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Preface

Science is work of man. If there is one thing I have come to realize these last few
years, it is that. It has been a hard lesson. My four years here in Eindhoven as a PhD
student started out very well. Articles were written, sent in, published. A success
story in the making, or so it seemed. But as time passed, things went less and less the
way we would want them to go. Projects became slow, or I even halted for a while —
only to find that starting again was even harder than continuing was originally. We
all knew that something was wrong, or at least I did. But what it was became clear
only when things really got out of hand one day.

I had been under too much stress. And although my work was not the main cause,
my situation did make it impossible for me to keep working, and in fact had already
done so for several months. I spent most of the next half year on sick leave for it.
Given these circumstances, it is almost a miracle that this booklet has come about
with only half a year’s delay.

I would like to thank everybody who has helped me get through this period of my
life. In particular, I would like to thank my parents, who provided me with a place
where I could recuperate and find the strength to carry on. Also great thanks to all
my colleagues. When times were bad, you coped with me and helped me quiet down
again. When times were better, you were friends to me and we had fun together.
Very special thanks to Sjouke Mauw, who has always been a pleasure to work with,
both from a personal and from a professional point of view. Jos, Marcella (thank
you for the tea), Dragan, Martijn, Susanna and Tim, thanks for your help in keeping
or regaining quietness. Jan-Joris, you provided me with a very pleasant atmosphere
in the first phase of my times here. I would also like to thank IPA for financially
enabling my work, and the faculty of mathematics and computer science for various
support.

It is good to know that there are friends to support me, and I would like to thank
Pieter, Benedikt, Tim and Satomi and her family for giving me this support as well
as the pleasant times we could share.

Much of the material in this thesis has come about in cooperation with, or with
technical support from, other people. We mention Sjouke Mauw, Loe Feijs, Michel
Reniers, Thijs Cobben en Rogier Vermeulen with whom we have worked together,
while other people who have given useful technical help with one or more chapters,
are Piet Bakker, Roel Bloo, Victor Bos, Jan Docekal, Herman Geuvers, Jan-Friso
Groote, Oysten Haugen, Thierry Jeron, Clive Jervis, Bart Knaack, Erik Kwast, Frans
Meijs, Jaco van der Pol, M. de Vreugd, and especially Joost-Pieter Katoen, whose



remarks did much to improve the thesis.

A number of chapters have already been published before. Chapter 2 has been
published as [EFM97]. Chapter 5 has been published as [EMR97a] and in a shortened
form as [EMR97b]. Chapter 6 has partly been published as [Eng00], and is partly
based on [EFM99]. Chapter 7 has been published as [Eng98], and Chapter 8 as [CE9S].
Chapter 3, which is joint work with Thijs Cobben, Loe Feijs and Rogier Vermeulen,
Chapter 4 and part of Chapter 6 have not been published before.

The MSCs in this thesis have been created using the LaTeX MSC macro pack-
age [BM99].
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Chapter 1

Introduction

In computer science, it is important to be able to describe what a computer system
does, or what it should do. If a system or program is simple, or if only a very general
description is necessary, a natural language such as English might suffice, but when
systems grow to even moderate sizes, natural language gets too cumbersome to use.
Some of the disadvantages of natural language as a specification language are:

e Natural language descriptions are often inexact. One text often has more than
one interpretation.

e When descriptions becomes long, it becomes hard to find an overview.

e It is hard to define with mathematical precision whether a given system corre-
sponds to a description in natural language.

e Natural language descriptions are not well-equipped to decide properties of a
system from its description.

e The structures of natural language do not correspond to the natural structures
of computer systems.

To resolve these and similar problems, formal languages have been introduced.
These are dedicated languages, based on mathematics, for the description of computer
systems. A formal language consists of two parts, the first is a formal syntax, the
second a formal semantics. The syntax defines what descriptions in the language
look like, while the semantics define what such a description actually means. In most
cases, such semantics consist of a formal translation into some other mathematical
formalism.

In this thesis, we will both look at the construction of formal languages, with an
emphasis on the task of finding a good semantics (that is, a semantics that in the
first place corresponds with the intended intuitive meaning of the language and in
the second place is easy to work with), and at their usage. For both tasks a few case
studies have been conducted. The language construction part consists of a number of
extensions to an existing language as well as the creation of a small, new language for
a small sub-domain, while the usage part consists of an attempt to derive properties

11



12 CHAPTER 1. INTRODUCTION

of a system from a formal specification and an attempt to use formal languages and
methods for the creation of test sequences.

The work in this thesis is partly based on practical problems that were encoun-
tered over time. This holds in particular for the Chapters 6 and 8. Both data and
disrupt/interrupt were felt within the ITU (International Telecommunications Union)
to be possibly useful extensions to the MSC (Message Sequence Charts) language.
Partly on our own initiative and partly because of questions from within the MSC
community, the Eindhoven formal methods group explored especially the semantic
consequences of these changes. A similar background holds for Chapter 3. We have
studied the current testing process at KPN (the largest Dutch service provider in
the area of telecommunication), and the study started from an idea to improve this
process.

One language that we will in particular look into is MSC (Message Sequence
Chart) [IT00, RGGI6b]. This is a graphical language which in particular describes
the communication behaviour of a system. As such, it is very useful for the description
of communication protocols, and for the specification of distributed systems where
communication is the most important aspect. A strong point of MSC is that it
combines a graphical syntax, which is relatively easy to understand for humans, with
a strict formal semantics, which enables automated analysis by computers.

In theory, one could derive a program from a specification in a formal way, or prove
its correctness mathematically, but in practice systems are often built and then tested,
rather than proven correct. Several reasons for this discrepancy between theory and
practice can be given:

Formal methods and their possibilities are often not known.
Many formal methods do not scale up very well.

Certain errors and properties, such as hardware errors and timing properties,
are hard or impossible to find without testing.

Correctness of a system must sometimes be ascertained by companies that do
not have the actual code, and can only look at the system as a ‘black box’.

Although testing often takes up a considerable portion of the devekionebt process
(in some cases more than half of it), it is often remarkably little formalised and auto-
mated. Test traces are still often designed by hand, and sometimes even the outcomes
are checked by hand. If these could be automated, more, or more complicated, test
traces could be checked in the same time, and thus the quality of testing could be
improved and/or the time needed for testing could be reduced. There already exists a
formal language for the specification of test traces, namely TTCN (Tree and Tabular
Combined Notation) [KW91]. Deriving TTCN from a system description is (in most
cases) not a complicated task, but finding test traces or sets of test traces with cer-
tain properties (for example, being in some sense ‘complete’ or finding some specific
errors) often is.
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1.1 Organisation of the Thesis

This thesis roughly consists of two parts. The first part, discussing the subject of
testing, consists of Chapters 2 and 3. The second part, about MSC, is comprised of
the Chapters 4 through 5.

The first part contains two Chapters. In the first (Chapter 2), we look at Model
Checking as a possible tool for the derivation of test traces. The number of states
of a system is often very large, and finding test traces with given properties can
therefore be difficult. Because model checking tools have many methods to deal with
this ‘state space explosion’, we look whether they can be used to find test traces to
certain behaviours of these systems. Chapter 3 looks at a later phase of the testing
process. We introduce LOGAN, a language developed at the Eindhoven University
formal methods group. It is originally developed for the testing of telephone systems,
to partly replace the manual check of test logs. The idea of the language is that it
can be used to automatically find the events in a test log that correspond to a single
call.

Chapter 4 gives an introduction of MSC, with a look into its history, an overview
of some of its main features and an introduction to the formal semantics. The next
chapter shows, how formal language descriptions of a system can be used to determine
properties of that system. We will derive the buffering architecture of a system from
its MSC description. The Chapter creates a hierarchy of these architectures.

The last three Chapters discuss some (existing or possible future) additions to
MSC. First, Chapter 6 discusses the introduction of data in MSC. By this introduc-
tion, it is now possible to use variables and parameters in MSC descriptions. The
Chapter tells how this addition was done, and why it was done that way. There
is also a semantics of this aspect of MSC being developed. The next two Chapters
discuss some other extensions that could in the future be added to MSC. Chapter 7
introduces message refinement, which introduces a refinement method that makes it
possible to look at protocols at different levels of abstraction. Chapter 8 introduces
disrupt and interrupt, which can be used to describe situations where one behaviour
is stopped half-way to start another type of behaviour, a situation that is currently
hard or impossible to describe in MSC. Both Chapters contain a discussion of the
semantics of the features that are introduced.
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Chapter 2

Test Derivation Using Model
Checking

2.1 Introduction

In this chapter, we will discuss test derivation, and more specifically test derivation for
telecommunication systems. Testing is necessary in several phases of a development
process. In the first place there is the testing during the specification phase. Central
questions in this respect are whether the specification follows the requirements, and
whether any logical errors are present in the specification. In telecommunication
systems a probable cause for those logical errors is feature interaction [Mid94], that
is, the effect that different features (variations on the basic protocol) have on one
another. This could for example happen if one feature changes a variable another
feature uses or changes as well.

Secondly, it is also necessary to test whether the implementation conforms to the
specification. Feature interaction is again an important subject, for example through
the sharing of (necessarily finite) resources. It is this second testing phase that will
be investigated in this chapter.

One problem in testing is the creation of a suitable test-set, a set of test traces
to be checked. Manual generation of test traces is a lot of work, so it is natural to
look for computer support. In relatively small cases this is perfectly feasible: there
are techniques and tools that, given a formal specification, generate a complete set of
test traces. See for example [Nah94]. Assuming that the implementation has as many
states as the specification, a positive result of the test can be considered a correctness
proof. In many practical cases there is a so-called state space explosion, that causes
the number and/or the length of the traces to be (much) larger than can be dealt
with. In this case one has to choose which traces are and which are not to be tested.
This selection of interesting traces requires much insight in the problem at hand, so
cannot be automated. Still, support in this process will be useful.

Our aim is not to create yet more new tools, but to find and link existing tools
that suit this purpose. At present this also means we do not go beyond prototyping.

15



16 CHAPTER 2. TEST DERIVATION USING MODEL CHECKING

In particular we will try to use tools from model checking to generate traces. model
checking provides us with serious tools with a good theoretical foundation and the
possibility to work with large examples (so we can more easily cope with the problems
of the state space explosion). Another important advantage is that tools to translate
the output of SPIN (the model checker we used) [Hol96] into useful formats, either
exist or are easily created. In short, this chapter will be about the usage of existing
tools for the purpose of test trace generation for implementation checking of systems.
We will use this for systems that are far beyond full state space checking, that is,
where a full state space check can not be reached or even approximated.

As an example to apply our methods to we have chosen Intelligent Networks. This
is an important application in which conformance testing, as well as other tests, are
a necessity. Because of the regular addition of features these tests also have to be
repeated during the lifespan of the network. Moreover, these features can have unex-
pected interactions, so every time a test has to be done of the system as a whole. The
addition of features often causes an exponential growth of the state space, so a state
space explosion will be almost a certainty. We used a model of a telephone service,
with two features: Originating Call Screening (OCS) and Hotline. We have success-
fully applied our method, and the developed prototype, to this simplified example.

2.2 Methodology

In this section, we give an overview of the testing methodology that is proposed in
this chapter.

The starting point will be the specification of the system under study. We have
taken an SDL [IT94, SRS89] specification as our input. The first step is to translate
this specification (manually) into a form understood by the model checker. Since
we used the model checker SPIN [Hol96], we translated this SDL-specification into
Promela, the modeling language of SPIN. The structure of a Promela model (several
parallel processes, which can communicate both through shared variables and through
channels), also fits neatly with SDL-descriptions. The Promela-code was created from
the SDL-specification by hand, but a few macros were used to bring the Promela code
closer to the SDL-code. Our correctness criterium for the implementation will be, that
every possible trace of the implementation must also be a trace of the SDL model
(and thus of the Promela model, which is assumed to be equivalent), as far as its
external behaviour is concerned. Furthermore, the system may not deadlock if the
SDL model does not deadlock. Because we will be assuming that the SDL description
is deterministic, this actually means that the traces must be equivalent.

During this translation, and even during the creation of the specification itself,
it is a good thing to already start looking at the testing goals. Sometimes auxiliary
variables are necessary to count the number of times a certain step in the process has
been taken or is being taken (as the value of such a variable might be part of the
testing goal). Also the degree of simplification might differ, depending on what is to
be tested.

In this model we also incorporate a so-called stimulation process. This is an
added process, that regulates the external inputs and/or the independent actions of
the system to be tested. It sends messages to the other processes, either through a
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specialised channel or through the change of some variable, that normally work as
a trigger for performing some activity. For example, in our test case, a model of a
telephony service, the stimulation process regulates which calls are to be attempted.
The stimulation process is restricted to only those parts of the system that actually
are under outside control. Every message that is in the stimulation process, must
correspond to a communication from the outside world, or an outside-controlled part
of the system, to the system.

Next, we have to develop a test purpose. This consists of the desired characteristics
of the test traces to be developed. Of course, these characteristics have to be chosen
such that the test traces to be found have a high chance of catching implementation
errors, that is, they should describe a situation where the system is likely to behave
differently from the specification in the case of errors. Because of this, it is important
to guess which kind of errors are most likely to occur, or most important to be found.

