGAN pattern
var F : set of witnesses

PRE: L = [s0; : : : ; sn℄ ^ (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk))
POST: F = f(f; v) j (f; v) : L j= (P;N)g

We will have to get the valuations into the algorithm somehow. At �rst glan
e,
this does not seem to be su
h a big problem. Just pair the empty witness fun
tion in

44 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

the initialization with the empty valuation, and extend a valuation with the proper
variable assignments if thereby we
an mat
h a signal from the log �le with a signal
in a positive signal set.

3.6.1 Constraints

Consider s
anning a log �le
ontaining 1080:Dial Tone;1080:Busy Tone for the nor-
mal
all pattern. The �rst signal mat
hes the �rst positive signal of this pattern if
we
hoose the valuation fA 7! 1080g. The se
ond signal, however, mat
hes the next
negative signal set if this valuation is applied to it. This means that we have to
abandon the witness that we are
onstru
ting. It is no longer valid.

Now
onsider s
anning a log �le
ontaining 1080:Dial*21(1030);...;1060:Dial
*21(1080) for the
all forwarding pattern. The last signal mat
hes the �rst positive
signal of the pattern if we
hoose valuation fB 7! 1060; C 7! 1080g. Then, however,
we have a
on
i
t with the �rst negative signal set of the
all forwarding pattern, the
one pre
eding the �rst positive signal. This set
ontains C:Dial*21(*) and the �rst
signal in the log �le fragment mat
hes this signal set given our valuation. This means
that, again, we have to abandon the witness we are
onstru
ting. This example shows
that we somehow have to remember that valuation fC 7! 1080g is no longer allowed
after we have en
ountered the 1080:Dial*21(1030) signal in the log �le. Besides
the positive information about the values of the variables, i.e. the valuations, we also
have to keep tra
k of negative information about the values of variables.

With the help of a (probably quite exoti
) fragment of a pattern we will explain
how we
an use
onstraints as
arriers for the negative information. Here is the
example:

NOT A:dial*21(B), B:dial*21(A);

...

NOT C:dial(B), A:dial(*);

...

Suppose that we look for this pattern in a log �le, and that the witness we are
on-
stru
ting demands that the �rst negative signal set may not
ontain 1080:Dial*21

(1060), while 1024:Dial(1050) may not be
ontained in the se
ond one. The val-
uations that be
ome forbidden be
ause of the �rst signal mat
hing the �rst negative
signal set
an be
hara
terised by the following formula of propositional logi
:

(A = 1080 ^ B = 1060) _ (B = 1080 ^ A = 1060)

So, after we have s
anned the �rst signal (future) valuations have to satisfy the fol-
lowing
onstraint:

:((A = 1080 ^ B = 1060) _ (B = 1080 ^ A = 1060))

We
an transform this proposition into an equivalent one whi
h is in Conjun
tive
Normal Form (i.e. written as a
onjun
tion of disjun
tions):

(A 6= 1080 _ B 6= 1060) ^ (B 6= 1080 _ A 6= 1060)

3.6. VARIABLE SUBSTITUTION 45

We
an do the same for the se
ond signal and the se
ond negative signal set. Mat
hing
these yields the following
onstraint (in CNF):

(C 6= 1024 _ B 6= 1050) ^ A 6= 1024

Given a signal and a negative signal set, we
an always produ
e a logi
al formula in

onjun
tive normal form that
hara
terises the forbidden valuations. If the signal and
the signal set do not mat
h we get the formula true (true and false are both
onsidered
to be in CNF). If the signal mat
hes with one or more signals in the set, then, for ea
h
of these mat
hes, there is a (smallest) valuation that establishes this mat
h and that

an be
hara
terised by a formula of the form (X0 = e0 ^ : : : ^ Xn = en). The set of
(smallest) valuations that
ause a mat
h of the signal and the signal set
an then be

hara
terised by the disjun
tion of all these formulas. We turn the formula we then get
into a
onstraint by pla
ing a negation in front of it, and transforming it into a formula
in CNF using De Morgan's laws (:(A ^ B) = :A _ :B and :(A _B) = :A ^ :B).

Let us return to the example. We said that the witness under
onstru
tion
demands that the �rst negative signal set may not
ontain 1080:Dial*21(1060),
and that the se
ond one may not
ontain 1024:Dial(1050). For ea
h of these de-
mands we have
onstru
ted a
onstraint. The valuation of the witness must satisfy
both
onstraints, or in other words, it must satisfy their
onjun
tion, in this
ase
(A 6= 1080 _ B 6= 1060) ^ (B 6= 1080_ A 6= 1060) ^ (C 6= 1024 _ B 6= 1050) ^ A 6= 1024.

The example has shown us that we
an impose restri
tions on the valuation we
asso
iate with a witness, by also asso
iating a
onstraint with it, whi
h is a logi
al
formula in CNF that expresses whi
h assignments to variables are forbidden (and
whi
h not).

De�nition 3.6.1 (Constraints) Let V be a set of variables. The set of all
on-
straints over V is denoted by Prop(V), and it
onsists of all C formed a

ording to
the following BNF rules:

C ::= (C ^ C) j D
D ::= true j false j (D _ D) j X 6= e for some X , e.

We have used underlining to emphasize the fa
t that we are dealing with synta
ti

ategories. A
onstraint is not a boolean expression, it represents one.

Our de�nition of
onstraints permits that the values true and false o

ur in a

onstraint. This has been done with the evaluation of
onstraints (or of parts of a

onstraint) in mind. The next two de�nitions
on
ern this evaluation of
onstraints.

De�nition 3.6.2 (Constraints and valuations) Using the re
ursive stru
ture of

onstraints, we de�ne how a valuation v is applied to a
onstraint, produ
ing another

onstraint:

� v(C1 ^ C2) = v(C1) ^ v(C2)

� v(D1 _ D2) = v(D1) _ v(D2)

� v(true) = true

46 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

� v(false) = false

� v(X 6= e) =

8>>><
>>>:

X 6= e if X =2 dom(v) ^ 8Y 2 dom(v) : v(Y) 6= e

true if X 2 dom(v) ^ v(X) 6= e;

false if X 2 dom(v) ^ v(X) = e;

true if for some Y 2 dom(v); Y 6= X ^ v(Y) = e

Applying a valuation v to a
onstraint C yields a
onstraint equal to C in stru
ture,
but with the X 6= e
lauses repla
ed by true's and false's where the valuation permits
it. Note, that we use the fa
t that v is an inje
tion, i.e. v(X) 6= v(Y) for X 6= Y . By
applying a valuation to a
onstraint we
an
he
k whether that valuation satis�es the

onstraint or not.

Intuitively, we feel that two
onstraints have the same meaning if the logi
al
propositions they represent are equivalent. Consequently, we
an simplify a
onstraint
using the rules of propositional logi
 without
hanging its meaning.

De�nition 3.6.3 (Simpli�
ation) Let V be a set of variables. The fun
tion simp :
Prop(V) ! Prop(V) simpli�es a
onstraint, using the rules of logi
 for intera
tion
of true and false with ^ and _. Following the re
ursive stru
ture of
onstraints we
de�ne simp as follows:

� simp(true) = true, simp(false) = false, and simp(X 6= e) = X 6= e.

� simp(C1 ^ C2) =8>>>>>><
>>>>>>:

false if simp(C1) = false or simp(C2) = false;

true if simp(C1) = simp(C2) = true;

simp(C1) if simp(C1) =2 ftrue; falseg; simp(C2) = true;

simp(C2) if simp(C1) = true; simp(C2) =2 ftrue; falseg;

simp(C1) ^ simp(C2) if simp(C1); simp(C2) =2 ftrue; falseg

� simp(D1 _ D2) =8>>>>>><
>>>>>>:

true if simp(D1) = true or simp(D2) = true;

false if simp(D1) = simp(D2) = false;

simp(D1) if simp(D1) =2 ftrue; falseg; simp(D2) = false;

simp(D2) if simp(D1) = false; simp(D2) =2 ftrue; falseg;

simp(D1) _ simp(D2) if simp(D1); simp(D2) =2 ftrue; falseg

It is quite
lear from the de�nition of simp that if it is applied on a
onstraint C
it yields a
onstraint C 0 with the same meaning, with the additional property that
either C 0 = true or C 0 = false or C 0 does not
ontain the
onstants true and false
at all.

With the help of the
on
ept of applying valuations to
onstraints and the
on
ept
of simpli�
ation we de�ne a formal semanti
s for
onstraints, based on valuations.

3.6. VARIABLE SUBSTITUTION 47

De�nition 3.6.4 (Constraint semanti
s) Given a set V of variables, and C :
Prop(V) a
onstraint on those variables, we de�ne the semanti
s [[℄℄ of C with respe
t
to V as follows:

[[C℄℄V = fv : V ! Ext j simp(v(C)) 6= falseg

So, the semanti
s of a
onstraint is the set of valuations that do not falsify the
on-
straint.

We say that valuation v satis�es
onstraint C i� v 2 [[C℄℄V , and that
onstraint
C1 is weaker than
onstraint C2 i� [[C2℄℄V � [[C1℄℄V .

3.6.2 An Algorithm with Variable Substitution

Armed with the
on
ept of
onstraints, we
an now extend the algorithm of Se
tion
3.5 so that it
an handle all LOGAN patterns. To this end we give a de�nition
of a witness that in
ludes
onstraints. This de�nition sheds some light on how the
valuation of a (partial) witness may be extended. It is only with the algorithm and the

onstru
tion of witnesses in mind that this de�nition makes any sense. As a means
to explain the witness
on
ept it would be
orre
t but also quite absurd.

De�nition 3.6.5 (`Constrained' Witnesses) Given a LOGAN pattern (P;N) =
((P0; : : : ; Pk); (N0; : : : ; Nk)), and a log �le (pre�x) L = [s0; : : : ; sn℄, a
onstrained
witness of (P;N) on L is a 3-tuple (f; v; C), where f : f0; : : : ; kg ! f0; : : : ; ng is a
witness fun
tion, v : vars(P)!+ Ext a valuation, and C : Prop(vars(N)) a
onstraint,
su
h that for all i (0 � i � k), j (0 � j � k), x (0 � x � n), and w (v � w):

1. i < j) f(i) < f(j)

2. sf(i) 2 v(Pi)

3. minimal (v; f; P)

4. simp(v(C)) 6= false

5. f(i � 1) < x < f(i)) (sx 2 w(Ni)) simp(w(C)) = false) (de�ne f(�1) =
�1).

6. weakest(C; f; v;N)

where weakest(C; f; v;N) � (8C 0 : C 0satis�es
lauses (4) and (5) : [[C 0℄℄ � [[C℄℄).
Clause (5) takes the extension of valuations into a

ount by stating that
onstraint
C must prohibit
ertain extensions w of valuation v.

As shorthand for \(f; v; C) is a
onstrained witness of (P;N) on L" we will use
(f; v; C) : L j= (P;N). Note, that
lauses (4) and (5) imply
lause (4) from De�nition
3.4.4 (substitute v for w in
lause (5)), so we have that (f; v; C) : L j= (P;N))
(f; v) : L j= (P;N). We also have (f; v) : L j= (P;N)) (9C :: (f; v; C) : L j=
(P;N)). Be
ause of these two impli
ations (soundness and
ompleteness) we
an
safely
ompute
onstrained witnesses instead of ordinary witnesses.

48 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

So, a
onstrained witness is just an ordinary witness with some extra information
that says something about how the witness may be extended. We
an therefore give
the following spe
i�
ation, whi
h is more or less equivalent to the one given earlier in
this se
tion:

on L: log �le, (P;N): a LOGAN pattern
var F : set of
onstrained witnesses

PRE: L = [s0; : : : ; sn℄ ^ (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk))
POST: F = f(f; v; C) j (f; v; C) : L j= (P;N)g

We repla
e the post-
ondition by the following post-
ondition (like we did when we
derived the �rst algorithm):

POST': F = f(f; v; C) j (f; v; C) : L j= (P;N) �jf jg

This post-
ondition gives rise to the following invariants, analogous to the invari-
ants we had for the �rst algorithm:

INV0: l1++l2 = L
INV1: F = f(f; v; C) j (f; v; C) : l1 j= (P;N) �jf j ^ extra(f; v; C; l1; N)g

where

extra(f; v; C; l; N) �(8 j : f(jf j �1) < j <j l j: (8w : v � w :
l(j) 2 w(Njfj)) simp(w(C)) = false)) (de�ne Nk+1 = ;)

The algorithm derived with these invariants looks a lot like the algorithm of Se
tion
3.5. Here it is (using the more pra
ti
al format immediately):

F := f(hi; ;; true)g;
for m = 0 to n

G := ;;
for ea
h (f; v; C) 2 F

l :=jf j;
if l � k then
for ea
h w : minext(w; v; sm; Pl)

C 0 := simp(w(C));
if C 0 6= false then G := G [f(f++hmi; w; C 0)g

next;
if l = k + 1 then G := G [f(f; v; C)g
else
C 0 := simp(v(C ^
onstraint(sm; Nl)));
if C 0 6= false then G := G [f(f; v; C 0)g

next
F := G

next

3.7. IMPLEMENTATION AND TESTING 49

Let us examine how this algorithm di�ers from the old one. In the initialization
the empty witness fun
tion has been repla
ed by a 3-tuple
onsisting of the empty
witness fun
tion, the empty valuation, and the
onstraint true. Note, that the empty
valuation is a minimal valuation, and that true is the weakest
onstraint possible.
De�nition 3.6.5 requires this.

Next, we see that the if l � k
and sm 2 Pl then G := G [ff++hmig statement
of the original algorithm has been repla
ed by a repetition. In the original statement,
the witness fun
tion f was extended if signal sm was in signal set Pl. Here we
onsider
all valuations w that are minimal extensions of valuation v that make sm mat
h Pl:

minext(w; v; s; P) � v � w ^ s 2 w(P) ^ (8w0 : v � w0 � w : s 62 w0(P))

It is then
he
ked if the extended valuation w satis�es the
onstraint we have, and if
this is the
ase sm and Pl really mat
h, and the witness fun
tion f
an be extended.
The valuation and
onstraint asso
iated with this extended f , are extended valuation
w and
onstraint C 0, the result of applying w to C and simpli�
ation. Note, that we

ould use C instead of C 0. These
onstraints do not mean the same, i.e. [[C℄℄ 6= [[C 0℄℄,
but we do have (8w0 : w � w0 : w0 2 [[C℄℄ � w0 2 [[C 0℄℄). So we
ould say, that they
mean the same if we take into a

ount the valuation that has been
onstru
ted so far.

Finally, the if l = k+1
or sm 62 Nl then G := G[ffg statement of the original
algorithm is repla
ed. This statement expresses that witness fun
tion f remains a
valid witness if signal sm does not mat
h negative signal set Nl. In the new algorithm
it has to be
he
ked if sm does not mat
h Nl, given valuation v. Furthermore, the

onstraint C has to be strengthened with the forbidden future assignments that make
sm and Nl mat
h. In Subse
tion 3.6.1 we des
ribed how
onstraint(sm; Nl)
an be

onstru
ted. Formally, this
onstru
tion
an be expressed as follows:

onstraint(s;N) = (
V
n 2 N;w :minext(w; ;; s; fng) :

(
W
X; e : X 2 dom(w) ^ w(X) = e : X 6= e))

What we have just said about the inter
hangeability of C 0 and C, here holds for
C 0 and C ^
onstraint(sm; Nl).

3.7 Implementation and Testing

The algorithm has been implemented in C, and it was tested on some patterns and
some hand
rafted log �les. The disadvantage of hand
rafted log �les, is that they are
small, and made with the re
ognition of patterns in mind, whi
h is okay for testing the

orre
tness of the algorithm, but not for testing the pattern des
ription
apabilities
of LOGAN . Therefore, we
ondu
ted an experiment with an SDL [BH88, IT94℄
spe
i�
ation of a swit
h with a Call Waiting servi
e. This spe
i�
ation, made by N.
Goga in the
ontext of Côte de Resyste, a resear
h proje
t on the testing of rea
tive
systems, is an extensive one and
overs also very exoti

all waiting s
enarios. The
idea was to automati
ally produ
e some large log �les, using this spe
i�
ation and
SDT, the SDL toolset from Telelogi
 [Tel95℄. The set up of the experiment is depi
ted
in Figure 3.8.

50 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

SDL specification

SDT simulatorSDT

Phones
Switch with

Call Waiting

MSC LogTest Script
translate filter &

translate
Log FileSimulator

Script

Figure 3.8: using an SDL spe
i�
ation to produ
e log �les

We wrote test s
ripts, des
ribing di�erent kinds of Call Waiting s
enarios, whi
h
were automati
ally translated to SDT simulator s
ripts. An SDT simulator s
ript

ontains a list of
ommands, mostly signals that have to be sent to the SDL system.
These s
ripts were fed to the simulator running a simulation of the swit
h. In ea
h
simulation run, the simulator produ
ed an MSC log, showing all the signal ex
hanges
that took pla
e in the SDL system during the simulation. From these MSCs we
automati
ally
reated log �les by extra
ting the signals that we were interested in
(those ex
hanged between the phones and the swit
h) and translating them to the
proper format.

3.7.1 Some Test Results

We
reated one `large' test s
ript
ontaining six su

essful
all waiting s
enarios. Sin
e
the �rst part of a
all waiting s
enario is also a normal
all, it automati
ally
ontained
six su

essful normal
all s
enarios as well. With the normal
all pattern of Se
tion
3.3 we found all 6 normal
alls in the log �le that was produ
ed.

The
all waiting pattern of Se
tion 3.3, however, proved to be mu
h too stri
t.
With it, we only found 1
all in the log �le. The pattern requires that some subs
riber
A sets up a
all with subs
riber B, and that after that, a third subs
riber, C, tries to
set up a
all with B. Other possibilities, whi
h the pattern does not
over, are that B
himself starts the
all with A, and that A and C
all B more or less simultaneously.

We therefore wrote a new pattern for
all waiting in whi
h there is no referen
e
to party A. Of
ourse, this means that with this pattern we only dete
t the se
ond
leg of a
all waiting s
enario, but we know that the �rst leg of su
h a s
enario
an be
dete
ted with the normal
all pattern.

With the new pattern 8 witnesses were found, 5 (out of 6) true witnesses, but also
3 false ones. The 3 false witnesses were due to identi�
ation of the former A party,
whi
h we removed from the pattern, with the C party, so these patterns
onsisted of
parts of �rst and se
ond legs mistakenly re
ognised as one single se
ond leg.

We added a negative B:Off Hook signal to the pattern that assures that the B

3.8. A LANGUAGE EXTENSION 51

party is already engaged in a
all, when the
all of the C party arrives. With this
addition the 3 false witnesses were no longer re
ognised with the pattern. Here is the
�nal version of the
all waiting pattern:

PATTERN Call_Waiting

BEGIN

C:Dial_Tone;

NOT C:Busy_Tone,C:On_Hook;

C:Dial(B);

NOT B:Off_Hook,B:Busy_Tone,B:On_Hook,B:Warning_Tone,

C:Busy_Tone,C:On_Hook;

B:Warning_Tone;

NOT B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,B:Hookflash;

B:Hookflash;

NOT B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,C:Conne
t;

C:Conne
t;

NOT B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook;

C:On_Hook,B:On_Hook;

END

With the
all waiting pattern we just presented, 5 out of 6 true witnesses were
found, and no false witnesses, whi
h is quite satisfa
tory as we do not expe
t to �nd
every
all. The one
all that we did not �nd was a
all that was not terminated with
a C:On Hook or B:On Hook, but with a B:CW finish signal. With this signal the B

party
an terminate the a
tive leg of the
all, whereas a B:On Hook would terminate
both legs.

3.8 A Language Extension

If we would add the B:CW finish signal to the last positive signal set of the pattern,
we would get a pattern that re
ognises all 6
alls in our log �le. However, su
h a
pattern might in other
ases produ
e false witnesses as well. The reason for this is,
that the B:CW finish signal
an be dire
ted to the C party or the A party, and we
need it to be dire
ted to the C party.

If we want to add this signal to our pattern, we would have to know the state of
the B party: is it
urrently
onne
ted to the A party or the C party? This information

an be re
eived from the number of hook
ashes made by B, but in LOGAN this
information
annot be represented.

A possibly interesting extension of LOGAN would therefore be the addition of
expli
it states and state transitions. LOGAN would then get the expressive power
of �nite state ma
hines and regular expressions. Figure 3.9 shows what a pattern for

all waiting
ould look like in su
h an extension of LOGAN . Note the two possible
transitions leading to the �nal (grey) state, one originating from a state where B is in

onversation C. Here the B:CW finish signal
an be used to terminate the
onne
tion
between B and C. The other originates from a state where B is in
onversation with A.
Here the B:CW finish signal does not terminate the
onne
tion between B and C.

52 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

B in conversation with C B in conversation with A

{C:Dial(B)}

{B:Warning_Tone}

{B:Hookflash}

{C:Connect}

{B:On_Hook,C:On_Hook,B:CW_finish}

{B:On_Hook,C:On_Hook}

{B:Hookflash}

{B:Hookflash}

{C:Dial_Tone}

0

1

2

3

4

5 6

7

0. {}
1. {C:Busy_Tone,C:On_Hook}
2. {B:Off_Hook,B:Busy_Tone,B:On_Hook,B:Warning_Tone,C:Busy_Tone,C:On_Hook}
3. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,B:Hookflash}
4. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,C:Connect}
5. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,B:CW_finish}
6. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook}
7. -

Figure 3.9: a state ma
hine-like pattern des
ription of
all waiting

Extending LOGAN to su
h a state ma
hine-like form would have other advan-
tages. Often a
ertain part of the pattern
an have 2 or more forms. For example,
in the
all forwarding s
enario, C:Dial*21(*) is given as a negative signal. How-
ever, su
h a signal on itself would not be problemati
, provided it is followed by a
C:Dial#21 signal. This possibility
ould be added, but that would mean adding an-
other pattern, and be
ause it
an o

ur on 4 di�erent pla
es, the total would then be
24 = 16 di�erent patterns. In real-life examples, there may be even more su
h minor
variations, whi
h makes the number of possible variations grow explosively. If state
ma
hine-like patterns are used, all these variations, and even variations
ontaining
di�erent features, might be in
luded in one single pattern, ea
h variation requiring
the addition of one or two extra 'states' (negative event sets) rather than a doubling
of the number of patterns.

The algorithm we have given
an be easily, although not trivially, extended to

over state ma
hine-like LOGAN . To do so, the next positive possibility should be
any 'state' that
an be rea
hed from the
urrent one, rather than (as in the
urrent
algorithm) always the next one.

3.9. CONCLUSIONS 53

3.9 Con
lusions

We have de�ned a pattern des
ription language, LOGAN , in whi
h we
an express
properties of
all tra
es. For di�erent
all types, espe
ially
alls in whi
h di�erent
servi
es are a
tive, di�erent patterns
an be de�ned. Basi
ally, a pattern des
ribes the

hara
teristi
 sequen
es in
all tra
es of a
ertain
all type, using so-
alled negative
signals to ensure the
oheren
e of these
hara
teristi
 sequen
es.

By giving some examples of LOGAN patterns for well known
all types, and some
examples of log �les, we have demonstrated the use of LOGAN . We also, brie
y,
addressed the problem of feature intera
tion, showing the limitations of the pattern
mat
hing approa
h to �nding
all tra
es. Even simple types of intera
tion, like that
of Call Forwarding with itself,
annot be
overed by this type of pattern mat
hing,
espe
ially when intera
tions
an go to an arbitrary far degree.

Another problem is that �nding
orre
t patterns may be hard. Still, a short
time of experimentation would normally solve this. A larger problem is that some
features
ould either not be des
ribed in full, or would require a large number relatively
similar patterns. This problem might be over
ome by extending LOGAN into a
state ma
hine-like form. This would improve the pattern des
ription
apabilities of
LOGAN
onsiderably.

We also designed and implemented an algorithm for �nding LOGAN patterns in
log �les. This algorithm, together with the LOGAN language,
ould be the basis for
tools that support the testing pro
ess des
ribed in the introdu
tion.

Further work in this area
ould be to investigate if, and how, CDRs
an be
om-
puted automati
ally given a pattern (witness). Another option might be to automat-
i
ally generate patterns from a des
ription in SDL or some other similar language.

54 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

Chapter 4

The MSC Language

4.1 Introdu
tion

Many languages have been designed to des
ribe the behaviour of information systems.
Using su
h a language, one
an des
ribe the high-level behaviour of a system without
having to worry (yet) about the exa
t implementation details. One su
h language is
Message Sequen
e Chart (MSC) [RGG96a, IT00℄, whi
h is the subje
t of the following

hapters. It di�ers from other languages in two important aspe
ts. In the �rst
pla
e it puts emphasis on the
ommuni
ation between pro
esses, not paying mu
h
attention to the internal behaviour of these pro
esses. This way, it spe
ialises on
systems in whi
h
ommuni
ation is important. Be
ause many systems nowadays
have a distributed nature, this holds for many systems. One area where it is mu
h
used, and the one for whi
h it was originally
reated, is tele
ommuni
ation systems.
In the se
ond pla
e, MSC provides a graphi
al representation, rather than just a
textual des
ription. Be
ause of this, it
an be more easily and intuitively understood
by human users. Still, behind this graphi
al syntax lies an exa
t meaning and a well-
de�ned semanti
s. Be
ause of this, it
an also be well understood by tools su
h as
SDT [Tel95℄.

MSC-like diagrams have a long history in formal des
riptions of information sys-
tems, but the oÆ
ial Message Sequen
e Chart language has been developed in the
early nineties within the ITU (International Tele
ommuni
ation Union) and its prede-

essor, the CCITT (Comit�e Consultatif International T�el�egraphique et T�el�ephonique)

In this Chapter, a short overview will be given of the history of the language, of
a number of its
onstru
ts and of its semanti
s. But �rst, we will give an example of
a simple MSC, to give an impression of what the language looks like.

An example of an MSC is given in Figure 4.1.

The verti
al lines in the MSC (i, j and k) denote the so-
alled instan
es, whi
h
represent the pro
esses, obje
ts or systems whose behaviour is des
ribed. The arrows
between them denote messages between the instan
es. These messages are the basi

onstru
ts of MSC, but many other features, su
h as timers, are also in
luded. In
Figure 4.1 there is one, simple example of su
h a feature: a denotes some otherwise
unspe
i�ed lo
al event at instan
e i.

55

56 CHAPTER 4. THE MSC LANGUAGE

i j k

a m1

m2

m3

m4

ms
 example

Figure 4.1: An example of an MSC

Time runs from the top to the bottom, but does not have to run at the same
speed at ea
h instan
e. For example, message m2 must be re
eived before message
m4 is sent, be
ause the re
eipt of m2 is above the sending of m4 at the same instan
e,
but m4 may be sent before m1 is re
eived. The sending of m4 is below the re
eipt of
m1, but at a di�erent instan
e, so there is no ordering. The only ordering that exists
between di�erent instan
es is that ea
h message has to be sent before it is re
eived.

MSCs are used in di�erent
ontexts. The original purpose of MSC when it was
�rst formalised, was to des
ribe requirements in the early phases of the development
pro
ess. It was intended to be an addition to SDL (Spe
i�
ation and Des
ription
Language), where the two languages would be used in di�erent phases of the develop-
ment pro
ess: MSC early on, when requirements and global spe
i�
ations are made,
SDL later on, when spe
i�
ations are
loser to the �nal implementation.

However, the language is now used in many more appli
ations. To name a few:
the des
ription of the a
tual behaviour of an existing system, espe
ially in the
ontext
of testing, the generation of test
ases [GHN93℄, the spe
i�
ation of proto
ols and the
formalisation of use
ases [RAB96℄, and the display of simulation tra
es [VGMF00℄.

4.2 History

MSC-like diagrams (often taken together under the name `Sequen
e Charts') have
been in existen
e for a long time [Lam78℄. They have been used in various
ontexts,
either as a stand-alone des
ription of a standard, or as illustrations to more formal de-
s
riptions in languages like SDL [IT94, BH88, SRS89, BHS91℄, Estelle [ISO88a, BD87℄
or LOTOS [ISO88b, EVD89℄. Be
ause Sequen
e Charts were so widely used, but of-
ten in di�erent variants, a need was felt for a more formal basis for these diagrams.
That way, their usage
ould be harmonised a
ross various users and institutions, in a
way that would moreover be formally de�ned.

4.2. HISTORY 57

In 1989, at the fourth SDL Forum, a proposal was made [GR89℄ to start devel-
oping su
h a formalised sequen
e
hart language. Not only would a standardisation
over
ome the (mostly synta
ti
) di�eren
es between the various languages, it would
also make tool support [Ek93, Loi96℄ possible, and provide possibilities to de�ne a
formal mapping between MSC and SDL spe
i�
ations [Gra90, Kri91, Nah91℄.

In 1990 su
h a plan was approved by the CCITT, and responsibility for the lan-
guage was given to the CCITT Study Group X, whi
h also was responsible for SDL. In
1992, the �rst version of the MSC language,
ontaining a number of basi

onstru
ts,
was formally approved as CCITT Re
ommendation Z.120 [IT93℄.

The standardisation of the language, and even more importantly, the resulting
possibilities for tool support [Tel95, Ver96, Pel98℄, led to a remarkable growth in the
use of the language. However, with this it also be
ame
lear that the language was
not
omplete enough to fully des
ribe an information system, not even at the high
levels where it was supposed to be most useful. In the next four-year period, from
1992 to 1996, a number of extensions to the language was therefore dis
ussed [MS93,
R�uf94, Mei95, Rud95, S
h95, Far96℄.

Another important step in this period was the
reation of a formal semanti
s
for MSC. Several semanti
s were proposed [Til91, dM93, MvWW93, GRG93, LL94,
MR94a℄, and the pro
ess algebra semanti
s [MR94b, BM95℄ was agreed upon, and
oÆ
ially adopted in 1995 [IT95℄. This semanti
 view also provided one of the most
important extensions of MSC, namely that with
omposition me
hanisms, su
h as
HMSC [Rud95, MR97a℄.

This and other language extensions were in
luded in a new version of the lan-
guage, whi
h appeared in 1996 [IT96, HL97℄, MSC'96. However, further extensions
were still wanted. In 2000 a new version (MSC2000) [IT00, Hau00℄ of the language
was introdu
ed. It
ontained a number of extensions, the most important of those
being the in
lusion of time information [SRM97, Sil98, GDO98℄, representation of
data [EFM99, Eng00℄ and obje
t-oriented features su
h as
ow of
ontrol [RGG99℄.
It is hoped that this last extension will make a uni�
ation of MSC with time sequen
e
diagrams from UML [BRJ98℄ possible. In this thesis, we will look into the way data
has been in
luded in the MSC language in Chapter 6. In Chapters 7 and 8, we will
be looking at message re�nement and disrupt and interrupt, two more proposals for
extension of the MSC language, whi
h were not in
luded in the language { although
of
ourse they still might be in
luded in the future.

In the meantime, resear
h on MSC has also
ontinued. The existing semanti
s
for MSC have been extended to
over the MSC'96 language [MR97b, Ren99, IT98℄,
and some new possible semanti
al frameworks for MSC have been introdu
ed [Kos97,
Hey98, KL98, Klu99, Hey00℄. Mu
h resear
h has been going into the automati
 or
semi-automati
 generation of spe
i�
ations in SDL or other languages from MSC de-
s
riptions [SD97, RKG97, LMR98, KRBG98, Fei99, AKB99, KGSB99, MZ99, Man99,
Mus99, HJ00℄. Other resear
h
he
ked how
ertain properties of a system
ould be
known from its MSC des
ription, su
h as ra
e
onditions [AHP96℄, pro
ess divergen
e
and non-lo
al
hoi
e [LL95, BAL97b℄ (however, note that the notion of safe realis-
ability, as de�ned in [AEY00℄ seems to
over the a
tual problems
aused by non-lo
al

hoi
e better), ne
essary bu�ers [EMR97b℄ (see Chapter 5 of this thesis), implementa-
bility by lo
ally spe
i�ed elements [KRBG98℄, and the existen
e of possible unspe
i�ed

58 CHAPTER 4. THE MSC LANGUAGE

behaviours [AEY00℄. There are also some more general results: It has been found
how to
he
k a
omplete MSC des
ription against a partial one [LP97℄ and whether
tra
es of MSC
ontain some with a spe
i�
 behaviour [AY99℄. In [MPS98, MP00℄
there are some results on de
idability of properties of systems des
ribed in MSC.

At the same time, resear
h has also gone on into the appli
ations of MSC, and
it now in
ludes su
h diverse areas as requirements spe
i�
ation [GW96℄, system de-
sign and software engineering [GRG91, MT96, MRW00, VGMF00℄, spe
i�
ation of
test purposes [GHNS95, GSDH97, SEG+98, GH00, RSG00a℄, visualisation of test

ases [Heg95, GW98, RSG00b, GGR01℄, formalisation of Use Cases [AB95, RAB96,
BC00, Fei00℄, dete
tion of feature intera
tion in tele
ommuni
ation systems [BB97℄
and work
ow analysis [Aal99℄, while attempts are being made in the area of natural
language analysis [End00℄. There are also attempts to
ombine MSC with sequen
e
diagrams from UML [RGG99, Hau01℄, and MSC has been introdu
ed as a graphi
al
syntax [GW98, RSG00b, SG01, BRS01℄ for TTCN [KW91℄.

4.3 An Overview of the MSC Language

4.3.1 Basi
 Constru
ts: Messages

In Figure 4.2 we see another example of a Message Sequen
e Chart. It shows the
pro
ess of giving a test to a student by a tea
her.

tea
her student

paper

test

solutions

ms
 test

Figure 4.2: An example of an MSC

The verti
al lines are
alled instan
es, and show the various entities whose be-
haviours are des
ribed by the MSC. In this
ase there are two instan
es, one is
alled
`tea
her' and the other `student'. The blo
ks at the top and bottom have no spe
ial
meaning, they just show the beginning and end of the des
ription of the instan
e {
whi
h not ne
essarily
oin
ides with the beginning or end of the instan
e itself. The
arrows show messages that are sent. In this
ase the messages are the paper and the
test that are given by the tea
her to the student, and the
ompleted test that is given
ba
k to the tea
her.

4.3. AN OVERVIEW OF THE MSC LANGUAGE 59

In this diagram time is running from top to bottom. That is, �rst the paper is
given, then the test, and �nally the student gives ba
k his solutions. However, one
should note that:

1. Sending a message and re
eiving it are
onsidered two separate a
tions. That
is, some time passes in between, and other a
tions may happen in between.

2. Time runs separately on ea
h instan
e. That is, events (like the sending and
re
eipt of messages) that are on the same instan
e are ordered as they appear
from top to bottom in the diagram, but events on di�erent instan
es need not
be. Their order is not spe
i�ed. The only order that exists between messages
on di�erent instan
es is the ordering that is
aused by the fa
t that a message
needs to be sent before it
an be re
eived.

For example, in the MSC above the tea
her may send the test before the paper
is re
eived. Although it is higher in the diagram, the re
eption of the paper is on a
di�erent pro
ess, so their di�erent positions do not need to
orrespond with an a
tual
temporal ordering. Of
ourse, in this example it is not very realisti
 that there will be
mu
h time between the moment the paper leaves the tea
her and the time it rea
hes
the student, but we
ould for example think of the materials as being sent through
the mail { in that
ase the tea
her
ould send the exer
ises while the paper was still
under way.

On the other hand, the tea
her must have given the paper before the student
an
re
eive the test, be
ause the paper must be sent (given) before the test
an be sent,
and the test must be sent before it
an be re
eived.

The meaning of an MSC is determined by the possible tra
es, that is the various
orders in whi
h events
an take pla
e. In Figure 4.2 there are exa
tly two:

1. sending `paper', re
eiving `paper', sending `test', re
eiving `test', sending
`solutions', re
eiving `solutions'

2. sending `paper', sending `test', re
eiving `paper', re
eiving `test', sending
`solutions', re
eiving `solutions'

It is allowed for messages to
ross, or overtake one another. In that
ase, the
message that is sent �rst, is re
eived last. What is not allowed, is a
y
li
 dependen
y,
that is, two events for whi
h (dire
tly or indire
tly) both the �rst has to
ome before
the se
ond and the se
ond before the �rst. Su
h events would
ause the MSC to
be
ome meaningless, sin
e no tra
e would be possible.

4.3.2 Lo
al A
tions

A very simple extension of the language is the lo
al a
tion. This is simply something
that happens at one instan
e, and has no e�e
ts elsewhere. It is shown as a blo
k, and

an be found in Figure 4.1. The a
tion a is here something that is done by instan
e
i, and does not in
uen
e any other instan
e dire
tly.

60 CHAPTER 4. THE MSC LANGUAGE

4.3.3 Co-region

Sometimes one does not want to spe
ify exa
tly in whi
h order events on one instan
e
take pla
e. For example, if we extend our MSC test with a se
ond student, doing the
same test, we do not want to spe
ify whi
h student is the �rst to �nish and submit
her
ompleted test.

student 1 tea
her student 2

paper

paper

test

test

solutions

solutions

ms
 test2

Figure 4.3: MSC with
oregion

In Figure 4.3 the dashed part of the line showing the tea
her's behaviour is a
so-
alled
o-region. Events in a
oregion are not ordered, so the re
eption of the two

ompleted tests
an o

ur in any order.

4.3.4 MSC Referen
es

When an MSC grows large, it may be
ome hard to read. Several additions are made
to make it possible to break an MSC into pie
es.

