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Prefae

Siene is work of man. If there is one thing I have ome to realize these last few
years, it is that. It has been a hard lesson. My four years here in Eindhoven as a PhD
student started out very well. Artiles were written, sent in, published. A suess
story in the making, or so it seemed. But as time passed, things went less and less the
way we would want them to go. Projets beame slow, or I even halted for a while {
only to �nd that starting again was even harder than ontinuing was originally. We
all knew that something was wrong, or at least I did. But what it was beame lear
only when things really got out of hand one day.

I had been under too muh stress. And although my work was not the main ause,
my situation did make it impossible for me to keep working, and in fat had already
done so for several months. I spent most of the next half year on sik leave for it.
Given these irumstanes, it is almost a mirale that this booklet has ome about
with only half a year's delay.

I would like to thank everybody who has helped me get through this period of my
life. In partiular, I would like to thank my parents, who provided me with a plae
where I ould reuperate and �nd the strength to arry on. Also great thanks to all
my olleagues. When times were bad, you oped with me and helped me quiet down
again. When times were better, you were friends to me and we had fun together.
Very speial thanks to Sjouke Mauw, who has always been a pleasure to work with,
both from a personal and from a professional point of view. Jos, Marella (thank
you for the tea), Dragan, Martijn, Susanna and Tim, thanks for your help in keeping
or regaining quietness. Jan-Joris, you provided me with a very pleasant atmosphere
in the �rst phase of my times here. I would also like to thank IPA for �nanially
enabling my work, and the faulty of mathematis and omputer siene for various
support.

It is good to know that there are friends to support me, and I would like to thank
Pieter, Benedikt, Tim and Satomi and her family for giving me this support as well
as the pleasant times we ould share.

Muh of the material in this thesis has ome about in ooperation with, or with
tehnial support from, other people. We mention Sjouke Mauw, Loe Feijs, Mihel
Reniers, Thijs Cobben en Rogier Vermeulen with whom we have worked together,
while other people who have given useful tehnial help with one or more hapters,
are Piet Bakker, Roel Bloo, Vitor Bos, Jan Doekal, Herman Geuvers, Jan-Friso
Groote, �ysten Haugen, Thierry Jeron, Clive Jervis, Bart Knaak, Erik Kwast, Frans
Meijs, Jao van der Pol, M. de Vreugd, and espeially Joost-Pieter Katoen, whose
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remarks did muh to improve the thesis.
A number of hapters have already been published before. Chapter 2 has been

published as [EFM97℄. Chapter 5 has been published as [EMR97a℄ and in a shortened
form as [EMR97b℄. Chapter 6 has partly been published as [Eng00℄, and is partly
based on [EFM99℄. Chapter 7 has been published as [Eng98℄, and Chapter 8 as [CE98℄.
Chapter 3, whih is joint work with Thijs Cobben, Loe Feijs and Rogier Vermeulen,
Chapter 4 and part of Chapter 6 have not been published before.

The MSCs in this thesis have been reated using the LaTeX MSC maro pak-
age [BM99℄.
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Chapter 1

Introdution

In omputer siene, it is important to be able to desribe what a omputer system
does, or what it should do. If a system or program is simple, or if only a very general
desription is neessary, a natural language suh as English might suÆe, but when
systems grow to even moderate sizes, natural language gets too umbersome to use.
Some of the disadvantages of natural language as a spei�ation language are:

� Natural language desriptions are often inexat. One text often has more than
one interpretation.

� When desriptions beomes long, it beomes hard to �nd an overview.

� It is hard to de�ne with mathematial preision whether a given system orre-
sponds to a desription in natural language.

� Natural language desriptions are not well-equipped to deide properties of a
system from its desription.

� The strutures of natural language do not orrespond to the natural strutures
of omputer systems.

To resolve these and similar problems, formal languages have been introdued.
These are dediated languages, based on mathematis, for the desription of omputer
systems. A formal language onsists of two parts, the �rst is a formal syntax, the
seond a formal semantis. The syntax de�nes what desriptions in the language
look like, while the semantis de�ne what suh a desription atually means. In most
ases, suh semantis onsist of a formal translation into some other mathematial
formalism.

In this thesis, we will both look at the onstrution of formal languages, with an
emphasis on the task of �nding a good semantis (that is, a semantis that in the
�rst plae orresponds with the intended intuitive meaning of the language and in
the seond plae is easy to work with), and at their usage. For both tasks a few ase
studies have been onduted. The language onstrution part onsists of a number of
extensions to an existing language as well as the reation of a small, new language for
a small sub-domain, while the usage part onsists of an attempt to derive properties
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12 CHAPTER 1. INTRODUCTION

of a system from a formal spei�ation and an attempt to use formal languages and
methods for the reation of test sequenes.

The work in this thesis is partly based on pratial problems that were enoun-
tered over time. This holds in partiular for the Chapters 6 and 8. Both data and
disrupt/interrupt were felt within the ITU (International Teleommuniations Union)
to be possibly useful extensions to the MSC (Message Sequene Charts) language.
Partly on our own initiative and partly beause of questions from within the MSC
ommunity, the Eindhoven formal methods group explored espeially the semanti
onsequenes of these hanges. A similar bakground holds for Chapter 3. We have
studied the urrent testing proess at KPN (the largest Duth servie provider in
the area of teleommuniation), and the study started from an idea to improve this
proess.

One language that we will in partiular look into is MSC (Message Sequene
Chart) [IT00, RGG96b℄. This is a graphial language whih in partiular desribes
the ommuniation behaviour of a system. As suh, it is very useful for the desription
of ommuniation protools, and for the spei�ation of distributed systems where
ommuniation is the most important aspet. A strong point of MSC is that it
ombines a graphial syntax, whih is relatively easy to understand for humans, with
a strit formal semantis, whih enables automated analysis by omputers.

In theory, one ould derive a program from a spei�ation in a formal way, or prove
its orretness mathematially, but in pratie systems are often built and then tested,
rather than proven orret. Several reasons for this disrepany between theory and
pratie an be given:

Formal methods and their possibilities are often not known.

Many formal methods do not sale up very well.

Certain errors and properties, suh as hardware errors and timing properties,
are hard or impossible to �nd without testing.

Corretness of a system must sometimes be asertained by ompanies that do
not have the atual ode, and an only look at the system as a `blak box'.

Although testing often takes up a onsiderable portion of the devekionebt proess
(in some ases more than half of it), it is often remarkably little formalised and auto-
mated. Test traes are still often designed by hand, and sometimes even the outomes
are heked by hand. If these ould be automated, more, or more ompliated, test
traes ould be heked in the same time, and thus the quality of testing ould be
improved and/or the time needed for testing ould be redued. There already exists a
formal language for the spei�ation of test traes, namely TTCN (Tree and Tabular
Combined Notation) [KW91℄. Deriving TTCN from a system desription is (in most
ases) not a ompliated task, but �nding test traes or sets of test traes with er-
tain properties (for example, being in some sense `omplete' or �nding some spei�
errors) often is.



1.1. ORGANISATION OF THE THESIS 13

1.1 Organisation of the Thesis

This thesis roughly onsists of two parts. The �rst part, disussing the subjet of
testing, onsists of Chapters 2 and 3. The seond part, about MSC, is omprised of
the Chapters 4 through 5.

The �rst part ontains two Chapters. In the �rst (Chapter 2), we look at Model
Cheking as a possible tool for the derivation of test traes. The number of states
of a system is often very large, and �nding test traes with given properties an
therefore be diÆult. Beause model heking tools have many methods to deal with
this `state spae explosion', we look whether they an be used to �nd test traes to
ertain behaviours of these systems. Chapter 3 looks at a later phase of the testing
proess. We introdue LOGAN , a language developed at the Eindhoven University
formal methods group. It is originally developed for the testing of telephone systems,
to partly replae the manual hek of test logs. The idea of the language is that it
an be used to automatially �nd the events in a test log that orrespond to a single
all.

Chapter 4 gives an introdution of MSC, with a look into its history, an overview
of some of its main features and an introdution to the formal semantis. The next
hapter shows, how formal language desriptions of a system an be used to determine
properties of that system. We will derive the bu�ering arhiteture of a system from
its MSC desription. The Chapter reates a hierarhy of these arhitetures.

The last three Chapters disuss some (existing or possible future) additions to
MSC. First, Chapter 6 disusses the introdution of data in MSC. By this introdu-
tion, it is now possible to use variables and parameters in MSC desriptions. The
Chapter tells how this addition was done, and why it was done that way. There
is also a semantis of this aspet of MSC being developed. The next two Chapters
disuss some other extensions that ould in the future be added to MSC. Chapter 7
introdues message re�nement, whih introdues a re�nement method that makes it
possible to look at protools at di�erent levels of abstration. Chapter 8 introdues
disrupt and interrupt, whih an be used to desribe situations where one behaviour
is stopped half-way to start another type of behaviour, a situation that is urrently
hard or impossible to desribe in MSC. Both Chapters ontain a disussion of the
semantis of the features that are introdued.
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Chapter 2

Test Derivation Using Model

Cheking

2.1 Introdution

In this hapter, we will disuss test derivation, and more spei�ally test derivation for
teleommuniation systems. Testing is neessary in several phases of a development
proess. In the �rst plae there is the testing during the spei�ation phase. Central
questions in this respet are whether the spei�ation follows the requirements, and
whether any logial errors are present in the spei�ation. In teleommuniation
systems a probable ause for those logial errors is feature interation [Mid94℄, that
is, the e�et that di�erent features (variations on the basi protool) have on one
another. This ould for example happen if one feature hanges a variable another
feature uses or hanges as well.

Seondly, it is also neessary to test whether the implementation onforms to the
spei�ation. Feature interation is again an important subjet, for example through
the sharing of (neessarily �nite) resoures. It is this seond testing phase that will
be investigated in this hapter.

One problem in testing is the reation of a suitable test-set, a set of test traes
to be heked. Manual generation of test traes is a lot of work, so it is natural to
look for omputer support. In relatively small ases this is perfetly feasible: there
are tehniques and tools that, given a formal spei�ation, generate a omplete set of
test traes. See for example [Nah94℄. Assuming that the implementation has as many
states as the spei�ation, a positive result of the test an be onsidered a orretness
proof. In many pratial ases there is a so-alled state spae explosion, that auses
the number and/or the length of the traes to be (muh) larger than an be dealt
with. In this ase one has to hoose whih traes are and whih are not to be tested.
This seletion of interesting traes requires muh insight in the problem at hand, so
annot be automated. Still, support in this proess will be useful.

Our aim is not to reate yet more new tools, but to �nd and link existing tools
that suit this purpose. At present this also means we do not go beyond prototyping.

15



16 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

In partiular we will try to use tools from model heking to generate traes. model
heking provides us with serious tools with a good theoretial foundation and the
possibility to work with large examples (so we an more easily ope with the problems
of the state spae explosion). Another important advantage is that tools to translate
the output of SPIN (the model heker we used) [Hol96℄ into useful formats, either
exist or are easily reated. In short, this hapter will be about the usage of existing
tools for the purpose of test trae generation for implementation heking of systems.
We will use this for systems that are far beyond full state spae heking, that is,
where a full state spae hek an not be reahed or even approximated.

As an example to apply our methods to we have hosen Intelligent Networks. This
is an important appliation in whih onformane testing, as well as other tests, are
a neessity. Beause of the regular addition of features these tests also have to be
repeated during the lifespan of the network. Moreover, these features an have unex-
peted interations, so every time a test has to be done of the system as a whole. The
addition of features often auses an exponential growth of the state spae, so a state
spae explosion will be almost a ertainty. We used a model of a telephone servie,
with two features: Originating Call Sreening (OCS) and Hotline. We have suess-
fully applied our method, and the developed prototype, to this simpli�ed example.

2.2 Methodology

In this setion, we give an overview of the testing methodology that is proposed in
this hapter.

The starting point will be the spei�ation of the system under study. We have
taken an SDL [IT94, SRS89℄ spei�ation as our input. The �rst step is to translate
this spei�ation (manually) into a form understood by the model heker. Sine
we used the model heker SPIN [Hol96℄, we translated this SDL-spei�ation into
Promela, the modeling language of SPIN. The struture of a Promela model (several
parallel proesses, whih an ommuniate both through shared variables and through
hannels), also �ts neatly with SDL-desriptions. The Promela-ode was reated from
the SDL-spei�ation by hand, but a few maros were used to bring the Promela ode
loser to the SDL-ode. Our orretness riterium for the implementation will be, that
every possible trae of the implementation must also be a trae of the SDL model
(and thus of the Promela model, whih is assumed to be equivalent), as far as its
external behaviour is onerned. Furthermore, the system may not deadlok if the
SDL model does not deadlok. Beause we will be assuming that the SDL desription
is deterministi, this atually means that the traes must be equivalent.

During this translation, and even during the reation of the spei�ation itself,
it is a good thing to already start looking at the testing goals. Sometimes auxiliary
variables are neessary to ount the number of times a ertain step in the proess has
been taken or is being taken (as the value of suh a variable might be part of the
testing goal). Also the degree of simpli�ation might di�er, depending on what is to
be tested.

In this model we also inorporate a so-alled stimulation proess. This is an
added proess, that regulates the external inputs and/or the independent ations of
the system to be tested. It sends messages to the other proesses, either through a
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speialised hannel or through the hange of some variable, that normally work as
a trigger for performing some ativity. For example, in our test ase, a model of a
telephony servie, the stimulation proess regulates whih alls are to be attempted.
The stimulation proess is restrited to only those parts of the system that atually
are under outside ontrol. Every message that is in the stimulation proess, must
orrespond to a ommuniation from the outside world, or an outside-ontrolled part
of the system, to the system.

Next, we have to develop a test purpose. This onsists of the desired harateristis
of the test traes to be developed. Of ourse, these harateristis have to be hosen
suh that the test traes to be found have a high hane of athing implementation
errors, that is, they should desribe a situation where the system is likely to behave
di�erently from the spei�ation in the ase of errors. Beause of this, it is important
to guess whih kind of errors are most likely to our, or most important to be found.

In their most simple form these testing purposes onsist of a property or a set of
properties for the �nal state of the trae, but they ould also be more ompliated, for
example a series of states (distinguished by their properties) that have to be traversed,
or an added restrition on the states before the �nal one. The only onsideration is
that it must be possible to write the testing purposes down in (temporal) logi.

These two additions (stimulation proess and testing purpose) give two ways of
ontrolling the test trae developed. The stimulation proess desribes the searh
spae for traes, while the testing purpose regulates whih kind of traes are atually
generated. Of ourse these two will be onneted: On the one hand one an ause
the stimulation proess to make only those ations happen whih bring the testing
purpose loser, thus making the number of possibilities heked smaller, or one an
disallow the most trivial ways of reahing the testing purpose, thus �nding other,
possibly more interesting, traes. Finally, one an re-use the same testing purpose by
using it together with di�erent stimulators.

We now take a model heker (in our example SPIN), and take the negation of
the testing purpose as a so-alled never-laim. In normal usage of model hekers
the never-laim is an asserted logial invariant of the model, and should therefore
never beome false (hene the name never-laim). The model heker then runs the
model, heking whether the never-laim ever beomes false, and presenting a trae
that makes the never-laim false if this is the ase. Here we take the negation of the
testing purpose, whih will ause the trae found to be one in whih the negation of
the testing purpose is false, and hene the testing purpose itself is reahed. In general
there will be more than one test trae possible that ful�lls the testing purpose. In
that ase the model heker will make an essentially nondeterministi hoie (although
some model hekers might allow one to �nd all traes, or one partiular (suh as the
shortest)).

From an output of SPIN (whih ontains all the information about the trae
that is found) we reate Interworkings (IW) [MvWW93℄, a (TUE and Philips) loal
variant of synhronous MSC-like diagrams (see Chapter 4 for a detailed introdution
of MSC). The reason we do this, is that our �nal goal is to derive a test desription
in TTCN [KW91℄, and there is a tool available [FJ96℄ to translate IW into TTCN.
The SPIN-output also ontains some MSCs, whih an be used for a quik san of the
trae found, and thus an give help for human ontrol of the test generation proess.
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Figure 2.1: General method

A sheme of the method an be found in Figure 2.1. The part on the left left of
the dashed line is mainly manual work, the part on the right is done by tools.

2.3 Case Study: Testing Intelligent Networks

In this setion we apply our method to an example from the �eld of Intelligent Net-
works (IN). We have modeled a telephony servie with two features, OCS (Originating
Call Sreening) and HOT (Hotline). Using our methods, we will derive a single test
trae.

2.3.1 Intelligent Networks

Beause of the ever-growing amount of possibilities of telephone servies, a new
paradigm for telephony and onneted teleommuniation has been developed: Intel-
ligent Networks. The following itation from [SMC+96℄ haraterises the IN-onept:

Intelligent Network (IN) servies are ustomised telephone servies, like
e.g., 1) `Free-Phone', where the reeiver of the all an be billed if some
onditions are met, 2) `Universal Private Telephone', enabling groups of
ustomers to de�ne their own private net within the publi net, or 3)
`Partner Lines', where a number of menus leads to the satisfation of all
desires. The realisation of these servies is quite omplex and error prone.

The urrent trend in advaned IN servies learly evolves towards deou-
pling Servie Proessing Systems from the swith network (see e.g. [CK94℄).
The reasons for this tendeny lie in the growing need for deentralisation
of the servie proessing, in the demand for quik ustomisation of the of-
fered servies, and in the requirement of rapid availability of the modi�ed
or reon�gured servies.
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Servie Creation Environments for the reation of IN-servies are usually
based on lassial `Clipboard-Arhiteture' environments, where servies
are graphially onstruted, ompiled, and suessively tested. Two ex-
treme approahes haraterise the state of the art: The �rst approah
guarantees onsisteny, but the reation proess is strongly limited in its
exibility to ompose Servie Independent Building Bloks (SIBs) to new
servies. The seond approah allows exible ompositions of servies,
but there is little or no feedbak on the orretness of the servie under
reation during the development: the validation is almost entirely loated
after the design is ompleted. Thus the resulting test phase is lengthy and
ostly.

For more information on IN we refer to e.g. [BW94, CK94℄.
In [VWK95℄ the need for servie testing in the ontext of IN is explained and

a framework for testing teleommuniation servies is presented, where it is stressed
that next to the servie itself, the underlying platform and the already existing servies
should be tested as well.

2.3.2 A Simple Model

We will model an Intelligent Network with two speial servies (whih we all 'fea-
tures'), namely OCS (Originating Call Sreening) and a simpli�ed version of HOT
(Hotline). In Originating Call Sreening, phone alls an be bloked by the reeiver
depending on the originator of the all. In Hotline, the dialing of frequently used
numbers is made easier by ausing another (smaller) number to result in the same
onnetion. In our model, the Hotline will be established on dialing any number that
is not a servie number. Adding a feature an be done without muh problems (al-
though it will inrease the size of the spae state, and thus might ause the generation
time for the test trae to inrease slightly).

In our model we will deouple the SSP (Servie Swithing Point), whih onnets
the user with the servies, and the SCP (Servie Control Point), whih physially
ontains the servies. This deoupling is suggested within the literature (see above),
beause the implementation and maintenane of the system is easier if the (stable)
basi funtions are deoupled from the (dynamially added) features. For the model
there would be only little hange if we had not implemented this deoupling, but for
the test trae generation this might very well be important, sine an overload of the
onnetion between SSP and SCP might be a ause of errors.

In Figure 2.2 we see the arhiteture of an Intelligent Network as it is represented
by our model. The SSP is responsible for the onnetions between the telephones,
and the onnetions between the telephones and the SCP. It an be modeled in for
example SDL.

Through a speial hannel, ss7, the SSP is onneted to the SCP. The SCP heks
whih, if any, features have to be used in a given all. In our model the SDP (Servie
Data Point), whih does the maintenane of the features, that is, keeping trak of
whih features are enabled for whom and how they are on�gured, and the SCP
have been ombined into one proess. The SCP is normally modeled by Servie
Independent Building Bloks (SIBs) [SMC+96℄.
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Figure 2.2: IN arhiteture

In Figure 2.3 we see an SDL-model of the SSP as we have modeled it. This model
is based on [RV94℄. Identi�er A here stands for the person attempting to make the
all, B for the person being alled. The SSP is idle until there is an o�-hook message
(A o� hook), after whih a dial tone is sent to phone A, and then the SSP is in the
await digits-state. This one an end in two ways, namely by A putting the phone on
hook, and by A dialing a number. In the �rst ase the (attempted) all ends, and the
SSP beomes idle again. In the seond ase, the SSP heks whether the line alled is
busy; if it is it generates a busy tone and waits for an on hook, otherwise the seond
phone starts ringing and a onversation is attempted. The rest of the �gure reads
likewise.

This sheme is simpli�ed from the form we used in our model in a few ways:
Firstly, there an be more than one attempt for making a talk. Beause of this,
many opies of this sheme are running at the same time, one for eah all attempted.
Seondly, not all ations (the sending of tones and talk aross the telephone lines) are
shown. In the third plae, this only spei�es the behavior in absene of any speial
features. The presene of features inuenes the e�et in the following ways:

� Hotline hanges the line with whih a onnetion is attempted.

� OCS makes `alled line busy?' true even when the line is not busy.
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Figure 2.3: SDL-model of the SSP
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� After the digits are dialed, it is �rst heked whether they are the digits for
adding or removing a feature. If so, the feature is enabled/disabled/hanged,
and the phone waits for an on hook.

We translated this SDL-model into PROMELA-ode. We will not give the om-
plete (5-page) PROMELA-ode of our model here, but only a few representative parts.
First, we give a part of the SSP-ode:

STATE(ringing)

:: signal[A℄?on_hook -> atomi {

line[A℄ = silent;

line[B℄ = silent;

busy[A℄ = false;

busy[B℄ = false;

NEXTSTATE(idle)

}

:: intern[B℄?off_hook -> atomi {

line[A℄ = blabla(B);

line[B℄ = blabla(A);

BCP_aount[A℄++;

NEXTSTATE(onversation)

}

ENDSTATE

In Figure 2.3 this state ('ringing') an be found a bit above the middle (below
the ation `path set-up'). Take speial notie of the variable BCP aount[A℄. It is
inremented eah time A has made a suessful attempt to engage in a talk. It has
no funtion in the model, but we inlude it beause (part of) our testing goal will be
that the number of alls by one subsriber exeeds a ertain number.

The model of the SCP is shown below (OCS is a 5 times 5 boolean array, HOT is
an integer array of length 5):

do

:: ss7?feature(A,B) -> if

:: B/100 == 66 -> HOT[A℄ = (B - 6600)

:: B/100 == 88 -> OCS[B - 8800,A℄ = true

:: B/100 == 89 -> OCS[B - 8900,A℄ = false

fi

:: ss7?hek(A,B) -> s = OCS[A,B℄;

ss7!heked(!s,_);

if

:: (s == 1) -> IN_aount[B℄++

:: else -> skip

fi

:: ss7?lookup(A,B) -> if

:: (HOT[A℄ == A) -> ss7!lookuped(A,B)

:: (HOT[A℄ != A) -> ss7!lookuped(A,HOT[A℄)

fi

od

First, there are a few arrays: OCS[A,B℄ is true i� B is bloking messages from A;
HOT[A℄ is the Hotline A has (if it has A as its value, A does not have a Hotline).
These arrays are �lled in the skipped part.

The SCP gets its orders from the SSP through the ss7-hannel. The message
'feature(A,B)' adds or removes a feature, the message `hek(A,B)' asks whether A
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is allowed to all B, and the message `lookup(A,B)' tells A has dialed the number B,
and asks with whih phone a onnetion should atually be attempted.

Through this same hannel the SCP sends the results bak to the SSP. If the order
was a hek, it sends `heked(!s, )', where s is true i� B is bloking messages from
A, while the seond one (' ') is a dummy variable, whih is only needed beause the
ss7 is a 3-variable hannel. If the order was a lookup, then `lookuped(A,H)' is sent,
where H is A's hotline if any, and B otherwise, so in fat it is sending the number
that will be the real reeiver of the message.

As before, there is an auxiliary variable: IN ACCOUNT[B℄, whih ounts the
number of alls to B that have been bloked by B.

The stimulation proess ontrols the amount of non-determinism in the system.
An example of a stimulation proess an be found below:

protype stimula()

{

all[2℄!6603; /* 2 has Hotline to 3 */

all[4℄!8801; /* 1 should not all 4 */

do

:: all[4℄!8901 /* 1 may all 4 again */

:: all[1℄!4

od

}

The ation all[A℄!B sends a message to phone A, telling it to attempt to make a
all in whih it dials number B. So the stimulation proess above �rst orders phone 2
to reate a Hotline to 3, then orders phone 4 to reate an OCS towards 1, and then
goes through a yle, every time either ordering phone 4 to stop its OCS towards 1,
or ordering phone 1 to attempt a all to phone 4.

This is of ourse just one example of a stimulation proess. We have worked with
several di�erent proesses in order to get di�erent traes.

2.3.3 Generating a Test Sequene

As an example, we will generate an interesting trae. As a working hypothesis we
assumed that problems were likely to arise due to mistaken alloation of shared re-
soures, espeially if some resoure was used too extensively. This leads to testing
goals like `There are n SDP-aesses taking plae' However, beause our main goal
was the testing of the feasibility of the general method, we have only used the simplest
ases in pratie, suh as:

� Phone A has made a suessful all

� Phone A has made two suessful alls

� Phone A and B have been onneted in a suessful all

� An SDP-aess is taking plae

In pratie more omplex situations have to be heked. This might ause a
longer omputation time, beause the minimal length of a trae that has the desired
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properties is longer, and the testing purpose is more ompliated. Neither seems to
be really problemati, though.

As an example we take the testing goal `Phone 1 has made a suessful all', with
the stimulation proess as desribed above.

In SPIN the testing goal an be implemented as a \never-laim".

#define ALWAYS(P) never { do :: P :: !(P) -> break od }

#define CLAIM(A) (BCP_aount[A℄ < 1)

ALWAYS(CLAIM(1))

SPIN will look for traes in whih the proess de�ned by the never-laim has
ended. In our de�nition of ALWAYS(P) this means that P has been false at some
plae of the trae { in fat, at the last step of the trae. So if we make our laim
ALWAYS(P), then SPIN will be looking for a trae that ends with a situation in
whih P is NOT true. As we want to have a trae in whih phone 1 has made a
(suessful) all, this P must be `Phone 1 has not made a all', whih, beause of
the addition of the variable BCP aount[A℄ into our model, simply translates into
`BCP aount[1℄<1'.

This model was run using SPIN (XSpin). It did �nd a trae to a state in whih the
BCP-aount of telephone 1 is at least 1. The main part of the SPIN-output onsists
of listings of the following form. It is in fat a omplete list of the ations taken by
the various proesses, with some information added (the line of ode where the ation
is desribed, the value of variables that have hanged, etetera).

1: pro - (:never:) line 319 "pan_in" (state 1) [((BCP_aount[1℄<1))℄
2: pro 1 (:init:) line 323 "pan_in" (state 1) [(run phone(0))℄
3: pro - (:never:) line 319 "pan_in" (state 1) [((BCP_aount[1℄<1))℄
4: pro 2 (phone) line 93 "pan_in" (state 1) [self = self℄

phone(2):friend = 0
phone(2):state = 0
phone(2):self = 0

5: pro - (:never:) line 319 "pan_in" (state 1) [((BCP_aount[1℄<1))℄
6: pro 2 (phone) line 94 "pan_in" (state 2) [((self==0))℄
et.

TESTER 0 1 2 3 4

signal(off_hook)

 dial_tone 

digits(8801)

 accept_tone 

signal(off_hook)

 dial_tone 

signal(off_hook)

digits(2)

 ringing_tone 

 ringing_cu1

 bla_bla 

 bla_bla 

 ringing_cu1 =  ringing_current 

Figure 2.4: Interworking of test run after inversion



2.3. CASE STUDY: TESTING INTELLIGENT NETWORKS 25

XSpin enables us to inspet this trae as an MSC, whih we will not display here.
We used a series of Unix shell-sripts and existing tools to transform the trae into an
Interworking. To this Interworking we applied an `inversion' [FJ96℄, whih transforms
the output lines of the various proesses into input lines. This failitates the use in a
testing environment, beause we an now regard them as orders to do ertain ations,
instead of the ations themselves. We deided to reeive line-states as (observation)
ations. This resulted in the Interworking shown in Figure 2.4.

Tools exist to translate this into TTCN. For the ase at hand the TTCN looks as
follows:

+---------------------------------------------------------------------------+
|Test Case FEATURE_INTERACTION_TEST 1 |
+---------------------------------------------------------------------------+
|Test Case Name : FIT 1 |
|Group : \1 |
|Purpose : 1st demo use SPIN FI TESTING |
|Default : |
|Comments : |
+---------------------------------------------------------------------------+
|Nr | Label | Behavior Desriptions | Constraints Ref | Verdit |

4!signal(off_hook)
[line 4 = dial_tone℄ (PASS)
4!digits(8801)
[line 4 = aept_tone℄ (PASS)
1!signal(off_hook)
[line 1 = dial_tone℄ (PASS)
2!signal(off_hook)
1!digits(2)
[line 1 = ringing_tone℄ (PASS)
[line 2 = ringing_urrent℄ (PASS)
[line 1 = bla_bla℄ (PASS)
[line 2 = bla_bla℄ PASS
[OTHERWISE℄ FAIL
[OTHERWISE℄ (FAIL)
[OTHERWISE℄ (FAIL)
[OTHERWISE℄ (FAIL)

[OTHERWISE℄ (FAIL)
[OTHERWISE℄ (FAIL)

[OTHERWISE℄ (FAIL) |
+---------------------------------------------------------------------------+

In general it is not the ase that the TTCN generated from the trae in suh
a straightforward manner is diretly orret as a test. The problem is the orret
assignments of verdits to the alternatives, all of whih are made FAIL initially. We
disuss three approahes to deal with this problem.

The �rst approah is as follows: subdivide the trae into two parts, an initial part
whih serves for setting-up the servies and ontextual onnetions, followed by a
seond part, usually muh shorter, whih haraterises the intended behaviour of the
system. For example in the test ase FIT1 given above, the two observation ations
[line1 = bla bla℄ and [line2 = bla bla℄ should be interpreted as a haraterisation of
the intended behaviour (all established), so the alternatives of the seond part ould
keep the assigned FAIL verdits. The verdits of the alternatives of the steps of the
�rst part an be turned into INCONCLUSIVE.

The seond approah is a further re�nement of this. The generated TTCN is only
onsidered as a draft of the orret test ase, whih is to be obtained by heking the
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verdits and adding more alternatives (some of whih may also get PASS). This is the
approah of [FJ96℄, where it is shown in detail how a simulator is used (during multiple
runs of the simulator) to �nd out in how far the ruial steps are deterministi, and
if not, what the interesting alternative behaviours are (in the step-by-step method
of [FJ96℄, these are the steps 13, simulate alternatives and 14, omplete the TTCN
desription).

The third approah to the problem of verdit assignment to alternatives is to adapt
the Model Cheker and make it produe trees or graphs rather than sequenes. This
is the approah of the tool TGV [FJJV97℄.

So far we have only used temporal laims of a partiularly simple kind, viz. invari-
ants (suh as ALWAYS(INV(1))). So we ought to disuss whether temporal laims in
general are useful as well. In the lassial usage of a Model Cheker, i.e. for veri�a-
tion purposes, it will attempt to falsify laims like: \it is always true that when the
sender transmits a message, the reeiver will eventually aept it". For test generation
purposes however, the temporal laim ould be used to say for example: \it is always
true that when A is in state trying-to-reah-B, the SSP (Servie Swithing Point) will
eventually onnet A and B". Of ourse this laim need not be true, e.g. beause it is
preisely the purpose of ertain servies (like OCS) to prevent onnetions from A to
B to happen. Therefore, suh a temporal laim, when falsi�ed, results a trae leading
to a state where this `prevention' servie has been put into operation.

2.4 Conlusions

Model heking an be useful as a tehnique for generating test traes. This an be
done using existing tools, at least on prototype level. A reservation has to be made on
the point of the saling-up of the tools, beause we have only tested small examples.
Also the time and memory onsumption of the method have not yet been investigated.
If we want to use this in pratie we will probably need more speialised tools, and
we must be able to onnet them to servie-reation environments.

We found that our way of working (seleting a trae leading to an interesting
state) is a promising one. This way, a part of the hard work of the reation of test
traes an be automated. Traes an be seleted to agree with given testing purposes
without having to step down too far in abstration.

A restrition to the appliability of the method, at least in the urrent form, is
that the appliation to be tested should reat deterministially to the test input. The
reason for this is that otherwise a trae in whih an error has ourred annot be
distinguished from one in whih the internal non-determinism has aused the system
to reat di�erent from the derived test trae, but still within the spei�ation. If the
system is not deterministi, the method is still useful, but in that ase more manual
work is needed to omplete the test ase. This step ould of ourse also be automated.
One possibility ould be to hek all supposed failure traes with the model heker
again to see whether they still �t on the system. This method is desribed more
extensively in [CSE96℄.

Our method supports a part of the test trajet, namely the derivation of a test
trae from a given test purpose. Formulating the test purpose, the stimulation proess



2.5. RELATED WORK 27

and the model remains a task that has to be done by hand, and requires an amount
of domain spei� knowledge.

Another way of working might be introduing deliberate errors in the SPIN pro-
gram, whih are supposed to model possible errors in the design, and reating a trae
in whih the error ours. We ould all this 'negative testing', beause in this ase
we are onstruting traes we want the real design NOT to be able to follow, while in
the onstruts given until now, we wanted the design to follow the trae we gave it.
An example of suh a negative test is a trae that leads to a onnetion between two
subsribers while the alled party is refusing alls from the alling party by using the
OCS feature.

However, we think that positive testing is more suitable to ombination with the
given method, beause for negative testing we need to make many more assumptions
about the kind of errors that might our. In negative testing we need a rather spei�
idea about WHAT errors an our, in positive testing we only need to hypothesise
on WHEN they our. When looking for spei� errors, negative testing is the way
to go, but if the purpose is to make a general hek of a system, positive testing is
muh more useful.

One objetion to our method ould be that in order to generate a trae satisfying
the property heked, the Model Cheker risks searhing the entire state spae, whih
may be infeasible (the problem of the state spae is often stated as an argument for
the need of testing in the �rst plae). Although this is true in priniple, the important
observation is that a Model Cheker suh as SPIN has powerful tehniques built into
it (suh as the supertrae algorithm) to ope with the state spae problem. In our
opinion it is important that (if testing annot be made superuous by other means,
for any reason whatsoever), the testers should use powerful and high-level tools as
well; in partiular this holds for the intermediate situation where fully automated
testing is infeasible and where fully manual test generation is too ostly.

2.5 Related Work

Several other authors have made attempts to use Model Cheking for test generation.
Although di�erent methods are proposed, the basi idea is always that model heking
tools are used to easily �nd traes to a state with some given desired properties.

In [CSE96℄, no omplete method is given for using model heking for testing.
Rather, the authors mention model heking's possibilities for the generation of test
ases as well as for other aspets of testing (heking of the validity of test traes
and seleting test traes among a greater number of them). The methodology that
would ome most losely to the ideas in this hapter would be to derive a number n
of boolean variables on the system state, and �nd traes to eah of the 2n possible
ombinations of values of these variables that an atually our, taking these as test
traes. The advantage over more random methods of test generation is that there is
likely a better overage of all aspets of the system.

The method in [ABM98℄ is losely related to the abovementioned idea of 'negative
testing'. In these artiles, so-alled mutation operators reate a variant of the original
spei�ation, and these mutated spei�ations are then ompared to see whether there
is a trae to make them diverge from the original spei�ation. These traes are then
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used as test traes. In [BOY00℄, a number of mutation operators are de�ned, and it
is heked whih one gives the best overage when applied to an example system.

Two methods are proposed in [GH99℄. The �rst is to use the negation of some
known properties of the system. The seond, in our opinion more interesting, method
is to hek a path to every branh of a deision. An extra variable is added, whih
gets a di�erent value in every branh, and paths are found that lead to the various
values of these variables.

Unlike the abovementioned artiles, in [VT00℄ model heking is not used to
rapidly �nd traes with a ertain property. Rather, Promela is here used mostly
as a spei�ation language, and the main reason that model heking tools have been
hosen in favour of other tools, is that they provide methods to store the state spae
eÆiently.