In their most simple form these testing purposes consist of a property or a set of
properties for the final state of the trace, but they could also be more complicated, for
example a series of states (distinguished by their properties) that have to be traversed,
or an added restriction on the states before the final one. The only consideration is
that it must be possible to write the testing purposes down in (temporal) logic.

These two additions (stimulation process and testing purpose) give two ways of
controlling the test trace developed. The stimulation process describes the search
space for traces, while the testing purpose regulates which kind of traces are actually
generated. Of course these two will be connected: On the one hand one can cause
the stimulation process to make only those actions happen which bring the testing
purpose closer, thus making the number of possibilities checked smaller, or one can
disallow the most trivial ways of reaching the testing purpose, thus finding other,
possibly more interesting, traces. Finally, one can re-use the same testing purpose by
using it together with different stimulators.

We now take a model checker (in our example SPIN), and take the negation of
the testing purpose as a so-called never-claim. In normal usage of model checkers
the never-claim is an asserted logical invariant of the model, and should therefore
never become false (hence the name never-claim). The model checker then runs the
model, checking whether the never-claim ever becomes false, and presenting a trace
that makes the never-claim false if this is the case. Here we take the negation of the
testing purpose, which will cause the trace found to be one in which the negation of
the testing purpose is false, and hence the testing purpose itself is reached. In general
there will be more than one test trace possible that fulfills the testing purpose. In
that case the model checker will make an essentially nondeterministic choice (although
some model checkers might allow one to find all traces, or one particular (such as the
shortest)).

From an output of SPIN (which contains all the information about the trace
that is found) we create Interworkings (IW) [MvWW93], a (TUE and Philips) local
variant of synchronous MSC-like diagrams (see Chapter 4 for a detailed introduction
of MSC). The reason we do this, is that our final goal is to derive a test description
in TTCN [KW91], and there is a tool available [FJ96] to translate IW into TTCN.
The SPIN-output also contains some MSCs, which can be used for a quick scan of the
trace found, and thus can give help for human control of the test generation process.
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W
(InterWorking)

SPIN

Figure 2.1: General method

A scheme of the method can be found in Figure 2.1. The part on the left left of
the dashed line is mainly manual work, the part on the right is done by tools.

2.3 Case Study: Testing Intelligent Networks

In this section we apply our method to an example from the field of Intelligent Net-
works (IN). We have modeled a telephony service with two features, OCS (Originating
Call Screening) and HOT (Hotline). Using our methods, we will derive a single test
trace.

2.3.1 Intelligent Networks

Because of the ever-growing amount of possibilities of telephone services, a new
paradigm for telephony and connected telecommunication has been developed: Intel-
ligent Networks. The following citation from [SMC™96] characterises the IN-concept:

Intelligent Network (IN) services are customised telephone services, like
e.g., 1) ‘Free-Phone’, where the receiver of the call can be billed if some
conditions are met, 2) ‘Universal Private Telephone’, enabling groups of
customers to define their own private net within the public net, or 3)
‘Partner Lines’, where a number of menus leads to the satisfaction of all
desires. The realisation of these services is quite complex and error prone.

The current trend in advanced IN services clearly evolves towards decou-
pling Service Processing Systems from the switch network (see e.g. [CK94]).
The reasons for this tendency lie in the growing need for decentralisation
of the service processing, in the demand for quick customisation of the of-
fered services, and in the requirement of rapid availability of the modified
or reconfigured services.
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Service Creation Environments for the creation of IN-services are usually
based on classical ‘Clipboard-Architecture’ environments, where services
are graphically constructed, compiled, and successively tested. Two ex-
treme approaches characterise the state of the art: The first approach
guarantees consistency, but the creation process is strongly limited in its
flexibility to compose Service Independent Building Blocks (SIBs) to new
services. The second approach allows flexible compositions of services,
but there is little or no feedback on the correctness of the service under
creation during the development: the validation is almost entirely located
after the design is completed. Thus the resulting test phase is lengthy and
costly.

For more information on IN we refer to e.g. [BW94, CK94].

In [VWKO5] the need for service testing in the context of IN is explained and
a framework for testing telecommunication services is presented, where it is stressed
that next to the service itself, the underlying platform and the already existing services
should be tested as well.

2.3.2 A Simple Model

We will model an Intelligent Network with two special services (which we call ’fea-
tures’), namely OCS (Originating Call Screening) and a simplified version of HOT
(Hotline). In Originating Call Screening, phone calls can be blocked by the receiver
depending on the originator of the call. In Hotline, the dialing of frequently used
numbers is made easier by causing another (smaller) number to result in the same
connection. In our model, the Hotline will be established on dialing any number that
is not a service number. Adding a feature can be done without much problems (al-
though it will increase the size of the space state, and thus might cause the generation
time for the test trace to increase slightly).

In our model we will decouple the SSP (Service Switching Point), which connects
the user with the services, and the SCP (Service Control Point), which physically
contains the services. This decoupling is suggested within the literature (see above),
because the implementation and maintenance of the system is easier if the (stable)
basic functions are decoupled from the (dynamically added) features. For the model
there would be only little change if we had not implemented this decoupling, but for
the test trace generation this might very well be important, since an overload of the
connection between SSP and SCP might be a cause of errors.

In Figure 2.2 we see the architecture of an Intelligent Network as it is represented
by our model. The SSP is responsible for the connections between the telephones,
and the connections between the telephones and the SCP. It can be modeled in for
example SDL.

Through a special channel, ss7, the SSP is connected to the SCP. The SCP checks
which, if any, features have to be used in a given call. In our model the SDP (Service
Data Point), which does the maintenance of the features, that is, keeping track of
which features are enabled for whom and how they are configured, and the SCP
have been combined into one process. The SCP is normally modeled by Service
Independent Building Blocks (SIBs) [SMCT96].
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Figure 2.2: IN architecture

In Figure 2.3 we see an SDL-model of the SSP as we have modeled it. This model
is based on [RV94]. Identifier A here stands for the person attempting to make the
call, B for the person being called. The SSP is idle until there is an off-hook message
(A off hook), after which a dial tone is sent to phone A, and then the SSP is in the
await_digits-state. This one can end in two ways, namely by A putting the phone on
hook, and by A dialing a number. In the first case the (attempted) call ends, and the
SSP becomes idle again. In the second case, the SSP checks whether the line called is
busy; if it is it generates a busy tone and waits for an on_hook, otherwise the second
phone starts ringing and a conversation is attempted. The rest of the figure reads
likewise.

This scheme is simplified from the form we used in our model in a few ways:
Firstly, there can be more than one attempt for making a talk. Because of this,
many copies of this scheme are running at the same time, one for each call attempted.
Secondly, not all actions (the sending of tones and talk across the telephone lines) are
shown. In the third place, this only specifies the behavior in absence of any special
features. The presence of features influences the effect in the following ways:

e Hotline changes the line with which a connection is attempted.

e OCS makes ‘called line busy?’ true even when the line is not busy.
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e After the digits are dialed, it is first checked whether they are the digits for
adding or removing a feature. If so, the feature is enabled/disabled/changed,
and the phone waits for an on_hook.

We translated this SDL-model into PROMELA-code. We will not give the com-
plete (5-page) PROMELA-code of our model here, but only a few representative parts.
First, we give a part of the SSP-code:

STATE(ringing)

:: signal[A]7on_hook -> atomic {
line[A] = silent;
line[B] = silent;
busy[A] = false;
busy[B] = false;
NEXTSTATE(idle)

}
:: intern[B]?off_hook -> atomic {
line[A] = blabla(B);
line[B] = blabla(A);
BCP_account [A]++;
NEXTSTATE(conversation)

ENDSTATE

In Figure 2.3 this state (‘ringing’) can be found a bit above the middle (below
the action ‘path set-up’). Take special notice of the variable BCP_account[A]. It is
incremented each time A has made a successful attempt to engage in a talk. It has
no function in the model, but we include it because (part of) our testing goal will be
that the number of calls by one subscriber exceeds a certain number.

The model of the SCP is shown below (OCS is a 5 times 5 boolean array, HOT is
an integer array of length 5):

do
:: ss7?feature(A,B) -> if

:: B/100 == 66 -> HOT[A] = (B - 6600)
: B/100 == 88 -> OCS[B - 8800,A] = true
:: B/100 == 89 -> 0CS[B - 8900,A] = false

fi
:: ss7?check(A,B) -> s = 0CS[A,B];
ss7!checked(!s,_);
if
: (s == 1) -> IN_account[B]++
11 else -> skip
fi
:: ss7?lookup(A,B) -> if
:: (HOT[A] == A) -> ssT7!lookuped(A,B)
:: (HOT[A] != A) -> ss7!lookuped(A,HOT[A])
fi
od

First, there are a few arrays: OCS[A,B] is true iff B is blocking messages from A;
HOTI[A] is the Hotline A has (if it has A as its value, A does not have a Hotline).
These arrays are filled in the skipped part.

The SCP gets its orders from the SSP through the ss7-channel. The message
"feature(A,B)’ adds or removes a feature, the message ‘check(A,B)’ asks whether A
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is allowed to call B, and the message ‘lookup(A,B)’ tells A has dialed the number B,
and asks with which phone a connection should actually be attempted.

Through this same channel the SCP sends the results back to the SSP. If the order
was a check, it sends ‘checked(!s,-)’, where s is true iff B is blocking messages from
A, while the second one (’.’) is a dummy variable, which is only needed because the
ss7 is a 3-variable channel. If the order was a lookup, then ‘lookuped(A,H)’ is sent,
where H is A’s hotline if any, and B otherwise, so in fact it is sending the number
that will be the real receiver of the message.

As before, there is an auxiliary variable: IN_ACCOUNTI[B], which counts the
number of calls to B that have been blocked by B.

The stimulation process controls the amount of non-determinism in the system.
An example of a stimulation process can be found below:

proctype stimula()

{
call[2]!6603; /* 2 has Hotline to 3 */
call[4]!8801; /* 1 should not call 4 */
do
:: call[4]!8901 /* 1 may call 4 again x/

: call[1]!'4

od

}

The action call[A]!B sends a message to phone A, telling it to attempt to make a
call in which it dials number B. So the stimulation process above first orders phone 2
to create a Hotline to 3, then orders phone 4 to create an OCS towards 1, and then
goes through a cycle, every time either ordering phone 4 to stop its OCS towards 1,
or ordering phone 1 to attempt a call to phone 4.

This is of course just one example of a stimulation process. We have worked with
several different processes in order to get different traces.

2.3.3 Generating a Test Sequence

As an example, we will generate an interesting trace. As a working hypothesis we
assumed that problems were likely to arise due to mistaken allocation of shared re-
sources, especially if some resource was used too extensively. This leads to testing
goals like ‘There are n SDP-accesses taking place’ However, because our main goal
was the testing of the feasibility of the general method, we have only used the simplest
cases in practice, such as:

Phone A has made a successful call

e Phone A has made two successful calls
e Phone A and B have been connected in a successful call
e An SDP-access is taking place

In practice more complex situations have to be checked. This might cause a
longer computation time, because the minimal length of a trace that has the desired
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properties is longer, and the testing purpose is more complicated. Neither seems to
be really problematic, though.

As an example we take the testing goal ‘Phone 1 has made a successful call’, with
the stimulation process as described above.

In SPIN the testing goal can be implemented as a “never-claim”.

#define ALWAYS(P) never { do :: P :: !(P) -> break od }
#define CLAIM(A) (BCP_account[A] < 1)
ALWAYS (CLAIM(1))

SPIN will look for traces in which the process defined by the never-claim has
ended. In our definition of ALWAYS(P) this means that P has been false at some
place of the trace — in fact, at the last step of the trace. So if we make our claim
ALWAYS(P), then SPIN will be looking for a trace that ends with a situation in
which P is NOT true. As we want to have a trace in which phone 1 has made a
(successful) call, this P must be ‘Phone 1 has not made a call’, which, because of
the addition of the variable BCP_account[A] into our model, simply translates into
‘BCP_account[1]<1".

This model was run using SPIN (XSpin). It did find a trace to a state in which the
BCP-account of telephone 1 is at least 1. The main part of the SPIN-output consists
of listings of the following form. It is in fact a complete list of the actions taken by
the various processes, with some information added (the line of code where the action
is described, the value of variables that have changed, etcetera).

1: proc - (:never:) line 319 "pan_in" (state 1) [((BCP_account[1]<1))]
2: proc 1 (:init:) line 323 "pan_in" (state 1) [(run phone(0))]

3: proc - (:never:) line 319 "pan_in" (state 1) [((BCP_account[1]<1))]
4: proc 2 (phone) line 93 "pan_in" (state 1) [self = self]

phone(2) :friend = 0

phone(2) :state = 0

phone(2) :self = 0
5: proc - (:never:) line 319 "pan_in" (state 1) [((BCP_account[1]<1))]
6: proc 2 (phone) line 94 "pan_in" (state 2) [((self==0))]

TESTER 0 1 2 3 4

ringingicui: ringing_current signal(off_hook) |

dial_tone
digits(8801)

accept_tone

signal(off_hook)

dial_tone

signal(off_hook)

digits(2)

ringing_tone

ringing_cul

bla_bla

Figure 2.4: Interworking of test run after inversion

bla_bla
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XSpin enables us to inspect this trace as an MSC, which we will not display here.
We used a series of Unix shell-scripts and existing tools to transform the trace into an
Interworking. To this Interworking we applied an ‘inversion’ [FJ96], which transforms
the output lines of the various processes into input lines. This facilitates the use in a
testing environment, because we can now regard them as orders to do certain actions,
instead of the actions themselves. We decided to receive line-states as (observation)
actions. This resulted in the Interworking shown in Figure 2.4.