One way to do this is by des
ribing parts of the MSC separately. For this an
MSC referen
e expression is used. This is a box, repla
ing part of the des
ription
of one or more instan
es,
ontaining the name of a separate MSC that des
ribes the
behaviour of the instan
es involved. For example, the MSC test
ould be part of a
larger
ourse MSC, as shown in Figure 4.4.

The box in the MSC
ourse is the referen
e MSC, referring to the MSC test (by
way of giving its name { see �gure 4.2 for a possible
ontent of this MSC). One should
think this as some kind of shorthand notation, what happens in the MSC referen
e
expression is des
ribed by the MSC test.

4.3. AN OVERVIEW OF THE MSC LANGUAGE 61

student tea
her administration

information

test

s
ore

result

ms

ourse

Figure 4.4: MSC with referen
e MSC

4.3.5 Inline Expressions

Inline expressions are se
tions of MSC where a
hoi
e, loop or other spe
ial
onstru
t
takes pla
e. For example, the abovementioned MSC with two students doing their
test at the same time,
ould also be implemented with an inline expression as shown
in Figure 4.5.

The square
onstru
t with `par' in the upper left
orner, is the inline expression.
The text in the upper left tells us the type of inline expression, `par' means that it is
a parallel inline expression, that is, the two (or more) parts of the inline expression
(separated by the dashed line) have to be done in parallel.

Other inline expressions are:

Optional (opt): The a
tions inside the inline expression may be exe
uted or
skipped.

Alternative (alt): Exa
tly one of the parts is
hosen.

Ex
eption (ex
): The a
tions inside the inline expression may be exe
uted
instead of those in the surrounding MSC.

Loop (loop): The a
tions inside the inline expression must be exe
uted a num-
ber of times (the minimum and maximum number, whi
h must be either a
natural or the spe
ial value infinity, are given).

Of these inline expression, only the parallel and alternative inline expressions have
parts; the other ones
onsist of just a single box, without a separator.

62 CHAPTER 4. THE MSC LANGUAGE

student 1 tea
her student 2

paper

test

solutions

paper

test

solutions

par

ms
 test2

Figure 4.5: MSC with Inline Expression

4.3.6 High-Level MSCs

One
an go even further, and split up the
omplete MSC into parts. This way one gets
a pi
ture with a su

ession of MSCs that have to be gone through in a
ertain order.
To make this possible, High-level MSCs (HMSCs) have been introdu
ed [MR97a℄. An
example of an HMSC is shown in Figure 4.6.

To read a diagram like the one in Figure 4.6, one starts at the start symbol 5.
Following the verti
al line, we �rst get to the referen
e MSC tea
hing, after this to
MSC test, and �nally to the end symbol 4. The meaning of this, is that the MSCs
tea
hing and test are
ombined into one, tea
hing happening �rst, and test after
it.

One should note that the way the
onstituting MSCs are
ombined implies an
ordering in time, but again the ordering holds only per instan
e. Thus, when all
events for the tea
her in the MSC tea
hing have been done, tea
her
an start doing
a
tions from test, whether or not the student still has a
tions to do from tea
hing.

But the possibilities of HMSC are larger than just the sequential ordering of sev-
eral MSCs. In the �rst pla
e, the MSCs that are being referen
ed may be HMSCs
themselves, thus allowing for more than two levels of des
ription. But what is more
important are their possibilities of spe
ifying
hoi
es and loops.

When our hypotheti
al student has gone through the test, and seen his result, it
is not unlikely that he will
hoose to do the test again, and maybe repeatedly do so
until he passes. This possibility is shown in Figure 4.7.

When we go through this �gure from the top to the bottom, we �rst see a small

ir
le. This is a
onne
tion point. Here, the MSC
ontinues along the line going down,

4.3. AN OVERVIEW OF THE MSC LANGUAGE 63

MSC course

test

teaching

Figure 4.6: High-level MSC

test

failed passed

MSC repeated test

Figure 4.7: HMSC with loop

64 CHAPTER 4. THE MSC LANGUAGE

irrespe
tive of the question from whi
h of the two arrows it
ame. After going throug
`test', there is another
onne
tion point, this time with two exits. This denotes a

hoi
e. Exe
ution of the MSC
ontinues either through the left or through the right
path, but not both. Finally, the arrow that goes up again from `failed'
reates a
loop stru
ture.

Of
ourse one
ould also make more
ompli
ated stru
tures, with intertwined
loops, loop es
apes, et
etera.

4.3.7 Further MSC Constru
ts

There are several more MSC
onstru
ts that have not been in
luded in this introdu
-
tion. These in
lude
ausal orders, that
an be used to for
e a temporal order between
otherwise un
onne
ted a
tions, and instan
e re�nement, where it
an be spe
i�ed
in whi
h way a single instan
e
an be de
omposed into several separate ones. An
introdu
tion on MSC, where the subje
ts treated in this
hapter are being treated
together with other aspe
ts of the language, is [RGG96b℄.

A number of new language elements has been introdu
ed in MSC2000. One of
them is data, whi
h will be dis
ussed more extensively in Chapter 6. There are
also extensions regarding (relative and absolute) time,
ow of
ontrol and the overall
stru
ture of a do
ument
onsisting of various MSCs. These are dis
ussed in [Hau00℄.

4.4 Formal Semanti
s

In this se
tion, we will give an overview of the oÆ
ial pro
ess algebra semanti
s of
MSC. A more extensive dis
ussion
an be found in [Ren99℄, whi
h
ontains reasons
for various rules, histori
al notes, properties of the semanti
s and examples, as well
as a
omplete semanti
s, of whi
h we will show only the most important parts.

For the semanti
s of MSC, ea
h MSC is translated into an expression in pro
ess
algebra [BW90℄. This pro
ess algebra does however
ontain a number of operators
spe
i�
ally for MSC. The semanti
s itself is operational,
onsisting of rules of the form

ond

x
a
! y

, whi
h
an be translated as \When the
onditions `
ond' are true, a system

in the state x
an do a step of the type a to state y". The basi
 rules are
a

a
! �

,

whi
h says that an event a
an do step a, and then results in the empty pro
ess �,

and
� #

, whi
h means that �
an terminate, that is, su

esfully end without doing

any further a
tions.
The pro
ess algebra for MSC di�ers somewhat from normal pro
ess algebra. In

the �rst pla
e, the semanti
s of MSC are
ompletely deterministi
, that is, if a pro
ess
has both the option of doing a followed by b and the option of doing a followed by

, then after doing a, it still has both the option of doing b and the option of doing

. This is unlike normal pro
ess algebra, where the pro
ess a � b+ a �

an do a to b,
or to
, but not to a+
. MSC therefore uses the delayed
hoi
e operator � [BM95℄.
The dedu
tion rules for � are:

4.4. FORMAL SEMANTICS 65

x #

x� y #

x
a
�! x0; y 6

a
�!

x� y
a
�! x0

y #

x� y #

x 6
a
�!; y

a
�! y0

x� y
a
�! y0

x
a
�! x0; y

a
�! y0

x� y
a
�! x0 � y0

We will �rst look at a simple example, just a number of lo
al a
tion, see Figure 4.8.

i j

a

b

ms
 simple

Figure 4.8: A simple MSC

First, the various events of the MSC are translated into the
orresponding pro
ess
algebra events. For an a
tion, this simply is a
tion(i; a), with i being the instan
e on
whi
h the a
tion takes pla
e, and a the text in the a
tion box. Next, the MSC is split
up into parts, whi
h are
onne
ted with the `weak sequen
ing' operator Æ. Thus, the
MSC above is translated into the pro
ess algebra expression a
tion(i; a)Æa
tion(j; b)Æ
a
tion(i;
).

The weak sequen
ing operator x Æ y has as its semanti
s that a
tions from x are
always possible, while a
tions from y are possible if and only if there are no a
tions
from x on the same instan
e. To translate this into pro
ess algebra, an extra relation,

the permission relations ���! is added. x
a

���! y means that x allows a even if it is
`after' x in the MSC, and this results in x
hanging into y (y
an be unequal to x if
x
ontains a
hoi
e, whi
h may be a
hoi
e between options some of whi
h do and
some of whi
h do not allow a). The basi
 SOS-rules for the permission relation are:

l(a) 6= l(b)

b
a

���! b
and

�
a

���! �
. Here, l(a) is the instan
e on whi
h the a
tion a takes

pla
e. Thus, the empty pro
ess permits anything, while an a
tion stops other a
tions
on the same instan
e, but allows a
tions on di�erent instan
es.

Three rules exist for the delayed
hoi
e regarding the permission relation, depend-
ing on whether the part to the left of the �, the part to the right, or both permit the

66 CHAPTER 4. THE MSC LANGUAGE

a
tion:

x
a

���! x0; y
a

���9

x� y
a

���! x0
x

a
���9; y

a
���! y0

x� y
a

���! y0
x

a
���! x0; y

a
���! y0

x� y
a

���! x0 � y0

With this addition, we
an give the dedu
tion rules for the weak sequential
om-
position (see [Ren99℄ for more explanation):

x #; y #

x Æ y #

x
a
�! x0; x

a
���9 _y 6

a
�!

x Æ y
a
�! x0 Æ y

x
a

���! x0; y
a

���! y0

x Æ y
a

���! x0 Æ y0
x 6

a
�! x0; x

a
���! x0; y

a
�! y0

x Æ y
a
�! x0 Æ y0

x
a
�! x0; x

a
���! x00; y

a
�! y0

x Æ y
a
�! x0 Æ y � x00 Æ y0

With these rules and the asso
iativity of Æ (whi
h is proven in [Ren99℄), we �nd
that the pro
ess a
tion(i; a) Æ a
tion(j; b) Æ a
tion(i;
)
an exe
ute a
tion(i; a) and
go over in � Æ a
tion(j; b) Æ a
tion(i;
), and
an exe
ute a
tion(j; b) to go over in
a
tion(i; a) Æ � Æ a
tion(i;
), but
annot exe
ute a
tion(i;
) be
ause a
tion(i; a) does
not permit a
tion(i;
).

For messages, there is something more to do. If we look at the MSC in Fig-
ure 4.9, the semanti
s as far as we have seen it now are out(i; ; j;m) Æ in(i; ; j;m)
(the here shows the absen
e of gates, whi
h are not dealt with in this thesis). Be-

ause l(out(i; ; j;m)) 6= l(in(i; ; j;m)), this pro
ess would be permitted to start with
in(i; ; j;m), whi
h is of
ourse unwanted. Fiddling with the permission relation would
not help, be
ause this same MSC
ould also be split as in(i; ; j;m) Æ out(i; ; j;m).
Instead, the information is added to the weak sequen
ing operator, and the expression

is written as out(i; ; j;m) Æout(i; ;j;m)
0
7!in(i; ;j;m) in(i; ; j;m).

The
ondition a
n
7! b means that before b
an be exe
uted, �rst a has to be

exe
uted, but that b
an still be exe
uted n times be
ause a has already been exe
uted
n times more than b. There is a predi
ate enabled(a; S) whi
h is true if and only if a
is allowed by the set of
onditions S, and an update fun
tion upd(a; S), whi
h gives
the new set of
onditions S after a has been exe
uted. Their de�nitions are:

enabled(a; S) , 8b;
2A;n2N b
n
7!
 2 S) (
 6� a _ n > 0),

upd(a; S) = fb
n
7!
jb

n
7!
 2 S ^ b 6� a ^
 6� ag

[fb
n�1
7!
jb

n
7!
 2 S ^
 � a ^ n > 0g

[fb
n+1
7!
jb

n
7!
 2 S ^ b � ag

The dedu
tion rules for ÆS are similar to those of Æ, but to exe
ute an a step,
enabled(a; S) has to be true, while doing so
hanges S into upd(a; S). This leads to:

4.4. FORMAL SEMANTICS 67

i j

m

ms
 message

Figure 4.9: A simple MSC with a message

x #; y #

x ÆS y #

x
a
�! x0; x

a
���9 _y 6

a
�!; enabled(a; S)

x ÆS y
a
�! x0 Æupd(a;S) y

x
a

���! x0; y
a

���! y0

x ÆS y
a

���! x0 ÆS y

x 6
a
�!; x

a
���! x0; y

a
�! y0; enabled(a; S)

x ÆS y
a
�! x0 Æupd(a;S) y0

x
a
�! x0; x

a
���! x00; y

a
�! y0; enabled(a; S)

xSy
a
�! x0 Æupd(a;S) y � x00 Æupd(a;S) y0

Then there is the parallel
omposition operator k. x k y
onsists of all a
tions of
x and y interleaved. Its semanti
s are:

x #; y #

x k y #

x
a
�! x0; y 6

a
�!

x k y
a
�! x0 k y

x
a

���! x0; y
a

���! y0

x k y
a

���! x0 k y0

x 6
a
�!; y

a
�! y0

x k y
a
�! x k y0

x
a
�! x0; y

a
�! y0

x k y
a
�! x0 k y � x k y0

There are a few more operators, namely a version of the parallel
omposition with
requirement kS and repetitions x� and xinf , but those will not be dealt with in this
thesis. Instead, we will refer the interested reader to [Ren99℄.

68 CHAPTER 4. THE MSC LANGUAGE

Chapter 5

MSC and Communi
ation

Models

5.1 Introdu
tion

In MSC, a message
an be sent and re
eived at any time. In parti
ular, a message

an overtake another message, even if it is sent between the same pair of instan
es.
Apparently, MSC uses the assumption that either the
ommuni
ation mediums or the
bu�ers involved in a system
an send messages through in any order. If there were
for example only a FIFO bu�er between ea
h pair of instan
es, message overtaking
would be impossible.

The assumptions about the bu�ering of messages in MSC, are in
ontrast with
the situation in a spe
i�
ation language su
h as SDL [IT94℄, where every entity has
its own FIFO input bu�er. Sin
e MSC and SDL are often used in
onjun
tion, there
is a need to
larify this seemingly
ontradi
tory situation.

When
onsidering restri
ted
ommuni
ation me
hanisms, it is very natural to
identify sub
lasses of MSC whi
h exa
tly satisfy su
h bu�ering properties. One
an

onsider the
lass of FIFO bu�ered MSCs, the
lass of syn
hronous MSCs, et
. In
fa
t, the Interworkings language [MvWW93, MR01℄ is the latter
lass.

When
onsidering Interworkings simply as a subset of MSC, an obvious question
to ask is: what exa
tly is the distin
tion between syn
hronous and asyn
hronous
MSCs? Or, phrased a little bit di�erently, how
an we formally
hara
terise the
lass
of syn
hronous MSCs? Finding an answer to this question is not too diÆ
ult. An
MSC is syn
hronous if and only if in every exe
ution tra
e of the MSC there are no
events between every pair of
orresponding send and re
eive events.

But, how about the question whether an MSC
an be implemented using only one
FIFO bu�er. And what, if we are allowed to use a number of FIFO bu�ers? This
gives rise to a more general question. Can a given MSC be implemented by means
of a given
ommuni
ation model? This is the question whi
h will be studied in this

hapter.

Thereto, we de�ne the notion of
ommuni
ation model , we present a formal se-

69

70 CHAPTER 5. MSC AND COMMUNICATION MODELS

manti
s of MSC based on partial orders, and we de�ne
riteria for an MSC being
implementable in a given
ommuni
ation model. We will not study the
omplete
range of all possible
ommuni
ation models, but we will single out a number of inter-
esting options, whi
h we systemati
ally derive by looking at the lo
ality of the bu�ers
between the
ommuni
ating entities. One
an, e.g., assume one single FIFO bu�er
for the
omplete system, or a FIFO bu�er between ea
h pair of entities, et
. We will
also take into a

ount the di�eren
e between output bu�ers and input bu�ers, sin
e
in pra
ti
e this distin
tion is often made.

Apart from studying the fundamental
on
epts behind the implementability of
Message Sequen
e Charts, there are also more pra
ti
al motivations for the resear
h
presented here. First of all, the formal relation between s
enario spe
i�
ations in
MSC and
omplete system spe
i�
ations in a Formal Des
ription Te
hnique, su
h
as SDL [IT94℄, is an important issue in the software engineering pro
ess. Not only
the derivation of MSC s
enarios from a Formal Des
ription Te
hnique, but also the
synthesis of a
omplete spe
i�
ation from a
olle
tion of MSC s
enario spe
i�
ations
is
onsidered of great importan
e by many authors and tool builders (see [SDV95,
RKG97, SD97, KRBG98, LMR98, Fei99, KGSB99, AKB99, MZ99, HJ00℄). This nat-
urally leads to the question whi
h MSCs
an and whi
h MSCs
annot be implemented
in the given spe
i�
ation language.

One
an also study the same question from a di�erent perspe
tive, namely, given
an arbitrary MSC, how
an we restri
t (or extend) its semanti
s in su
h a way that
it
an be implemented in a given
ommuni
ation model. This question is partly
studied by Alur et al. [AHP96℄, who also derived supporting tools. Our starting
point, however, will be that we
onsider the standard MSC semanti
s.

This brings us to the variety of ways in whi
h MSCs are used, some of whi
h
are essentially di�erent. We mention the distin
tion between hot and
old MSCs
(see [DH99℄) where (parts of) MSCs must or may o

ur in the implementation and
we mention the di�eren
e between positive and negative use of MSC (an MSC must
o

ur or is not allowed to o

ur). Finally, some users apply MSC to spe
ify one single
tra
e, while others
onsider the
omplete set of tra
es generated by an MSC. This
latter di
hotomy is wide-spread and, therefore, we will study the main question from
both perspe
tives: one tra
e of an MSC must be implementable (the weak
ase) or
all tra
es of an MSC must be implementable (the strong
ase).

Sin
e all implementation relations introdu
ed in this
hapter identify sub
lasses
of the
lass of Message Sequen
e Charts, it is interesting to know how these
lasses
relate. The answer to this question is formulated as a hierar
hy of
ommuni
ation
models for Message Sequen
e Charts.

We present our resear
h in the following way. In Se
tion 5.1.1 we introdu
e the
subset of the MSC language
alled basi
 MSCs, and give a simple formal semanti
s
based on partial orders. The
ommuni
ation models whi
h we study are de�ned in
Se
tion 5.2.1. In order to be able to deal with two distin
t bu�ers between two
ommu-
ni
ating entities, we will extend the standard partial order semanti
s in Se
tion 5.2.2.
The de�nition of implementability of a single tra
e with respe
t to a
ommuni
ation
model is given in Se
tion 5.2.3. In Se
tion 5.3, we
lassify tra
es a

ording to their
implementability. This work is lifted to the level of MSCs in Se
tion 5.4, where we
�rst study the strong
ase (Se
tion 5.4.1), and then the weak
ase (Se
tion 5.4.2).

5.1. INTRODUCTION 71

The overall pi
ture
ombining the strong and the weak
ase is given in Se
tion 5.4.3.
We also give a number of
hara
terisations of the implementability relations, whi
h
make it possible to determine the implementability of a given MSC algorithmi
ally
(see Se
tion 5.5). Se
tion 5.6
ontains a
omparison with related literature and in
Se
tion 5.7 we summarise our �ndings and dis
uss options for further resear
h.

5.1.1 Basi
 Message Sequen
e Charts

In this
hapter, we will not be looking at the
omplete MSC language. Rather, we
take only a subset,
onsisting of just instan
es and messages. In parti
ular, we will
have no
o-regions, no HMSCs and no inline expressions. Be
ause we have no HMSCs,
ea
h des
ription will
onsist of just a single MSC. We will also not use the oÆ
ial
semanti
s, but use a mu
h simpler semanti
s that is equivalent to it when used for
these simple MSCs, but not strong enough to give the semanti
s of more
ompli
ated
stru
tures. Furthermore, we will be assuming that the MSCs are all semanti
ally

orre
t, that is that they do not
ontain deadlo
ks through
y
li
 dependen
ies.

The easiest way to express the semanti
s of su
h a simple MSC is by using a
partial order on the events that are
omprised in an MSC. Depending on the parti
ular
diale
t of the MSC language, one
an assign di�erent
lasses of events to an MSC.
For example, in Interworkings [MvWW93, MR01℄ every message is
onsidered to be
a single event. There is no bu�ering, and thus
ommuni
ation is syn
hronous.

In MSC [IT00℄, messages are divided into two events, the output and the input
of the message. The output of message m is denoted by !m and the input by ?m.
The only assumption about the implementation of
ommuni
ation is that an output
pre
edes its
orresponding input. An MSC des
ribes a partial order on output and
input events.

De�nition 1 (basi
 MSC) A basi
 MSC is a quintuple hI;M; from; to; f<igi2Ii,
where I is a �nite set of instan
es, M is a �nite set of messages, from and to are
fun
tions from M to I , and f<igi2I is a family of orders. For ea
h i 2 I it is required
that <i is a total order on f!m j from(m) = ig [f?m j to(m) = ig. We use the
shorthand Ems
(M) to denote the set f!m; ?m j m 2 Mg.

In the above de�nition, from(m) denotes the instan
e whi
h sends message m.
Likewise, to(m) denotes the instan
e whi
h re
eives message m. Given an instan
e i,
the ordering <i denotes in whi
h order the events atta
hed to instan
e i o

ur.

The partial order denoting the semanti
s of an MSC k is derived from two re-
quirements. First, the ordering of the events per instan
e is respe
ted, and se
ond, a
message
an only be re
eived after it has been sent. The �rst requirement is formalised
by de�ning the instan
ewise partial order <inst

k (k being the MSC under dis
ussion):

<inst
k =

[
i2I

<i;

and the se
ond requirement is formalised by the output-before-input order <oi
k :

<oi
k= f(!m; ?m) j m 2 Mg:

72 CHAPTER 5. MSC AND COMMUNICATION MODELS

Now, we de�ne the partial order indu
ed by the MSC as the transitive
losure
(denoted by +) of the instan
ewise order and the output-before-input order. For an
MSC k, we denote this order by <ms

k or by <ms
 if k is known from the
ontext.

De�nition 2 For a given MSC k = hI;M; from; to; f<igi2Ii, the relation <ms

k is

de�ned by <ms

k = (<inst

k [<oi
k)

+.

From an operational point of view, one
an say that an MSC des
ribes a set of
tra
es. Su
h a tra
e denotes the ordering of output and input events (!m and ?m).

De�nition 3 (Tra
es) Given a set of messagesM , a tra
e t overM is a total order-
ing (e1; e2; : : : ; en) of the set Ems
(M). A tra
e (e1; e2; : : : ; en) is denoted e1 e2 : : : en.

We denote the ith element of a tra
e t by ti, and its length by jt j. As a
onsequen
e
of the above de�nition we
an asso
iate with ea
h tra
e t an order <tra
e

t . This order
is useful in expressing that a
ertain tra
e t is a
tually a tra
e of an MSC k.

De�nition 4 (ms
-tra
e) A tra
e t is said to be an ms
-tra
e of the MSC k if and
only if it is de�ned over the messages M of k, and <ms

k �<tra
e
t .

Lemma 5 For an MSC k over M , and events e; e0 2 Ems
(M), we have e <tra
e
t e0 for

all ms
-tra
es t of k if and only if e <ms

k e0.

Proof The `if'-part is trivial. For the `only if'-part we use
ontraposition. Suppose
that e 6<ms

k e0. Then the relation <ms

k [f(e0; e)g does not
ontain a
y
le. Thus, it
an

be extended to a total order <. Be
ause <ms
�<, < will be the tra
e-order <tra
e
t of

some ms
-tra
e t of k. In this ms
-tra
e we will have e0 <tra
e
t e, and thus e 6<tra
e

t e0. �

5.2 Implementation Models

5.2.1 Implementation Models for Communi
ation

In this se
tion we dis
uss possible ar
hite
tures for realising an MSC. We
onsider
only implementation models
onsisting of FIFO bu�ers for the output and input of
messages. For ms
-tra
es, we de�ne what it means to be implementable on some
ar
hite
ture.

The parti
ular implementation models whi
h we are interested in are
onstru
ted
of entities that
ommuni
ate with ea
h other via FIFO bu�ers. We assume that the
bu�ers have an unbounded
apa
ity. We dis
ern two uses of bu�ers, namely for the
output and for the input of messages.

A se
ond distin
tion
an be made based on the lo
ality of the bu�er. From most
global to most lo
al we distinguish the following types:

� global: A global FIFO bu�er: All messages from all instan
es pass this bu�er.

� inst: A FIFO bu�er, lo
al to an instan
e: All messages sent (or re
eived) by one
single instan
e go through the same bu�er.

5.2. IMPLEMENTATION MODELS 73

� pair: A FIFO bu�er, lo
al to two instan
es: All messages that are sent from one
spe
i�
 instan
e to another spe
i�
 instan
e go through this bu�er.

� msg: A FIFO bu�er, lo
al to a message: There is one bu�er for every message.

This last model, a bu�er per message, is a spe
i�
 ar
hite
ture to
at
h up the

ases in whi
h the bu�ers do not behave like FIFO queues, but as random-a

ess
bu�ers. Taking into a

ount the assumption that messages are unique, it
an easily
be seen that it is equivalent to a global random-a

ess bu�er. A
ommuni
ation model
with only a random-a

ess bu�er represents the implied model of the MSC standard:
the only assumption made about the implementation of
ommuni
ation is that output
pre
edes input, no more, and no less.

Finally, we
onsider the following possibility:

� nobuf: There are no bu�ers;
ommuni
ation is syn
hronous.

We assume that all output bu�ers are of the same type, and similarly that all
input bu�ers are of the same type. This results in four possibilities for the output as
well as for the input. Adding the possibility of using no bu�er at all, we have a total
of 25 possible ar
hite
tures, as shown in Figure 5.1. To denote the elements of this
s
heme, we use the notation (X,Y), where X denotes the type of output bu�er, and
Y the type of input bu�er.

nobuf

input

output nobuf inst pair msgglobal

global

inst

pair

msg

Figure 5.1: Implementation models.

In Figure 5.2 we give examples of a physi
al ar
hite
ture of three
ommuni
ation
models. A
ir
le denotes an instan
e, an open re
tangle denotes an output bu�er,
a �lled re
tangle denotes an input bu�er, and an arrow denotes a
ommuni
ation

hannel. Ea
h example
ontains three instan
es. The �rst example illustrates the

74 CHAPTER 5. MSC AND COMMUNICATION MODELS

(nobuf,global) model. There is no output bu�er, and one universal input bu�er. As
there is no output bu�er, the messages go straight into the input bu�er. This single
bu�er
ould be regarded as an output bu�er as well, so this example is an illustration
of (global,nobuf) too if we repla
e the input bu�er by an output bu�er. The se
ond
example shows the (global,inst) model. There is one general output bu�er and every
instan
e has a lo
al input bu�er. The third ar
hite
ture is an example of the (pair,pair)
model.

Figure 5.2: Some models: (nobuf,global), (global,inst) and (pair,pair).

Please note that not all models des
ribed in Figure 5.1 make sense to an equal
degree. For example, the model (global,inst) (i.e., a shared medium for transmit-
ting messages and an input bu�er for ea
h entity) is more natural than the exoti

(global,pair) model.

Many of these ar
hite
tures o

ur in pra
ti
e as either the underlying
ommu-
ni
ation ar
hite
ture of a programming language or as a physi
al ar
hite
ture. We
give some examples of languages. The model (nobuf,nobuf) is typi
al for pro
ess al-
gebrai
 formalisms based on syn
hronous
ommuni
ation, su
h as LOTOS [ISO88b℄
and ACP [BK84℄. The spe
i�
ation language SDL [IT94, BHS91℄, whi
h is
losely
related to MSC, has as a general
ommuni
ation model (pair,msg), but if we leave out
the save
onstru
t we obtain (pair,inst) and if we also do not
onsider the possibility
of delayed
hannels, we have (nobuf,inst). Some examples of physi
al ar
hite
tures
are: an asyn
hronous
omplete mesh has a (nobuf,pair) ar
hite
ture, and an Ethernet

onne
tion with lo
ally bu�ered input and output behaves like (inst,inst).

5.2.2 Extending the Semanti
s

In the previous se
tion we have seen that we
onsider implementation models of

ommuni
ation in MSCs where ea
h message passes at most two FIFO bu�ers. In
order to reason about su
h implementation models we will extend the semanti
s of
MSC in this se
tion. In this extension of the semanti
s, a single
ommuni
ation of
message m will be modeled by three events. These are the events !m, !!m, and ?m.
The intuition here is, as expressed in Figure 5.3, that !m denotes the putting of a
message into an output bu�er, !!m is the transmission of the message from the output
bu�er to the appropriate input bu�er, and ?m is the removal of the message from the
input bu�er. We assume these events to be instantaneous.

The intermediate transmit events !!m play a
ru
ial role in our des
ription of
the
ommuni
ation models. However, we have formulated the semanti
s of an MSC

5.2. IMPLEMENTATION MODELS 75

!m !!m ?m

Figure 5.3: Events asso
iated with a
ommuni
ation.

without using transmit events. In the remainder of this se
tion we will de�ne a
semanti
s of MSC in whi
h the transmit event o

urs. The approa
h is similar to the
previously de�ned semanti
s.

The order <i is lifted in the trivial way to the set Eimpl(M) = f!m; ?m; !!m j m 2
Mg.

We de�ne the output-before-transmit-before-input order by

<oti
k = f(!m; !!m); (!!m; ?m) j m 2 Mg;

and the relation <impl
k by adding the instan
ewise ordering on the MSC.

De�nition 6 For a given MSC k = hI;M; from; to; f<igi2Ii, the ordering <impl
k is

de�ned by <impl
k = (<inst

k [<oti
k)+.

It is easy to see that <ms
 is the restri
tion of <impl to output and input events.
From an operational point of view, one
an say that an MSC des
ribes a set of

tra
es. We distinguish ms
-tra
es and impl-tra
es. An ms
-tra
e denotes the ordering
of output and input events (!m and ?m), an impl-tra
e those of transmit events (!!m)
as well.

De�nition 7 (impl-tra
es) An impl-tra
e is the same as an ms
-tra
e (see De�ni-
tion 4), ex
ept for the fa
t that it
ontains transmit events as well.

De�nition 8 (Tra
e order) For a tra
e t over a set of messages M we de�ne an
order <tra
e

t on Eimpl(M), for all 1 � i �jt j and 1 � j �j t j by ti <
tra
e
t tj , i < j.

De�nition 9 (MSC-tra
e) A tra
e t is said to be an impl-tra
e of the MSC k if

and only if it is de�ned over the messages M of k, and <impl
k �<tra
e

t .

An impl-tra
e
an be turned into an ms
-tra
e by removing all transmit events
(!!m). If, for an impl-tra
e t this results in an ms
-tra
e t0, then t is said to be an
extension of t0. It is not hard to see that an impl-tra
e t is an MSC-tra
e of an
MSC k if and only if the tra
e of whi
h it is an extension is a tra
e of the MSC and
additionally the output-before-transmit-before-input order is respe
ted: <oti

k �<tra
e
t .

The MSC from Figure 5.4 implies the following orderings: !a <ms
?a, !b <ms
?b,
and ?a <ms
?b. The �rst two are implied by the <oi-order, the third by the <inst-
order. The MSC has exa
tly three ms
-tra
es: !a ?a !b ?b, !a !b ?a ?b, and !b !a ?a ?b.
These ms
-tra
es
an be extended to ten impl-tra
es, su
h as !a !!a ?a !b !!b ?b and
!a !b !!b !!a ?a ?b.

76 CHAPTER 5. MSC AND COMMUNICATION MODELS

i j k

a

b

ms
 Example 2

Figure 5.4: Example MSC.

5.2.3 Implementability

The main question of this
hapter is, whether a system with a given implementation
model
an exhibit the behaviour des
ribed by a
ertain MSC. To answer this question,
we �rst give a formal de�nition of what it means for a tra
e to have a
ertain im-
plementability property. The de�nitions below
an be seen as a formalisation of the
notions introdu
ed in Se
tion 5.2.1.

De�nition 10 (Output-implementability)

� nobuf-output: Every output event is dire
tly followed by the
orresponding
transmit event. Thus, output and transmit events may be
ombined into one
new event. An impl-tra
e t is nobuf-output implementable if and only if

8
m2M

: 9
e2Eimpl(M)

!m <tra
e
t e <tra
e

t !!m:

� global-output: The order of two output events is respe
ted by the
orresponding
transmit events. An impl-tra
e t is global-output implementable if and only if

8
m;m02M

!m <tra
e
t !m0)!!m <tra
e

t !!m0:

� inst-output: The order of any two output events from the same instan
e is
respe
ted by the
orresponding transmit events. An impl-tra
e t is inst-output
implementable if and only if

8
m;m02M

from(m) = from(m0)) (!m <tra
e
t !m0)!!m <tra
e

t !!m0):

5.2. IMPLEMENTATION MODELS 77

� pair-output: The order of two output events with the same sour
e and the same
destination, is respe
ted by the
orresponding transmit events. An impl-tra
e t
is pair-output implementable if and only if

8
m;m02M

from(m) = from(m0) ^ to(m) = to(m0)
) (!m <tra
e

t !m0)!!m <tra
e
t !!m0):

� msg-output: An impl-tra
e t is always msg-output implementable.

For msg-output implementability we
an remark that it
an be put in line with
the three de�nitions pre
eding it, by restating it as

8
m;m02M

m = m0) (!m <tra
e
t !m0)!!m <tra
e

t !!m0):

For nobuf-output implementability su
h a translation is not possible; this is qualita-
tively another de�nition. Also note that, be
ause <tra
e is a total order, !m <tra
e

t

!m0)!!m <tra
e
t !!m0 is equivalent to both !m <tra
e

t !m0 ,!!m <tra
e
t !!m0 and !m <tra
e

t

!m0 (!!m <tra
e
t !!m0.

The input implementabilities are de�ned analogously.

De�nition 11 (Input-implementability)

� nobuf-input: An impl-tra
e t is nobuf-input implementable if and only if

8
m2M

: 9
e2Eimpl(M)

!!m <tra
e
t e <tra
e

t ?m:

� global-input: An impl-tra
e t is global-input implementable if and only if

8
m;m02M

!!m <tra
e
t !!m0)?m <tra
e

t ?m0:

� inst-input: An impl-tra
e t is inst-input implementable if and only if

8
m;m02M

to(m) = to(m0)) (!!m <tra
e
t !!m0)?m <tra
e

t ?m0):

� pair-input: An impl-tra
e t is pair-input implementable if and only if

8
m;m02M

from(m) = from(m0) ^ to(m) = to(m0)
) (!!m <tra
e

t !!m0)?m <tra
e
t ?m0):

� msg-input: An impl-tra
e t is always msg-input implementable.

Having de�ned formally the notions of output- and input-implementability, we
now
ombine them and obtain our notion of
ommuni
ation model.

De�nition 12 An impl-tra
e is said to be (X,Y)-implementable (for X;Y 2 fnobuf,
global, inst, pair, msgg) if and only if it is X-output implementable and Y-input im-
plementable. An ms
-tra
e is said to be (X,Y)-implementable if and only if it
an be
extended (by adding !!m's) to an impl-tra
e that is (X,Y)-implementable.

78 CHAPTER 5. MSC AND COMMUNICATION MODELS

5.3 Classi�
ation of Implementability of Tra
es

To ea
h of the implementation models de�ned in the previous se
tion we
an asso
iate
the set of all tra
es that are implementable in the model. Based on the subset relation
on these sets of tra
es, we
an order implementation models. We
onsider two models
equivalent if they have the same set of implementable tra
es.

In Lemma 13 we give a
lassi�
ation of the notions of output-implementability. It
states that a tra
e that is implementable on a
ertain ar
hite
ture is also implement-
able on an ar
hite
ture where these bu�ers are partitioned into bu�ers with a more
restri
ted lo
ality. For example, if a tra
e
an be implemented on an ar
hite
ture
with one output bu�er per instan
e, it
an also be implemented on an ar
hite
ture
with an output bu�er per pair of instan
es (provided the input bu�ers remain the
same).

Lemma 13 (Classi�
ation of output-implementability)

� Every nobuf-output implementable tra
e is global-output implementable.

� Every global-output implementable tra
e is inst-output implementable.

� Every inst-output implementable tra
e is pair-output implementable.

� Every pair-output implementable tra
e is msg-output implementable.

Proof For impl-tra
es this follows dire
tly from the de�nitions. For ms
-tra
es
this follows from the de�nition plus the fa
t that it holds for impl-tra
es. �

The following lemmas give the orderings between the implementation models.

Lemma 14

� Every (inst,global)-implementable ms
-tra
e is (inst,nobuf)-implementable.

� Every (global,global)-implementable ms
-tra
e is (global,nobuf)-implementable.

� Every (pair,pair)-implementable ms
-tra
e is (pair,nobuf)-implementable.

� Every (msg,msg)-implementable ms
-tra
e is (msg,nobuf)-implementable.

Proof We show the proof for (inst,global). The other proofs are roughly analogous.
Let t be an ms
-tra
e over the set of messages M , and let t0 be an impl-tra
e that is
an (inst,global)-implementable extension of t. It suÆ
es to
onstru
t an (inst,nobuf)-
implementable extension t00 of t. We
reate t00, for whi
h we will prove that it is
(inst,nobuf)-implementable, in the following way: Starting from t, for ea
h message
m 2 M we add the transmit event !!m just before the input event ?m. This t00 is
nobuf-input implementable by de�nition, so it suÆ
es to prove that t00 is inst-output
implementable. Thereto, let m;m0 2 M su
h that from(m) = from(m0). We have to
prove that !m <tra
e

t00 !m0)!!m <tra
e
t00 !!m0.