The various methodologies have di�erent appliation domains. Most of the above-
mentioned methods are espeially adapted to medium-sized systems, where a test set
that is more or less exhaustive is still possible. Our method is more appliable for
large systems, where suh an ideal is far out of reah, and tests have to be restrited
by neessity to just a part of the system, and where it is therefore of great importane
that tests are foused on those situations that are most likely to show errors.



Chapter 3

LOGAN: A LOG ANalysis

Language

3.1 Introdution

Teleommuniation systems are very omplex, whih makes testing important. Test-
ing typially involves the design or automati generation and seletion of suitable test
ases, i.e. tests that over muh of the system's behavior, the appliation of these tests
to the system, and analysis of the test results. Ideally, the expeted outome of a
test ase is spei�ed when that test ase is reated, so that analysis of the test results
boils down to omparing the real outome of a test ase with its expeted outome.

We will examine a real life test result analysis problem whih arises from a non
ideal method of testing. At the Test&Release enter of KPN Teleom, a representative
opy of the Duth publi telephony network, alled TESTNET, is used to test the
exeution of tariÆng and all registration. Figure 3.1 shows how these tests are
arried out. Firstly, a test sript, whih desribes a ertain test ase, is made. This
sript an then be exeuted by a Call Generator, a system that an make alls via the
TESTNET network. TESTNET produes so-alled Call Data Reords (CDRs). A
CDR is reated eah time a suessful all is terminated (a suessful all being a all
in whih a onnetion was established between two or more subsribers). It ontains
information about that all whih is used for tariÆng, suh as the subsribers that
were involved and the duration of the all. Test result analysis for this type of test
onsists of heking the orretness of the ontents of the CDRs that were produed
during the test.

If the `ideal' testing proess were followed, eah test sript would be aompanied
by the CDRs that are expeted to be produed by TESTNET. These ould then be
ompared with the CDRs that were atually produed during the test. At KPN T&R,
however, no expeted CDRs are spei�ed before the exeution of a test; a possible
reason for this, is that system spei�ations, on whih test predition should be based,
are missing or unlear. Instead, the CDRs are ompared with other data produed
during the test, namely a log �le that ontains the signals that the Call Generator and
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Test Script TESTNET Call
Data
Records

Expected
Call
Data
Records

Automated
Log Analysis

Call Generator

Log File Analysis Test Verdict

Comparison

Figure 3.1: CDR testing on TESTNET, and a proposal to automate the analysis of
test results

TESTNET exhanged. The analysis onsists of �nding signal traes of suessfully
terminated alls in the log �le, mathing these with the orresponding CDRs, and
determining if the information in a CDR is orret, based on the information in the
trae. This analysis is arried out manually.

Aepting the fat that real test predition for the CDR testing proess is not
something that an be implemented in the near future, we will investigate the possi-
bility of automated analysis of log �les. Figure 3.1 (the dashed box) shows how this
ould �t in the urrent analysis proedure. Given a log �le, the automated analysis
produes `expeted' CDRs whih an be ompared with the real CDRs.

We will only onern ourselves with �nding signal traes orresponding to suess-
ful alls, as the onstrution of a CDR, given a trae, should not be that diÆult.
What is left is a type of pattern mathing problem, whih leaves us in fat with two
problems: what is a pattern in our ase, so, what kind of traes do we want to �nd,
and how do we do the mathing , so, how do we atually �nd them?

We de�ne a pattern desription language that enables us to desribe the properties
of the traes we are interested in, and present an algorithm that, given a pattern
desription and a log �le, �nds all the traes in that log �le that math the pattern.



3.2. FINDING CALL TRACES IN LOG FILES 31

3.2 Finding Call Traes in Log Files

The proess that we want to automate is the searh for suessful alls in a log �le.
Figure 3.2 shows a fragment of a log �le. It is a sequene of signals, where eah signal
is sent by a user (Call Generator) to the system (TESTNET), or reeived by a user
from the system. The number with whih eah signal starts identi�es the user; it is
his telephone number. The form of a signal does not show if it was sent or reeived by
a user. For anybody familiar with telephony, the name of a signal should be a lear
indiation of its diretion. Moreover, the diretion of signals is not important for our
problem.

30:Off_Hook
30:Dial_Tone
10:Off_Hook
30:Dial(32)
10:Dial_Tone
30:Busy_Tone
10:Dial(20)
10:Ringing_Tone
30:On_Hook
20:Ringing
30:Off_Hook
20:Ringing
30:Dial_Tone
20:Off_Hook
30:Dial(20)
30:Busy_Tone
10:On_Hook
30:On_Hook
20:On_Hook

Figure 3.2: Fragment of a log �le

In reality the signals in a log �le are aompanied by time stamps, but we do not
show these beause they do not play a role in the problem of �nding suessful alls
(they do play a role in the problem of generating CDRs for these suessful alls).

The log �le shown in Figure 3.2 ontains one suessfully terminated all, from
user 10 to user 20 to be preise. In Figure 3.3(A) the same log �le is depited, but
with the all trae of that suessful all highlighted. With eah suessful all made
during the test orresponds a sequene of signals, a all trae, in the log �le that was
produed. Finding suessful alls means �nding suh traes.

3.2.1 Charateristi Sequenes

So how do we reognise a sequene of signals as the trae of a suessful all? As
a �rst attempt, we notie that the trae of a suessful all will ontain a ertain
subsequene of events that identi�es it as suh. Suh a subsequene we will all a
harateristi sequene. A harateristi sequene of a suessful phone all ould for
example be the pattern:
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A:Dial Tone; A:Dial(B); B:Off Hook; (A:On Hook or B:On Hook);

The variables A and B here stand for two di�erent subsribers. They funtion as
parameters of the pattern, and must math phone numbers in a log �le. We will thus
need some kind of parametri pattern mathing [Bak96℄.

In the pattern above, one an reognise the typial senario of a normal phone
all: the A party reeives a dial tone, it dials the phone number of the B party, whih
responds by going o� hook, and, �nally, the all is terminated by one of the parties
going on hook. In Figure 3.3(B) a harateristi sequene mathing this desription
is highlighted. It identi�es the trae highlighted in Figure 3.3(A) as a suessful all.

30:Busy_Tone

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook
20:On_Hook

30:Dial(32)

30:Dial_Tone
30:Off_Hook

10:Off_Hook

10:Dial_Tone

10:Dial(20)
10:Ringing_Tone

20:Ringing

20:Ringing

20:Off_Hook

10:On_Hook

30:Busy_Tone

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook
20:On_Hook

30:Dial(32)

30:Dial_Tone
30:Off_Hook

10:Dial_Tone

10:Dial(20)

20:Off_Hook

10:On_Hook

10:Off_Hook

10:Ringing_Tone

20:Ringing

20:Ringing

(A) (B)

Figure 3.3: (A) A all trae in a log �le, (B) A harateristi sequene in a all trae

However, �nding harateristi sequenes is not enough to solve the problem of
�nding suessful alls. On the one hand, they reognise too little, beause ertain
legitimate alls will not math the above pattern. On the other hand, they reognise
too muh, beause events that are atually unrelated might 'aidently' form a pattern
like the one desribed above.

3.2.2 Problem 1: Other Call Types

In present day telephony, `normal' phone alls are not the only alls being made.
Telephony systems have been enhaned, and keep being enhaned, with all kinds of
speial servies like all forwarding, all waiting, and automati ring bak. The use of
suh a servie in a all an lead to a suessful all that does not math the pattern we
have given. We will illustrate this by giving an example of the use of all forwarding.

In all forwarding, a subsriber an issue the system to forward all alls made to
his telephone to another telephone. He an do this by dialing the ode *21, followed
by the phone number of the new destination. We will use the signal A:Dial*21(B) to
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denote the ativation of the all forwarding servie, where A is the subsriber, and B

the new destination, and A:Dial#21 for the deativation of the all forwarding feature
by subsriber A.

(A) (B)

30:Busy_Tone

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook

30:Dial(32)
10:Off_Hook

10:Dial_Tone

10:Dial(20)
10:Ringing_Tone

10:On_Hook

50:Ringing

50:Ringing

50:Off_Hook

50:On_Hook

30:On_Hook

30:Off_Hook

30:Dial_Tone

30:Dial(20)
30:Busy_Tone

30:On_Hook

10:Dial_Tone

10:Dial(20)

10:On_Hook

10:Off_Hook

10:Ringing_Tone

50:Off_Hook

50:Ringing

50:Ringing

50:On_Hook

20:Dial*21(50)
30:Off_Hook

30:Busy_Tone

30:Dial(32)

Figure 3.4: (A) A all trae of a forwarded all, (B) A harateristi sequene of
signals for all forwarding in a all trae

Figure 3.4(A) shows the trae of a forwarded all. Although this is a legal all, it
does not ontain a math for the pattern we have de�ned. The only di�erene of this
trae with the normal all trae depited in Figure 3.3(A), is the phone that answers
the all, 50 instead of 20. Apparently, phone 20 has been forwarded to phone 50.
If the ativation of the servie took plae before the test was exeuted, there is no
reord of the ativation in the log �le and there is little hope of identifying the all
trae of Figure 3.4(A) as a suessful (forwarded) all. If the ativation took plae
during the test, the log �le will show this. The following pattern then seems a good
andidate for identifying forwarded alls:

B:Dial*21(C); A:Dial Tone; A:Dial(B); C:Off Hook; A:On Hook or

C:On Hook;

In Figure 3.4(B) a subsequene of the trae of a forwarded all is highlighted that
mathes this pattern.

This example shows that di�erent all types require di�erent patterns. There is
however the well known problem of feature interation [CV93, Mid94℄. Servies, also
known as features, an interat with eah other in a all, and it is possible that this
results in a all trae that an not be reognised with any of the patterns designed
for the individual servies. So, a ombination of servies an, in a way, give rise to
yet another all type, and sine servies an be ombined in many ways, if we want
to �nd all suh alls, we will need to de�ne a lot of patterns, maybe even an in�nite
number of them.
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A good example of a feature interation ausing problems, is the interation of
all forwarding with itself. Using all forwarding, it is possible to make a hain of
forwarded phones. A phone an be forwarded to a phone that is forwarded to yet
another phone that is forwarded to. . . , and so on. In our forwarded alls in Figure
3.4, phone 20 was forwarded to phone 50. Had phone number 50 been forwarded to
yet another phone itself, then our all forwarding pattern would have been reognised
by neither a normal all senario nor our all forwarding senario.

As a matter of fat, the kind of pattern mathing that we want to do, whih is
related to string mathing and sequene mathing [KMP77, BM77, Wat95, DFG+97℄,
is not really suited for �nding alls that are forwarded through long forwarding hains.
If one wants to �nd alls with any number of forwardings (or whihever other ombina-
tion of (unrestritedly) many servies), only methods that go beyond merely pattern
mathing will be able to detet all possible ombinations.

3.2.3 Problem 2: Coherene of Charateristi Sequenes

The �rst problem mentioned at the end of Setion 3.2.1, i.e. that of reognizing too
little with our pattern, an thus be solved by de�ning di�erent patterns for di�erent
all types, at least to some extent. We will now deal with the seond problem men-
tioned at the end of Subsetion 3.2.1, i.e. that of reognizing unrelated events as if
they were part of a pattern.

30:Dial_Tone
30:Off_Hook

30:Busy_Tone

30:Dial(32)
10:Dial_Tone

10:Off_Hook

30:Off_Hook

10:Dial(20)
20:Off_Hook

30:Dial_Tone
30:Dial(20)
10:On_Hook
30:Busy_Tone
30:On_Hook
20:On_Hook

30:On_Hook

50:Off_Hook

50:Dial_Tone

10:Busy_Tone

20:Dial*21(50)
50:Dial*21(60)
10:Off_Hook
10:Dial_Tone
10:Dial(20)
30:Off_Hook
60:Off_Hook
50:Off_Hook
50:Dial_Tone
30:Dial_Tone
10:On_Hook
60:On_Hook
50:Dial(80)
30:Dial(32)
30:Busy_Tone
50:Busy_Tone
50:On_Hook
30:On_Hook
10:Off_Hook

(A) (B)

Figure 3.5: Erroneous reognition of a normal all (A), and a forwarded all (B)

Examine the log �les shown in Figure 3.5. Log �le (A) ontains a harateristi
signal sequene of a normal all, but it does not ontain a suessful normal all.
The off hook signal, in this ase, is not the response to the inoming all but the
initiation of another all. So, a number of unrelated signals are mistaken as a witness
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of the presene of the all trae of some suessful normal all. Something similar
holds for log �le (B), where a forwarded all is erroneously reognised.

We want to be able to determine whether a harateristi signal sequene in a log
�le really is part of one all, or is just a olletion of signals from di�erent (suessful
or unsuessful) alls. Figure 3.5 shows how this ould be done. The 10:Busy Tone

signal in log �le (A) indiates that the highlighted sequene an never be a witness
of a normal all. Its ourrene between the 20:Off Hook and 10:On Hook signals
shows that something other than a suessful all from 10 to 20 is taking plae. In
log �le (B), both the 50:Dial*21(60) and the 50:Dial Tone signals indiate that
the sequene indiated does not atually signify a suessfully forwarded all.

So, the presene of ertain signals at ertain positions within the log �le segment
oupied by a harateristi sequene, an tell us that that harateristi sequene is
not a witness of a suessful all. The pattern language that we de�ne in the next
setion features suh signals, whih we will all negative signals (as opposed to the
positive signals in a harateristi sequene).

Finally, Figure 3.6 shows how the approah of using positive and negative signals
relates to the system under test, TESTNET. If we regard this system as a huge state
mahine, the positive signals identify state transitions on some path that eventually
leads to a desired �nal state (where a suessful all (of some type) is terminated, so
where a CDR should be reated by TESTNET), whereas the negative signals ause
state transitions that \lead away from the path".

p0 p1 p2

n0
n1 n2

n3

‘‘a successful call is terminated’’

TESTNET

Figure 3.6: How positive and negative signals relate to the system under test

3.3 A Pattern Language: LOGAN

These onepts of positive and negative signals have been inorporated in a pattern
desription language, whih we wall all LOGAN (LOG ANalysis). We will introdue
this language �rst by giving an example pattern for a normal all. A formal de�nition
will follow later in this hapter.

PATTERN normal_all
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BEGIN

A:Dial_Tone;

NOT A:Busy_Tone,A:On_Hook;

A:Dial(B);

NOT A:Busy_Tone,A:On_Hook;

B:Off_Hook;

NOT A:Busy_Tone,B:Busy_Tone,A:On_Hook,B:On_Hook;

A:On_Hook,B:On_Hook;

END

In this pattern we learly reognise the spei�ation of the harateristi sequenes
of normal alls that we presented earlier. Although we have already presented some
spei�ations of harateristi sequenes, we have not yet de�ned what kind of spei�-
ations we use. Any formalism in whih a set of traes an be spei�ed ould be used,
for example, regular expressions, �nite state mahines, grammars, Message Sequene
Charts (MSC) [IT00, RGG96a℄, proess algebra [BW90℄ or a large number of other
formalisms. LOGAN uses a very simple, but beause of that same reason also rather
weak formalism, that of a list of signal sets. The normal all pattern above uses a list
of signal sets to speify the harateristi sequenes of a normal all: fA:Dial Toneg;
fA:Dial(B)g; fB:Off Hookg; fA:On Hook, B:On Hookg. If S0; : : : ;Sn is a list of signal
sets, it represents a set of traes fs0; : : : ; sn j 8 i : 0 � i � n : si 2 Sig.

What is really new in the pattern desription, is the spei�ation of negative
signals. In between the positive signal sets of the pattern, sets of negative signals
are spei�ed, whih are preeded with the keyword NOT to distinguish them from sets
of positive signals. The idea is that not only the list of positive signals should '�t',
but also no negative signals should appear on the plae where they are spei�ed. For
example, between the signals A:Dial(B) and B:Off Hook the signals A:Busy Tone

and A:On Hook may not our. The log �le in Figure 3.5A should not be onsidered
to ontain the pattern desribed above, beause of the ourrene of a 10:Busy Tone

signal between the 20:Off Hook and 10:On Hook signals.
The reader an easily verify that all the negative signals in this pattern are signals

that, when enountered within a harateristi sequene, indiate that the sequene is
not oherent. It is more diÆult to see whether all possible inoherent harateristi
sequenes of a normal all in a log �le, are indeed `rejeted' by the pattern.

Before we give the formal syntax of LOGAN , we will �rst give a seond example,
a pattern for all forwarding:

PATTERN all_forward

BEGIN

NOT C:Dial*21(*);

B:Dial*21(C);

NOT B:Dial*21(*),B:Dial#21,C:Dial*21(*);

A:Dial_Tone;

NOT A:Busy_Tone,A:On_Hook,B:Dial*21(*),B:Dial#21,C:Dial*21(*);

A:Dial(B);

NOT A:Busy_Tone,A:On_Hook,B:Dial*21(*),B:Dial#21,C:Dial*21(*);

C:Off_Hook;
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NOT A:Busy_Tone,C:Busy_Tone,A:On_Hook,C:On_Hook;

A:On_Hook,C:On_Hook;

END

Again, the spei�ation of the harateristi sequenes of forwarded alls that we
gave earlier, an be reognised in this pattern. There are however two new elements
in this pattern, ompared to the last one: A negative signal set preedes the �rst
positive signal set, and wildards (*) are used to denote any subsriber.

The NOT C:Dial*21(*) that starts o� the pattern states that C, whih is the
destination to whih B is going to forward his alls, is not forwarded itself (to anyone)
before B forwards his alls to C. So, a negative signal set preeding the �rst positive
signal set makes perfetly good sense and is very useful, as this example shows. We
will not allow a negative signal set after the last positive signal set. Though from a
`pattern mathing' point of view, there is nothing wrong with this, it does not make
muh sense from the `state mahine' point of view (Figure 3.6). From this point of
view, we want to detet that TESTNET has reahed some state where a suessful
all is terminated. If we are not already in suh a state we an only get there if
something happens, not if something will not happen in the future. From a pratial
point of view suh a restrition seems reasonable: we do not want to have to wait
inde�nitely long in the future before deiding whether or not something is a valid all.

3.3.1 Syntax of LOGAN

The syntax of LOGAN is given in Table 3.1, in the form of a ontext-free grammar.
The grammar is rather straightforward. The two LOGAN pattern examples we have
given over most of the language, so the grammar does not reveal anything radially
new. Worth mentioning perhaps is that signals an have an arbitrary number of argu-
ments, as is expressed by the rules for ACT and ARGs, and that onrete telephone
numbers an be used wherever a variable or wildard an be used, as is expressed by
the rule for SUB.

PAT ::= PATTERN NAM BEGIN BOD END

NAM ::= [a : : :z; A : : :Z; 0 : : :9; ℄+

BOD ::= [NEG POS ℄�

NEG ::= " j NOT SIGs ;
POS ::= SIGs ;
SIGs ::= SIG j SIG,SIGs
SIG ::= SUB:ACT
SUB ::= ID j * j [0 : : :9℄+

ID ::= A. . . Z
ACT ::= SIGNAM j SIGNAM(ARGs)
SIGNAM ::= [a : : :z; A : : :Z; 0 : : :9; ; �;# ℄+

ARGs ::= SUB j SUB,ARGs

Table 3.1: The syntax of LOGAN
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3.3.2 Tabular Form

For pratial purposes, we propose an alternative notation for LOGAN patterns whih
we will all tabular form. Here is the tabular form of normal all:

normal all
Busy Tone On Hook

A:Dial Tone A A
A:Dial(B) A A
B:O� Hook A,B A,B
A:On Hook,B:On Hook

The orrespondene between textual and tabular form should not be hard to grasp.
The name of the pattern is in the upper left �eld of the table. The positive signal sets
are all in the �rst olumn. The negative signal sets are represented by the seond,
third, et. olumns. Eah negative signal is split in its `subjet', i.e. the reeiving or
sending subsriber, and the name of the signal. So the A in the third row and seond
olumn of the table means that A:Busy Tone may not our between A:Dial Tone

and A:Dial(B). We feel that, with its two-dimensional representation of patterns,
the tabular format provides a more user friendly way of writing and reading patterns.
The main reason for this is that subsequent negative signal sets often ontain the
same signals, and this property is readily apparent from the tabular format. If this
was not a property of patterns, then the tabular format would probably be muh less
readable.

The following example in tabular format is a pattern desribing a suessful all
in whih the Call Waiting Hookash servie is ativated. This means that while
subsriber B is onneted to subsriber A, a third person, say C, an all B. B will then
hear a soft warning tone, and when B hookashes, A will be put `on hold' and B and
C an talk. B an swith many times between A and C by hookashing. The example
desribes the situation where B swithes one from A to C and after termination of
the all with C, swithes bak to A. Of ourse, many other all waiting senarios are
possible. In order to �nd these, we would have to write other patterns, or, better, �nd
one pattern that aptures the essene of all, or at least a lot of, all waiting senarios.
We will ome bak to this issue in Setions 3.7 and 3.8.
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all w hksh
Busy Tone On Hook

A:Dial Tone A A
A:Dial(B) A A
B:O� Hook A,B A,B
C:Dial Tone A,B,C A,B,C
C:Dial(B) A,B,C A,B,C
B:Warning Tone A,B,C A,B,C
B:Hookash A,B,C A,B,C
A:Hold Tone A,B,C A,B,C
C:On Hook A,B A,B
B:Hookash A,B A,B
A:On Hook,B:On Hook

Note, that the normal all pattern is present in this all waiting hookash pattern
(rows 3, 4, 5 and 13). The �rst leg of the all, i.e. the onversation between A and B

will therefore also be deteted by the normal all pattern, but this is not the ase for
the seond leg, i.e. the onversation between C and B. This seond leg does not math
the normal all pattern beause B responds to the inoming all with a Hookflash

instead of an Off Hook.

3.4 Formal Semantis of LOGAN

We will know proeed to a formal semantis of LOGAN . In the preeding setions we
have more than one used the term witness of a pattern, meaning a sequene of signals
in a log �le that indiates the presene of the pattern. This term will be entral in
our de�nition of a formal semantis. However, before giving a formal de�nition of the
witness onept for LOGAN patterns, we will �rst give a mathematial desription
of LOGAN patterns.

De�nition 3.4.1 (LOGAN pattern) With a LOGAN pattern, ontaining k pos-
itive signal sets, we assoiate a pair (P;N), where P = (P0; P1; : : : ; Pk�1) is a list of
non-empty sets of signals, and N = (N0; N1; : : : ; Nk�1) is a list of, possibly empty,
sets of signals. For all 0 � i < k, Pi ontains the signals of the i-th positive signal set
of the LOGAN pattern, and Ni ontains the signals of the negative signal set that
preedes Pi. In the remainder of this hapter we will simply all suh (P;N) pairs
LOGAN patterns.

In order to math a LOGAN pattern with a signal sequene in a log �le we have to
establish a relation between the variables in that pattern, whih represent telephone
numbers, and the atual telephone numbers in the log �le. For this, we will use
valuations.

De�nition 3.4.2 (Valuation) Let (P;N) be a LOGAN pattern. A valuation for
this pattern is a partial injetion v : vars(P )!+ Ext , where Ext is the set of extensions,
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i.e. telephone numbers, and vars(P ) denotes the set of variables that appear in the
positive signal sets of the pattern.

So, a valuation assigns telephone numbers to variables in a pattern. The fat
that valuations are injetions implies that di�erent variables in a pattern represent
di�erent telephone numbers. They are partial funtions, beause in order to math a
pattern with a partiular signal sequene in a log �le not all variables in the positive
signal sets need to have an assignment.

We now de�ne how variables and wildards in a pattern an be replaed by atual
telephone numbers, whih will allow us to math atual signals from a log �le with
signal sets of a pattern (whih may ontain variables and wildards).

De�nition 3.4.3 (Substitution and mathing) Let (P;N) be a LOGAN pat-
tern, and v a valuation for that pattern. Let S be some signal set in (P;N) (positive
or negative). Applying the valuation v to the signal set S yields a signal set v(S)
obtained from S by substituting extensions for variables as is presribed by v and
`expanding' all wildards.

By expanding, we mean that all possible substitutions of extensions for wildards
are inluded in v(S). Here is an example of a substitution, where valuation v = fA 7!
1024; D 7! 1060g.

v(fA:Dial(B); D:Dial(*)g) = f1024:Dial(B); 1060:Dial(e) j e 2 Extg

So, given the valuation v, 1060:Dial(1914) mathes fA:Dial(B); D:Dial(*)g, be-
ause 1060:Dial(1648) 2 v(fA:Dial(B); D:Dial(*)g). Note, that under the valu-
ation v, 1024:Dial(1918) does not math this signal set (although we an easily
extend the valuation so that it does).

Now that we have a onvenient mathematial notation for LOGAN patterns,
valuations that assign extensions to the variables in a pattern, and the notion of
signals mathing signal sets (given a valuation), we are able to give a formal de�nition
of a witness of a LOGAN pattern.

De�nition 3.4.4 (Witness) Let (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk)) be a LOGAN
pattern, and L = [s0; : : : ; sn℄ a log �le. A witness of (P;N) on L is a pair (f; v), where
f : f0; : : : ; kg ! f0; : : : ; ng is a so-alled witness funtion, and v : vars(P ) !+ Ext is
a valuation, suh that for all i (0 � i � k), j (0 � j � k) and x (0 � x � n):

1. i < j ) f(i) < f(j)

2. sf(i) 2 v(Pi)

3. minimal (v; f; P )

4. f(i� 1) < x < f(i)) sx 62 v(Ni) (de�ne f(�1) = �1).

where minimal(v; f; P ) � (8w � v :: :(8 i : 0 � i � k : sf(i) 2 w(Pi))). The
demand that a valuation is \minimal" assures that all the variable assignments in the
valuation are neessary. As shorthand for \(f; v) is a witness of (P;N) on L" we will
use (f; v) : L j= (P;N).
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  NOT {}

{A:Dial_Tone}

  NOT {A:Busy_Tone, A:On_Hook}

{A:Dial(B)}

  NOT {A:Busy_Tone, A:On_Hook}

{B:Off_Hook}

{A:On_Hook, B:On_Hook}

  NOT {A,B:Busy_Tone, A,B:On_Hook}

2.  5020:Off_Hook

3.  7777:Dial_Tone

4.  5020:Dial_Tone

5.  5020:Dial(5157)

6.  7777:Busy_Tone

7.  5020:Ringing_Tone

8.  5157:Ringing

9.  7777:On_Hook

10. 5157:Ringing

11. 5157:Off_Hook

12. 5157:On_Hook

13. 5020:On_Hook

1.  7777:Off_Hook

Figure 3.7: a witness with valuation fA 7! 5020; B 7! 5157g

Figure 3.7 depits witness (f0 7! 4; 1 7! 5; 2 7! 11; 3 7! 12g; fA 7! 5020; B 7!
5157g). Beause the domain of a witness funtion is a �nite initial segment of the
natural numbers, we identify witness funtions with lists over the natural numbers.
We an say that Figure 3.7 depits witness (h4; 5; 11; 12i; fA 7! 5020; B 7! 5157g) and
in the sequel we will also use list operators on witness funtions, yielding expressions
like jf j (length of a list), tail(f) (tail of a list), and f++g (onatenation of two lists).

3.5 Algorithm

In this setion we will show an algorithm to �nd all the witnesses of a LOGAN pattern
in a log �le. We will �rst look at an algorithm for a subset of LOGAN whih we will
all LOGAN. LOGAN is equivalent to LOGAN exept for not using variables and
wildards. Thus, syntatially, LOGAN is like LOGAN exept for the rule SUB ::=
ID j * j [0 : : :9℄+, whih is replaed by the rule SUB ::= [0 : : :9℄+. On this subset
we an onstrut a basi algorithm for sequenes mathing LOGAN -style 'pos-neg'
patterns, and leave the extra ompliation of variable substitution for later.

Beause LOGAN patterns do not ontain variables and wildards, valuations do
not play a role in �nding witnesses. All witnesses of suh a pattern are of the form
(f; ;). A witness for a LOGAN pattern is atually just a witness funtion, and we
will therefore write f : L j= (P;N), thereby meaning (f; ;) : L j= (P;N).

The pre-ondition and post-ondition for our algorithm will be:

on L: log �le, (P;N): a LOGAN pattern
var F : set of witness funtions

PRE: L = [s0; : : : ; sn℄ ^ (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk))
POST: F = ff j f : L j= (P;N)g
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Basially, the algorithm works as follows: it traverses the log �le and maintains
the set of witness funtions of pre�xes of the pattern on the part of the log �le sanned
so far. We will use the following notation to denote pattern pre�xes: (P;N) � m =
((P0; : : : ; Pm�1); (N0; : : : ; Nm�1)). We will atually design an algorithm that satis�es
the following post-ondition:

POST': F = ff j f : L j= (P;N) �jf jg

The intended post-ondition POST an easily be reahed from POST' by the
rule F := ff j f 2 F ^ jf j= k + 1g.

We introdue variables l1 and l2, representing the part of L already proessed and
the part that still has to be done, respetively. The following invariants will hold
during the appliation of the algorithm:

var l1; l2 : log �le

INV0: l1++l2 = L
INV1: F = ff j f : l1 j= (P;N) �jf j ^ extra(f; l1; N)g

where extra(f; l; N) � jf j= k + 1 _ (8 j : f(jf j �1) < j <j l j: l(j) =2 Njfj).
The extra(f; l1; N) lause in INV1 is an extension of lause (4) of de�nition 3.4.4,

and it expresses that for all witness funtions f 2 F that are not omplete witnesses
yet, the part of the log �le proessed after the last signal witnessed by f , may not
ontain signals in the `lookahead' negative signal set Njfj.

For l2 = hi the post-ondition follows from these invariants, so l2 6= hi will be a
suitable guard for the algorithm. Beause the empty pattern is the only pattern that
mathes the empty log �le, and the empty witness funtion the only orresponding
witness, F := fhig, l1 := hi, and l2 := L will do as initialization.

Now, for within the repetition of the algorithm, we have to �nd assignments to F ,
l1 and l2, that satisfy the invariants and assure termination of the algorithm. Heading
for termination we hoose l1 := l1++hl2(0)i and l2 := tail(l2), whih leaves us with
the task of omputing ff j l1++hl2(0)i j= (P;N) �jf j ^ extra(f; l1++hl2(0)i; N)g. By
splitting this set in two sets, one ontaining the witness funtions f that refer to the
j l1 j-th element of the log �le (i.e. l2(0), the signal urrently being inspeted), and
the other one ontaining the ones that do not, we an derive the following equivalent
expression:

ff++hj l1 ji j f 2 F ^ jf j� k ^ l2(0) 2 Pjfjg [
ff j f 2 F ^ (jf j= k + 1 _ l2(0) =2 Njfj)g

The �rst set of this union shows how witness funtions in F an be extended, with
a referene to the signal under inspetion. The seond set expresses that a witness
funtion in F remains in F unless it is an inomplete witness and the signal under
inspetion is in the `lookahead' negative signal set. Here is the omplete algorithm:

l1 := hi; l2 := L; F := fhig;
while l2 6= hi do

F := ff++hj l1 ji j f 2 F ^ jf j� k ^ l2(0) 2 Pjfjg [



3.6. VARIABLE SUBSTITUTION 43

ff j f 2 F ^ (jf j= k + 1 _ l2(0) =2 Njfj)g;
l1 := l1++hl2(0)i; l2 := tail(l2)

od

For pratial usage it is better to transform this algorithm into a more readable
form, where a number of set operations have been eliminated. The assignment to F is
replaed by a sequene of assignments for eah element of the set in a straightforward
manner. We also get rid of the two lists l1 and l2 in the representation of the algorithm,
instead introduing an integer variable m = jl1j.

F := fhig;
for m = 0 to n

G := ;;
for eah f 2 F

l :=jf j;
if l � k and sm 2 Pl then G := G [ ff++hmig;
if l = k + 1 or sm 62 Nl then G := G [ ffg

next
F := G

next

3.6 Variable Substitution

We now get to the problem of adding variables and wildards to the algorithm derived
in the previous setion. Extending the algorithm so that it an handle wildards is
atually quite easy. When we de�ned substitution in Setion 3.4, we introdued the
notion of expanding a signal set to get rid of wildards. If we apply this expansion
to the signal sets present in the algorithm, we have an algorithm that also works
for patterns with wildards (In an implementation of this algorithm the `expansion'
will, of ourse, have to be implemented by a simple pattern mathing proedure, and
not an atual expansion proedure). Extending the algorithm so that it an handle
variables is more diÆult. The major diÆulty, as we will see, is that before a value
is assigned to a variable in order to math a signal from the log �le to a signal in a
positive signal set, a negative signal set an already have imposed some restritions
on the values that the variable may attain.

First, we give a spei�ation for the algorithm. It is basially the spei�ation of
the previous algorithm, but with witness funtions replaed by omplete witnesses,
i.e. witness funtions and valuations.

on L: log �le, (P;N): a LOGAN pattern
var F : set of witnesses

PRE: L = [s0; : : : ; sn℄ ^ (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk))
POST: F = f(f; v) j (f; v) : L j= (P;N)g

We will have to get the valuations into the algorithm somehow. At �rst glane,
this does not seem to be suh a big problem. Just pair the empty witness funtion in
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the initialization with the empty valuation, and extend a valuation with the proper
variable assignments if thereby we an math a signal from the log �le with a signal
in a positive signal set.

3.6.1 Constraints

Consider sanning a log �le ontaining 1080:Dial Tone;1080:Busy Tone for the nor-
mal all pattern. The �rst signal mathes the �rst positive signal of this pattern if
we hoose the valuation fA 7! 1080g. The seond signal, however, mathes the next
negative signal set if this valuation is applied to it. This means that we have to
abandon the witness that we are onstruting. It is no longer valid.

Now onsider sanning a log �le ontaining 1080:Dial*21(1030);...;1060:Dial
*21(1080) for the all forwarding pattern. The last signal mathes the �rst positive
signal of the pattern if we hoose valuation fB 7! 1060; C 7! 1080g. Then, however,
we have a onit with the �rst negative signal set of the all forwarding pattern, the
one preeding the �rst positive signal. This set ontains C:Dial*21(*) and the �rst
signal in the log �le fragment mathes this signal set given our valuation. This means
that, again, we have to abandon the witness we are onstruting. This example shows
that we somehow have to remember that valuation fC 7! 1080g is no longer allowed
after we have enountered the 1080:Dial*21(1030) signal in the log �le. Besides
the positive information about the values of the variables, i.e. the valuations, we also
have to keep trak of negative information about the values of variables.

With the help of a (probably quite exoti) fragment of a pattern we will explain
how we an use onstraints as arriers for the negative information. Here is the
example:

NOT A:dial*21(B), B:dial*21(A);

...

NOT C:dial(B), A:dial(*);

...

Suppose that we look for this pattern in a log �le, and that the witness we are on-
struting demands that the �rst negative signal set may not ontain 1080:Dial*21

(1060), while 1024:Dial(1050) may not be ontained in the seond one. The val-
uations that beome forbidden beause of the �rst signal mathing the �rst negative
signal set an be haraterised by the following formula of propositional logi:

(A = 1080 ^ B = 1060) _ (B = 1080 ^ A = 1060)

So, after we have sanned the �rst signal (future) valuations have to satisfy the fol-
lowing onstraint:

:((A = 1080 ^ B = 1060) _ (B = 1080 ^ A = 1060))

We an transform this proposition into an equivalent one whih is in Conjuntive
Normal Form (i.e. written as a onjuntion of disjuntions):

(A 6= 1080 _ B 6= 1060) ^ (B 6= 1080 _ A 6= 1060)
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We an do the same for the seond signal and the seond negative signal set. Mathing
these yields the following onstraint (in CNF):

(C 6= 1024 _ B 6= 1050) ^ A 6= 1024

Given a signal and a negative signal set, we an always produe a logial formula in
onjuntive normal form that haraterises the forbidden valuations. If the signal and
the signal set do not math we get the formula true (true and false are both onsidered
to be in CNF). If the signal mathes with one or more signals in the set, then, for eah
of these mathes, there is a (smallest) valuation that establishes this math and that
an be haraterised by a formula of the form (X0 = e0 ^ : : : ^ Xn = en). The set of
(smallest) valuations that ause a math of the signal and the signal set an then be
haraterised by the disjuntion of all these formulas. We turn the formula we then get
into a onstraint by plaing a negation in front of it, and transforming it into a formula
in CNF using De Morgan's laws (:(A ^ B) = :A _ :B and :(A _B) = :A ^ :B).