Tools exist to translate this into TTCN. For the case at hand the TTCN looks as
follows:

|Test Case FEATURE_INTERACTION_TEST 1 |

|Test Case Name : FIT 1

|
|Group A\l |
|Purpose : 1st demo use SPIN FI TESTING |
|Default : |
|Comments |
INr | Label | Behavior Descriptions | Constraints Ref | Verdict |

4'signal (off_hook)

[line 4 = dial_tone] (PASS)
4'digits(8801)
[line 4 = accept_tonel (PASS)
1!signal (off_hook)
[line 1 = dial_tone] (PASS)

2!signal (off_hook)
11digits(2)

[line 1 = ringing_tonel (PASS)
[line 2 = ringing_current] (PASS)
[line 1 = bla_bla] (PASS)
[line 2 = bla_bla] PASS
[OTHERWISE] FAIL
[OTHERWISE] (FAIL)
[OTHERWISE] (FAIL)
[OTHERWISE] (FAIL)
[OTHERWISE] (FAIL)
[OTHERWISE] (FAIL)
[OTHERWISE] (FAIL) |

In general it is not the case that the TTCN generated from the trace in such
a straightforward manner is directly correct as a test. The problem is the correct
assignments of verdicts to the alternatives, all of which are made FAIL initially. We
discuss three approaches to deal with this problem.

The first approach is as follows: subdivide the trace into two parts, an initial part
which serves for setting-up the services and contextual connections, followed by a
second part, usually much shorter, which characterises the intended behaviour of the
system. For example in the test case FIT1 given above, the two observation actions
[linel = bla_bla] and [line2 = bla_bla] should be interpreted as a characterisation of
the intended behaviour (call established), so the alternatives of the second part could
keep the assigned FAIL verdicts. The verdicts of the alternatives of the steps of the
first part can be turned into INCONCLUSIVE.

The second approach is a further refinement of this. The generated TTCN is only
considered as a draft of the correct test case, which is to be obtained by checking the
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verdicts and adding more alternatives (some of which may also get PASS). This is the
approach of [FJ96], where it is shown in detail how a simulator is used (during multiple
runs of the simulator) to find out in how far the crucial steps are deterministic, and
if not, what the interesting alternative behaviours are (in the step-by-step method
of [FJ96], these are the steps 13, simulate alternatives and 14, complete the TTCN
description).

The third approach to the problem of verdict assignment to alternatives is to adapt
the Model Checker and make it produce trees or graphs rather than sequences. This
is the approach of the tool TGV [FJJV97].

So far we have only used temporal claims of a particularly simple kind, viz. invari-
ants (such as ALWAYS(INV(1))). So we ought to discuss whether temporal claims in
general are useful as well. In the classical usage of a Model Checker, i.e. for verifica-
tion purposes, it will attempt to falsify claims like: “it is always true that when the
sender transmits a message, the recewer will eventually accept it”. For test generation
purposes however, the temporal claim could be used to say for example: “it is always
true that when A is in state trying-to-reach-B, the SSP (Service Switching Point) will
eventually connect A and B”. Of course this claim need not be true, e.g. because it is
precisely the purpose of certain services (like OCS) to prevent connections from A to
B to happen. Therefore, such a temporal claim, when falsified, results a trace leading
to a state where this ‘prevention’ service has been put into operation.

2.4 Conclusions

Model checking can be useful as a technique for generating test traces. This can be
done using existing tools, at least on prototype level. A reservation has to be made on
the point of the scaling-up of the tools, because we have only tested small examples.
Also the time and memory consumption of the method have not yet been investigated.
If we want to use this in practice we will probably need more specialised tools, and
we must be able to connect them to service-creation environments.

We found that our way of working (selecting a trace leading to an interesting
state) is a promising one. This way, a part of the hard work of the creation of test
traces can be automated. Traces can be selected to agree with given testing purposes
without having to step down too far in abstraction.

A restriction to the applicability of the method, at least in the current form, is
that the application to be tested should react deterministically to the test input. The
reason for this is that otherwise a trace in which an error has occurred cannot be
distinguished from one in which the internal non-determinism has caused the system
to react different from the derived test trace, but still within the specification. If the
system is not deterministic, the method is still useful, but in that case more manual
work is needed to complete the test case. This step could of course also be automated.
One possibility could be to check all supposed failure traces with the model checker
again to see whether they still fit on the system. This method is described more
extensively in [CSE96].

Our method supports a part of the test traject, namely the derivation of a test
trace from a given test purpose. Formulating the test purpose, the stimulation process
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and the model remains a task that has to be done by hand, and requires an amount
of domain specific knowledge.

Another way of working might be introducing deliberate errors in the SPIN pro-
gram, which are supposed to model possible errors in the design, and creating a trace
in which the error occurs. We could call this 'negative testing’, because in this case
we are constructing traces we want the real design NOT to be able to follow, while in
the constructs given until now, we wanted the design to follow the trace we gave it.
An example of such a negative test is a trace that leads to a connection between two
subscribers while the called party is refusing calls from the calling party by using the
OCS feature.

However, we think that positive testing is more suitable to combination with the
given method, because for negative testing we need to make many more assumptions
about the kind of errors that might occur. In negative testing we need a rather specific
idea about WHAT errors can occur, in positive testing we only need to hypothesise
on WHEN they occur. When looking for specific errors, negative testing is the way
to go, but if the purpose is to make a general check of a system, positive testing is
much more useful.

One objection to our method could be that in order to generate a trace satisfying
the property checked, the Model Checker risks searching the entire state space, which
may be infeasible (the problem of the state space is often stated as an argument for
the need of testing in the first place). Although this is true in principle, the important
observation is that a Model Checker such as SPIN has powerful techniques built into
it (such as the supertrace algorithm) to cope with the state space problem. In our
opinion it is important that (if testing cannot be made superfluous by other means,
for any reason whatsoever), the testers should use powerful and high-level tools as
well; in particular this holds for the intermediate situation where fully automated
testing is infeasible and where fully manual test generation is too costly.

2.5 Related Work

Several other authors have made attempts to use Model Checking for test generation.
Although different methods are proposed, the basic idea is always that model checking
tools are used to easily find traces to a state with some given desired properties.

In [CSE96], no complete method is given for using model checking for testing.
Rather, the authors mention model checking’s possibilities for the generation of test
cases as well as for other aspects of testing (checking of the validity of test traces
and selecting test traces among a greater number of them). The methodology that
would come most closely to the ideas in this chapter would be to derive a number n
of boolean variables on the system state, and find traces to each of the 2™ possible
combinations of values of these variables that can actually occur, taking these as test
traces. The advantage over more random methods of test generation is that there is
likely a better coverage of all aspects of the system.

The method in [ABM98] is closely related to the abovementioned idea of 'negative
testing’. In these articles, so-called mutation operators create a variant of the original
specification, and these mutated specifications are then compared to see whether there
is a trace to make them diverge from the original specification. These traces are then
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used as test traces. In [BOYO00], a number of mutation operators are defined, and it
is checked which one gives the best coverage when applied to an example system.

Two methods are proposed in [GH99]. The first is to use the negation of some
known properties of the system. The second, in our opinion more interesting, method
is to check a path to every branch of a decision. An extra variable is added, which
gets a different value in every branch, and paths are found that lead to the various
values of these variables.

Unlike the abovementioned articles, in [VT00] model checking is not used to
rapidly find traces with a certain property. Rather, Promela is here used mostly
as a specification language, and the main reason that model checking tools have been
chosen in favour of other tools, is that they provide methods to store the state space
efficiently.

The various methodologies have different application domains. Most of the above-
mentioned methods are especially adapted to medium-sized systems, where a test set
that is more or less exhaustive is still possible. Our method is more applicable for
large systems, where such an ideal is far out of reach, and tests have to be restricted
by necessity to just a part of the system, and where it is therefore of great importance
that tests are focused on those situations that are most likely to show errors.



Chapter 3

LOGAN: A LOG ANalysis
Language

3.1 Introduction

Telecommunication systems are very complex, which makes testing important. Test-
ing typically involves the design or automatic generation and selection of suitable test
cases, i.e. tests that cover much of the system’s behavior, the application of these tests
to the system, and analysis of the test results. Ideally, the expected outcome of a
test case is specified when that test case is created, so that analysis of the test results
boils down to comparing the real outcome of a test case with its expected outcome.

We will examine a real life test result analysis problem which arises from a non
ideal method of testing. At the Test&Release center of KPN Telecom, a representative
copy of the Dutch public telephony network, called TESTNET, is used to test the
execution of tariffing and call registration. Figure 3.1 shows how these tests are
carried out. Firstly, a test script, which describes a certain test case, is made. This
script can then be executed by a Call Generator, a system that can make calls via the
TESTNET network. TESTNET produces so-called Call Data Records (CDRs). A
CDR is created each time a successful call is terminated (a successful call being a call
in which a connection was established between two or more subscribers). It contains
information about that call which is used for tariffing, such as the subscribers that
were involved and the duration of the call. Test result analysis for this type of test
consists of checking the correctness of the contents of the CDRs that were produced
during the test.

If the ‘ideal’ testing process were followed, each test script would be accompanied
by the CDRs that are expected to be produced by TESTNET. These could then be
compared with the CDRs that were actually produced during the test. At KPN T&R,
however, no expected CDRs are specified before the execution of a test; a possible
reason for this, is that system specifications, on which test prediction should be based,
are missing or unclear. Instead, the CDRs are compared with other data produced
during the test, namely a log file that contains the signals that the Call Generator and
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Figure 3.1: CDR testing on TESTNET, and a proposal to automate the analysis of
test results

TESTNET exchanged. The analysis consists of finding signal traces of successfully
terminated calls in the log file, matching these with the corresponding CDRs, and
determining if the information in a CDR is correct, based on the information in the
trace. This analysis is carried out manually.

Accepting the fact that real test prediction for the CDR testing process is not
something that can be implemented in the near future, we will investigate the possi-
bility of automated analysis of log files. Figure 3.1 (the dashed box) shows how this
could fit in the current analysis procedure. Given a log file, the automated analysis
produces ‘expected’ CDRs which can be compared with the real CDRs.

We will only concern ourselves with finding signal traces corresponding to success-
ful calls, as the construction of a CDR, given a trace, should not be that difficult.
What is left is a type of pattern matching problem, which leaves us in fact with two
problems: what is a pattern in our case, so, what kind of traces do we want to find,
and how do we do the matching, so, how do we actually find them?

We define a pattern description language that enables us to describe the properties
of the traces we are interested in, and present an algorithm that, given a pattern
description and a log file, finds all the traces in that log file that match the pattern.



3.2. FINDING CALL TRACES IN LOG FILES 31

3.2 Finding Call Traces in Log Files

The process that we want to automate is the search for successful calls in a log file.
Figure 3.2 shows a fragment of a log file. It is a sequence of signals, where each signal
is sent by a user (Call Generator) to the system (TESTNET), or received by a user
from the system. The number with which each signal starts identifies the user; it is
his telephone number. The form of a signal does not show if it was sent or received by
a user. For anybody familiar with telephony, the name of a signal should be a clear
indication of its direction. Moreover, the direction of signals is not important for our
problem.

30: OF f _Hook
30: Di al _Tone
10: O f _Hook
30: Di al (32)
10: Di al _Tone
30: Busy_Tone
10: D al (20)
10: Ri ngi ng_Tone
30: On_Hook
20: Ri ngi ng
30: OF f _Hook
20: Ri ngi ng
30: Di al _Tone
20: OF f _Hook
30: Di al (20)
30: Busy_Tone
10: On_Hook
30: On_Hook
20: On_Hook

Figure 3.2: Fragment of a log file

In reality the signals in a log file are accompanied by time stamps, but we do not
show these because they do not play a role in the problem of finding successful calls
(they do play a role in the problem of generating CDRs for these successful calls).

The log file shown in Figure 3.2 contains one successfully terminated call, from
user 10 to user 20 to be precise. In Figure 3.3(A) the same log file is depicted, but
with the call trace of that successful call highlighted. With each successful call made
during the test corresponds a sequence of signals, a call trace, in the log file that was
produced. Finding successful calls means finding such traces.

3.2.1 Characteristic Sequences

So how do we recognise a sequence of signals as the trace of a successful call? As
a first attempt, we notice that the trace of a successful call will contain a certain
subsequence of events that identifies it as such. Such a subsequence we will call a
characteristic sequence. A characteristic sequence of a successful phone call could for
example be the pattern:
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A:Dial_Tone; A:Dial(B); B:0ff_Hook; (A:0n_Hook or B:0n_Hook);

The variables A and B here stand for two different subscribers. They function as
parameters of the pattern, and must match phone numbers in a log file. We will thus
need some kind of parametric pattern matching [Bak96].