Suppose that !m <tra
e
t00 !m0. Then, sin
e t00 is an extension of t, we have !m <tra
e

t

!m0, and similarly, sin
e t0 is an extension of t, !m <tra
e
t0 !m0. Using that t0 is inst-

output implementable and from(m) = from(m0) we have !!m <tra
e
t0 !!m0. By using that

5.3. CLASSIFICATION OF IMPLEMENTABILITY OF TRACES 79

t0 is global-input implementable, we also have ?m <tra
e
t0 ?m0. Sin
e t0 is an extension

of t we have ?m <tra
e
t ?m0 and sin
e t00 is an extension of t also ?m <tra
e

t00 ?m0. Sin
e
t00 is nobuf-input implementable, we obtain !!m <tra
e

t00 !!m0, whi
h
ompletes the proof.
�

Lemma 15 � Every nobuf-input implementable tra
e is global-input implement-
able.

� Every global-input implementable tra
e is inst-input implementable.

� Every inst-input implementable tra
e is pair-input implementable.

� Every pair-input implementable tra
e is msg-input implementable.

� Every (global,inst)-implementable ms
-tra
e is (nobuf,inst)-implementable.

� Every (global,global)-implementable ms
-tra
e is (nobuf,global)-implementable.

� Every (pair,pair)-implementable ms
-tra
e is (nobuf,pair)-implementable.

� Every (msg,msg)-implementable ms
-tra
e is (nobuf,msg)-implementable.

Proof Fully analogous to Lemmas 13 and 14. �

Next, we des
ribe how the above lemmas are useful in ordering the models. Lemma
13 provides us with a partial ordering on the various implementations: Any (X,Y)-
implementable tra
e is implementable by all implementation models lo
ated to the
right of or below (X,Y) in Figure 5.1. Lemmas 13 to 15 give us the equivalen
es as
expressed in Figure 5.5 by means of the
lustering of implementation models.

For example, the models from the last
olumn are equivalent. This
an be seen as
follows. Be
ause of the analogue of Lemma 14, any (msg,msg)- implementable ms
-
tra
e is (nobuf,msg)-implementable, while Lemma 13 gives that any (nobuf,msg)-im-
plementable ms
-tra
e is (X,msg)-implementable, and every (X,msg)-implementable
ms
-tra
e is (msg,msg)-implementable.

Now we have redu
ed the number of implementation models to only seven di�erent

lasses. Of
ourse, some of these
ould still be equivalent for other reasons than the
above lemmas. That this is not the
ase, will be seen in Corollary 20 below. We name
the equivalen
e
lasses as follows: nobuf, global, inst out, inst in, inst2, pair, msg (see
Figure 5.5).

Of these, the �rst two and last two will be
lear immediately, inst out means that
there are instan
ewise output bu�ers and global or no input bu�ers, inst in means
that there are instan
ewise input bu�ers and global or no output bu�ers, and inst2

means that there are both an instan
ewise output bu�er and an instan
ewise input
bu�er.

Theorem 16 For tra
es, the seven implementation models are ordered as is shown
in Figure 5.6.

80 CHAPTER 5. MSC AND COMMUNICATION MODELS

nobuf

input

output nobuf inst pair msgglobal

global

inst

pair

msg

nobuf

global

pair

msg

inst out

inst in

inst2

Figure 5.5: Equivalen
e of implementation models for tra
es.

Proof This follows from the Lemmas 13 to 15 as explained above. �

Note that of these seven
ases only inst2 is not of the form (X; nobuf) or (nobuf;X).
As these forms imply that there is respe
tively no input bu�er or no output bu�er, of
these seven
ases only the
ase inst2 needs two bu�ers, all other
ases
an be modelled
su
h that ea
h message goes through at most one bu�er.

It will prove useful to have a
hara
terisation of these implementabilities (ex
ept
for inst2 of
ourse) that does not use transmits.

Lemma 17 Let t be an ms
-tra
e over a set of messages M . Then:

� t is nobuf-implementable if and only if

8
m2M

: 9
e2Ems
(M)

!m <tra
e
t e <tra
e

t ?m;

� t is global-implementable if and only if

8
m;m02M

!m <tra
e
t !m0)?m <tra
e

t ?m0;

� t is inst out-implementable if and only if

8
m;m02M

from(m) = from(m0)) (!m <tra
e
t !m0)?m <tra
e

t ?m0);

� t is inst in-implementable if and only if

8
m;m02M

to(m) = to(m0)) (!m <tra
e
t !m0)?m <tra
e

t ?m0);

5.4. CLASSIFICATION OF MSCS 81

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
����
�
�
�

�
�
�
�

�
�
�
�

nobuf

global

inst out inst in

inst2

pair

msg

Figure 5.6: Ordering of the implementation models for tra
es.

� t is pair-implementable if and only if

8
m;m02M

from(m) = from(m0) ^ to(m) = to(m0)
) (!m <tra
e

t !m0)?m <tra
e
t ?m0);

� t is always msg-implementable.

Again note that be
ause <tra
e
t is a total order, 8m;m02M !m <tra
e

t !m0)?m <tra
e
t

?m0
an be repla
ed by 8m;m02M !m <tra
e
t !m0 ,?m <tra
e

t ?m0 without loss of
orre
t-
ness.
Proof The proofs for this are easily found by realising that a ms
-tra
e is (X,nobuf)-
implementable exa
tly if the
onditions for X-output implementability hold with !!m
everywhere repla
ed by ?m. �

5.4 Classi�
ation of MSCs

The use of MSCs in pra
ti
e (and theory) is twofold. First, MSCs are often used
to restri
t the behaviour of
ommuni
ating entities. In this use, it is the intention
that the a
tual behaviour of the system is
ontained in the behaviour spe
i�ed by
the MSC. It does not mean that all behaviour of the MSC must be realised in the
system. In this
ase only one of the tra
es of the MSC has to be implementable

82 CHAPTER 5. MSC AND COMMUNICATION MODELS

in the given
ommuni
ation model. This notion of implementability is
alled weak
implementability .

On the other hand, if the language MSC is used for the des
ription of required
behaviour (as for example in use
ases), it is intended that ea
h of the behaviours
spe
i�ed by the MSC is realised. In this
ase all tra
es of the MSC have to be im-
plementable in the given
ommuni
ation model. This notion of implementability is

alled strong implementability .

We �rst fo
us on strong implementability, then on weak implementability. After
this we
onsider the relation between
lasses from the strong and weak spe
trum.

5.4.1 Strong Implementability

De�nition 18 An MSC k is said to be strongly X-implementable, notation Xs-im-
plementable, if and only if all ms
-tra
es t of k are X-implementable.

From this de�nition it follows immediately that the ordering of the implementation
models for tra
es as given in Figure 5.6 also holds for MSCs as far as strong implement-
ability is
on
erned (see Figure 5.10). Next, we demonstrate that the implementation
models, obtained by lifting them from the tra
e level to MSCs in the strong way, are
indeed di�erent. This is a
hieved by �nding examples of MSCs that are in one
lass
but not in another.

MSC 1 in Figure 5.7 shows an example that is globals-implementable, but not
nobufs-implementable. It is not nobufs-implementable, be
ause the tra
e !a !b ?a ?b is
not. The input events ne
essarily have to be ordered in the same way as the output
events, so it is globals-implementable.

i j

a

b

ms
 1

Figure 5.7: MSCs to distinguish the implementation models: strong
ase (1)

MSC 2a in Figure 5.8 is inst outs-implementable, but not globals-implementable
due to the tra
e !b !a ?a ?b. That MSC 2a is inst outs-implementable
an be seen as
follows: All messages go through a di�erent output bu�er, so there is no problem

5.4. CLASSIFICATION OF MSCS 83

with the output bu�ers at all. Similarly, MSC 2b is inst ins-implementable, but not
globals-implementable due to the tra
e !a !b ?b ?a.

MSCs 2a and 2b show the di�eren
e between inst outs and inst ins. MSC 2a is
inst outs-implementable, as mentioned before, but not inst ins-implementable. The
tra
e !b !a ?a ?b is not inst in-implementable, be
ause the input events of instan
e j do
not rea
h the input bu�er in the order in whi
h they are to be manipulated. For MSC
2b the reverse is the
ase: It is inst ins-implementable, but not inst outs-implement-
able. MSC 2a is inst outs-implementable and therefore also inst2s-implementable. We
have already established that it is not inst ins-implementable. Similarly, MSC 2b is
inst ins and inst2s-implementable, but not inst outs-implementable. Together, these
show that inst outs, inst ins and inst2s are all di�erent.

One might suspe
t that the
lass of inst2s-implementable MSCs is simply equal to
the interse
tion of the
lasses of inst outs-implementable and inst ins-implementable
MSCs. This is not the
ase, as
an easily be shown by
ombining the MSCs 2a and
2b into one MSC (see MSC 8 in Figure 5.16).

MSC 3 in Figure 5.9 is an example of an MSC that is pairs-implementable, but
not inst2s-implementable. It is easy to see that it is pairs-implementable, be
ause
ea
h message goes through a di�erent bu�er. Its only ms
-tra
e is !
 !a ?a !b ?b ?
.
If we try to extend this to an inst2-implementable impl-tra
e t0, we need to have
!!
 <tra
e

t !!a <tra
e
t !!b <tra
e

t !!
, whi
h is impossible (the �rst <tra
e
t is be
ause of the

inst-output implementability and !
 <tra
e
t !a, the se
ond is
learly true for every impl-

tra
e of the MSC, and the third is be
ause of the inst-input implementability together
with ?b <tra
e

t ?
).

Finally, MSC 4 shows the di�eren
e between pairs- and msgs-implementability. All
other implementation models are also pairwise di�erent. This result is obtained due
to the transitive
losure of the ordering as presented in Figure 5.10.

Together the examples used above show that if we look at strong implementability,
the seven remaining implementation models are indeed di�erent for MSCs, and thus
that they are also di�erent for ms
-tra
es.

Theorem 19 The implementation models for strong implementability of Figure 5.10
are di�erent and these are ordered as expressed in Figure 5.10.

Proof In the above text we have demonstrated by means of
ounterexamples that
the implementation models must be di�erent. Also the ordering has been explained
above. �

Corollary 20 The
lasses nobuf, global, inst out, inst in, inst2, pair, and msg are
di�erent for MSC-tra
es.

5.4.2 Weak Implementability

De�nition 21 An MSC k is said to be weakly X-implementable, notation Xw-imple-
mentable, if and only if there is an X-implementable ms
-tra
e t of k.

84 CHAPTER 5. MSC AND COMMUNICATION MODELS

i j k

a

b

ms
 2a

i j k

a

b

ms
 2b

Figure 5.8: MSCs to distinguish the implementation models: strong
ase (2)

5.4. CLASSIFICATION OF MSCS 85

i j k

 a

b

ms
 3

i j

a

b

ms
 4

Figure 5.9: MSCs to distinguish the implementation models: strong
ase (3)

As was the
ase for strong implementability, for weak implementability we also
have the ordering as expressed in Figure 5.6 as a starting point. However, using weak
implementability, we do not have anymore that all implementation models di�er. To
see this, we �rst give an alternative way to
hara
terise some of the implementations
and prove that these are equivalent to the original de�nition.

We will use some new relations (to denote these relations we will use the same type
of symbols as we have used to denote partial orders) to give this new de�nition. The
idea is that these new relations give an ordering requirement that must be ful�lled by
a tra
e so as to be inst out-implementable, inst in-implementable or inst2-implement-
able. For example, to be inst out-implementable, ea
h time two messages m and m0

ome from the same instan
e, they must be re
eived in the same order as the order
in whi
h they were sent. Be
ause they are on the same instan
e, there will be some
<ms
-order between !m and !m0. To ensure that the tra
e has the re
eipts in the same

86 CHAPTER 5. MSC AND COMMUNICATION MODELS

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

nobufs

globals

inst outs inst ins

inst2s

pairs

msgs

Figure 5.10: Ordering s
heme for strong implementability.

order, we will have to add the equivalent order between ?m and ?m0.

De�nition 22 Let k be an MSC over the set of messages M . Then we de�ne the
relations <io

k and <ii
k on Ems
(M) and <i2

k on Eimpl(M) as follows:

<io
k= (<ms

k [f(?m; ?m0) j m;m0 2M ^ from(m) = from(m0)^!m <ms

k !m0g)+,

<ii
k= (<ms

k [f(!m; !m0) j m;m0 2M ^ to(m) = to(m0)^?m <ms

k ?m0g)+;

<i2
k= (<impl

k [f(!!m; !!m0) j m;m0 2M ^ from(m) = from(m0)^!m <impl
k !m0g

[f(!!m; !!m0) j m;m0 2M ^ to(m) = to(m0)^?m <impl
k ?m0g)+.

A pi
ture of these orderings
an be seen in Figure 5.11. It shows an MSC together
with its <ms
, <impl, <io, <ii and <i2 relations. For the last three, the orderings
that have been added when
ompared to <ms
 or <impl have been dashed, while the
orderings that
aused these extra orderings have been drawn fat.

The inst out-implementable tra
es of the MSC are also tra
es of the ordering <io
k

as they respe
t the requirements for inst out-implementability by de�nition, and vi
e
versa. Basi
ally this is what is expressed in Lemma 23.

Lemma 23 Let t be an ms
-tra
e of an MSC k. Then,

� t is inst out-implementable if and only if <io
k�<

tra
e
t ;

5.4. CLASSIFICATION OF MSCS 87

!a ?a

!b

?b

?c !c

!a

!b

?b

?a!!a

!!b

?c !c!!c

a

b

c

!a ?a

!b

?b

?c !c

!a ?a

!b

?b

?c !c

!a

!b

?b

?a!!a

!!b

?c !c!!c

io ii i2

msc impl

Figure 5.11: Explanation of the <io, <ii and <i2 relations

� t is inst in-implementable if and only if <ii
k�<

tra
e
t ;

� t is inst2-implementable if and only if there exists an extension t0 of t su
h that
<i2

k�<
tra
e
t0 .

Proof We only give the proof for the last proposition. The proofs for the �rst two
propositions follow the same line.

First, suppose that t is inst2-implementable. Then we must prove that <i2
k�<

tra
e
t0

for some impl-tra
e t0 whi
h is an extension of t. Let the impl-tra
e t0 be an arbitrary
inst2-implementable extension of t (the existen
e of su
h a tra
e follows trivially from
De�nition 12). Suppose that e <i2

k e0 for arbitrary events e; e0 2 Eimpl(M). Now it
suÆ
es to prove e <tra
e

t0 e0. Sin
e e <i2
k e0 we have the existen
e of events e1; � � � ; en

su
h that e � e1, e
0 � en and for all 1 � i < n we have one of the following:

� ei <
impl
k ei+1;

� ei �!!m and ei+1 �!!m0 for some m;m0 2M su
h that from(m) = from(m0) and

!m <impl
k !m0;

� ei �!!m and ei+1 �!!m0 for some m;m0 2 M su
h that to(m) = to(m0) and

?m <impl
k ?m0.

In the �rst
ase we immediately have ei <
tra
e
t0 ei+1. Due to the fa
t that t0 is an

inst2-implementable impl-tra
e, and thus both inst-output and inst-input implement-
able, we
an
on
lude that ei <

tra
e
t0 ei+1 for the se
ond and third
ase as well (see

De�nitions 10 and 11). Sin
e <tra
e
t0 is transitive we have e <tra
e

t0 e0, whi
h
ompletes
this part of the proof.

88 CHAPTER 5. MSC AND COMMUNICATION MODELS

Se
ond, suppose that <i2
k�<

tra
e
t0 for some impl-tra
e t0 whi
h is an extension of t.

We must prove that t is (inst,inst)-implementable. Thereto, it suÆ
es to show that
t0 is (inst,inst)-implementable, i.e., that t0 is inst-output implementable and inst-input
implementable. We prove that t0 is inst-output implementable, the proof that t0 is inst-
input implementable is analogous. Let m;m0 2 M su
h that from(m) = from(m0).
Then it suÆ
es to show that !m <tra
e

t0 !m0)!!m <tra
e
t0 !!m0. Thus, suppose that

!m <tra
e
t0 !m0. Sin
e from(m) = from(m0), we have !m <ms

k !m0. So !!m <i2
k !!m

0. Be-

ause <i2

k�<
tra
e
t0 we therefore have !!m <tra
e

t0 !!m0. �

Thus far, we have seen that the ordering <io
k
ontains all inst out-implementable

tra
es of MSC k. An MSC k is inst outw-implementable if and only if it has a tra
e
t that is inst out-implementable. Clearly, su
h a tra
e exists if and only if there is a
tra
e for the ordering <io

k , in other words, if and only if <io
k is
y
le-free.

Theorem 24 Let k be an MSC. Then,

� k is inst outw-implementable if and only if <io
k is
y
le-free;

� k is inst inw-implementable if and only if <ii
k is
y
le-free;

� k is inst2w-implementable if and only if <i2
k is
y
le-free.

Proof Follows immediately from Lemma 23. �

We use the alternative
hara
terisations provided by Theorem 24 in the proof of
the equivalen
e of the
lasses inst outw, inst inw, and inst2w.

Lemma 25 Let k be an MSC over the set of messages M and let m;m0 2 M . If
?m <io

k ?m
0, then !!m <i2

k !!m
0

Proof Suppose that ?m <io
k ?m

0. Then by the de�nition of<io
k we have the existen
e

of events e1; � � � ; en su
h that e1 �?m, en �?m0, and for 1 � i < n we have one of
the following:

� ei <
ms

k ei+1;

� ei �?p, ei+1 �?p
0 for some p; p0 2 M su
h that from(p) = from(p0) and !p <ms

k

!p0.

In the se
ond
ase we have !!p <i2
k !!p

0 dire
tly from De�nition 22. In the �rst
ase
we have a sequen
e of events where the smallest steps are due to <inst or due to <oi.
In this sequen
e any subsequen
e of events whi
h are de�ned on the same instan
e

an be repla
ed by one single step. As a result we have the existen
e of messages
m1; � � � ;mn0 su
h that

ei �
inst!m1 <

oi?m1 <
inst!m2 <

oi?m2 <
inst � � � <inst!mn0 <oi?mn0 �inst ei+1;

where f �inst f 0 is short for f <inst f 0 or f � f 0. Now we observe that we only have
the following three possibilities for <inst:

5.4. CLASSIFICATION OF MSCS 89

� !q <inst!q0 for some q; q0 2M su
h that from(q) = from(q0). Then also !!q <i2
k !!q

0

by the de�nition of <i2.

� ?q <inst?q0 for some q; q0 2 M su
h that to(q) = to(q0). Then also !!q <i2
k !!q

0,
again by the de�nition of <i2.

� ?q <inst!q0 for some q; q0 2M su
h that to(q) = from(q0). Then !!q <impl
k ?q <impl

k

!q0 <impl
k !!q0, so
learly !!q <impl

k !!q0 and !!q <i2
k !!q

0 (sin
e <i2
k�<

impl
k).

Thus, we obtain !!ei <
i2
k !!ei+1 for all 1 � i < n. Therefore !!m <i2

k !!m
0. �

Lemma 26 The implementation models inst outw, inst inw, and inst2w are all equiv-
alent.

Proof We show that ea
h inst2w-implementable MSC is also inst outw-implement-
able. The reverse impli
ation is trivial, and the proofs with inst inw are analogous.
From Lemma 24 we see that it suÆ
es to prove that <io is
y
le-free if <i2 is
y
le-
free. We prove this using
ontraposition, so we assume that <io has a
y
le. Let
e1 <io e2 <io : : : <io en <io e1 be an arbitrary
y
le su
h that for every ordering
in the
y
le, say ei <

io ei+1, either ei <
ms
 ei+1, and hen
e ei <

i2 ei+1, or ei �?m,
ei+1 �?m0 for some m;m0 2 M su
h that !m <ms
!m0 and from(m) = from(m0) (any

y
le
an be extended to some
y
le of this form by the addition of events).

If the �rst is always the
ase, then we have a
y
le in <ms
, so
ertainly in <i2.
Now assume we have the se
ond at least on
e in the
y
le. In that
ase we have at
least two input events in the
y
le, say ?m and ?m0. Then ?m <io?m0 and ?m0 <io?m.
Lemma 25 gives that this implies that !!m <i2!!m0 and !!m0 <i2!!m, so <i2 has a
y
le.
�

Lemma 26 establishes that the
lasses inst outw, inst inw, and inst2w are equivalent.
In the remainder we denote this
lass by instw. The remaining models are all di�erent.
MSC 3 and MSC 4 in Figure 5.9 show the di�eren
e between instw and pairw, and
pairw and msgw, respe
tively, in the weak
ase too (these MSCs have only one ms
-
tra
e, so their weak implementability equals their strong implementability). MSC 5
in Figure 5.12 is globalw-implementable, but not nobufw-implementable. The tra
e
!a !b ?a ?b is global-implementable, but be
ause both output events must have been
exe
uted before any input event
an be pro
essed, there is no nobuf-implementable
tra
e.

MSC 6 is instw-implementable, but not globalw-implementable. It is not globalw-
implementable, as
an be seen thus: !a <ms
!b, so if a tra
e t of this ms
 is global-
implementable, we must have ?a <tra
e

t ?b. Be
ause !d <ms
?a and ?b <ms
!
, we get
!d <tra
e

t !
. But we also have ?
 <ms
?d, and thus ?
 <tra
e
t ?d, from whi
h it follows that

t
annot be global-implementable. On the other hand, the tra
e !a !b !d ?a ?b !
 ?
 ?d is
inst out-implementable, so the MSC is instw-implementable.

Theorem 27 The implementation models for weak implementability of Figure 5.13
are all di�erent and they are ordered as expressed in Figure 5.13.

90 CHAPTER 5. MSC AND COMMUNICATION MODELS

i j

a

b

ms
 5

i j k l

a

b

d

ms
 6

Figure 5.12: MSCs to distinguish the implementation models: weak
ase.

Proof The
ounterexamples that imply that the implementation models are dif-
ferent are given above. The ordering of the models is inherited from the ordering
of the implementation models with respe
t to tra
es. Lemma 26 provides that the
implementation models inst outw, inst inw, and inst2w are equivalent. �

5.4.3 Combining the Strong and Weak Hierar
hies

The relations between the
lasses in one of the two hierar
hies have been studied
extensively in the previous se
tions. We have 12 possible implementations left: nobufs,
globals, inst outs, inst ins, inst2s, pairs andmsgs in the strong
ase, and nobufw, globalw,
instw, pairw and msgw in the weak
ase. From the de�nitions of strong and weak im-
plementability it is
lear that any Xs-implementable MSC is also Xw-implementable.
The remaining
lasses are ordered as shown in Figure 5.14.

5.4. CLASSIFICATION OF MSCS 91

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�
�
�
�

�
�
�
�

nobufw

globalw

instw

pairw

msgw

Figure 5.13: Ordering s
heme for weak implementability.

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�
�
�
�

���
���
���

���
���
��� �

�
�
�

����
����
����

����
����
����
����
����
����

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����

nobufw

globalw

instw

pairw

msgw

nobufs

globals

inst outs inst ins

inst2s

pairs

msgs

Figure 5.14: In
omplete hierar
hy.

92 CHAPTER 5. MSC AND COMMUNICATION MODELS

An arrow pointing from one of the
lasses to another means that all MSCs that are
implementable in the
ommuni
ation model
orresponding to the �rst
lass are also
implementable in the
ommuni
ation model
orresponding to the se
ond
lass. Any
super
uous arrows (those that
an be inferred from the transitivity of the relation)
have been removed.

These evident relationships between the two hierar
hies have led us to the further
investigation of su
h relationships. As it turns out there are more relationships be-
tween and identi�
ations of the
lasses from the two hierar
hies. First, we prove that
some
lasses
an be identi�ed.

Lemma 28 An MSC k is pairs-implementable if and only if it is pairw-implementable.

Proof Clearly, any pairs-implementable MSC is also pairw-implementable. It re-
mains to prove that any pairw-implementable MSC is also pairs-implementable. Let k
be a pairw-implementable MSC. Let t be an arbitrary ms
-tra
e of k. Let m;m0 2M
su
h that from(m) = from(m0) and to(m) = to(m0). We want to prove that !m <tra
e

t

!m0)?m <tra
e
t ?m0, from whi
h it follows that the (arbitrary) tra
e t is pair-imple-

mentable.
Suppose that !m <tra
e

t !m0. Then, be
ause from(m) = from(m0) and !m <tra
e
t !m0,

we have !m <ms

k !m0 (when from(m) = from(m0), either !m <ms

t !m0 or !m0 <ms

t !m ,

and the se
ond
annot be the
ase). Sin
e k is pairw-implementable there exists a tra
e
t0 that is pair-implementable. Sin
e !m <ms

k !m0 we have !m <tra
e
t0 !m0. Sin
e t0 is pair-

implementable we have by Lemma 17 that ?m <tra
e
t0 ?m0. Be
ause to(m) = to(m0) we

then have ?m <ms

k ?m0. Therefore we have ?m <tra
e

t ?m0, whi
h
ompletes the proof.
�

Lemma 29 An MSC k ismsgs-implementable if and only if it ismsgw-implementable.

Proof Trivial, be
ause every impl-tra
e is msg-implementable, and thus ea
h ms
-
tra
e is as well. �

Lemmas 28 and 29 establish that the
lasses pairs and pairw, and msgs and msgw
are equivalent. In the remainder we denote these by pair and msg, respe
tively.

Next, we will prove that any inst outs-implementable MSC is globalw-implement-
able and that any inst ins-implementable MSC is globalw-implementable. To do this
we �rst give some alternative
hara
terisations for these implementations.

Lemma 30 An MSC k is inst outs-implementable if and only if <io
k=<

ms

k . An MSC

k is inst ins-implementable if and only if <ii
k=<

ms

k .

Proof We only give the proof for the �rst proposition. The proof of the se
ond
proposition follows the same lines.

First, suppose that MSC k is inst outs-implementable. Dire
tly from the de�nition
we know that <ms

k �<io
k , so it only remains to be proven that <io

k�<
ms

k . Suppose that

e <io
k e0 for arbitrary e; e0 2 Ems
(M). Then we have the existen
e of e1; � � � ; en su
h

that e � e1, e
0 � en and for all 1 � i < n we have one of the following:

5.4. CLASSIFICATION OF MSCS 93

� ei <
ms

k ei+1;

� ei �?m and ei+1 �?m0 for some m;m0 2M su
h that from(m) = from(m0) and
!m <ms

k !m0.

In the se
ond
ase we have, by Lemma 5, !m <tra
e
t !m0 for every ms
-tra
e t of k.

Sin
e k is inst outs-implementable we have that every MSC tra
e of k is inst out-im-
plementable. Thus, by Lemma 17 and the assumption that from(m) = from(m0) we
have ?m <tra
e

t ?m0 for every ms
-tra
e t of k. Then, again by Lemma 5, we have
?m <ms

k ?m0. In the �rst
ase we already know that ei <
ms

k ei+1, and taking all these

steps together we have e <ms

k e0, from whi
h it follows that <io

k�<
ms

k .

Se
ond, suppose that <io
k=<

ms

k . Then we must prove that MSC k is inst outs-im-

plementable. Let t be an ms
-tra
e of k, and let m;m0 2 M su
h that from(m) =
from(m0). Suppose !m <tra
e

t !m0. Then be
ause of from(m) = from(m0), we have
!m <ms

k !m0. By the de�nition of <io
k we then have ?m <io

k ?m
0. By the assumption

that <io
k=<

ms

k , this implies ?m <ms

k ?m0, and thus ?m <tra
e
t ?m0. �

For a similar
hara
terisation of globalw-implementability we de�ne a relation <g
k.

De�nition 31 Let k be an MSC. The relation <g
k on Ems
(M) is de�ned as the

smallest relation that satis�es:

1. <ms

k �<g

k;

2. <g
k is transitive;

3. !m <g
k!m

0 ,?m <g
k?m

0 for all m;m0 2M .

Lemma 32 An MSC k is globalw-implementable if and only if the relation <g
k is

y
le-free.

Proof First, suppose that MSC k is globalw-implementable. Let t be a global-im-
plementable tra
e of k. Then <tra
e

t adheres to the restri
tions in De�nition 31, and
thus <g

k�<
tra
e
t , and <g

k is
y
le-free.
Se
ond, suppose that the relation <g

k is
y
le-free. The idea of the proof is that
we extend this relation until it is a total order. Then, if we
an prove that the tra
e

orresponding with this total order is global-implementable, we are done.

We extend the relation<g
k to form an ordering< by repeatedly
hoosing a smallest

element that has not yet been
hosen, and taking that as the next element of our total
order, all the while ensuring that the pre
onditions of De�nition 31 are still being met.
More formally, we will use the following algorithm (with S and < as our variables):

1. S := Ems
(M), <:=<g
k

2. Let e be any smallest element of S with respe
t to <, that is, any element of S
for whi
h there is no e0 2 S with e0 < e.

3. S := S n feg

4. <:= (< [f(e; e0)je0 2 Sg)+

94 CHAPTER 5. MSC AND COMMUNICATION MODELS

5. if e �!m for some m 2M , then <:= (< [f(?m; ?m0)j!m0 2 Sg)+

6. Repeat steps 2 to 5 until S = ;

We �rst remark that the following invariant holds: ?m <?m0)?m <g
k?m

0_!m 62 S
for all m;m0 2 M . This
learly holds at the beginning, and only pairs (?m; ?m0) are
added for whi
h !m 62 S sin
e, otherwise, ?m would not be a smallest element of S.
Also, after every exe
ution of the body of the repetition (i.e. after step 5), < is a
total ordering on those events that are not
ontained in S.

Before we
an make any arguments regarding the resulting ordering <, we have
to prove that the algorithm is well-de�ned. In parti
ular, for step 2 of the above
algorithm it is ne
essary that < is
y
le-free. After step 1 < is
y
le-free be
ause
by the assumption <g

k is
y
le-free. There are two pla
es where the relation < is
extended, namely step 4 and step 5. Step 4 maintains
y
le-freeness of <. This
an
be seen as follows. Let e be an arbitrary smallest element of S with respe
t to <.
Suppose that by adding the pairs (e; e0) for e0 2 S n feg to < a
y
le appears. Then
e0 < e for some e0 2 S n feg whi
h
ontradi
ts the assumption that e is a smallest
element of S with respe
t to <.

Step 5 maintains
y
le-freeness as-well. Suppose that !m is a smallest element of
< with respe
t to S. Suppose that a
y
le is introdu
ed by step 5. This
an only be
the
ase if a pair (?m; ?m0) is added to < for whi
h we already had ?m0 <?m and
!m0 2 S. By the previously mentioned invariant we have ?m0 <g

k?m. By the de�nition
of <g

k then also !m0 <g
k!m. As !m0 2 S this
ontradi
ts the assumption that !m was

a smallest element of S with respe
t to <. Thus, we have established that step 2 of
the algorithm is well-de�ned. The other steps
ause no problems, so the algorithm is
well-de�ned.

The algorithm is guaranteed to terminate as the number of elements of the �nite set
S is de
reased by one every time the body of the repetition is exe
uted. Furthermore,
be
ause < is a total order on those events that are not
ontained in S, and S is empty
when the algorithm ends,

Thus, upon termination of the algorithm, < is a total order on Ems
(M). This
total order
orresponds to a tra
e of the MSC as <ms

k �<g
k�<.

All that remains to be proven is that <
orresponds to a global-implementable
tra
e of k. Note that, after step 1, for all m;m0 2 M we have !m <!m0)?m <?m0.
If in step 4, an ordering !m <!m0 is added then in step 5 ?m <?m0 is added. Thus,
!m <!m0)?m <?m0 is an invariant, from whi
h it follows that the tra
e
orrespond-
ing with < is global-implementable. �

Lemma 33 If e <g
k e

0, there is a sequen
e of events e1 e2; : : : ; en, su
h that:

1. e � e1, e
0 � en

2. Either ei <
ms

k ei+1 or ei �?m and ei+1 �!m for a
ertain m (for ea
h i 2

f1 : : : n� 1g)

3. The number of ei's for whi
h ei 6<ms

k ei+1 (and thus ei �?m and ei+1 �!m hold)

is less than or equal to the number of ei's for whi
h ei �!m and ei+1 �?m.

5.4. CLASSIFICATION OF MSCS 95

Thus, the sequen
e
onsists of <ms
-orderings with additionally some messages
that are passed `in the wrong dire
tion', but there are at least as many messages
passed in the right as in the wrong dire
tion.

As an example, look at MSC 2a in Figure 5.8. In this MSC, !a <g
k!b. The sequen
e

of events
orresponding to the Lemma is !a�?a�?b�!b. There is one message (b) that is
passed from re
eipt to sending, and one message (a) that is passed from sending to
re
eipt.
Proof In this proof we will denote the sequen
e e � e1; : : : ; en � e0 for a given e

and e0 by
���!
(e; e0). This sequen
e is of
ourse in general not uniquely de�ned, but this

does not matter for the proof.
First we note that <g

k
an be
onstru
ted by the following algorithm:

1. <g
k:=<ms

k

2. <g
k:=<g

k [f(?m; ?m0) j!m <g
k!m

0g

3. <g
k:=<g

k [f(!m; !m0) j?m <g
k?m

0g

4. <g
k:=<g

k [f(e; e
0) j 9 e00 : e <g

k e00 ^ e00 <g
k e0g

5. Repeat steps 2 to 4 until no
hange o

urs

We will prove that the lemma remains true throughout the running of this algo-
rithm.

It is trivially true after step 1.
Suppose step 2 introdu
es a new pair into <g

k, ?m <g
k?m

0. Then !m <g
k!m

0 already

is part of <g
k, so by indu
tion hypothesis

������!
(!m; !m0) exists. Then

������!
(?m; ?m0) = (?m)++

������!
(!m; !m0)++(?m0)

(where (e1; : : : ; en)++(f1; : : : ; fn) is de�ned to be (e1; : : : ; en; f1 : : : ; fn)) satis�es the
requirements. There is one pair of the form (?m; !m) added, but also one of the form
(!m0; ?m0), so this is ok.

Likewise, if step 3 introdu
es a new pair !m <g
k!m

0, we
an
hoose
������!
(!m; !m0) =

(!m)++
������!
(?m; ?m0)++(!m0).

Finally, if step 4 introdu
es a new pair e <g
k e0, the lemma is preserved by mak-

ing the
hoi
e
���!
(e; e0) =

���!
(e; e00)++

����!
(e00; e0) (or rather, we should remove one of the now

double e00 to get a
orre
t sequen
e). �

Lemma 34 Every inst outs-implementable MSC is globalw-implementable. Every
inst ins-implementable MSC is globalw-implementable.

Proof We prove this for an inst outs-implementable MSC. The proof is
ompletely
analogous for a inst ins-implementable MSC.

We prove this by
ontradi
tion, so we assume that k is an inst outs-implementable
MSC that is not globalw-implementable. By Lemma 30 we have <io

k=<ms

k , and by

Lemma 32 we have that <g
k has a
y
le.

96 CHAPTER 5. MSC AND COMMUNICATION MODELS

Be
ause <g
k has a
y
le, we
an
on
lude from Lemma 33 that there is a
y
le of

steps whi
h are either steps of <ms

k or of the form (?m; !m), where, furthermore, the

number of steps of the form (?m; !m) is not greater than the number of steps of the
form (!m; ?m). We
all su
h a
y
le a quasi-
y
le of order N , where N is the number
of times that a step of the form (?m; !m) o

urs in the
y
le.

We prove that this
y
le
an be
hanged into a quasi-
y
le of order 0. Let the
order be greater than 0. Be
ause the quasi-
y
le is a
y
le, and
ontains at least one
(?m; !m)-step and at least one (!m; ?m)-step, there will be at least one (!m; ?m)-step,
su
h that after that (!m; ?m)-step a (?m; !m)-step will take pla
e before the next
(?m; !m)-step. Thus, the quasi-
y
le
ontains a subsequen
e (?m; !m; � � � ; !m0; ?m0),
where there are no steps of the forms (?m; !m) or (!m; ?m) between !m and !m0.

Be
ause we have !m <ms

k !m0, by de�nition we get ?m <io

k ?m
0, from whi
h we

get ?m <ms

k ?m0 from the assumption that <ms

k =<io
k . Thus, by removing all steps

between ?m and ?m0, and repla
ing them with a single step, we still have a
y
le of
<ms

k and (!m; ?m) steps, but with one less o

urren
e of both the type (!m; ?m) and

the type (?m; !m). Thus, this is a quasi-
y
le of order N � 1. Repeating this, we will
�nally obtain a quasi-
y
le of order 0. However, a quasi-
y
le of order zero is a
y
le
of only <ms
-steps.

Thus, we see that, given the assumption, <ms
 must have a
y
le. This is impos-
sible, so the assertions
annot simultaneously hold, so ea
h inst outs-implementable
MSC is globalw-implementable. �

In Figure 5.15 we give all
ommuni
ation models that remain after the identi�-

ations obtained until now. The arrows between these models follow also from the
previous theorems and lemmas. Finally, we have to prove that the arrows between
models from the strong and weak hierar
hy are stri
t and that there are no additional
arrows ne
essary. It suÆ
es to show that the following arrows do not exist: globals
to nobufw, nobufw to inst2s, and inst2s to globalw. The rest then follows be
ause of
transitivity. For example, the nonexisten
e of an arrow from globals to nobufw implies
the nonexisten
e of an arrow from inst outs to nobufw, be
ause if the se
ond arrow
exists then, by transitivity, also the �rst must exist. Similarly we obtain the nonexis-
ten
e of arrows from inst ins and inst2s to nobufw. We use the MSCs in Figure 5.16 to
indi
ate that the �rst two arrows do not exist. MSC 7 is globals-implementable, but
not nobufw-implementable. It has one tra
e, !a !b ?a ?b, whi
h is global-implementable,
but not nobuf-implementable. We see that MSC 7
ontains only one instan
e, so all
messages are messages to the same instan
e that sent them. This is no
oin
iden
e,
it
an be shown that all possible
ounterexamples have su
h messages.