Let us return to the example. We said that the witness under onstrution
demands that the �rst negative signal set may not ontain 1080:Dial*21(1060),
and that the seond one may not ontain 1024:Dial(1050). For eah of these de-
mands we have onstruted a onstraint. The valuation of the witness must satisfy
both onstraints, or in other words, it must satisfy their onjuntion, in this ase
(A 6= 1080 _ B 6= 1060) ^ (B 6= 1080_ A 6= 1060) ^ (C 6= 1024 _ B 6= 1050) ^ A 6= 1024.

The example has shown us that we an impose restritions on the valuation we
assoiate with a witness, by also assoiating a onstraint with it, whih is a logial
formula in CNF that expresses whih assignments to variables are forbidden (and
whih not).

De�nition 3.6.1 (Constraints) Let V be a set of variables. The set of all on-
straints over V is denoted by Prop(V ), and it onsists of all C formed aording to
the following BNF rules:

C ::= (C ^ C) j D
D ::= true j false j (D _ D) j X 6= e for some X , e.

We have used underlining to emphasize the fat that we are dealing with syntati
ategories. A onstraint is not a boolean expression, it represents one.

Our de�nition of onstraints permits that the values true and false our in a
onstraint. This has been done with the evaluation of onstraints (or of parts of a
onstraint) in mind. The next two de�nitions onern this evaluation of onstraints.

De�nition 3.6.2 (Constraints and valuations) Using the reursive struture of
onstraints, we de�ne how a valuation v is applied to a onstraint, produing another
onstraint:

� v(C1 ^ C2) = v(C1) ^ v(C2)

� v(D1 _ D2) = v(D1) _ v(D2)

� v(true) = true
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� v(false) = false

� v(X 6= e) =

8>>><
>>>:

X 6= e if X =2 dom(v) ^ 8Y 2 dom(v) : v(Y ) 6= e

true if X 2 dom(v) ^ v(X) 6= e;

false if X 2 dom(v) ^ v(X) = e;

true if for some Y 2 dom(v); Y 6= X ^ v(Y ) = e

Applying a valuation v to a onstraint C yields a onstraint equal to C in struture,
but with the X 6= e lauses replaed by true's and false's where the valuation permits
it. Note, that we use the fat that v is an injetion, i.e. v(X) 6= v(Y ) for X 6= Y . By
applying a valuation to a onstraint we an hek whether that valuation satis�es the
onstraint or not.

Intuitively, we feel that two onstraints have the same meaning if the logial
propositions they represent are equivalent. Consequently, we an simplify a onstraint
using the rules of propositional logi without hanging its meaning.

De�nition 3.6.3 (Simpli�ation) Let V be a set of variables. The funtion simp :
Prop(V ) ! Prop(V ) simpli�es a onstraint, using the rules of logi for interation
of true and false with ^ and _. Following the reursive struture of onstraints we
de�ne simp as follows:

� simp(true) = true, simp(false) = false, and simp(X 6= e) = X 6= e.

� simp(C1 ^ C2) =8>>>>>><
>>>>>>:

false if simp(C1) = false or simp(C2) = false;

true if simp(C1) = simp(C2) = true;

simp(C1) if simp(C1) =2 ftrue; falseg; simp(C2) = true;

simp(C2) if simp(C1) = true; simp(C2) =2 ftrue; falseg;

simp(C1) ^ simp(C2) if simp(C1); simp(C2) =2 ftrue; falseg

� simp(D1 _ D2) =8>>>>>><
>>>>>>:

true if simp(D1) = true or simp(D2) = true;

false if simp(D1) = simp(D2) = false;

simp(D1) if simp(D1) =2 ftrue; falseg; simp(D2) = false;

simp(D2) if simp(D1) = false; simp(D2) =2 ftrue; falseg;

simp(D1) _ simp(D2) if simp(D1); simp(D2) =2 ftrue; falseg

It is quite lear from the de�nition of simp that if it is applied on a onstraint C
it yields a onstraint C 0 with the same meaning, with the additional property that
either C 0 = true or C 0 = false or C 0 does not ontain the onstants true and false
at all.

With the help of the onept of applying valuations to onstraints and the onept
of simpli�ation we de�ne a formal semantis for onstraints, based on valuations.
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De�nition 3.6.4 (Constraint semantis) Given a set V of variables, and C :
Prop(V ) a onstraint on those variables, we de�ne the semantis [[ ℄℄ of C with respet
to V as follows:

[[C℄℄V = fv : V ! Ext j simp(v(C)) 6= falseg

So, the semantis of a onstraint is the set of valuations that do not falsify the on-
straint.

We say that valuation v satis�es onstraint C i� v 2 [[C℄℄V , and that onstraint
C1 is weaker than onstraint C2 i� [[C2℄℄V � [[C1℄℄V .

3.6.2 An Algorithm with Variable Substitution

Armed with the onept of onstraints, we an now extend the algorithm of Setion
3.5 so that it an handle all LOGAN patterns. To this end we give a de�nition
of a witness that inludes onstraints. This de�nition sheds some light on how the
valuation of a (partial) witness may be extended. It is only with the algorithm and the
onstrution of witnesses in mind that this de�nition makes any sense. As a means
to explain the witness onept it would be orret but also quite absurd.

De�nition 3.6.5 (`Constrained' Witnesses) Given a LOGAN pattern (P;N) =
((P0; : : : ; Pk); (N0; : : : ; Nk)), and a log �le (pre�x) L = [s0; : : : ; sn℄, a onstrained
witness of (P;N) on L is a 3-tuple (f; v; C), where f : f0; : : : ; kg ! f0; : : : ; ng is a
witness funtion, v : vars(P )!+ Ext a valuation, and C : Prop(vars(N)) a onstraint,
suh that for all i (0 � i � k), j (0 � j � k), x (0 � x � n), and w (v � w):

1. i < j ) f(i) < f(j)

2. sf(i) 2 v(Pi)

3. minimal (v; f; P )

4. simp(v(C)) 6= false

5. f(i � 1) < x < f(i) ) (sx 2 w(Ni) ) simp(w(C)) = false) (de�ne f(�1) =
�1).

6. weakest(C; f; v;N)

where weakest(C; f; v;N) � (8C 0 : C 0satis�es lauses (4) and (5) : [[C 0℄℄ � [[C℄℄).
Clause (5) takes the extension of valuations into aount by stating that onstraint
C must prohibit ertain extensions w of valuation v.

As shorthand for \(f; v; C) is a onstrained witness of (P;N) on L" we will use
(f; v; C) : L j= (P;N). Note, that lauses (4) and (5) imply lause (4) from De�nition
3.4.4 (substitute v for w in lause (5)), so we have that (f; v; C) : L j= (P;N) )
(f; v) : L j= (P;N). We also have (f; v) : L j= (P;N) ) (9C :: (f; v; C) : L j=
(P;N)). Beause of these two impliations (soundness and ompleteness) we an
safely ompute onstrained witnesses instead of ordinary witnesses.
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So, a onstrained witness is just an ordinary witness with some extra information
that says something about how the witness may be extended. We an therefore give
the following spei�ation, whih is more or less equivalent to the one given earlier in
this setion:

on L: log �le, (P;N): a LOGAN pattern
var F : set of onstrained witnesses

PRE: L = [s0; : : : ; sn℄ ^ (P;N) = ((P0; : : : ; Pk); (N0; : : : ; Nk))
POST: F = f(f; v; C) j (f; v; C) : L j= (P;N)g

We replae the post-ondition by the following post-ondition (like we did when we
derived the �rst algorithm):

POST': F = f(f; v; C) j (f; v; C) : L j= (P;N) �jf jg

This post-ondition gives rise to the following invariants, analogous to the invari-
ants we had for the �rst algorithm:

INV0: l1++l2 = L
INV1: F = f(f; v; C) j (f; v; C) : l1 j= (P;N) �jf j ^ extra(f; v; C; l1; N)g

where

extra(f; v; C; l; N) �(8 j : f(jf j �1) < j <j l j: (8w : v � w :
l(j) 2 w(Njfj) ) simp(w(C)) = false)) (de�ne Nk+1 = ;)

The algorithm derived with these invariants looks a lot like the algorithm of Setion
3.5. Here it is (using the more pratial format immediately):

F := f(hi; ;; true)g;
for m = 0 to n

G := ;;
for eah (f; v; C) 2 F

l :=jf j;
if l � k then
for eah w : minext(w; v; sm; Pl)

C 0 := simp(w(C));
if C 0 6= false then G := G [ f(f++hmi; w; C 0)g

next;
if l = k + 1 then G := G [ f(f; v; C)g
else
C 0 := simp(v(C ^ onstraint(sm; Nl)));
if C 0 6= false then G := G [ f(f; v; C 0)g

next
F := G

next
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Let us examine how this algorithm di�ers from the old one. In the initialization
the empty witness funtion has been replaed by a 3-tuple onsisting of the empty
witness funtion, the empty valuation, and the onstraint true. Note, that the empty
valuation is a minimal valuation, and that true is the weakest onstraint possible.
De�nition 3.6.5 requires this.

Next, we see that the if l � k and sm 2 Pl then G := G [ ff++hmig statement
of the original algorithm has been replaed by a repetition. In the original statement,
the witness funtion f was extended if signal sm was in signal set Pl. Here we onsider
all valuations w that are minimal extensions of valuation v that make sm math Pl:

minext(w; v; s; P ) � v � w ^ s 2 w(P ) ^ (8w0 : v � w0 � w : s 62 w0(P ))

It is then heked if the extended valuation w satis�es the onstraint we have, and if
this is the ase sm and Pl really math, and the witness funtion f an be extended.
The valuation and onstraint assoiated with this extended f , are extended valuation
w and onstraint C 0, the result of applying w to C and simpli�ation. Note, that we
ould use C instead of C 0. These onstraints do not mean the same, i.e. [[C℄℄ 6= [[C 0℄℄,
but we do have (8w0 : w � w0 : w0 2 [[C℄℄ � w0 2 [[C 0℄℄). So we ould say, that they
mean the same if we take into aount the valuation that has been onstruted so far.

Finally, the if l = k+1 or sm 62 Nl then G := G[ffg statement of the original
algorithm is replaed. This statement expresses that witness funtion f remains a
valid witness if signal sm does not math negative signal set Nl. In the new algorithm
it has to be heked if sm does not math Nl, given valuation v. Furthermore, the
onstraint C has to be strengthened with the forbidden future assignments that make
sm and Nl math. In Subsetion 3.6.1 we desribed how onstraint(sm; Nl) an be
onstruted. Formally, this onstrution an be expressed as follows:

onstraint(s;N) = (
V
n 2 N;w :minext(w; ;; s; fng) :

(
W
X; e : X 2 dom(w) ^ w(X) = e : X 6= e))

What we have just said about the interhangeability of C 0 and C, here holds for
C 0 and C ^ onstraint(sm; Nl).

3.7 Implementation and Testing

The algorithm has been implemented in C, and it was tested on some patterns and
some handrafted log �les. The disadvantage of handrafted log �les, is that they are
small, and made with the reognition of patterns in mind, whih is okay for testing the
orretness of the algorithm, but not for testing the pattern desription apabilities
of LOGAN . Therefore, we onduted an experiment with an SDL [BH88, IT94℄
spei�ation of a swith with a Call Waiting servie. This spei�ation, made by N.
Goga in the ontext of Côte de Resyste, a researh projet on the testing of reative
systems, is an extensive one and overs also very exoti all waiting senarios. The
idea was to automatially produe some large log �les, using this spei�ation and
SDT, the SDL toolset from Telelogi [Tel95℄. The set up of the experiment is depited
in Figure 3.8.
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SDL specification

SDT simulatorSDT

Phones
Switch with

Call Waiting

MSC LogTest Script
translate filter &

translate
Log FileSimulator

Script

Figure 3.8: using an SDL spei�ation to produe log �les

We wrote test sripts, desribing di�erent kinds of Call Waiting senarios, whih
were automatially translated to SDT simulator sripts. An SDT simulator sript
ontains a list of ommands, mostly signals that have to be sent to the SDL system.
These sripts were fed to the simulator running a simulation of the swith. In eah
simulation run, the simulator produed an MSC log, showing all the signal exhanges
that took plae in the SDL system during the simulation. From these MSCs we
automatially reated log �les by extrating the signals that we were interested in
(those exhanged between the phones and the swith) and translating them to the
proper format.

3.7.1 Some Test Results

We reated one `large' test sript ontaining six suessful all waiting senarios. Sine
the �rst part of a all waiting senario is also a normal all, it automatially ontained
six suessful normal all senarios as well. With the normal all pattern of Setion
3.3 we found all 6 normal alls in the log �le that was produed.

The all waiting pattern of Setion 3.3, however, proved to be muh too strit.
With it, we only found 1 all in the log �le. The pattern requires that some subsriber
A sets up a all with subsriber B, and that after that, a third subsriber, C, tries to
set up a all with B. Other possibilities, whih the pattern does not over, are that B
himself starts the all with A, and that A and C all B more or less simultaneously.

We therefore wrote a new pattern for all waiting in whih there is no referene
to party A. Of ourse, this means that with this pattern we only detet the seond
leg of a all waiting senario, but we know that the �rst leg of suh a senario an be
deteted with the normal all pattern.

With the new pattern 8 witnesses were found, 5 (out of 6) true witnesses, but also
3 false ones. The 3 false witnesses were due to identi�ation of the former A party,
whih we removed from the pattern, with the C party, so these patterns onsisted of
parts of �rst and seond legs mistakenly reognised as one single seond leg.

We added a negative B:Off Hook signal to the pattern that assures that the B
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party is already engaged in a all, when the all of the C party arrives. With this
addition the 3 false witnesses were no longer reognised with the pattern. Here is the
�nal version of the all waiting pattern:

PATTERN Call_Waiting

BEGIN

C:Dial_Tone;

NOT C:Busy_Tone,C:On_Hook;

C:Dial(B);

NOT B:Off_Hook,B:Busy_Tone,B:On_Hook,B:Warning_Tone,

C:Busy_Tone,C:On_Hook;

B:Warning_Tone;

NOT B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,B:Hookflash;

B:Hookflash;

NOT B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,C:Connet;

C:Connet;

NOT B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook;

C:On_Hook,B:On_Hook;

END

With the all waiting pattern we just presented, 5 out of 6 true witnesses were
found, and no false witnesses, whih is quite satisfatory as we do not expet to �nd
every all. The one all that we did not �nd was a all that was not terminated with
a C:On Hook or B:On Hook, but with a B:CW finish signal. With this signal the B

party an terminate the ative leg of the all, whereas a B:On Hook would terminate
both legs.

3.8 A Language Extension

If we would add the B:CW finish signal to the last positive signal set of the pattern,
we would get a pattern that reognises all 6 alls in our log �le. However, suh a
pattern might in other ases produe false witnesses as well. The reason for this is,
that the B:CW finish signal an be direted to the C party or the A party, and we
need it to be direted to the C party.

If we want to add this signal to our pattern, we would have to know the state of
the B party: is it urrently onneted to the A party or the C party? This information
an be reeived from the number of hookashes made by B, but in LOGAN this
information annot be represented.

A possibly interesting extension of LOGAN would therefore be the addition of
expliit states and state transitions. LOGAN would then get the expressive power
of �nite state mahines and regular expressions. Figure 3.9 shows what a pattern for
all waiting ould look like in suh an extension of LOGAN . Note the two possible
transitions leading to the �nal (grey) state, one originating from a state where B is in
onversation C. Here the B:CW finish signal an be used to terminate the onnetion
between B and C. The other originates from a state where B is in onversation with A.
Here the B:CW finish signal does not terminate the onnetion between B and C.
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B in conversation with C B in conversation with A

{C:Dial(B)}

{B:Warning_Tone}

{B:Hookflash}

{C:Connect}

{B:On_Hook,C:On_Hook,B:CW_finish}

{B:On_Hook,C:On_Hook}

{B:Hookflash}

{B:Hookflash}

{C:Dial_Tone}
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3
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0. {}
1. {C:Busy_Tone,C:On_Hook}
2. {B:Off_Hook,B:Busy_Tone,B:On_Hook,B:Warning_Tone,C:Busy_Tone,C:On_Hook}
3. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,B:Hookflash}
4. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,C:Connect}
5. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook,B:CW_finish}
6. {B:Busy_Tone,B:On_Hook,C:Busy_Tone,C:On_Hook}
7. -

Figure 3.9: a state mahine-like pattern desription of all waiting

Extending LOGAN to suh a state mahine-like form would have other advan-
tages. Often a ertain part of the pattern an have 2 or more forms. For example,
in the all forwarding senario, C:Dial*21(*) is given as a negative signal. How-
ever, suh a signal on itself would not be problemati, provided it is followed by a
C:Dial#21 signal. This possibility ould be added, but that would mean adding an-
other pattern, and beause it an our on 4 di�erent plaes, the total would then be
24 = 16 di�erent patterns. In real-life examples, there may be even more suh minor
variations, whih makes the number of possible variations grow explosively. If state
mahine-like patterns are used, all these variations, and even variations ontaining
di�erent features, might be inluded in one single pattern, eah variation requiring
the addition of one or two extra 'states' (negative event sets) rather than a doubling
of the number of patterns.

The algorithm we have given an be easily, although not trivially, extended to
over state mahine-like LOGAN . To do so, the next positive possibility should be
any 'state' that an be reahed from the urrent one, rather than (as in the urrent
algorithm) always the next one.
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3.9 Conlusions

We have de�ned a pattern desription language, LOGAN , in whih we an express
properties of all traes. For di�erent all types, espeially alls in whih di�erent
servies are ative, di�erent patterns an be de�ned. Basially, a pattern desribes the
harateristi sequenes in all traes of a ertain all type, using so-alled negative
signals to ensure the oherene of these harateristi sequenes.

By giving some examples of LOGAN patterns for well known all types, and some
examples of log �les, we have demonstrated the use of LOGAN . We also, briey,
addressed the problem of feature interation, showing the limitations of the pattern
mathing approah to �nding all traes. Even simple types of interation, like that
of Call Forwarding with itself, annot be overed by this type of pattern mathing,
espeially when interations an go to an arbitrary far degree.

Another problem is that �nding orret patterns may be hard. Still, a short
time of experimentation would normally solve this. A larger problem is that some
features ould either not be desribed in full, or would require a large number relatively
similar patterns. This problem might be overome by extending LOGAN into a
state mahine-like form. This would improve the pattern desription apabilities of
LOGAN onsiderably.

We also designed and implemented an algorithm for �nding LOGAN patterns in
log �les. This algorithm, together with the LOGAN language, ould be the basis for
tools that support the testing proess desribed in the introdution.

Further work in this area ould be to investigate if, and how, CDRs an be om-
puted automatially given a pattern (witness). Another option might be to automat-
ially generate patterns from a desription in SDL or some other similar language.
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Chapter 4

The MSC Language

4.1 Introdution

Many languages have been designed to desribe the behaviour of information systems.
Using suh a language, one an desribe the high-level behaviour of a system without
having to worry (yet) about the exat implementation details. One suh language is
Message Sequene Chart (MSC) [RGG96a, IT00℄, whih is the subjet of the following
hapters. It di�ers from other languages in two important aspets. In the �rst
plae it puts emphasis on the ommuniation between proesses, not paying muh
attention to the internal behaviour of these proesses. This way, it speialises on
systems in whih ommuniation is important. Beause many systems nowadays
have a distributed nature, this holds for many systems. One area where it is muh
used, and the one for whih it was originally reated, is teleommuniation systems.
In the seond plae, MSC provides a graphial representation, rather than just a
textual desription. Beause of this, it an be more easily and intuitively understood
by human users. Still, behind this graphial syntax lies an exat meaning and a well-
de�ned semantis. Beause of this, it an also be well understood by tools suh as
SDT [Tel95℄.

MSC-like diagrams have a long history in formal desriptions of information sys-
tems, but the oÆial Message Sequene Chart language has been developed in the
early nineties within the ITU (International Teleommuniation Union) and its prede-
essor, the CCITT (Comit�e Consultatif International T�el�egraphique et T�el�ephonique)

In this Chapter, a short overview will be given of the history of the language, of
a number of its onstruts and of its semantis. But �rst, we will give an example of
a simple MSC, to give an impression of what the language looks like.

An example of an MSC is given in Figure 4.1.

The vertial lines in the MSC (i, j and k) denote the so-alled instanes, whih
represent the proesses, objets or systems whose behaviour is desribed. The arrows
between them denote messages between the instanes. These messages are the basi
onstruts of MSC, but many other features, suh as timers, are also inluded. In
Figure 4.1 there is one, simple example of suh a feature: a denotes some otherwise
unspei�ed loal event at instane i.

55
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i j k

a m1

m2

m3

m4

ms example

Figure 4.1: An example of an MSC

Time runs from the top to the bottom, but does not have to run at the same
speed at eah instane. For example, message m2 must be reeived before message
m4 is sent, beause the reeipt of m2 is above the sending of m4 at the same instane,
but m4 may be sent before m1 is reeived. The sending of m4 is below the reeipt of
m1, but at a di�erent instane, so there is no ordering. The only ordering that exists
between di�erent instanes is that eah message has to be sent before it is reeived.

MSCs are used in di�erent ontexts. The original purpose of MSC when it was
�rst formalised, was to desribe requirements in the early phases of the development
proess. It was intended to be an addition to SDL (Spei�ation and Desription
Language), where the two languages would be used in di�erent phases of the develop-
ment proess: MSC early on, when requirements and global spei�ations are made,
SDL later on, when spei�ations are loser to the �nal implementation.

However, the language is now used in many more appliations. To name a few:
the desription of the atual behaviour of an existing system, espeially in the ontext
of testing, the generation of test ases [GHN93℄, the spei�ation of protools and the
formalisation of use ases [RAB96℄, and the display of simulation traes [VGMF00℄.

4.2 History

MSC-like diagrams (often taken together under the name `Sequene Charts') have
been in existene for a long time [Lam78℄. They have been used in various ontexts,
either as a stand-alone desription of a standard, or as illustrations to more formal de-
sriptions in languages like SDL [IT94, BH88, SRS89, BHS91℄, Estelle [ISO88a, BD87℄
or LOTOS [ISO88b, EVD89℄. Beause Sequene Charts were so widely used, but of-
ten in di�erent variants, a need was felt for a more formal basis for these diagrams.
That way, their usage ould be harmonised aross various users and institutions, in a
way that would moreover be formally de�ned.
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In 1989, at the fourth SDL Forum, a proposal was made [GR89℄ to start devel-
oping suh a formalised sequene hart language. Not only would a standardisation
overome the (mostly syntati) di�erenes between the various languages, it would
also make tool support [Ek93, Loi96℄ possible, and provide possibilities to de�ne a
formal mapping between MSC and SDL spei�ations [Gra90, Kri91, Nah91℄.

In 1990 suh a plan was approved by the CCITT, and responsibility for the lan-
guage was given to the CCITT Study Group X, whih also was responsible for SDL. In
1992, the �rst version of the MSC language, ontaining a number of basi onstruts,
was formally approved as CCITT Reommendation Z.120 [IT93℄.

The standardisation of the language, and even more importantly, the resulting
possibilities for tool support [Tel95, Ver96, Pel98℄, led to a remarkable growth in the
use of the language. However, with this it also beame lear that the language was
not omplete enough to fully desribe an information system, not even at the high
levels where it was supposed to be most useful. In the next four-year period, from
1992 to 1996, a number of extensions to the language was therefore disussed [MS93,
R�uf94, Mei95, Rud95, Sh95, Far96℄.

Another important step in this period was the reation of a formal semantis
for MSC. Several semantis were proposed [Til91, dM93, MvWW93, GRG93, LL94,
MR94a℄, and the proess algebra semantis [MR94b, BM95℄ was agreed upon, and
oÆially adopted in 1995 [IT95℄. This semanti view also provided one of the most
important extensions of MSC, namely that with omposition mehanisms, suh as
HMSC [Rud95, MR97a℄.

This and other language extensions were inluded in a new version of the lan-
guage, whih appeared in 1996 [IT96, HL97℄, MSC'96. However, further extensions
were still wanted. In 2000 a new version (MSC2000) [IT00, Hau00℄ of the language
was introdued. It ontained a number of extensions, the most important of those
being the inlusion of time information [SRM97, Sil98, GDO98℄, representation of
data [EFM99, Eng00℄ and objet-oriented features suh as ow of ontrol [RGG99℄.
It is hoped that this last extension will make a uni�ation of MSC with time sequene
diagrams from UML [BRJ98℄ possible. In this thesis, we will look into the way data
has been inluded in the MSC language in Chapter 6. In Chapters 7 and 8, we will
be looking at message re�nement and disrupt and interrupt, two more proposals for
extension of the MSC language, whih were not inluded in the language { although
of ourse they still might be inluded in the future.

In the meantime, researh on MSC has also ontinued. The existing semantis
for MSC have been extended to over the MSC'96 language [MR97b, Ren99, IT98℄,
and some new possible semantial frameworks for MSC have been introdued [Kos97,
Hey98, KL98, Klu99, Hey00℄. Muh researh has been going into the automati or
semi-automati generation of spei�ations in SDL or other languages from MSC de-
sriptions [SD97, RKG97, LMR98, KRBG98, Fei99, AKB99, KGSB99, MZ99, Man99,
Mus99, HJ00℄. Other researh heked how ertain properties of a system ould be
known from its MSC desription, suh as rae onditions [AHP96℄, proess divergene
and non-loal hoie [LL95, BAL97b℄ (however, note that the notion of safe realis-
ability, as de�ned in [AEY00℄ seems to over the atual problems aused by non-loal
hoie better), neessary bu�ers [EMR97b℄ (see Chapter 5 of this thesis), implementa-
bility by loally spei�ed elements [KRBG98℄, and the existene of possible unspei�ed
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behaviours [AEY00℄. There are also some more general results: It has been found
how to hek a omplete MSC desription against a partial one [LP97℄ and whether
traes of MSC ontain some with a spei� behaviour [AY99℄. In [MPS98, MP00℄
there are some results on deidability of properties of systems desribed in MSC.

At the same time, researh has also gone on into the appliations of MSC, and
it now inludes suh diverse areas as requirements spei�ation [GW96℄, system de-
sign and software engineering [GRG91, MT96, MRW00, VGMF00℄, spei�ation of
test purposes [GHNS95, GSDH97, SEG+98, GH00, RSG00a℄, visualisation of test
ases [Heg95, GW98, RSG00b, GGR01℄, formalisation of Use Cases [AB95, RAB96,
BC00, Fei00℄, detetion of feature interation in teleommuniation systems [BB97℄
and workow analysis [Aal99℄, while attempts are being made in the area of natural
language analysis [End00℄. There are also attempts to ombine MSC with sequene
diagrams from UML [RGG99, Hau01℄, and MSC has been introdued as a graphial
syntax [GW98, RSG00b, SG01, BRS01℄ for TTCN [KW91℄.

4.3 An Overview of the MSC Language

4.3.1 Basi Construts: Messages

In Figure 4.2 we see another example of a Message Sequene Chart. It shows the
proess of giving a test to a student by a teaher.

teaher student

paper

test

solutions

ms test

Figure 4.2: An example of an MSC

The vertial lines are alled instanes, and show the various entities whose be-
haviours are desribed by the MSC. In this ase there are two instanes, one is alled
`teaher' and the other `student'. The bloks at the top and bottom have no speial
meaning, they just show the beginning and end of the desription of the instane {
whih not neessarily oinides with the beginning or end of the instane itself. The
arrows show messages that are sent. In this ase the messages are the paper and the
test that are given by the teaher to the student, and the ompleted test that is given
bak to the teaher.
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In this diagram time is running from top to bottom. That is, �rst the paper is
given, then the test, and �nally the student gives bak his solutions. However, one
should note that:

1. Sending a message and reeiving it are onsidered two separate ations. That
is, some time passes in between, and other ations may happen in between.

2. Time runs separately on eah instane. That is, events (like the sending and
reeipt of messages) that are on the same instane are ordered as they appear
from top to bottom in the diagram, but events on di�erent instanes need not
be. Their order is not spei�ed. The only order that exists between messages
on di�erent instanes is the ordering that is aused by the fat that a message
needs to be sent before it an be reeived.

For example, in the MSC above the teaher may send the test before the paper
is reeived. Although it is higher in the diagram, the reeption of the paper is on a
di�erent proess, so their di�erent positions do not need to orrespond with an atual
temporal ordering. Of ourse, in this example it is not very realisti that there will be
muh time between the moment the paper leaves the teaher and the time it reahes
the student, but we ould for example think of the materials as being sent through
the mail { in that ase the teaher ould send the exerises while the paper was still
under way.

On the other hand, the teaher must have given the paper before the student an
reeive the test, beause the paper must be sent (given) before the test an be sent,
and the test must be sent before it an be reeived.

The meaning of an MSC is determined by the possible traes, that is the various
orders in whih events an take plae. In Figure 4.2 there are exatly two:

1. sending `paper', reeiving `paper', sending `test', reeiving `test', sending
`solutions', reeiving `solutions'

2. sending `paper', sending `test', reeiving `paper', reeiving `test', sending
`solutions', reeiving `solutions'

It is allowed for messages to ross, or overtake one another. In that ase, the
message that is sent �rst, is reeived last. What is not allowed, is a yli dependeny,
that is, two events for whih (diretly or indiretly) both the �rst has to ome before
the seond and the seond before the �rst. Suh events would ause the MSC to
beome meaningless, sine no trae would be possible.

4.3.2 Loal Ations

A very simple extension of the language is the loal ation. This is simply something
that happens at one instane, and has no e�ets elsewhere. It is shown as a blok, and
an be found in Figure 4.1. The ation a is here something that is done by instane
i, and does not inuene any other instane diretly.
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4.3.3 Co-region

Sometimes one does not want to speify exatly in whih order events on one instane
take plae. For example, if we extend our MSC test with a seond student, doing the
same test, we do not want to speify whih student is the �rst to �nish and submit
her ompleted test.

student 1 teaher student 2

paper

paper

test

test

solutions

solutions

ms test2

Figure 4.3: MSC with oregion

In Figure 4.3 the dashed part of the line showing the teaher's behaviour is a
so-alled o-region. Events in a oregion are not ordered, so the reeption of the two
ompleted tests an our in any order.

4.3.4 MSC Referenes

When an MSC grows large, it may beome hard to read. Several additions are made
to make it possible to break an MSC into piees.

One way to do this is by desribing parts of the MSC separately. For this an
MSC referene expression is used. This is a box, replaing part of the desription
of one or more instanes, ontaining the name of a separate MSC that desribes the
behaviour of the instanes involved. For example, the MSC test ould be part of a
larger ourse MSC, as shown in Figure 4.4.

The box in the MSC ourse is the referene MSC, referring to the MSC test (by
way of giving its name { see �gure 4.2 for a possible ontent of this MSC). One should
think this as some kind of shorthand notation, what happens in the MSC referene
expression is desribed by the MSC test.
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student teaher administration

information

test

sore

result

ms ourse

Figure 4.4: MSC with referene MSC

4.3.5 Inline Expressions

Inline expressions are setions of MSC where a hoie, loop or other speial onstrut
takes plae. For example, the abovementioned MSC with two students doing their
test at the same time, ould also be implemented with an inline expression as shown
in Figure 4.5.

The square onstrut with `par' in the upper left orner, is the inline expression.
The text in the upper left tells us the type of inline expression, `par' means that it is
a parallel inline expression, that is, the two (or more) parts of the inline expression
(separated by the dashed line) have to be done in parallel.

Other inline expressions are:

Optional (opt): The ations inside the inline expression may be exeuted or
skipped.

Alternative (alt): Exatly one of the parts is hosen.

Exeption (ex): The ations inside the inline expression may be exeuted
instead of those in the surrounding MSC.

Loop (loop): The ations inside the inline expression must be exeuted a num-
ber of times (the minimum and maximum number, whih must be either a
natural or the speial value infinity, are given).

Of these inline expression, only the parallel and alternative inline expressions have
parts; the other ones onsist of just a single box, without a separator.
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Figure 4.5: MSC with Inline Expression

4.3.6 High-Level MSCs

One an go even further, and split up the omplete MSC into parts. This way one gets
a piture with a suession of MSCs that have to be gone through in a ertain order.
To make this possible, High-level MSCs (HMSCs) have been introdued [MR97a℄. An
example of an HMSC is shown in Figure 4.6.

To read a diagram like the one in Figure 4.6, one starts at the start symbol 5.
Following the vertial line, we �rst get to the referene MSC teahing, after this to
MSC test, and �nally to the end symbol 4. The meaning of this, is that the MSCs
teahing and test are ombined into one, teahing happening �rst, and test after
it.

One should note that the way the onstituting MSCs are ombined implies an
ordering in time, but again the ordering holds only per instane. Thus, when all
events for the teaher in the MSC teahing have been done, teaher an start doing
ations from test, whether or not the student still has ations to do from teahing.

But the possibilities of HMSC are larger than just the sequential ordering of sev-
eral MSCs. In the �rst plae, the MSCs that are being referened may be HMSCs
themselves, thus allowing for more than two levels of desription. But what is more
important are their possibilities of speifying hoies and loops.

When our hypothetial student has gone through the test, and seen his result, it
is not unlikely that he will hoose to do the test again, and maybe repeatedly do so
until he passes. This possibility is shown in Figure 4.7.

When we go through this �gure from the top to the bottom, we �rst see a small
irle. This is a onnetion point. Here, the MSC ontinues along the line going down,
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Figure 4.7: HMSC with loop
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irrespetive of the question from whih of the two arrows it ame. After going throug
`test', there is another onnetion point, this time with two exits. This denotes a
hoie. Exeution of the MSC ontinues either through the left or through the right
path, but not both. Finally, the arrow that goes up again from `failed' reates a
loop struture.

Of ourse one ould also make more ompliated strutures, with intertwined
loops, loop esapes, etetera.

4.3.7 Further MSC Construts

There are several more MSC onstruts that have not been inluded in this introdu-
tion. These inlude ausal orders, that an be used to fore a temporal order between
otherwise unonneted ations, and instane re�nement, where it an be spei�ed
in whih way a single instane an be deomposed into several separate ones. An
introdution on MSC, where the subjets treated in this hapter are being treated
together with other aspets of the language, is [RGG96b℄.

A number of new language elements has been introdued in MSC2000. One of
them is data, whih will be disussed more extensively in Chapter 6. There are
also extensions regarding (relative and absolute) time, ow of ontrol and the overall
struture of a doument onsisting of various MSCs. These are disussed in [Hau00℄.

4.4 Formal Semantis

In this setion, we will give an overview of the oÆial proess algebra semantis of
MSC. A more extensive disussion an be found in [Ren99℄, whih ontains reasons
for various rules, historial notes, properties of the semantis and examples, as well
as a omplete semantis, of whih we will show only the most important parts.

For the semantis of MSC, eah MSC is translated into an expression in proess
algebra [BW90℄. This proess algebra does however ontain a number of operators
spei�ally for MSC. The semantis itself is operational, onsisting of rules of the form

ond

x
a
! y

, whih an be translated as \When the onditions `ond' are true, a system

in the state x an do a step of the type a to state y". The basi rules are
a

a
! �

,

whih says that an event a an do step a, and then results in the empty proess �,

and
� #

, whih means that � an terminate, that is, suesfully end without doing

any further ations.
The proess algebra for MSC di�ers somewhat from normal proess algebra. In

the �rst plae, the semantis of MSC are ompletely deterministi, that is, if a proess
has both the option of doing a followed by b and the option of doing a followed by
, then after doing a, it still has both the option of doing b and the option of doing
. This is unlike normal proess algebra, where the proess a � b+ a �  an do a to b,
or to , but not to a+ . MSC therefore uses the delayed hoie operator � [BM95℄.
The dedution rules for � are:
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x #

x� y #

x
a
�! x0; y 6

a
�!

x� y
a
�! x0

y #

x� y #

x 6
a
�!; y

a
�! y0

x� y
a
�! y0

x
a
�! x0; y

a
�! y0

x� y
a
�! x0 � y0

We will �rst look at a simple example, just a number of loal ation, see Figure 4.8.

i j

a

b



ms simple

Figure 4.8: A simple MSC

First, the various events of the MSC are translated into the orresponding proess
algebra events. For an ation, this simply is ation(i; a), with i being the instane on
whih the ation takes plae, and a the text in the ation box. Next, the MSC is split
up into parts, whih are onneted with the `weak sequening' operator Æ. Thus, the
MSC above is translated into the proess algebra expression ation(i; a)Æation(j; b)Æ
ation(i; ).