In the pattern above, one can recognise the typical scenario of a normal phone
call: the A party receives a dial tone, it dials the phone number of the B party, which
responds by going off hook, and, finally, the call is terminated by one of the parties
going on hook. In Figure 3.3(B) a characteristic sequence matching this description
is highlighted. It identifies the trace highlighted in Figure 3.3(A) as a successful call.

30: O f _Hook 30: O f _Hook
(A) 30:Dial_Tone (B) 30: Di al _Tone
10: O f _Hook 10: O f _Hook
30: Dial (32) 30: Di al (32)
10: Di al _Tone 10: Di al _Tone
30: Busy_Tone 30: Busy_Tone
10: Di al (20) 10: Di al (20)
10: Ri ngi ng_Tone 10: Ri ngi ng_Tone
30: On_Hook 30: On_Hook
20: Ri ngi ng 20: Ri ngi ng
30: O f _Hook 30: O f _Hook
20: Ri ngi ng 20: Ri ngi ng
30: Di al _Tone 30: Di al _Tone
20: O f _Hook 20: O f _Hook
30: Di al (20) 30: Di al (20)
30: Busy_Tone 30: Busy_Tone
10: On_Hook 10: On_Hook
30: On_Hook 30: On_Hook
20: On_Hook 20: On_Hook

Figure 3.3: (A) A call trace in a log file, (B) A characteristic sequence in a call trace

However, finding characteristic sequences is not enough to solve the problem of
finding successful calls. On the one hand, they recognise too little, because certain
legitimate calls will not match the above pattern. On the other hand, they recognise
too much, because events that are actually unrelated might ’accidently’ form a pattern
like the one described above.

3.2.2 Problem 1: Other Call Types

In present day telephony, ‘normal’ phone calls are not the only calls being made.
Telephony systems have been enhanced, and keep being enhanced, with all kinds of
special services like call forwarding, call waiting, and automatic ring back. The use of
such a service in a call can lead to a successful call that does not match the pattern we
have given. We will illustrate this by giving an example of the use of call forwarding.

In call forwarding, a subscriber can issue the system to forward all calls made to
his telephone to another telephone. He can do this by dialing the code *21, followed
by the phone number of the new destination. We will use the signal A:Dial*21(B) to
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denote the activation of the call forwarding service, where A is the subscriber, and B
the new destination, and A:Dial#21 for the deactivation of the call forwarding feature
by subscriber A.

20: Di al *21(50)

(A) | (B)  30:OFf_Hook
10: O f _Hook 10: O f _Hook
30: D al (32) 30: Dial (32)
10: Di al _Tone 10: Di al _Tone
30: Busy_Tone 30: Busy_Tone
10: Di al (20) 10: D al (20)
10: Ri ngi ng_Tone 10: Ri ngi ng_Tone
30: On_Hook 30: On_Hook
50: Ri ngi ng 50: Ri ngi ng
30: O f _Hook 30: OF f _Hook
50: Ri ngi ng 50: Ri ngi ng
30: Di al _Tone 30: Di al _Tone
50: OF f _Hook 50: O f _Hook
30: Di al (20) 30: Di al (20)
30: Busy_Tone 30: Busy_Tone
10: On_Hook 10: On_Hook
30: On_Hook 30: On_Hook
50: On_Hook 50: On_Hook

Figure 3.4: (A) A call trace of a forwarded call, (B) A characteristic sequence of
signals for call forwarding in a call trace

Figure 3.4(A) shows the trace of a forwarded call. Although this is a legal call, it
does not contain a match for the pattern we have defined. The only difference of this
trace with the normal call trace depicted in Figure 3.3(A), is the phone that answers
the call, 50 instead of 20. Apparently, phone 20 has been forwarded to phone 50.
If the activation of the service took place before the test was executed, there is no
record of the activation in the log file and there is little hope of identifying the call
trace of Figure 3.4(A) as a successful (forwarded) call. If the activation took place
during the test, the log file will show this. The following pattern then seems a good
candidate for identifying forwarded calls:

B:Dial*21(C); A:Dial_Tone; A:Dial(B); C:0ff_Hook; A:0n_Hook or
C:0n_Hook;

In Figure 3.4(B) a subsequence of the trace of a forwarded call is highlighted that
matches this pattern.

This example shows that different call types require different patterns. There is
however the well known problem of feature interaction [CV93, Mid94]. Services, also
known as features, can interact with each other in a call, and it is possible that this
results in a call trace that can not be recognised with any of the patterns designed
for the individual services. So, a combination of services can, in a way, give rise to
yet another call type, and since services can be combined in many ways, if we want
to find all such calls, we will need to define a lot of patterns, maybe even an infinite
number of them.
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A good example of a feature interaction causing problems, is the interaction of
call forwarding with itself. Using call forwarding, it is possible to make a chain of
forwarded phones. A phone can be forwarded to a phone that is forwarded to yet
another phone that is forwarded to..., and so on. In our forwarded calls in Figure
3.4, phone 20 was forwarded to phone 50. Had phone number 50 been forwarded to
yet another phone itself, then our call forwarding pattern would have been recognised
by neither a normal call scenario nor our call forwarding scenario.

As a matter of fact, the kind of pattern matching that we want to do, which is
related to string matching and sequence matching [KMP77, BM77, Wat95, DFG197],
is not really suited for finding calls that are forwarded through long forwarding chains.
If one wants to find calls with any number of forwardings (or whichever other combina-
tion of (unrestrictedly) many services), only methods that go beyond merely pattern
matching will be able to detect all possible combinations.

3.2.3 Problem 2: Coherence of Characteristic Sequences

The first problem mentioned at the end of Section 3.2.1, i.e. that of recognizing too
little with our pattern, can thus be solved by defining different patterns for different
call types, at least to some extent. We will now deal with the second problem men-
tioned at the end of Subsection 3.2.1, i.e. that of recognizing unrelated events as if
they were part of a pattern.

30: OF f _Hook 20: Di al *21(50)
(A) 30:Dial_Tone (B) 50:Dial *21(60) <7§
50: OF f _Hook 10: OF f _Hook
10: OF f _Hook 10: Di al _Tone
30: Di al (32) 10: Di al (20)
10: Di al _Tone 30: O f _Hook
30: Busy_Tone 60: O f _Hook
50: Di al _Tone 50: OF f _Hook
10: Di al (20) 50: Di al _Tone <7§
20: O f _Hook 30: Di al _Tone
30: On_Hook 10: On_Hook
10: Busy_Tone <=—— 60: On_Hook
30: OF f _Hook 50: Di al (80)
30: Di al _Tone 30: Di al (32)
30: Di al (20) 30: Busy_Tone
10: On_Hook 50: Busy_Tone
30: Busy_Tone 50: On_Hook
30: On_Hook 30: On_Hook
20: On_Hook 10: OF f _Hook

Figure 3.5: Erroneous recognition of a normal call (A), and a forwarded call (B)

Examine the log files shown in Figure 3.5. Log file (A) contains a characteristic
signal sequence of a normal call, but it does not contain a successful normal call.
The off _hook signal, in this case, is not the response to the incoming call but the
initiation of another call. So, a number of unrelated signals are mistaken as a witness
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of the presence of the call trace of some successful normal call. Something similar
holds for log file (B), where a forwarded call is erroneously recognised.

We want to be able to determine whether a characteristic signal sequence in a log
file really is part of one call, or is just a collection of signals from different (successful
or unsuccessful) calls. Figure 3.5 shows how this could be done. The 10:Busy_Tone
signal in log file (A) indicates that the highlighted sequence can never be a witness
of a normal call. Its occurrence between the 20:0ff Hook and 10:0n_Hook signals
shows that something other than a successful call from 10 to 20 is taking place. In
log file (B), both the 50:Dial*21(60) and the 50:Dial _Tone signals indicate that
the sequence indicated does not actually signify a successfully forwarded call.

So, the presence of certain signals at certain positions within the log file segment
occupied by a characteristic sequence, can tell us that that characteristic sequence is
not a witness of a successful call. The pattern language that we define in the next
section features such signals, which we will call negative signals (as opposed to the
positive signals in a characteristic sequence).

Finally, Figure 3.6 shows how the approach of using positive and negative signals
relates to the system under test, TESTNET. If we regard this system as a huge state
machine, the positive signals identify state transitions on some path that eventually
leads to a desired final state (where a successful call (of some type) is terminated, so
where a CDR should be created by TESTNET), whereas the negative signals cause
state transitions that “lead away from the path”.

TESTNET

‘*asuccessful cal isterminated’’

Figure 3.6: How positive and negative signals relate to the system under test

3.3 A Pattern Language: LOGAN

These concepts of positive and negative signals have been incorporated in a pattern
description language, which we wall call LOGAN (LOG ANalysis). We will introduce
this language first by giving an example pattern for a normal call. A formal definition
will follow later in this chapter.

PATTERN normal_call
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BEGIN
A:Dial_Tone;
NOT A:Busy_Tone,A:0n_Hook;
A:Dial(B);
NOT A:Busy_Tone,A:0n_Hook;
B:0ff_Hook;
NOT A:Busy_Tone,B:Busy_Tone,A:0n_Hook,B:0n_Hook;
A:0On_Hook,B:0n_Hook;
END

In this pattern we clearly recognise the specification of the characteristic sequences
of normal calls that we presented earlier. Although we have already presented some
specifications of characteristic sequences, we have not yet defined what kind of specifi-
cations we use. Any formalism in which a set of traces can be specified could be used,
for example, regular expressions, finite state machines, grammars, Message Sequence
Charts (MSC) [IT00, RGG96a], process algebra [BW90] or a large number of other
formalisms. LOGAN uses a very simple, but because of that same reason also rather
weak formalism, that of a list of signal sets. The normal call pattern above uses a list
of signal sets to specify the characteristic sequences of a normal call: {A:Dial _Tone};
{A:Dial(B)}; {B:0ff Hook}; {A:0n_Hook, B:0On_Hook}. If Sp;...; S, is a list of signal
sets, it represents a set of traces {sp;...;sn | Vi:0<i<mn:s; €S;}.

What is really new in the pattern description, is the specification of negative
signals. In between the positive signal sets of the pattern, sets of negative signals
are specified, which are preceded with the keyword NOT to distinguish them from sets
of positive signals. The idea is that not only the list of positive signals should ’fit’,
but also no negative signals should appear on the place where they are specified. For
example, between the signals A:Dial(B) and B:0ff Hook the signals A:Busy_Tone
and A:0n_Hook may not occur. The log file in Figure 3.5A should not be considered
to contain the pattern described above, because of the occurrence of a 10:Busy_Tone
signal between the 20:0ff Hook and 10:0n_Hook signals.

The reader can easily verify that all the negative signals in this pattern are signals
that, when encountered within a characteristic sequence, indicate that the sequence is
not coherent. It is more difficult to see whether all possible incoherent characteristic
sequences of a normal call in a log file, are indeed ‘rejected’ by the pattern.

Before we give the formal syntax of LOGAN, we will first give a second example,
a pattern for call forwarding;:

PATTERN call_forward
BEGIN
NOT C:Dial*21(x);
B:Dial*21(C);
NOT B:Dial*21(*),B:Dial#21,C:Dial*21(x*);
A:Dial_Tone;
NOT A:Busy_Tone,A:0n_Hook,B:Dial#*21(*),B:Dial#21,C:Dial*21(*);
A:Dial(B);
NOT A:Busy_Tone,A:0n_Hook,B:Dial*21(*),B:Dial#21,C:Dial*21(*);
C:0ff_Hook;
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NOT A:Busy_Tone,C:Busy_Tone,A:0n_Hook,C:0n_Hook;
A:0On_Hook,C:0n_Hook;
END

Again, the specification of the characteristic sequences of forwarded calls that we
gave earlier, can be recognised in this pattern. There are however two new elements
in this pattern, compared to the last one: A negative signal set precedes the first
positive signal set, and wildcards (*) are used to denote any subscriber.

The NOT C:Dialx*21(*) that starts off the pattern states that C, which is the
destination to which B is going to forward his calls, is not forwarded itself (to anyone)
before B forwards his calls to C. So, a negative signal set preceding the first positive
signal set makes perfectly good sense and is very useful, as this example shows. We
will not allow a negative signal set after the last positive signal set. Though from a
‘pattern matching’ point of view, there is nothing wrong with this, it does not make
much sense from the ‘state machine’ point of view (Figure 3.6). From this point of
view, we want to detect that TESTNET has reached some state where a successful
call is terminated. If we are not already in such a state we can only get there if
something happens, not if something will not happen in the future. From a practical
point of view such a restriction seems reasonable: we do not want to have to wait
indefinitely long in the future before deciding whether or not something is a valid call.