MSC 8 is nobufw-implementable, but not inst2s-implementable. That it is nobufw-
implementable
an be seen from the pi
ture, whi
h shows that there is the tra
e
!a ?a !b ?b !
 ?
, whi
h is nobuf-implementable. However, the tra
e !b !
 ?
 !a ?a ?b is not
inst2-implementable: Be
ause ?b is after ?a in the tra
e, !!b must be after !!a to make
the tra
e inst-input implementable, while, be
ause !b is before !
, !!b must be before
!!
 to make the tra
e inst-output implementable. However, !!a must be after !a and
!!
 before ?
, so !!
 will be before !!a in any extension of this tra
e, whi
h implies that
!!b
annot be both before !!
 and after !!a.

The non-existen
e of an arrow from inst2s to globalw is taken
are of by MSC

5.4. CLASSIFICATION OF MSCS 97

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

nobufs

globals

inst insinst outs

globalwinst2s

instw

pair

msg

nobufw

Figure 5.15: Final hierar
hy.

98 CHAPTER 5. MSC AND COMMUNICATION MODELS

i

a

b

ms
 7

i j k l

a

b

ms
 8

Figure 5.16: Distinguishing MSCs:
omparing strong and weak.

6 in Figure 5.12. It has already been shown not to be globalw-implementable. It
is inst2s-implementable be
ause every ms
-tra
e of this MSC
an be extended to an
inst2-implementable impl-tra
e by adding !!a and !!b immediately after !a and !b, and
!!
 and !!d immediately before ?
 and ?d.

Theorem 35 The implementation models from Figure 5.15 are all di�erent, and they
are ordered as expressed in Figure 5.15.

Proof This has been explained in the text above. �

5.5 Chara
terisations

Thus far, we have
onsidered the notions of strong and weak implementability and we
have ordered those in a hierar
hy. In this se
tion, we will
onsider how to determine

5.5. CHARACTERISATIONS 99

the implementability of a given MSC with respe
t to a given
ommuni
ation model.
That is, we study the algorithmi
 aspe
ts of the implementation models. The original
de�nitions of the implementation models are hard to
he
k automati
ally. To do so
would require one to look at all tra
es, possibly even all impl-tra
es, of the MSC
and
he
k whether or not they are implementable with respe
t to the
ommuni
ation
model. An MSC
an have many tra
es, in fa
t their number is exponential in the
number of events of the MSC.

In the previous se
tions, for the
ommuni
ation models globalw, globals, instw,
inst outs, and inst ins
hara
terisations have already been given that are easier to

he
k. These are based on
y
le-freeness of relations between the events, or the equal-
ity of two orderings. Both the
reation of these relations and orderings, and
he
king
for their
y
le-freeness or equality
an be done in polynomial time in the number of
events. For the
ommuni
ation models pair and msg the fa
t that weak and strong
implementability
oin
ide leads dire
tly to an easy to use
hara
terisation: Be
ause
implementability of a single tra
e and implementability of all tra
es are equivalent,
looking at one single tra
e suÆ
es. Thus, we only need new
hara
terisations for
nobufw, nobufs, and inst2s.

De�nition 36 Let k be an MSC over the set of messagesM . The relation <w
k on M

is for all m;m0 2M su
h that m <w
k m0 if and only if !m <ms

k ?m0 and m 6� m0.

Lemma 37 An MSC k is nobufw-implementable if and only if the relation <w
k is

y
le-free.

Proof Let k be an MSC over the set of messages M . First, suppose that k is
nobufw-implementable. Suppose furthermore that <w

k has a
y
le, say m1 <
w
k m2 <

w
k

� � � <w
k mn for some m1;m2; � � � ;mn 2 M su
h that m1 � mn. Then, from the

de�nition of <w
k and <ms

k , we obtain for all 1 � i < n that !mi <
ms

k ?mi+1 and

!mi+1 <
ms

k ?mi+1. Then, for every tra
e t of k, we must have !mi <

tra
e
t ?mi+1 and

!mi+1 <tra
e
t ?mi+1 for all 1 � i < n. Sin
e k is nobufw-implementable, there is a

nobuf-implementable tra
e t0. In this tra
e, there
an be no events between !mi+1

and ?mi+1, so !mi <tra
e
t0 ?mi+1 implies !mi <tra
e

t0 !mi+1. Thus we get !m1 <tra
e
t0

!m2 <
tra
e
t0 � � � <tra
e

t0 !mn and sin
e !m1 �!mn we thus have a
y
le of <tra
e
t0 . Thus su
h

a nobuf-implementable tra
e t0 does not exist. This
ontradi
ts the assumption that
k is nobufw-implementable. Therefore, <w

k is
y
le-free.
Se
ond, suppose that <w

k is
y
le-free. We extend <w
k to a total order <, say

m1 < m2 < � � � < mn where M = fm1;m2; � � � ;mng. Then the tra
e

t �!m1 ?m1 !m2 ?m2 � � �!mn ?mn

is
learly nobuf-implementable. Thus, if suÆ
es to prove that the tra
e t is a tra
e of
MSC k. Thereto, suppose that e <ms

k e0 for some e; e0 2 Ems
(M). We distinguish
four
ases:

� e �!m and e0 �!m0 for some m;m0 2 M . As !m <ms

k !m0 and !m0 <ms

k ?m0, we
also have !m <ms

k ?m0. Then, by the de�nition of <w
k , we have m <w

k m0, and
therefore !m <tra
e

t !m0.

100 CHAPTER 5. MSC AND COMMUNICATION MODELS

� e �!m and e0 �?m0 for some m;m0 2M . If m � m0, then trivially !m <tra
e
t ?m0.

Otherwise, by the de�nition of <w
k , we have m <w

k m0, and therefore !m <tra
e
t

?m0.

� e �?m and e0 �!m0 for some m;m0 2 M . As !m <ms

k ?m, ?m <ms

k !m0 and
!m0 <ms

k ?m0, we have !m <ms

k ?m0. Then, by the de�nition of <w

k , we have
m <w

k m0, and therefore ?m <tra
e
t !m0.

� e �?m and e0 �?m0 for some m;m0 2 M . As !m <ms

k ?m and ?m <ms

k ?m0,
we have !m <ms

k ?m0. Then, by the de�nition of <w
k , we have m <w

k m0, and
therefore ?m <tra
e

t ?m0.

In ea
h of the four
ases we have e <tra
e
t e0, whi
h
ompletes the proof. �

Lemma 38 If an MSC k is nobufs-implementable, then <ms

k is a total order.

Proof Let k be an MSC over the set of messages M . We use
ontraposition, so
assuming that <ms

k is not a total order, we prove that k is not nobufs-implementable.
Let t be an arbitrary ms
-tra
e of the MSC. Be
ause <ms

k is not a total order, there
are events e; e0 2 Ems
(M) su
h that e <tra
e

t e0, but not e <ms

k e0. For any event

e00 2 Ems
(M) with e <tra
e
t e00 <tra
e

t e0 we have either e 6<ms

k e00 or e00 6<ms

k e0 as
otherwise e <ms

k e0. So there also is a su
h a pair of events that are immediately after
one another in the tra
e t. Then, inter
hanging these events would result in another
tra
e t0 of the MSC. It
annot be the
ase that both t and t0 are nobuf-implementable.
�

Lemma 39 Let < be a partial order, su
h that b 6< a and d 6<
, and let <0=<
[f(a; b); (
; d)g+
ontain a
y
le. Then it
ontains a simple
y
le with both (a; b) and
(
; d) part of this
y
le.

Proof If <0 has a
y
le, then so does < [f(a; b); (
; d)g. Look at an arbitrary
simple
y
le of < [f(a; b); (
; d)g. If this
y
le did not
ontain (a; b) or (
; d), then
this would also be a
y
le of <. If it
ontained (a; b) but not (
; d), we would have
b < a, and if it
ontained (
; d) but not (a; b), we would have d <
. Thus, the
y
le
must
ontain both (a; b) and (
; d). �

Lemma 40 An MSC k is globals-implementable if and only if for all m;m0 2 M ,
we either have both !m <ms

k !m0 and ?m <ms

k ?m0, or we have both !m0 <ms

k !m and
?m0 <ms

k ?m.

Proof First, suppose that MSC k is globals-implementable. Let m;m0 2 M .
Without loss of generality we may assume !m0 6<ms

k !m. Then it suÆ
es to prove that
!m <ms

k !m0 and ?m <ms

k ?m0. Now we
an distinguish two
ases: !m <ms

k !m0 and
!m 6<ms

k !m0.
Suppose that !m <ms

k m0. Then, by Lemma 5, !m <tra
e
t !m0 for every ms
-tra
e

t of k. Sin
e every ms
-tra
e of k is global-implementable, we have by Lemma 17

5.5. CHARACTERISATIONS 101

that ?m <tra
e
t ?m0 for every ms
-tra
e t of k. Then, again by Lemma 5, we have

?m <ms

k ?m0, whi
h
ompletes this part of the proof.

Now, suppose that !m 6<ms

k !m0. A similar reasoning as above shows that ?m <ms

k

?m0 implies !m <ms

k !m0 (remember that the single arrow in Lemma 17 is allowed to

be read as a double arrow), so ?m 6<ms

k ?m0, and analogously ?m0 6<ms

k ?m. We will
now show that there exists a ms
-tra
e t of k su
h that !m <tra
e

t !m0 and ?m0 <tra
e
t ?m,

thereby
ontradi
ting the assumption that k is globals-implementable.
We de�ne the ordering < as follows: <= (<ms

k [f(!m; !m0); (?m0; ?m)g)+. We
prove that < is
y
le-free, from whi
h it immediately follows that there is a tra
e t
su
h that !m <tra
e

t !m0 and ?m0 <tra
e
t ?m (just extend < to a total order). Assume

that < is not
y
le-free. From Lemma 39 we
an
on
lude that there exists a simple

y
le in < with both !m <!m0 and ?m0 <?m. Be
ause this is a simple
y
le, this
would imply that !m <!m0 <ms

k ?m0 <?m <ms

k !m. However, ?m <ms

k !m is impossible
be
ause !m <ms

k ?m and <ms

k is
y
le-free. Thus, < is
y
le-free, whi
h leads to a

ontradi
tion with the assumption that k is globals-implementable, so this possibility

annot o

ur.

Se
ond, suppose that for all m;m0 2 M we have !m <ms

k !m0 and ?m <ms

k ?m0, or
!m0 <ms

k !m and ?m0 <ms

k ?m. We must prove that MSC k is globals-implementable.

Let t be an arbitrary ms
-tra
e of MSC k. Let m;m0 2 M . By Lemma 17 it suÆ
es
to prove that !m <tra
e

t !m0)?m <tra
e
t ?m0. Suppose that !m <tra
e

t !m0. Then, by
Lemma 5, !m0 6<ms

k !m. Therefore, by the assumption, !m <ms

k !m0 and ?m <ms

k ?m0.
So, by Lemma 5, we have ?m <tra
e

t ?m0. �

Lemma 41 An MSC k is inst2s-implementable if and only if <i2
k=<

impl
k .

Proof Let k be an MSC over the set of messages M . First, suppose that k is
inst2s-implementable. By de�nition, <impl

k �<i2
k , so it only remains to be proven that

<i2
k�<

impl
k . Suppose that e <i2

k e0 for some e; e0 2 Eimpl(M). Then we have the
existen
e of e1; � � � ; en su
h that e � e1, e

0 � en and for all 1 � i < n we have one of
the following:

� ei <
impl
k ei+1;

� ei �!!m and ei+1 �!!m0 for some m;m0 2M su
h that from(m) = from(m0) and

!m <impl
k !m0;

� ei �!!m and ei+1 �!!m0 for some m;m0 2 M su
h that to(m) = to(m0) and

?m <impl
k ?m0.

In the se
ond
ase we use indu
tion on the number of output events !m00 that
an be
in between !m and !m0 to prove that !!m <impl

k !!m0.

� If there is no output event !m00 su
h that !m <impl
k !m00 <impl

k !m0, then either

!m <inst!m0 or ?m <impl
k !m0. In the �rst
ase, if !!m <impl

k !!m0 did not hold,

<impl
k [f(!!m0; !!m)g would be
y
le-free. Any extension of this relation to a

total order would be <tra
e
t for a tra
e t that is not inst output-implementable,

102 CHAPTER 5. MSC AND COMMUNICATION MODELS

and thus not inst2-implementable. In the se
ond
ase we have !!m <impl
k ?m <impl

k

!m0 <impl
k !!m0.

� If there is at least one output event !m00 su
h that !m <impl
k !m00 <impl

k !m0, then,

using the indu
tion hypothesis, we have !!m <impl
k !!m00 <impl

k !!m0.

For the third
ase a similar reasoning gives ei <
impl
k ei+1. Thus, in all
ases we obtain

ei <
impl
k ei+1 and therefore also e <impl

k e0 whi
h was to be proven.

Se
ond, suppose that <i2
k=<

impl
k . Let t be an impl-tra
e of k, and let m;m0 2 M

with from(m) = from(m0). We have to prove that !m <tra
e
t !m0)!!m <tra
e

t !!m0 for an
arbitrary 3-tra
e t of k.

!m <tra
e
t !m0 implies !m <impl

k !m0. Then, by the de�nition of <i2, we have !!m <i2
k

!!m0. Sin
e we assumed that <i2
k=<

impl
k we also have !!m <impl

k !!m0, and therefore
!!m <tra
e

t !!m0.

The proof that to(m) = to(m0)) (?m <impl
k ?m0 ,!!m <impl!!m0) is analogous,

and taken together we
an
on
lude that k is inst2s-implementable. �

In the following theorem we list the
hara
terisations for implementability we have
given in this
hapter and we add
hara
terisations for the implementabilities not yet

hara
terised. An overview is presented in Figure 5.17.

Theorem 42

1. An MSC k is nobufw-implementable if and only if <w
k is
y
le-free.

2. An MSC k is nobufs-implementable if and only if it has exa
tly one tra
e, and
that tra
e is nobuf-implementable.

3. An MSC k is globals-implementable if and only if for ea
h pair of messages
m and m0 either both !m <ms

k !m0 and ?m <ms

k ?m0, or both !m0 <ms

k !m and
?m0 <ms

k ?m hold.

4. An MSC k is globalw-implementable if and only if <g
k is
y
le-free.

5. An MSC k is inst outs-implementable if and only if <io
k=<

ms

k .

6. An MSC k is inst ins-implementable if and only if <ii
k=<

ms

k .

7. An MSC k is inst2s-implementable if and only if <i2
k=<

impl
k .

8. An MSC k is instw-implementable if and only if <io
k is
y
le-free.

9. For any tra
e t of an MSC k, k is pair-implementable if and only if t is pair-im-
plementable.

10. An MSC k is always msg-implementable.

Proof

1. See Lemma 37.

5.5. CHARACTERISATIONS 103

����

����

����

��������

���� ���� ����

����

����

globals

inst insinst outs

globalwinst2s

instw

pair

msg

nobufs there is only one tra
e, and
it is nobuf-implementable

<
w
k
y
le-free

nobufw

<
ii
k=<

ms

k

(!m <ms

k !m0

^?m <ms

k ?m0)

(!m0
<

ms

k !m^?m0

<
ms

k ?m)

8m;m0

_

<
io
k=<

ms

k

<
i2
k=<

impl
k

<
io
k
y
le-free

implementable
a tra
e is pair{

always

<
g
k
y
le-free

Figure 5.17: Overview.

104 CHAPTER 5. MSC AND COMMUNICATION MODELS

2. If the MSC k is nobufs-implementable it has one tra
e be
ause <ms

k is a total

order (Lemma 38).

3. See Lemma 40.

4. See Lemma 32.

5. See Lemma 30.

6. See Lemma 30.

7. See Lemma 41.

8. See Lemma 24.

9. First, if k is pair-implementable, it is pairs-implementable and thus every tra
e
t of k is pair-implementable. Se
ond, if a randomly
hosen tra
e t is pair-imple-
mentable, then k is pairw-implementable, and thus also pairs-implementable.

10. See Lemma 29.

�

5.6 Related Work

In this se
tion we will
ompare our
on
lusions with those found in related literature.
In [CBMT96℄ Charron-Bost et al. dis
uss three di�erent implementations for MSC-

like diagrams: RSC (Realizable with Syn
hronous Communi
ation), CO (Causally
Ordered) and FIFO . They also de�ne A (asyn
hronous), but this is (just like msg

in our hierar
hy) used to denote the set of all allowable diagrams, not some subset.
They �nd that there is a stri
t ordering RSC � CO � FIFO � A. In the following,
we will
ompare their ordering with our work.

Theorem 43 The implementations that in [CBMT96℄ are named RSC and FIFO
are equivalent to the implementations nobufw, and pair. The implementation CO is
stri
tly between the implementations instw and pair.

Proof

� RSC -nobufw: De�nition 3.6 in [CBMT96℄ states, after translating it into our
terminology, that a
omputation is RSC if and only if there is a tra
e t for whi
h
for ea
h m 2 M we have that the set fx 2 C j!m <tra
e

t x <tra
e
t ?mg is empty,

whi
h is equivalent to the de�nition that is obtained by
ombining Lemma 17
and De�nition 21.

� FIFO-pair: The de�nition for FIFO in [CBMT96℄ (De�nition 3.3) translates
to (by rewriting the terminology of Charron-Bost et al. in ours): !m <ms

k

!m0 ^ from(m) = from(m0) ^ to(m) = to(m0))?m <ms

k ?m0, or from(m) =

from(m0) ^ to(m) = to(m0)) (!m <ms

k !m0)?m <ms

k ?m0), whi
h is seen to

5.6. RELATED WORK 105

be equivalent to the de�nition in Lemma 17 on
e it is realised that (for the
basi
 MSCs
onsidered here) to(m) = to(m0)) (?m <ms

k ?m0_?m0 <ms

k ?m)

and from(m) = from(m0)) (!m <ms

k !m0_ !m0 <ms

k !m).

� CO : That the
lass of pair-implementable MSCs is stri
tly greater than that of
CO-implementable MSCs is shown in [CBMT96℄. Remains to be shown that
the
lass of CO-implementable MSCs is stri
tly greater than that of instw-im-
plementable MSCs. The de�nition of CO as given in [CBMT96℄ (de�nition 3.4)

an be translated to to(m) = to(m0)^!m <ms

k !m0)?m <ms

k ?m0. An example of

an MSC that is CO-implementable, but not instw-implementable, is the MSC
lobster in Figure 5.18. It is CO-implementable, be
ause there is no pair of
messages with to(m) = to(m0) where !m and !m0 are ordered, but it is not
instw-implementable, as
an for example be seen by the fa
t that !a <ms
!
 and
!b <ms
!d, and thus ?a <io?
 and ?b <io?d, while at the same time we
learly
have ?
 <io?b and ?d <io?a, so <io
ontains a
y
le.

It remains to be proven that ea
h instw-implementable MSC is CO-implement-
able. We do this using
ontraposition, so let k be an MSC that is not CO-imple-
mentable. We then have that there are messages with !m <ms

k !m0, ?m 6<ms

k ?m0

and to(m) = to(m0). From the last two we
an derive that ?m0 <ms
?m, and
thus we have both ?m <io?m0 (be
ause !m <ms

k !m0) and ?m0 <io?m (be
ause
?m0 <ms
?m), so the MSC k is not instw-implementable.

�

i j k l

a b

 d

ms
 lobster

Figure 5.18: MSC to distinguish the implementation models: CO .

Another paper in whi
h di�erent
ommuni
ation models for MSC have been stud-
ied, is [AHP96℄. Although some of their
ommuni
ation models are similar to some of
ours, the works
annot be dire
tly
ompared, be
ause of the di�erent fo
us. Whereas

106 CHAPTER 5. MSC AND COMMUNICATION MODELS

our question is whether an MSC
an be implemented in a given
ommuni
ation model,
their question is whether an MSC will run as expe
ted if it is implemented on a given

ommuni
ation model.

Their main point of fo
us is the problem of ra
e
onditions, in whi
h two messages
whi
h might be supposed by the user to be re
eived in the ordering pres
ribed by
the MSC, might in reality arrive in the reverse order. The implementation model
in
uen
es both whi
h messages the user assumes to arrive in the
orre
t order and
whi
h messages a
tually do.

This line of thought has been extended in [RKG97℄. There a set of
hannels
is assumed, whi
h
an be any implementation model between pair and msg (other
possible models
an be inserted easily, but were not looked at be
ause of the spe
i�

subje
t of the paper, namely
hara
terization of an MSC in SDL). Then, for ea
h
message it is
he
ked whi
h messages on the same
hannel that have to be dealt with
later may have been re
eived earlier.

5.7 Con
luding Remarks and Future Resear
h

We have
onsidered implementation models for asyn
hronous
ommuni
ation in Mes-
sage Sequen
e Chart. These models
onsist of FIFO bu�ers for the sending and
re
eption of messages. By varying the lo
ality of the bu�ers we have arrived, in a
systemati
 way, at 25 models for
ommuni
ation. With respe
t to tra
es,
onsisting
of putting a message into a bu�er and removing a message from a bu�er, there are
seven di�erent models.

By lifting this implementability notion from tra
es to Message Sequen
e Charts
in two ways, strong and weak, we obtain fourteen models. After identi�
ation, ten
essentially di�erent models on the level of Message Sequen
e Charts remain.

For de�ning the models we have used the notion of impl-tra
es; these are a natural
extension of normal MSC-tra
es if a message
an pass two bu�ers on its way from
sour
e to destination.

In this
hapter, we have only
onsidered Basi
 Message Sequen
e Charts. An
interesting question is how to transfer the notions and properties de�ned for this
simple language to the
omplete language MSC. As many of our theorems rely on the
fa
t that the events on an instan
e are totally ordered, an extension to MSC with more
sophisti
ated ordering me
hanisms (e.g.,
oregion and
ausal ordering) will imply a
revision of the hierar
hy. Another interesting question is whether the implementation
properties are preserved under
omposition by means of the operators of MSC.

Furthermore, we have restri
ted ourselves to the treatment of ar
hite
tures in
whi
h ea
h message has exa
tly one possible
ommuni
ation path and where ea
h
su
h path
ontains at most two bu�ers. The extension to more
exible ar
hite
tures
is non-trivial and is expe
ted to lead to an extension of the hierar
hy.

An important assumption that we have made in this
hapter, whi
h is often not
true in real-life examples, is the assumption of homogeneity, that is, the assumption
that all instan
es have exa
tly the same type of bu�ers. In real life it may for example
well be the
ase, that there is more than one
hannel between two instan
es, but
some
hannels are still used for more than one message, thus
reating an ar
hite
ture

5.7. CONCLUDING REMARKS AND FUTURE RESEARCH 107

somewhere between our `one bu�er per pair' and `one bu�er per message'. This
subje
t has been given some attention in [AHP96℄ and [RKG97℄.

Finally, our assumption of in�nite FIFO bu�ers may be relaxed, allowing other
types of bu�ers and bu�ers with �nite
apa
ity.

The results obtained in this
hapter form a solid base for several appli
ations.
First, they allow us to dis
uss the relation between di�erent variants of MSC, su
h as
Interworkings [MvWW93℄. Interworkings presuppose a syn
hronous
ommuni
ation
me
hanism. An Interworking
an be
onsidered as the restri
tion of the semanti
s of
an MSC to only the nobuf-implementable tra
es. Thus, an MSC
an be interpreted
as an Interworking if and only if there is at least one su
h tra
e, i.e., the MSC is
nobufw-implementable. This implies that using the theory in this
hapter, a formal
semanti
s of Interworkings
an be derived in a systemati
 way from the semanti
s of
MSC. We also envisage tool-oriented appli
ations. One
ould for example
onsider a
tool in whi
h a user
an sele
t a
ommuni
ation model, draw an MSC and invoke an
algorithm to
he
k whether the MSC is implementable with respe
t to the sele
ted
model. Alternatively, the user
an provide an MSC and use a tool to determine the
minimal ar
hite
ture, a

ording to our hierar
hy, whi
h is needed for implementation.

Often, a user is interested in the question whether all tra
es of his MSC are im-
plementable with respe
t to a
ertain ar
hite
ture. We
an also envisage two possible
uses relying on the implementability of a single tra
e. First, MSCs are often used
to display one single tra
e, for example if it is the result of a simulation run. In
this
ase, the question is not whether the MSC is strongly or weakly implementable,
but whether the implied tra
e is implementable (as de�ned in Se
tion 5.3). Se
ond,
given an MSC, a user may want to know if at least one tra
e is implementable and
if so, whi
h tra
e that is. He is interested in a witness. Both appli
ations
an easily
be derived from the results on weak implementability. The algorithms (see below)

an easily be modi�ed to
he
k implementability of a given tra
e and to produ
e a
witness.

A more involved appli
ation would be to use a sele
ted
ommuni
ation model to
redu
e the set of tra
es de�ned by a given MSC to only those tra
es that are imple-
mentable on the given model. In this way, the semanti
s of an MSC would be relative
to some sele
ted model.

For most of these appli
ations
omputer support would be useful. Based upon the
de�nitions presented in this
hapter, it is feasible to derive eÆ
ient algorithms. All
models in the weak spe
trum
an be
hara
terised in terms of the
y
le-freeness of an
extended ordering relation, see Theorem 42. An example of su
h a
hara
terisation
is given in Theorem 24. There it is stated that an MSC k is inst outw-implement-
able i� the ordering <io

k (whi
h is an extension of <ms

k) is
y
le-free. Thus
he
king

whether an MSC is inst outw-implementable boils down to
he
king
y
le-freeness
of this relation. This immediately gives a wide range of eÆ
ient implementations for

he
king
lass-membership as many algorithms are known in literature for determining
whether a given ordering is
y
le-free. For the strong spe
trum
hara
terisations are
given as well.

Note that the MSCs that distinguish between the di�erent models are surprisingly
simple. This indi
ates that the di�eren
es between the
lasses will appear not only in
theory, but also in pra
ti
e. Besides that, for these distinguishing MSCs, it is not easy

108 CHAPTER 5. MSC AND COMMUNICATION MODELS

to indi
ate at a glan
e to whi
h
lass they do or do not belong. This also supports
our view that me
hani
al support for determining whether a given Message Sequen
e
Chart belongs to a given
lass is ne
essary.

Chapter 6

Data in MSC

6.1 Introdu
tion and History

When the new MSC2000 standard [IT00℄ was introdu
ed, one of the additions to the
language was the in
orporation of data. In this
hapter, we will look at the history
of this aspe
t of MSC, and the way in whi
h data languages and MSCs are a
tually

ombined, and we will try to give a semanti
s for data in MSC.

The �rst attempt to formally
ombine MSC with a data language was made by
Grabowski, Hogrefe, Nussbaumer and Spi
higer, who
ombined MSC and ASN.1
[GHNS95℄. Baker and Jervis next presented a more generally usable data language
[BJ97℄. Starting from the work of Baker and Jervis, Feijs and Mauw opted for a
more general approa
h. Instead of de�ning one standard language to go along with
MSC, they introdu
ed a framework in whi
h a large range of languages
ould be de-
s
ribed, thus for ea
h of these giving the interfa
e of the language with MSC [FM98℄.
This method of in
orporating data has several advantages, whi
h will be dis
ussed in
Se
tion 6.2.

Although the MSC standardisation
ommunity agreed with this prin
iple, there
was a strong wish to extend the work of Feijs and Mauw, more spe
i�
ally to introdu
e
the possibility of dynami
 data. In the original framework, variables
ould only be
used as pla
eholders for an unknown value. The semanti
s would then be that any
of the possible values for the variable
ould o

ur. There was a wish to have the
possibility to assign values to a variable whi
h then
ould be used later in the MSC.
Feijs and Mauw, together with the
urrent author, investigated the possibilities and
problems of in
orporating this possibility in a se
ond paper [EFM99℄. Partially based
on this paper, in an ITU experts meeting at the Eindhoven University of Te
hnology,
the subje
t of data was then in
orporated in the MSC2000 standard [IT00℄.

Another extension of the MSC language that is
losely related to data, is the
subje
t of guards. In the MSC'92 and MSC'96 standards,
onditions were in
luded,
but did not have any formal meaning [IT98, Ren99℄, ex
ept for some stati
 restri
tions
on HMSCs [Ren96℄. In pra
ti
e they were often used to
ombine MSCs { a �nal

ondition was given to some MSCs, an initial
ondition to others, and two MSCs
ould
be
ombined (only) if the �nal
ondition of the �rst MSC
orresponded to the initial

109

110 CHAPTER 6. DATA IN MSC

ondition of the se
ond [RGG96a℄. This feature was originally intended to be in
luded
in the MSC language, but it was kept out of the semanti
s to the MSC'92 language
be
ause its meaning was felt to be insuÆ
iently
lear [MR95℄. Nevertheless, some
attempts have been made to provide a semanti
s for
onditions [LL94, GHRW98℄.
The MSC standardisation
ommunity felt that it would be a good idea to standardise
and extend this feature, by de�ning some
onditions to a
t as guards, meaning that
one
an only pass the
ondition if their text is in some sense `true'. Others would de�ne
a kind of state for the MSC, whi
h
ould then be used by the guarding
onditions.
Obviously, the text in a guarding
ondition would often be some boolean expression
in a data language, and thus this subje
t was seen as
losely related to that of data.

In this
hapter we will �rst give an overview of the problems and
hoi
es regarding
data that were indi
ated in [EFM99℄, together with the
hoi
es that have been made
on these points in the �nal MSC2000 standard, sometimes with an indi
ation of the
reasons for these
hoi
es. We will also show some of the problems that o

urred espe-

ially on the subje
t of
onditions and guards, and how these led to the a
tual stati

requirements on
onditions that
an be found in the standard. By showing whi
h

hoi
es have been made, and why, the language hopefully be
omes more transparent.
Also, the problems that have o

urred in this extension of the language may be similar
to problems that o

ur later.

After this part, we will look at the interfa
e as it was de�ned in [IT00℄, and make
an attempt to de�ne a formal semanti
s for MSC with data.

6.2 Reasons for Parameterisation

As was �rst argued by Feijs and Mauw [FM98℄, introdu
ing a single data language
in MSC has several adverse
onsequen
es, most or all of whi
h
an be over
ome by
parameterising MSC with a data language instead. Four su
h advantages of parame-
terisation
an be distinguished:

1. Introdu
ing a spe
i�
 data language to MSC would inevitably be problemati

for
ertain groups of users who are more used to di�erent languages or di�erent
types of languages. If the data language is parameterised instead, all of these
groups
an use their own preferred language (as long as the language keeps to
some general restri
tions).

2. In a parameterised model, MSC and the data language both get their own, well
des
ribed domains. Be
ause of this, the data language does not in
uen
e the
non-data parts of the MSC language, or vi
e versa.

3. If a spe
i�
 data language is added to MSC, all its semanti
 problems will be-

ome problems of the MSC language as well. Although parametrisation prob-
ably does not
ompletely solve this problem, it at least greatly diminishes the
problem by looking only at the interfa
e of the data language with MSC, and
not
onsidering the underlying aspe
ts of the language itself.

4. If a spe
i�
 data language were
hosen, the MSC
ommunity would burden itself
with the task of maintenan
e of whi
hever data language would be
hosen. If

6.3. BASIC PRINCIPLES 111

MSC does not
ouple itself to a spe
i�
 data language, there is no reason for
su
h an enterprise.

5. If through time, it was felt that another data language would have been a better

hoi
e, the language would have to be rewritten
ompletely. This
ould also lead
to a situation where several di�erent versions of the language would exist, one
for ea
h data language. This situation for example happened with SDL, where
there are now two versions, an original one using an algebrai
 spe
i�
ation
languages, and a newer one that uses ASN.1 [Ste90℄, whi
h is
onsidered easier
to use.

This parametrisation takes pla
e through the de�nition of an interfa
e, that
on-
tains all aspe
ts of the data language that are of importan
e for MSC. Later in this

hapter, we will show what interfa
e has been de�ned in the standard [IT00℄, and in
what way this
ould be used to provide a semanti
s for MSC with data. Before doing
that, we will �rst dis
uss the
hoi
es that have been made.

6.3 Basi
 Prin
iples

During the dis
ussions on the new standard, the work has been guided by a number
of prin
iples. In some
ases these prin
iples
lashed, and problems arose. Here, some
diÆ
ult
hoi
es had to be made, as we will see later.

In the subje
t at hand, the following prin
iples are of importan
e:

1. Ba
kward Compatibility

Old MSCs, made a

ording to the MSC'96 or MSC'92 standard, should still be
usable under the new MSC2000 standard. Within the standardisation
ommit-
tee a `loose' de�nition of ba
kward
ompatibility has been followed: it might
be allowed to have the ne
essity to
hange a Message Sequen
e Chart made
a

ording to the MSC'96 standard, as long as there were only small, synta
ti

hanges to be made. However, large
hanges, or
hanges that
ould not be made
on a synta
ti
 level were not
onsidered a

eptable.

2. Corresponden
e to Existing Pra
ti
e

Several of the subje
ts that are introdu
ed, and this
ertainly holds for data, are
already being used in existing pra
ti
e. The standardisation
ommittee wanted
to link with this existing pra
ti
e { the new MSC standard should in
lude as
mu
h as possible of this existing pra
ti
e. Where possible, what is already done
unoÆ
ially should be made oÆ
ial.

3. Semanti
 Clarity and Simpli
ity

When something is introdu
ed, its semanti
s should be
lear. That does not
mean that the formal semanti
s should immediately be added (at the moment
there are no plans known to us for a
omplete formal semanti
s of MSC2000),
but it does mean that there should be a good and
omplete intuition of what
those semanti
s should look like.

112 CHAPTER 6. DATA IN MSC

The semanti
s should not only be
lear, they should also be simple. Creating the
semanti
s should not be unduly hard, and it should be relatively straightforward,
on
e the semanti
s have been de�ned, to de
ide what the semanti
s of a given
MSC are. This is of importan
e both to people working with the language on
a theoreti
al level and to tool builders, who want to in
lude fun
tionality su
h
as the simulation of the behaviour of an MSC, whi
h
an only be done if the
semanti
s are not too
omplex.

4. Intuitive Semanti
s

In line with the se
ond prin
iple, the semanti
s should be intuitive for the user.
Many MSCs, even though they in
lude not yet oÆ
ially implemented features,
have a meaning that is intuitively
lear. The semanti
s should
onform to this
intuitive meaning.

6.4 Choi
es

A number of
hoi
es were mentioned in [EFM99℄. There, no a
tual
hoi
es were made,
but rather, the advantages and disadvantages of the various
hoi
es were presented,
to allow the standardisation
ommittee to make a
hoi
e themselves. In this se
tion,
we will look at these
hoi
es on
e more with some dis
ussion of whi
h
hoi
e was
�nally made, and why.

6.4.1 Stati
 vs. Dynami
 Nature of a Variable

The �rst
hoi
e was whether the data would be stati
, dynami
, or somewhere in
between. In [EFM99℄, four possibilities were distinguished, whi
h, from most stati

to most dynami
, were
alled:

1. fully stati
 variables

2. parameter variables

3. single time assignable variables

4. multiple times assignable variables

Fully stati
 variables: In a fully stati
 environment, the values of variables are
either
ompletely pre-determined, or not de�ned at all. In the latter
ase the semanti
s
is taken to
onsist of all possible behaviours for any valuation of the various variables.
This is the situation that was
overed by [FM98℄. This way of in
luding data
auses
the fewest problems. However, the pri
e that has to be paid is that it also provides
the least expressive power.

Parameter variables: Parameter variables play a role within HMSC or MSC
referen
e expressions, the idea being that one provides a value for one or more variables
while
alling the referen
e MSC. In
alling the MSC, the values of some variables are
given as parameters to the referen
e. An example of how this works is shown in
Figure 6.1.

6.4. CHOICES 113

i j

sendmessage(1)

sendmessage(42)

ms
 sending

i j

s(p)

ms
 sendmessage(p)

Figure 6.1: Parametri
 Data

The MSC sending
alls the MSC sendmessage twi
e, but the �rst time with
sendmessage(1) and the se
ond time with sendmessage(42). The e�e
t of this, is
that the MSC sendmessage is used with the value of 1 for p the �rst time, and the
value of 42 for p the se
ond time. Thus, �rst the message s(1) is sent and re
eived,
then s(42). Compared to the next two options with assignable variables, Parametri

data is semanti
ally less
ompli
ated, be
ause it is easier to
onne
t the o

uren
es of
variables with the pla
e where they get their values. On the other hand, it is also less
powerful. Changing the value of a variable,
ertainly where the new value depends
on the old one, is diÆ
ult and
ounter-intuitive, if not downright impossible, when
using parametri
 data. Of
ourse introdu
ing both options results in an even greater
power of expression.