The weak sequening operator x Æ y has as its semantis that ations from x are
always possible, while ations from y are possible if and only if there are no ations
from x on the same instane. To translate this into proess algebra, an extra relation,

the permission relations ���! is added. x
a

���! y means that x allows a even if it is
`after' x in the MSC, and this results in x hanging into y (y an be unequal to x if
x ontains a hoie, whih may be a hoie between options some of whih do and
some of whih do not allow a). The basi SOS-rules for the permission relation are:

l(a) 6= l(b)

b
a

���! b
and

�
a

���! �
. Here, l(a) is the instane on whih the ation a takes

plae. Thus, the empty proess permits anything, while an ation stops other ations
on the same instane, but allows ations on di�erent instanes.

Three rules exist for the delayed hoie regarding the permission relation, depend-
ing on whether the part to the left of the �, the part to the right, or both permit the
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ation:

x
a

���! x0; y
a

���9

x� y
a

���! x0
x

a
���9; y

a
���! y0

x� y
a

���! y0
x

a
���! x0; y

a
���! y0

x� y
a

���! x0 � y0

With this addition, we an give the dedution rules for the weak sequential om-
position (see [Ren99℄ for more explanation):

x #; y #

x Æ y #

x
a
�! x0; x

a
���9 _y 6

a
�!

x Æ y
a
�! x0 Æ y

x
a

���! x0; y
a

���! y0

x Æ y
a

���! x0 Æ y0
x 6

a
�! x0; x

a
���! x0; y

a
�! y0

x Æ y
a
�! x0 Æ y0

x
a
�! x0; x

a
���! x00; y

a
�! y0

x Æ y
a
�! x0 Æ y � x00 Æ y0

With these rules and the assoiativity of Æ (whih is proven in [Ren99℄), we �nd
that the proess ation(i; a) Æ ation(j; b) Æ ation(i; ) an exeute ation(i; a) and
go over in � Æ ation(j; b) Æ ation(i; ), and an exeute ation(j; b) to go over in
ation(i; a) Æ � Æ ation(i; ), but annot exeute ation(i; ) beause ation(i; a) does
not permit ation(i; ).

For messages, there is something more to do. If we look at the MSC in Fig-
ure 4.9, the semantis as far as we have seen it now are out(i; ; j;m) Æ in(i; ; j;m)
(the here shows the absene of gates, whih are not dealt with in this thesis). Be-
ause l(out(i; ; j;m)) 6= l(in(i; ; j;m)), this proess would be permitted to start with
in(i; ; j;m), whih is of ourse unwanted. Fiddling with the permission relation would
not help, beause this same MSC ould also be split as in(i; ; j;m) Æ out(i; ; j;m).
Instead, the information is added to the weak sequening operator, and the expression

is written as out(i; ; j;m) Æout(i; ;j;m)
0
7!in(i; ;j;m) in(i; ; j;m).

The ondition a
n
7! b means that before b an be exeuted, �rst a has to be

exeuted, but that b an still be exeuted n times beause a has already been exeuted
n times more than b. There is a prediate enabled(a; S) whih is true if and only if a
is allowed by the set of onditions S, and an update funtion upd(a; S), whih gives
the new set of onditions S after a has been exeuted. Their de�nitions are:

enabled(a; S) , 8b;2A;n2N b
n
7!  2 S ) ( 6� a _ n > 0),

upd(a; S) = fb
n
7! jb

n
7!  2 S ^ b 6� a ^  6� ag

[ fb
n�1
7! jb

n
7!  2 S ^  � a ^ n > 0g

[ fb
n+1
7! jb

n
7!  2 S ^ b � ag

The dedution rules for ÆS are similar to those of Æ, but to exeute an a step,
enabled(a; S) has to be true, while doing so hanges S into upd(a; S). This leads to:
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i j
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ms message

Figure 4.9: A simple MSC with a message

x #; y #

x ÆS y #

x
a
�! x0; x

a
���9 _y 6

a
�!; enabled(a; S)

x ÆS y
a
�! x0 Æupd(a;S) y

x
a

���! x0; y
a

���! y0

x ÆS y
a

���! x0 ÆS y

x 6
a
�!; x

a
���! x0; y

a
�! y0; enabled(a; S)

x ÆS y
a
�! x0 Æupd(a;S) y0

x
a
�! x0; x

a
���! x00; y

a
�! y0; enabled(a; S)

xSy
a
�! x0 Æupd(a;S) y � x00 Æupd(a;S) y0

Then there is the parallel omposition operator k. x k y onsists of all ations of
x and y interleaved. Its semantis are:

x #; y #

x k y #

x
a
�! x0; y 6

a
�!

x k y
a
�! x0 k y

x
a

���! x0; y
a

���! y0

x k y
a

���! x0 k y0

x 6
a
�!; y

a
�! y0

x k y
a
�! x k y0

x
a
�! x0; y

a
�! y0

x k y
a
�! x0 k y � x k y0

There are a few more operators, namely a version of the parallel omposition with
requirement kS and repetitions x� and xinf , but those will not be dealt with in this
thesis. Instead, we will refer the interested reader to [Ren99℄.
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Chapter 5

MSC and Communiation

Models

5.1 Introdution

In MSC, a message an be sent and reeived at any time. In partiular, a message
an overtake another message, even if it is sent between the same pair of instanes.
Apparently, MSC uses the assumption that either the ommuniation mediums or the
bu�ers involved in a system an send messages through in any order. If there were
for example only a FIFO bu�er between eah pair of instanes, message overtaking
would be impossible.

The assumptions about the bu�ering of messages in MSC, are in ontrast with
the situation in a spei�ation language suh as SDL [IT94℄, where every entity has
its own FIFO input bu�er. Sine MSC and SDL are often used in onjuntion, there
is a need to larify this seemingly ontraditory situation.

When onsidering restrited ommuniation mehanisms, it is very natural to
identify sublasses of MSC whih exatly satisfy suh bu�ering properties. One an
onsider the lass of FIFO bu�ered MSCs, the lass of synhronous MSCs, et. In
fat, the Interworkings language [MvWW93, MR01℄ is the latter lass.

When onsidering Interworkings simply as a subset of MSC, an obvious question
to ask is: what exatly is the distintion between synhronous and asynhronous
MSCs? Or, phrased a little bit di�erently, how an we formally haraterise the lass
of synhronous MSCs? Finding an answer to this question is not too diÆult. An
MSC is synhronous if and only if in every exeution trae of the MSC there are no
events between every pair of orresponding send and reeive events.

But, how about the question whether an MSC an be implemented using only one
FIFO bu�er. And what, if we are allowed to use a number of FIFO bu�ers? This
gives rise to a more general question. Can a given MSC be implemented by means
of a given ommuniation model? This is the question whih will be studied in this
hapter.

Thereto, we de�ne the notion of ommuniation model , we present a formal se-

69
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mantis of MSC based on partial orders, and we de�ne riteria for an MSC being
implementable in a given ommuniation model. We will not study the omplete
range of all possible ommuniation models, but we will single out a number of inter-
esting options, whih we systematially derive by looking at the loality of the bu�ers
between the ommuniating entities. One an, e.g., assume one single FIFO bu�er
for the omplete system, or a FIFO bu�er between eah pair of entities, et. We will
also take into aount the di�erene between output bu�ers and input bu�ers, sine
in pratie this distintion is often made.

Apart from studying the fundamental onepts behind the implementability of
Message Sequene Charts, there are also more pratial motivations for the researh
presented here. First of all, the formal relation between senario spei�ations in
MSC and omplete system spei�ations in a Formal Desription Tehnique, suh
as SDL [IT94℄, is an important issue in the software engineering proess. Not only
the derivation of MSC senarios from a Formal Desription Tehnique, but also the
synthesis of a omplete spei�ation from a olletion of MSC senario spei�ations
is onsidered of great importane by many authors and tool builders (see [SDV95,
RKG97, SD97, KRBG98, LMR98, Fei99, KGSB99, AKB99, MZ99, HJ00℄). This nat-
urally leads to the question whih MSCs an and whih MSCs annot be implemented
in the given spei�ation language.

One an also study the same question from a di�erent perspetive, namely, given
an arbitrary MSC, how an we restrit (or extend) its semantis in suh a way that
it an be implemented in a given ommuniation model. This question is partly
studied by Alur et al. [AHP96℄, who also derived supporting tools. Our starting
point, however, will be that we onsider the standard MSC semantis.

This brings us to the variety of ways in whih MSCs are used, some of whih
are essentially di�erent. We mention the distintion between hot and old MSCs
(see [DH99℄) where (parts of) MSCs must or may our in the implementation and
we mention the di�erene between positive and negative use of MSC (an MSC must
our or is not allowed to our). Finally, some users apply MSC to speify one single
trae, while others onsider the omplete set of traes generated by an MSC. This
latter dihotomy is wide-spread and, therefore, we will study the main question from
both perspetives: one trae of an MSC must be implementable (the weak ase) or
all traes of an MSC must be implementable (the strong ase).

Sine all implementation relations introdued in this hapter identify sublasses
of the lass of Message Sequene Charts, it is interesting to know how these lasses
relate. The answer to this question is formulated as a hierarhy of ommuniation
models for Message Sequene Charts.

We present our researh in the following way. In Setion 5.1.1 we introdue the
subset of the MSC language alled basi MSCs, and give a simple formal semantis
based on partial orders. The ommuniation models whih we study are de�ned in
Setion 5.2.1. In order to be able to deal with two distint bu�ers between two ommu-
niating entities, we will extend the standard partial order semantis in Setion 5.2.2.
The de�nition of implementability of a single trae with respet to a ommuniation
model is given in Setion 5.2.3. In Setion 5.3, we lassify traes aording to their
implementability. This work is lifted to the level of MSCs in Setion 5.4, where we
�rst study the strong ase (Setion 5.4.1), and then the weak ase (Setion 5.4.2).
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The overall piture ombining the strong and the weak ase is given in Setion 5.4.3.
We also give a number of haraterisations of the implementability relations, whih
make it possible to determine the implementability of a given MSC algorithmially
(see Setion 5.5). Setion 5.6 ontains a omparison with related literature and in
Setion 5.7 we summarise our �ndings and disuss options for further researh.

5.1.1 Basi Message Sequene Charts

In this hapter, we will not be looking at the omplete MSC language. Rather, we
take only a subset, onsisting of just instanes and messages. In partiular, we will
have no o-regions, no HMSCs and no inline expressions. Beause we have no HMSCs,
eah desription will onsist of just a single MSC. We will also not use the oÆial
semantis, but use a muh simpler semantis that is equivalent to it when used for
these simple MSCs, but not strong enough to give the semantis of more ompliated
strutures. Furthermore, we will be assuming that the MSCs are all semantially
orret, that is that they do not ontain deadloks through yli dependenies.

The easiest way to express the semantis of suh a simple MSC is by using a
partial order on the events that are omprised in an MSC. Depending on the partiular
dialet of the MSC language, one an assign di�erent lasses of events to an MSC.
For example, in Interworkings [MvWW93, MR01℄ every message is onsidered to be
a single event. There is no bu�ering, and thus ommuniation is synhronous.

In MSC [IT00℄, messages are divided into two events, the output and the input
of the message. The output of message m is denoted by !m and the input by ?m.
The only assumption about the implementation of ommuniation is that an output
preedes its orresponding input. An MSC desribes a partial order on output and
input events.

De�nition 1 (basi MSC) A basi MSC is a quintuple hI;M; from; to; f<igi2Ii,
where I is a �nite set of instanes, M is a �nite set of messages, from and to are
funtions from M to I , and f<igi2I is a family of orders. For eah i 2 I it is required
that <i is a total order on f!m j from(m) = ig [ f?m j to(m) = ig. We use the
shorthand Ems(M) to denote the set f!m; ?m j m 2 Mg.

In the above de�nition, from(m) denotes the instane whih sends message m.
Likewise, to(m) denotes the instane whih reeives message m. Given an instane i,
the ordering <i denotes in whih order the events attahed to instane i our.

The partial order denoting the semantis of an MSC k is derived from two re-
quirements. First, the ordering of the events per instane is respeted, and seond, a
message an only be reeived after it has been sent. The �rst requirement is formalised
by de�ning the instanewise partial order <inst

k (k being the MSC under disussion):

<inst
k =

[
i2I

<i;

and the seond requirement is formalised by the output-before-input order <oi
k :

<oi
k= f(!m; ?m) j m 2 Mg:
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Now, we de�ne the partial order indued by the MSC as the transitive losure
(denoted by +) of the instanewise order and the output-before-input order. For an
MSC k, we denote this order by <ms

k or by <ms if k is known from the ontext.

De�nition 2 For a given MSC k = hI;M; from; to; f<igi2Ii, the relation <ms
k is

de�ned by <ms
k = (<inst

k [ <oi
k )

+.

From an operational point of view, one an say that an MSC desribes a set of
traes. Suh a trae denotes the ordering of output and input events (!m and ?m).

De�nition 3 (Traes) Given a set of messagesM , a trae t overM is a total order-
ing (e1; e2; : : : ; en) of the set Ems(M). A trae (e1; e2; : : : ; en) is denoted e1 e2 : : : en.

We denote the ith element of a trae t by ti, and its length by jt j. As a onsequene
of the above de�nition we an assoiate with eah trae t an order <trae

t . This order
is useful in expressing that a ertain trae t is atually a trae of an MSC k.

De�nition 4 (ms-trae) A trae t is said to be an ms-trae of the MSC k if and
only if it is de�ned over the messages M of k, and <ms

k �<trae
t .

Lemma 5 For an MSC k over M , and events e; e0 2 Ems(M), we have e <trae
t e0 for

all ms-traes t of k if and only if e <ms
k e0.

Proof The `if'-part is trivial. For the `only if'-part we use ontraposition. Suppose
that e 6<ms

k e0. Then the relation <ms
k [f(e0; e)g does not ontain a yle. Thus, it an

be extended to a total order <. Beause <ms�<, < will be the trae-order <trae
t of

some ms-trae t of k. In this ms-trae we will have e0 <trae
t e, and thus e 6<trae

t e0. �

5.2 Implementation Models

5.2.1 Implementation Models for Communiation

In this setion we disuss possible arhitetures for realising an MSC. We onsider
only implementation models onsisting of FIFO bu�ers for the output and input of
messages. For ms-traes, we de�ne what it means to be implementable on some
arhiteture.

The partiular implementation models whih we are interested in are onstruted
of entities that ommuniate with eah other via FIFO bu�ers. We assume that the
bu�ers have an unbounded apaity. We disern two uses of bu�ers, namely for the
output and for the input of messages.

A seond distintion an be made based on the loality of the bu�er. From most
global to most loal we distinguish the following types:

� global: A global FIFO bu�er: All messages from all instanes pass this bu�er.

� inst: A FIFO bu�er, loal to an instane: All messages sent (or reeived) by one
single instane go through the same bu�er.
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� pair: A FIFO bu�er, loal to two instanes: All messages that are sent from one
spei� instane to another spei� instane go through this bu�er.

� msg: A FIFO bu�er, loal to a message: There is one bu�er for every message.

This last model, a bu�er per message, is a spei� arhiteture to ath up the
ases in whih the bu�ers do not behave like FIFO queues, but as random-aess
bu�ers. Taking into aount the assumption that messages are unique, it an easily
be seen that it is equivalent to a global random-aess bu�er. A ommuniation model
with only a random-aess bu�er represents the implied model of the MSC standard:
the only assumption made about the implementation of ommuniation is that output
preedes input, no more, and no less.

Finally, we onsider the following possibility:

� nobuf: There are no bu�ers; ommuniation is synhronous.

We assume that all output bu�ers are of the same type, and similarly that all
input bu�ers are of the same type. This results in four possibilities for the output as
well as for the input. Adding the possibility of using no bu�er at all, we have a total
of 25 possible arhitetures, as shown in Figure 5.1. To denote the elements of this
sheme, we use the notation (X,Y), where X denotes the type of output bu�er, and
Y the type of input bu�er.

nobuf

input

output nobuf inst pair msgglobal

global

inst

pair

msg

Figure 5.1: Implementation models.

In Figure 5.2 we give examples of a physial arhiteture of three ommuniation
models. A irle denotes an instane, an open retangle denotes an output bu�er,
a �lled retangle denotes an input bu�er, and an arrow denotes a ommuniation
hannel. Eah example ontains three instanes. The �rst example illustrates the
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(nobuf,global) model. There is no output bu�er, and one universal input bu�er. As
there is no output bu�er, the messages go straight into the input bu�er. This single
bu�er ould be regarded as an output bu�er as well, so this example is an illustration
of (global,nobuf) too if we replae the input bu�er by an output bu�er. The seond
example shows the (global,inst) model. There is one general output bu�er and every
instane has a loal input bu�er. The third arhiteture is an example of the (pair,pair)
model.

Figure 5.2: Some models: (nobuf,global), (global,inst) and (pair,pair).

Please note that not all models desribed in Figure 5.1 make sense to an equal
degree. For example, the model (global,inst) (i.e., a shared medium for transmit-
ting messages and an input bu�er for eah entity) is more natural than the exoti
(global,pair) model.

Many of these arhitetures our in pratie as either the underlying ommu-
niation arhiteture of a programming language or as a physial arhiteture. We
give some examples of languages. The model (nobuf,nobuf) is typial for proess al-
gebrai formalisms based on synhronous ommuniation, suh as LOTOS [ISO88b℄
and ACP [BK84℄. The spei�ation language SDL [IT94, BHS91℄, whih is losely
related to MSC, has as a general ommuniation model (pair,msg), but if we leave out
the save onstrut we obtain (pair,inst) and if we also do not onsider the possibility
of delayed hannels, we have (nobuf,inst). Some examples of physial arhitetures
are: an asynhronous omplete mesh has a (nobuf,pair) arhiteture, and an Ethernet
onnetion with loally bu�ered input and output behaves like (inst,inst).

5.2.2 Extending the Semantis

In the previous setion we have seen that we onsider implementation models of
ommuniation in MSCs where eah message passes at most two FIFO bu�ers. In
order to reason about suh implementation models we will extend the semantis of
MSC in this setion. In this extension of the semantis, a single ommuniation of
message m will be modeled by three events. These are the events !m, !!m, and ?m.
The intuition here is, as expressed in Figure 5.3, that !m denotes the putting of a
message into an output bu�er, !!m is the transmission of the message from the output
bu�er to the appropriate input bu�er, and ?m is the removal of the message from the
input bu�er. We assume these events to be instantaneous.

The intermediate transmit events !!m play a ruial role in our desription of
the ommuniation models. However, we have formulated the semantis of an MSC
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!m !!m ?m

Figure 5.3: Events assoiated with a ommuniation.

without using transmit events. In the remainder of this setion we will de�ne a
semantis of MSC in whih the transmit event ours. The approah is similar to the
previously de�ned semantis.

The order <i is lifted in the trivial way to the set Eimpl(M) = f!m; ?m; !!m j m 2
Mg.

We de�ne the output-before-transmit-before-input order by

<oti
k = f(!m; !!m); (!!m; ?m) j m 2 Mg;

and the relation <impl
k by adding the instanewise ordering on the MSC.

De�nition 6 For a given MSC k = hI;M; from; to; f<igi2Ii, the ordering <impl
k is

de�ned by <impl
k = (<inst

k [ <oti
k )+.

It is easy to see that <ms is the restrition of <impl to output and input events.
From an operational point of view, one an say that an MSC desribes a set of

traes. We distinguish ms-traes and impl-traes. An ms-trae denotes the ordering
of output and input events (!m and ?m), an impl-trae those of transmit events (!!m)
as well.

De�nition 7 (impl-traes) An impl-trae is the same as an ms-trae (see De�ni-
tion 4), exept for the fat that it ontains transmit events as well.

De�nition 8 (Trae order) For a trae t over a set of messages M we de�ne an
order <trae

t on Eimpl(M), for all 1 � i �jt j and 1 � j �j t j by ti <
trae
t tj , i < j.

De�nition 9 (MSC-trae) A trae t is said to be an impl-trae of the MSC k if

and only if it is de�ned over the messages M of k, and <impl
k �<trae

t .

An impl-trae an be turned into an ms-trae by removing all transmit events
(!!m). If, for an impl-trae t this results in an ms-trae t0, then t is said to be an
extension of t0. It is not hard to see that an impl-trae t is an MSC-trae of an
MSC k if and only if the trae of whih it is an extension is a trae of the MSC and
additionally the output-before-transmit-before-input order is respeted: <oti

k �<trae
t .

The MSC from Figure 5.4 implies the following orderings: !a <ms?a, !b <ms?b,
and ?a <ms?b. The �rst two are implied by the <oi-order, the third by the <inst-
order. The MSC has exatly three ms-traes: !a ?a !b ?b, !a !b ?a ?b, and !b !a ?a ?b.
These ms-traes an be extended to ten impl-traes, suh as !a !!a ?a !b !!b ?b and
!a !b !!b !!a ?a ?b.
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i j k

a

b

ms Example 2

Figure 5.4: Example MSC.

5.2.3 Implementability

The main question of this hapter is, whether a system with a given implementation
model an exhibit the behaviour desribed by a ertain MSC. To answer this question,
we �rst give a formal de�nition of what it means for a trae to have a ertain im-
plementability property. The de�nitions below an be seen as a formalisation of the
notions introdued in Setion 5.2.1.

De�nition 10 (Output-implementability)

� nobuf-output: Every output event is diretly followed by the orresponding
transmit event. Thus, output and transmit events may be ombined into one
new event. An impl-trae t is nobuf-output implementable if and only if

8
m2M

: 9
e2Eimpl(M)

!m <trae
t e <trae

t !!m:

� global-output: The order of two output events is respeted by the orresponding
transmit events. An impl-trae t is global-output implementable if and only if

8
m;m02M

!m <trae
t !m0 )!!m <trae

t !!m0:

� inst-output: The order of any two output events from the same instane is
respeted by the orresponding transmit events. An impl-trae t is inst-output
implementable if and only if

8
m;m02M

from(m) = from(m0)) (!m <trae
t !m0 )!!m <trae

t !!m0):
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� pair-output: The order of two output events with the same soure and the same
destination, is respeted by the orresponding transmit events. An impl-trae t
is pair-output implementable if and only if

8
m;m02M

from(m) = from(m0) ^ to(m) = to(m0)
) (!m <trae

t !m0 )!!m <trae
t !!m0):

� msg-output: An impl-trae t is always msg-output implementable.

For msg-output implementability we an remark that it an be put in line with
the three de�nitions preeding it, by restating it as

8
m;m02M

m = m0 ) (!m <trae
t !m0 )!!m <trae

t !!m0):

For nobuf-output implementability suh a translation is not possible; this is qualita-
tively another de�nition. Also note that, beause <trae is a total order, !m <trae

t

!m0 )!!m <trae
t !!m0 is equivalent to both !m <trae

t !m0 ,!!m <trae
t !!m0 and !m <trae

t

!m0 (!!m <trae
t !!m0.

The input implementabilities are de�ned analogously.

De�nition 11 (Input-implementability)

� nobuf-input: An impl-trae t is nobuf-input implementable if and only if

8
m2M

: 9
e2Eimpl(M)

!!m <trae
t e <trae

t ?m:

� global-input: An impl-trae t is global-input implementable if and only if

8
m;m02M

!!m <trae
t !!m0 )?m <trae

t ?m0:

� inst-input: An impl-trae t is inst-input implementable if and only if

8
m;m02M

to(m) = to(m0)) (!!m <trae
t !!m0 )?m <trae

t ?m0):

� pair-input: An impl-trae t is pair-input implementable if and only if

8
m;m02M

from(m) = from(m0) ^ to(m) = to(m0)
) (!!m <trae

t !!m0 )?m <trae
t ?m0):

� msg-input: An impl-trae t is always msg-input implementable.

Having de�ned formally the notions of output- and input-implementability, we
now ombine them and obtain our notion of ommuniation model.

De�nition 12 An impl-trae is said to be (X,Y)-implementable (for X;Y 2 fnobuf,
global, inst, pair, msgg) if and only if it is X-output implementable and Y-input im-
plementable. An ms-trae is said to be (X,Y)-implementable if and only if it an be
extended (by adding !!m's) to an impl-trae that is (X,Y)-implementable.
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5.3 Classi�ation of Implementability of Traes

To eah of the implementation models de�ned in the previous setion we an assoiate
the set of all traes that are implementable in the model. Based on the subset relation
on these sets of traes, we an order implementation models. We onsider two models
equivalent if they have the same set of implementable traes.

In Lemma 13 we give a lassi�ation of the notions of output-implementability. It
states that a trae that is implementable on a ertain arhiteture is also implement-
able on an arhiteture where these bu�ers are partitioned into bu�ers with a more
restrited loality. For example, if a trae an be implemented on an arhiteture
with one output bu�er per instane, it an also be implemented on an arhiteture
with an output bu�er per pair of instanes (provided the input bu�ers remain the
same).

Lemma 13 (Classi�ation of output-implementability)

� Every nobuf-output implementable trae is global-output implementable.

� Every global-output implementable trae is inst-output implementable.

� Every inst-output implementable trae is pair-output implementable.

� Every pair-output implementable trae is msg-output implementable.

Proof For impl-traes this follows diretly from the de�nitions. For ms-traes
this follows from the de�nition plus the fat that it holds for impl-traes. �

The following lemmas give the orderings between the implementation models.

Lemma 14

� Every (inst,global)-implementable ms-trae is (inst,nobuf)-implementable.

� Every (global,global)-implementable ms-trae is (global,nobuf)-implementable.

� Every (pair,pair)-implementable ms-trae is (pair,nobuf)-implementable.

� Every (msg,msg)-implementable ms-trae is (msg,nobuf)-implementable.

Proof We show the proof for (inst,global). The other proofs are roughly analogous.
Let t be an ms-trae over the set of messages M , and let t0 be an impl-trae that is
an (inst,global)-implementable extension of t. It suÆes to onstrut an (inst,nobuf)-
implementable extension t00 of t. We reate t00, for whih we will prove that it is
(inst,nobuf)-implementable, in the following way: Starting from t, for eah message
m 2 M we add the transmit event !!m just before the input event ?m. This t00 is
nobuf-input implementable by de�nition, so it suÆes to prove that t00 is inst-output
implementable. Thereto, let m;m0 2 M suh that from(m) = from(m0). We have to
prove that !m <trae

t00 !m0 )!!m <trae
t00 !!m0.

Suppose that !m <trae
t00 !m0. Then, sine t00 is an extension of t, we have !m <trae

t

!m0, and similarly, sine t0 is an extension of t, !m <trae
t0 !m0. Using that t0 is inst-

output implementable and from(m) = from(m0) we have !!m <trae
t0 !!m0. By using that
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t0 is global-input implementable, we also have ?m <trae
t0 ?m0. Sine t0 is an extension

of t we have ?m <trae
t ?m0 and sine t00 is an extension of t also ?m <trae

t00 ?m0. Sine
t00 is nobuf-input implementable, we obtain !!m <trae

t00 !!m0, whih ompletes the proof.
�

Lemma 15 � Every nobuf-input implementable trae is global-input implement-
able.

� Every global-input implementable trae is inst-input implementable.

� Every inst-input implementable trae is pair-input implementable.

� Every pair-input implementable trae is msg-input implementable.

� Every (global,inst)-implementable ms-trae is (nobuf,inst)-implementable.

� Every (global,global)-implementable ms-trae is (nobuf,global)-implementable.

� Every (pair,pair)-implementable ms-trae is (nobuf,pair)-implementable.

� Every (msg,msg)-implementable ms-trae is (nobuf,msg)-implementable.

Proof Fully analogous to Lemmas 13 and 14. �

Next, we desribe how the above lemmas are useful in ordering the models. Lemma
13 provides us with a partial ordering on the various implementations: Any (X,Y)-
implementable trae is implementable by all implementation models loated to the
right of or below (X,Y) in Figure 5.1. Lemmas 13 to 15 give us the equivalenes as
expressed in Figure 5.5 by means of the lustering of implementation models.

For example, the models from the last olumn are equivalent. This an be seen as
follows. Beause of the analogue of Lemma 14, any (msg,msg)- implementable ms-
trae is (nobuf,msg)-implementable, while Lemma 13 gives that any (nobuf,msg)-im-
plementable ms-trae is (X,msg)-implementable, and every (X,msg)-implementable
ms-trae is (msg,msg)-implementable.

Now we have redued the number of implementation models to only seven di�erent
lasses. Of ourse, some of these ould still be equivalent for other reasons than the
above lemmas. That this is not the ase, will be seen in Corollary 20 below. We name
the equivalene lasses as follows: nobuf, global, inst out, inst in, inst2, pair, msg (see
Figure 5.5).

Of these, the �rst two and last two will be lear immediately, inst out means that
there are instanewise output bu�ers and global or no input bu�ers, inst in means
that there are instanewise input bu�ers and global or no output bu�ers, and inst2

means that there are both an instanewise output bu�er and an instanewise input
bu�er.

Theorem 16 For traes, the seven implementation models are ordered as is shown
in Figure 5.6.
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nobuf

input

output nobuf inst pair msgglobal

global

inst

pair

msg

nobuf

global

pair

msg

inst out

inst in

inst2

Figure 5.5: Equivalene of implementation models for traes.

Proof This follows from the Lemmas 13 to 15 as explained above. �

Note that of these seven ases only inst2 is not of the form (X; nobuf) or (nobuf;X).
As these forms imply that there is respetively no input bu�er or no output bu�er, of
these seven ases only the ase inst2 needs two bu�ers, all other ases an be modelled
suh that eah message goes through at most one bu�er.

It will prove useful to have a haraterisation of these implementabilities (exept
for inst2 of ourse) that does not use transmits.

Lemma 17 Let t be an ms-trae over a set of messages M . Then:

� t is nobuf-implementable if and only if

8
m2M

: 9
e2Ems(M)

!m <trae
t e <trae

t ?m;

� t is global-implementable if and only if

8
m;m02M

!m <trae
t !m0 )?m <trae

t ?m0;

� t is inst out-implementable if and only if

8
m;m02M

from(m) = from(m0)) (!m <trae
t !m0 )?m <trae

t ?m0);

� t is inst in-implementable if and only if

8
m;m02M

to(m) = to(m0)) (!m <trae
t !m0 )?m <trae

t ?m0);
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Figure 5.6: Ordering of the implementation models for traes.

� t is pair-implementable if and only if

8
m;m02M

from(m) = from(m0) ^ to(m) = to(m0)
) (!m <trae

t !m0 )?m <trae
t ?m0);

� t is always msg-implementable.

Again note that beause <trae
t is a total order, 8m;m02M !m <trae

t !m0 )?m <trae
t

?m0 an be replaed by 8m;m02M !m <trae
t !m0 ,?m <trae

t ?m0 without loss of orret-
ness.
Proof The proofs for this are easily found by realising that a ms-trae is (X,nobuf)-
implementable exatly if the onditions for X-output implementability hold with !!m
everywhere replaed by ?m. �

5.4 Classi�ation of MSCs

The use of MSCs in pratie (and theory) is twofold. First, MSCs are often used
to restrit the behaviour of ommuniating entities. In this use, it is the intention
that the atual behaviour of the system is ontained in the behaviour spei�ed by
the MSC. It does not mean that all behaviour of the MSC must be realised in the
system. In this ase only one of the traes of the MSC has to be implementable
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in the given ommuniation model. This notion of implementability is alled weak
implementability .

On the other hand, if the language MSC is used for the desription of required
behaviour (as for example in use ases), it is intended that eah of the behaviours
spei�ed by the MSC is realised. In this ase all traes of the MSC have to be im-
plementable in the given ommuniation model. This notion of implementability is
alled strong implementability .

We �rst fous on strong implementability, then on weak implementability. After
this we onsider the relation between lasses from the strong and weak spetrum.

5.4.1 Strong Implementability

De�nition 18 An MSC k is said to be strongly X-implementable, notation Xs-im-
plementable, if and only if all ms-traes t of k are X-implementable.

From this de�nition it follows immediately that the ordering of the implementation
models for traes as given in Figure 5.6 also holds for MSCs as far as strong implement-
ability is onerned (see Figure 5.10). Next, we demonstrate that the implementation
models, obtained by lifting them from the trae level to MSCs in the strong way, are
indeed di�erent. This is ahieved by �nding examples of MSCs that are in one lass
but not in another.

MSC 1 in Figure 5.7 shows an example that is globals-implementable, but not
nobufs-implementable. It is not nobufs-implementable, beause the trae !a !b ?a ?b is
not. The input events neessarily have to be ordered in the same way as the output
events, so it is globals-implementable.

i j

a

b

ms 1

Figure 5.7: MSCs to distinguish the implementation models: strong ase (1)

MSC 2a in Figure 5.8 is inst outs-implementable, but not globals-implementable
due to the trae !b !a ?a ?b. That MSC 2a is inst outs-implementable an be seen as
follows: All messages go through a di�erent output bu�er, so there is no problem
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with the output bu�ers at all. Similarly, MSC 2b is inst ins-implementable, but not
globals-implementable due to the trae !a !b ?b ?a.

MSCs 2a and 2b show the di�erene between inst outs and inst ins. MSC 2a is
inst outs-implementable, as mentioned before, but not inst ins-implementable. The
trae !b !a ?a ?b is not inst in-implementable, beause the input events of instane j do
not reah the input bu�er in the order in whih they are to be manipulated. For MSC
2b the reverse is the ase: It is inst ins-implementable, but not inst outs-implement-
able. MSC 2a is inst outs-implementable and therefore also inst2s-implementable. We
have already established that it is not inst ins-implementable. Similarly, MSC 2b is
inst ins and inst2s-implementable, but not inst outs-implementable. Together, these
show that inst outs, inst ins and inst2s are all di�erent.

One might suspet that the lass of inst2s-implementable MSCs is simply equal to
the intersetion of the lasses of inst outs-implementable and inst ins-implementable
MSCs. This is not the ase, as an easily be shown by ombining the MSCs 2a and
2b into one MSC (see MSC 8 in Figure 5.16).

MSC 3 in Figure 5.9 is an example of an MSC that is pairs-implementable, but
not inst2s-implementable. It is easy to see that it is pairs-implementable, beause
eah message goes through a di�erent bu�er. Its only ms-trae is ! !a ?a !b ?b ?.
If we try to extend this to an inst2-implementable impl-trae t0, we need to have
!! <trae

t !!a <trae
t !!b <trae

t !!, whih is impossible (the �rst <trae
t is beause of the

inst-output implementability and ! <trae
t !a, the seond is learly true for every impl-

trae of the MSC, and the third is beause of the inst-input implementability together
with ?b <trae

t ?).

Finally, MSC 4 shows the di�erene between pairs- and msgs-implementability. All
other implementation models are also pairwise di�erent. This result is obtained due
to the transitive losure of the ordering as presented in Figure 5.10.

Together the examples used above show that if we look at strong implementability,
the seven remaining implementation models are indeed di�erent for MSCs, and thus
that they are also di�erent for ms-traes.

Theorem 19 The implementation models for strong implementability of Figure 5.10
are di�erent and these are ordered as expressed in Figure 5.10.

Proof In the above text we have demonstrated by means of ounterexamples that
the implementation models must be di�erent. Also the ordering has been explained
above. �

Corollary 20 The lasses nobuf, global, inst out, inst in, inst2, pair, and msg are
di�erent for MSC-traes.

5.4.2 Weak Implementability

De�nition 21 An MSC k is said to be weakly X-implementable, notation Xw-imple-
mentable, if and only if there is an X-implementable ms-trae t of k.
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Figure 5.8: MSCs to distinguish the implementation models: strong ase (2)
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Figure 5.9: MSCs to distinguish the implementation models: strong ase (3)

As was the ase for strong implementability, for weak implementability we also
have the ordering as expressed in Figure 5.6 as a starting point. However, using weak
implementability, we do not have anymore that all implementation models di�er. To
see this, we �rst give an alternative way to haraterise some of the implementations
and prove that these are equivalent to the original de�nition.