3.3.1 Syntax of LOGAN

The syntax of LOGAN is given in Table 3.1, in the form of a context-free grammar.
The grammar is rather straightforward. The two LOGAN pattern examples we have
given cover most of the language, so the grammar does not reveal anything radically
new. Worth mentioning perhaps is that signals can have an arbitrary number of argu-
ments, as is expressed by the rules for ACT and ARGSs, and that concrete telephone
numbers can be used wherever a variable or wildcard can be used, as is expressed by
the rule for SUB.

PAT ::= PATTERN NAM BEGIN BOD END
NAM n= [a...z,A...Z,0...9,_]T
BOD x= [NEG POS]*

NEG = € | NOT SIGs ;

POS = SIGs ;

SIGs = SIG | SIG,SIGs

SIG = SUB:ACT

SUB = ID | *| [0...9]"

1D = A...Z

ACT = SIGNAM | SIGNAM(ARGS)
SIGNAM == J[a...z,A...Z,0...9,_ % #]"
ARGs = SUB | SUB,ARGs

Table 3.1: The syntax of LOGAN
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3.3.2 Tabular Form

For practical purposes, we propose an alternative notation for LOGAN patterns which
we will call tabular form. Here is the tabular form of normal_call:

normal_call

Busy_Tone | On_Hook

A:Dial_Tone A A
A:Dial(B) A A
B:Off Hook AB AB

A:On_Hook,B:On_Hook

The correspondence between textual and tabular form should not be hard to grasp.
The name of the pattern is in the upper left field of the table. The positive signal sets
are all in the first column. The negative signal sets are represented by the second,
third, etc. columns. Each negative signal is split in its ‘subject’, i.e. the receiving or
sending subscriber, and the name of the signal. So the A in the third row and second
column of the table means that A:Busy_Tone may not occur between A:Dial _Tone
and A:Dial(B). We feel that, with its two-dimensional representation of patterns,
the tabular format provides a more user friendly way of writing and reading patterns.
The main reason for this is that subsequent negative signal sets often contain the
same signals, and this property is readily apparent from the tabular format. If this
was not a property of patterns, then the tabular format would probably be much less
readable.

The following example in tabular format is a pattern describing a successful call
in which the Call Waiting Hookflash service is activated. This means that while
subscriber B is connected to subscriber A, a third person, say C, can call B. B will then
hear a soft warning tone, and when B hookflashes, A will be put ‘on hold” and B and
C can talk. B can switch many times between A and C by hookflashing. The example
describes the situation where B switches once from A to C and after termination of
the call with C, switches back to A. Of course, many other call waiting scenarios are
possible. In order to find these, we would have to write other patterns, or, better, find
one pattern that captures the essence of all, or at least a lot of, call waiting scenarios.
We will come back to this issue in Sections 3.7 and 3.8.
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call_w_hkflsh

Busy_Tone | On_Hook
A:Dial_Tone A A
A:Dial(B) A A
B:Off_Hook AB AB
C:Dial_Tone A B,C A B,C
C:Dial(B) AB,C AB,C
B:Warning_Tone AB,C AB,C
B:Hookflash A B.,C A B.,C
A:Hold_Tone A B,C A B,C
C:On_Hook AB AB
B:Hookflash AB AB
A:On_Hook,B:On_Hook

Note, that the normal call pattern is present in this call waiting hookflash pattern
(rows 3, 4, 5 and 13). The first leg of the call, i.e. the conversation between A and B
will therefore also be detected by the normal call pattern, but this is not the case for
the second leg, i.e. the conversation between C and B. This second leg does not match
the normal call pattern because B responds to the incoming call with a Hookflash
instead of an 0ff _Hook.

3.4 Formal Semantics of LOGAN

We will know proceed to a formal semantics of LOGAN. In the preceding sections we
have more than once used the term witness of a pattern, meaning a sequence of signals
in a log file that indicates the presence of the pattern. This term will be central in
our definition of a formal semantics. However, before giving a formal definition of the
witness concept for LOGAN patterns, we will first give a mathematical description
of LOGAN patterns.

Definition 3.4.1 (LOGAN pattern) With a LOGAN pattern, containing k pos-
itive signal sets, we associate a pair (P, N), where P = (Py, P1,...,Pr—1) is a list of
non-empty sets of signals, and N = (Ny, Ny,...,Ni_1) is a list of, possibly empty,
sets of signals. For all 0 <4 < k, P; contains the signals of the i-th positive signal set
of the LOGAN pattern, and N; contains the signals of the negative signal set that
precedes P;. In the remainder of this chapter we will simply call such (P, N) pairs
LOGAN patterns.

In order to match a LOGAN pattern with a signal sequence in a log file we have to
establish a relation between the variables in that pattern, which represent telephone
numbers, and the actual telephone numbers in the log file. For this, we will use
valuations.

Definition 3.4.2 (Valuation) Let (P,N) be a LOGAN pattern. A valuation for
this pattern is a partial injection v : vars(P) + Ext, where Ezt is the set of extensions,
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i.e. telephone numbers, and vars(P) denotes the set of variables that appear in the
positive signal sets of the pattern.

So, a valuation assigns telephone numbers to variables in a pattern. The fact
that valuations are injections implies that different variables in a pattern represent
different telephone numbers. They are partial functions, because in order to match a
pattern with a particular signal sequence in a log file not all variables in the positive
signal sets need to have an assignment.

We now define how variables and wildcards in a pattern can be replaced by actual
telephone numbers, which will allow us to match actual signals from a log file with
signal sets of a pattern (which may contain variables and wildcards).

Definition 3.4.3 (Substitution and matching) Let (P,N) be a LOGAN pat-
tern, and v a valuation for that pattern. Let S be some signal set in (P, N) (positive
or negative). Applying the valuation v to the signal set S yields a signal set v(S)
obtained from S by substituting extensions for variables as is prescribed by v and
‘expanding’ all wildcards.

By expanding, we mean that all possible substitutions of extensions for wildcards
are included in v(S). Here is an example of a substitution, where valuation v = {A
1024,D + 1060}.

v({A:Dial(B),D:Dial(*)}) = {1024:Dial(B),1060:Dial(e) | e € Ext}

So, given the valuation v, 1060:Dial(1914) matches {A:Dial(B),D:Dial(*)}, be-
cause 1060:Dial(1648) € v({A:Dial(B),D:Dial(*)}). Note, that under the valu-
ation v, 1024:Dial(1918) does not match this signal set (although we can easily
extend the valuation so that it does).

Now that we have a convenient mathematical notation for LOGAN patterns,
valuations that assign extensions to the variables in a pattern, and the notion of
signals matching signal sets (given a valuation), we are able to give a formal definition
of a witness of a LOGAN pattern.

Definition 3.4.4 (Witness) Let (P,N) = ((Fo,...,Px),(No,...,Ni)) bea LOGAN
pattern, and L = [so, ..., s,] alog file. A witness of (P,N) on L is a pair (f,v), where
f:4{0,...,k} = {0,...,n} is a so-called witness function, and v : vars(P) + Eat is
a valuation, such that for all i (0 <i<k),j (0<j<k)andz (0 <z <n):

Loi<j=f(i)<fQ)

2. Srii) € U(PZ)

3. minimal (v, f, P)

4. fli—1) <z < f(i) = sy €v(N;) (define f(—1) =—1).

where minimal(v, f,P) = (Vw C v = =(Vi : 0 < i < k@ sp;) € w(F;))). The
demand that a valuation is “minimal” assures that all the variable assignments in the
valuation are necessary. As shorthand for “(f,v) is a witness of (P, N) on L” we will

use (f,v): L = (P,N).
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1. 7777:Of_Hook !

2. 5020:OFf_Hook  r----H------ - NOT {}

3. 7777:Di al _Tone ,J {A: D al _Tone}

4. 5020: Di al _Tone / NOT { A: Busy_Tone, A: On_Hook}
5. 5020:Dial (5157)= {A:Dial(B)}

6. 7777:Busy_Tone » NOT {A:Busy_Tone, A On_Hook}
7. 5020: Ri ngi ng_Tone >< (B OFf _Hook}

8. 5157: Ringing o NOT { A B: Busy_Tone, A, B: On_Hook}
9. 7777: On_Hook 1 {A: On_Hook, B: On_Hook}

10. 5157: Ri ngi ng |

11. 5157: O f _Hook

12. 5157: On_Hook

13. 5020: On_Hook

Figure 3.7: a witness with valuation {A — 5020,B — 5157}

Figure 3.7 depicts witness ({0 — 4,1 — 5,2 — 11,3 — 12},{A — 5020,B
5157}). Because the domain of a witness function is a finite initial segment of the
natural numbers, we identify witness functions with lists over the natural numbers.
We can say that Figure 3.7 depicts witness ({4,5,11,12), {A — 5020,B — 5157}) and
in the sequel we will also use list operators on witness functions, yielding expressions
like | f| (length of a list), tail(f) (tail of a list), and f+g¢g (concatenation of two lists).

3.5 Algorithm

In this section we will show an algorithm to find all the witnesses of a LOGAN pattern
in a log file. We will first look at an algorithm for a subset of LOGAN which we will
call LOGAN,. LOGAN., is equivalent to LOGAN except for not using variables and
wildcards. Thus, syntactically, LOGAN, is like LOGAN except for the rule SUB ::=
ID | *| [0...9]", which is replaced by the rule SUB ::= [0...9]". On this subset
we can construct a basic algorithm for sequences matching LOGAN-style ’pos-neg’
patterns, and leave the extra complication of variable substitution for later.

Because LOGAN, patterns do not contain variables and wildcards, valuations do
not play a role in finding witnesses. All witnesses of such a pattern are of the form
(f,0). A witness for a LOGAN, pattern is actually just a witness function, and we
will therefore write f : L |= (P, N), thereby meaning (f,0) : L | (P, N).

The pre-condition and post-condition for our algorithm will be:

con L: log file, (P,N): a LOGAN, pattern
var I": set of witness functions

PRE: L=Is,...,50] A (P,N)=((P,...,P),(No,...,Ni))
POST: F={f|f:LE (P,N)}
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Basically, the algorithm works as follows: it traverses the log file and maintains
the set of witness functions of prefizes of the pattern on the part of the log file scanned
so far. We will use the following notation to denote pattern prefixes: (P,N) [ m =
((Po,- .-y Pm—1),(No,.-., Nim—1)). We will actually design an algorithm that satisfies
the following post-condition:

POST: F={f|f:L=(P,N)I|f|}

The intended post-condition POST can easily be reached from POST’ by the
rule F:={f|feF AN |fl=k+1}.

We introduce variables Iy and lo, representing the part of L already processed and
the part that still has to be done, respectively. The following invariants will hold
during the application of the algorithm:

var lq,[y : log file

INVy: 1+l =1L
INVy: F={f |1l b= (PN) 17| A extra(f,h, N))

where extra(f, [, N) = |fl=k+1 VvV (Vj: f(|f] =1) <j<|I|: I(j) ¢ Np)-

The extra(f,l1, N) clause in INV; is an extension of clause (4) of definition 3.4.4,
and it expresses that for all witness functions f € F' that are not complete witnesses
yet, the part of the log file processed after the last signal witnessed by f, may not
contain signals in the ‘lookahead’ negative signal set Ns.

For I = () the post-condition follows from these invariants, so Iy # () will be a
suitable guard for the algorithm. Because the empty pattern is the only pattern that
matches the empty log file, and the empty witness function the only corresponding
witness, F':= {(}}, [ := (), and I := L will do as initialization.

Now, for within the repetition of the algorithm, we have to find assignments to F',
l; and Iy, that satisfy the invariants and assure termination of the algorithm. Heading
for termination we choose l; := I; +(l2(0)) and l» := tail(l2), which leaves us with
the task of computing {f | I H(l2(0)) = (P,N) [| f| A eatra(f,l1 +(12(0)),N)}. By
splitting this set in two sets, one containing the witness functions f that refer to the
|11 |-th element of the log file (i.e. I2(0), the signal currently being inspected), and
the other one containing the ones that do not, we can derive the following equivalent
expression:

{FHALD I feF A fISE A 12(0) € Py} U
{fIfeF A (Ifl=k+1 Vv 12(0) ¢ Nip)}

The first set of this union shows how witness functions in F' can be extended, with
a reference to the signal under inspection. The second set expresses that a witness
function in F' remains in F' unless it is an incomplete witness and the signal under
inspection is in the ‘lookahead’ negative signal set. Here is the complete algorithm:

=) =L F:={(}
while I, # () do
Pl (f+(Ll) | € F A |£IS kA L(0) € Py} U
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{fIfeFN (Ifl=k+1V 1x(0) € Nyt
li =1 -H—(lg(O)), Iy = tail(b)
od

For practical usage it is better to transform this algorithm into a more readable
form, where a number of set operations have been eliminated. The assignment to F' is
replaced by a sequence of assignments for each element of the set in a straightforward
manner. We also get rid of the two lists /; and /5 in the representation of the algorithm,
instead introducing an integer variable m = |l1|.