Single time assignable variables: Here a variable
an be assigned at any pla
e
in the MSC, but on
e it is assigned, it
annot get a new value. So ea
h time a variable
is a

essed, it will still have the same value. This will solve some of the problems with
variables that are shown below, be
ause these typi
ally o

ur when the value of a
variable is
hanged before it is used, or between several uses of the same variable.
However, to a
tually make this solution work, one would also have to take steps to
make the usage of a variable before its assignment impossible, otherwise one still has
to deal with two di�erent values { an indeterminate one before it is assigned, and a
determinate one afterwards.

Multiple times assignable variables: Here, a variable
an at any time be given
a value, and this value
an be
hanged later. This
hoi
e o�ers most possibilities for

114 CHAPTER 6. DATA IN MSC

the user, but at the same time also
ompli
ates the language more than other options.
A �rst problem is shown in Figure 6.2.

i j

x:=1 x:=2

m(x)

ms
 ra
e

Figure 6.2: Problemati
 MSC (simple
ase)

What message is to be sent here? m(1) or m(2)? Or does it depend on the order
in whi
h the assignments happen? And what if the
hange of the value of x from 1 to
2 happens between sending and re
eiving of the message? Will we have to remember
the old value of x?

Despite these problems, whi
h were mentioned in [EFM99℄, it was nevertheless
felt that multiple-times assignable variables were needed, be
ause users would like to
have them. To keep this type of `ra
e
onditions' manageable, it was de
ided to have
one spe
i�
 instan
e should a
t as the `owner' of a variable. The variable
ould only
be
hanged on this instan
e.

The �rst idea was that the usage of su
h a variable would also be restri
ted to
that same instan
e. No other instan
e
ould use the value of the variable. However,
this proved too restri
tive. From a usage point of view, it seemed ne
essary that an
MSC like the one in Figure 6.3
ould be drawn.

The idea here, is that at one point the value of x is de
ided, whi
h then through
a series of messages is sent to another part of the system des
ribed by the MSC. To
enable this, it was de
ided that the value of variables of one instan
e
ould be used
at another instan
e, provided that the value had been sent to that instant through
messages. Thus, the value of a variable on an instan
e other than the owner is
hanged
only when this instan
e re
eives the value through some message. Not only does this
make the semanti
s more intuitive than one in whi
h a
hange in value of a variable
is `magi
ally'
opied to all instan
es of the MSC, it also is more in line with the basi

semanti
 ideas behind MSC: any transfer of information from one instan
e to another
should be expli
itly shown. Introdu
tion of a shared variable paradigm goes against
the spirit of MSC.

Be
ause their added value in expressiveness of the language seemed useful, while
they did not add more problems than the ones that already had to be solved for the

6.4. CHOICES 115

sender med1 med2 re
eiver

x:=0

m(x)

n(x)

p(x)

ms
 transmission

Figure 6.3: Transmission of variables

assignable variables, parametri
 data have also been in
luded in the MSC language.
The variables that are de�ned in this way are
alled `stati
 variables'. That is, stati

variables are variables that are given as a parameter to an MSC, and whose value is
determined when the MSC is
alled.

6.4.2 Binding of Variables

Another matter was, how these variables
ould
hange their values. For stati
 vari-
ables this is obvious: They re
eive their value be
ause the MSC is
alled with a
ertain
a
tual parameter list. For dynami
 variables, we have to distinguish between owning
and not-owning instan
es.

An instan
e that is not the owning instan
e of the variable re
eives a new value
for the variable when a message arrives that
ontains that variable in its parameter
list. The new value of the variable, as seen by that instan
e, will be the value the
variable had on the sending instan
e at the time of sending.

For the owning instan
e, two major ways of giving values to variables were dis-

ussed in [EFM99℄. Both have been in
luded in the MSC language. The most obvious
is through a dire
t binding. This o

urs when a text like x := 2 is found inside an
a
tion box. A se
ond way is the propagation of a message through a gate. This is
best explained with an example, see Figure 6.4.

The in
oming message here gives x the value of 3. Of
ourse this
an only be
done if x is a variable of the re
eiver. In all of these
ases, the outgoing message (the
message in the MSC `send') should
ontain some expression as one of its parameters,
while the in
oming message (the same message in the MSC `re
eive') should
ontain
a variable to be bound. This
an also be done with MSC referen
e expressions, see
Figure 6.5.

An instan
e that does not own the variable,
hanges its (lo
al) value when it

116 CHAPTER 6. DATA IN MSC

sender

m(3)

ms
 send

re
eiver

m(x)

ms
 re
eive

Figure 6.4: Assignment through gated messages

sender re
eiver

m(3)
re
eive

ms
 send

re
eiver

m(x)

ms
 re
eive

Figure 6.5: Variable assignment for MSC referen
e expressions

re
eives a message that has that variable in one of its parameter expressions. It is
then
hanged to the value that this variable has on the sending instan
e. Although
this has been designed to
orrespond to existing pra
ti
e, it
an still lead to results
that some may regard
ounter-intuitive, as
an be seen in Figure 6.6.

Assume that x is a variable owned by instan
e i.
Intuitively, one might expe
t that k always sends ba
k a
k(2), be
ause 2 is the

latest value of x, and k has already re
eived that value. However, k does not `know'
whi
h is the latest value, so it will always assume that x has the last value that it
has re
eived. Thus, if n(1) arrives at k after m0(2), a
k(1) rather than a
k(2) will be
sent.

6.4.3 Unde�ned Variables

Another problem raised in [EFM99℄ was what one had to do with variables being used
before they have any value assigned to them. The main
hoi
es possible were:

1. Disallow this by stati
 rules

6.4. CHOICES 117

i j k

x:=1

m(x)

x:=2 n(x)

m'(x)

a
k(x)

ms
 alert

Figure 6.6: A
ounter-intuitive
ase

2. Regard it as a semanti
 deadlo
k

3. Regard all unde�ned variables as universally quanti�ed

4. Use default values for ea
h variable

All of these options have their drawba
ks (the �rst may be hard, the se
ond leads
to non-intuitive semanti
s, the third leads to an explosion of the number of possible
tra
es and the fourth extends the interfa
e with the data language by a default value
for ea
h domain, see [EFM99℄ for a more extensive dis
ussion). In MSC, the �rst
option has been
hosen (see [IT00℄, se
tion 5.4: In a de�ning MSC there must be no
tra
e through an MSC in whi
h a variable is referen
ed without being de�ned.)

6.4.4 S
ope of a Variable

A further point on whi
h di�erent
hoi
es
ould have been made, is in the de�nition
of the s
ope of a variable. That is, on
e a variable has been de
lared, on whi
h part of
the MSC
an it be used? This is the s
ope of that variable. S
opes might be nested,
in whi
h
ase the variables in the outer s
ope
an also be used in the inner s
ope,
unless a new de
laration of the same variable has taken pla
e. If a variable is used
in two di�erent s
opes, then the two uses of the variable have nothing in
ommon,
and they should be regarded as two di�erent variables that happen to share the same
name.

118 CHAPTER 6. DATA IN MSC

We
an distinguish two di�erent dimensions to the s
ope: Blo
k s
ope and ar
hi-
te
tural s
ope.

The blo
k s
ope of a variable is a separated (framed) part of an MSC where the
variable is de�ned. For most variables the blo
k s
ope has been
hosen to be the

omplete MSC do
ument; however for stati
 variables it
onsists only of a single
MSC.

Apart from this there is also the ar
hite
tural s
ope. This gives the lo
ality with
respe
t to the instan
es in an MSC. One
ould spe
ify that variables exist on only one
instan
e, or on all instan
es of the MSC. Possibilities in between, where a variable
is de�ned on a number of instan
es (for example, the instan
es that reside on one
pro
essor),
ould also be
onsidered, although it might be harder to �nd a syntax for
that option.

Again, this has been done di�erently for dynami
 and stati
 variables. Dynami

variables, as mentioned before, have a lo
al ar
hite
tural s
ope, although `
opies' of
the value of a variable may be present on other instan
es. On the other hand, stati

variables have global ar
hite
tural s
ope.

6.5 Guards

The largest problems with data were en
ountered when trying to introdu
e guards. In
the older versions of the MSC standard, MSC'92 [IT93℄ and MSC'96 [IT96℄,
onditions
had very little fun
tion. Semanti
ally, they had no meaning at all, ex
ept for stati
ally
forbidding some HMSCs (in MSC'96), and thus they formally were no more than

omments. However, in pra
ti
e
onditions were being used in a more fun
tional
manner, namely to
reate MSCs like those in Figures 6.7 through 6.9.

i j

ready

m

sending

ms
 try

Figure 6.7: Conditions as a
oupling me
hanism (1)

6.5. GUARDS 119

i j

sending

m

sending

ms
 retry

Figure 6.8: Conditions as a
oupling me
hanism (2)

The
onditions here fun
tion as a method to de
ide in whi
h order the MSCs are
gone through. More pre
isely, one may go from one MSC to another if, and only if,
the se
ond MSC starts with the same
ondition as the �rst ends with. Thus, after
�nishing MSC try, one
an go to retry or su

ess, and likewise after MSC retry, while
after MSC su

ess one
an only go to MSC try.

6.5.1 In
luding Guards in the Language

An attempt was made to formalise this method of using
onditions. Certain
onditions
would a
t as guards, others as de�ning
onditions. One
an only pass through a
guard if it is equal to the last de�ning
ondition that was en
ountered. The above
MSCs would then be
ome a
orre
t MSC when in
luded in an HMSC like the one in
Figure 6.10.

Of
ourse, the HMSC in Figure 6.10 is not very
lear. There are a number of paths
whi
h seem to be present from the HMSC des
ription, but are made impossible by the
guards. One would prefer to use an HMSC like the one in Figure 6.11, whi
h shows
the order in whi
h the parts of the HMSC are passed expli
itly. This is done by adding
a node for ea
h state, and
onne
ting the MSCs with the node
orresponding to ea
h
of its start and �nal state. However, with the MSCs given, the HMSCs of Figures 6.10
and 6.11 are semanti
ally equivalent { all additional
onne
tions in Figure 6.10 are
without e�e
t; they
annot a
tually be taken be
ause the states do not
oin
ide. To
minimize an HMSC by removing super
uous edges, su
h as the transformation from
Figure 6.10 into Figure 6.11, might be a useful task for tool support. The pro
ess is
similar to that whi
h is used in [Mei00℄ to
reate a so-
alled `
onne
tability diagram'.

120 CHAPTER 6. DATA IN MSC

i j

sending

a
k

ready

ms
 su

ess

Figure 6.9: Conditions as a
oupling me
hanism (3)

successretrytry

Figure 6.10: An HMSC for Figures 6.7 to 6.9

The
onditions at the bottom of the MSCs should be de�ning
onditions, and the

onditions at the top should be guards. To avoid any
onfusion about whi
h
onditions
are de�ning
onditions and whi
h are guards (
onfusion
ould for example arise when
a
ondition only
overs instan
es that have no events within the MSC), all guards have
the keyword `when' added to them. De�ning
onditions have no additional keyword.
Thus, in the above
ase, apart from adding the HMSC one should also
hange `ready'
and `sending' into 'when ready' and `when sending' in the
onditions at the tops of
the MSCs, while leaving the
onditions at the bottoms as they are.

When
ombining these guarding
onditions with data, the possibility arises to use
data expressions as guards. More pre
isely, if a data expression
an have boolean
values (true or false), it
ould be used as a guard, whi
h then
an only be passed if it
is true. In this way, behaviour that depends on the value of variables
an be des
ribed.

6.5. GUARDS 121

successretrytry

Figure 6.11: A more readable HMSC

An example is in Figure 6.12, where it is
he
ked whether a
ertain variable is zero.

6.5.2 Semanti
 Proposals

Unfortunately, this option also resulted in some semanti
 problems. Central question
was, at whi
h time the guard would be evaluated.

Figure 6.13 shows the problem. Suppose that this MSC starts with x := 1, and
after that the message m is sent and re
eived. Whi
h of the messages a and b (if any)

an then be sent? There existed two s
hools of thought, neither of whi
h in the end
prevailed. Instead, some kind of
ompromise was made, whi
h will be des
ribed in
Se
tion 6.5.3

The �rst s
hool of thought held to the prin
iple that one should look at the value
of the variable at the time the �rst instan
e is trying to pass the guard. In this
ase,
be
ause the �rst a
tion after the guard is either the sending of a or the sending of b,
the de
iding fa
tor is the value of the variable x at the time either a or b is sent. If
one of the messages is sent before x := 2 is exe
uted, it must be a. After x := 2 has
been exe
uted, only b
an be sent.

On the other hand, the se
ond s
hool of thought preferred a more synta
ti
 look
at the MSC. Be
ause the x := 2 is above the guard, and on the same instan
e, it
seems logi
al to regard it as happening before the guard, and thus in
uen
ing the

hoi
e. In this interpretation, only b
an be sent in this MSC.

The disagreement
an be des
ribed as a disagreement on the time and pla
e where
the guard is evaluated. In the �rst proposal, the guard is evaluated by the �rst instan
e
to do an a
tion after the guard, the prin
iple
ould be
alled `�rst past the post'. In
the se
ond proposal, the guard is evaluated by the instan
e that owns the variables
in the guard.

The arguments for the two proposals
ame from two of the prin
iples mentioned
before.

The �rst proposal was based on semanti
 simpli
ity. Adopting the se
ond proposal
would require that one �rst
al
ulates the full semanti
s of an MSC without looking
at the guard, then removes the tra
es that do not adhere
orre
tly to the guards
present. This would make it impossible to �nd out the next event in an MSC tra
e

122 CHAPTER 6. DATA IN MSC

i j

m(x)

when (x=0)

zero

when (x6=0)

nonzero

alt

ms
 zero-
he
k(x:natural)

Figure 6.12: Usage of data in guards

without �rst
al
ulating the
omplete semanti
s of the MSC. This makes any semanti

al
ulation extremely hard. It is also di�erent from the existing semanti
s of MSC,
in whi
h a deadlo
k does not have e�e
ts at earlier points in time. In one term, this
obje
tion
ould be
alled `ba
kward
ausality': What happens now is dependent on
what happens or
an happen at a later time.

The se
ond proposal was based on intuition. This view, whi
h is more whole-
system-based, is
loser to the intuition of the users. Thus, having a di�erent semanti
s
will lead to MSCs that mean something di�erent from what they are thought to mean.

Apart from the la
k of intuition (for the �rst proposal), and the
ompli
ated
semanti
s (for the se
ond proposal), there are also some more profound problems,

ertainly with the se
ond proposal. For some MSCs this proposal provides no seman-
ti
s at all, be
ause guards have to be evaluated by instan
es that never pass them.
An example of these problems is in the MSC in Figure 6.14.

If we �rst look at the semanti
s of this MSC without guards, we see that one
possible tra
e is to start with x := 1, then send and re
eive m, then go through the
a-loop inde�nitely. Is this tra
e still a valid tra
e in the situation where guards are
present? Under the se
ond proposal we do not know: The guard should be evaluated
when the se
ond instan
e is at the relevant point in time { but in this tra
e the se
ond

6.5. GUARDS 123

i j

x:=1

m

x:=2

when (x=1)

a

when (x=2)

b

alt

ms
 problem example

Figure 6.13: Problems with data in guards

instan
e never does.

Both proposed semanti
s also lead to strange behaviours for some MSCs. The �rst
semanti
s gives for instan
e some unexpe
ted ordering requirements for the MSC in
Figure 6.15. Under the �rst semanti
s, instan
e i must defer sending message a until
instan
e j has done the a
tion x := 2. This thus leads to a syn
hronisation, or at least
to an extra ordering requirement, whi
h is not
lear in the syntax of the language,
and
ounter-intuitive.

For the se
ond proposal,
ausality
an go strange ways, for example in Figure 6.16.
In this MSC, instan
e i
an send message a if and only if j
hanges the value of x
to 1. If i sends out a message before j sets the value of x, i de
ides what
hoi
e j is
going to make. Again, this is a
onne
tion (
ausal rather than ordering in this
ase)
that is not obvious from the syntax of the MSC, as well as unwanted.

124 CHAPTER 6. DATA IN MSC

i j

x:=1

m

x:=2

when (x=1)

a

loop inf

m

when (x=2)

b

m'

alt

ms
 in
oop

Figure 6.14: An in�nite loop
ausing semanti
 un
larity

6.5. GUARDS 125

i j

x:=1

m

x:=2

when (x=2)

a

alt

ms
 order

Figure 6.15: Unexpe
ted ordering requirements

6.5.3 Stati
 Requirements as a Solution

Neither option seemed very attra
tive. Instead, one would like a semanti
s that is
intuitive from both the usage and the semanti
 point of view, rather than just one.
Instead of
hoosing one of the alternatives, it was preferred to restri
t the MSC
language. Only those MSCs where both interpretations provided the same result
would be allowed.

To see whi
h MSCs these are, we have to go ba
k to where we introdu
ed the two
proposed semanti
s. There it was said that their di�eren
e was in the time and pla
e
where the guard is evaluated. The �rst semanti
s evaluates the guard when the �rst
instan
e passes the guard (by performing some a
tion
oming after the guard), the
se
ond semanti
s when the owning instan
e of the variables goes through it.

The two semanti
s will provide the same result if the value of the guard does not

hange, or if they both evaluate it at the same time and pla
e. The evaluation of
a guard does not
hange if it does not
ontain any dynami
 variables. Thus, any
su
h guard is unproblemati
. If there are dynami
 variables involved, the evaluation
may be di�erent at di�erent points in time. Thus, in this
ase both semanti
s should
evaluate the guard at the same time. This is only the
ase if the owning instan
e of
the variables is the �rst to do an a
tion after the guard. An instan
e whi
h is able
to do the �rst a
tion after a guard is
alled a ready instan
e for that guard, and thus

126 CHAPTER 6. DATA IN MSC

i j

x:=1

x:=3

alt

when (x=1)

a

when (x=3)

b

alt

ms
 ba
kward
ausality

Figure 6.16: MSC with ba
kward
ausality

6.5. GUARDS 127

the following stati
 requirement was added to the language:

If a guard
ontains a data expression, then this expression must be of
type Boolean. If this expression furthermore
ontains dynami
 variables,
it may only
over a single instan
e, whi
h thus must be the only ready
instan
e of the s
ope.1

6.5.4 Non-Data Guards

Similar problems, where the truth value of a guard be
omes indeterminate,
an also
o

ur for guards without data, whi
h get their truth value from de�ning guards. The
problem o

urs in MSCs like the one in Figure 6.17.

i j

A

B

when A

m

when B

m'

alt

ms
 guards

Figure 6.17: Why not all de�ning
onditions a�e
t a guard

1The text in the published version [IT00℄ is slightly di�erent. The quoted text is taken from an
oÆ
ial
orre
tion to the published version. In this
orre
tion it is also made
lear that the restri
tion
that all ready instan
es must be
overed by the guard holds for all guards, not just for those with
data.

128 CHAPTER 6. DATA IN MSC

If one simply would have one state for ea
h instan
e, instan
e i would enter the
alt-expression in state A, while instan
e j would do so in state B, so they disagree
on whi
h of the alternatives has to be
hosen. This has been solved by allowing only

onditions on exa
tly the same instan
es to be referred to by the guard. The setting
of B is thus not of importan
e, and both instan
es here agree that the �rst alternative
has to be
hosen.

6.6 The Interfa
e

The
urrent MSC standard [IT00℄ de�nes the interfa
e between a data language and
MSC. It
onsists of a number of fun
tions whi
h de�ne the information that MSC
needs from the data language to de
ide the semanti
s of the
ombined language. We
will here give an overview of this interfa
e, for two reasons. In the �rst pla
e, the
interfa
e de�nition in [IT00℄ is often not very
lear, whi
h we hope will be done better
in this
hapter. In the se
ond pla
e, we have made some
hanges whi
h in
reased the

larity while not removing any appli
ability. In Se
tion 6.7, our new version of the
interfa
e will be used. Finally, while
reating the semanti
s, we found that there was
one fun
tion la
king in the interfa
e. This one has been added in this
hapter. All
the non-trivial di�eren
es between the Interfa
e de�ned here and the one from [IT00℄

an be found in 6.6.4.

The interfa
e
an be divided into two types of fun
tions: the stati
 fun
tions, whi
h
are used to
he
k whether a data expression is legal, and the dynami
 fun
tions, whi
h
are used to de�ne the a
tual semanti
 meaning of a data expression.

6.6.1 Example Language

In this
hapter, we will use a simpli�ed data language to explain the various parts of
the interfa
e. Note that this is just a simple language used as an example, this nor
any other data language is spe
i�
ally adapted for use in MSCs.

Our language will
onsist of:

� The data types of Naturals and Booleans,

� Variables x, y, z and x1; x2; : : : ,

� Constants 1; 2; 3; : : : , true and false, with the obvious meanings,

� Operators +, �, ^, _, : and =.

Furthermore, we will take the liberty of adding bra
kets where ne
essary, and
removing them where possible.

6.6.2 Stati
 Fun
tions

Before going into ea
h of the stati
 fun
tions in a bit more of detail, we will �rst give
an overview in the table below.

In the rest of this
hapter, we will use the following:

6.6. THE INTERFACE 129

� D 2 D is a data de�nition (that is, the data information part of an MSC
do
ument),

� Var is the set of all possible variables,

� V � Var is the set of all a
tual variables (not in
luding wild
ards),

� W � Var is the set of all a
tual wild
ards,

� t 2 T is a data type,

� ! �
 is the set of all pairs of a
tual variables and wild
ards with their data
types (thus,
 � Var� T , and (x; t) 2 ! for exa
tly one t if x 2 V [W and for
no t if x 62 V [W .

� � is the set of all possible strings of text that
an o

ur in an MSC.

A wild
ard in MSC is used to denote a random value. The di�eren
e with a
variable is, that a wild
ard
an have a di�erent value every time it is used, even
within one expression. For example, if is a wild
ard with type natural, then is any
natural, 2 � any even natural, and + any natural.

Fun
tion Type Usage
variable-
he
k �! Bool Che
ks whether �

1(�) is a variable.
data-de�nition-
he
k �! Bool Che
ks whether �

2(�) is a data de�nition.
typeref-
he
k D ! �! Bool Che
ks whether �

3D(�) is a type referen
e.
expression-
he
k (D �P(Omega))! Che
ks whether � is an

4D;!(�; t) (�� T)! Bool expression of a given type.
variable-equivalen
e ���! Bool Che
ks whether two

EqVar(�1; �2) variables are the same

To get a better idea of what these fun
tions do, we will show what they look
like for our example language. Note that our language is slightly overspe
i�ed: In
MSC, the types of variables, and whi
h variables and wild
ards a
tually
an exist, is
de�ned in the MSC rather than as an intrinsi
 part of the data language. For the

urrent
hapter, we will
hange our language de�nition by only spe
ifying that there
are variables or wild
ards of the forms p, q, r, x, y, z, , x1; : : : and p1; : : : , and that
the division of these identi�ers between variables and wild
ards, as well as their types,
are to be de�ned in the MSC do
ument header.

� The variable-
he
k predi
ate
1, whi
h de�nes whether a string � is parsed

orre
tly as a variable is true for any string of the abovementioned synta
ti

forms, false otherwise.

� Our language is relatively simple, and when used in
ombination with MSC will
not require any auxiliary data de�nition. Be
ause of this, the data-de�nition-

he
k predi
ate
2 will be false for any string. In more
ompli
ated languages

130 CHAPTER 6. DATA IN MSC

it
ould be used for the de�nition of non-standard data types, extra operators,
and other su
h additions.

� Only two strings will pass our type-referen
e-
he
k
3: the existing types `Nat-
ural' and `Boolean'. Any other string
annot be a type referen
e. Note however
that in more general
ases,
3 depends on the data de�nition { the data de�ni-
tion
ould in
lude the introdu
tion of new types (or even the removal of existing
ones).

� Next we get to
4.
4D;!(t; �) is true if and only if � is a
orre
t expression of
type t. For our example language this fun
tion
an be de�ned indu
tively as
follows:

{
4D;!(
; t) with
 a
onstant is true if and only if t � Natural and
 is a
natural
onstant, or t � Boolean and
 is a boolean
onstant.

{
4D;!(x; t), with x a variable or wild
ard, is true if and only if (x; t) 2 !.

{
4D;!(� + �; t) and
4D;!(� � �; t) are true if and only if t � Natural and

4D;!(�;Natural) =
4D;!(Natural; �) = True

{
4D;!(� ^ �; t) and
4D;!(� _ �; t) are true if and only if t � Boolean and

4D;!(�;Boolean) =
4D;!(Boolean; �) = True

{
4D;!(:�; t) is true if and only if t � Boolean and
4D;!(�;Boolean) = True

{
4D;!(� = �; t) is true if and only if t � Boolean and
4D;!(�;Natural) =

4D;!(�;Natural) = True

Note that normally in a language like our example language, one would have
used bra
kets to disambiguate the various expressions; for reasons of simpli
ity,
these have been omitted wherever this did not lead to ambiguity.

� Finally, EqVar for our language is su
h that that two variable names are equal
if and only if they are identi
al as strings. This will be true for many languages,
but not for all. EqVar might for example be used to spe
ify that a language is

ase-sensitive.

6.6.3 Dynami
 Fun
tions

Four fun
tions are required for the dynami
 semanti
s of MSC with data. Three of
these are introdu
ed to be able to manipulate strings on a synta
ti
 level, and are in
the �rst pla
e (but not only) meant for dealing with wild
ards
orre
tly. The last is a
semanti
 evaluation fun
tion. � will from now on stand for a string that is supposed
to be an expression. The set of su
h strings will be denoted �. Although not de�ned
in the standard, working out the semanti
s we found that a �fth fun
tion is ne
essary.

Below, x 2 Var is a variable, U is the semanti
 domain of the data language
(de�ned below), E : V ! U is a fun
tion that gives the
urrent value of ea
h variable,
and E the set of all su
h fun
tions.

6.6. THE INTERFACE 131

Fun
tion Type Usage
Variable
ounter D ! � Gives the variables

VarsD(�) ! P(Var) in a string �
Variable repla
ement D ! Repla
es a single o

urren
e

RepD(�; x; x
0) ��Var�Var! � of a variable in a string

New Variable D ! P(Var)! Var Provides a fresh variable
NewVarD(V)

Semanti
 Domain U (not appli
able) The set of all
semanti
 obje
ts

Semanti
 Evaluation D � E ! �! U Gives the semanti

EvalD;E(�) meaning of an expression

Semanti
 Range D ! T ! P(U) Gives the semanti

SemD(t) range of a type

We will now look at the various fun
tions just de�ned, to give an explanation of
what they are supposed to do, and an example of how they would or
ould look like
in our example language.

� The fun
tion Vars
he
ks whi
h variables (or wild
ards) appear in a given ex-
pression. For example, VarsD((x + y) � x) = fx; yg.

For our example language, Vars
an easily be de�ned indu
tively as follows:

{ For a
onstant
, VarsD(
) = ;.

{ For a variable x, VarsD(x) = fxg.

{ VarsD(�+ �) = VarsD(� � �) = VarsD(� ^ �) = VarsD(� _ �) = VarsD(� =
�) = VarsD(�) [VarsD(�)

{ VarsD(:�) = VarsD(�)

A de�nition of this type is possible for most languages, but in some
ases more

ompli
ated fun
tions are ne
essary { for example be
ause some variables are
`hidden' by an abbreviation, or be
ause something
an be a variable if de�ned
as su
h, but have another meaning in other
ases.

� The next fun
tion, Rep, substitutes a single o

urren
e of a variable by a given
other variable. For example, RepD((x+ y) � x; x; z) gives the result of repla
ing
one x in (x+y) �x by z, whi
h, depending on the exa
t de�nition of Rep, might
either be (z+y) �x or (x+y) � z. Note that (z+y) � z would not be an allowable
out
ome for this substitution, be
ause then two o

urren
es of x would have
been repla
ed.

For our example language, we will
hoose to have Rep always repla
e the �rst
o

uren
e of a variable, whi
h leads to:

{ RepD(
; x; y) for
 a
onstant is equal to
.

{ RepD(z; x; y) for z a variable is equal to y if x � z, and z otherwise.

132 CHAPTER 6. DATA IN MSC

{ RepD(� + �; x; y) equals RepD(�; x; y) + � if x 2 VarsD(�), and � +
RepD(�; x; y) otherwise.

{ Similar rules hold for the other operators �, ^, _, : and =.

The Rep fun
tion is used for two purposes: In the �rst pla
e to handle wild
ards
properly, and in the se
ond pla
e to disambiguate a situation where two stati

variables by the same name have been de�ned.

� NewVarD(V) basi
ally provides a new variable from Var, not yet in V . Of

ourse this is not always possible (just take V = Var), but in a
tual usage
V will always have a �nite number of variables, so NewVar needs only to be
de�ned in that
ase. If Var itself is in�nite, this is enough to ensure the possible
well-de�nedness of NewVar.

For our language, we
an de�ne NewVarD(V) for �nite sets V to be xn, with n
the smallest n su
h that xn 62 V .

� Finally, there is the a
tual semanti
 interfa
e. It
onsists of some semanti

domain U , and the fun
tion Eval, whi
h gives the semanti
 meaning of an ex-
pression. This meaning depends on the
urrent value of the variables, whi
h is
en
oded in the fun
tion E. As a stati
 semanti
 restri
tion one
ould spe
ify
that only those variables that a
tually o

ur in � (as de�ned through the fun
-
tion Vars) are allowed to in
uen
e the result. More formally, we should have
EvalD;E(�) = EvalD;E0(�) if E(x) = E0(x) for ea
h x 2 VarsD(�).

For our example language we have:

{ EvalD;E(
) for
 a
onstant equals the `natural' meaning of
.

{ EvalD;E(x) for x a variable equals V (x).

{ EvalD;E(�+�) equals the sum of EvalD;E(�) and EvalD;E(�), and similarly
for the other operators.

The Semanti
 Range fun
tion SemD(t) is ne
essary for the
orre
t handling of
wild
ards. It gives the
omplete semanti
 range of a data type, that is, all values
that
an be taken by variables of a given type. As su
h, it spe
i�es the values
that a wild
ard of that type
an have. For our example language, this fun
tion
is de�ned by SemD(Natural) = N, SemD(Boolean) = ftrue; falseg.

6.6.4 Changes in the Interfa
e

The interfa
e as it has been presented here, di�ers somewhat from the one in [IT00℄.
The di�eren
es, with justi�
ations, will be mentioned below.

� Compared to [IT00℄, we have removed some stati
 fun
tions. The reason for
that, is that some of the stati
 fun
tions de�ned above are the
ombination of
more than one fun
tion from [IT00℄.
2 and
3 both
ombine two fun
tions
from [IT00℄, where a well-formedness predi
ate is
he
ked �rst to see whether
a string
ould be a data de�nition or type referen
e, after whi
h a type-
he
k

6.7. SEMANTICS FOR DATA IN MSC 133

predi
ate
he
ks whether it a
tually is. These fun
tionalities have been
om-
bined into a single fun
tion in our version. The fun
tion
4 even
ombines three
fun
tions, be
ause [IT00℄
ontains both a general and a type-dependent type-

he
k. Only the latter has been kept { the former
an be derived by stating
that something is an expression if and only if for some type it is an expression
of that type.

� In [IT00℄, Vars also
ounts the number of o

urren
es of ea
h variable. For the
semanti
s this information is a
tually unne
essary. The semanti
s does some
extra work that would otherwise be unne
essary be
ause of the removal of this
information, but in general nevertheless looks better without it.

� In [IT00℄, Rep also
ontains among its arguments a number spe
ifying whi
h
o

urren
e of a variable has to be
hanged. Be
ause this information is not of
relevan
e for the semanti
s, it has been removed.

� The semanti
 domain U has been mentioned expli
itly, whereas in [IT00℄ it is
only de�ned impli
itly, by the de�nition of Eval.

� The fun
tion Sem, whi
h we found to be ne
essary for a
orre
t semanti
 han-
dling of wild
ards, has been added.

6.7 Semanti
s for Data in MSC

In this se
tion, we will give an indi
ation how data and guards
an be semanti
ally
added to MSC. To do so, we take the semanti
s for MSC'96 as found in the thesis
of Reniers [Ren99℄ (see se
tion 4.4 for a short introdu
tion) as a starting point, and
look how data
an be added and where it might
ause problems.

6.7.1 The State Variable 	

If we add data to the language, this is most easily done by adding a kind of `state
variable' 	, whi
h keeps tra
k of the relevant data information. In parti
ular, the
following information is kept:

� The data de�nition information D

� A set V of all variables that have been de�ned

� A set W of all wild
ards that have been de�ned

� The fun
tion d : V ! Bool whi
h spe
i�es whether a variable is dynami

� The fun
tion o : V ! I (I being the set of instan
es), giving the owning instan
e
for ea
h dynami
 variable

� The fun
tion t : V [W ! T (T being the set of types that are allowed), giving
the type of ea
h variable and wild
ard

134 CHAPTER 6. DATA IN MSC

� The fun
tions �i : V ! U [f?g, giving the lo
al value on the instan
e i of a
variable. The spe
ial value ? (? 62 U) is used if, as far as is `known' to a given
instan
e, no value has been given to a variable yet

� The fun
tion s : I�P(I)! P(�)[f?g, remembering the last de�ning
ondition
on a given set of instan
es that a given instan
e has met. A set of strings 2 P(�)
rather than a single string is used be
ause a number of possible states
an be
de�ned by a single
ondition.

The semanti
s of MSC, whi
h is
urrently de�ned on pro
ess algebra expressions,
must now be de�ned on the
ombination of these pro
ess algebra expressions and
these state variables.

At the start of an MSC do
ument, D, V , W , o and t are initialised in an obvious
way in the do
ument header. Furthermore, at this point d(x) = true for all x 2 V ,
�i(x) = ? for all x 2 V; i 2 I , and s(i; J) = ? for ea
h instan
e i and set of instan
es
J .

6.7.2 Lo
al A
tions

The basi
 use for data is simple. Every time an expression is en
ountered, it should
be repla
ed by its meaning. We will formalise this, �rst for expressions � whi
h do not

ontain wild
ards. The more
ompli
ated subje
ts, su
h as wild
ards and messages,
will be dealt with later.

A restri
tion to su
h a usage is that ea
h variable x has to be de�ned on the
instan
e on whi
h the event takes pla
e of whi
h the expression is a part, that is
�i(x) 6= ?. This will have to be
he
ked dynami
ally, although it fun
tions in the same
way as a stati
 restri
tion: MSCs for whi
h this
ondition is not true are
onsidered
illegal. If the expression is not
onne
ted to a spe
i�
 event, it is not allowed to

ontain any dynami
 variables.

For ea
h a
tion a that
ontains an expression without wild
ards, if under the exist-
ing (MSC'96) semanti
s the step x

a
! y (here x and y are pro
ess algebra expressions,

and a is the pro
ess algebra event
orresponding to the a
tion a) is possible, then

under the semanti
s with data the step (x;)
EvalD;�i

(a)
! (y;) is possible, where i

is the instan
e on whi
h a takes pla
e, and EvalD;�i(a) is found by repla
ing ea
h
expression � in a by EvalD;�i(�).

These issues get more
ompli
ated when wild
ards are used. If an expression
does
ontain one or more wild
ards, it should be evaluated for any possible value of
these wild
ards. Furthermore, if the same wild
ard is used several times, it should be
possible to instantiate it with di�erent values ea
h time. For the latter purpose, we
�rst make ea
h o

urren
e of a wild
ard unique, in the following way:

Let � be an expression, and let T 0 be some (�nite) set of variable-type pairs (we
will see later what the fun
tion of the latter is). We de�ne wf(�; T 0) indu
tively as
follows (the de�nition is not
omplete, be
ause it is not spe
i�ed whi
h wild
ard has
to be
hosen at ea
h step; however, the result is valid whi
hever
hoi
e is made).

� If � does not
ontain any wild
ards (that is, V arsD(�)[W = ;), then wf(�; T 0) =
(�; T 0)

6.7. SEMANTICS FOR DATA IN MSC 135

� Otherwise,
hoose any wild
ard x in � (that is, x 2 V arsD(�) \ W). Then
wf(�; T 0) = wf(�0; T 0 [fz; tg), where:

{ z = NewVarD(V [W [W 0), where W 0
onsists of all �rst elements of pairs
in T 0

{ t = t(x) (the type of x, and thus of z)

{ �0 = RepD(�; x; z)

Thus, wf(�; ;)
onsists of a rewriting of � into a form where every wild
ard o

urs
only on
e, and a list of extra wild
ards and their types that have to be
reated to do
so. We will
all this rewriting and this list wf(�) and T 0, respe
tively, while we de�ne
W 0 to be the set of �rst elements of pairs in T 0 and Sem(t(x)) for x 2 W 0 to be the
type t su
h that (x; t) 2 T 0.

Provided that Rep and NewVar both work in the way that they are supposed to
work (that is, Rep repla
es exa
tly one o

uren
e of a variable, and NewVar provides
a new variable), the de�nition above will give a result after a �nite number of steps,
although the result may depend on
hoi
es that have been made.

We de�ne a `
hoi
e fun
tion' to be a fun
tion
 : W[W 0 ! U su
h that
(x) 2 t(x)
for ea
h wild
ard x. It thus gives an arbitrary allowed value for ea
h wild
ard. With
this information, we
an �nally add wild
ards to the des
ription of data in simple
expression:

For ea
h a
tion a that
ontains an expression, if under the existing MSC'96 se-
manti
s the step x

a
! y is possible, then under the semanti
s with data the step

(x;)
Evali(a)
! (y;) is possible, where i is the instan
e on whi
h a takes pla
e, and

Evali(a) is de�ned by repla
ing ea
h expression � in a by EvalD;�i[
(wf(�; V [W))
for any arbitrary
hoi
e fun
tion
 on the wild
ards in wf(�; V [W).