We will use some new relations (to denote these relations we will use the same type
of symbols as we have used to denote partial orders) to give this new de�nition. The
idea is that these new relations give an ordering requirement that must be ful�lled by
a trae so as to be inst out-implementable, inst in-implementable or inst2-implement-
able. For example, to be inst out-implementable, eah time two messages m and m0

ome from the same instane, they must be reeived in the same order as the order
in whih they were sent. Beause they are on the same instane, there will be some
<ms-order between !m and !m0. To ensure that the trae has the reeipts in the same
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Figure 5.10: Ordering sheme for strong implementability.

order, we will have to add the equivalent order between ?m and ?m0.

De�nition 22 Let k be an MSC over the set of messages M . Then we de�ne the
relations <io

k and <ii
k on Ems(M) and <i2

k on Eimpl(M) as follows:

<io
k= (<ms

k [ f(?m; ?m0) j m;m0 2M ^ from(m) = from(m0)^!m <ms
k !m0g)+,

<ii
k= (<ms

k [ f(!m; !m0) j m;m0 2M ^ to(m) = to(m0)^?m <ms
k ?m0g)+;

<i2
k= (<impl

k [f(!!m; !!m0) j m;m0 2M ^ from(m) = from(m0)^!m <impl
k !m0g

[f(!!m; !!m0) j m;m0 2M ^ to(m) = to(m0)^?m <impl
k ?m0g)+.

A piture of these orderings an be seen in Figure 5.11. It shows an MSC together
with its <ms, <impl, <io, <ii and <i2 relations. For the last three, the orderings
that have been added when ompared to <ms or <impl have been dashed, while the
orderings that aused these extra orderings have been drawn fat.

The inst out-implementable traes of the MSC are also traes of the ordering <io
k

as they respet the requirements for inst out-implementability by de�nition, and vie
versa. Basially this is what is expressed in Lemma 23.

Lemma 23 Let t be an ms-trae of an MSC k. Then,

� t is inst out-implementable if and only if <io
k�<

trae
t ;
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Figure 5.11: Explanation of the <io, <ii and <i2 relations

� t is inst in-implementable if and only if <ii
k�<

trae
t ;

� t is inst2-implementable if and only if there exists an extension t0 of t suh that
<i2

k�<
trae
t0 .

Proof We only give the proof for the last proposition. The proofs for the �rst two
propositions follow the same line.

First, suppose that t is inst2-implementable. Then we must prove that <i2
k�<

trae
t0

for some impl-trae t0 whih is an extension of t. Let the impl-trae t0 be an arbitrary
inst2-implementable extension of t (the existene of suh a trae follows trivially from
De�nition 12). Suppose that e <i2

k e0 for arbitrary events e; e0 2 Eimpl(M). Now it
suÆes to prove e <trae

t0 e0. Sine e <i2
k e0 we have the existene of events e1; � � � ; en

suh that e � e1, e
0 � en and for all 1 � i < n we have one of the following:

� ei <
impl
k ei+1;

� ei �!!m and ei+1 �!!m0 for some m;m0 2M suh that from(m) = from(m0) and

!m <impl
k !m0;

� ei �!!m and ei+1 �!!m0 for some m;m0 2 M suh that to(m) = to(m0) and

?m <impl
k ?m0.

In the �rst ase we immediately have ei <
trae
t0 ei+1. Due to the fat that t0 is an

inst2-implementable impl-trae, and thus both inst-output and inst-input implement-
able, we an onlude that ei <

trae
t0 ei+1 for the seond and third ase as well (see

De�nitions 10 and 11). Sine <trae
t0 is transitive we have e <trae

t0 e0, whih ompletes
this part of the proof.
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Seond, suppose that <i2
k�<

trae
t0 for some impl-trae t0 whih is an extension of t.

We must prove that t is (inst,inst)-implementable. Thereto, it suÆes to show that
t0 is (inst,inst)-implementable, i.e., that t0 is inst-output implementable and inst-input
implementable. We prove that t0 is inst-output implementable, the proof that t0 is inst-
input implementable is analogous. Let m;m0 2 M suh that from(m) = from(m0).
Then it suÆes to show that !m <trae

t0 !m0 )!!m <trae
t0 !!m0. Thus, suppose that

!m <trae
t0 !m0. Sine from(m) = from(m0), we have !m <ms

k !m0. So !!m <i2
k !!m

0. Be-
ause <i2

k�<
trae
t0 we therefore have !!m <trae

t0 !!m0. �

Thus far, we have seen that the ordering <io
k ontains all inst out-implementable

traes of MSC k. An MSC k is inst outw-implementable if and only if it has a trae
t that is inst out-implementable. Clearly, suh a trae exists if and only if there is a
trae for the ordering <io

k , in other words, if and only if <io
k is yle-free.

Theorem 24 Let k be an MSC. Then,

� k is inst outw-implementable if and only if <io
k is yle-free;

� k is inst inw-implementable if and only if <ii
k is yle-free;

� k is inst2w-implementable if and only if <i2
k is yle-free.

Proof Follows immediately from Lemma 23. �

We use the alternative haraterisations provided by Theorem 24 in the proof of
the equivalene of the lasses inst outw, inst inw, and inst2w.

Lemma 25 Let k be an MSC over the set of messages M and let m;m0 2 M . If
?m <io

k ?m
0, then !!m <i2

k !!m
0

Proof Suppose that ?m <io
k ?m

0. Then by the de�nition of<io
k we have the existene

of events e1; � � � ; en suh that e1 �?m, en �?m0, and for 1 � i < n we have one of
the following:

� ei <
ms
k ei+1;

� ei �?p, ei+1 �?p
0 for some p; p0 2 M suh that from(p) = from(p0) and !p <ms

k

!p0.

In the seond ase we have !!p <i2
k !!p

0 diretly from De�nition 22. In the �rst ase
we have a sequene of events where the smallest steps are due to <inst or due to <oi.
In this sequene any subsequene of events whih are de�ned on the same instane
an be replaed by one single step. As a result we have the existene of messages
m1; � � � ;mn0 suh that

ei �
inst!m1 <

oi?m1 <
inst!m2 <

oi?m2 <
inst � � � <inst!mn0 <oi?mn0 �inst ei+1;

where f �inst f 0 is short for f <inst f 0 or f � f 0. Now we observe that we only have
the following three possibilities for <inst:
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� !q <inst!q0 for some q; q0 2M suh that from(q) = from(q0). Then also !!q <i2
k !!q

0

by the de�nition of <i2.

� ?q <inst?q0 for some q; q0 2 M suh that to(q) = to(q0). Then also !!q <i2
k !!q

0,
again by the de�nition of <i2.

� ?q <inst!q0 for some q; q0 2M suh that to(q) = from(q0). Then !!q <impl
k ?q <impl

k

!q0 <impl
k !!q0, so learly !!q <impl

k !!q0 and !!q <i2
k !!q

0 (sine <i2
k�<

impl
k ).

Thus, we obtain !!ei <
i2
k !!ei+1 for all 1 � i < n. Therefore !!m <i2

k !!m
0. �

Lemma 26 The implementation models inst outw, inst inw, and inst2w are all equiv-
alent.

Proof We show that eah inst2w-implementable MSC is also inst outw-implement-
able. The reverse impliation is trivial, and the proofs with inst inw are analogous.
From Lemma 24 we see that it suÆes to prove that <io is yle-free if <i2 is yle-
free. We prove this using ontraposition, so we assume that <io has a yle. Let
e1 <io e2 <io : : : <io en <io e1 be an arbitrary yle suh that for every ordering
in the yle, say ei <

io ei+1, either ei <
ms ei+1, and hene ei <

i2 ei+1, or ei �?m,
ei+1 �?m0 for some m;m0 2 M suh that !m <ms!m0 and from(m) = from(m0) (any
yle an be extended to some yle of this form by the addition of events).

If the �rst is always the ase, then we have a yle in <ms, so ertainly in <i2.
Now assume we have the seond at least one in the yle. In that ase we have at
least two input events in the yle, say ?m and ?m0. Then ?m <io?m0 and ?m0 <io?m.
Lemma 25 gives that this implies that !!m <i2!!m0 and !!m0 <i2!!m, so <i2 has a yle.
�

Lemma 26 establishes that the lasses inst outw, inst inw, and inst2w are equivalent.
In the remainder we denote this lass by instw. The remaining models are all di�erent.
MSC 3 and MSC 4 in Figure 5.9 show the di�erene between instw and pairw, and
pairw and msgw, respetively, in the weak ase too (these MSCs have only one ms-
trae, so their weak implementability equals their strong implementability). MSC 5
in Figure 5.12 is globalw-implementable, but not nobufw-implementable. The trae
!a !b ?a ?b is global-implementable, but beause both output events must have been
exeuted before any input event an be proessed, there is no nobuf-implementable
trae.

MSC 6 is instw-implementable, but not globalw-implementable. It is not globalw-
implementable, as an be seen thus: !a <ms!b, so if a trae t of this ms is global-
implementable, we must have ?a <trae

t ?b. Beause !d <ms?a and ?b <ms!, we get
!d <trae

t !. But we also have ? <ms?d, and thus ? <trae
t ?d, from whih it follows that

t annot be global-implementable. On the other hand, the trae !a !b !d ?a ?b ! ? ?d is
inst out-implementable, so the MSC is instw-implementable.

Theorem 27 The implementation models for weak implementability of Figure 5.13
are all di�erent and they are ordered as expressed in Figure 5.13.
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i j

a

b

ms 5

i j k l

a

b



d

ms 6

Figure 5.12: MSCs to distinguish the implementation models: weak ase.

Proof The ounterexamples that imply that the implementation models are dif-
ferent are given above. The ordering of the models is inherited from the ordering
of the implementation models with respet to traes. Lemma 26 provides that the
implementation models inst outw, inst inw, and inst2w are equivalent. �

5.4.3 Combining the Strong and Weak Hierarhies

The relations between the lasses in one of the two hierarhies have been studied
extensively in the previous setions. We have 12 possible implementations left: nobufs,
globals, inst outs, inst ins, inst2s, pairs andmsgs in the strong ase, and nobufw, globalw,
instw, pairw and msgw in the weak ase. From the de�nitions of strong and weak im-
plementability it is lear that any Xs-implementable MSC is also Xw-implementable.
The remaining lasses are ordered as shown in Figure 5.14.
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Figure 5.13: Ordering sheme for weak implementability.
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An arrow pointing from one of the lasses to another means that all MSCs that are
implementable in the ommuniation model orresponding to the �rst lass are also
implementable in the ommuniation model orresponding to the seond lass. Any
superuous arrows (those that an be inferred from the transitivity of the relation)
have been removed.

These evident relationships between the two hierarhies have led us to the further
investigation of suh relationships. As it turns out there are more relationships be-
tween and identi�ations of the lasses from the two hierarhies. First, we prove that
some lasses an be identi�ed.

Lemma 28 An MSC k is pairs-implementable if and only if it is pairw-implementable.

Proof Clearly, any pairs-implementable MSC is also pairw-implementable. It re-
mains to prove that any pairw-implementable MSC is also pairs-implementable. Let k
be a pairw-implementable MSC. Let t be an arbitrary ms-trae of k. Let m;m0 2M
suh that from(m) = from(m0) and to(m) = to(m0). We want to prove that !m <trae

t

!m0 )?m <trae
t ?m0, from whih it follows that the (arbitrary) trae t is pair-imple-

mentable.
Suppose that !m <trae

t !m0. Then, beause from(m) = from(m0) and !m <trae
t !m0,

we have !m <ms
k !m0 (when from(m) = from(m0), either !m <ms

t !m0 or !m0 <ms
t !m ,

and the seond annot be the ase). Sine k is pairw-implementable there exists a trae
t0 that is pair-implementable. Sine !m <ms

k !m0 we have !m <trae
t0 !m0. Sine t0 is pair-

implementable we have by Lemma 17 that ?m <trae
t0 ?m0. Beause to(m) = to(m0) we

then have ?m <ms
k ?m0. Therefore we have ?m <trae

t ?m0, whih ompletes the proof.
�

Lemma 29 An MSC k ismsgs-implementable if and only if it ismsgw-implementable.

Proof Trivial, beause every impl-trae is msg-implementable, and thus eah ms-
trae is as well. �

Lemmas 28 and 29 establish that the lasses pairs and pairw, and msgs and msgw
are equivalent. In the remainder we denote these by pair and msg, respetively.

Next, we will prove that any inst outs-implementable MSC is globalw-implement-
able and that any inst ins-implementable MSC is globalw-implementable. To do this
we �rst give some alternative haraterisations for these implementations.

Lemma 30 An MSC k is inst outs-implementable if and only if <io
k=<

ms
k . An MSC

k is inst ins-implementable if and only if <ii
k=<

ms
k .

Proof We only give the proof for the �rst proposition. The proof of the seond
proposition follows the same lines.

First, suppose that MSC k is inst outs-implementable. Diretly from the de�nition
we know that <ms

k �<io
k , so it only remains to be proven that <io

k�<
ms
k . Suppose that

e <io
k e0 for arbitrary e; e0 2 Ems(M). Then we have the existene of e1; � � � ; en suh

that e � e1, e
0 � en and for all 1 � i < n we have one of the following:
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� ei <
ms
k ei+1;

� ei �?m and ei+1 �?m0 for some m;m0 2M suh that from(m) = from(m0) and
!m <ms

k !m0.

In the seond ase we have, by Lemma 5, !m <trae
t !m0 for every ms-trae t of k.

Sine k is inst outs-implementable we have that every MSC trae of k is inst out-im-
plementable. Thus, by Lemma 17 and the assumption that from(m) = from(m0) we
have ?m <trae

t ?m0 for every ms-trae t of k. Then, again by Lemma 5, we have
?m <ms

k ?m0. In the �rst ase we already know that ei <
ms
k ei+1, and taking all these

steps together we have e <ms
k e0, from whih it follows that <io

k�<
ms
k .

Seond, suppose that <io
k=<

ms
k . Then we must prove that MSC k is inst outs-im-

plementable. Let t be an ms-trae of k, and let m;m0 2 M suh that from(m) =
from(m0). Suppose !m <trae

t !m0. Then beause of from(m) = from(m0), we have
!m <ms

k !m0. By the de�nition of <io
k we then have ?m <io

k ?m
0. By the assumption

that <io
k=<

ms
k , this implies ?m <ms

k ?m0, and thus ?m <trae
t ?m0. �

For a similar haraterisation of globalw-implementability we de�ne a relation <g
k.

De�nition 31 Let k be an MSC. The relation <g
k on Ems(M) is de�ned as the

smallest relation that satis�es:

1. <ms
k �<g

k;

2. <g
k is transitive;

3. !m <g
k!m

0 ,?m <g
k?m

0 for all m;m0 2M .

Lemma 32 An MSC k is globalw-implementable if and only if the relation <g
k is

yle-free.

Proof First, suppose that MSC k is globalw-implementable. Let t be a global-im-
plementable trae of k. Then <trae

t adheres to the restritions in De�nition 31, and
thus <g

k�<
trae
t , and <g

k is yle-free.
Seond, suppose that the relation <g

k is yle-free. The idea of the proof is that
we extend this relation until it is a total order. Then, if we an prove that the trae
orresponding with this total order is global-implementable, we are done.

We extend the relation<g
k to form an ordering< by repeatedly hoosing a smallest

element that has not yet been hosen, and taking that as the next element of our total
order, all the while ensuring that the preonditions of De�nition 31 are still being met.
More formally, we will use the following algorithm (with S and < as our variables):

1. S := Ems(M), <:=<g
k

2. Let e be any smallest element of S with respet to <, that is, any element of S
for whih there is no e0 2 S with e0 < e.

3. S := S n feg

4. <:= (< [f(e; e0)je0 2 Sg)+
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5. if e �!m for some m 2M , then <:= (< [f(?m; ?m0)j!m0 2 Sg)+

6. Repeat steps 2 to 5 until S = ;

We �rst remark that the following invariant holds: ?m <?m0 )?m <g
k?m

0_!m 62 S
for all m;m0 2 M . This learly holds at the beginning, and only pairs (?m; ?m0) are
added for whih !m 62 S sine, otherwise, ?m would not be a smallest element of S.
Also, after every exeution of the body of the repetition (i.e. after step 5), < is a
total ordering on those events that are not ontained in S.

Before we an make any arguments regarding the resulting ordering <, we have
to prove that the algorithm is well-de�ned. In partiular, for step 2 of the above
algorithm it is neessary that < is yle-free. After step 1 < is yle-free beause
by the assumption <g

k is yle-free. There are two plaes where the relation < is
extended, namely step 4 and step 5. Step 4 maintains yle-freeness of <. This an
be seen as follows. Let e be an arbitrary smallest element of S with respet to <.
Suppose that by adding the pairs (e; e0) for e0 2 S n feg to < a yle appears. Then
e0 < e for some e0 2 S n feg whih ontradits the assumption that e is a smallest
element of S with respet to <.

Step 5 maintains yle-freeness as-well. Suppose that !m is a smallest element of
< with respet to S. Suppose that a yle is introdued by step 5. This an only be
the ase if a pair (?m; ?m0) is added to < for whih we already had ?m0 <?m and
!m0 2 S. By the previously mentioned invariant we have ?m0 <g

k?m. By the de�nition
of <g

k then also !m0 <g
k!m. As !m0 2 S this ontradits the assumption that !m was

a smallest element of S with respet to <. Thus, we have established that step 2 of
the algorithm is well-de�ned. The other steps ause no problems, so the algorithm is
well-de�ned.

The algorithm is guaranteed to terminate as the number of elements of the �nite set
S is dereased by one every time the body of the repetition is exeuted. Furthermore,
beause < is a total order on those events that are not ontained in S, and S is empty
when the algorithm ends,

Thus, upon termination of the algorithm, < is a total order on Ems(M). This
total order orresponds to a trae of the MSC as <ms

k �<g
k�<.

All that remains to be proven is that < orresponds to a global-implementable
trae of k. Note that, after step 1, for all m;m0 2 M we have !m <!m0 )?m <?m0.
If in step 4, an ordering !m <!m0 is added then in step 5 ?m <?m0 is added. Thus,
!m <!m0 )?m <?m0 is an invariant, from whih it follows that the trae orrespond-
ing with < is global-implementable. �

Lemma 33 If e <g
k e

0, there is a sequene of events e1 e2; : : : ; en, suh that:

1. e � e1, e
0 � en

2. Either ei <
ms
k ei+1 or ei �?m and ei+1 �!m for a ertain m (for eah i 2

f1 : : : n� 1g)

3. The number of ei's for whih ei 6<ms
k ei+1 (and thus ei �?m and ei+1 �!m hold)

is less than or equal to the number of ei's for whih ei �!m and ei+1 �?m.
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Thus, the sequene onsists of <ms-orderings with additionally some messages
that are passed `in the wrong diretion', but there are at least as many messages
passed in the right as in the wrong diretion.

As an example, look at MSC 2a in Figure 5.8. In this MSC, !a <g
k!b. The sequene

of events orresponding to the Lemma is !a�?a�?b�!b. There is one message (b) that is
passed from reeipt to sending, and one message (a) that is passed from sending to
reeipt.
Proof In this proof we will denote the sequene e � e1; : : : ; en � e0 for a given e

and e0 by
���!
(e; e0). This sequene is of ourse in general not uniquely de�ned, but this

does not matter for the proof.
First we note that <g

k an be onstruted by the following algorithm:

1. <g
k:=<ms

k

2. <g
k:=<g

k [f(?m; ?m0) j!m <g
k!m

0g

3. <g
k:=<g

k [f(!m; !m0) j?m <g
k?m

0g

4. <g
k:=<g

k [f(e; e
0) j 9 e00 : e <g

k e00 ^ e00 <g
k e0g

5. Repeat steps 2 to 4 until no hange ours

We will prove that the lemma remains true throughout the running of this algo-
rithm.

It is trivially true after step 1.
Suppose step 2 introdues a new pair into <g

k, ?m <g
k?m

0. Then !m <g
k!m

0 already

is part of <g
k, so by indution hypothesis

������!
(!m; !m0) exists. Then

������!
(?m; ?m0) = (?m)++

������!
(!m; !m0)++(?m0)

(where (e1; : : : ; en)++(f1; : : : ; fn) is de�ned to be (e1; : : : ; en; f1 : : : ; fn)) satis�es the
requirements. There is one pair of the form (?m; !m) added, but also one of the form
(!m0; ?m0), so this is ok.

Likewise, if step 3 introdues a new pair !m <g
k!m

0, we an hoose
������!
(!m; !m0) =

(!m)++
������!
(?m; ?m0)++(!m0).

Finally, if step 4 introdues a new pair e <g
k e0, the lemma is preserved by mak-

ing the hoie
���!
(e; e0) =

���!
(e; e00)++

����!
(e00; e0) (or rather, we should remove one of the now

double e00 to get a orret sequene). �

Lemma 34 Every inst outs-implementable MSC is globalw-implementable. Every
inst ins-implementable MSC is globalw-implementable.

Proof We prove this for an inst outs-implementable MSC. The proof is ompletely
analogous for a inst ins-implementable MSC.

We prove this by ontradition, so we assume that k is an inst outs-implementable
MSC that is not globalw-implementable. By Lemma 30 we have <io

k=<ms
k , and by

Lemma 32 we have that <g
k has a yle.
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Beause <g
k has a yle, we an onlude from Lemma 33 that there is a yle of

steps whih are either steps of <ms
k or of the form (?m; !m), where, furthermore, the

number of steps of the form (?m; !m) is not greater than the number of steps of the
form (!m; ?m). We all suh a yle a quasi-yle of order N , where N is the number
of times that a step of the form (?m; !m) ours in the yle.

We prove that this yle an be hanged into a quasi-yle of order 0. Let the
order be greater than 0. Beause the quasi-yle is a yle, and ontains at least one
(?m; !m)-step and at least one (!m; ?m)-step, there will be at least one (!m; ?m)-step,
suh that after that (!m; ?m)-step a (?m; !m)-step will take plae before the next
(?m; !m)-step. Thus, the quasi-yle ontains a subsequene (?m; !m; � � � ; !m0; ?m0),
where there are no steps of the forms (?m; !m) or (!m; ?m) between !m and !m0.

Beause we have !m <ms
k !m0, by de�nition we get ?m <io

k ?m
0, from whih we

get ?m <ms
k ?m0 from the assumption that <ms

k =<io
k . Thus, by removing all steps

between ?m and ?m0, and replaing them with a single step, we still have a yle of
<ms
k and (!m; ?m) steps, but with one less ourrene of both the type (!m; ?m) and

the type (?m; !m). Thus, this is a quasi-yle of order N � 1. Repeating this, we will
�nally obtain a quasi-yle of order 0. However, a quasi-yle of order zero is a yle
of only <ms-steps.

Thus, we see that, given the assumption, <ms must have a yle. This is impos-
sible, so the assertions annot simultaneously hold, so eah inst outs-implementable
MSC is globalw-implementable. �

In Figure 5.15 we give all ommuniation models that remain after the identi�-
ations obtained until now. The arrows between these models follow also from the
previous theorems and lemmas. Finally, we have to prove that the arrows between
models from the strong and weak hierarhy are strit and that there are no additional
arrows neessary. It suÆes to show that the following arrows do not exist: globals
to nobufw, nobufw to inst2s, and inst2s to globalw. The rest then follows beause of
transitivity. For example, the nonexistene of an arrow from globals to nobufw implies
the nonexistene of an arrow from inst outs to nobufw, beause if the seond arrow
exists then, by transitivity, also the �rst must exist. Similarly we obtain the nonexis-
tene of arrows from inst ins and inst2s to nobufw. We use the MSCs in Figure 5.16 to
indiate that the �rst two arrows do not exist. MSC 7 is globals-implementable, but
not nobufw-implementable. It has one trae, !a !b ?a ?b, whih is global-implementable,
but not nobuf-implementable. We see that MSC 7 ontains only one instane, so all
messages are messages to the same instane that sent them. This is no oinidene,
it an be shown that all possible ounterexamples have suh messages.

MSC 8 is nobufw-implementable, but not inst2s-implementable. That it is nobufw-
implementable an be seen from the piture, whih shows that there is the trae
!a ?a !b ?b ! ?, whih is nobuf-implementable. However, the trae !b ! ? !a ?a ?b is not
inst2-implementable: Beause ?b is after ?a in the trae, !!b must be after !!a to make
the trae inst-input implementable, while, beause !b is before !, !!b must be before
!! to make the trae inst-output implementable. However, !!a must be after !a and
!! before ?, so !! will be before !!a in any extension of this trae, whih implies that
!!b annot be both before !! and after !!a.

The non-existene of an arrow from inst2s to globalw is taken are of by MSC



5.4. CLASSIFICATION OF MSCS 97

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

nobufs

globals

inst insinst outs

globalwinst2s

instw

pair

msg

nobufw

Figure 5.15: Final hierarhy.
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i

a
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i j k l

a
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ms 8

Figure 5.16: Distinguishing MSCs: omparing strong and weak.

6 in Figure 5.12. It has already been shown not to be globalw-implementable. It
is inst2s-implementable beause every ms-trae of this MSC an be extended to an
inst2-implementable impl-trae by adding !!a and !!b immediately after !a and !b, and
!! and !!d immediately before ? and ?d.

Theorem 35 The implementation models from Figure 5.15 are all di�erent, and they
are ordered as expressed in Figure 5.15.

Proof This has been explained in the text above. �

5.5 Charaterisations

Thus far, we have onsidered the notions of strong and weak implementability and we
have ordered those in a hierarhy. In this setion, we will onsider how to determine
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the implementability of a given MSC with respet to a given ommuniation model.
That is, we study the algorithmi aspets of the implementation models. The original
de�nitions of the implementation models are hard to hek automatially. To do so
would require one to look at all traes, possibly even all impl-traes, of the MSC
and hek whether or not they are implementable with respet to the ommuniation
model. An MSC an have many traes, in fat their number is exponential in the
number of events of the MSC.

In the previous setions, for the ommuniation models globalw, globals, instw,
inst outs, and inst ins haraterisations have already been given that are easier to
hek. These are based on yle-freeness of relations between the events, or the equal-
ity of two orderings. Both the reation of these relations and orderings, and heking
for their yle-freeness or equality an be done in polynomial time in the number of
events. For the ommuniation models pair and msg the fat that weak and strong
implementability oinide leads diretly to an easy to use haraterisation: Beause
implementability of a single trae and implementability of all traes are equivalent,
looking at one single trae suÆes. Thus, we only need new haraterisations for
nobufw, nobufs, and inst2s.

De�nition 36 Let k be an MSC over the set of messagesM . The relation <w
k on M

is for all m;m0 2M suh that m <w
k m0 if and only if !m <ms

k ?m0 and m 6� m0.

Lemma 37 An MSC k is nobufw-implementable if and only if the relation <w
k is

yle-free.

Proof Let k be an MSC over the set of messages M . First, suppose that k is
nobufw-implementable. Suppose furthermore that <w

k has a yle, say m1 <
w
k m2 <

w
k

� � � <w
k mn for some m1;m2; � � � ;mn 2 M suh that m1 � mn. Then, from the

de�nition of <w
k and <ms

k , we obtain for all 1 � i < n that !mi <
ms
k ?mi+1 and

!mi+1 <
ms
k ?mi+1. Then, for every trae t of k, we must have !mi <

trae
t ?mi+1 and

!mi+1 <trae
t ?mi+1 for all 1 � i < n. Sine k is nobufw-implementable, there is a

nobuf-implementable trae t0. In this trae, there an be no events between !mi+1

and ?mi+1, so !mi <trae
t0 ?mi+1 implies !mi <trae

t0 !mi+1. Thus we get !m1 <trae
t0

!m2 <
trae
t0 � � � <trae

t0 !mn and sine !m1 �!mn we thus have a yle of <trae
t0 . Thus suh

a nobuf-implementable trae t0 does not exist. This ontradits the assumption that
k is nobufw-implementable. Therefore, <w

k is yle-free.
Seond, suppose that <w

k is yle-free. We extend <w
k to a total order <, say

m1 < m2 < � � � < mn where M = fm1;m2; � � � ;mng. Then the trae

t �!m1 ?m1 !m2 ?m2 � � �!mn ?mn

is learly nobuf-implementable. Thus, if suÆes to prove that the trae t is a trae of
MSC k. Thereto, suppose that e <ms

k e0 for some e; e0 2 Ems(M). We distinguish
four ases:

� e �!m and e0 �!m0 for some m;m0 2 M . As !m <ms
k !m0 and !m0 <ms

k ?m0, we
also have !m <ms

k ?m0. Then, by the de�nition of <w
k , we have m <w

k m0, and
therefore !m <trae

t !m0.
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� e �!m and e0 �?m0 for some m;m0 2M . If m � m0, then trivially !m <trae
t ?m0.

Otherwise, by the de�nition of <w
k , we have m <w

k m0, and therefore !m <trae
t

?m0.

� e �?m and e0 �!m0 for some m;m0 2 M . As !m <ms
k ?m, ?m <ms

k !m0 and
!m0 <ms

k ?m0, we have !m <ms
k ?m0. Then, by the de�nition of <w

k , we have
m <w

k m0, and therefore ?m <trae
t !m0.

� e �?m and e0 �?m0 for some m;m0 2 M . As !m <ms
k ?m and ?m <ms

k ?m0,
we have !m <ms

k ?m0. Then, by the de�nition of <w
k , we have m <w

k m0, and
therefore ?m <trae

t ?m0.

In eah of the four ases we have e <trae
t e0, whih ompletes the proof. �

Lemma 38 If an MSC k is nobufs-implementable, then <ms
k is a total order.

Proof Let k be an MSC over the set of messages M . We use ontraposition, so
assuming that <ms

k is not a total order, we prove that k is not nobufs-implementable.
Let t be an arbitrary ms-trae of the MSC. Beause <ms

k is not a total order, there
are events e; e0 2 Ems(M) suh that e <trae

t e0, but not e <ms
k e0. For any event

e00 2 Ems(M) with e <trae
t e00 <trae

t e0 we have either e 6<ms
k e00 or e00 6<ms

k e0 as
otherwise e <ms

k e0. So there also is a suh a pair of events that are immediately after
one another in the trae t. Then, interhanging these events would result in another
trae t0 of the MSC. It annot be the ase that both t and t0 are nobuf-implementable.
�

Lemma 39 Let < be a partial order, suh that b 6< a and d 6< , and let <0=<
[f(a; b); (; d)g+ ontain a yle. Then it ontains a simple yle with both (a; b) and
(; d) part of this yle.

Proof If <0 has a yle, then so does < [f(a; b); (; d)g. Look at an arbitrary
simple yle of < [f(a; b); (; d)g. If this yle did not ontain (a; b) or (; d), then
this would also be a yle of <. If it ontained (a; b) but not (; d), we would have
b < a, and if it ontained (; d) but not (a; b), we would have d < . Thus, the yle
must ontain both (a; b) and (; d). �

Lemma 40 An MSC k is globals-implementable if and only if for all m;m0 2 M ,
we either have both !m <ms

k !m0 and ?m <ms
k ?m0, or we have both !m0 <ms

k !m and
?m0 <ms

k ?m.

Proof First, suppose that MSC k is globals-implementable. Let m;m0 2 M .
Without loss of generality we may assume !m0 6<ms

k !m. Then it suÆes to prove that
!m <ms

k !m0 and ?m <ms
k ?m0. Now we an distinguish two ases: !m <ms

k !m0 and
!m 6<ms

k !m0.
Suppose that !m <ms

k m0. Then, by Lemma 5, !m <trae
t !m0 for every ms-trae

t of k. Sine every ms-trae of k is global-implementable, we have by Lemma 17
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that ?m <trae
t ?m0 for every ms-trae t of k. Then, again by Lemma 5, we have

?m <ms
k ?m0, whih ompletes this part of the proof.

Now, suppose that !m 6<ms
k !m0. A similar reasoning as above shows that ?m <ms

k

?m0 implies !m <ms
k !m0 (remember that the single arrow in Lemma 17 is allowed to

be read as a double arrow), so ?m 6<ms
k ?m0, and analogously ?m0 6<ms

k ?m. We will
now show that there exists a ms-trae t of k suh that !m <trae

t !m0 and ?m0 <trae
t ?m,

thereby ontraditing the assumption that k is globals-implementable.
We de�ne the ordering < as follows: <= (<ms

k [f(!m; !m0); (?m0; ?m)g)+. We
prove that < is yle-free, from whih it immediately follows that there is a trae t
suh that !m <trae

t !m0 and ?m0 <trae
t ?m (just extend < to a total order). Assume

that < is not yle-free. From Lemma 39 we an onlude that there exists a simple
yle in < with both !m <!m0 and ?m0 <?m. Beause this is a simple yle, this
would imply that !m <!m0 <ms

k ?m0 <?m <ms
k !m. However, ?m <ms

k !m is impossible
beause !m <ms

k ?m and <ms
k is yle-free. Thus, < is yle-free, whih leads to a

ontradition with the assumption that k is globals-implementable, so this possibility
annot our.

Seond, suppose that for all m;m0 2 M we have !m <ms
k !m0 and ?m <ms

k ?m0, or
!m0 <ms

k !m and ?m0 <ms
k ?m. We must prove that MSC k is globals-implementable.

Let t be an arbitrary ms-trae of MSC k. Let m;m0 2 M . By Lemma 17 it suÆes
to prove that !m <trae

t !m0 )?m <trae
t ?m0. Suppose that !m <trae

t !m0. Then, by
Lemma 5, !m0 6<ms

k !m. Therefore, by the assumption, !m <ms
k !m0 and ?m <ms

k ?m0.
So, by Lemma 5, we have ?m <trae

t ?m0. �

Lemma 41 An MSC k is inst2s-implementable if and only if <i2
k=<

impl
k .

Proof Let k be an MSC over the set of messages M . First, suppose that k is
inst2s-implementable. By de�nition, <impl

k �<i2
k , so it only remains to be proven that

<i2
k�<

impl
k . Suppose that e <i2

k e0 for some e; e0 2 Eimpl(M). Then we have the
existene of e1; � � � ; en suh that e � e1, e

0 � en and for all 1 � i < n we have one of
the following:

� ei <
impl
k ei+1;

� ei �!!m and ei+1 �!!m0 for some m;m0 2M suh that from(m) = from(m0) and

!m <impl
k !m0;

� ei �!!m and ei+1 �!!m0 for some m;m0 2 M suh that to(m) = to(m0) and

?m <impl
k ?m0.

In the seond ase we use indution on the number of output events !m00 that an be
in between !m and !m0 to prove that !!m <impl

k !!m0.

� If there is no output event !m00 suh that !m <impl
k !m00 <impl

k !m0, then either

!m <inst!m0 or ?m <impl
k !m0. In the �rst ase, if !!m <impl

k !!m0 did not hold,

<impl
k [f(!!m0; !!m)g would be yle-free. Any extension of this relation to a

total order would be <trae
t for a trae t that is not inst output-implementable,
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and thus not inst2-implementable. In the seond ase we have !!m <impl
k ?m <impl

k

!m0 <impl
k !!m0.

� If there is at least one output event !m00 suh that !m <impl
k !m00 <impl

k !m0, then,

using the indution hypothesis, we have !!m <impl
k !!m00 <impl

k !!m0.

For the third ase a similar reasoning gives ei <
impl
k ei+1. Thus, in all ases we obtain

ei <
impl
k ei+1 and therefore also e <impl

k e0 whih was to be proven.

Seond, suppose that <i2
k=<

impl
k . Let t be an impl-trae of k, and let m;m0 2 M

with from(m) = from(m0). We have to prove that !m <trae
t !m0 )!!m <trae

t !!m0 for an
arbitrary 3-trae t of k.

!m <trae
t !m0 implies !m <impl

k !m0. Then, by the de�nition of <i2, we have !!m <i2
k

!!m0. Sine we assumed that <i2
k=<

impl
k we also have !!m <impl

k !!m0, and therefore
!!m <trae

t !!m0.

The proof that to(m) = to(m0) ) (?m <impl
k ?m0 ,!!m <impl!!m0) is analogous,

and taken together we an onlude that k is inst2s-implementable. �

In the following theorem we list the haraterisations for implementability we have
given in this hapter and we add haraterisations for the implementabilities not yet
haraterised. An overview is presented in Figure 5.17.

Theorem 42

1. An MSC k is nobufw-implementable if and only if <w
k is yle-free.

2. An MSC k is nobufs-implementable if and only if it has exatly one trae, and
that trae is nobuf-implementable.

3. An MSC k is globals-implementable if and only if for eah pair of messages
m and m0 either both !m <ms

k !m0 and ?m <ms
k ?m0, or both !m0 <ms

k !m and
?m0 <ms

k ?m hold.