F:={0}
for m=0 to n
G = 0;
for each f e F
L=[f1;
if | <k cand s,, € P, then G := GU {f+H(m)};
ifl=k+1 cor s, ¢ N, then G := GU {f}
next
F:=d

next

3.6 Variable Substitution

We now get to the problem of adding variables and wildcards to the algorithm derived
in the previous section. Extending the algorithm so that it can handle wildcards is
actually quite easy. When we defined substitution in Section 3.4, we introduced the
notion of expanding a signal set to get rid of wildcards. If we apply this expansion
to the signal sets present in the algorithm, we have an algorithm that also works
for patterns with wildcards (In an implementation of this algorithm the ‘expansion’
will, of course, have to be implemented by a simple pattern matching procedure, and
not an actual expansion procedure). Extending the algorithm so that it can handle
variables is more difficult. The major difficulty, as we will see, is that before a value
is assigned to a variable in order to match a signal from the log file to a signal in a
positive signal set, a negative signal set can already have imposed some restrictions
on the values that the variable may attain.

First, we give a specification for the algorithm. It is basically the specification of
the previous algorithm, but with witness functions replaced by complete witnesses,
i.e. witness functions and valuations.

con L: log file, (P,N): a LOGAN pattern
var I": set of witnesses

PRE: L =]so,...,sx) A (P,N)=((FPo,...,Pr),(No,...,Ng))
POST: F ={(f,v)|(f,v): L= (P,N)}

We will have to get the valuations into the algorithm somehow. At first glance,
this does not seem to be such a big problem. Just pair the empty witness function in
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the initialization with the empty valuation, and extend a valuation with the proper
variable assignments if thereby we can match a signal from the log file with a signal
in a positive signal set.

3.6.1 Constraints

Consider scanning a log file containing 1080:Dial _Tone; 1080:Busy_Tone for the nor-
mal call pattern. The first signal matches the first positive signal of this pattern if
we choose the valuation {A — 1080}. The second signal, however, matches the next
negative signal set if this valuation is applied to it. This means that we have to
abandon the witness that we are constructing. It is no longer valid.

Now consider scanning a log file containing 1080:Dial*21(1030);...;1060:Dial
*21(1080) for the call forwarding pattern. The last signal matches the first positive
signal of the pattern if we choose valuation {B + 1060,C + 1080}. Then, however,
we have a conflict with the first negative signal set of the call forwarding pattern, the
one preceding the first positive signal. This set contains C:Dial*21(*) and the first
signal in the log file fragment matches this signal set given our valuation. This means
that, again, we have to abandon the witness we are constructing. This example shows
that we somehow have to remember that valuation {C — 1080} is no longer allowed
after we have encountered the 1080:Dial*21(1030) signal in the log file. Besides
the positive information about the values of the variables, i.e. the valuations, we also
have to keep track of negative information about the values of variables.

With the help of a (probably quite exotic) fragment of a pattern we will explain
how we can use constraints as carriers for the negative information. Here is the
example:

NOT A:dial*21(B), B:dial*21(A);

NOT C:dial(B), A:dial(x);

Suppose that we look for this pattern in a log file, and that the witness we are con-
structing demands that the first negative signal set may not contain 1080:Dial*21
(1060), while 1024:Dial (1050) may not be contained in the second one. The val-
uations that become forbidden because of the first signal matching the first negative
signal set can be characterised by the following formula of propositional logic:

(A=1080 A B=1060) V (B=1080 A A = 1060)

So, after we have scanned the first signal (future) valuations have to satisfy the fol-
lowing constraint:

—~((A =1080 A B=1060) V (B=1080 A A= 1060))

We can transform this proposition into an equivalent one which is in Conjunctive
Normal Form (i.e. written as a conjunction of disjunctions):

(A #1080 V B # 1060) A (B# 1080 V A # 1060)
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We can do the same for the second signal and the second negative signal set. Matching
these yields the following constraint (in CNF):

(C# 1024 V B#1050) A A #1024

Given a signal and a negative signal set, we can always produce a logical formula in
conjunctive normal form that characterises the forbidden valuations. If the signal and
the signal set do not match we get the formula true (true and false are both considered
to be in CNF). If the signal matches with one or more signals in the set, then, for each
of these matches, there is a (smallest) valuation that establishes this match and that
can be characterised by a formula of the form (Xg =eg A ... A X,, =e,). The set of
(smallest) valuations that cause a match of the signal and the signal set can then be
characterised by the disjunction of all these formulas. We turn the formula we then get
into a constraint by placing a negation in front of it, and transforming it into a formula
in CNF using De Morgan’s laws (-(A A B) = 2AV =B and =(AV B) = ~A A —B).

Let us return to the example. We said that the witness under construction
demands that the first negative signal set may not contain 1080:Dial*21(1060),
and that the second one may not contain 1024:Dial(1050). For each of these de-
mands we have constructed a constraint. The valuation of the witness must satisfy
both constraints, or in other words, it must satisfy their conjunction, in this case
(A # 1080V B # 1060) A (B # 1080 V A # 1060) A (C # 1024 V B # 1050) A A # 1024.

The example has shown us that we can impose restrictions on the valuation we
associate with a witness, by also associating a constraint with it, which is a logical
formula in CNF that expresses which assignments to variables are forbidden (and
which not).

Definition 3.6.1 (Constraints) Let V' be a set of variables. The set of all con-
straints over V' is denoted by Prop(V'), and it consists of all C' formed according to
the following BNF rules:

C == (CAC)| D
D := true | false | (DV D) | X # e for some X, e.

We have used underlining to emphasize the fact that we are dealing with syntactic
categories. A constraint is not a boolean expression, it represents one.

Our definition of constraints permits that the values true and false occur in a
constraint. This has been done with the evaluation of constraints (or of parts of a
constraint) in mind. The next two definitions concern this evaluation of constraints.

Definition 3.6.2 (Constraints and valuations) Using the recursive structure of
constraints, we define how a valuation v is applied to a constraint, producing another
constraint:

o v(C1 A Cy) =v(C1) Av(Cy)
e v(D; V Dy) =v(Dy) V v(D2)

e vy(true) = true
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v(false) = false

X #e if X ¢ dom(w)AVY € dom(v):v(Y) #e
true if X € dom(v) Av(X) #e,

false if X € dom(v) Av(X) =,

true if for some Y € dom(v),Y ZX Av(Y)=e

cuX #£0)=

Applying a valuation v to a constraint C' yields a constraint equal to C' in structure,
but with the X # e clauses replaced by true’s and false’s where the valuation permits
it. Note, that we use the fact that v is an injection, i.e. v(X) # v(Y) for X #Y. By
applying a valuation to a constraint we can check whether that valuation satisfies the
constraint or not.

Intuitively, we feel that two constraints have the same meaning if the logical
propositions they represent are equivalent. Consequently, we can simplify a constraint
using the rules of propositional logic without changing its meaning.

Definition 3.6.3 (Simplification) Let V be a set of variables. The function simp :
Prop(V) — Prop(V') simplifies a constraint, using the rules of logic for interaction
of true and false with A and V. Following the recursive structure of constraints we
define simp as follows:

e simp(true) = true, simp(false) = false, and simp(X #e) = X #e.

o simp(C1 A C2) =

false if simp(C1) = false or simp(C5) = false,
true if simp(Cy) = simp(C>) = true,

simp(Ch) if simp(C4) ¢ {true, false}, simp(C>) = true,
simp(C) if simp(Cy) = true, simp(Cs) ¢ {true, false},
[ stmp(C1) A simp(C3) if simp(C1), simp(C) ¢ {true, false}

e simp(Dy V D,) =

true if simp(D1) = true or simp(D2) = true,

false if simp(D1) = simp(D-) = false,

simp(D1) if simp(D1) ¢ {true, false}, simp(D.) = false,
simp(D:) if simp(D,) = false, simp(D>) ¢ {true, false},
[ simp(D1) V simp(D2)  if simp(D1), simp(D-) ¢ {true, false}

It is quite clear from the definition of simp that if it is applied on a constraint C'
it yields a constraint C' with the same meaning, with the additional property that
either C' = true or C' = false or C' does not contain the constants true and false
at all.

With the help of the concept of applying valuations to constraints and the concept
of simplification we define a formal semantics for constraints, based on valuations.
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Definition 3.6.4 (Constraint semantics) Given a set V of variables, and C :
Prop(V') a constraint on those variables, we define the semantics [ ]| of C with respect
to V as follows:

[Clv = {v:V - Eut | simp(v(C)) # false}

So, the semantics of a constraint is the set of valuations that do not falsify the con-
straint.

We say that valuation v satisfies constraint C' iff v € [C]y, and that constraint
C, is weaker than constraint Cy iff [Co]yv C [Ci]v.

3.6.2 An Algorithm with Variable Substitution

Armed with the concept of constraints, we can now extend the algorithm of Section
3.5 so that it can handle all LOGAN patterns. To this end we give a definition
of a witness that includes constraints. This definition sheds some light on how the
valuation of a (partial) witness may be extended. It is only with the algorithm and the
construction of witnesses in mind that this definition makes any sense. As a means
to explain the witness concept it would be correct but also quite absurd.

Definition 3.6.5 (‘Constrained’ Witnesses) Given a LOGAN pattern (P,N) =
((Poy ..., Pr), (No,...,Ni)), and a log file (prefix) L = [so,...,s,], a constrained
witness of (P,N) on L is a 3-tuple (f,v,C), where f : {0,...,k} — {0,...,n} is a
witness function, v : vars(P) + Ext a valuation, and C : Prop(vars(N)) a constraint,
such that for alli (0<i<k),j (0<j<k),z (0<z<n),and w (v Cw):

Loi<j= f(i) < fQ)
2. s5(:) € v(P)

3. minimal(v, f, P)

4. simp(v(C)) # false

5. f(z)— 1) <z < f(i) = (s € w(N;) = simp(w(C)) = false) (define f(—1) =
-1).

6. weakest(C, f,v,N)

where weakest(C, f,v,N) = (VC' : C’satisfies clauses (4) and (5) : [C'] C [C]).
Clause (5) takes the extension of valuations into account by stating that constraint
C must prohibit certain extensions w of valuation v.

As shorthand for “(f,v,C) is a constrained witness of (P, N) on L” we will use
(f,v,C): L = (P,N). Note, that clauses (4) and (5) imply clause (4) from Definition
3.4.4 (substitute v for w in clause (5)), so we have that (f,v,C) : L = (P,N) =
(f,v) : L = (P,N). We also have (f,v) : L = (P,N) = (3C = (f,v,C): L [
(P,N)). Because of these two implications (soundness and completeness) we can
safely compute constrained witnesses instead of ordinary witnesses.
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So, a constrained witness is just an ordinary witness with some extra information
that says something about how the witness may be extended. We can therefore give
the following specification, which is more or less equivalent to the one given earlier in
this section:

con L: log file, (P,N): a LOGAN pattern
var F": set of constrained witnesses

PRE: L=[so,...,50] A (P,N)=((Po,...,P),(No,...,Ni))
POST: F={(f,0,0)| (f,v,C): L= (P,N)}

We replace the post-condition by the following post-condition (like we did when we
derived the first algorithm):

POST: F = {(f,v,C) | (f,v,C): L= (P,N) | f|}

This post-condition gives rise to the following invariants, analogous to the invari-
ants we had for the first algorithm:

INVg: 1+l =1L
INVi: F={(f,v,0)|(f,v,C):li E (P,N) [|f| A extra(f,v,C,l1,N)}

where

extra(f,v,C,I, N)=(Vj: f(|f| -1) <j<|l|: Vw:vCw:
1(7) € w(Ny) = simp(w(C)) = false)) (define Nyyr = 0)

The algorithm derived with these invariants looks a lot like the algorithm of Section
3.5. Here it is (using the more practical format immediately):

F = {((),0, true)};
form=0 to n
G = 0;
for each (f,v,C) € F
L=[f1;
if [ < k then
for each w : minext(w, v, sy, P)
C' := simp(w(C));
if C' # false then G := GU {(f H(m),w,C")}

next;
if I=k+1then G:=GU{(f,v,C)}
else

C' = simp(v(C' A constraint(sm, Np)));
if C" # false then G := G U {(f,v,C")}
next
F=Gg
next
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Let us examine how this algorithm differs from the old one. In the initialization
the empty witness function has been replaced by a 3-tuple consisting of the empty
witness function, the empty valuation, and the constraint true. Note, that the empty
valuation is a minimal valuation, and that true is the weakest constraint possible.
Definition 3.6.5 requires this.

Next, we see that the if | < k cand s,, € P, then G := G U {f-H(m)} statement
of the original algorithm has been replaced by a repetition. In the original statement,
the witness function f was extended if signal s,,, was in signal set P;. Here we consider
all valuations w that are minimal extensions of valuation v that make s,, match F;:

minext(w,v,5,P)=vCw A s€w(P) A (Vw :vCw' Cw:sgw'(P))

It is then checked if the extended valuation w satisfies the constraint we have, and if
this is the case s,, and P, really match, and the witness function f can be extended.
The valuation and constraint associated with this extended f, are extended valuation
w and constraint C’, the result of applying w to C' and simplification. Note, that we
could use C instead of C'. These constraints do not mean the same, i.e. [C] # [C'],
but we do have (Vw' : w Cw' : w' € [C] = w' € [C']). So we could say, that they
mean the same if we take into account the valuation that has been constructed so far.