To simplify notation, we will de�ne the predi
ate
i(�; u) for an expression � and
a semanti
 obje
t u 2 U to be true if and only if there is some
hoi
e fun
tion
 su
h
that EvalD;�i[
(wf(�; V [W)) = u. The above then be
omes: If x

�
! y is possible

under the
urrent semanti
s, then under the semanti
s with data (x;)
u
! (y;) is

possible, provided
i(�; u) holds.
As a next
ompli
ating fa
tor, a lo
al a
tion
an
ontain a binding of the type

x := � (with x a variable and � an expression). In this
ase the following stati

requirements must be met:

� � and x must be of the same type, that is
4D;T (t(x); �) = true.

� x is a dynami
 variable that is owned by the instan
e to whi
h the lo
al a
tion
is
onne
ted, that is, d(x) = true and o(x) = i

In this
ase not only the expression must be repla
ed, as done above (one
an even
imagine that one does not want to repla
e the expression, but that is a
hoi
e that
I do not want to go into at the moment), but also the value of x has to be
hanged.

Thus, the rule now be
omes that if under the
urrent semanti
s x
a
tion(x:=�)

! y, then

under the semanti
s with data we have (x;)
a
tion(x:=u)

! (y;	0), provided
i(�; u)
holds, where 	0 equals 	, ex
ept that in 	0, �i(x) = u.

136 CHAPTER 6. DATA IN MSC

6.7.3 Simple Messages

Messages behave di�erent from other a
tions in two ways:

1. The interpretation of an input event depends on the
orresponding output event,
rather than on the
urrent value of the variables on the re
eiving instan
e itself

2. The message
an have the e�e
t of
hanging the value of a variable, or of
om-
muni
ating the value of a variable to another instan
e.

First, we look at a simple message { a message whi
h
ontains an expression, but
no bindings, and does not go through any gates. A message
onsists of two parts, the
sending and the re
eipt of the message. We
annot handle them as two independent
events for the reasons mentioned above. Instead, we will have to remember the
information of the sending event when the re
eiving event happens.

The information that is needed, is the value of all variables that are in the ex-
pression. A logi
al pla
e to do so, is in the ordering requirement that already exists
to ensure that messages are sent before they are re
eived, that is in the requirements
part S of ÆS and kS (see
hapter 4.4).

To extend the semanti
s to also be able to work with data, the information in these
requirements should also
ontain the value of the variables. To handle wild
ards in an
easy way, we also need to put the a
tual value of the expression as a whole in here. We
need a set of all values of variables in the expression of the
ontents of the message,
and one su
h set for ea
h o

urren
e of the sending of the message. Furthermore, these
lists have to be
onsidered in FIFO (First-In-First-Out) order. Thus, the numbers n

in
n
7! are repla
ed by lists of sets E = (e; x1 = e1; x2 = e2; : : : ; xn = en), where e is the

value of the expression, x1; : : : ; xn are the variables in the expression and e1; : : : ; en
their valuations.

The new enabled(a; S) predi
ate need not be more
ompli
ated than the old one.
The rule that the number n is larger than 0 for all orderings with a on the right side
of the ordering, is repla
ed by the rule that the list of lists E is non-empty.

The new update fun
tion upd(a; S) does get more
ompli
ated. For a message
sending event out(i; j;m), apart from the ordering out(i; j;m) 7! in(i; j;m), we add
the valuation of the messagem and a list of the variables in m together with the value
of �i(x) for ea
h of these variables. For generalised orderings, the list of variables and
values is ne
essarily empty.

When re
eiving a message, we need to
hange the re
eive a
tion that is done, using
the valuations as de�ned by the
orresponding send a
tion. If x

a
! x0 is allowed in

the existing semanti
s for some re
eipt event a = in(i; j;m), there will in this
ase

be exa
tly one non-empty ordering requirement b
E
7! a (to be exa
tly, this will be the

ase for b = out(i; j;m)). From this ordering requirement we get a set of variable
valuations E(x), as well as a value of the expression itself E(m).

The step whi
h now is allowed in the semanti
s with data, will be: (x;)
a0

! (x;	0),
where a0 = in(i; j; E(m)) and 	0 has �j(x) = E(x) for all variables that o

ur in m
(whi
h must ne
essarily be the same as the variables that o

ur in E) whi
h have

(x) = true and o(x) 6= j, and is equal to 	 elsewhere.

6.7. SEMANTICS FOR DATA IN MSC 137

6.7.4 Bindings and Gates in Messages

Apart from expressions, a message m
an also
ontain bindings as one of its param-
eters. We
ould thus have a message m(x + 1; y := 7), whi
h would mean that the
value x+ 1 is sent with the message, and y is given the value 7. The number of su
h
parameters is inde�nite.

If the variable that is given a value is a wild
ard, everything works just like above.
If it is a real variable, then this variable should be a dynami
 variable, owned by the
re
eiving instan
e. In this
ase, the new value for the variable will be set to (the
evaluation during the send event of) the expression. Note that this is the only way
that a message
an
hange the value of an owned variable.

If a message is sent through a gate, the parameters given by the sending event and
those given by the re
eiving event are not the same. Rather, the sending event is pa-
rameterised with expressions, while the re
eiving one is parameterised with variables
(or wild
ards). The semanti
s of this should be that the variables given as parameters
on the re
eiving side should be given the values given as parameters on the sending
side.

In the
urrent semanti
s, there is already a fun
tion to
ouple the
orrespond-
ing events on two sides of the gate. This fun
tion, whi
h is des
ribed on page 141
of [Ren99℄, at the moment
ouples the events out(i; G; ;m) (whi
h means, sending
messagem from instan
e i through gate G to an unknown pla
e ()) and in(; G; j;m)
to
reate the events out(i; G; j;m) and in(i; G; j;m). This fun
tion
an easily be ex-
tended to also
ombine the data information in a
orre
t way { that is, we have to
om-
bine out(i; G; ;m(e1; e2; : : : ; en)) and in(; G; j; x1; x2; : : : ; xn) to out(i; G; j;m(x1 :=
e1; x2 := e2; : : : ; xn := en)) and in(i; G; j;m(x1 := e1; x2 := e2; : : : ; xn := en)). Apart
from this, the semanti
s are exa
tly as des
ribed above. There is still a
hoi
e here
whether any wild
ards are a
tually put in the binding, or that they are regarded as
signifying that expressions rather than bindings are to be added. That is, whether
out(i; G; ;m(7; x + 1)) and in(; G; j;m(y;)) are
ombined to out=in(i; G; j;m(y :=
7; := x+ 1)) or to out=in(i; G; j;m(y := 7; x+ 1)). This does however not make an
essential di�eren
e in the semanti
s.

6.7.5 Stati
 Data

The next thing that has to be added to the semanti
s is the issue of stati
 (parametri
)
data. When an MSC has a parameter, say x, it
an only be
alled with an a
tual
value for that parameter. All o

urren
es of the variable x are then repla
ed by its
a
tual value.

The best way to deal with this, seems to be to
reate a new variable (using NewVar)
x0, add this to the set of variables V , and store its value. This new variable will have
d(x0) = false, and �i equal to the de�ned value for ea
h instan
e i. All events in
the MSC are then labeled with an extra statement x := x0, whi
h has the e�e
t of
repla
ing ea
h o

urren
e of x by an o

urren
e of x0 (by repeated appli
ation of
Rep). This renaming is also applied in all MSCs that are
alled by the MSC itself,
ex
ept if this other MSC also has x as one of its parameters.

The reason that we
hoose to in
lude an extra variable x0 rather than using the
existing variable x, is that x may be de�ned at more than one pla
e. In su
h a
ase,

138 CHAPTER 6. DATA IN MSC

we have to have a me
hanism to de
ide whi
h value of x is to be used, whi
h is done
through this new variable x0.

6.7.6 Guards

Passing a guard is preferably not
onsidered an a
tion. Rather, guards are
ondi-
tions on the permissibility of a
tions that happen later. Lu
kily, in the semanti
s of
MSC there exists a me
hanism to add su
h a
ondition in a natural way, namely the
permission relation ���!.

We now turn a guard into a quasi-event, that is, it looks like an event, but it

annot be a
tually exe
uted. More pre
isely, we add one su
h quasi-event for ea
h
instan
e
overed by the guard. We denote these quasi-events by guard(i; e), where i is
the instan
e on whi
h (this part of) the guard is de�ned, and e is the data expression

onne
ted to it (whi
h of
ourse as a stati
 semanti
 requirement must be of the type
Boolean). We will look at non-data guards later.

For guards, the normal permission rule holds as well:

l(a) 6= i

(guard(i; e);)
a

���! (guard(i; e);)

But there is an extra rule here: Something happening on the same instan
e,
after the guard, may also be exe
uted { but only if the guard evaluates to true.
Furthermore, on
e we have passed the guard this way, it will not hinder us later { at
least not on this instan
e. That is:

l(a) = i;Evali(e) = true

(guard(i; e);)
a

���! (�;)

If we look at non-data guards, the guards themselves work very similar to what is
mentioned above. This time there will be three parameters: The instan
e, the set of
instan
es on whi
h the guard is de�ned, and the texts of the guard (a guard
an have
more than one string, it
an then be passed if the system is (on the given instan
es)
in any of the states de�ned by the guard). The same holds for de�ning
onditions (if
there is more than one string on a de�ning
ondition, the system
an be in any of the
states de�ned). We will denote them by guard(i; I;�) and
ond(i; I;�), respe
tively,
with i the relevant instan
e and I the total set of instan
es on whi
h the guard or

ondition is de�ned. The guards work just like above, ex
ept that the
he
k now is
that there is a state in whi
h the system
an be whi
h is allowed by the guard, rather
than the old Evali(e) = true, and that passing a guard
an restri
t the number of
states a system is in: If the system (for a given instan
e and set of instan
es) is in
a state fA;B;Cg, and passes a guard when A;B;D, the system state
hanges to
fA;Bg { it
annot any more be in state C.

l(a) 6= i

(guard(i; I;�);)
a

���! (guard(i; I;�);)

6.7. SEMANTICS FOR DATA IN MSC 139

l(a) = i;� \ s(i; I) 6= ;

(guard(i; I;�);)
a

���! (�;	0)

Here 	0 is equal to 	 ex
ept that the value of s(i; I) is
hanged to that of s(i; I)\�.
A de�ning
ondition
an always be passed, but if it is passed, it
hanges the state:

l(a) 6= i

(
ond(i; I;�);)
a

���! (
ond(i; I;�);)

l(a) = i

(
ond(i; I;�);)
a

���! (�;	0)

Here 	0 is equal to 	 ex
ept that the value of s(i; I) is
hanged to �.
A few spe
ial points have to be noted.
In the �rst pla
e, under this semanti
s it
an happen that the data state 	 is not

uniquely de�ned any more. We
ould have an MSC like the one in Figure 6.18, where,
after a
tion a has been done, we do not know whether we are in state A or state B.
We are however not in the
ompound state, sin
e further a
tions
an make it
lear
where we are without any guards.

The solution for this is to `lift' the delayed
hoi
e operator (�) through the data
part, that is, rather than just allowing pairs (x;) with x a pro
ess algebra expression
and 	 a data state, we allow expressions of the form (x1;	1) � (x2;	2) : : : . Then
su
h a situation where di�erent paths have the same observable a
tions, but di�erent
data
onsequen
es
an be solved by
hanging the
urrent SOS-rule [Ren99℄:

x
a
! x0; y

a
! y0

x� y
a
! x0 � y0

into

(x;)
a
! (x0;	0); (y;)

a
! (y0;	00)

(x� y;)
a
! (x0;	0)� (y0;	00)

Of
ourse, some other extra rules are ne
essary as well to de�ne the behaviour of
the delayed-
hoi
e operator on algebra-data pairs, these are however all easily derived
from the existing semanti
s.

A se
ond point that needs to be noti
ed, is that under the semanti
s as de�ned
above, a guard is evaluated when the �rst a
tion after the guard is done, not at some
earlier stage. This might have some unexpe
ted
onsequen
es for situations involving
parallel
omposition:

In Figure 6.19, the sending of m
annot be done any more after the binding x := 2
is taking pla
e. At that time the value of x is not zero any more, and thus the guard
evaluates to false. That the guard has been true at some previous time does not
matter: in these semanti
s it is not possible to pass a guard at some time, but then
wait before doing any a
tions. The guard is
onne
ted to the a
tion it guards.

Another issue that has to be
overed is the termination predi
ate #. When there
are no a
tions to be done any more, just guards or
onditions, su

essful termination

140 CHAPTER 6. DATA IN MSC

i j

when A

j

a

m

when A

j

a

k

alt

ms

hoi
e

Figure 6.18: The data state is not always uniquely de�ned

is possible { provided all guards evaluate to true. As a �rst attempt, one might try
to simply give guards the possibility to terminate, but a
loser look shows that this
will not be suÆ
ient. What if there is a de�ning
ondition followed by a non-data
guard on the same instan
es that is still to be passed? The guard should then be
evaluated using the state as de�ned by the de�ning
ondition. To enable this, we will
have to remember the state variable 	 also after a termination. Thus, termination
will not any more be given by a simple predi
ate #, but by a predi
ate #	, meaning
`termination in data state 	'.

The existing SOS-rules are to be
hanged for this predi
ate. The basi

ase
((�;) #) and the rules for delayed
hoi
e are easy. More
ompli
ated is the
ase of
the merge. For this is good to think of what a guard a
tually does to 	: It redu
es
the number of states in whi
h the system
an be. Now, what will happen if the state
is redu
ed in two di�erent ways in two pla
es? Then both redu
tions will happen.
The endstate will be the one with both redu
tions, whi
h is the same as getting one
of the redu
tions from the end situation of the other redu
tion.

6.7. SEMANTICS FOR DATA IN MSC 141

i j

x:=1

x:=0

x:=2

when (x = 0)

m

par

ms

hoi
e

Figure 6.19: Possibly unexpe
ted behaviour of parallel
omposition

(�;) #	

(x;) #	0

(x� y;) #	0

(y;) #	0

(x� y;) #	0

(x;) #	0 ; (y;	0) #	00

(x k y;) #	00

(y;) #	0 ; (x;	0) #	00

(x k y;) #	0

(x;) #	0 ; (y;	0) #	00

(x Æ y;) #	00

142 CHAPTER 6. DATA IN MSC

There are some more rules regarding # [Ren99℄, but all are easily translated into
rules for #	.

Termination for
onditions and guards
an now be de�ned by:

(
ond(i; I;�);) #	0

Here 	0 equals 	 ex
ept that in 	0, s(i; I) = �.

� \ s(i; I) 6= ;

(guard(i; I;�);) #	0

Here 	0 equals 	 ex
ept that s(i; I) has been
hanged to the previous value of
� \ s(i; I).

Evali(e) = true

(guard(i; e);) #	

6.8 Con
lusions

The addition of data to the MSC language was not an easy task. Mu
h work has been
done by a number of people. It was felt early that using a
exible interfa
e would
be better than to using a single pre-de�ned data language. However, there were
still many
hoi
es to be made regarding the way in whi
h a data language
ould be

ombined with MSC. Some of these
hoi
es were quite automati
 on
e they had been
identi�ed [EFM99℄, but others have remained open for a large part of the pro
ess.

Even larger problems were found with the in
lusion of guards in the MSC language.
The various standards that are being used in extending the language
lashed here {
in parti
ular, the intuitive meaning that
ertain MSCs have
ould not easily, and in
some
ases not at all, be translated into a semanti
s. Thus, there were two methods of
interpreting guards, one
orresponding with intuition, the other semanti
ally `
lean'.
As both had some disadvantages that were regarded de
isive, neither was
hosen, but
rather, the language was restri
ted through stati
 requirements, so as to only allow
those
ases where both interpretations resulted in the same semanti
s.

An overview of what the semanti
s for data and guards would look like is also given
in this
hapter. The semanti
s in this
hapter are based on the existing semanti
s for
MSC'96 [MR97b, IT98, Ren99℄. By extending this semanti
s at various pla
es with
data
on
epts or guards, we
an
reate a semanti
s for the subset of the MSC2000 lan-
guage
onsisting of MSC'96 plus data features and MSC2000-style guards and de�ning

onditions. Although the
omplete semanti
s is not a
tually given, the treatment in
this
hapter should be enough to make the
reation of su
h a
omplete semanti
s rel-
atively easy, providing a solution for all major stumbling blo
ks. Note that to be able
to work with this semanti
s, the need was felt to extend the interfa
e between MSC
and the data language, as de�ned in the standard, with the fun
tion Sem. However, it
seems likely that a similar fun
tion would be ne
essary for any reasonable semanti
s
of this language.

6.8. CONCLUSIONS 143

It would be a good thing to have a semanti
s for the
omplete MSC2000 language;
however, su
h a semanti
s might well be impossible. The
urrent semanti
s for MSC
are su
h that to see what the next a
tion
an be, one only has to look at the
urrent
state, not the future. Su
h a semanti
s we will
all `exe
utable' { it is possible to
`walk through' the semanti
s without problems. The basi
 problem of the `intuitive'
solution regarding guards, was that it would not have this property any more. Rather,
it would
reate a semanti
s in whi
h a look-ahead is ne
essary, one would have to look
at the future behaviour of the system to see whether a
ertain a
tion would be possible
in the
urrent state. Su
h a semanti
s would be
ompli
ated from a theoreti
al point
of view and hard or impossible for toolmakers to understand.

One of the other extensions that has been in
luded in MSC2000 is time. Thus,
a
omplete semanti
s for MSC2000 would also
ontain this extension. If we look at
MSC with time, a look-ahead semanti
s seems to be the only reasonable solution.
For example, the MSC in Figure 6.20. The notation b�3 here means `b at time 3'.
If in this MSC we would not allow look-ahead, then one possible tra
e
ould be to
�rst do b (at time 3), then do a (at time 3 or some later time), and then deadlo
k.
Although it would of
ourse be possible to make a semanti
s this way, it
an in no
way be regarded intuitive.

i j

a b�3

�1

ms
 MSC with time

Figure 6.20: An MSC with (absolute) time

On the other hand, apart from disadvantages like the one already mentioned, if
we add data (and guards) to MSC, ba
ktra
king semanti
s get even harder: Suppose
we have the MSC like in Figure 6.21 (the inline expression here has to be passed
zero or more times). Can this MSC, under a ba
ktra
king semanti
s, after setting x
equal to 1, start the loop with the a
tion x := f(x)? This is possible if, and only if,
there is some n � 1 su
h that fn(x) = 1. And that is something that, even for quite
simple languages, might well be unde
idable. The problem is that the semanti
s ask
an in�nite amount of information from the data language.

Be
ause this way time
lashes with other parts of the language, it seems likely that
a
omplete semanti
s of MSC2000 will not be developed in the near future (although
the title of [JP01℄ seems to
laim it is a semanti
s for MSC2000, it a
tually gives

144 CHAPTER 6. DATA IN MSC

i

x:=1

x:=f(x)

loop

when (x=1)

i

ms
 sending

Figure 6.21: Another problem with ba
ktra
king semanti
s

a semanti
s only for basi
 MSCs plus inline expressions plus data, not for time) {
even worse, that it is a
tually impossibile to make su
h a semanti
s. Su
h problems
are likely to keep o

urring wherever a language is developed mu
h faster than its
asso
iated semanti
s. It would work better to develop both hand-in-hand.

This has been done for data and guards, leading to the problems and solutions
identi�ed in this
hapter. For time on the other hand, the semanti

he
ks seem to
have been insuÆ
ient. There have
ertainly been ideas regarding the semanti
s of
time in MSC [BAL97b, GDO98, Klu99, MH00℄, but all of these had elements that
make an integration with the existing MSC'96 semanti
s hard.

Chapter 7

Message Re�nement in MSC

7.1 Introdu
tion

7.1.1 Motivation

One of the areas where MSC is most used, and the one for whi
h the language was
originally developed [GR89℄, is in the des
ription of tele
ommuni
ation proto
ols.
Real life tele
ommuni
ation proto
ols often have di�erent levels of interpretation.
Something that is regarded a single message at one level,
an be a pa
ket of messages
at another, while on yet a lower level a number of regulation messages su
h as \are
you ready to re
eive?" and \transmission su

essfully
ompleted" might be added.
At the lowest level, there are just a large number of bits being transferred in both
dire
tions.

As one single level is already quite
omplex by itself, one does not want to be

on
erned by what is going on at at the lower levels when spe
ifying a higher one.
However, in MSC this
an
urrently only be done by dropping those lower levels
altogether, whi
h might also be undesirable. One might be interested in possible
intera
tions between the various levels, or the
omputer system that is used to test
the implementation might only be able to interpret the
ommuni
ation at a lower
level.

Thus, one would like to adapt the formalism in su
h a way that it is possible to
swit
h between di�erent levels. That way one
an design the system or proto
ol at
one level while still being able to see the result at a lower level. In this paper we will
introdu
e the
on
ept of message re�nement, in whi
h one message
an be used to
denote a
olle
tion of events, as a
onstru
t that
an be used to make su
h swit
hes.

7.1.2 Composition and Re�nement { A Histori
al Outline

Mu
h dis
ussion has been going on about the possibility of
ombining several MSCs
to
reate one larger one. In many appli
ations, MSCs tend to be
ome unduly large,
spanning several pages. One would like to break those up into smaller parts in order
to gain a better overview.

145

146 CHAPTER 7. MESSAGE REFINEMENT IN MSC

In the oldest MSC-standard, MSC'92 [IT93℄, only one operation to break up or

ombine MSCs was de�ned, namely the so-
alled instan
e re�nement [MR96℄. Here
one instan
e is used to show the behaviour of several instan
es. An example of instan
e
re�nement is given in Figures 7.1 to 7.3.

i

j
ompound

de
omposed

m

n

ms
 unre�ned

Figure 7.1: Instan
e re�nement: Original MSC

outer inner

m

m'

n'

n

ms
 j
ompound

Figure 7.2: Instan
e re�nement: Re�ning MSC

The instan
e j
ompound in Figure 7.1 is re�ned by the MSC in Figure 7.2 That
is, the middle MSC shows the internal behaviour of that instan
e, whi
h appears to

onsist of two parts that
ommuni
ate with ea
h other as well as with their mutual
environment. The external behaviour of the re�ning MSC should, of
ourse, be equal
to that of the instan
e to be re�ned { in this
ase, �rst re
eiving m, then sending n.
Together the two MSCs shown here des
ribe the same behaviour the single MSC in
Figure 7.3 des
ribes.

In MSC'96 [IT96℄, some more features were added to expli
itly
ompose MSCs,
namely MSC referen
e expressions and High-level MSCs (see Chapter 4.

The idea of re�nement (using one entity to stand for several of them)
ould be
extended. Two logi
al ways of doing this are a
tion re�nement, in whi
h a lo
al

7.2. MESSAGE REFINEMENT 147

i outer inner

m

m'

n'

n

ms
 de

Figure 7.3: Instan
e re�nement: Equivalent MSC

a
tion stands for a number of a
tions, and message re�nement, in whi
h one message
stands for a larger proto
ol
onsisting of several messages and other events. With the
appearan
e of MSC'96, a
tion re�nement adds little, as it
an easily be modelled by
repla
ing the a
tion by a one-instan
e referen
e MSC (see Chapter 4.3.4). Message
re�nement will be addressed in this
hapter. We will also be proposing another
addition to the language, namely syn
hronous
ommuni
ation.

7.2 Message Re�nement

7.2.1 Proto
ol MSCs

The basi
 idea behind message re�nement is to use a single message as the notation
for some more
omplex behaviour. A separate MSC then de�nes this behaviour. In
general, this behaviour will be some type of proto
ol, des
ribing how the information
ex
hange whi
h is represented by the message will o

ur.

The idea behind message re�nement is to have one message stand for an MSC of
its own. This MSC, as it shows the proto
ol used to send the original message, we
will
all a Proto
ol MSC. What are the properties of su
h an MSC?

First, there will be two instan
es, the sender and the re
eiver, that are to take
the roles of the instan
es sending and re
eiving the message to be re�ned in the
unre�ned MSC (that is, the MSC in whi
h only the high-level message is shown, the
MSC in whi
h the message is `repla
ed' by the proto
ol MSC will be termed the
re�ned MSC). The proto
ol MSC may
ontain other instan
es as well. These des
ribe
(parts of) the medium between the
ommuni
ating pro
esses, or perhaps parts of the

ommuni
ating pro
esses themselves that spe
i�
ally serve purposes in the input or
output pro
ess only.

Furthermore, as there should be some sort of
ommuni
ation from the sender
to the re
eiver, it is reasonable to assume there is some event at the sender that
ne
essarily happens before some event at the re
eiver. When e1 ne
essarily happens

148 CHAPTER 7. MESSAGE REFINEMENT IN MSC

before e2, we will write e1 << e2. That is, e1 << e2 i� e1 is before e2 in every
possible tra
e (allowed sequen
e of events) of the MSC.

A third point is that we want our MSC to rea
h neither a deadlo
k (in whi
h the
system has not su

essfully terminated and yet is unable to perform any a
tions) nor
a lifelo
k (in whi
h the system keeps on running in loops without ever terminating).
If any of these two would be the
ase, the proto
ol MSC
ould not really be regarded
as just a re�nement of the original message, as it would add some other behaviour as
well. Deadlo
k is forbidden in the MSC standard [Ren95℄, and an algorithm has been
published to
he
k for it [BAL97a℄.

Putting this all together we
ome to the de�nition set out below:

De�nition 44 A proto
ol MSC is an MSC with the following added requirements:

1. There are two di�erent spe
ial instan
es, whi
h are termed the sender and the
re
eiver. The other instan
es (if present) are termed internal instan
es.

2. There are events e1 at the sender and e2 at the re
eiver su
h that e1 << e2.

3. The MSC is free of deadlo
ks, and every �nite beginning of a tra
e of the MSC

an be extended to a �nite tra
e.

7.2.2 Message Re�nement

Having de�ned what a Proto
ol MSC is, we next de�ne what Message Re�nement
means. Thus, given an MSC and a message in that MSC, what is the result when we
repla
e the message by a given Proto
ol MSC? To de�ne an MSC, we need to spe
ify
its instan
es and events, and the orderings between these events.

If an MSC k has a messagem that is to be re�ned by a proto
ol MSC p, we expe
t
not to �nd !m and ?m in the resulting MSC, as they have been repla
ed by p. All
other events of k will be there, and are as mu
h as possible un
hanged. Likewise, all
events of p are present. They too are as mu
h as possible un
hanged. All events of
p that are on the sender taken together repla
e the event !m of k. Thus, apart from
their own orderings in p they also have to
on�rm to all orderings of !m in k.

De�nition 45 (Message Re�nement) Let k be an MSC, let m be a message of k,
that is, a message for whi
h the sending !m and the re
eipt ?m are events of k, and
let p be a proto
ol MSC. Then the message re�nement of m by p in k is the MSC
with the following
hara
teristi
s.

Its instan
es are all instan
es of k, and all internal instan
es of p.

Its events are all events of k with the ex
eption of !m and ?m, and all events
of p. Those events whi
h in p are at the sender instead pla
ed at the instan
e
at whi
h the event !m takes pla
e in k. Likewise, the events at the re
eiver are
pla
ed at the instan
e at whi
h ?m takes pla
e in k. The other events of p, and
the remaining events on k are not
hanged.

There is an ordering of a given sort e << e0 between two events e and e0 (for
example, an instan
e order or a
ausal order) i� one of the following is the
ase:

7.2. MESSAGE REFINEMENT 149

* e and e0 are both events of k and e <<k e
0.

* e and e0 are both events of p and e <<p e
0.

* e is an event of k with e <<k!m and e0 is an event at the sender of p.

* e0 is an event of k with ?m <<k e
0 and e is an event at the re
eiver of p.

We will denote the message re�nement of m by p in k by k[p=m℄. An example of
message re�nement we see in Figures 7.4 to 7.6.

i j

m

n

ms
 original

Figure 7.4: Message re�nement: original MSC

sender internal re
eiver

m

m'

a
k

ms
 proto
ol

Figure 7.5: Message re�nement: re�ning MSC

The MSC in Figure 7.4 is the original MSC, the MSC in Figure 7.5 the proto
ol
MSC, and the one in Figure 7.6 the resulting MSC after message m has been re�ned
by the proto
ol MSC. For example, be
ause !m is before ?n and at the same instan
e
j in the original MSC, and !m and ?a
k are at the sender of the proto
ol MSC, they
are also at instan
e j and before ?n in the resulting MSC.

150 CHAPTER 7. MESSAGE REFINEMENT IN MSC

i internal j

m

m'

a
k

n

ms
 result

Figure 7.6: Message re�nement: equivalent MSC

7.2.3 When is Message Re�nement Allowed?

In Figures 7.7 to 7.9, a problem appears: the MSC in Figure 7.7 and the proto
ol MSC
in Figure 7.8 are both perfe
tly valid MSCs. Yet, re�ning m by the given proto
ol
MSC, will result in the MSC in Figure 7.9, whi
h
ontains a deadlo
k. After m has
been sent, all three instan
es are waiting for a message that will never arrive.

i j k

m
n

n'

ms
 original

Figure 7.7: A problem: original MSC

Of
ourse this is undesirable behaviour, so we would like to prevent it. However,
to do so we need to know when su
h a situation might o

ur. We will see that for
this purpose it is useful to distinguish between two types of proto
ol: unidire
tional
and bidire
tional proto
ols. In a unidire
tional proto
ol, information
ows in just one
dire
tion. In a bidire
tional proto
ol, intera
tion o

urs:

De�nition 46 A proto
ol MSC is bidire
tional if in ea
h tra
e of the MSC there is

7.2. MESSAGE REFINEMENT 151

sender re
eiver

m

a
k

ms
 proto
ol

Figure 7.8: A problem: proto
ol MSC

an event e at the re
eiver and an event e0 at the sender su
h that e takes pla
e before
e0, and is unidire
tional otherwise.

We �rst look at unidire
tional proto
ol MSCs. They are very
lose to the intuition
of a single message. No deadlo
ks are
reated by the re�nement of messages with
unidire
tional proto
ols, as the following theorem shows:

Theorem 47 Let k be an MSC, m a message of k, and p be a unidire
tional proto
ol
MSC. Then, provided k and p have no deadlo
ks themselves, k[p=m℄ has no deadlo
ks
either.

Proof Suppose k[p=m℄
ontains a deadlo
k. Then there should be events e and
e0 su
h that e << e0 and e0 << e simultaneously hold. If there were no su
h pair
in whi
h e is an event of k and e0 one of p, then the pair would already have
aused
a deadlo
k in either k or p, so we may assume that e and e0 are events of k and p,
respe
tively.

e << e0 then implies that either e <<k!m (<<k of
ourse being the <<-ordering
of the original MSC k) and e00 <<p e

0 for some event e00 at the sender, or e <<k?m
and e00 << e0 for some event e00 of the re
eiver. Likewise, e0 << e implies that either
!m <<k e and e

0 <<p e
00 for some event e00 of the sender, or ?m <<k e and e

0 <<p e
00

for some event e00 at the re
eiver.
Be
ause !m <<k?m, the only way in whi
h e <<k!m or e <<k?m
an be
om-

bined with !m <<k e or ?m <<k e without
ausing a deadlo
k in k is when
!m <<k e <<k?m. Then it must be the
ase that e <<p e0 for some e00 at the
re
eiver and e0 <<p e

000 for some e000 at the sender. However, in that
ase e00 <<p e
000,

whi
h
ontradi
ts the unidire
tionality of p. Thus we see there are no su
h e and e0,
so the re�ned MSC is free of deadlo
ks. �

Bidire
tional proto
ols are tri
kier. Here the anomaly shown in Figures 7.7 to 7.9

an o

ur. Lu
kily we
an give the exa
t
onditions under whi
h it o

urs. Intuitively
one
an say that the output and the input of the m must be able to happen arbitrarily

lose to ea
h other to avoid a deadlo
k.

152 CHAPTER 7. MESSAGE REFINEMENT IN MSC

i j k

m

n

n'

a
k

ms
 problem

Figure 7.9: A problem: equivalent MSC

Theorem 48 Let k be an MSC, p a bidire
tional proto
ol MSC, and m a message
of k. Then k[p=m℄ is free of
y
les if and only if the following
onditions hold:

1. !m and ?m are not at the same instan
e in k

2. There is no event a su
h that !m << a <<?m

Proof if: If the
onditions are met, there is a tra
e where !m and ?m follow ea
h
other immediately. A valid tra
e of the re�ned MSC
an now be found by taking
su
h a tra
e, and repla
ing !m�?m in this tra
e by any tra
e of p, renaming instan
es
where needed.

only if: If !m and ?m are at the same instan
e in k, then in the re�ned MSC, ea
h
event
oming from the sender will
ome before ea
h event
oming from the re
eiver.
This will obviously lead to a deadlo
k if the proto
ol is bidire
tional.

Now suppose there is an event !m << a <<?m. There are events e on the re-

eiver and e0 on the sender su
h that e << e0 in p. However, in k[p=m℄ we now have
a << e << e0 << a, and thus a deadlo
k. �

7.2.4 Syn
hronous Communi
ation

In the present
ontext it would be desirable to have an extra
onstru
t in the language
to show syn
hronous
ommuni
ation, that is, a message being sent whi
h does not

7.3. SEMANTICS 153

take any time to go from the sour
e to the destination dire
tory. This looks like a
useful extension in itself as well.

Su
h a syn
hronous
ommuni
ation
an be implemented semanti
ally in two ways:
�rstly as a single a
tion that is shared by two instan
es, and se
ondly as two a
tions
that have to be done without any other a
tion between them. The �rst method of in-
terpretation is probably preferable, be
ause the se
ond one is very hard to implement
in pro
ess algebra { or in any of the other formalisms that have been used for pro-
posed semanti
s for MSCs, for that matter. Anyway, any of the two representations

an easily be translated into the other.

If the
onstru
t of syn
hronous
ommuni
ation would be present in the language,
then avoiding deadlo
ks
aused by message re�nement
an be done in the following
way.

Requirement 49 A normal message may only be re�ned by a unidire
tional proto-

ol. A syn
hronous message may only be re�ned by a bidire
tional proto
ol.

7.3 Semanti
s

We will now try to give an operational semanti
s (in the style of [Ren99℄) for message
re�nement. Here k[p=m℄ is the re�ned version of k, with p for m, while k[p=m℄� is
the same, but after !m, or in fa
t any of the events that repla
es it, has already taken
pla
e. We will not explain these semanti
s any further, as we think there is a better
option that will be given below. These semanti
s assume that !m and ?m take pla
e
in k exa
tly on
e, and the internal instan
es of p are di�erent from any instan
es in
k.

k
a
! k0; a 62 f!m; ?mg

k[p=m℄
a
! k0[p=m℄

k
?m
! k0; k0#; p#

k[p=m℄�#

p
a
! p0; i(a) 62 fsender; re
eiverg

k[p=m℄
a
! k[p0=m℄

k#; p#

k[p=m℄#

k
!m
! k0; p

a
! p0; i(a) = sender

k[p=m℄
a
! k0[p0=m℄�

k#; p#

k[p=m℄�#

k
!m
! k0; k0 ?m

! k00; p
a
! p0; i(a) = re
eiver

k[p=m℄
a
! p0 Æ k00

k
a

���! k00; p
a

���! p00

k[p=m℄
a

���! k00[p00=m℄

k
a
! k0; a 6=?m; p

a
���! p00

k[p=m℄�
a
! k0[p00=m℄�

k
a

���! k00; p
a

���! p00

k[p=m℄�
a

���! k00[p00=m℄�

p
a
! p0; i(a) 6= re
eiver

k[p=m℄�
a
! k[p0=m℄�

k
?m
! k0; p

a
! p0; i(a) = re
eiver

k[p=m℄�
a
! p0 Æ k0

However, we prefer another way to in
lude message re�nement semanti
ally. If we

154 CHAPTER 7. MESSAGE REFINEMENT IN MSC

let it be not an operation in but an operation on the language, the problems be
ome
mu
h less. With this I mean that message re�nement is regarded as another way of
writing down the MSC where the message has already been de�ned. That is, to get
the semanti
s of an MSC with re�nement, one performs an operation like the one in
De�nition 45 (but more pre
isely de�ned) to get the re�ned MSC. The semanti
s of
the MSC with re�nement is then de�ned to be equal to that of this re�ned MSC. The
advantage is that this way the a
tual semanti
s of MSC is not
hanged, and so no
new problems
an be introdu
ed either.

Let thus k be an MSC, m a message of k and p a proto
ol MSC. The MSC k[p=m℄

an then be found in the following way, using the textual syntax of k and p (let i and
j be the sending and re
eiving instan
e of m, respe
tively):

1. In p, repla
e every o

uren
e of `sender' by the sending instan
e of m in k, and
every o

uren
e of `re
eiver' by the re
eiving instan
e of m in k (if these happen
to be the same instan
e, one should keep tra
k of what was originally on the
sender and what on the re
eiver).

2. In the syntax of k, repla
e the event i : out m to j by a series of events,
onsist-
ing of all events originally on the sender in p, in the order in whi
h they appear
in p. Likewise, repla
e j : in m from i by the series of all events originally on
the re
eiver in p.