4. An MSC k is globalw-implementable if and only if <g
k is yle-free.

5. An MSC k is inst outs-implementable if and only if <io
k=<

ms
k .

6. An MSC k is inst ins-implementable if and only if <ii
k=<

ms
k .

7. An MSC k is inst2s-implementable if and only if <i2
k=<

impl
k .

8. An MSC k is instw-implementable if and only if <io
k is yle-free.

9. For any trae t of an MSC k, k is pair-implementable if and only if t is pair-im-
plementable.

10. An MSC k is always msg-implementable.

Proof

1. See Lemma 37.
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Figure 5.17: Overview.
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2. If the MSC k is nobufs-implementable it has one trae beause <ms
k is a total

order (Lemma 38).

3. See Lemma 40.

4. See Lemma 32.

5. See Lemma 30.

6. See Lemma 30.

7. See Lemma 41.

8. See Lemma 24.

9. First, if k is pair-implementable, it is pairs-implementable and thus every trae
t of k is pair-implementable. Seond, if a randomly hosen trae t is pair-imple-
mentable, then k is pairw-implementable, and thus also pairs-implementable.

10. See Lemma 29.

�

5.6 Related Work

In this setion we will ompare our onlusions with those found in related literature.
In [CBMT96℄ Charron-Bost et al. disuss three di�erent implementations for MSC-

like diagrams: RSC (Realizable with Synhronous Communiation), CO (Causally
Ordered) and FIFO . They also de�ne A (asynhronous), but this is (just like msg

in our hierarhy) used to denote the set of all allowable diagrams, not some subset.
They �nd that there is a strit ordering RSC � CO � FIFO � A. In the following,
we will ompare their ordering with our work.

Theorem 43 The implementations that in [CBMT96℄ are named RSC and FIFO
are equivalent to the implementations nobufw, and pair. The implementation CO is
stritly between the implementations instw and pair.

Proof

� RSC -nobufw: De�nition 3.6 in [CBMT96℄ states, after translating it into our
terminology, that a omputation is RSC if and only if there is a trae t for whih
for eah m 2 M we have that the set fx 2 C j!m <trae

t x <trae
t ?mg is empty,

whih is equivalent to the de�nition that is obtained by ombining Lemma 17
and De�nition 21.

� FIFO-pair: The de�nition for FIFO in [CBMT96℄ (De�nition 3.3) translates
to (by rewriting the terminology of Charron-Bost et al. in ours): !m <ms

k

!m0 ^ from(m) = from(m0) ^ to(m) = to(m0) )?m <ms
k ?m0, or from(m) =

from(m0) ^ to(m) = to(m0) ) (!m <ms
k !m0 )?m <ms

k ?m0), whih is seen to
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be equivalent to the de�nition in Lemma 17 one it is realised that (for the
basi MSCs onsidered here) to(m) = to(m0) ) (?m <ms

k ?m0_?m0 <ms
k ?m)

and from(m) = from(m0)) (!m <ms
k !m0_ !m0 <ms

k !m).

� CO : That the lass of pair-implementable MSCs is stritly greater than that of
CO-implementable MSCs is shown in [CBMT96℄. Remains to be shown that
the lass of CO-implementable MSCs is stritly greater than that of instw-im-
plementable MSCs. The de�nition of CO as given in [CBMT96℄ (de�nition 3.4)
an be translated to to(m) = to(m0)^!m <ms

k !m0 )?m <ms
k ?m0. An example of

an MSC that is CO-implementable, but not instw-implementable, is the MSC
lobster in Figure 5.18. It is CO-implementable, beause there is no pair of
messages with to(m) = to(m0) where !m and !m0 are ordered, but it is not
instw-implementable, as an for example be seen by the fat that !a <ms! and
!b <ms!d, and thus ?a <io? and ?b <io?d, while at the same time we learly
have ? <io?b and ?d <io?a, so <io ontains a yle.

It remains to be proven that eah instw-implementable MSC is CO-implement-
able. We do this using ontraposition, so let k be an MSC that is not CO-imple-
mentable. We then have that there are messages with !m <ms

k !m0, ?m 6<ms
k ?m0

and to(m) = to(m0). From the last two we an derive that ?m0 <ms?m, and
thus we have both ?m <io?m0 (beause !m <ms

k !m0) and ?m0 <io?m (beause
?m0 <ms?m), so the MSC k is not instw-implementable.

�

i j k l

a b

 d

ms lobster

Figure 5.18: MSC to distinguish the implementation models: CO .

Another paper in whih di�erent ommuniation models for MSC have been stud-
ied, is [AHP96℄. Although some of their ommuniation models are similar to some of
ours, the works annot be diretly ompared, beause of the di�erent fous. Whereas
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our question is whether an MSC an be implemented in a given ommuniation model,
their question is whether an MSC will run as expeted if it is implemented on a given
ommuniation model.

Their main point of fous is the problem of rae onditions, in whih two messages
whih might be supposed by the user to be reeived in the ordering presribed by
the MSC, might in reality arrive in the reverse order. The implementation model
inuenes both whih messages the user assumes to arrive in the orret order and
whih messages atually do.

This line of thought has been extended in [RKG97℄. There a set of hannels
is assumed, whih an be any implementation model between pair and msg (other
possible models an be inserted easily, but were not looked at beause of the spei�
subjet of the paper, namely haraterization of an MSC in SDL). Then, for eah
message it is heked whih messages on the same hannel that have to be dealt with
later may have been reeived earlier.

5.7 Conluding Remarks and Future Researh

We have onsidered implementation models for asynhronous ommuniation in Mes-
sage Sequene Chart. These models onsist of FIFO bu�ers for the sending and
reeption of messages. By varying the loality of the bu�ers we have arrived, in a
systemati way, at 25 models for ommuniation. With respet to traes, onsisting
of putting a message into a bu�er and removing a message from a bu�er, there are
seven di�erent models.

By lifting this implementability notion from traes to Message Sequene Charts
in two ways, strong and weak, we obtain fourteen models. After identi�ation, ten
essentially di�erent models on the level of Message Sequene Charts remain.

For de�ning the models we have used the notion of impl-traes; these are a natural
extension of normal MSC-traes if a message an pass two bu�ers on its way from
soure to destination.

In this hapter, we have only onsidered Basi Message Sequene Charts. An
interesting question is how to transfer the notions and properties de�ned for this
simple language to the omplete language MSC. As many of our theorems rely on the
fat that the events on an instane are totally ordered, an extension to MSC with more
sophistiated ordering mehanisms (e.g., oregion and ausal ordering) will imply a
revision of the hierarhy. Another interesting question is whether the implementation
properties are preserved under omposition by means of the operators of MSC.

Furthermore, we have restrited ourselves to the treatment of arhitetures in
whih eah message has exatly one possible ommuniation path and where eah
suh path ontains at most two bu�ers. The extension to more exible arhitetures
is non-trivial and is expeted to lead to an extension of the hierarhy.

An important assumption that we have made in this hapter, whih is often not
true in real-life examples, is the assumption of homogeneity, that is, the assumption
that all instanes have exatly the same type of bu�ers. In real life it may for example
well be the ase, that there is more than one hannel between two instanes, but
some hannels are still used for more than one message, thus reating an arhiteture
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somewhere between our `one bu�er per pair' and `one bu�er per message'. This
subjet has been given some attention in [AHP96℄ and [RKG97℄.

Finally, our assumption of in�nite FIFO bu�ers may be relaxed, allowing other
types of bu�ers and bu�ers with �nite apaity.

The results obtained in this hapter form a solid base for several appliations.
First, they allow us to disuss the relation between di�erent variants of MSC, suh as
Interworkings [MvWW93℄. Interworkings presuppose a synhronous ommuniation
mehanism. An Interworking an be onsidered as the restrition of the semantis of
an MSC to only the nobuf-implementable traes. Thus, an MSC an be interpreted
as an Interworking if and only if there is at least one suh trae, i.e., the MSC is
nobufw-implementable. This implies that using the theory in this hapter, a formal
semantis of Interworkings an be derived in a systemati way from the semantis of
MSC. We also envisage tool-oriented appliations. One ould for example onsider a
tool in whih a user an selet a ommuniation model, draw an MSC and invoke an
algorithm to hek whether the MSC is implementable with respet to the seleted
model. Alternatively, the user an provide an MSC and use a tool to determine the
minimal arhiteture, aording to our hierarhy, whih is needed for implementation.

Often, a user is interested in the question whether all traes of his MSC are im-
plementable with respet to a ertain arhiteture. We an also envisage two possible
uses relying on the implementability of a single trae. First, MSCs are often used
to display one single trae, for example if it is the result of a simulation run. In
this ase, the question is not whether the MSC is strongly or weakly implementable,
but whether the implied trae is implementable (as de�ned in Setion 5.3). Seond,
given an MSC, a user may want to know if at least one trae is implementable and
if so, whih trae that is. He is interested in a witness. Both appliations an easily
be derived from the results on weak implementability. The algorithms (see below)
an easily be modi�ed to hek implementability of a given trae and to produe a
witness.

A more involved appliation would be to use a seleted ommuniation model to
redue the set of traes de�ned by a given MSC to only those traes that are imple-
mentable on the given model. In this way, the semantis of an MSC would be relative
to some seleted model.

For most of these appliations omputer support would be useful. Based upon the
de�nitions presented in this hapter, it is feasible to derive eÆient algorithms. All
models in the weak spetrum an be haraterised in terms of the yle-freeness of an
extended ordering relation, see Theorem 42. An example of suh a haraterisation
is given in Theorem 24. There it is stated that an MSC k is inst outw-implement-
able i� the ordering <io

k (whih is an extension of <ms
k ) is yle-free. Thus heking

whether an MSC is inst outw-implementable boils down to heking yle-freeness
of this relation. This immediately gives a wide range of eÆient implementations for
heking lass-membership as many algorithms are known in literature for determining
whether a given ordering is yle-free. For the strong spetrum haraterisations are
given as well.

Note that the MSCs that distinguish between the di�erent models are surprisingly
simple. This indiates that the di�erenes between the lasses will appear not only in
theory, but also in pratie. Besides that, for these distinguishing MSCs, it is not easy
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to indiate at a glane to whih lass they do or do not belong. This also supports
our view that mehanial support for determining whether a given Message Sequene
Chart belongs to a given lass is neessary.



Chapter 6

Data in MSC

6.1 Introdution and History

When the new MSC2000 standard [IT00℄ was introdued, one of the additions to the
language was the inorporation of data. In this hapter, we will look at the history
of this aspet of MSC, and the way in whih data languages and MSCs are atually
ombined, and we will try to give a semantis for data in MSC.

The �rst attempt to formally ombine MSC with a data language was made by
Grabowski, Hogrefe, Nussbaumer and Spihiger, who ombined MSC and ASN.1
[GHNS95℄. Baker and Jervis next presented a more generally usable data language
[BJ97℄. Starting from the work of Baker and Jervis, Feijs and Mauw opted for a
more general approah. Instead of de�ning one standard language to go along with
MSC, they introdued a framework in whih a large range of languages ould be de-
sribed, thus for eah of these giving the interfae of the language with MSC [FM98℄.
This method of inorporating data has several advantages, whih will be disussed in
Setion 6.2.

Although the MSC standardisation ommunity agreed with this priniple, there
was a strong wish to extend the work of Feijs and Mauw, more spei�ally to introdue
the possibility of dynami data. In the original framework, variables ould only be
used as plaeholders for an unknown value. The semantis would then be that any
of the possible values for the variable ould our. There was a wish to have the
possibility to assign values to a variable whih then ould be used later in the MSC.
Feijs and Mauw, together with the urrent author, investigated the possibilities and
problems of inorporating this possibility in a seond paper [EFM99℄. Partially based
on this paper, in an ITU experts meeting at the Eindhoven University of Tehnology,
the subjet of data was then inorporated in the MSC2000 standard [IT00℄.

Another extension of the MSC language that is losely related to data, is the
subjet of guards. In the MSC'92 and MSC'96 standards, onditions were inluded,
but did not have any formal meaning [IT98, Ren99℄, exept for some stati restritions
on HMSCs [Ren96℄. In pratie they were often used to ombine MSCs { a �nal
ondition was given to some MSCs, an initial ondition to others, and two MSCs ould
be ombined (only) if the �nal ondition of the �rst MSC orresponded to the initial
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ondition of the seond [RGG96a℄. This feature was originally intended to be inluded
in the MSC language, but it was kept out of the semantis to the MSC'92 language
beause its meaning was felt to be insuÆiently lear [MR95℄. Nevertheless, some
attempts have been made to provide a semantis for onditions [LL94, GHRW98℄.
The MSC standardisation ommunity felt that it would be a good idea to standardise
and extend this feature, by de�ning some onditions to at as guards, meaning that
one an only pass the ondition if their text is in some sense `true'. Others would de�ne
a kind of state for the MSC, whih ould then be used by the guarding onditions.
Obviously, the text in a guarding ondition would often be some boolean expression
in a data language, and thus this subjet was seen as losely related to that of data.

In this hapter we will �rst give an overview of the problems and hoies regarding
data that were indiated in [EFM99℄, together with the hoies that have been made
on these points in the �nal MSC2000 standard, sometimes with an indiation of the
reasons for these hoies. We will also show some of the problems that ourred espe-
ially on the subjet of onditions and guards, and how these led to the atual stati
requirements on onditions that an be found in the standard. By showing whih
hoies have been made, and why, the language hopefully beomes more transparent.
Also, the problems that have ourred in this extension of the language may be similar
to problems that our later.

After this part, we will look at the interfae as it was de�ned in [IT00℄, and make
an attempt to de�ne a formal semantis for MSC with data.

6.2 Reasons for Parameterisation

As was �rst argued by Feijs and Mauw [FM98℄, introduing a single data language
in MSC has several adverse onsequenes, most or all of whih an be overome by
parameterising MSC with a data language instead. Four suh advantages of parame-
terisation an be distinguished:

1. Introduing a spei� data language to MSC would inevitably be problemati
for ertain groups of users who are more used to di�erent languages or di�erent
types of languages. If the data language is parameterised instead, all of these
groups an use their own preferred language (as long as the language keeps to
some general restritions).

2. In a parameterised model, MSC and the data language both get their own, well
desribed domains. Beause of this, the data language does not inuene the
non-data parts of the MSC language, or vie versa.

3. If a spei� data language is added to MSC, all its semanti problems will be-
ome problems of the MSC language as well. Although parametrisation prob-
ably does not ompletely solve this problem, it at least greatly diminishes the
problem by looking only at the interfae of the data language with MSC, and
not onsidering the underlying aspets of the language itself.

4. If a spei� data language were hosen, the MSC ommunity would burden itself
with the task of maintenane of whihever data language would be hosen. If
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MSC does not ouple itself to a spei� data language, there is no reason for
suh an enterprise.

5. If through time, it was felt that another data language would have been a better
hoie, the language would have to be rewritten ompletely. This ould also lead
to a situation where several di�erent versions of the language would exist, one
for eah data language. This situation for example happened with SDL, where
there are now two versions, an original one using an algebrai spei�ation
languages, and a newer one that uses ASN.1 [Ste90℄, whih is onsidered easier
to use.

This parametrisation takes plae through the de�nition of an interfae, that on-
tains all aspets of the data language that are of importane for MSC. Later in this
hapter, we will show what interfae has been de�ned in the standard [IT00℄, and in
what way this ould be used to provide a semantis for MSC with data. Before doing
that, we will �rst disuss the hoies that have been made.

6.3 Basi Priniples

During the disussions on the new standard, the work has been guided by a number
of priniples. In some ases these priniples lashed, and problems arose. Here, some
diÆult hoies had to be made, as we will see later.

In the subjet at hand, the following priniples are of importane:

1. Bakward Compatibility

Old MSCs, made aording to the MSC'96 or MSC'92 standard, should still be
usable under the new MSC2000 standard. Within the standardisation ommit-
tee a `loose' de�nition of bakward ompatibility has been followed: it might
be allowed to have the neessity to hange a Message Sequene Chart made
aording to the MSC'96 standard, as long as there were only small, syntati
hanges to be made. However, large hanges, or hanges that ould not be made
on a syntati level were not onsidered aeptable.

2. Correspondene to Existing Pratie

Several of the subjets that are introdued, and this ertainly holds for data, are
already being used in existing pratie. The standardisation ommittee wanted
to link with this existing pratie { the new MSC standard should inlude as
muh as possible of this existing pratie. Where possible, what is already done
unoÆially should be made oÆial.

3. Semanti Clarity and Simpliity

When something is introdued, its semantis should be lear. That does not
mean that the formal semantis should immediately be added (at the moment
there are no plans known to us for a omplete formal semantis of MSC2000),
but it does mean that there should be a good and omplete intuition of what
those semantis should look like.
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The semantis should not only be lear, they should also be simple. Creating the
semantis should not be unduly hard, and it should be relatively straightforward,
one the semantis have been de�ned, to deide what the semantis of a given
MSC are. This is of importane both to people working with the language on
a theoretial level and to tool builders, who want to inlude funtionality suh
as the simulation of the behaviour of an MSC, whih an only be done if the
semantis are not too omplex.

4. Intuitive Semantis

In line with the seond priniple, the semantis should be intuitive for the user.
Many MSCs, even though they inlude not yet oÆially implemented features,
have a meaning that is intuitively lear. The semantis should onform to this
intuitive meaning.

6.4 Choies

A number of hoies were mentioned in [EFM99℄. There, no atual hoies were made,
but rather, the advantages and disadvantages of the various hoies were presented,
to allow the standardisation ommittee to make a hoie themselves. In this setion,
we will look at these hoies one more with some disussion of whih hoie was
�nally made, and why.

6.4.1 Stati vs. Dynami Nature of a Variable

The �rst hoie was whether the data would be stati, dynami, or somewhere in
between. In [EFM99℄, four possibilities were distinguished, whih, from most stati
to most dynami, were alled:

1. fully stati variables

2. parameter variables

3. single time assignable variables

4. multiple times assignable variables

Fully stati variables: In a fully stati environment, the values of variables are
either ompletely pre-determined, or not de�ned at all. In the latter ase the semantis
is taken to onsist of all possible behaviours for any valuation of the various variables.
This is the situation that was overed by [FM98℄. This way of inluding data auses
the fewest problems. However, the prie that has to be paid is that it also provides
the least expressive power.

Parameter variables: Parameter variables play a role within HMSC or MSC
referene expressions, the idea being that one provides a value for one or more variables
while alling the referene MSC. In alling the MSC, the values of some variables are
given as parameters to the referene. An example of how this works is shown in
Figure 6.1.
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i j

sendmessage(1)

sendmessage(42)

ms sending

i j

s(p)

ms sendmessage(p)

Figure 6.1: Parametri Data

The MSC sending alls the MSC sendmessage twie, but the �rst time with
sendmessage(1) and the seond time with sendmessage(42). The e�et of this, is
that the MSC sendmessage is used with the value of 1 for p the �rst time, and the
value of 42 for p the seond time. Thus, �rst the message s(1) is sent and reeived,
then s(42). Compared to the next two options with assignable variables, Parametri
data is semantially less ompliated, beause it is easier to onnet the ourenes of
variables with the plae where they get their values. On the other hand, it is also less
powerful. Changing the value of a variable, ertainly where the new value depends
on the old one, is diÆult and ounter-intuitive, if not downright impossible, when
using parametri data. Of ourse introduing both options results in an even greater
power of expression.

Single time assignable variables: Here a variable an be assigned at any plae
in the MSC, but one it is assigned, it annot get a new value. So eah time a variable
is aessed, it will still have the same value. This will solve some of the problems with
variables that are shown below, beause these typially our when the value of a
variable is hanged before it is used, or between several uses of the same variable.
However, to atually make this solution work, one would also have to take steps to
make the usage of a variable before its assignment impossible, otherwise one still has
to deal with two di�erent values { an indeterminate one before it is assigned, and a
determinate one afterwards.

Multiple times assignable variables: Here, a variable an at any time be given
a value, and this value an be hanged later. This hoie o�ers most possibilities for
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the user, but at the same time also ompliates the language more than other options.
A �rst problem is shown in Figure 6.2.

i j

x:=1 x:=2

m(x)

ms rae

Figure 6.2: Problemati MSC (simple ase)

What message is to be sent here? m(1) or m(2)? Or does it depend on the order
in whih the assignments happen? And what if the hange of the value of x from 1 to
2 happens between sending and reeiving of the message? Will we have to remember
the old value of x?

Despite these problems, whih were mentioned in [EFM99℄, it was nevertheless
felt that multiple-times assignable variables were needed, beause users would like to
have them. To keep this type of `rae onditions' manageable, it was deided to have
one spei� instane should at as the `owner' of a variable. The variable ould only
be hanged on this instane.

The �rst idea was that the usage of suh a variable would also be restrited to
that same instane. No other instane ould use the value of the variable. However,
this proved too restritive. From a usage point of view, it seemed neessary that an
MSC like the one in Figure 6.3 ould be drawn.

The idea here, is that at one point the value of x is deided, whih then through
a series of messages is sent to another part of the system desribed by the MSC. To
enable this, it was deided that the value of variables of one instane ould be used
at another instane, provided that the value had been sent to that instant through
messages. Thus, the value of a variable on an instane other than the owner is hanged
only when this instane reeives the value through some message. Not only does this
make the semantis more intuitive than one in whih a hange in value of a variable
is `magially' opied to all instanes of the MSC, it also is more in line with the basi
semanti ideas behind MSC: any transfer of information from one instane to another
should be expliitly shown. Introdution of a shared variable paradigm goes against
the spirit of MSC.

Beause their added value in expressiveness of the language seemed useful, while
they did not add more problems than the ones that already had to be solved for the
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sender med1 med2 reeiver

x:=0

m(x)

n(x)

p(x)

ms transmission

Figure 6.3: Transmission of variables

assignable variables, parametri data have also been inluded in the MSC language.
The variables that are de�ned in this way are alled `stati variables'. That is, stati
variables are variables that are given as a parameter to an MSC, and whose value is
determined when the MSC is alled.

6.4.2 Binding of Variables

Another matter was, how these variables ould hange their values. For stati vari-
ables this is obvious: They reeive their value beause the MSC is alled with a ertain
atual parameter list. For dynami variables, we have to distinguish between owning
and not-owning instanes.

An instane that is not the owning instane of the variable reeives a new value
for the variable when a message arrives that ontains that variable in its parameter
list. The new value of the variable, as seen by that instane, will be the value the
variable had on the sending instane at the time of sending.

For the owning instane, two major ways of giving values to variables were dis-
ussed in [EFM99℄. Both have been inluded in the MSC language. The most obvious
is through a diret binding. This ours when a text like x := 2 is found inside an
ation box. A seond way is the propagation of a message through a gate. This is
best explained with an example, see Figure 6.4.

The inoming message here gives x the value of 3. Of ourse this an only be
done if x is a variable of the reeiver. In all of these ases, the outgoing message (the
message in the MSC `send') should ontain some expression as one of its parameters,
while the inoming message (the same message in the MSC `reeive') should ontain
a variable to be bound. This an also be done with MSC referene expressions, see
Figure 6.5.

An instane that does not own the variable, hanges its (loal) value when it
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sender

m(3)

ms send

reeiver

m(x)

ms reeive

Figure 6.4: Assignment through gated messages

sender reeiver

m(3)
reeive

ms send

reeiver

m(x)

ms reeive

Figure 6.5: Variable assignment for MSC referene expressions

reeives a message that has that variable in one of its parameter expressions. It is
then hanged to the value that this variable has on the sending instane. Although
this has been designed to orrespond to existing pratie, it an still lead to results
that some may regard ounter-intuitive, as an be seen in Figure 6.6.

Assume that x is a variable owned by instane i.
Intuitively, one might expet that k always sends bak ak(2), beause 2 is the

latest value of x, and k has already reeived that value. However, k does not `know'
whih is the latest value, so it will always assume that x has the last value that it
has reeived. Thus, if n(1) arrives at k after m0(2), ak(1) rather than ak(2) will be
sent.

6.4.3 Unde�ned Variables

Another problem raised in [EFM99℄ was what one had to do with variables being used
before they have any value assigned to them. The main hoies possible were:

1. Disallow this by stati rules
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i j k

x:=1

m(x)

x:=2 n(x)

m'(x)

ak(x)

ms alert

Figure 6.6: A ounter-intuitive ase

2. Regard it as a semanti deadlok

3. Regard all unde�ned variables as universally quanti�ed

4. Use default values for eah variable

All of these options have their drawbaks (the �rst may be hard, the seond leads
to non-intuitive semantis, the third leads to an explosion of the number of possible
traes and the fourth extends the interfae with the data language by a default value
for eah domain, see [EFM99℄ for a more extensive disussion). In MSC, the �rst
option has been hosen (see [IT00℄, setion 5.4: In a de�ning MSC there must be no
trae through an MSC in whih a variable is referened without being de�ned.)

6.4.4 Sope of a Variable

A further point on whih di�erent hoies ould have been made, is in the de�nition
of the sope of a variable. That is, one a variable has been delared, on whih part of
the MSC an it be used? This is the sope of that variable. Sopes might be nested,
in whih ase the variables in the outer sope an also be used in the inner sope,
unless a new delaration of the same variable has taken plae. If a variable is used
in two di�erent sopes, then the two uses of the variable have nothing in ommon,
and they should be regarded as two di�erent variables that happen to share the same
name.
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We an distinguish two di�erent dimensions to the sope: Blok sope and arhi-
tetural sope.

The blok sope of a variable is a separated (framed) part of an MSC where the
variable is de�ned. For most variables the blok sope has been hosen to be the
omplete MSC doument; however for stati variables it onsists only of a single
MSC.

Apart from this there is also the arhitetural sope. This gives the loality with
respet to the instanes in an MSC. One ould speify that variables exist on only one
instane, or on all instanes of the MSC. Possibilities in between, where a variable
is de�ned on a number of instanes (for example, the instanes that reside on one
proessor), ould also be onsidered, although it might be harder to �nd a syntax for
that option.

Again, this has been done di�erently for dynami and stati variables. Dynami
variables, as mentioned before, have a loal arhitetural sope, although `opies' of
the value of a variable may be present on other instanes. On the other hand, stati
variables have global arhitetural sope.

6.5 Guards

The largest problems with data were enountered when trying to introdue guards. In
the older versions of the MSC standard, MSC'92 [IT93℄ and MSC'96 [IT96℄, onditions
had very little funtion. Semantially, they had no meaning at all, exept for statially
forbidding some HMSCs (in MSC'96), and thus they formally were no more than
omments. However, in pratie onditions were being used in a more funtional
manner, namely to reate MSCs like those in Figures 6.7 through 6.9.

i j

ready

m

sending

ms try

Figure 6.7: Conditions as a oupling mehanism (1)
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i j

sending

m

sending

ms retry

Figure 6.8: Conditions as a oupling mehanism (2)

The onditions here funtion as a method to deide in whih order the MSCs are
gone through. More preisely, one may go from one MSC to another if, and only if,
the seond MSC starts with the same ondition as the �rst ends with. Thus, after
�nishing MSC try, one an go to retry or suess, and likewise after MSC retry, while
after MSC suess one an only go to MSC try.

6.5.1 Inluding Guards in the Language

An attempt was made to formalise this method of using onditions. Certain onditions
would at as guards, others as de�ning onditions. One an only pass through a
guard if it is equal to the last de�ning ondition that was enountered. The above
MSCs would then beome a orret MSC when inluded in an HMSC like the one in
Figure 6.10.

Of ourse, the HMSC in Figure 6.10 is not very lear. There are a number of paths
whih seem to be present from the HMSC desription, but are made impossible by the
guards. One would prefer to use an HMSC like the one in Figure 6.11, whih shows
the order in whih the parts of the HMSC are passed expliitly. This is done by adding
a node for eah state, and onneting the MSCs with the node orresponding to eah
of its start and �nal state. However, with the MSCs given, the HMSCs of Figures 6.10
and 6.11 are semantially equivalent { all additional onnetions in Figure 6.10 are
without e�et; they annot atually be taken beause the states do not oinide. To
minimize an HMSC by removing superuous edges, suh as the transformation from
Figure 6.10 into Figure 6.11, might be a useful task for tool support. The proess is
similar to that whih is used in [Mei00℄ to reate a so-alled `onnetability diagram'.
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i j

sending

ak

ready

ms suess

Figure 6.9: Conditions as a oupling mehanism (3)

successretrytry

Figure 6.10: An HMSC for Figures 6.7 to 6.9

The onditions at the bottom of the MSCs should be de�ning onditions, and the
onditions at the top should be guards. To avoid any onfusion about whih onditions
are de�ning onditions and whih are guards (onfusion ould for example arise when
a ondition only overs instanes that have no events within the MSC), all guards have
the keyword `when' added to them. De�ning onditions have no additional keyword.
Thus, in the above ase, apart from adding the HMSC one should also hange `ready'
and `sending' into 'when ready' and `when sending' in the onditions at the tops of
the MSCs, while leaving the onditions at the bottoms as they are.

When ombining these guarding onditions with data, the possibility arises to use
data expressions as guards. More preisely, if a data expression an have boolean
values (true or false), it ould be used as a guard, whih then an only be passed if it
is true. In this way, behaviour that depends on the value of variables an be desribed.



6.5. GUARDS 121

successretrytry

Figure 6.11: A more readable HMSC

An example is in Figure 6.12, where it is heked whether a ertain variable is zero.

6.5.2 Semanti Proposals

Unfortunately, this option also resulted in some semanti problems. Central question
was, at whih time the guard would be evaluated.

Figure 6.13 shows the problem. Suppose that this MSC starts with x := 1, and
after that the message m is sent and reeived. Whih of the messages a and b (if any)
an then be sent? There existed two shools of thought, neither of whih in the end
prevailed. Instead, some kind of ompromise was made, whih will be desribed in
Setion 6.5.3

The �rst shool of thought held to the priniple that one should look at the value
of the variable at the time the �rst instane is trying to pass the guard. In this ase,
beause the �rst ation after the guard is either the sending of a or the sending of b,
the deiding fator is the value of the variable x at the time either a or b is sent. If
one of the messages is sent before x := 2 is exeuted, it must be a. After x := 2 has
been exeuted, only b an be sent.

On the other hand, the seond shool of thought preferred a more syntati look
at the MSC. Beause the x := 2 is above the guard, and on the same instane, it
seems logial to regard it as happening before the guard, and thus inuening the
hoie. In this interpretation, only b an be sent in this MSC.

The disagreement an be desribed as a disagreement on the time and plae where
the guard is evaluated. In the �rst proposal, the guard is evaluated by the �rst instane
to do an ation after the guard, the priniple ould be alled `�rst past the post'. In
the seond proposal, the guard is evaluated by the instane that owns the variables
in the guard.

The arguments for the two proposals ame from two of the priniples mentioned
before.

The �rst proposal was based on semanti simpliity. Adopting the seond proposal
would require that one �rst alulates the full semantis of an MSC without looking
at the guard, then removes the traes that do not adhere orretly to the guards
present. This would make it impossible to �nd out the next event in an MSC trae
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i j

m(x)

when (x=0)

zero

when (x6=0)

nonzero

alt

ms zero-hek(x:natural)

Figure 6.12: Usage of data in guards

without �rst alulating the omplete semantis of the MSC. This makes any semanti
alulation extremely hard. It is also di�erent from the existing semantis of MSC,
in whih a deadlok does not have e�ets at earlier points in time. In one term, this
objetion ould be alled `bakward ausality': What happens now is dependent on
what happens or an happen at a later time.

The seond proposal was based on intuition. This view, whih is more whole-
system-based, is loser to the intuition of the users. Thus, having a di�erent semantis
will lead to MSCs that mean something di�erent from what they are thought to mean.

Apart from the lak of intuition (for the �rst proposal), and the ompliated
semantis (for the seond proposal), there are also some more profound problems,
ertainly with the seond proposal. For some MSCs this proposal provides no seman-
tis at all, beause guards have to be evaluated by instanes that never pass them.
An example of these problems is in the MSC in Figure 6.14.

If we �rst look at the semantis of this MSC without guards, we see that one
possible trae is to start with x := 1, then send and reeive m, then go through the
a-loop inde�nitely. Is this trae still a valid trae in the situation where guards are
present? Under the seond proposal we do not know: The guard should be evaluated
when the seond instane is at the relevant point in time { but in this trae the seond
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i j

x:=1

m

x:=2

when (x=1)

a

when (x=2)

b

alt

ms problem example

Figure 6.13: Problems with data in guards

instane never does.

Both proposed semantis also lead to strange behaviours for some MSCs. The �rst
semantis gives for instane some unexpeted ordering requirements for the MSC in
Figure 6.15. Under the �rst semantis, instane i must defer sending message a until
instane j has done the ation x := 2. This thus leads to a synhronisation, or at least
to an extra ordering requirement, whih is not lear in the syntax of the language,
and ounter-intuitive.

For the seond proposal, ausality an go strange ways, for example in Figure 6.16.
In this MSC, instane i an send message a if and only if j hanges the value of x
to 1. If i sends out a message before j sets the value of x, i deides what hoie j is
going to make. Again, this is a onnetion (ausal rather than ordering in this ase)
that is not obvious from the syntax of the MSC, as well as unwanted.
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i j

x:=1

m

x:=2

when (x=1)

a

loop inf

m

when (x=2)

b

m'

alt

ms inoop

Figure 6.14: An in�nite loop ausing semanti unlarity
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i j

x:=1

m

x:=2

when (x=2)

a

alt

ms order

Figure 6.15: Unexpeted ordering requirements

6.5.3 Stati Requirements as a Solution

Neither option seemed very attrative. Instead, one would like a semantis that is
intuitive from both the usage and the semanti point of view, rather than just one.
Instead of hoosing one of the alternatives, it was preferred to restrit the MSC
language. Only those MSCs where both interpretations provided the same result
would be allowed.

To see whih MSCs these are, we have to go bak to where we introdued the two
proposed semantis. There it was said that their di�erene was in the time and plae
where the guard is evaluated. The �rst semantis evaluates the guard when the �rst
instane passes the guard (by performing some ation oming after the guard), the
seond semantis when the owning instane of the variables goes through it.

The two semantis will provide the same result if the value of the guard does not
hange, or if they both evaluate it at the same time and plae. The evaluation of
a guard does not hange if it does not ontain any dynami variables. Thus, any
suh guard is unproblemati. If there are dynami variables involved, the evaluation
may be di�erent at di�erent points in time. Thus, in this ase both semantis should
evaluate the guard at the same time. This is only the ase if the owning instane of
the variables is the �rst to do an ation after the guard. An instane whih is able
to do the �rst ation after a guard is alled a ready instane for that guard, and thus
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i j

x:=1

x:=3

alt

when (x=1)

a

when (x=3)

b

alt

ms bakward ausality

Figure 6.16: MSC with bakward ausality
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the following stati requirement was added to the language:

If a guard ontains a data expression, then this expression must be of
type Boolean. If this expression furthermore ontains dynami variables,
it may only over a single instane, whih thus must be the only ready
instane of the sope.1

6.5.4 Non-Data Guards

Similar problems, where the truth value of a guard beomes indeterminate, an also
our for guards without data, whih get their truth value from de�ning guards. The
problem ours in MSCs like the one in Figure 6.17.

i j

A

B

when A

m

when B

m'

alt

ms guards

Figure 6.17: Why not all de�ning onditions a�et a guard

1The text in the published version [IT00℄ is slightly di�erent. The quoted text is taken from an
oÆial orretion to the published version. In this orretion it is also made lear that the restrition
that all ready instanes must be overed by the guard holds for all guards, not just for those with
data.
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If one simply would have one state for eah instane, instane i would enter the
alt-expression in state A, while instane j would do so in state B, so they disagree
on whih of the alternatives has to be hosen. This has been solved by allowing only
onditions on exatly the same instanes to be referred to by the guard. The setting
of B is thus not of importane, and both instanes here agree that the �rst alternative
has to be hosen.

6.6 The Interfae

The urrent MSC standard [IT00℄ de�nes the interfae between a data language and
MSC. It onsists of a number of funtions whih de�ne the information that MSC
needs from the data language to deide the semantis of the ombined language. We
will here give an overview of this interfae, for two reasons. In the �rst plae, the
interfae de�nition in [IT00℄ is often not very lear, whih we hope will be done better
in this hapter. In the seond plae, we have made some hanges whih inreased the
larity while not removing any appliability. In Setion 6.7, our new version of the
interfae will be used. Finally, while reating the semantis, we found that there was
one funtion laking in the interfae. This one has been added in this hapter. All
the non-trivial di�erenes between the Interfae de�ned here and the one from [IT00℄
an be found in 6.6.4.