Finally, the if l = k+ 1 cor s, ¢ N; then G := GU{f} statement of the original
algorithm is replaced. This statement expresses that witness function f remains a
valid witness if signal s, does not match negative signal set /V;. In the new algorithm
it has to be checked if s,, does not match N;, given valuation v. Furthermore, the
constraint C' has to be strengthened with the forbidden future assignments that make
Sm and N; match. In Subsection 3.6.1 we described how constraint(s,,, N;) can be
constructed. Formally, this construction can be expressed as follows:

constraint(s, N) = (An € N,w :minext(w,,s,{n}) :
(VX,e: X € dom(w) AN w(X)=e: X #e))

What we have just said about the interchangeability of C' and C, here holds for
C'" and C A constraint(s,,, Ni).

3.7 Implementation and Testing

The algorithm has been implemented in C, and it was tested on some patterns and
some handcrafted log files. The disadvantage of handcrafted log files, is that they are
small, and made with the recognition of patterns in mind, which is okay for testing the
correctness of the algorithm, but not for testing the pattern description capabilities
of LOGAN. Therefore, we conducted an experiment with an SDL [BH88, 1T94]
specification of a switch with a Call Waiting service. This specification, made by N.
Goga in the context of Cdote de Resyste, a research project on the testing of reactive
systems, is an extensive one and covers also very exotic call waiting scenarios. The
idea was to automatically produce some large log files, using this specification and
SDT, the SDL toolset from Telelogic [Tel95]. The set up of the experiment is depicted
in Figure 3.8.
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A SDL specification

Switch with

Call Waiting

A 7] A ] A ]
. transate SDT SDT simulator filter & .
Test Script Simulator MSC Log radlete Log File
Script

Figure 3.8: using an SDL specification to produce log files

We wrote test scripts, describing different kinds of Call Waiting scenarios, which
were automatically translated to SDT simulator scripts. An SDT simulator script
contains a list of commands, mostly signals that have to be sent to the SDL system.
These scripts were fed to the simulator running a simulation of the switch. In each
simulation run, the simulator produced an MSC log, showing all the signal exchanges
that took place in the SDL system during the simulation. From these MSCs we
automatically created log files by extracting the signals that we were interested in
(those exchanged between the phones and the switch) and translating them to the
proper format.

3.7.1 Some Test Results

We created one ‘large’ test script containing six successful call waiting scenarios. Since
the first part of a call waiting scenario is also a normal call, it automatically contained
six successful normal call scenarios as well. With the normal call pattern of Section
3.3 we found all 6 normal calls in the log file that was produced.

The call waiting pattern of Section 3.3, however, proved to be much too strict.
With it, we only found 1 call in the log file. The pattern requires that some subscriber
A sets up a call with subscriber B, and that after that, a third subscriber, C, tries to
set up a call with B. Other possibilities, which the pattern does not cover, are that B
himself starts the call with A, and that A and C call B more or less simultaneously.

We therefore wrote a new pattern for call waiting in which there is no reference
to party A. Of course, this means that with this pattern we only detect the second
leg of a call waiting scenario, but we know that the first leg of such a scenario can be
detected with the normal call pattern.

With the new pattern 8 witnesses were found, 5 (out of 6) true witnesses, but also
3 false ones. The 3 false witnesses were due to identification of the former A party,
which we removed from the pattern, with the C party, so these patterns consisted of
parts of first and second legs mistakenly recognised as one single second leg.

We added a negative B:0ff _Hook signal to the pattern that assures that the B
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party is already engaged in a call, when the call of the C party arrives. With this
addition the 3 false witnesses were no longer recognised with the pattern. Here is the
final version of the call waiting pattern:

PATTERN Call_Waiting
BEGIN
C:Dial_Tone;
NOT C:Busy_Tone,C:0n_Hook;
C:Dial(B);
NOT B:0ff_Hook,B:Busy_Tone,B:0n_Hook,B:Warning_Tone,
C:Busy_Tone,C:0n_Hook;
B:Warning_Tone;
NOT B:Busy_Tone,B:0n_Hook,C:Busy_Tone,C:0n_Hook,B:Hookflash;
B:Hookflash;
NOT B:Busy_Tone,B:0n_Hook,C:Busy_Tone,C:0n_Hook,C:Connect;
C:Connect;
NOT B:Busy_Tone,B:0n_Hook,C:Busy_Tone,C:0n_Hook;
C:0n_Hook,B:0n_Hook;
END

With the call waiting pattern we just presented, 5 out of 6 true witnesses were
found, and no false witnesses, which is quite satisfactory as we do not expect to find
every call. The one call that we did not find was a call that was not terminated with
a C:0n_Hook or B:0n_Hook, but with a B:CW_finish signal. With this signal the B
party can terminate the active leg of the call, whereas a B:0n_Hook would terminate
both legs.

3.8 A Language Extension

If we would add the B:CW_finish signal to the last positive signal set of the pattern,
we would get a pattern that recognises all 6 calls in our log file. However, such a
pattern might in other cases produce false witnesses as well. The reason for this is,
that the B:CW_finish signal can be directed to the C party or the A party, and we
need it to be directed to the C party.

If we want to add this signal to our pattern, we would have to know the state of
the B party: is it currently connected to the A party or the C party? This information
can be received from the number of hookflashes made by B, but in LOGAN this
information cannot be represented.

A possibly interesting extension of LOGAN would therefore be the addition of
explicit states and state transitions. LOGAN would then get the expressive power
of finite state machines and regular expressions. Figure 3.9 shows what a pattern for
call waiting could look like in such an extension of LOGAN. Note the two possible
transitions leading to the final (grey) state, one originating from a state where B is in
conversation C. Here the B:CW_finish signal can be used to terminate the connection
between B and C. The other originates from a state where B is in conversation with A.
Here the B:CW_finish signal does not terminate the connection between B and C.



52 CHAPTER 3. LOGAN: A LOG ANALYSIS LANGUAGE

{C: Di al _Tone}

{B: Hookf | ash}
{ B: Hookf | ash}

{C. Connect}

B: Hookf | ash
5 { ! . 6
‘ {B: On_Hook, C. On_Hook, B: OW f i ni sh}

7 {B: On_Hook, C: On_Hook}

B in conversation with C B in conversation with A

{}

{ C: Busy_Tone, C: On_Hook}

{B: O f _Hook, B: Busy_Tone, B: On_Hook, B: War ni ng_Tone, C: Busy_Tone, C. On_Hook}
{B: Busy_Tone, B: On_Hook, C: Busy_Tone, C: On_Hook, B: Hookf | ash}

{B: Busy_Tone, B: On_Hook, C: Busy_Tone, C: On_Hook, C: Connect}

{B: Busy_Tone, B: On_Hook, C: Busy_Tone, C: On_Hook, B: CW fi ni sh}

{B: Busy_Tone, B: On_Hook, C: Busy_Tone, C. On_Hook}

NoOokwwNEO

Figure 3.9: a state machine-like pattern description of call waiting

Extending LOGAN to such a state machine-like form would have other advan-
tages. Often a certain part of the pattern can have 2 or more forms. For example,
in the call forwarding scenario, C:Dial*21(*) is given as a negative signal. How-
ever, such a signal on itself would not be problematic, provided it is followed by a
C:Dial#21 signal. This possibility could be added, but that would mean adding an-
other pattern, and because it can occur on 4 different places, the total would then be
24 = 16 different patterns. In real-life examples, there may be even more such minor
variations, which makes the number of possible variations grow explosively. If state
machine-like patterns are used, all these variations, and even variations containing
different features, might be included in one single pattern, each variation requiring
the addition of one or two extra ’states’ (negative event sets) rather than a doubling
of the number of patterns.

The algorithm we have given can be easily, although not trivially, extended to
cover state machine-like LOGAN. To do so, the next positive possibility should be
any ’state’ that can be reached from the current one, rather than (as in the current
algorithm) always the next one.
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3.9 Conclusions

We have defined a pattern description language, LOGAN, in which we can express
properties of call traces. For different call types, especially calls in which different
services are active, different patterns can be defined. Basically, a pattern describes the
characteristic sequences in call traces of a certain call type, using so-called negative
signals to ensure the coherence of these characteristic sequences.

By giving some examples of LOGAN patterns for well known call types, and some
examples of log files, we have demonstrated the use of LOGAN. We also, briefly,
addressed the problem of feature interaction, showing the limitations of the pattern
matching approach to finding call traces. Even simple types of interaction, like that
of Call Forwarding with itself, cannot be covered by this type of pattern matching,
especially when interactions can go to an arbitrary far degree.

Another problem is that finding correct patterns may be hard. Still, a short
time of experimentation would normally solve this. A larger problem is that some
features could either not be described in full, or would require a large number relatively
similar patterns. This problem might be overcome by extending LOGAN into a
state machine-like form. This would improve the pattern description capabilities of
LOGAN considerably.

We also designed and implemented an algorithm for finding LOGAN patterns in
log files. This algorithm, together with the LOGAN language, could be the basis for
tools that support the testing process described in the introduction.

Further work in this area could be to investigate if, and how, CDRs can be com-
puted automatically given a pattern (witness). Another option might be to automat-
ically generate patterns from a description in SDL or some other similar language.
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Chapter 4

The MSC Language

4.1 Introduction

Many languages have been designed to describe the behaviour of information systems.
Using such a language, one can describe the high-level behaviour of a system without
having to worry (yet) about the exact implementation details. One such language is
Message Sequence Chart (MSC) [RGG96a, IT00], which is the subject of the following
chapters. It differs from other languages in two important aspects. In the first
place it puts emphasis on the communication between processes, not paying much
attention to the internal behaviour of these processes. This way, it specialises on
systems in which communication is important. Because many systems nowadays
have a distributed nature, this holds for many systems. One area where it is much
used, and the one for which it was originally created, is telecommunication systems.
In the second place, MSC provides a graphical representation, rather than just a
textual description. Because of this, it can be more easily and intuitively understood
by human users. Still, behind this graphical syntax lies an exact meaning and a well-
defined semantics. Because of this, it can also be well understood by tools such as
SDT [Tel95].

MSC-like diagrams have a long history in formal descriptions of information sys-
tems, but the official Message Sequence Chart language has been developed in the
early nineties within the ITU (International Telecommunication Union) and its prede-
cessor, the CCITT (Comité Consultatif International Télégraphique et Téléphonique)

In this Chapter, a short overview will be given of the history of the language, of
a number of its constructs and of its semantics. But first, we will give an example of
a simple MSC, to give an impression of what the language looks like.

An example of an MSC is given in Figure 4.1.

The vertical lines in the MSC (i, j and k) denote the so-called instances, which
represent the processes, objects or systems whose behaviour is described. The arrows
between them denote messages between the instances. These messages are the basic
constructs of MSC, but many other features, such as timers, are also included. In
Figure 4.1 there is one, simple example of such a feature: a denotes some otherwise
unspecified local event at instance i.

35
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msc example

Figure 4.1: An example of an MSC

Time runs from the top to the bottom, but does not have to run at the same
speed at each instance. For example, message mo must be received before message
my is sent, because the receipt of ms is above the sending of my4 at the same instance,
but m4 may be sent before m; is received. The sending of my4 is below the receipt of
my1, but at a different instance, so there is no ordering. The only ordering that exists
between different instances is that each message has to be sent before it is received.

MSCs are used in different contexts. The original purpose of MSC when it was
first formalised, was to describe requirements in the early phases of the development
process. It was intended to be an addition to SDL (Specification and Description
Language), where the two languages would be used in different phases of the develop-
ment process: MSC early on, when requirements and global specifications are made,
SDL later on, when specifications are closer to the final implementation.

However, the language is now used in many more applications. To name a few:
the description of the actual behaviour of an existing system, especially in the context
of testing, the generation of test cases [GHN93], the specification of protocols and the
formalisation of use cases [RAB96], and the display of simulation traces [VGMFO00].

4.2 History

MSC-like diagrams (often taken together under the name ‘Sequence Charts’) have
been in existence for a long time [Lam78]. They have been used in various contexts,
either as a stand-alone description of a standard, or as illustrations to more formal de-
scriptions in languages like SDL [IT94, BH88, SRS89, BHS91], Estelle [[SO88a, BD87]
or LOTOS [ISO88b, EVD89]. Because Sequence Charts were so widely used, but of-
ten in different variants, a need was felt for a more formal basis for these diagrams.
That way, their usage could be harmonised across various users and institutions, in a
way that would moreover be formally defined.
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In 1989, at the fourth SDL Forum, a proposal was made [GR89] to start devel-
oping such a formalised sequence chart language. Not only would a standardisation
overcome the (mostly syntactic) differences between the various languages, it would
also make tool support [Ek93, Loi96] possible, and provide possibilities to define a
formal mapping between MSC and SDL specifications [Gra90, Kri91, Nah91].

In 1990 such a plan was approved by the CCITT, and responsibility for the lan-
guage was given to the CCITT Study Group X, which also was responsible for SDL. In
1992, the first version of the MSC language, containing a number of basic constructs,
was formally approved as CCITT Recommendation Z.120 [IT93].