3. Add to k instan
e de
larations for all instan
es in p ex
ept i and j

4. Add to k, in the order in whi
h they are in p, all events of p whi
h were not yet
added in step 2.

Syn
hronous
ommuni
ation
an be semanti
ally in
luded rather easily. A syn-

hronous
ommuni
ation
an simply be implemented as a single event that has a pla
e
in the instan
e ordering of two di�erent instan
es. Su
h a
onstru
t does not seem to

ause any major problems.

7.4 Con
lusions

An important issue in MSC is the addition of various ways of
omposition, that is,

ombining a number of smaller MSCs into one large MSC. A new way has been
put forward in this
hapter, namely message re�nement, in whi
h a message
an be
repla
ed by a proto
ol
onsisting of a number of messages and possibly other events.

These proto
ols
an be divided into two groups, namely unidire
tional proto
ols
and bidire
tional proto
ols. Repla
ing a message by a unidire
tional proto
ol
auses
no problems, but repla
ing it by a bidire
tional proto
ol might
ause deadlo
ks. One
solution to this problem is the addition of syn
hronous
ommuni
ation, whi
h might
also be a useful addition to the language of itself. If we allow only syn
hronous
messages to be repla
ed by bidire
tional proto
ols, no deadlo
ks will o

ur.

To avoid problems in the semanti
s of MSC, it would be better to de�ne proto
ol
re�nement, and other
omposition te
hniques also, not as an operator in the language,
but as an operator on the language, des
ribing a way in whi
h MSCs
an be
hanged

7.4. CONCLUSIONS 155

into other MSCs. This way, no
ompli
ated semanti

onstru
ts are ne
essary to
implement them. For example, above we
ould do without a rather
ompli
ated set
of rules by introdu
ing a relatively simple algorithm to translate an MSC with message
re�nement into a `standard' MSC.

156 CHAPTER 7. MESSAGE REFINEMENT IN MSC

Chapter 8

Interrupt and Disrupt in

MSC

8.1 Introdu
tion

Although extra features been added to the MSC language twi
e [IT96, IT00℄, there
remains a wish for new features to be added. In this
hapter, we will look into one of
these proposed extensions, namely disrupt and interrupt. A disrupt means that the
system starts exe
uting one type of behaviour, but at a
ertain point is disrupted,
and starts exe
uting another behaviour instead. An interrupt is similar, but after an
interrupt, the system returns to the previous behaviour, while after a disrupt, this
does not happen.

Our opinion is that the semanti
s of a new
onstru
t should be well thought out
before the
onstru
t is added to the language. For disrupt and interrupt this
hapter
attempts to make su
h a pre-introdu
tory semanti
 overview. We will show the most
important of the many
hoi
es that have to be made, and will show some of the
problems that might o

ur if these operators are introdu
ed.

8.2 Syntax

If disrupt and interrupt would be in
luded in the language, there would not only be a
need for a semanti
s, but for a syntax as well. These two subje
ts are not independent.
Semanti
s that �t well with a
ertain syntax
an be
lumsy or
ounter-intuitive when

ombined with another syntax, and vi
e versa.

The main distin
tion here is between lo
al and global interrupt (or disrupt). The
di�eren
e here is the period during whi
h the disrupt or interrupt
an take pla
e. In
a lo
al interrupt or disrupt, the disrupt or interrupt
an only take pla
e at a single
point in time, while a global interrupt or disrupt
an do so at any time during a given
period.

We would like to stay as
lose as possible to the existing MSC syntax. In order to
do so we will use inline expressions to des
ribe the disrupt and interrupt.

157

158 CHAPTER 8. INTERRUPT AND DISRUPT IN MSC

In Figure 8.1, we see the proposed syntax for lo
al interrupt. At the point where
the interrupt is shown, the behaviour of the en
ompassing MSC
ould be interrupted
by the behaviour of the interrupt inline expression.

i j

k

m

m'

int

a

ms
 lo
al interrupt

Figure 8.1: Proposed syntax for lo
al interrupt

The MSC in Figure 8.2 shows our proposed syntax for global interrupt. As it
is important here to spe
ify at whi
h times an interrupt is possible, we now have a
two-
omponent inline expression. The lower part is equal in fun
tion to the inline
expression in the left example, giving the interrupting sequen
e. The interrupt
an
take pla
e at any time when the system is in the upper part of the inline expression.

Let's look more pre
isely at what is done in the lo
al
ase. The MSC
an essentially
have two di�erent behaviours:

� Not doing the interrupt.

� Doing the interrupt, and doing it at exa
tly at the time given.

However, su
h a
onstru
t would not be an a
tual addition to the language. The
opt-
onstru
t has exa
tly this same meaning { when something is pla
ed in an `op-
tional' inline expression it
an either be done at that pre
ise moment, or not at all.
Likewise a lo
al disrupt
ould be repla
ed by an `ex
eption'.

Su
h an equality has advantages and disadvantages. The advantage is, that a
semanti
s is easily found, and will
ause no problems with the rest of the language,
or at least no problems that were not already there. The problems are thus mu
h
smaller than they would be with most extensions. The disadvantage is, that adding
su
h a lo
al disrupt or interrupt will not make the language stronger while it would
make it larger. That way some of the problems of language addition would be met
without any useful extension even having been made.

8.2. SYNTAX 159

i j

k

m

m'

int

a

ms
 global interrupt

Figure 8.2: Proposed syntax for global interrupt

We feel that lo
al interrupt and disrupt are not useful, while if they are, they
are still semanti
ally uninteresting. We will therefore in the rest of this
hapter only
dis
uss global interrupt and disrupt.

8.2.1 Semanti
 Choi
es

For global and interrupt a number of other de
isions have to be made. Ea
h of these
will in
uen
e the resulting semanti
s. We see at least the following:

1. Can an interrupt take pla
e only on
e, or any number of times?

2. In the se
ond
ase,
an the system be interrupted more than on
e between any
two a
tions?

3. If yes,
an one interrupt interrupt the other?

4. Can an interrupt or disrupt take pla
e before the �rst and/or after the last
a
tion of the interrupted behaviour?

5. Are all instan
es interrupted or disrupted at the same time by an interrupt or
disrupt, or is it enough that all instan
es are interrupted or disrupted at some
time? This point will be explained in more detail below, as it is an important

hoi
e, whi
h is not so obvious, and the most obvious answer might well not be
the best one.

The last point above deserves some extra dis
ussion. At �rst thought it might
seem that the �rst interpretation is more natural { an interrupt or disrupt should

160 CHAPTER 8. INTERRUPT AND DISRUPT IN MSC

work on the whole system, or at least on all instan
es on whi
h it is spe
i�ed, at on
e.
However, when we look at an example, this might not be as obvious. See for example
Figure 8.3. It models a Telnet-proto
ol: The server sends two (pa
kets of) messages
to the
lient. The
lient
an
he
k whether the server is still alive by sending an
ayt-signal ('are you there?'), to whi
h the server answers by saying `yes'.

server
lient

m1

m2

ayt

yes

int

ms
 ayt

Figure 8.3: Example interrupt MSC: Are you there-proto
ol

Now if we regard the interrupt as interrupting all instan
es at on
e, then the
sending of the ayt-message will blo
k the a
tion of the server. However, how is the
server in a pra
ti
al
ase to know that the ayt has been sent? It only noti
es this
upon its re
eipt, so it is logi
al to assume it will not be blo
ked before that. Likewise,
the server does not know when the `yes' is re
eived, only when it is sent. Thus letting
the server be interrupted during all of the period leads to some possibly unwanted
extra
ausalities. The more logi
al
hoi
e might be to let ea
h pro
ess be interrupted
separately, that is, ea
h pro
ess has to do the interrupting a
tions at some point
without doing anything else in between, but they do not have to do it all at the same
time. Choosing to have all instan
es interrupted or disrupted at the same time goes

ontrary to the nature of MSC, where otherwise all
ommuni
ation is expli
it and
asyn
hronous.

When one would
hoose to have all instan
es interrupted or disrupted at the same
time, one would in fa
t introdu
e syn
hronization points, whi
h are
ontrary to the
nature of MSC as it has been pra
ti
ed until now.

For the other questions our preferred answers are as shown below. However, we
do not feel very strongly about these questions, and if it appears that other
hoi
es
would be
loser to the wishes of the users these are the ones that have to prevail.

1. Any number of interrupts.

2. More than one interrupt between two events possible.

8.3. SEMANTICS 161

3. No interrupts interrupting interrupts.

4. Interrupts and disrupts possible at the given times.

8.3 Semanti
s

Based on the
hoi
es in the last se
tion, we
reate an operational semanti
s for the
disrupt and interrupt operators. There have been more attempts to make pro
ess
algebrai
 des
ription of the disrupt and interrupt operators (see for example [BBK86,
Die94, BB00℄), but the presen
e in parti
ular of weak sequen
ing
auses the semanti
s
of these operators for MSC to be di�erent (and more
ompli
ated) than in general
pro
ess algebra.

We will de�ne operators / and J to denote the interrupt and disrupt respe
tively.
That is, x / y is `x (possibly) interrupted by y' and x J y `x (possibly) disrupted by
y'.

When
ould x J y do an a
tion a? There are in fa
t two possibilities: Either x
does the a
tion, or y does it. In the �rst
ase, the resulting expression
an still be
disrupted. In the se
ond
ase, all instan
es, ex
ept the one on whi
h a takes pla
e do
not have to have been disrupted yet. They have to be disrupted at some time, but
that time
an be somewhere in the future, and upto that point
an still do a
tions
of x. To des
ribe this situation, we introdu
e the for
ed disrupt, J. xJy
an do x,
but must at some time in the future be disrupted by y. However, this is not enough
yet: The a
tion of y that has already been taken forbids any a
tions on the same
instan
e of x to be taken. That is, some events of x may still happen before being
disrupted, but others have already been disrupted. Therefore we add to the for
ed
disrupt a set of instan
es S � I that have already been disrupted. xJSy
an now do
any a
tion from y (provided y
ould do it), but a
tions from x only if they happen
on an instan
e not in S. We will be giving operational semanti
s for both J and J,
although it would be possible to make the semanti
s without using J, as it
an be
eliminated through the equation x J y = (xJ;y)� x.

For the interrupt / we also de�ne a for
ed interrupt /, but in this
ase we
annot
get away with re-de�ning the interrupt, as we need to keep the possibilities of further
interrupts.

We have to
he
k the behaviour of our operators for three operational modi�ers:
x #, whi
h is true i� x
an terminate, x

a
�!, whi
h gives the result of doing an a on x,

and x
a

���!, whi
h gives the result of x permitting a.

First, we
onsider termination. x J y
an terminate in two ways: Either x
terminates, or y disrupts x and then terminates without doing any a
tion. For xJSy
to terminate it is ne
essary and suÆ
ient for y to terminate, while x/y
an terminate
by just x terminating. Finally, for x/Sy to terminate, both x must be ready and
y must have no interrupting a
tions left, so x/Sy only terminates if both x and y
terminate. Thus:

162 CHAPTER 8. INTERRUPT AND DISRUPT IN MSC

x #

x J y #

y #

xJSy #

x #

x / y #

x #; y #

x/Sy #

y #

x J y #

Next we look at what happens for doing a step. When
ould an a
tion a be taken
by x J y? There are in fa
t two possibilities: either x took the step, after whi
h
a disrupt of
ourse
ould still take pla
e, or y disrupted, and took the step. In the
se
ond
ase, we would get into a for
ed disrupt situation, where the instan
e on whi
h
a took pla
e (whi
h is denoted l(a)) is already disrupted.

In a for
ed disrupt xJSy, x
ould only take the a
tion a if the instan
e on whi
h
a takes pla
e was not already disrupted, that is, if l(a) 62 S. A
tions of y
an always
o

ur, and if one does then ne
essarily its instan
e must be disrupted as well.

With the interrupt x / y we again see two possibilities. Either the a
tion
an be
done by x, and nothing sho
king is happening, or it
an be done by y. In the latter

ase we get into a for
ed interrupt. However, we will have to keep the `old' interrupt
as well, be
ause the pro
ess
ould be interrupted a se
ond time.

x/Sy is the most diÆ
ult one in this aspe
t. x
an exe
ute the step a if l(a) 62 S,
but it
an also do it if y allows a. This is, be
ause in this
ase the instan
e on whi
h
a takes pla
e has done all it has to do, so it is not interrupted anymore, and
an do
steps from the main exe
ution (x) again. Steps from y work just like the former
ases.

There is another
ompli
ating fa
tor here: We
an have just one possible step for
a given a
tion from a given expression, be
ause the semanti
s of MSC are
ompletely
deterministi
. Thus, we have to in
lude a spe
ial
ase for the possibility that both x

8.3. SEMANTICS 163

and y
an do a given step. Taken together, this leads to:

x
a
�! x0; y 6

a
�!

x J y
a
�! x0 J y

x
a
�! x0; y 6

a
�!; l(a) 62 S

xJSy
a
�! x0JSy

y
a
�! y0; x 6

a
�!

x J y
a
�! xJfl(a)gy0

y
a
�! y0; x 6

a
�!

xJSy
a
�! xJS[fl(a)gy0

x
a
�! x0; y

a
�! y0

x J y
a
�! x0 J y � xJfl(a)gy0

x
a
�! x0; y

a
�! y0; l(a) 62 S

xJSy
a
�! x0JSy � xJS[fl(a)gy0

y
a
�! y0; l(a) 2 S

xJSy
a
�! xJSy0

x
a
�! x0; y 6

a
�!

x / y
a
�! x0 / y

x
a
�! x0; l(a) 62 S; y 6

a
�!

x/Sy
a
�! x0/Sy

x
a
�! x0; l(a) 2 S; y

a
���! y00

x/Sy
a
�! x0/Sy00

y
a
�! y0; x 6

a
�!

x / y
a
�! (x/fl(a)gy0) / y

y
a
�! y0; x 6

a
�!

x/Sy
a
�! x/S[fl(a)gy0

x
a
�! x0; y

a
�! y0

x / y
a
�! x0 / y � (x / y)/fl(a)gy0

x
a
�! x0; y

a
�! y0; l(a) 62 S

x / y
a
�! x0 / y � (x/fl(a)gy0) / y

x
a
�! x0; y

a
�! y0; l(a) 2 S; y 6

a
���!

x/Sy
a
�! x/Sy0

x
a
�! x0; y

a
�! y0; l(a) 2 S; y

a
���! y00

x/Sy
a
�! x0/Sy00 � x/Sy0

Finally, the permission relation. This relation has been introdu
ed in the semanti
s
of MSC to des
ribe the possibility that in the expression x Æ y events of y
an go
before events of x. However, this
an only be done if no events on x are on the
same instan
e as the event taking pla
e, or are otherwise for
ed to go �rst. This
an
depend on
hoi
es that are made within x. In su
h a
ase those
hoi
es that would
have made the event taking pla
e impossible are subsequently disallowed. Thus we

get the relation x
a

���! x0, whi
h denotes that x by permitting an event from another
(later) term is redu
ed to x0.

For x J y this immediately leads to problems. There are two possibilities here:

164 CHAPTER 8. INTERRUPT AND DISRUPT IN MSC

Either x has permitted the event, or y has permitted it. However, in the se
ond
ase,
those events of x that would have permitted it,
an still take pla
e. That is, x may
perhaps not take pla
e in full, but it
an still do those a
tions that are not forbidden
by the event just having been allowed. This is not a simple removal of
hoi
es as it
was with the permission relation for other MSC operators. Here those parts of x that
would normally be disallowed by the permission of the events
an still take pla
e upto
the pla
e where the permission would a
tually be impossible.

To see how we
an deal with this, it is good to look at the for
ed disrupt xJSy.
Here, in order for an event a to be permitted, it ne
essarily has to be permitted by y.
On the other hand, whether or not x permits it is not interesting { any beginning of
a tra
e in x
an happen as long as it does not
ontain any events that are disallowed
by the permission of a, that is, as long as it does not
ontain any events on the same
instan
e l(a), independent of whether or not they are part of a
omplete tra
e that
would have allowed a. Thus we see that, if y permits an event a to go over into
y00, xJSy permits that event, and goes over in xJS[fl(a)gy00. The strange thing of

ourse is, that this is independent of whether or not x permits a. The reason is that
x
annot terminate anyway, as it will be interrupted by y at some time. Be
ause of
this it does not matter whether x, or even the tra
e taken, a
tually permits a, as long
as that part of the tra
e that is a
tually taken does so. The SOS-rules for permission
by x J y now follow through the equality x J y = x� xJ;y.

For x / y to permit a it suÆ
es that x does so. If y does not allow a, the pro
ess

annot be interrupted anymore, if it does it still
an. x/Sy, �nally,
an permit an
event only if both x and y do so. Note that it does not matter in this
ase whether
or not l(a) is added to S, as all events on l(a) are `sifted out' by the permission of a
anyway. This leads to the following:

x
a

���! x00; y 6
a

���!

x J y
a

���! x00

x 6
a

���!; y
a

���! y00

x J y
a

���! xJfl(a)gy00
y

a
���! y00

xJSy
a

���! xJS[fl(a)gy00

x
a

���! x00; y
a

���! y00

x J y
a

���! x00 � xJfl(a)gy00

x
a

���! x00; y 6
a

���!

x / y
a

���! x00

x
a

���! x00; y
a

���! y00

x / y
a

���! x00 / y00
x

a
���! x00; y

a
���! y00

x /S y
a

���! x00 /S y00

8.4. CONCLUSIONS 165

8.4 Con
lusions

Interrupt and disrupt
an be introdu
ed into MSC in various ways. These
hoi
es
have to be made very
arefully, be
ause a language
onstru
t that is not understood in
the same way by all users and other people
on
erned will
ause many more problems
than it solves. Restri
tion in the in
lusion of new features is advisable from a more
general point of view too.

If interrupt and disrupt are indeed to be in
luded in the language, the �rst
hoi
e
is whether a lo
al or a global interrupt is taken. A lo
al interrupt has the advantage
of being semanti
ally simple and easily understood, but on the other hand it does
not really add anything to the language, so it is nothing but synta
ti
 sugar. A
global interrupt on the other hand is semanti
ally quite
ompli
ated, whi
h
an lead
to un
larities. There are also a number of additional
hoi
es to be made.

Although in this
hapter a semanti
s for disrupt and interrupt in MSC has been
de�ned, there are still some issues to be dealt with. In parti
ular, the semanti
s as
they are, are rather
ompli
ated. Also, a number of
hoi
es have been made before

reating these semanti
s. Both fa
tors in
rease the likelihood that, if these
onstru
ts
were interrupted in the language, the oÆ
ial semanti
 meaning of an MSC
ontaining
these
onstru
ts might be di�erent from the meaning intended by the user.

We feel that, in general, it is a bad thing to let the language grow too fast or
too large. The MSC'96 language has not been thoroughly resear
hed. It would be
better, in our opinion, to have a solid, stabilized semanti
s for the existing language,
and if possible also for the proposed extensions, before the language is extended.
There are other reasons for restraint in the adoption of new features as well: If
features are introdu
ed too qui
kly, tool builders will have problems keeping up.
Having too many features also runs the risk of groups of users using only subsets of
the language, thus diminishing the advantage that using one single languages has.
Another problem is that a large number of features greatly in
reases the
han
e that
unforeseen intera
tions between them lead to unwanted or unexpe
ted behaviour.

We do not intend to
laim that additions to the language have to be avoided at
all
osts. Far from that, some additions are
ertainly useful, and not having any
innovation whatsoever will be even more
ertain to kill the language's appli
ability
than a too generous addition of new features would. However, new features should
only be introdu
ed when there is a wish for in
lusion by a large number of users, and
a well-de�ned semanti
s for it.

166 CHAPTER 8. INTERRUPT AND DISRUPT IN MSC

Chapter 9

Con
lusions

Formal des
riptions, and thus formal languages,
an be useful in various parts of the
development of a software system. In this thesis, we have looked at some uses of
formal languages, as well as the pro
ess of de�ning these languages, and in parti
ular
their semanti
s.

In the �rst two
hapters, the subje
t of testing has been dis
ussed. In Chapter 2,
we introdu
ed a way to use formal methods
reated for one fun
tion (namely model

he
king) in a
ompletely di�erent area (namely test generation). Using existing
methods and tools has the advantage that the amount of work that needs to be done
to
reate tools is mu
h smaller, and innovations in one area
an be used in other areas
as well.

In Chapter 3, a new language, LOGAN , has been developed for the analysis of log
�les. Although through
ir
umstan
es that are not related to the work itself, it
ould
not be applied at KPN as was originally intended, the language
reated seems to be
both simple and expressive, and as su
h seems to be appli
able in pra
ti
e. Using
a formal language
ertainly seems to be a great improvement over the
urrent KPN
pra
ti
e of doing the
he
king of log �les by hand.

The rest of the thesis dis
usses the language MSC, whi
h is introdu
ed in Chap-
ter 4.

Chapter 5 is the last one about the appli
ations of formal methods. The question
of whether a system
an be implemented with a given
ommuni
ation ar
hite
ture is
an important one, and the material in this
hapter allows one to answer this question
from the MSC des
ription of the system using relatively simple algorithms.

The se
ond subje
t of the thesis, about the development of formal languages and
their semanti
s, also shows up in Chapter 3. Not only has LOGAN been developed
and a semanti
s de�ned, but we also gave an algorithm to
he
k the
orresponden
e
between the system des
ribed (in this
ase, a log �le) and a des
ription in the language
(a pattern).

Chapters 6, 7 and 8 dis
uss various extensions of MSC, in
luding dis
ussions of
their semanti
s. Mu
h of the work in Chapter 6 has been part of the a
tual dis
ussion
of adding data to the language. Proposals that seem to be reasonable at �rst sight,
might have hidden semanti
al problems, and the work in this Chapter has helped

167

168 CHAPTER 9. CONCLUSIONS

the development pro
ess of MSC2000 by bringing these semanti
al problems to the
surfa
e, thus allowing them to be resolved before the a
tual standard was de
ided
upon.

The Chapters 7 and 8 have a similar fun
tion for some extensions that have not
yet been added to the language, but might be in the future. For message re�nement,
it seems that most semanti
al problems
an be avoided by making re�nement an
operation on rather than in the language. For disrupt and interrupt on the other hand,
a number of
hoi
es have to be made, and the resulting semanti
s are
ompli
ated.
This
omplexity might be a reason to not introdu
e the
onstru
ts to the language,
but that is a de
ision that falls outside the s
ope of this thesis.

Bibliography

[Aal99℄ W.M.P. van der Aalst. Interorganizational work
ows: An approa
h based
on Message Sequen
e Charts and Petri Nets. Systems Analysis { Mod-
elling { Simulation, 34(3):335{367, 1999.

[AB95℄ M. Andersson and J. Bergstrand. Formalizing use
ases with Message Se-
quen
e Charts. Master's thesis, Department of Communi
ation Systems,
Lund Institute of Te
hnology, 1995.

[ABM98℄ P. Ammann, P. Bla
k, and W. Majurski. Using model
he
king to gener-
ate tests from spe
i�
ations. In Pro
eedings of the Se
ond IEEE Interna-
tional Conferen
e on Formal Engineering Methods (ICFEM'98), pages
46{54, De
ember 1998.

[AEY00℄ R. Alur, K. Etessami, and M. Yannakakis. Inferen
e of Message Sequen
e
Charts. In ICSE 2000. Pro
eedings of the 22nd International Conferen
e
on Software Engineering, pages 304{313, Limeri
k, Ireland, June 2000.

[AHP96℄ R. Alur, G.J. Holzmann, and D. Peled. An analyzer for Message Sequen
e
Charts. Software { Con
epts and Tools, 17(2):70{77, 1996.

[AKB99℄ M.M. Abdalla, F. Khendek, and G. Butler. New results on deriving SDL
spe
i�
ations from MSCs. In Dsoulli et al. [DvBL99℄.

[AY99℄ R. Alur and M. Yannakakis. Model
he
king of Message Sequen
e Charts.
In J.C.M. Baeten and S. Mauw, editors, CONCUR'99 Con
urren
y The-
ory. 10th International Conferen
e. Eindhoven, The Netherlands, August
1999. Pro
eedings, number 1664 in Le
ture Notes in Computer S
ien
e,
pages 114{129. Springer Verlag, 1999.

[Bak96℄ B.S. Baker. Parametrized pattern mat
hing: Algorithms and appli
a-
tions. Journal of Computer System S
ien
e, 52(1):28{42, February 1996.

[BAL97a℄ H. Ben-Abdallah and S. Leue. Synta
ti
 dete
tion of pro
ess divergen
e
and non-lo
al
hoi
e in Message Sequen
e Charts. In Brinksma [Bri97℄,
pages 259{274.

[BAL97b℄ H. Ben-Abdallah and S. Leue. Timing
onstraints in Message Sequen
e
Chart spe
i�
ations. In Mizuno et al. [MSHT97℄, pages 91{106.

169

170 BIBLIOGRAPHY

[BB97℄ J. Bergstra and W. Bouma. Models for feature des
riptions and intera
-
tions. In P. Dini, R. Boutaba, and L.M.S. Logrippo, editors, Pro
eedings
4th International Workshop on Feature Intera
tions in Tele
ommuni
a-
tion Networks, pages 31{45. IOS Press, June 1997.

[BB00℄ J.C.M. Baeten and J.A. Bergstra. Mode transfer in pro
ess algebra.
Te
hni
al Report CSR 00-01, Eindhoven University of Te
hnology, De-
partment of Computer S
ien
e, January 2000.

[BBK86℄ J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equa-
tions for an interrupt me
hanism in pro
ess algebra. Fundamenta Infor-
mati
ae, IX(2):127{186, 1986.

[BC00℄ F. Bordeleau and D. Cameron. On the relationship between use-
ase
maps and Message Sequen
e Charts. In Graf et al. [GJL00℄.

[BD87℄ S. Budkowski and P. Dembinski. An introdu
tion to Estelle: A spe
i�-

ation language for distributed systems. Computer Networks and ISDN
Systems, 14(1):3{23, 1987.

[BH88℄ F. Belina and D. Hogrefe. The CCITT-spe
i�
ation and des
ription
language SDL. Computer Networks and ISDN Systems, 16(4):311{343,
1988.

[BHS91℄ F. Belina, D. Hogrefe, and A. Sarma. SDL with Appli
ations from Pro-
to
ol Spe
i�
ation. The BCS Pra
titioners Series. Prenti
e-Hall Interna-
tional, 1991.

[BJ97℄ P. Baker and C. Jervis. Formal des
ription of data. Temporary Do
ument
TD-L16, Experts Meeting ITU-T SG 10, Lutterworth, O
tober 1997.

[BK84℄ J.A. Bergstra and J.W. Klop. Pro
ess algebra for syn
hronous
ommu-
ni
ation. Information and Control, 60(1/3):109{137, 1984.

[BM77℄ R.S. Boyer and J.S. Moore. A fast string sear
hing algorithm. Commu-
ni
ations of the ACM, 20(10):762{772, 1977.

[BM95℄ J.C.M. Baeten and S. Mauw. Delayed
hoi
e: an operator for joining
message sequen
e
harts. In Hogrefe and Leue [HL95℄, pages 340{354.

[BM99℄ V. Bos and S. Mauw. A LaTeX ma
ro pa
kage for Message Sequen
e
Charts. http://www.win.tue.nl/�sjouke/ms
pa
kage.html, April 1999.

[BOY00℄ P.E. Bla
k, V. Okun, and Y. Yesha. Mutation of model
he
ker spe
i�
a-
tions for test generation and evaluation. In Pro
eedings Mutation 2000,
O
tober 2000.

[Bri97℄ E. Brinksma, editor. Pro
eedings of the Third International Workshop
on Tools and Algorithms for the Constru
tion and Analysis of Systems,
number 1217 in Le
ture Notes in Computer S
ien
e. Springer Verlag,
1997.

BIBLIOGRAPHY 171

[BRJ98℄ G. Boo
h, J. Rumbaugh, and I. Ja
obson. The Uni�ed Modeling Lan-
guage User Guide. Addison Wesley, 1998.

[BRS01℄ P. Baker, E. Rudolph, and I. S
hieferde
ker. Graphi
al test spe
i�
ation
{ the graphi
al format of tt
n-3. In SDL01 [SDL01℄. To appear.

[BS95℄ R. Br�k and A. Sarma, editors. SDL'95 with MSC in CASE, Pro
eedings
of the 7th SDL Forum, Oslo, Norway, September 1995. Elsevier S
ien
e
Publishers/North Holland.

[BW90℄ J.C.M. Baeten and W.P. Weijland. Pro
ess Algebra. Number 18 in Cam-
bridge Tra
ts in Theoreti
al Computer S
ien
e. Cambridge University
Press, 1990.

[BW94℄ P.K. Boha
ek and J.N. White. Servi
e
reation: The real key to intel-
ligent network revenue. In Pro
eedings Workshop Intelligent Networks
'94, Heidelberg, May 1994.

[CBMT96℄ B. Charron-Bost, F. Mattern, and G. Tel. Syn
hronous, asyn
hronous
and
ausally ordered
ommuni
ation. Distributed Computing, 9(4):173{
191, 1996.

[CE98℄ T. Cobben and A. Engels. Disrupt and interrupt in MSC: Possibilities
and problems. In Lahav et al. [LWFH98℄, pages 75{83.

[CK94℄ E. Crabill and J. Kukla. Servi
e pro
essing systems for AT&T's intelli-
gent network. AT&T Te
hn. Journal, 73(6):39{47, 1994.

[CS97℄ A. Cavalli and A. Sarma, editors. SDL'97: Time for Testing { SDL,
MSC and Trends, Pro
eedings of the Eighth SDL Forum, Evry, Fran
e,
September 1997. Elsevier S
ien
e Publishers/North Holland.

[CSE96℄ J. Callahan, F. S
hneider, and S. Easterbrook. Automated software test-
ing using model-
he
king. In Pro
eedings of the Se
ond SPIN Workshop,
pages 129{146. Rutgers University, New Brunswi
k NJ, August 1996.

[CV93℄ E.J. Cameron and H. Velthuijsen. Feature intera
tions in tele
ommuni-

ations systems. IEEE Communi
ations Magazine, pages 18{23, August
1993. Spe
ial Issue on Feature Intera
tions.

[DFG+97℄ G. Das, R. Fleis
her, L. Gasienie
, D. Gunopulos, and J. K�arkk�ainen.
Episode mat
hing. In A. Apostoli
o and J. Hein, editors, Combinato-
rial Pattern Mat
hing, 8th Annual Symposium, number 1264 in Le
ture
Notes in Computer S
ien
e, pages 12{27, Aarhus, Denmark, June 1997.
Springer Verlag.

[DH99℄ W. Damm and D. Harel. LSCs: Breathing life into Message Sequen
e
Charts. In F. Cian
onhi and R. Gorrieri, editors, Pro
eedings 3rd IFIP
Conferen
e on Formal Methods for Open Obje
t-Based Distributed Sys-
tems (FMOODS'99), pages 293{312, 1999.

172 BIBLIOGRAPHY

[Die94℄ B. Diertens. New features in PSF I: Interrupts, disrupts, and priorities.
Te
hni
al Report P9417, Programming Resear
h Group, University of
Amsterdam, 1994.

[dM93℄ J. de Man. Towards a formal semanti
s of Message Sequen
e Charts. In
F�rgemand and Sarma [FS93℄.

[DvBL99℄ R. Dsoulli, G. von Bo
hmann, and Y. Lahav, editors. SDL'99: The Next
Millennium, Pro
eedings of the 9th SDL Forum, Montreal, Canada, June
1999. Elsevier S
ien
e Publishers/North Holland.

[EFM97℄ A. Engels, L.M.G. Feijs, and S. Mauw. Test generation for intelligent
networks using model
he
king. In Brinksma [Bri97℄, pages 384{398.

[EFM99℄ A.G. Engels, L.M.G. Feijs, and S. Mauw. MSC and data: Dynami

variables. In Dsoulli et al. [DvBL99℄, pages 105{120.

[Ek93℄ A. Ek. Verifying Message Sequen
e Charts with the SDL validator. In
F�rgemand and Sarma [FS93℄, pages 237{249.

[EMR97a℄ A. Engels, S. Mauw, and M.A. Reniers. A hierar
hy of
ommuni
ation
models for message sequen
e
harts. Te
hni
al Report CSR 97-11, Eind-
hoven University of Te
hnology, Department of Computer S
ien
e, 1997.

[EMR97b℄ A. Engels, S. Mauw, and M.A. Reniers. A hierar
hy of
ommuni
ation
models for message sequen
e
harts. In Mizuno et al. [MSHT97℄, pages
75{90.

[End00℄ I.D. van den Ende. Grammars
ompared: A study on determining a
suitable grammar for parsing and generating natural language senten
es
in order to fa
ilitate the translation of natural language and MSC use

ases. Te
hni
al Report CSR 00-08, Eindhoven University of Te
hnology,
Department of Computer S
ien
e, Mar
h 2000.

[Eng98℄ A. Engels. Message re�nement: Des
ribing multi-level proto
ols in MSC.
In Lahav et al. [LWFH98℄, pages 67{74.

[Eng00℄ A. Engels. Design de
isions on data and guards in MSC2000. In Graf
et al. [GJL00℄, pages 33{46.

[EVD89℄ P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors. The Formal De-
s
ription Te
hnique LOTOS. Elsevier S
ien
e Publishers/North Holland,
1989.

[Far96℄ F. Farns
h�adler. Kimba-MSC { Kimwitu-basiert annotierte Message
Sequen
e Charts. Studienarbeit, Institut f�ur Informatik, IMMD VII,
Friedri
h-Alexander Universit�at Erlangen-N�urnberg, O
tober 1996.

[Fei99℄ L.M.G. Feijs. Generating FSMs from interworkings. Distributed Com-
puting, 42(1):31{40, 1999.

BIBLIOGRAPHY 173

[Fei00℄ L. Feijs. Natural language and message sequen
e
hart representation
of use
ases. Information and Software Te
hnology, 42(9):633{647, June
2000.

[FJ96℄ L.M.G. Feijs and M. Jumelet. A rigorous and pra
ti
al approa
h to
servi
e testing. In H. Burkhardt and A. Giessler, editors, Testing of
Communi
ating Systems, IFIP TC6 Nineth International Workshop on
Testing of Communi
ating Systems (IWTCS'96), pages 175{190. Chap-
man & Hall, 1996.

[FJJV97℄ J.C. Fernandez, C. Jard, T. J�eron, and C. Viho. An experiment in
automati
 generation of test suites for proto
ols with veri�
ation te
h-
nology. S
ien
e of Computer Programming, 29(1/2):123{146, July 1997.
Spe
ial issue on Industrially Relevant Appli
ations of Formal Analysis
Te
hniques.

[FM98℄ L.M.G. Feijs and S. Mauw. MSC and data. In Lahav et al. [LWFH98℄,
pages 85{94.

[FR91℄ O. F�rgemand and R. Reed, editors. SDL'91: Evolving Methods, Pro-

eedings fo the Fifth SDL Forum. Elsevier S
ien
e Publishers/North Hol-
land, 1991.

[FS93℄ O. F�rgemand and A. Sarma, editors. SDL'93 { Using Obje
ts, Pro
eed-
ings of the Sixth SDL Forum, Darmstadt, O
tober 1993. Elsevier S
ien
e
Publishers/North Holland.

[GDO98℄ V. Grabowski, C. Dietz, and E.R. Olderog. Semanti
s for timed Message
Sequen
e Charts via
onstraints diagrams. In Lahav et al. [LWFH98℄,
pages 251{260.

[GGR01℄ J. Grabowski, P. Graubmann, and E. Rudolph. HyperMSCs with
on-
ne
tors for advan
ed visual system modelling and testing. In SDL01
[SDL01℄. To appear.

[GH99℄ A. Gargantini and C. Heitmeyer. Using model
he
king to generate tests
from requirements spe
i�
ations. In Pro
eedings of the Joint 7th Euro-
pean Software Engineering Conferen
e and 7th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineerings, Toulouse,
Fran
e, September 1999.

[GH00℄ J. Grabowski and D. Hogrefe. TTCN, SDL- and MSC-based spe
i�
ation
and automated test
ase generation for INAP. In Pro
eedings of the 8th
International Conferen
e on Tele
ommuni
ation Systems (ICTS'2000) {
Modeling and Analysis, Nashville, Mar
h 2000.

[GHN93℄ J. Grabowski, D. Hogrefe, and R. Nahm. Test
ase generation with test
purpose spe
i�
ation by MSCs. In F�rgemand and Sarma [FS93℄, pages
253{265.

174 BIBLIOGRAPHY

[GHNS95℄ J. Grabowski, D. Hogrefe, I. Nussbaumer, and A. Spi
higer. Test
ase
spe
i�
ation based on MSCs and ASN.1. In Br�k and Sarma [BS95℄,
pages 307{322.

[GHRW98℄ T. Gehrke, M. Huhn, A. Rensink, and H. Wehrheim. An algebrai
 seman-
ti
s for Message Sequen
e Chart do
uments. In S. Budkowski, A. Cav-
alli, and E. Najm, editors, Formal Des
ription Te
hniques and Proto
ol
Spe
i�
ation, Testing and Veri�
ation (FORTE/PSTV'98), pages 3{18.
Kluwer A
ademi
 Publishers, 1998.

[GJL00℄ S. Graf, C. Jard, and Y. Lahav, editors. SAM2000. 2nd Workshop on
SDL and MSC, Col de Porte, Grenoble, June 2000.