The interfae an be divided into two types of funtions: the stati funtions, whih
are used to hek whether a data expression is legal, and the dynami funtions, whih
are used to de�ne the atual semanti meaning of a data expression.

6.6.1 Example Language

In this hapter, we will use a simpli�ed data language to explain the various parts of
the interfae. Note that this is just a simple language used as an example, this nor
any other data language is spei�ally adapted for use in MSCs.

Our language will onsist of:

� The data types of Naturals and Booleans,

� Variables x, y, z and x1; x2; : : : ,

� Constants 1; 2; 3; : : : , true and false, with the obvious meanings,

� Operators +, �, ^, _, : and =.

Furthermore, we will take the liberty of adding brakets where neessary, and
removing them where possible.

6.6.2 Stati Funtions

Before going into eah of the stati funtions in a bit more of detail, we will �rst give
an overview in the table below.

In the rest of this hapter, we will use the following:
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� D 2 D is a data de�nition (that is, the data information part of an MSC
doument),

� Var is the set of all possible variables,

� V � Var is the set of all atual variables (not inluding wildards),

� W � Var is the set of all atual wildards,

� t 2 T is a data type,

� ! � 
 is the set of all pairs of atual variables and wildards with their data
types (thus, 
 � Var� T , and (x; t) 2 ! for exatly one t if x 2 V [W and for
no t if x 62 V [W .

� � is the set of all possible strings of text that an our in an MSC.

A wildard in MSC is used to denote a random value. The di�erene with a
variable is, that a wildard an have a di�erent value every time it is used, even
within one expression. For example, if is a wildard with type natural, then is any
natural, 2 � any even natural, and + any natural.

Funtion Type Usage
variable-hek �! Bool Cheks whether �

1(�) is a variable.
data-de�nition-hek �! Bool Cheks whether �

2(�) is a data de�nition.
typeref-hek D ! �! Bool Cheks whether �

3D(�) is a type referene.
expression-hek (D �P(Omega))! Cheks whether � is an

4D;!(�; t) (�� T )! Bool expression of a given type.
variable-equivalene ���! Bool Cheks whether two

EqVar(�1; �2) variables are the same

To get a better idea of what these funtions do, we will show what they look
like for our example language. Note that our language is slightly overspei�ed: In
MSC, the types of variables, and whih variables and wildards atually an exist, is
de�ned in the MSC rather than as an intrinsi part of the data language. For the
urrent hapter, we will hange our language de�nition by only speifying that there
are variables or wildards of the forms p, q, r, x, y, z, , x1; : : : and p1; : : : , and that
the division of these identi�ers between variables and wildards, as well as their types,
are to be de�ned in the MSC doument header.

� The variable-hek prediate 1, whih de�nes whether a string � is parsed
orretly as a variable is true for any string of the abovementioned syntati
forms, false otherwise.

� Our language is relatively simple, and when used in ombination with MSC will
not require any auxiliary data de�nition. Beause of this, the data-de�nition-
hek prediate 2 will be false for any string. In more ompliated languages
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it ould be used for the de�nition of non-standard data types, extra operators,
and other suh additions.

� Only two strings will pass our type-referene-hek 3: the existing types `Nat-
ural' and `Boolean'. Any other string annot be a type referene. Note however
that in more general ases, 3 depends on the data de�nition { the data de�ni-
tion ould inlude the introdution of new types (or even the removal of existing
ones).

� Next we get to 4. 4D;!(t; �) is true if and only if � is a orret expression of
type t. For our example language this funtion an be de�ned indutively as
follows:

{ 4D;!(; t) with  a onstant is true if and only if t � Natural and  is a
natural onstant, or t � Boolean and  is a boolean onstant.

{ 4D;!(x; t), with x a variable or wildard, is true if and only if (x; t) 2 !.

{ 4D;!(� + �; t) and 4D;!(� � �; t) are true if and only if t � Natural and
4D;!(�;Natural) = 4D;!(Natural; �) = True

{ 4D;!(� ^ �; t) and 4D;!(� _ �; t) are true if and only if t � Boolean and
4D;!(�;Boolean) = 4D;!(Boolean; �) = True

{ 4D;!(:�; t) is true if and only if t � Boolean and 4D;!(�;Boolean) = True

{ 4D;!(� = �; t) is true if and only if t � Boolean and 4D;!(�;Natural) =
4D;!(�;Natural) = True

Note that normally in a language like our example language, one would have
used brakets to disambiguate the various expressions; for reasons of simpliity,
these have been omitted wherever this did not lead to ambiguity.

� Finally, EqVar for our language is suh that that two variable names are equal
if and only if they are idential as strings. This will be true for many languages,
but not for all. EqVar might for example be used to speify that a language is
ase-sensitive.

6.6.3 Dynami Funtions

Four funtions are required for the dynami semantis of MSC with data. Three of
these are introdued to be able to manipulate strings on a syntati level, and are in
the �rst plae (but not only) meant for dealing with wildards orretly. The last is a
semanti evaluation funtion. � will from now on stand for a string that is supposed
to be an expression. The set of suh strings will be denoted �. Although not de�ned
in the standard, working out the semantis we found that a �fth funtion is neessary.

Below, x 2 Var is a variable, U is the semanti domain of the data language
(de�ned below), E : V ! U is a funtion that gives the urrent value of eah variable,
and E the set of all suh funtions.
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Funtion Type Usage
Variable ounter D ! � Gives the variables

VarsD(�) ! P(Var) in a string �
Variable replaement D ! Replaes a single ourrene

RepD(�; x; x
0) ��Var�Var! � of a variable in a string

New Variable D ! P(Var)! Var Provides a fresh variable
NewVarD(V )

Semanti Domain U (not appliable) The set of all
semanti objets

Semanti Evaluation D � E ! �! U Gives the semanti
EvalD;E(�) meaning of an expression

Semanti Range D ! T ! P(U) Gives the semanti
SemD(t) range of a type

We will now look at the various funtions just de�ned, to give an explanation of
what they are supposed to do, and an example of how they would or ould look like
in our example language.

� The funtion Vars heks whih variables (or wildards) appear in a given ex-
pression. For example, VarsD((x + y) � x) = fx; yg.

For our example language, Vars an easily be de�ned indutively as follows:

{ For a onstant , VarsD() = ;.

{ For a variable x, VarsD(x) = fxg.

{ VarsD(�+ �) = VarsD(� � �) = VarsD(� ^ �) = VarsD(� _ �) = VarsD(� =
�) = VarsD(�) [ VarsD(�)

{ VarsD(:�) = VarsD(�)

A de�nition of this type is possible for most languages, but in some ases more
ompliated funtions are neessary { for example beause some variables are
`hidden' by an abbreviation, or beause something an be a variable if de�ned
as suh, but have another meaning in other ases.

� The next funtion, Rep, substitutes a single ourrene of a variable by a given
other variable. For example, RepD((x+ y) � x; x; z) gives the result of replaing
one x in (x+y) �x by z, whih, depending on the exat de�nition of Rep, might
either be (z+y) �x or (x+y) � z. Note that (z+y) � z would not be an allowable
outome for this substitution, beause then two ourrenes of x would have
been replaed.

For our example language, we will hoose to have Rep always replae the �rst
ourene of a variable, whih leads to:

{ RepD(; x; y) for  a onstant is equal to .

{ RepD(z; x; y) for z a variable is equal to y if x � z, and z otherwise.
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{ RepD(� + �; x; y) equals RepD(�; x; y) + � if x 2 VarsD(�), and � +
RepD(�; x; y) otherwise.

{ Similar rules hold for the other operators �, ^, _, : and =.

The Rep funtion is used for two purposes: In the �rst plae to handle wildards
properly, and in the seond plae to disambiguate a situation where two stati
variables by the same name have been de�ned.

� NewVarD(V ) basially provides a new variable from Var, not yet in V . Of
ourse this is not always possible (just take V = Var), but in atual usage
V will always have a �nite number of variables, so NewVar needs only to be
de�ned in that ase. If Var itself is in�nite, this is enough to ensure the possible
well-de�nedness of NewVar.

For our language, we an de�ne NewVarD(V ) for �nite sets V to be xn, with n
the smallest n suh that xn 62 V .

� Finally, there is the atual semanti interfae. It onsists of some semanti
domain U , and the funtion Eval, whih gives the semanti meaning of an ex-
pression. This meaning depends on the urrent value of the variables, whih is
enoded in the funtion E. As a stati semanti restrition one ould speify
that only those variables that atually our in � (as de�ned through the fun-
tion Vars) are allowed to inuene the result. More formally, we should have
EvalD;E(�) = EvalD;E0(�) if E(x) = E0(x) for eah x 2 VarsD(�).

For our example language we have:

{ EvalD;E() for  a onstant equals the `natural' meaning of .

{ EvalD;E(x) for x a variable equals V (x).

{ EvalD;E(�+�) equals the sum of EvalD;E(�) and EvalD;E(�), and similarly
for the other operators.

The Semanti Range funtion SemD(t) is neessary for the orret handling of
wildards. It gives the omplete semanti range of a data type, that is, all values
that an be taken by variables of a given type. As suh, it spei�es the values
that a wildard of that type an have. For our example language, this funtion
is de�ned by SemD(Natural) = N, SemD(Boolean) = ftrue; falseg.

6.6.4 Changes in the Interfae

The interfae as it has been presented here, di�ers somewhat from the one in [IT00℄.
The di�erenes, with justi�ations, will be mentioned below.

� Compared to [IT00℄, we have removed some stati funtions. The reason for
that, is that some of the stati funtions de�ned above are the ombination of
more than one funtion from [IT00℄. 2 and 3 both ombine two funtions
from [IT00℄, where a well-formedness prediate is heked �rst to see whether
a string ould be a data de�nition or type referene, after whih a type-hek
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prediate heks whether it atually is. These funtionalities have been om-
bined into a single funtion in our version. The funtion 4 even ombines three
funtions, beause [IT00℄ ontains both a general and a type-dependent type-
hek. Only the latter has been kept { the former an be derived by stating
that something is an expression if and only if for some type it is an expression
of that type.

� In [IT00℄, Vars also ounts the number of ourrenes of eah variable. For the
semantis this information is atually unneessary. The semantis does some
extra work that would otherwise be unneessary beause of the removal of this
information, but in general nevertheless looks better without it.

� In [IT00℄, Rep also ontains among its arguments a number speifying whih
ourrene of a variable has to be hanged. Beause this information is not of
relevane for the semantis, it has been removed.

� The semanti domain U has been mentioned expliitly, whereas in [IT00℄ it is
only de�ned impliitly, by the de�nition of Eval.

� The funtion Sem, whih we found to be neessary for a orret semanti han-
dling of wildards, has been added.

6.7 Semantis for Data in MSC

In this setion, we will give an indiation how data and guards an be semantially
added to MSC. To do so, we take the semantis for MSC'96 as found in the thesis
of Reniers [Ren99℄ (see setion 4.4 for a short introdution) as a starting point, and
look how data an be added and where it might ause problems.

6.7.1 The State Variable 	

If we add data to the language, this is most easily done by adding a kind of `state
variable' 	, whih keeps trak of the relevant data information. In partiular, the
following information is kept:

� The data de�nition information D

� A set V of all variables that have been de�ned

� A set W of all wildards that have been de�ned

� The funtion d : V ! Bool whih spei�es whether a variable is dynami

� The funtion o : V ! I (I being the set of instanes), giving the owning instane
for eah dynami variable

� The funtion t : V [W ! T (T being the set of types that are allowed), giving
the type of eah variable and wildard
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� The funtions �i : V ! U [ f?g, giving the loal value on the instane i of a
variable. The speial value ? (? 62 U) is used if, as far as is `known' to a given
instane, no value has been given to a variable yet

� The funtion s : I�P(I)! P(�)[f?g, remembering the last de�ning ondition
on a given set of instanes that a given instane has met. A set of strings 2 P(�)
rather than a single string is used beause a number of possible states an be
de�ned by a single ondition.

The semantis of MSC, whih is urrently de�ned on proess algebra expressions,
must now be de�ned on the ombination of these proess algebra expressions and
these state variables.

At the start of an MSC doument, D, V , W , o and t are initialised in an obvious
way in the doument header. Furthermore, at this point d(x) = true for all x 2 V ,
�i(x) = ? for all x 2 V; i 2 I , and s(i; J) = ? for eah instane i and set of instanes
J .

6.7.2 Loal Ations

The basi use for data is simple. Every time an expression is enountered, it should
be replaed by its meaning. We will formalise this, �rst for expressions � whih do not
ontain wildards. The more ompliated subjets, suh as wildards and messages,
will be dealt with later.

A restrition to suh a usage is that eah variable x has to be de�ned on the
instane on whih the event takes plae of whih the expression is a part, that is
�i(x) 6= ?. This will have to be heked dynamially, although it funtions in the same
way as a stati restrition: MSCs for whih this ondition is not true are onsidered
illegal. If the expression is not onneted to a spei� event, it is not allowed to
ontain any dynami variables.

For eah ation a that ontains an expression without wildards, if under the exist-
ing (MSC'96) semantis the step x

a
! y (here x and y are proess algebra expressions,

and a is the proess algebra event orresponding to the ation a) is possible, then

under the semantis with data the step (x;	)
EvalD;�i

(a)
! (y;	) is possible, where i

is the instane on whih a takes plae, and EvalD;�i(a) is found by replaing eah
expression � in a by EvalD;�i(�).

These issues get more ompliated when wildards are used. If an expression
does ontain one or more wildards, it should be evaluated for any possible value of
these wildards. Furthermore, if the same wildard is used several times, it should be
possible to instantiate it with di�erent values eah time. For the latter purpose, we
�rst make eah ourrene of a wildard unique, in the following way:

Let � be an expression, and let T 0 be some (�nite) set of variable-type pairs (we
will see later what the funtion of the latter is). We de�ne wf(�; T 0) indutively as
follows (the de�nition is not omplete, beause it is not spei�ed whih wildard has
to be hosen at eah step; however, the result is valid whihever hoie is made).

� If � does not ontain any wildards (that is, V arsD(�)[W = ;), then wf(�; T 0) =
(�; T 0)
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� Otherwise, hoose any wildard x in � (that is, x 2 V arsD(�) \ W ). Then
wf(�; T 0) = wf(�0; T 0 [ fz; tg), where:

{ z = NewVarD(V [W [W 0), where W 0 onsists of all �rst elements of pairs
in T 0

{ t = t(x) (the type of x, and thus of z)

{ �0 = RepD(�; x; z)

Thus, wf(�; ;) onsists of a rewriting of � into a form where every wildard ours
only one, and a list of extra wildards and their types that have to be reated to do
so. We will all this rewriting and this list wf(�) and T 0, respetively, while we de�ne
W 0 to be the set of �rst elements of pairs in T 0 and Sem(t(x)) for x 2 W 0 to be the
type t suh that (x; t) 2 T 0.

Provided that Rep and NewVar both work in the way that they are supposed to
work (that is, Rep replaes exatly one ourene of a variable, and NewVar provides
a new variable), the de�nition above will give a result after a �nite number of steps,
although the result may depend on hoies that have been made.

We de�ne a `hoie funtion' to be a funtion  : W[W 0 ! U suh that (x) 2 t(x)
for eah wildard x. It thus gives an arbitrary allowed value for eah wildard. With
this information, we an �nally add wildards to the desription of data in simple
expression:

For eah ation a that ontains an expression, if under the existing MSC'96 se-
mantis the step x

a
! y is possible, then under the semantis with data the step

(x;	)
Evali(a)
! (y;	) is possible, where i is the instane on whih a takes plae, and

Evali(a) is de�ned by replaing eah expression � in a by EvalD;�i[(wf(�; V [W ))
for any arbitrary hoie funtion  on the wildards in wf(�; V [W ).

To simplify notation, we will de�ne the prediate i(�; u) for an expression � and
a semanti objet u 2 U to be true if and only if there is some hoie funtion  suh
that EvalD;�i[(wf(�; V [W )) = u. The above then beomes: If x

�
! y is possible

under the urrent semantis, then under the semantis with data (x;	)
u
! (y;	) is

possible, provided i(�; u) holds.
As a next ompliating fator, a loal ation an ontain a binding of the type

x := � (with x a variable and � an expression). In this ase the following stati
requirements must be met:

� � and x must be of the same type, that is 4D;T (t(x); �) = true.

� x is a dynami variable that is owned by the instane to whih the loal ation
is onneted, that is, d(x) = true and o(x) = i

In this ase not only the expression must be replaed, as done above (one an even
imagine that one does not want to replae the expression, but that is a hoie that
I do not want to go into at the moment), but also the value of x has to be hanged.

Thus, the rule now beomes that if under the urrent semantis x
ation(x:=�)

! y, then

under the semantis with data we have (x;	)
ation(x:=u)

! (y;	0), provided i(�; u)
holds, where 	0 equals 	, exept that in 	0, �i(x) = u.



136 CHAPTER 6. DATA IN MSC

6.7.3 Simple Messages

Messages behave di�erent from other ations in two ways:

1. The interpretation of an input event depends on the orresponding output event,
rather than on the urrent value of the variables on the reeiving instane itself

2. The message an have the e�et of hanging the value of a variable, or of om-
muniating the value of a variable to another instane.

First, we look at a simple message { a message whih ontains an expression, but
no bindings, and does not go through any gates. A message onsists of two parts, the
sending and the reeipt of the message. We annot handle them as two independent
events for the reasons mentioned above. Instead, we will have to remember the
information of the sending event when the reeiving event happens.

The information that is needed, is the value of all variables that are in the ex-
pression. A logial plae to do so, is in the ordering requirement that already exists
to ensure that messages are sent before they are reeived, that is in the requirements
part S of ÆS and kS (see hapter 4.4).

To extend the semantis to also be able to work with data, the information in these
requirements should also ontain the value of the variables. To handle wildards in an
easy way, we also need to put the atual value of the expression as a whole in here. We
need a set of all values of variables in the expression of the ontents of the message,
and one suh set for eah ourrene of the sending of the message. Furthermore, these
lists have to be onsidered in FIFO (First-In-First-Out) order. Thus, the numbers n

in
n
7! are replaed by lists of sets E = (e; x1 = e1; x2 = e2; : : : ; xn = en), where e is the

value of the expression, x1; : : : ; xn are the variables in the expression and e1; : : : ; en
their valuations.

The new enabled(a; S) prediate need not be more ompliated than the old one.
The rule that the number n is larger than 0 for all orderings with a on the right side
of the ordering, is replaed by the rule that the list of lists E is non-empty.

The new update funtion upd(a; S) does get more ompliated. For a message
sending event out(i; j;m), apart from the ordering out(i; j;m) 7! in(i; j;m), we add
the valuation of the messagem and a list of the variables in m together with the value
of �i(x) for eah of these variables. For generalised orderings, the list of variables and
values is neessarily empty.

When reeiving a message, we need to hange the reeive ation that is done, using
the valuations as de�ned by the orresponding send ation. If x

a
! x0 is allowed in

the existing semantis for some reeipt event a = in(i; j;m), there will in this ase

be exatly one non-empty ordering requirement b
E
7! a (to be exatly, this will be the

ase for b = out(i; j;m)). From this ordering requirement we get a set of variable
valuations E(x), as well as a value of the expression itself E(m).

The step whih now is allowed in the semantis with data, will be: (x;	)
a0

! (x;	0),
where a0 = in(i; j; E(m)) and 	0 has �j(x) = E(x) for all variables that our in m
(whih must neessarily be the same as the variables that our in E) whih have
(x) = true and o(x) 6= j, and is equal to 	 elsewhere.
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6.7.4 Bindings and Gates in Messages

Apart from expressions, a message m an also ontain bindings as one of its param-
eters. We ould thus have a message m(x + 1; y := 7), whih would mean that the
value x+ 1 is sent with the message, and y is given the value 7. The number of suh
parameters is inde�nite.

If the variable that is given a value is a wildard, everything works just like above.
If it is a real variable, then this variable should be a dynami variable, owned by the
reeiving instane. In this ase, the new value for the variable will be set to (the
evaluation during the send event of) the expression. Note that this is the only way
that a message an hange the value of an owned variable.

If a message is sent through a gate, the parameters given by the sending event and
those given by the reeiving event are not the same. Rather, the sending event is pa-
rameterised with expressions, while the reeiving one is parameterised with variables
(or wildards). The semantis of this should be that the variables given as parameters
on the reeiving side should be given the values given as parameters on the sending
side.

In the urrent semantis, there is already a funtion to ouple the orrespond-
ing events on two sides of the gate. This funtion, whih is desribed on page 141
of [Ren99℄, at the moment ouples the events out(i; G; ;m) (whih means, sending
messagem from instane i through gate G to an unknown plae ( )) and in( ; G; j;m)
to reate the events out(i; G; j;m) and in(i; G; j;m). This funtion an easily be ex-
tended to also ombine the data information in a orret way { that is, we have to om-
bine out(i; G; ;m(e1; e2; : : : ; en)) and in( ; G; j; x1; x2; : : : ; xn) to out(i; G; j;m(x1 :=
e1; x2 := e2; : : : ; xn := en)) and in(i; G; j;m(x1 := e1; x2 := e2; : : : ; xn := en)). Apart
from this, the semantis are exatly as desribed above. There is still a hoie here
whether any wildards are atually put in the binding, or that they are regarded as
signifying that expressions rather than bindings are to be added. That is, whether
out(i; G; ;m(7; x + 1)) and in( ; G; j;m(y; )) are ombined to out=in(i; G; j;m(y :=
7; := x+ 1)) or to out=in(i; G; j;m(y := 7; x+ 1)). This does however not make an
essential di�erene in the semantis.

6.7.5 Stati Data

The next thing that has to be added to the semantis is the issue of stati (parametri)
data. When an MSC has a parameter, say x, it an only be alled with an atual
value for that parameter. All ourrenes of the variable x are then replaed by its
atual value.

The best way to deal with this, seems to be to reate a new variable (using NewVar)
x0, add this to the set of variables V , and store its value. This new variable will have
d(x0) = false, and �i equal to the de�ned value for eah instane i. All events in
the MSC are then labeled with an extra statement x := x0, whih has the e�et of
replaing eah ourrene of x by an ourrene of x0 (by repeated appliation of
Rep). This renaming is also applied in all MSCs that are alled by the MSC itself,
exept if this other MSC also has x as one of its parameters.

The reason that we hoose to inlude an extra variable x0 rather than using the
existing variable x, is that x may be de�ned at more than one plae. In suh a ase,
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we have to have a mehanism to deide whih value of x is to be used, whih is done
through this new variable x0.

6.7.6 Guards

Passing a guard is preferably not onsidered an ation. Rather, guards are ondi-
tions on the permissibility of ations that happen later. Lukily, in the semantis of
MSC there exists a mehanism to add suh a ondition in a natural way, namely the
permission relation ���!.

We now turn a guard into a quasi-event, that is, it looks like an event, but it
annot be atually exeuted. More preisely, we add one suh quasi-event for eah
instane overed by the guard. We denote these quasi-events by guard(i; e), where i is
the instane on whih (this part of) the guard is de�ned, and e is the data expression
onneted to it (whih of ourse as a stati semanti requirement must be of the type
Boolean). We will look at non-data guards later.

For guards, the normal permission rule holds as well:

l(a) 6= i

(guard(i; e);	)
a

���! (guard(i; e);	)

But there is an extra rule here: Something happening on the same instane,
after the guard, may also be exeuted { but only if the guard evaluates to true.
Furthermore, one we have passed the guard this way, it will not hinder us later { at
least not on this instane. That is:

l(a) = i;Evali(e) = true

(guard(i; e);	)
a

���! (�;	)

If we look at non-data guards, the guards themselves work very similar to what is
mentioned above. This time there will be three parameters: The instane, the set of
instanes on whih the guard is de�ned, and the texts of the guard (a guard an have
more than one string, it an then be passed if the system is (on the given instanes)
in any of the states de�ned by the guard). The same holds for de�ning onditions (if
there is more than one string on a de�ning ondition, the system an be in any of the
states de�ned). We will denote them by guard(i; I;�) and ond(i; I;�), respetively,
with i the relevant instane and I the total set of instanes on whih the guard or
ondition is de�ned. The guards work just like above, exept that the hek now is
that there is a state in whih the system an be whih is allowed by the guard, rather
than the old Evali(e) = true, and that passing a guard an restrit the number of
states a system is in: If the system (for a given instane and set of instanes) is in
a state fA;B;Cg, and passes a guard when A;B;D, the system state hanges to
fA;Bg { it annot any more be in state C.

l(a) 6= i

(guard(i; I;�);	)
a

���! (guard(i; I;�);	)
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l(a) = i;� \ s(i; I) 6= ;

(guard(i; I;�);	)
a

���! (�;	0)

Here 	0 is equal to 	 exept that the value of s(i; I) is hanged to that of s(i; I)\�.
A de�ning ondition an always be passed, but if it is passed, it hanges the state:

l(a) 6= i

(ond(i; I;�);	)
a

���! (ond(i; I;�);	)

l(a) = i

(ond(i; I;�);	)
a

���! (�;	0)

Here 	0 is equal to 	 exept that the value of s(i; I) is hanged to �.
A few speial points have to be noted.
In the �rst plae, under this semantis it an happen that the data state 	 is not

uniquely de�ned any more. We ould have an MSC like the one in Figure 6.18, where,
after ation a has been done, we do not know whether we are in state A or state B.
We are however not in the ompound state, sine further ations an make it lear
where we are without any guards.

The solution for this is to `lift' the delayed hoie operator (�) through the data
part, that is, rather than just allowing pairs (x;	) with x a proess algebra expression
and 	 a data state, we allow expressions of the form (x1;	1) � (x2;	2) : : : . Then
suh a situation where di�erent paths have the same observable ations, but di�erent
data onsequenes an be solved by hanging the urrent SOS-rule [Ren99℄:

x
a
! x0; y

a
! y0

x� y
a
! x0 � y0

into

(x;	)
a
! (x0;	0); (y;	)

a
! (y0;	00)

(x� y;	)
a
! (x0;	0)� (y0;	00)

Of ourse, some other extra rules are neessary as well to de�ne the behaviour of
the delayed-hoie operator on algebra-data pairs, these are however all easily derived
from the existing semantis.

A seond point that needs to be notied, is that under the semantis as de�ned
above, a guard is evaluated when the �rst ation after the guard is done, not at some
earlier stage. This might have some unexpeted onsequenes for situations involving
parallel omposition:

In Figure 6.19, the sending of m annot be done any more after the binding x := 2
is taking plae. At that time the value of x is not zero any more, and thus the guard
evaluates to false. That the guard has been true at some previous time does not
matter: in these semantis it is not possible to pass a guard at some time, but then
wait before doing any ations. The guard is onneted to the ation it guards.

Another issue that has to be overed is the termination prediate #. When there
are no ations to be done any more, just guards or onditions, suessful termination
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when A

j

a

m

when A

j

a

k

alt

ms hoie

Figure 6.18: The data state is not always uniquely de�ned

is possible { provided all guards evaluate to true. As a �rst attempt, one might try
to simply give guards the possibility to terminate, but a loser look shows that this
will not be suÆient. What if there is a de�ning ondition followed by a non-data
guard on the same instanes that is still to be passed? The guard should then be
evaluated using the state as de�ned by the de�ning ondition. To enable this, we will
have to remember the state variable 	 also after a termination. Thus, termination
will not any more be given by a simple prediate #, but by a prediate #	, meaning
`termination in data state 	'.

The existing SOS-rules are to be hanged for this prediate. The basi ase
((�;	) #	) and the rules for delayed hoie are easy. More ompliated is the ase of
the merge. For this is good to think of what a guard atually does to 	: It redues
the number of states in whih the system an be. Now, what will happen if the state
is redued in two di�erent ways in two plaes? Then both redutions will happen.
The endstate will be the one with both redutions, whih is the same as getting one
of the redutions from the end situation of the other redution.
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i j

x:=1

x:=0

x:=2

when (x = 0)

m

par

ms hoie

Figure 6.19: Possibly unexpeted behaviour of parallel omposition

(�;	) #	

(x;	) #	0

(x� y;	) #	0

(y;	) #	0

(x� y;	) #	0

(x;	) #	0 ; (y;	0) #	00

(x k y;	) #	00

(y;	) #	0 ; (x;	0) #	00

(x k y;	) #	0

(x;	) #	0 ; (y;	0) #	00

(x Æ y;	) #	00
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There are some more rules regarding # [Ren99℄, but all are easily translated into
rules for #	.

Termination for onditions and guards an now be de�ned by:

(ond(i; I;�);	) #	0

Here 	0 equals 	 exept that in 	0, s(i; I) = �.

� \ s(i; I) 6= ;

(guard(i; I;�);	) #	0

Here 	0 equals 	 exept that s(i; I) has been hanged to the previous value of
� \ s(i; I).

Evali(e) = true

(guard(i; e);	) #	

6.8 Conlusions

The addition of data to the MSC language was not an easy task. Muh work has been
done by a number of people. It was felt early that using a exible interfae would
be better than to using a single pre-de�ned data language. However, there were
still many hoies to be made regarding the way in whih a data language ould be
ombined with MSC. Some of these hoies were quite automati one they had been
identi�ed [EFM99℄, but others have remained open for a large part of the proess.

Even larger problems were found with the inlusion of guards in the MSC language.
The various standards that are being used in extending the language lashed here {
in partiular, the intuitive meaning that ertain MSCs have ould not easily, and in
some ases not at all, be translated into a semantis. Thus, there were two methods of
interpreting guards, one orresponding with intuition, the other semantially `lean'.
As both had some disadvantages that were regarded deisive, neither was hosen, but
rather, the language was restrited through stati requirements, so as to only allow
those ases where both interpretations resulted in the same semantis.

An overview of what the semantis for data and guards would look like is also given
in this hapter. The semantis in this hapter are based on the existing semantis for
MSC'96 [MR97b, IT98, Ren99℄. By extending this semantis at various plaes with
data onepts or guards, we an reate a semantis for the subset of the MSC2000 lan-
guage onsisting of MSC'96 plus data features and MSC2000-style guards and de�ning
onditions. Although the omplete semantis is not atually given, the treatment in
this hapter should be enough to make the reation of suh a omplete semantis rel-
atively easy, providing a solution for all major stumbling bloks. Note that to be able
to work with this semantis, the need was felt to extend the interfae between MSC
and the data language, as de�ned in the standard, with the funtion Sem. However, it
seems likely that a similar funtion would be neessary for any reasonable semantis
of this language.
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It would be a good thing to have a semantis for the omplete MSC2000 language;
however, suh a semantis might well be impossible. The urrent semantis for MSC
are suh that to see what the next ation an be, one only has to look at the urrent
state, not the future. Suh a semantis we will all `exeutable' { it is possible to
`walk through' the semantis without problems. The basi problem of the `intuitive'
solution regarding guards, was that it would not have this property any more. Rather,
it would reate a semantis in whih a look-ahead is neessary, one would have to look
at the future behaviour of the system to see whether a ertain ation would be possible
in the urrent state. Suh a semantis would be ompliated from a theoretial point
of view and hard or impossible for toolmakers to understand.

One of the other extensions that has been inluded in MSC2000 is time. Thus,
a omplete semantis for MSC2000 would also ontain this extension. If we look at
MSC with time, a look-ahead semantis seems to be the only reasonable solution.
For example, the MSC in Figure 6.20. The notation b�3 here means `b at time 3'.
If in this MSC we would not allow look-ahead, then one possible trae ould be to
�rst do b (at time 3), then do a (at time 3 or some later time), and then deadlok.
Although it would of ourse be possible to make a semantis this way, it an in no
way be regarded intuitive.

i j

a b�3

�1

ms MSC with time

Figure 6.20: An MSC with (absolute) time

On the other hand, apart from disadvantages like the one already mentioned, if
we add data (and guards) to MSC, baktraking semantis get even harder: Suppose
we have the MSC like in Figure 6.21 (the inline expression here has to be passed
zero or more times). Can this MSC, under a baktraking semantis, after setting x
equal to 1, start the loop with the ation x := f(x)? This is possible if, and only if,
there is some n � 1 suh that fn(x) = 1. And that is something that, even for quite
simple languages, might well be undeidable. The problem is that the semantis ask
an in�nite amount of information from the data language.

Beause this way time lashes with other parts of the language, it seems likely that
a omplete semantis of MSC2000 will not be developed in the near future (although
the title of [JP01℄ seems to laim it is a semantis for MSC2000, it atually gives
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i

x:=1

x:=f(x)

loop

when (x=1)

i

ms sending

Figure 6.21: Another problem with baktraking semantis

a semantis only for basi MSCs plus inline expressions plus data, not for time) {
even worse, that it is atually impossibile to make suh a semantis. Suh problems
are likely to keep ourring wherever a language is developed muh faster than its
assoiated semantis. It would work better to develop both hand-in-hand.

This has been done for data and guards, leading to the problems and solutions
identi�ed in this hapter. For time on the other hand, the semanti heks seem to
have been insuÆient. There have ertainly been ideas regarding the semantis of
time in MSC [BAL97b, GDO98, Klu99, MH00℄, but all of these had elements that
make an integration with the existing MSC'96 semantis hard.



Chapter 7

Message Re�nement in MSC

7.1 Introdution

7.1.1 Motivation

One of the areas where MSC is most used, and the one for whih the language was
originally developed [GR89℄, is in the desription of teleommuniation protools.
Real life teleommuniation protools often have di�erent levels of interpretation.
Something that is regarded a single message at one level, an be a paket of messages
at another, while on yet a lower level a number of regulation messages suh as \are
you ready to reeive?" and \transmission suessfully ompleted" might be added.
At the lowest level, there are just a large number of bits being transferred in both
diretions.

As one single level is already quite omplex by itself, one does not want to be
onerned by what is going on at at the lower levels when speifying a higher one.
However, in MSC this an urrently only be done by dropping those lower levels
altogether, whih might also be undesirable. One might be interested in possible
interations between the various levels, or the omputer system that is used to test
the implementation might only be able to interpret the ommuniation at a lower
level.

Thus, one would like to adapt the formalism in suh a way that it is possible to
swith between di�erent levels. That way one an design the system or protool at
one level while still being able to see the result at a lower level. In this paper we will
introdue the onept of message re�nement, in whih one message an be used to
denote a olletion of events, as a onstrut that an be used to make suh swithes.

7.1.2 Composition and Re�nement { A Historial Outline

Muh disussion has been going on about the possibility of ombining several MSCs
to reate one larger one. In many appliations, MSCs tend to beome unduly large,
spanning several pages. One would like to break those up into smaller parts in order
to gain a better overview.

145
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In the oldest MSC-standard, MSC'92 [IT93℄, only one operation to break up or
ombine MSCs was de�ned, namely the so-alled instane re�nement [MR96℄. Here
one instane is used to show the behaviour of several instanes. An example of instane
re�nement is given in Figures 7.1 to 7.3.

i

j ompound

deomposed

m

n

ms unre�ned

Figure 7.1: Instane re�nement: Original MSC

outer inner

m

m'

n'

n

ms j ompound

Figure 7.2: Instane re�nement: Re�ning MSC

The instane j ompound in Figure 7.1 is re�ned by the MSC in Figure 7.2 That
is, the middle MSC shows the internal behaviour of that instane, whih appears to
onsist of two parts that ommuniate with eah other as well as with their mutual
environment. The external behaviour of the re�ning MSC should, of ourse, be equal
to that of the instane to be re�ned { in this ase, �rst reeiving m, then sending n.
Together the two MSCs shown here desribe the same behaviour the single MSC in
Figure 7.3 desribes.

In MSC'96 [IT96℄, some more features were added to expliitly ompose MSCs,
namely MSC referene expressions and High-level MSCs (see Chapter 4.

The idea of re�nement (using one entity to stand for several of them) ould be
extended. Two logial ways of doing this are ation re�nement, in whih a loal
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i outer inner

m

m'

n'

n

ms de

Figure 7.3: Instane re�nement: Equivalent MSC

ation stands for a number of ations, and message re�nement, in whih one message
stands for a larger protool onsisting of several messages and other events. With the
appearane of MSC'96, ation re�nement adds little, as it an easily be modelled by
replaing the ation by a one-instane referene MSC (see Chapter 4.3.4). Message
re�nement will be addressed in this hapter. We will also be proposing another
addition to the language, namely synhronous ommuniation.

7.2 Message Re�nement

7.2.1 Protool MSCs

The basi idea behind message re�nement is to use a single message as the notation
for some more omplex behaviour. A separate MSC then de�nes this behaviour. In
general, this behaviour will be some type of protool, desribing how the information
exhange whih is represented by the message will our.

The idea behind message re�nement is to have one message stand for an MSC of
its own. This MSC, as it shows the protool used to send the original message, we
will all a Protool MSC. What are the properties of suh an MSC?

First, there will be two instanes, the sender and the reeiver, that are to take
the roles of the instanes sending and reeiving the message to be re�ned in the
unre�ned MSC (that is, the MSC in whih only the high-level message is shown, the
MSC in whih the message is `replaed' by the protool MSC will be termed the
re�ned MSC). The protool MSC may ontain other instanes as well. These desribe
(parts of) the medium between the ommuniating proesses, or perhaps parts of the
ommuniating proesses themselves that spei�ally serve purposes in the input or
output proess only.

Furthermore, as there should be some sort of ommuniation from the sender
to the reeiver, it is reasonable to assume there is some event at the sender that
neessarily happens before some event at the reeiver. When e1 neessarily happens
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before e2, we will write e1 << e2. That is, e1 << e2 i� e1 is before e2 in every
possible trae (allowed sequene of events) of the MSC.

A third point is that we want our MSC to reah neither a deadlok (in whih the
system has not suessfully terminated and yet is unable to perform any ations) nor
a lifelok (in whih the system keeps on running in loops without ever terminating).
If any of these two would be the ase, the protool MSC ould not really be regarded
as just a re�nement of the original message, as it would add some other behaviour as
well. Deadlok is forbidden in the MSC standard [Ren95℄, and an algorithm has been
published to hek for it [BAL97a℄.

Putting this all together we ome to the de�nition set out below:

De�nition 44 A protool MSC is an MSC with the following added requirements:

1. There are two di�erent speial instanes, whih are termed the sender and the
reeiver. The other instanes (if present) are termed internal instanes.

2. There are events e1 at the sender and e2 at the reeiver suh that e1 << e2.

3. The MSC is free of deadloks, and every �nite beginning of a trae of the MSC
an be extended to a �nite trae.

7.2.2 Message Re�nement

Having de�ned what a Protool MSC is, we next de�ne what Message Re�nement
means. Thus, given an MSC and a message in that MSC, what is the result when we
replae the message by a given Protool MSC? To de�ne an MSC, we need to speify
its instanes and events, and the orderings between these events.

If an MSC k has a messagem that is to be re�ned by a protool MSC p, we expet
not to �nd !m and ?m in the resulting MSC, as they have been replaed by p. All
other events of k will be there, and are as muh as possible unhanged. Likewise, all
events of p are present. They too are as muh as possible unhanged. All events of
p that are on the sender taken together replae the event !m of k. Thus, apart from
their own orderings in p they also have to on�rm to all orderings of !m in k.

De�nition 45 (Message Re�nement) Let k be an MSC, let m be a message of k,
that is, a message for whih the sending !m and the reeipt ?m are events of k, and
let p be a protool MSC. Then the message re�nement of m by p in k is the MSC
with the following harateristis.

Its instanes are all instanes of k, and all internal instanes of p.

Its events are all events of k with the exeption of !m and ?m, and all events
of p. Those events whih in p are at the sender instead plaed at the instane
at whih the event !m takes plae in k. Likewise, the events at the reeiver are
plaed at the instane at whih ?m takes plae in k. The other events of p, and
the remaining events on k are not hanged.

There is an ordering of a given sort e << e0 between two events e and e0 (for
example, an instane order or a ausal order) i� one of the following is the ase:
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* e and e0 are both events of k and e <<k e
0.

* e and e0 are both events of p and e <<p e
0.

* e is an event of k with e <<k!m and e0 is an event at the sender of p.

* e0 is an event of k with ?m <<k e
0 and e is an event at the reeiver of p.

We will denote the message re�nement of m by p in k by k[p=m℄. An example of
message re�nement we see in Figures 7.4 to 7.6.

i j

m

n

ms original

Figure 7.4: Message re�nement: original MSC

sender internal reeiver

m

m'

ak

ms protool

Figure 7.5: Message re�nement: re�ning MSC

The MSC in Figure 7.4 is the original MSC, the MSC in Figure 7.5 the protool
MSC, and the one in Figure 7.6 the resulting MSC after message m has been re�ned
by the protool MSC. For example, beause !m is before ?n and at the same instane
j in the original MSC, and !m and ?ak are at the sender of the protool MSC, they
are also at instane j and before ?n in the resulting MSC.
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i internal j

m

m'

ak

n

ms result

Figure 7.6: Message re�nement: equivalent MSC

7.2.3 When is Message Re�nement Allowed?

In Figures 7.7 to 7.9, a problem appears: the MSC in Figure 7.7 and the protool MSC
in Figure 7.8 are both perfetly valid MSCs. Yet, re�ning m by the given protool
MSC, will result in the MSC in Figure 7.9, whih ontains a deadlok. After m has
been sent, all three instanes are waiting for a message that will never arrive.

i j k

m
n

n'

ms original

Figure 7.7: A problem: original MSC

Of ourse this is undesirable behaviour, so we would like to prevent it. However,
to do so we need to know when suh a situation might our. We will see that for
this purpose it is useful to distinguish between two types of protool: unidiretional
and bidiretional protools. In a unidiretional protool, information ows in just one
diretion. In a bidiretional protool, interation ours:

De�nition 46 A protool MSC is bidiretional if in eah trae of the MSC there is
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sender reeiver

m

ak

ms protool

Figure 7.8: A problem: protool MSC

an event e at the reeiver and an event e0 at the sender suh that e takes plae before
e0, and is unidiretional otherwise.

We �rst look at unidiretional protool MSCs. They are very lose to the intuition
of a single message. No deadloks are reated by the re�nement of messages with
unidiretional protools, as the following theorem shows:

Theorem 47 Let k be an MSC, m a message of k, and p be a unidiretional protool
MSC. Then, provided k and p have no deadloks themselves, k[p=m℄ has no deadloks
either.

Proof Suppose k[p=m℄ ontains a deadlok. Then there should be events e and
e0 suh that e << e0 and e0 << e simultaneously hold. If there were no suh pair
in whih e is an event of k and e0 one of p, then the pair would already have aused
a deadlok in either k or p, so we may assume that e and e0 are events of k and p,
respetively.

e << e0 then implies that either e <<k!m (<<k of ourse being the <<-ordering
of the original MSC k) and e00 <<p e

0 for some event e00 at the sender, or e <<k?m
and e00 << e0 for some event e00 of the reeiver. Likewise, e0 << e implies that either
!m <<k e and e

0 <<p e
00 for some event e00 of the sender, or ?m <<k e and e

0 <<p e
00

for some event e00 at the reeiver.
Beause !m <<k?m, the only way in whih e <<k!m or e <<k?m an be om-

bined with !m <<k e or ?m <<k e without ausing a deadlok in k is when
!m <<k e <<k?m. Then it must be the ase that e <<p e0 for some e00 at the
reeiver and e0 <<p e

000 for some e000 at the sender. However, in that ase e00 <<p e
000,

whih ontradits the unidiretionality of p. Thus we see there are no suh e and e0,
so the re�ned MSC is free of deadloks. �

Bidiretional protools are trikier. Here the anomaly shown in Figures 7.7 to 7.9
an our. Lukily we an give the exat onditions under whih it ours. Intuitively
one an say that the output and the input of the m must be able to happen arbitrarily
lose to eah other to avoid a deadlok.
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i j k

m

n

n'

ak

ms problem

Figure 7.9: A problem: equivalent MSC

Theorem 48 Let k be an MSC, p a bidiretional protool MSC, and m a message
of k. Then k[p=m℄ is free of yles if and only if the following onditions hold:

1. !m and ?m are not at the same instane in k

2. There is no event a suh that !m << a <<?m

Proof if: If the onditions are met, there is a trae where !m and ?m follow eah
other immediately. A valid trae of the re�ned MSC an now be found by taking
suh a trae, and replaing !m�?m in this trae by any trae of p, renaming instanes
where needed.

only if: If !m and ?m are at the same instane in k, then in the re�ned MSC, eah
event oming from the sender will ome before eah event oming from the reeiver.
This will obviously lead to a deadlok if the protool is bidiretional.

Now suppose there is an event !m << a <<?m. There are events e on the re-
eiver and e0 on the sender suh that e << e0 in p. However, in k[p=m℄ we now have
a << e << e0 << a, and thus a deadlok. �

7.2.4 Synhronous Communiation

In the present ontext it would be desirable to have an extra onstrut in the language
to show synhronous ommuniation, that is, a message being sent whih does not
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take any time to go from the soure to the destination diretory. This looks like a
useful extension in itself as well.

Suh a synhronous ommuniation an be implemented semantially in two ways:
�rstly as a single ation that is shared by two instanes, and seondly as two ations
that have to be done without any other ation between them. The �rst method of in-
terpretation is probably preferable, beause the seond one is very hard to implement
in proess algebra { or in any of the other formalisms that have been used for pro-
posed semantis for MSCs, for that matter. Anyway, any of the two representations
an easily be translated into the other.

If the onstrut of synhronous ommuniation would be present in the language,
then avoiding deadloks aused by message re�nement an be done in the following
way.

Requirement 49 A normal message may only be re�ned by a unidiretional proto-
ol. A synhronous message may only be re�ned by a bidiretional protool.

7.3 Semantis

We will now try to give an operational semantis (in the style of [Ren99℄) for message
re�nement. Here k[p=m℄ is the re�ned version of k, with p for m, while k[p=m℄� is
the same, but after !m, or in fat any of the events that replaes it, has already taken
plae. We will not explain these semantis any further, as we think there is a better
option that will be given below. These semantis assume that !m and ?m take plae
in k exatly one, and the internal instanes of p are di�erent from any instanes in
k.

k
a
! k0; a 62 f!m; ?mg

k[p=m℄
a
! k0[p=m℄

k
?m
! k0; k0#; p#

k[p=m℄�#

p
a
! p0; i(a) 62 fsender; reeiverg

k[p=m℄
a
! k[p0=m℄

k#; p#

k[p=m℄#

k
!m
! k0; p

a
! p0; i(a) = sender

k[p=m℄
a
! k0[p0=m℄�

k#; p#

k[p=m℄�#

k
!m
! k0; k0 ?m

! k00; p
a
! p0; i(a) = reeiver

k[p=m℄
a
! p0 Æ k00

k
a

���! k00; p
a

���! p00

k[p=m℄
a

���! k00[p00=m℄

k
a
! k0; a 6=?m; p

a
���! p00

k[p=m℄�
a
! k0[p00=m℄�

k
a

���! k00; p
a

���! p00

k[p=m℄�
a

���! k00[p00=m℄�

p
a
! p0; i(a) 6= reeiver

k[p=m℄�
a
! k[p0=m℄�

k
?m
! k0; p

a
! p0; i(a) = reeiver

k[p=m℄�
a
! p0 Æ k0

However, we prefer another way to inlude message re�nement semantially. If we
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let it be not an operation in but an operation on the language, the problems beome
muh less. With this I mean that message re�nement is regarded as another way of
writing down the MSC where the message has already been de�ned. That is, to get
the semantis of an MSC with re�nement, one performs an operation like the one in
De�nition 45 (but more preisely de�ned) to get the re�ned MSC. The semantis of
the MSC with re�nement is then de�ned to be equal to that of this re�ned MSC. The
advantage is that this way the atual semantis of MSC is not hanged, and so no
new problems an be introdued either.

Let thus k be an MSC, m a message of k and p a protool MSC. The MSC k[p=m℄
an then be found in the following way, using the textual syntax of k and p (let i and
j be the sending and reeiving instane of m, respetively):

1. In p, replae every ourene of `sender' by the sending instane of m in k, and
every ourene of `reeiver' by the reeiving instane of m in k (if these happen
to be the same instane, one should keep trak of what was originally on the
sender and what on the reeiver).

2. In the syntax of k, replae the event i : out m to j by a series of events, onsist-
ing of all events originally on the sender in p, in the order in whih they appear
in p. Likewise, replae j : in m from i by the series of all events originally on
the reeiver in p.

3. Add to k instane delarations for all instanes in p exept i and j

4. Add to k, in the order in whih they are in p, all events of p whih were not yet
added in step 2.

Synhronous ommuniation an be semantially inluded rather easily. A syn-
hronous ommuniation an simply be implemented as a single event that has a plae
in the instane ordering of two di�erent instanes. Suh a onstrut does not seem to
ause any major problems.

7.4 Conlusions

An important issue in MSC is the addition of various ways of omposition, that is,
ombining a number of smaller MSCs into one large MSC. A new way has been
put forward in this hapter, namely message re�nement, in whih a message an be
replaed by a protool onsisting of a number of messages and possibly other events.

These protools an be divided into two groups, namely unidiretional protools
and bidiretional protools. Replaing a message by a unidiretional protool auses
no problems, but replaing it by a bidiretional protool might ause deadloks. One
solution to this problem is the addition of synhronous ommuniation, whih might
also be a useful addition to the language of itself. If we allow only synhronous
messages to be replaed by bidiretional protools, no deadloks will our.

To avoid problems in the semantis of MSC, it would be better to de�ne protool
re�nement, and other omposition tehniques also, not as an operator in the language,
but as an operator on the language, desribing a way in whih MSCs an be hanged
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into other MSCs. This way, no ompliated semanti onstruts are neessary to
implement them. For example, above we ould do without a rather ompliated set
of rules by introduing a relatively simple algorithm to translate an MSC with message
re�nement into a `standard' MSC.
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Chapter 8

Interrupt and Disrupt in

MSC

8.1 Introdution

Although extra features been added to the MSC language twie [IT96, IT00℄, there
remains a wish for new features to be added. In this hapter, we will look into one of
these proposed extensions, namely disrupt and interrupt. A disrupt means that the
system starts exeuting one type of behaviour, but at a ertain point is disrupted,
and starts exeuting another behaviour instead. An interrupt is similar, but after an
interrupt, the system returns to the previous behaviour, while after a disrupt, this
does not happen.

Our opinion is that the semantis of a new onstrut should be well thought out
before the onstrut is added to the language. For disrupt and interrupt this hapter
attempts to make suh a pre-introdutory semanti overview. We will show the most
important of the many hoies that have to be made, and will show some of the
problems that might our if these operators are introdued.

8.2 Syntax

If disrupt and interrupt would be inluded in the language, there would not only be a
need for a semantis, but for a syntax as well. These two subjets are not independent.
Semantis that �t well with a ertain syntax an be lumsy or ounter-intuitive when
ombined with another syntax, and vie versa.

The main distintion here is between loal and global interrupt (or disrupt). The
di�erene here is the period during whih the disrupt or interrupt an take plae. In
a loal interrupt or disrupt, the disrupt or interrupt an only take plae at a single
point in time, while a global interrupt or disrupt an do so at any time during a given
period.

We would like to stay as lose as possible to the existing MSC syntax. In order to
do so we will use inline expressions to desribe the disrupt and interrupt.

157
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In Figure 8.1, we see the proposed syntax for loal interrupt. At the point where
the interrupt is shown, the behaviour of the enompassing MSC ould be interrupted
by the behaviour of the interrupt inline expression.

i j

k

m

m'

int

a

ms loal interrupt

Figure 8.1: Proposed syntax for loal interrupt

The MSC in Figure 8.2 shows our proposed syntax for global interrupt. As it
is important here to speify at whih times an interrupt is possible, we now have a
two-omponent inline expression. The lower part is equal in funtion to the inline
expression in the left example, giving the interrupting sequene. The interrupt an
take plae at any time when the system is in the upper part of the inline expression.

Let's look more preisely at what is done in the loal ase. The MSC an essentially
have two di�erent behaviours:

� Not doing the interrupt.

� Doing the interrupt, and doing it at exatly at the time given.

However, suh a onstrut would not be an atual addition to the language. The
opt-onstrut has exatly this same meaning { when something is plaed in an `op-
tional' inline expression it an either be done at that preise moment, or not at all.
Likewise a loal disrupt ould be replaed by an `exeption'.

Suh an equality has advantages and disadvantages. The advantage is, that a
semantis is easily found, and will ause no problems with the rest of the language,
or at least no problems that were not already there. The problems are thus muh
smaller than they would be with most extensions. The disadvantage is, that adding
suh a loal disrupt or interrupt will not make the language stronger while it would
make it larger. That way some of the problems of language addition would be met
without any useful extension even having been made.
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i j

k

m

m'

int

a

ms global interrupt

Figure 8.2: Proposed syntax for global interrupt

We feel that loal interrupt and disrupt are not useful, while if they are, they
are still semantially uninteresting. We will therefore in the rest of this hapter only
disuss global interrupt and disrupt.

8.2.1 Semanti Choies

For global and interrupt a number of other deisions have to be made. Eah of these
will inuene the resulting semantis. We see at least the following:

1. Can an interrupt take plae only one, or any number of times?

2. In the seond ase, an the system be interrupted more than one between any
two ations?

3. If yes, an one interrupt interrupt the other?

4. Can an interrupt or disrupt take plae before the �rst and/or after the last
ation of the interrupted behaviour?

5. Are all instanes interrupted or disrupted at the same time by an interrupt or
disrupt, or is it enough that all instanes are interrupted or disrupted at some
time? This point will be explained in more detail below, as it is an important
hoie, whih is not so obvious, and the most obvious answer might well not be
the best one.

The last point above deserves some extra disussion. At �rst thought it might
seem that the �rst interpretation is more natural { an interrupt or disrupt should
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work on the whole system, or at least on all instanes on whih it is spei�ed, at one.
However, when we look at an example, this might not be as obvious. See for example
Figure 8.3. It models a Telnet-protool: The server sends two (pakets of) messages
to the lient. The lient an hek whether the server is still alive by sending an
ayt-signal ('are you there?'), to whih the server answers by saying `yes'.

server lient

m1

m2

ayt

yes

int

ms ayt

Figure 8.3: Example interrupt MSC: Are you there-protool

Now if we regard the interrupt as interrupting all instanes at one, then the
sending of the ayt-message will blok the ation of the server. However, how is the
server in a pratial ase to know that the ayt has been sent? It only noties this
upon its reeipt, so it is logial to assume it will not be bloked before that. Likewise,
the server does not know when the `yes' is reeived, only when it is sent. Thus letting
the server be interrupted during all of the period leads to some possibly unwanted
extra ausalities. The more logial hoie might be to let eah proess be interrupted
separately, that is, eah proess has to do the interrupting ations at some point
without doing anything else in between, but they do not have to do it all at the same
time. Choosing to have all instanes interrupted or disrupted at the same time goes
ontrary to the nature of MSC, where otherwise all ommuniation is expliit and
asynhronous.

When one would hoose to have all instanes interrupted or disrupted at the same
time, one would in fat introdue synhronization points, whih are ontrary to the
nature of MSC as it has been pratied until now.

For the other questions our preferred answers are as shown below. However, we
do not feel very strongly about these questions, and if it appears that other hoies
would be loser to the wishes of the users these are the ones that have to prevail.

1. Any number of interrupts.

2. More than one interrupt between two events possible.
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3. No interrupts interrupting interrupts.

4. Interrupts and disrupts possible at the given times.

8.3 Semantis

Based on the hoies in the last setion, we reate an operational semantis for the
disrupt and interrupt operators. There have been more attempts to make proess
algebrai desription of the disrupt and interrupt operators (see for example [BBK86,
Die94, BB00℄), but the presene in partiular of weak sequening auses the semantis
of these operators for MSC to be di�erent (and more ompliated) than in general
proess algebra.

We will de�ne operators / and J to denote the interrupt and disrupt respetively.
That is, x / y is `x (possibly) interrupted by y' and x J y `x (possibly) disrupted by
y'.

When ould x J y do an ation a? There are in fat two possibilities: Either x
does the ation, or y does it. In the �rst ase, the resulting expression an still be
disrupted. In the seond ase, all instanes, exept the one on whih a takes plae do
not have to have been disrupted yet. They have to be disrupted at some time, but
that time an be somewhere in the future, and upto that point an still do ations
of x. To desribe this situation, we introdue the fored disrupt, J. xJy an do x,
but must at some time in the future be disrupted by y. However, this is not enough
yet: The ation of y that has already been taken forbids any ations on the same
instane of x to be taken. That is, some events of x may still happen before being
disrupted, but others have already been disrupted. Therefore we add to the fored
disrupt a set of instanes S � I that have already been disrupted. xJSy an now do
any ation from y (provided y ould do it), but ations from x only if they happen
on an instane not in S. We will be giving operational semantis for both J and J,
although it would be possible to make the semantis without using J, as it an be
eliminated through the equation x J y = (xJ;y)� x.

For the interrupt / we also de�ne a fored interrupt /, but in this ase we annot
get away with re-de�ning the interrupt, as we need to keep the possibilities of further
interrupts.

We have to hek the behaviour of our operators for three operational modi�ers:
x #, whih is true i� x an terminate, x

a
�!, whih gives the result of doing an a on x,

and x
a

���!, whih gives the result of x permitting a.

First, we onsider termination. x J y an terminate in two ways: Either x
terminates, or y disrupts x and then terminates without doing any ation. For xJSy
to terminate it is neessary and suÆient for y to terminate, while x/y an terminate
by just x terminating. Finally, for x/Sy to terminate, both x must be ready and
y must have no interrupting ations left, so x/Sy only terminates if both x and y
terminate. Thus:
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x #

x J y #

y #

xJSy #

x #

x / y #

x #; y #

x/Sy #

y #

x J y #

Next we look at what happens for doing a step. When ould an ation a be taken
by x J y? There are in fat two possibilities: either x took the step, after whih
a disrupt of ourse ould still take plae, or y disrupted, and took the step. In the
seond ase, we would get into a fored disrupt situation, where the instane on whih
a took plae (whih is denoted l(a)) is already disrupted.

In a fored disrupt xJSy, x ould only take the ation a if the instane on whih
a takes plae was not already disrupted, that is, if l(a) 62 S. Ations of y an always
our, and if one does then neessarily its instane must be disrupted as well.

With the interrupt x / y we again see two possibilities. Either the ation an be
done by x, and nothing shoking is happening, or it an be done by y. In the latter
ase we get into a fored interrupt. However, we will have to keep the `old' interrupt
as well, beause the proess ould be interrupted a seond time.

x/Sy is the most diÆult one in this aspet. x an exeute the step a if l(a) 62 S,
but it an also do it if y allows a. This is, beause in this ase the instane on whih
a takes plae has done all it has to do, so it is not interrupted anymore, and an do
steps from the main exeution (x) again. Steps from y work just like the former ases.

There is another ompliating fator here: We an have just one possible step for
a given ation from a given expression, beause the semantis of MSC are ompletely
deterministi. Thus, we have to inlude a speial ase for the possibility that both x
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and y an do a given step. Taken together, this leads to:

x
a
�! x0; y 6

a
�!

x J y
a
�! x0 J y

x
a
�! x0; y 6

a
�!; l(a) 62 S

xJSy
a
�! x0JSy

y
a
�! y0; x 6

a
�!

x J y
a
�! xJfl(a)gy0

y
a
�! y0; x 6

a
�!

xJSy
a
�! xJS[fl(a)gy0

x
a
�! x0; y

a
�! y0

x J y
a
�! x0 J y � xJfl(a)gy0

x
a
�! x0; y

a
�! y0; l(a) 62 S

xJSy
a
�! x0JSy � xJS[fl(a)gy0

y
a
�! y0; l(a) 2 S

xJSy
a
�! xJSy0

x
a
�! x0; y 6

a
�!

x / y
a
�! x0 / y

x
a
�! x0; l(a) 62 S; y 6

a
�!

x/Sy
a
�! x0/Sy

x
a
�! x0; l(a) 2 S; y

a
���! y00

x/Sy
a
�! x0/Sy00

y
a
�! y0; x 6

a
�!

x / y
a
�! (x/fl(a)gy0) / y

y
a
�! y0; x 6

a
�!

x/Sy
a
�! x/S[fl(a)gy0

x
a
�! x0; y

a
�! y0

x / y
a
�! x0 / y � (x / y)/fl(a)gy0

x
a
�! x0; y

a
�! y0; l(a) 62 S

x / y
a
�! x0 / y � (x/fl(a)gy0) / y

x
a
�! x0; y

a
�! y0; l(a) 2 S; y 6

a
���!

x/Sy
a
�! x/Sy0

x
a
�! x0; y

a
�! y0; l(a) 2 S; y

a
���! y00

x/Sy
a
�! x0/Sy00 � x/Sy0

Finally, the permission relation. This relation has been introdued in the semantis
of MSC to desribe the possibility that in the expression x Æ y events of y an go
before events of x. However, this an only be done if no events on x are on the
same instane as the event taking plae, or are otherwise fored to go �rst. This an
depend on hoies that are made within x. In suh a ase those hoies that would
have made the event taking plae impossible are subsequently disallowed. Thus we

get the relation x
a

���! x0, whih denotes that x by permitting an event from another
(later) term is redued to x0.

For x J y this immediately leads to problems. There are two possibilities here:
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Either x has permitted the event, or y has permitted it. However, in the seond ase,
those events of x that would have permitted it, an still take plae. That is, x may
perhaps not take plae in full, but it an still do those ations that are not forbidden
by the event just having been allowed. This is not a simple removal of hoies as it
was with the permission relation for other MSC operators. Here those parts of x that
would normally be disallowed by the permission of the events an still take plae upto
the plae where the permission would atually be impossible.

To see how we an deal with this, it is good to look at the fored disrupt xJSy.
Here, in order for an event a to be permitted, it neessarily has to be permitted by y.
On the other hand, whether or not x permits it is not interesting { any beginning of
a trae in x an happen as long as it does not ontain any events that are disallowed
by the permission of a, that is, as long as it does not ontain any events on the same
instane l(a), independent of whether or not they are part of a omplete trae that
would have allowed a. Thus we see that, if y permits an event a to go over into
y00, xJSy permits that event, and goes over in xJS[fl(a)gy00. The strange thing of
ourse is, that this is independent of whether or not x permits a. The reason is that
x annot terminate anyway, as it will be interrupted by y at some time. Beause of
this it does not matter whether x, or even the trae taken, atually permits a, as long
as that part of the trae that is atually taken does so. The SOS-rules for permission
by x J y now follow through the equality x J y = x� xJ;y.

For x / y to permit a it suÆes that x does so. If y does not allow a, the proess
annot be interrupted anymore, if it does it still an. x/Sy, �nally, an permit an
event only if both x and y do so. Note that it does not matter in this ase whether
or not l(a) is added to S, as all events on l(a) are `sifted out' by the permission of a
anyway. This leads to the following:

x
a

���! x00; y 6
a

���!

x J y
a

���! x00

x 6
a

���!; y
a

���! y00

x J y
a

���! xJfl(a)gy00
y

a
���! y00

xJSy
a

���! xJS[fl(a)gy00

x
a

���! x00; y
a

���! y00

x J y
a

���! x00 � xJfl(a)gy00

x
a

���! x00; y 6
a

���!

x / y
a

���! x00

x
a

���! x00; y
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8.4 Conlusions

Interrupt and disrupt an be introdued into MSC in various ways. These hoies
have to be made very arefully, beause a language onstrut that is not understood in
the same way by all users and other people onerned will ause many more problems
than it solves. Restrition in the inlusion of new features is advisable from a more
general point of view too.

If interrupt and disrupt are indeed to be inluded in the language, the �rst hoie
is whether a loal or a global interrupt is taken. A loal interrupt has the advantage
of being semantially simple and easily understood, but on the other hand it does
not really add anything to the language, so it is nothing but syntati sugar. A
global interrupt on the other hand is semantially quite ompliated, whih an lead
to unlarities. There are also a number of additional hoies to be made.

Although in this hapter a semantis for disrupt and interrupt in MSC has been
de�ned, there are still some issues to be dealt with. In partiular, the semantis as
they are, are rather ompliated. Also, a number of hoies have been made before
reating these semantis. Both fators inrease the likelihood that, if these onstruts
were interrupted in the language, the oÆial semanti meaning of an MSC ontaining
these onstruts might be di�erent from the meaning intended by the user.

We feel that, in general, it is a bad thing to let the language grow too fast or
too large. The MSC'96 language has not been thoroughly researhed. It would be
better, in our opinion, to have a solid, stabilized semantis for the existing language,
and if possible also for the proposed extensions, before the language is extended.
There are other reasons for restraint in the adoption of new features as well: If
features are introdued too quikly, tool builders will have problems keeping up.
Having too many features also runs the risk of groups of users using only subsets of
the language, thus diminishing the advantage that using one single languages has.
Another problem is that a large number of features greatly inreases the hane that
unforeseen interations between them lead to unwanted or unexpeted behaviour.

We do not intend to laim that additions to the language have to be avoided at
all osts. Far from that, some additions are ertainly useful, and not having any
innovation whatsoever will be even more ertain to kill the language's appliability
than a too generous addition of new features would. However, new features should
only be introdued when there is a wish for inlusion by a large number of users, and
a well-de�ned semantis for it.
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Chapter 9

Conlusions

Formal desriptions, and thus formal languages, an be useful in various parts of the
development of a software system. In this thesis, we have looked at some uses of
formal languages, as well as the proess of de�ning these languages, and in partiular
their semantis.

In the �rst two hapters, the subjet of testing has been disussed. In Chapter 2,
we introdued a way to use formal methods reated for one funtion (namely model
heking) in a ompletely di�erent area (namely test generation). Using existing
methods and tools has the advantage that the amount of work that needs to be done
to reate tools is muh smaller, and innovations in one area an be used in other areas
as well.

In Chapter 3, a new language, LOGAN , has been developed for the analysis of log
�les. Although through irumstanes that are not related to the work itself, it ould
not be applied at KPN as was originally intended, the language reated seems to be
both simple and expressive, and as suh seems to be appliable in pratie. Using
a formal language ertainly seems to be a great improvement over the urrent KPN
pratie of doing the heking of log �les by hand.

The rest of the thesis disusses the language MSC, whih is introdued in Chap-
ter 4.

Chapter 5 is the last one about the appliations of formal methods. The question
of whether a system an be implemented with a given ommuniation arhiteture is
an important one, and the material in this hapter allows one to answer this question
from the MSC desription of the system using relatively simple algorithms.

The seond subjet of the thesis, about the development of formal languages and
their semantis, also shows up in Chapter 3. Not only has LOGAN been developed
and a semantis de�ned, but we also gave an algorithm to hek the orrespondene
between the system desribed (in this ase, a log �le) and a desription in the language
(a pattern).

Chapters 6, 7 and 8 disuss various extensions of MSC, inluding disussions of
their semantis. Muh of the work in Chapter 6 has been part of the atual disussion
of adding data to the language. Proposals that seem to be reasonable at �rst sight,
might have hidden semantial problems, and the work in this Chapter has helped
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the development proess of MSC2000 by bringing these semantial problems to the
surfae, thus allowing them to be resolved before the atual standard was deided
upon.

The Chapters 7 and 8 have a similar funtion for some extensions that have not
yet been added to the language, but might be in the future. For message re�nement,
it seems that most semantial problems an be avoided by making re�nement an
operation on rather than in the language. For disrupt and interrupt on the other hand,
a number of hoies have to be made, and the resulting semantis are ompliated.
This omplexity might be a reason to not introdue the onstruts to the language,
but that is a deision that falls outside the sope of this thesis.
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Samenvatting

Wie een goed omputersysteem wil bouwen, zal moeten beshrijven wat het doet of
zou moeten doen. Natuurlijk talen, zoals Nederlands of Engels, zijn hiervoor niet
zeer geshikt, omdat ze te weinig exat zijn. In plaats daarvan worden hiervoor
zogenaamde `formele talen' gebruikt. Dit zijn beshrijvingsmethoden met een exate,
wiskundige betekenis. Dit promotie-onderzoek heeft zih op zulke talen geriht, en
meer spei�ek op twee aspeten: hun betekenis (`semantiek'), en hun toepassingen
voor het analyseren en testen van systemen.

In hoofdstuk 2 houden we ons bezig met testaeiding. Als een systeem eenmaal
beshreven en gebouwd is, is het nuttig om te kunnen vaststellen of het systeem ook
daadwerkelijk aan de beshrijving voldoet. Een manier om daar een uitspraak over te
kunnen doen, is door het systeem te testen. In dit hoofdstuk worden testen afgeleid
met behulp van `model heking'. Model heking is een methode die ontworpen is
om eigenshappen van een systeem af te leiden uit haar beshrijving: er kan worden
vastgesteld of een systeem een toestand kan bereiken met bepaalde eigenshappen.
Zo ja, dan wordt bovendien aangegeven op welke manier. In de methodologie die in
dit hoofdstuk wordt beshreven, wordt deze laatste eigenshap van model heking
gebruikt: door situaties te onderzoeken waarvan al bekend is dat ze bereikbaar zijn,
wordt een pad naar deze situaties gevonden, dat vervolgens als test gebruikt kan
worden.

Hoofdstuk 3 houdt zih ook bezig met testen. Het is gebaseerd op een prakti-
jkprobleem: voor het testen van telefoonentrales wordt een groot aantal gesprekken
gesimuleerd, die vervolgens met de hand worden geontroleerd. Als een stap in de
automatisering van dit proes, hebben we een taal (LOGAN ) ontworpen waarmee op
eenvoudige, geautomatiseerde wijze, afzonderlijke gesprekken uit de lijst met signalen
die door de entrale zijn gegaan, kunnen worden ge�lterd.

De volgende hoofdstukken hebben allen betrekking op de taal Message Sequene
Charts (MSC). MSC wordt gebruikt voor de beshrijving van de ommuniatie binnen
of tussen systemen. Het bestaat uit afbeeldingen zoals �guur 9.1. In dit plaatje zijn
de vertiale lijnen (a en b) (delen van) omputersystemen, terwijl de pijlen (`vraag'
en `antwoord') ommuniaties tussen die systemen zijn. De tijd loopt van boven
naar onder in dit diagram. In dit plaatje stuurt dus eerst a `vraag' naar b, waarna
b `antwoord' naar a stuurt. In hoofdstuk 4 staat een meer uitgebreide uitleg, waarin
ook diverse uitbreidingen van de taal beshreven zijn.

In hoofdstuk 5 bekijken we, hoe uit een beshrijving van een systeem in MSC kan
worden afgeleid wat er nodig is om het ommuniatiegedrag mogelijk te maken. Soms
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a b

vraag

antwoord

ms example

Figure 9.1: Een MSC

is het mogelijk alle berihten te ontvangen in de volgorde waarin ze zijn verzonden,
in andere gevallen is dit onmogelijk. Er zullen dan meerdere bu�ers gebruikt moeten
worden om de berihten in op te slaan, waar er in het eerste geval slehts een nodig
is. In dit hoofdstuk valt te lezen hoe uit de MSC-beshrijving van een systeem valt
af te leiden wat voor dat systeem het geval is.

Een van de reente uitbreidingen van MSC is de mogelijkheid om data toe te voe-
gen. In hoofdstuk 6 wordt beshreven hoe dit is gedaan, waarom het zo is gedaan, en
welke problemen daarbij overwonnen moesten worden. Het is gedeeltelijk gebaseerd op
disussies binnen de standardisatieommissie voor MSC. Daarnaast geeft het hoofd-
stuk ook aan hoe de oÆi�ele betekenis (semantiek) van MSC kan worden uitgebreid
om ook dit aspet toe te voegen.

Hoofdstukken 7 en 8 behandelen twee mogelijke toekomstige uitbreidingen van
MSC. In hoofdstuk 7 wordt een methode beshreven om een enkel beriht in MSC te
gebruiken om een volledig ommuniatieprotool te beshrijven, terwijl in hoofdstuk 8
de zogenaamde disruptie en interruptie behandeld worden. Met behulp hiervan kun-
nen systemen beshreven worden waarbij vershillende gedragingen elkaar kunnen
onderbreken of stoppen. In deze hoofdstukken worden de mogelijkheden van deze
uitbreidingen beshreven, hun problemen, en de semantiek die hen meegegeven zou
kunnen worden.
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