[GR89℄ J. Grabowski and E. Rudolph. Putting extended sequen
e
harts to
pra
ti
e. In O. F�rgemand and M.M. Marques, editors, SDL'89: The
Language at Work, pages 3{10, Lisbon, 1989. Elsevier S
ien
e Publish-
ers/North Holland.

[Gra90℄ J. Grabowski. Statis
he und dynamis
he Analysen f�ur SDL-Spezi�-
kationen auf der Basis von Petri-Netzen und Sequen
e Charts. Master's
thesis, Universit�at Hamburg, FB Informatik, 1990.

[GRG91℄ P. Graubmann, E. Rudolph, and J. Grabowski. Tele
ommuni
ations
development based on Message Sequen
e Charts and SDL. Atmosphere
brie�ng, ESPRIT proje
t 2565, November 1991.

[GRG93℄ P. Graubmann, E. Rudolph, and J. Grabowski. Towards a Petri Net
based semanti
s de�nition for Message Sequen
e Charts. In F�rgemand
and Sarma [FS93℄, pages 179{190.

[GSDH97℄ J. Grabowski, R. S
heurer, Z.R. Dai, and D. Hogrefe. Applying SaM-
sTaG to the B-ISDN proto
ol SSCOP { te
hni
al des
ription and TTCN
testsuite. Te
hni
al Report A-97-01, Medi
al University of L�ube
k, In-
stitut f�ur Mathematik/Informatik, January 1997.

[GW96℄ J. Grabowski and T. Walter. Quality-of-servi
e testing { spe
ifying fun
-
tional QoS testing requirements by using Message Sequen
e Charts and
TTCN. In Pro
eedings of the 6th GI/ITG Te
hni
al Meeting on 'For-
mal Des
ription Te
hniques for Distributed Systems', volume 20:9 of Ar-
beitsberi
hte des Instituts f�ur Mathematis
he Mas
hinen- und Datenver-
arbeitung (Mathematik). Institut f�ur Informatik, IMMD VII, Friedri
h-
Alexander Universit�at Erlangen-N�urnberg, June 1996.

[GW98℄ J. Grabowski and T. Walter. Visualisation of TTCN test
ases by MSCs.
In Lahav et al. [LWFH98℄, pages 161{170.

[Hau00℄ �. Haugen. MSC-2000: Intera
tion diagrams for the new millennium.
Computer Networks and ISDN Systems, 2000.

[Hau01℄ �. Haugen. From MSC-2000 to UML 2.0 { the future of sequen
e dia-
grams. In SDL01 [SDL01℄. To appear.

BIBLIOGRAPHY 175

[Heg95℄ R. Hegi. Visualisiering von Testf�allen. Master's thesis, University of
Berne, Institute for Informati
s and Applied Mathemati
s, 1995.

[Hey98℄ S. Heymer. A non-interleaving semanti
s for MSC. In Lahav et al.
[LWFH98℄, pages 281{290.

[Hey00℄ S. Heymer. A semanti
s for MSC based on Petri net
omponents. In
Graf et al. [GJL00℄, pages 262{275.

[HJ00℄ L. H�elou�et and C. Jard. Conditions for synthesis from Message Sequen
e
Charts. In S. Gnesi, I. S
hieferde
ker, and A. Renno
h, editors, 5th In-
ternational ERCIM Workshop on Formal Methods for Industrial Criti
al
Systems. Pro
eedings of FMICS'2000, Berlin, April 2000.

[HL95℄ D. Hogrefe and S. Leue, editors. Formal Des
ription Te
hniques VII.
Pro
eedings of the Seventh IFIP WG 6.1 International Conferen
e on
Formal Des
ription Te
hniques FORTE'94, Berne, O
tober 1994 1995.
Chapman & Hall.

[HL97℄ �. Haugen and Y. Lahav. MSC/SDL new features. In Tutorials of the
Eighth SDL Forum, Evry, Fran
e, September 1997.

[Hol96℄ G.J. Holzmann. Formal methods for early fault dete
tion. In Pro
eedings
of Formal Te
hniques for Real-Time and Fault Tolerant Systems, num-
ber 1135 in Le
ture Notes in Computer S
ien
e, pages 40{54, Uppsala,
Sweden, September 1996. Springer Verlag.

[ISO88a℄ ISO/EC. ESTELLE { a formal des
ription te
hnique based on an ex-
tended state transition model. Internation Standard 9074, ISO/EC,
Geneva, September 1988.

[ISO88b℄ ISO/EC. LOTOS { a formal des
ription te
hnique based on the tem-
poral ordering of observational behaviour. International Standard 8807,
ISO/EC, Geneva, September 1988.

[IT93℄ ITU-TS. Message Sequen
e Chart (MSC). Re
ommendation Z.120, ITU-
TS, Geneva, September 1993.

[IT94℄ ITU-TS. Spe
i�
ation and Des
ription Language (SDL). Re
ommenda-
tion Z.100, ITU-TS, Geneva, June 1994.

[IT95℄ ITU-TS. Algebrai
 semanti
s of Message Sequen
e Charts. Re
ommen-
dation Z.120 Annex B, ITU-TS, Geneva, April 1995.

[IT96℄ ITU-TS. Message Sequen
e Chart (MSC). Re
ommendation Z.120, ITU-
TS, Geneva, O
tober 1996.

[IT98℄ ITU-TS. Algebrai
 semanti
 of MSC'96. Re
ommendation Z.120 Annex
B, ITU-TS, Geneva, 1998.

[IT00℄ ITU-TS. Message Sequen
e Chart (MSC). Re
ommendation Z.120, ITU-
TS, Geneva, 2000.

176 BIBLIOGRAPHY

[JP01℄ B. Jonsson and G. Padilla. An exe
ution semanti
s form MSC-2000. In
SDL01 [SDL01℄. To appear.

[KGSB99℄ I. Kr�uger, R. Grosu, P. S
holz, and M. Broy. From MSCs to state
harts.
In Franz J. Rammig, editor, Distributed and Parallel Embedded Systems,
pages 61{71. Kluwer A
ademi
 Publishers, 1999.

[KL98℄ J.-P. Katoen and L. Lambert. Pomsets for Message Sequen
e Charts. In
Lahav et al. [LWFH98℄, pages 291{300.

[Klu99℄ O. Kluge. Mapping of time extended Message Sequen
e Chart spe
i�
a-
tion to a Sto
hasti
 Petri Net to derive temporal properties. In Pro
eed-
ings of the High Performan
e Computing Conferen
e 1999 (HPC'99),
San Diego, CA, USA, April 1999.

[KMP77℄ D.E. Knuth, J.H. Morris, jr., and V.R. Pratt. Fast pattern mat
hing in
strings. SIAM Journal of Computing, 6(1):323{350, 1977.

[Kos97℄ P. Kosiu
zenko. Time in message sequen
e
harts: A formal approa
h. In
C. Lengauer, M. Griebl, and S. Gorlat
h, editors, EuroPar'97: Parallel
Pro
essing, number 1300 in Le
ture Notes in Computer S
ien
e. Springer
Verlag, 1997.

[KRBG98℄ F. Khendek, G. Robert, G. Butler, and P. Grogono. Implementability of
Message Sequen
e Charts. In Lahav et al. [LWFH98℄, pages 171{179.

[Kri91℄ F. Kristo�ersen. Message Sequen
e Chart and SDL spe
i�
ation
onsis-
ten
y
he
k. In F�rgemand and Reed [FR91℄.

[KW91℄ J. Kroon and A. Wiles. A tutorial on TTCN. In B. Jonsson, J. Parrow,
and B. Pehrson, editors, Proto
ol Spe
i�
ation, Testing and Veri�
ation.
Pro
eedings IFIP WG 6.1 Eleventh International Symposium, pages 40{
92, Sto
kholm, 1991. Elsevier S
ien
e Publishers/North Holland.

[Lam78℄ L. Lamport. Time,
lo
ks and the ordering of events in a distributed
system. Communi
ations of the ACM, 21(7), 1978.

[LL94℄ P.B. Ladkin and S. Leue. What do Message Sequen
e Charts mean? In
R.L. Tenney, P.D. Amer, and M.�U. Uyar, editors, Formal Des
ription
Te
hniques VI, IFIP Transa
tions C, Pro
eedings Sixth International
Confreren
e on Formal Des
ription Te
hniques, pages 301{316, Boston,
1994. Elsevier S
ien
e Publishers/North Holland.

[LL95℄ P.B. Ladkin and S. Leue. Four issues
on
erning the semanti
s of Message
Flow Graphs. In Hogrefe and Leue [HL95℄, pages 355{369.

[LMR98℄ S. Leue, L. Mehrmann, and M. Rezai. Synthesizing software ar
hite
ture
des
riptions from Message Sequen
e Chart spe
i�
ations. In Pro
eedings
13th IEEE International Conferen
e on Automated Software Engineer-
ing, pages 192{195. IEEE Computer So
iety, O
tober 1998.

BIBLIOGRAPHY 177

[Loi96℄ S. Loidl. Interpretation und Werkzeugunterst�utzung von Message Se-
quen
e Charts (MSC'96). Master's thesis, Institut f�ur Informatik,
Ludwig-Maximilians-Universit�at M�un
hen, 1996.

[LP97℄ V. Levin and D. Peled. Veri�
ation of Message Sequen
e Charts via
template mat
hing. In TAPSOFT (FASE)'97, Theory and Pra
ti
e of
Software Development, number 1214 in Le
ture Notes in Computer S
i-
en
e, pages 652{666, Lille, Fran
e, 1997. Springer Verlag.

[LWFH98℄ Y. Lahav, A. Wolisz, J. Fis
her, and E. Holz, editors. Pro
eedings of
the 1st Workshop of the SDL Forum So
iety on SDL and MSC, num-
ber 104 in Informatik-Beri
hte, Berlin, Germany, June 1998. Humboldt-
Universit�at zu Berlin.

[Man99℄ N. Mansurov. Automati
 synthesis of SDL from MSC in forward and
reverse engineering. In D. Bosna
ki, S. Mauw, and T. Willemse, edi-
tors, Pro
eedings of the �rst international symposium on Visual Formal
Methods VFM'99, number 99-08 in Computing S
ien
e Reports, pages
44{64, Eindhoven, August 1999. Eindhoven University of Te
hnology,
Department of Computer S
ien
e.

[Mei95℄ F.A.C. Meijs. Message Sequen
e Chart enhan
ements. Te
hni
al Re-
port RWB-506-ir-95071, Information and Software Te
hnology, Philips
Resear
h, November 1995.

[Mei00℄ F.A.C. Meijs. Conne
ting Message Sequen
e Charts. In Graf et al.
[GJL00℄, pages 61{75.

[MH00℄ P. Le Maigat and L. H�elou�et. A (max,+) approa
h for time in Mes-
sage Sequen
e Charts. In 5th Workshop of Dis
rete Event Systems
(WODES2000), Ghent, Belgium, August 2000.

[Mid94℄ C.A. Middelburg. A simple language for expressing properties of tele
om-
muni
ation servi
es and features. Publi
ation 94-PU-356, PTT Resear
h,
1994.

[MP00℄ A. Mus
holl and D. Peled. Analyzing message sequen
e
harts. In Graf
et al. [GJL00℄, pages 3{17.

[MPS98℄ A. Mus
holl, D. Peled, and Z. Su. De
iding properties for Message Se-
quen
e Charts. In M. Nirat, editor, Foundations of Software S
ien
e
and Computation Stru
tures, Pro
eedings of FoSSaCS'98, number 1378
in Le
ture Notes in Computer S
ien
e, pages 226{242, Lisbon, 1998.
Springer Verlag.

[MR94a℄ S. Mauw and M.A. Reniers. An algebrai
 semanti
s of Basi
 Message
Sequen
e Charts. The Computer Journal, 37(4):269{277, 1994.

[MR94b℄ S. Mauw and M.A. Reniers. An algebrai
 semanti
s of Message Sequen
e
Charts. Te
hni
al Report CSN 94-23, Eindhoven University of Te
hnol-
ogy, Department of Computer S
ien
e, 1994.

178 BIBLIOGRAPHY

[MR95℄ S. Mauw and M.A. Reniers. Thoughts on the meaning of
onditions.
Temporary Do
ument TD 9016, Experts Meeting ITU-T SG 10, St. Pe-
tersburg, April 1995.

[MR96℄ S. Mauw and M.A. Reniers. Re�nement in interworkings. In CON-
CUR'96, Pro
eedings of the Seventh Conferen
e on Con
urren
y Theory,
volume 1119 of Le
ture Notes in Computer S
ien
e, pages 671{686, Pisa,
Italy, 1996. Springer Verlag.

[MR97a℄ S. Mauw and M.A. Reniers. High-level Message Sequen
e Charts. In
Cavalli and Sarma [CS97℄, pages 291{306.

[MR97b℄ S. Mauw and M.A. Reniers. Operational semanti
s for MSC'96. In
A. Cavalli and D. Vin
ent, editors, Tutorials of the Eighth SDL Forum
SDL'97: Time for testing { SDL, MSC and Trends, pages 135{152, Evry,
1997. Institut national des t�el�e
ommuni
ations.

[MR01℄ S. Mauw and M.A. Reniers. A pro
ess algebra for Interworkings. In
J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Pro
ess
Algebra,
hapter 19, pages 1269{1327. Elsevier S
ien
e Publishers/North
Holland, 2001.

[MRW00℄ S. Mauw, M.A. Reniers, and T.A.C. Willemse. Message Sequen
e Charts
in the software engineering pro
ess. In S.K. Chang, editor, Handbook
of Software Engineering and Knowledge Engineering. World S
ienti�
,
2000.

[MS93℄ N. Meng-Siew. Reasoning with timing
onstraints in Message Sequen
e
Charts. Master's thesis, University of Stirling, August 1993.

[MSHT97℄ T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors. Formal
Des
ription Te
hniques and Proto
ol Spe
i�
ation, Testing and Veri�-

ation. Pro
eedings of FORTE X and PSTV XVII '97, Osaka, 1997.
Chapman & Hall.

[MT96℄ A. Mits
hele-Thiel. Methodology and tools for the development of high
performan
e parallel systems with SDL/MSCs. In I. Jelly, I. Gorton,
and P. Croll, editors, Software Engineering for Parallel and Distributed
Systems. Chapman & Hall, 1996.

[Mus99℄ M. Mussa. Automati
 generation of SDL spe
i�
ations from MSC. Mas-
ter's thesis, Con
ordia University, November 1999.

[MvWW93℄ S. Mauw, M. van Wijk, and T. Winter. A formal semanti
s of syn-

hronous interworkings. In F�rgemand and Sarma [FS93℄, pages 167{
178.

[MZ99℄ N. Mansurov and D. Zhukov. Automati
 synthesis of SDL models in Use
Case methodology. In Dsoulli et al. [DvBL99℄.

BIBLIOGRAPHY 179

[Nah91℄ R. Nahm. Consisten
y analysis of Message Sequen
e Charts and SDL-
systems. In F�rgemand and Reed [FR91℄, pages 262{271.

[Nah94℄ R. Nahm. Conforman
e Testing Based on Formal Des
ription Te
hniques
and Message Sequen
e Charts. PhD thesis, University of Berne, Institute
for Informati
s and Applied Mathemati
s, 1994.

[Pel98℄ D.A. Peled. A toolset for Message Sequen
e Charts. In A.J. Hu and
M.Y. Vardi, editors, Computer Aided Veri�
ation. 10th International
Conferen
e, CAV'98. Pro
eedings, pages 532{536, Van
ouver, Canada,
June 1998. Springer Verlag.

[RAB96℄ B. Regnell, M. Andersson, and J. Bergstrand. A hierar
hi
al Use Case
model with graphi
al representation. In Pro
eedings of the Se
ond In-
ternational Symposium on Engineering Computer-Based Systems, pages
270{277, Friedri
hshafen, Germany, Mar
h 1996. IEEE Computer So
i-
ety.

[Ren95℄ M.A. Reniers. Syntax requirements of Message Sequen
e Charts. In
Br�k and Sarma [BS95℄, pages 63{74.

[Ren96℄ M.A. Reniers. Stati
 semanti
s of Message Sequen
e Charts. Te
hni
al
Report CSR 96-19, Eindhoven University of Te
hnology, Department of
Computer S
ien
e, 1996.

[Ren99℄ M.A. Reniers. Message Sequen
e Chart: Syntax and Semanti
s. PhD
thesis, Eindhoven University of Te
hnology, June 1999.

[RGG96a℄ E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message
Sequen
e Charts. Computer Networks and ISDN Systems, 28(12):1629{
1641, 1996. Spe
ial issue on SDL and MSC, guest editor �. Haugen.

[RGG96b℄ E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message
Sequen
e Charts (MSC'96). In Tutorials of the First Joint Interna-
tional Conferen
e on Formal Des
ription Te
hniques for Distributed Sys-
tems and Communi
ation Proto
ols, and Proto
ol Spe
i�
ation, Testing
and Veri�
ation (FORTE/PSTV'96), Kaiserslautern, Germany, O
tober
1996.

[RGG99℄ E. Rudolph, J. Grabowski, and P. Graubmann. Towards a harmonization
of UML-Sequen
e Diagrams and MSC. In Dsoulli et al. [DvBL99℄.

[RKG97℄ G. Robert, F. Khendek, and P. Grogono. Deriving an SDL spe
i�
ation
with a given ar
hite
ture from a set of MSCs. In Cavalli and Sarma
[CS97℄, pages 197{212.

[RSG00a℄ E. Rudolph, I. S
hieferde
ker, and J. Grabowski. Development of
an MSC/UML test format. In J. Grabowski and S. Heymer, edi-
tors, FBT'2000:Formale Bes
hreibungste
hniken f�ur verteilte Systeme,
Aa
hen, June 2000. Shaker Verlag.

180 BIBLIOGRAPHY

[RSG00b℄ E. Rudolph, I. S
hieferde
ker, and J. Grabowski. HyperMSC { a graph-
i
al representation of TTCN. In Graf et al. [GJL00℄, pages 76{91.

[Rud95℄ E. Rudolph. MSC roadmaps. towards a synthesized solution. Temporary
Do
ument TD 90137, Experts Meeting ITU-T SG 10, Geneva, 1995.

[R�uf94℄ C. R�ufena
ht. Extending MSCs with data information in order to spe
ify
test
ases. Master's thesis, University of Berne, Institute for Informati
s
and Applied Mathemati
s, February 1994. In German.

[RV94℄ F.J. Redmill and A.R. Valdar. SPC digital telephone ex
hanges, revised
edition. Number 21 in IEE Tele
ommuni
ation series. Peter Peregrinus
Ltd., 1994.

[S
h95℄ C. S
ha�er. MSC/RT: A real-time extension of Message Sequen
e Charts
(MSCs). Te
hni
al Report 129-95, Johannes Kepler University, Depart-
ment of Systems Theory and Information Engineering, Linz, 1995.

[SD97℄ S. Som�e and R. Dssouli. Using a logi
al approa
h for spe
i�
ation gener-
ation from Message Sequen
e Charts. Publi
ation d�epartementale 1064,
D�epartement IRO, Universit�e de Montr�eal, April 1997.

[SDL01℄ SDL'01: Meeting UML, Le
ture Notes in Computer S
ien
e, Copen-
hagen, June 2001. Springer Verlag. To appear.

[SDV95℄ S. Som�e, R. Dssouli, and J. Vau
her. From s
enarios to timed automata:
Building spe
i�
ations from user requirements. In Pro
eedings 2nd Asia
Pa
i�
 Software Engineering Conferen
e. IEEE Computer So
iety, De-

ember 1995.

[SEG+98℄ M. S
hmitt, A. Ek, J. Grabowski, D. Hogrefe, and B. Ko
h. Autolink
{ Putting SDL-based test generation into pra
ti
e. In A. Petrenko and
N. Yevtus
henko, editors, Testing of Communi
ating Systems, volume 11,
Tomsk, Russia, June 1998. Kluwer A
ademi
 Publishers.

[SG01℄ I. S
hieferde
ker and J. Grabowski. TTCN-3 and its MSC-based graph-
i
al presentation format. In SDL'01 Tutorials, Copenhagen, June 2001.
To appear.

[Sil98℄ P.S.M. Silva. Extended Message Sequen
e Charts with time-interval se-
manti
s. In L. Khatib and R. Morris, editors, Pro
eedings Fifth Inter-
national Workshop on Temporal Representation and Reasoning, pages
37{44, Sanibel Island, FL, USA, May 1998. IEEE Computer So
iety.

[SMC+96℄ B. Ste�en, T. Margaria, A. Classen, V. Braun, and M. Reitenspiess. An
environment for the
reation of intelligent network servi
es. In Intelligent
Networks: IN/AIN Te
hnologies, Operations, Servi
es, and Appli
ations
{ A Comprehensive Report, pages 287{300. IEC { International Engi-
neering Consortium, 1996.

BIBLIOGRAPHY 181

[SRM97℄ I. S
hieferde
ker, A. Renno
h, and O. Mertens. Timed MSCs { an ex-
tension to MSC'96. In A. Wolisz, I. S
hieferde
ker, and A. Renno
h, edi-
tors, Formale Bes
hreibungste
hniken f�ur verteilte Systeme, 7. GI/ITG-
Fa
hgespr�a
h, Berlin, June 1997.

[SRS89℄ R. Sara

o, R. Reed, and J.R.W. Smith. Tele
ommuni
ations Systems
Engineering Using SDL. Elsevier S
ien
e Publishers/North Holland,
1989.

[Ste90℄ D. Steedman. Abstra
t Syntax Notation One (ASN.1): The Tutorial and
Referen
e. Te
hnology Appraisals Ltd., 1990.

[Tel95℄ Telelogi
 AB. SDT. In G. von Bo
hmann, R. Dssouli, and O. Ra�q,
editors, Parti
ipant's Pro
eedings of the 8th International Conferen
e on
Formal Des
ription Te
hniques FORTE'95, List of tools for demonstra-
tions, page 455, 1995.

[Til91℄ P.A.J. Tilanus. A formalization of Message Sequen
e Charts. In F�rge-
mand and Reed [FR91℄, pages 273{288.

[Ver96℄ Verilog. Obje
tGEODE MSC Editor { User's GUIDE. Verilog SA, 1996.

[VGMF00℄ H. Vranken, T. Gar
ia Gar
ia, S. Mauw, and L. Feijs. IC validation
using Message Sequen
e Charts. In Pro
eedings 26th Euromi
ro Confer-
en
e, Digital Systems Design DSD'2000, pages 122{127, Maastri
ht, the
Netherlands, September 2000. IEEE Computer So
iety.

[VT00℄ R.G. de Vries and J. Tretmans. On-the-
y
onforman
e testing using
SPIN. Software Tools for Te
hnology Transfer, 2(4):382{393, Mar
h
2000.

[VWK95℄ G. Vermeer, M. Witteman, and J. Kroon. A framework for testing
tele
ommuni
ation servi
es. In A. Cavalli and S. Budkowski, editors,
Pro
eedings of IWPTS '95, pages 129{140, Evry, 1995.

[Wat95℄ B.W. Watson. Taxonomies and Toolkits of Regular Language Algorithms.
PhD thesis, Eindhoven University of Te
hnology, Department of Com-
puter S
ien
e, September 1995.

182 BIBLIOGRAPHY

Samenvatting

Wie een goed
omputersysteem wil bouwen, zal moeten bes
hrijven wat het doet of
zou moeten doen. Natuurlijk talen, zoals Nederlands of Engels, zijn hiervoor niet
zeer ges
hikt, omdat ze te weinig exa
t zijn. In plaats daarvan worden hiervoor
zogenaamde `formele talen' gebruikt. Dit zijn bes
hrijvingsmethoden met een exa
te,
wiskundige betekenis. Dit promotie-onderzoek heeft zi
h op zulke talen geri
ht, en
meer spe
i�ek op twee aspe
ten: hun betekenis (`semantiek'), en hun toepassingen
voor het analyseren en testen van systemen.

In hoofdstuk 2 houden we ons bezig met testa
eiding. Als een systeem eenmaal
bes
hreven en gebouwd is, is het nuttig om te kunnen vaststellen of het systeem ook
daadwerkelijk aan de bes
hrijving voldoet. Een manier om daar een uitspraak over te
kunnen doen, is door het systeem te testen. In dit hoofdstuk worden testen afgeleid
met behulp van `model
he
king'. Model
he
king is een methode die ontworpen is
om eigens
happen van een systeem af te leiden uit haar bes
hrijving: er kan worden
vastgesteld of een systeem een toestand kan bereiken met bepaalde eigens
happen.
Zo ja, dan wordt bovendien aangegeven op welke manier. In de methodologie die in
dit hoofdstuk wordt bes
hreven, wordt deze laatste eigens
hap van model
he
king
gebruikt: door situaties te onderzoeken waarvan al bekend is dat ze bereikbaar zijn,
wordt een pad naar deze situaties gevonden, dat vervolgens als test gebruikt kan
worden.

Hoofdstuk 3 houdt zi
h ook bezig met testen. Het is gebaseerd op een prakti-
jkprobleem: voor het testen van telefoon
entrales wordt een groot aantal gesprekken
gesimuleerd, die vervolgens met de hand worden ge
ontroleerd. Als een stap in de
automatisering van dit pro
es, hebben we een taal (LOGAN) ontworpen waarmee op
eenvoudige, geautomatiseerde wijze, afzonderlijke gesprekken uit de lijst met signalen
die door de
entrale zijn gegaan, kunnen worden ge�lterd.

De volgende hoofdstukken hebben allen betrekking op de taal Message Sequen
e
Charts (MSC). MSC wordt gebruikt voor de bes
hrijving van de
ommuni
atie binnen
of tussen systemen. Het bestaat uit afbeeldingen zoals �guur 9.1. In dit plaatje zijn
de verti
ale lijnen (a en b) (delen van)
omputersystemen, terwijl de pijlen (`vraag'
en `antwoord')
ommuni
aties tussen die systemen zijn. De tijd loopt van boven
naar onder in dit diagram. In dit plaatje stuurt dus eerst a `vraag' naar b, waarna
b `antwoord' naar a stuurt. In hoofdstuk 4 staat een meer uitgebreide uitleg, waarin
ook diverse uitbreidingen van de taal bes
hreven zijn.

In hoofdstuk 5 bekijken we, hoe uit een bes
hrijving van een systeem in MSC kan
worden afgeleid wat er nodig is om het
ommuni
atiegedrag mogelijk te maken. Soms

183

184 BIBLIOGRAPHY

a b

vraag

antwoord

ms
 example

Figure 9.1: Een MSC

is het mogelijk alle beri
hten te ontvangen in de volgorde waarin ze zijn verzonden,
in andere gevallen is dit onmogelijk. Er zullen dan meerdere bu�ers gebruikt moeten
worden om de beri
hten in op te slaan, waar er in het eerste geval sle
hts een nodig
is. In dit hoofdstuk valt te lezen hoe uit de MSC-bes
hrijving van een systeem valt
af te leiden wat voor dat systeem het geval is.

Een van de re
ente uitbreidingen van MSC is de mogelijkheid om data toe te voe-
gen. In hoofdstuk 6 wordt bes
hreven hoe dit is gedaan, waarom het zo is gedaan, en
welke problemen daarbij overwonnen moesten worden. Het is gedeeltelijk gebaseerd op
dis
ussies binnen de standardisatie
ommissie voor MSC. Daarnaast geeft het hoofd-
stuk ook aan hoe de oÆ
i�ele betekenis (semantiek) van MSC kan worden uitgebreid
om ook dit aspe
t toe te voegen.

Hoofdstukken 7 en 8 behandelen twee mogelijke toekomstige uitbreidingen van
MSC. In hoofdstuk 7 wordt een methode bes
hreven om een enkel beri
ht in MSC te
gebruiken om een volledig
ommuni
atieproto
ol te bes
hrijven, terwijl in hoofdstuk 8
de zogenaamde disruptie en interruptie behandeld worden. Met behulp hiervan kun-
nen systemen bes
hreven worden waarbij vers
hillende gedragingen elkaar kunnen
onderbreken of stoppen. In deze hoofdstukken worden de mogelijkheden van deze
uitbreidingen bes
hreven, hun problemen, en de semantiek die hen meegegeven zou
kunnen worden.

Titles in the IPA Dissertation Series

J.O. Blan
o. The State Operator in Pro
ess

Algebra. Fa
ulty of Mathemati
s and Comput-
ing S
ien
e, TUE. 1996-1

A.M. Geerling. Transformational Develop-

ment of Data-Parallel Algorithms. Fa
ulty
of Mathemati
s and Computer S
ien
e, KUN.
1996-2

P.M. A
hten. Intera
tive Fun
tional Pro-

grams: Models, Methods, and Implementation.
Fa
ulty of Mathemati
s and Computer S
ien
e,
KUN. 1996-3

M.G.A. Verhoeven. Parallel Lo
al Sear
h.
Fa
ulty of Mathemati
s and Computing S
ien
e,
TUE. 1996-4

M.H.G.K. Kesseler. The Implementation

of Fun
tional Languages on Parallel Ma
hines

with Distrib. Memory. Fa
ulty of Mathemati
s
and Computer S
ien
e, KUN. 1996-5

D. Alstein. Distributed Algorithms for Hard

Real-Time Systems. Fa
ulty of Mathemati
s
and Computing S
ien
e, TUE. 1996-6

J.H. Hoepman. Communi
ation, Syn
hro-

nization, and Fault-Toleran
e. Fa
ulty of Math-
emati
s and Computer S
ien
e, UvA. 1996-7

H. Doornbos. Redu
tivity Arguments and

Program Constru
tion. Fa
ulty of Mathemat-
i
s and Computing S
ien
e, TUE. 1996-8

D. Turi. Fun
torial Operational Semanti
s and

its Denotational Dual. Fa
ulty of Mathemati
s
and Computer S
ien
e, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake Cir-

uits. Fa
ulty of Mathemati
s and Computing
S
ien
e, TUE. 1996-10

N.W.A. Arends. A Systems Engineering

Spe
i�
ation Formalism. Fa
ulty of Me
hani
al
Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in

Lambda Cal
ulus and its Relation to Type In-

feren
e. Fa
ulty of Mathemati
s and Comput-
ing S
ien
e, TUE. 1996-12

D.R. Dams. Abstra
t Interpretation and Par-

tition Re�nement for Model Che
king. Fa
ulty
of Mathemati
s and Computing S
ien
e, TUE.
1996-13

M.M. Bonsangue. Topologi
al Dualities in

Semanti
s. Fa
ulty of Mathemati
s and Com-
puter S
ien
e, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of

Small Treewidth. Fa
ulty of Mathemati
s and
Computer S
ien
e, UU. 1997-01

W.T.M. Kars. Pro
ess-algebrai
 Transforma-

tions in Context. Fa
ulty of Computer S
ien
e,
UT. 1997-02

P.F. Hoogendijk. A Generi
 Theory of Data

Types. Fa
ulty of Mathemati
s and Computing
S
ien
e, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory

in Logi
 and Mathemati
s. Fa
ulty of Mathe-
mati
s and Computing S
ien
e, TUE. 1997-04

C.J. Bloo. Preservation of Termination for

Expli
it Substitution. Fa
ulty of Mathemati
s
and Computing S
ien
e, TUE. 1997-05

J.J. Vereijken. Dis
rete-Time Pro
ess Alge-

bra. Fa
ulty of Mathemati
s and Computing
S
ien
e, TUE. 1997-06

F.A.M. van den Beuken. A Fun
tional Ap-

proa
h to Syntax and Typing. Fa
ulty of Math-
emati
s and Informati
s, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Test-

ing. Fa
ulty of Computer S
ien
e, UT. 1998-01

G. Naumoski and W. Alberts. A Dis
rete-

Event Simulator for Systems Engineering. Fa
-
ulty of Me
hani
al Engineering, TUE. 1998-02

J. Verriet. S
heduling with Communi
ation

for Multipro
essor Computation. Fa
ulty of
Mathemati
s and Computer S
ien
e, UU. 1998-
03

J.S.H. van Gageldonk. An Asyn
hronous

Low-Power 80C51 Mi
ro
ontroller. Fa
ulty of
Mathemati
s and Computing S
ien
e, TUE.
1998-04

A.A. Basten. In Terms of Nets: System De-

sign with Petri Nets and Pro
ess Algebra. Fa
-
ulty of Mathemati
s and Computing S
ien
e,
TUE. 1998-05

E. Voermans. Indu
tive Datatypes with Laws

and Subtyping { A Relational Model. Fa
ulty
of Mathemati
s and Computing S
ien
e, TUE.
1999-01

H. ter Doest. Towards Probabilisti
 Uni�-

ation-based Parsing. Fa
ulty of Computer S
i-
en
e, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation

of Surfa
e Pro
esses. Fa
ulty of Mathemati
s
and Computing S
ien
e, TUE. 1999-03

C.H.M. van Kemenade. Re
ombinative Evo-
lutionary Sear
h. Fa
ulty of Mathemati
s and
Natural S
ien
es, Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study

on Inde
isiveness in Sample Sele
tion. Fa
ulty
of Mathemati
s and Natural S
ien
es, RUG.
1999-05

M.P. Bodlaender. S
hedulere Optimization

in Real-Time Distributed Databases. Fa
ulty
of Mathemati
s and Computing S
ien
e, TUE.
1999-06

M.A. Reniers. Message Sequen
e Chart: Syn-

tax and Semanti
s. Fa
ulty of Mathemati
s and
Computing S
ien
e, TUE. 1999-07

J.P. Warners. Nonlinear approa
hes to satis-

�ability problems. Fa
ulty of Mathemati
s and
Computing S
ien
e, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Proto-

ols with Formal Methods. Fa
ulty of Computer
S
ien
e, UT. 1999-09

P.R. D'Argenio. Algebras and Automata for

Timed and Sto
hasti
 Systems. Fa
ulty of Com-
puter S
ien
e, UT. 1999-10

G. F�abi�an. A Language and Simulator for Hy-

brid Systems. Fa
ulty of Me
hani
al Engineer-
ing, TUE. 1999-11

J. Zwanenburg. Obje
t-Oriented Con
epts

and Proof Rules. Fa
ulty of Mathemati
s and
Computing S
ien
e, TUE. 1999-12

R.S. Venema. Aspe
ts of an Integrated Neural

Predi
tion System. Fa
ulty of Mathemati
s and
Natural S
ien
es, RUG. 1999-13

J. Saraiva. A Purely Fun
tional Implementa-

tion of Attribute Grammars. Fa
ulty of Mathe-
mati
s and Computer S
ien
e, UU. 1999-14

R. S
hiefer. Viper, A Visualisation Tool

for Parallel Progam Constru
tion. Fa
ulty of
Mathemati
s and Computing S
ien
e, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and State
raft
in the Dut
h Republi
. Fa
ulty of Mathemati
s
and Computer S
ien
e, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A strati�ed

approa
h to the veri�
ation of distributed algo-

rithms. Fa
ulty of Mathemati
s and Computer
S
ien
e, UU. 2000-02

W. Mallon. Theories and Tools for the Design
of Delay-Insensitive Communi
ating Pro
esses.

Fa
ulty of Mathemati
s and Natural S
ien
es,
RUG. 2000-03

W.O.D. GriÆoen. Studies in Computer

Aided Veri�
ation of Proto
ols. Fa
ulty of S
i-
en
e, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the

MathSpad Editor. Fa
ulty of Mathemati
s and
Computing S
ien
e, TUE. 2000-05

J. Fey. Design of a Fruit Jui
e Blending and

Pa
kaging Plant. Fa
ulty of Me
hani
al Engi-
neering, TUE. 2000-06

M. Franssen. Co
ktail: A Tool for Deriving

Corre
t Programs. Fa
ulty of Mathemati
s and
Computing S
ien
e, TUE. 2000-07

P.A. Olivier. A Framework for Debugging

Heterogeneous Appli
ations. Fa
ulty of Natural
S
ien
es, Mathemati
s and Computer S
ien
e,
UvA. 2000-08

E. Saaman. Another Formal Spe
i�
ation

Language. Fa
ulty of Mathemati
s and Natu-
ral S
ien
es, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary

Sear
h Dis
overing and Representing Sear
h

Spa
e Stru
ture. Fa
ulty of Mathemati
s and
Natural S
ien
es, UL. 2001-01

R. Ahn. Agents, Obje
ts and Events a
om-

putational approa
h to knowledge, observation

and
ommuni
ation. Fa
ulty of Mathemati
s
and Computing S
ien
e, TU/e. 2001-02

M. Huisman. Reasoning about Java programs

in higher order logi
 using PVS and Isabelle.
Fa
ulty of S
ien
e, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-

esses through Stru
tured Re
e
tion. Fa
ulty
of Mathemati
s and Computing S
ien
e, TU/e.
2001-04

S.C.C. Blom. Term Graph Rewriting: syn-

tax and semanti
s. Fa
ulty of S
ien
es, Division
of Mathemati
s and Computer S
ien
e, VUA.
2001-05

R. van Liere. Studies in Intera
tive Visualiza-

tion. Fa
ulty of Natural S
ien
es, Mathemati
s
and Computer S
ien
e, UvA. 2001-06

A.G. Engels. Languages for Analysis and

Testing of Event Sequen
es. Fa
ulty of Mathe-
mati
s and Computing S
ien
e, TU/e. 2001-07

	Contents
	Preface
	1. Introduction
	2. Test derivation using model checking
	3. LOGAN: A LOG analysis language
	4. The MSC language
	5. MSC and communication models
	6. Data in MSC
	7. Message refinement in MSC
	8. Interrupt and disrupt in MSC
	9. Conclusions
	Bibliography
	Samenvatting