The standardisation of the language, and even more importantly, the resulting
possibilities for tool support [Tel95, Ver96, Pel98], led to a remarkable growth in the
use of the language. However, with this it also became clear that the language was
not complete enough to fully describe an information system, not even at the high
levels where it was supposed to be most useful. In the next four-year period, from
1992 to 1996, a number of extensions to the language was therefore discussed [MS93,
Riif94, Mei95, Rud95, Sch95, Far96].

Another important step in this period was the creation of a formal semantics
for MSC. Several semantics were proposed [Til91, dM93, MvWW93, GRG93, LL94,
MR94a], and the process algebra semantics [MR94b, BM95] was agreed upon, and
officially adopted in 1995 [IT95]. This semantic view also provided one of the most
important extensions of MSC, namely that with composition mechanisms, such as
HMSC [Rud95, MR97a].

This and other language extensions were included in a new version of the lan-
guage, which appeared in 1996 [IT96, HL97], MSC’96. However, further extensions
were still wanted. In 2000 a new version (MSC2000) [IT00, Hau00] of the language
was introduced. It contained a number of extensions, the most important of those
being the inclusion of time information [SRM97, Sil98, GDO98], representation of
data [EFM99, Eng00] and object-oriented features such as flow of control [RGG99].
It is hoped that this last extension will make a unification of MSC with time sequence
diagrams from UML [BRJ98] possible. In this thesis, we will look into the way data
has been included in the MSC language in Chapter 6. In Chapters 7 and 8, we will
be looking at message refinement and disrupt and interrupt, two more proposals for
extension of the MSC language, which were not included in the language — although
of course they still might be included in the future.

In the meantime, research on MSC has also continued. The existing semantics
for MSC have been extended to cover the MSC’96 language [MR97b, Ren99, IT9§],
and some new possible semantical frameworks for MSC have been introduced [Kos97,
Hey98, KL98, Klu99, Hey00]. Much research has been going into the automatic or
semi-automatic generation of specifications in SDL or other languages from MSC de-
scriptions [SD97, RKG97, LMR98, KRBG98, Fei99, AKB99, KGSB99, MZ99, Man99,
Mus99, HJ00]. Other research checked how certain properties of a system could be
known from its MSC description, such as race conditions [AHP96], process divergence
and non-local choice [LL95, BALI7b] (however, note that the notion of safe realis-
ability, as defined in [AEY00] seems to cover the actual problems caused by non-local
choice better), necessary buffers [EMRI7b] (see Chapter 5 of this thesis), implementa-
bility by locally specified elements [KRBG98], and the existence of possible unspecified
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behaviours [AEY00]. There are also some more general results: It has been found
how to check a complete MSC description against a partial one [LP97] and whether
traces of MSC contain some with a specific behaviour [AY99]. In [MPS98, MPO0O]
there are some results on decidability of properties of systems described in MSC.

At the same time, research has also gone on into the applications of MSC, and
it now includes such diverse areas as requirements specification [GW96], system de-
sign and software engineering [GRG91, MT96, MRW00, VGMF00], specification of
test purposes [GHNS95, GSDH97, SEGT98, GH00, RSG00a], visualisation of test
cases [Heg95, GW98, RSG00b, GGRO1], formalisation of Use Cases [AB95, RAB96,
BC00, Fei00], detection of feature interaction in telecommunication systems [BB97]
and workflow analysis [Aal99], while attempts are being made in the area of natural
language analysis [End00]. There are also attempts to combine MSC with sequence
diagrams from UML [RGG99, Hau01], and MSC has been introduced as a graphical
syntax [GW98, RSG00b, SG01, BRS01] for TTCN [KW91].

4.3 An Overview of the MSC Language

4.3.1 Basic Constructs: Messages

In Figure 4.2 we see another example of a Message Sequence Chart. It shows the
process of giving a test to a student by a teacher.

msc test
teacher | | student
paper
test
solutions

Figure 4.2: An example of an MSC

The vertical lines are called instances, and show the various entities whose be-
haviours are described by the MSC. In this case there are two instances, one is called
‘teacher’ and the other ‘student’. The blocks at the top and bottom have no special
meaning, they just show the beginning and end of the description of the instance —
which not necessarily coincides with the beginning or end of the instance itself. The
arrows show messages that are sent. In this case the messages are the paper and the
test that are given by the teacher to the student, and the completed test that is given
back to the teacher.
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In this diagram time is running from top to bottom. That is, first the paper is
given, then the test, and finally the student gives back his solutions. However, one
should note that:

1. Sending a message and receiving it are considered two separate actions. That
is, some time passes in between, and other actions may happen in between.

2. Time runs separately on each instance. That is, events (like the sending and
receipt of messages) that are on the same instance are ordered as they appear
from top to bottom in the diagram, but events on different instances need not
be. Their order is not specified. The only order that exists between messages
on different instances is the ordering that is caused by the fact that a message
needs to be sent before it can be received.

For example, in the MSC above the teacher may send the test before the paper
is received. Although it is higher in the diagram, the reception of the paper is on a
different process, so their different positions do not need to correspond with an actual
temporal ordering. Of course, in this example it is not very realistic that there will be
much time between the moment the paper leaves the teacher and the time it reaches
the student, but we could for example think of the materials as being sent through
the mail — in that case the teacher could send the exercises while the paper was still
under way.

On the other hand, the teacher must have given the paper before the student can
receive the test, because the paper must be sent (given) before the test can be sent,
and the test must be sent before it can be received.

The meaning of an MSC is determined by the possible traces, that is the various
orders in which events can take place. In Figure 4.2 there are exactly two:

1. sending ‘paper’, receiving ‘paper’, sending ‘test’, receiving ‘test’, sending
‘solutions’, receiving ‘solutions’

2. sending ‘paper’, sending ‘test’, receiving ‘paper’, receiving ‘test’, sending
‘solutions’, receiving ‘solutions’

It is allowed for messages to cross, or overtake one another. In that case, the
message that is sent first, is received last. What is not allowed, is a cyclic dependency,
that is, two events for which (directly or indirectly) both the first has to come before
the second and the second before the first. Such events would cause the MSC to
become meaningless, since no trace would be possible.

4.3.2 Local Actions

A very simple extension of the language is the local action. This is simply something
that happens at one instance, and has no effects elsewhere. It is shown as a block, and
can be found in Figure 4.1. The action a is here something that is done by instance
i, and does not influence any other instance directly.
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4.3.3 Co-region

Sometimes one does not want to specify exactly in which order events on one instance
take place. For example, if we extend our MSC test with a second student, doing the
same test, we do not want to specify which student is the first to finish and submit
her completed test.

msc test?

student 1| | teacher | |student 2

paper

paper

test

test

solutions

I

| .

, solutions
-———
|

—— e —

Figure 4.3: MSC with coregion

In Figure 4.3 the dashed part of the line showing the teacher’s behaviour is a
so-called co-region. Events in a coregion are not ordered, so the reception of the two
completed tests can occur in any order.

4.3.4 MSC References

When an MSC grows large, it may become hard to read. Several additions are made
to make it possible to break an MSC into pieces.

One way to do this is by describing parts of the MSC separately. For this an
MSC reference expression is used. This is a box, replacing part of the description
of one or more instances, containing the name of a separate MSC that describes the
behaviour of the instances involved. For example, the MSC test could be part of a
larger course MSC, as shown in Figure 4.4.

The box in the MSC course is the reference MSC, referring to the MSC test (by
way of giving its name — see figure 4.2 for a possible content of this MSC). One should
think this as some kind of shorthand notation, what happens in the MSC reference
expression is described by the MSC test.
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msc course

| student | | teacher | a4ministmtil@n
information
test
score
reqult

Figure 4.4: MSC with reference MSC

4.3.5 Inline Expressions

Inline expressions are sections of MSC where a choice, loop or other special construct
takes place. For example, the abovementioned MSC with two students doing their
test at the same time, could also be implemented with an inline expression as shown
in Figure 4.5.

The square construct with ‘par’ in the upper left corner, is the inline expression.
The text in the upper left tells us the type of inline expression, ‘par’ means that it is
a parallel inline expression, that is, the two (or more) parts of the inline expression
(separated by the dashed line) have to be done in parallel.

Other inline expressions are:

Optional (opt): The actions inside the inline expression may be executed or
skipped.

Alternative (alt): Exactly one of the parts is chosen.

Exception (exc): The actions inside the inline expression may be executed
instead of those in the surrounding MSC.

Loop (1loop): The actions inside the inline expression must be executed a num-
ber of times (the minimum and maximum number, which must be either a
natural or the special value infinity, are given).

Of these inline expression, only the parallel and alternative inline expressions have
parts; the other ones consist of just a single box, without a separator.
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msc test?2
|student 1| | teacher | |student 2
| par paper
test
solutions

solutions

Figure 4.5: MSC with Inline Expression

4.3.6 High-Level MSCs

One can go even further, and split up the complete MSC into parts. This way one gets
a picture with a succession of MSCs that have to be gone through in a certain order.
To make this possible, High-level MSCs (HMSCs) have been introduced [MR97a]. An
example of an HMSC is shown in Figure 4.6.

To read a diagram like the one in Figure 4.6, one starts at the start symbol .
Following the vertical line, we first get to the reference MSC teaching, after this to
MSC test, and finally to the end symbol A. The meaning of this, is that the MSCs
teaching and test are combined into one, teaching happening first, and test after
it.

One should note that the way the constituting MSCs are combined implies an
ordering in time, but again the ordering holds only per instance. Thus, when all
events for the teacher in the MSC teaching have been done, teacher can start doing
actions from test, whether or not the student still has actions to do from teaching.

But the possibilities of HMSC are larger than just the sequential ordering of sev-
eral MSCs. In the first place, the MSCs that are being referenced may be HMSCs
themselves, thus allowing for more than two levels of description. But what is more
important are their possibilities of specifying choices and loops.

When our hypothetical student has gone through the test, and seen his result, it
is not unlikely that he will choose to do the test again, and maybe repeatedly do so
until he passes. This possibility is shown in Figure 4.7.

When we go through this figure from the top to the bottom, we first see a small
circle. This is a connection point. Here, the MSC continues along the line going down,
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MSC course

8

teaching

LT

Figure 4.6: High-level MSC

MSC repeated test v

Figure 4.7: HMSC with loop
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irrespective of the question from which of the two arrows it came. After going throug
‘test’, there is another connection point, this time with two exits. This denotes a
choice. Execution of the MSC continues either through the left or through the right
path, but not both. Finally, the arrow that goes up again from ‘failed’ creates a
loop structure.

Of course one could also make more complicated structures, with intertwined
loops, loop escapes, etcetera.

4.3.7 Further MSC Constructs

There are several more MSC constructs that have not been included in this introduc-
tion. These include causal orders, that can be used to force a temporal order between
otherwise unconnected actions, and instance refinement, where it can be specified
in which way a single instance can be decomposed into several separate ones. An
introduction on MSC, where the subjects treated in this chapter are being treated
together with other aspects of the language, is [RGG96b].

A number of new language elements has been introduced in MSC2000. One of
them is data, which will be discussed more extensively in Chapter 6. There are
also extensions regarding (relative and absolute) time, flow of control and the overall
structure of a document consisting of various MSCs. These are discussed in [Hau00].

4.4 Formal Semantics

In this section, we will give an overview of the official process algebra semantics of
MSC. A more extensive discussion can be found in [Ren99], which contains reasons
for various rules, historical notes, properties of the semantics and examples, as well
as a complete semantics, of which we will show only the most important parts.

For the semantics of MSC, each MSC is translated into an expression in process
algebra [BW90]. This process algebra does however contain a number of operators
specifically for MSC. The semantics itself is operational, consisting of rules of the form

cond
————, which can be translated as “When the conditions ‘cond’ are true, a system

T =Yy

in the state x can do a step of the type a to state y”. The basic rules are —
a— €
which says that an event a can do step a, and then results in the empty process e,

and ——, which means that € can terminate, that is, succesfully end without doing
€

any further actions.

The process algebra for MSC differs somewhat from normal process algebra. In
the first place, the semantics of MSC are completely deterministic, that is, if a process
has both the option of doing a followed by b and the option of doing a followed by
¢, then after doing a, it still has both the option of doing b and the option of doing
c. This is unlike normal process algebra, where the process a-b+ a - c can do a to b,
or to ¢, but not to a + ¢. MSC therefore uses the delayed choice operator F+ [BM95].
The deduction rules for F are:
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x| x5y A
zFyl cFy >
yl x Ay =y
zFyl zFy >y
z Sy Sy
zF¥y > Fy

We will first look at a simple example, just a number of local action, see Figure 4.8.

msc simple

Figure 4.8: A simple MSC

First, the various events of the MSC are translated into the corresponding process
algebra events. For an action, this simply is action(i,a), with 7 being the instance on
which the action takes place, and a the text in the action box. Next, the MSC is split
up into parts, which are connected with the ‘weak sequencing’ operator o. Thus, the
MSC above is translated into the process algebra expression action(i, a) oaction(j,b) o
action(i, ¢).

The weak sequencing operator x o y has as its semantics that actions from z are
always possible, while actions from y are possible if and only if there are no actions
from x on the same instance. To translate this into process algebra, an extra relation,
the permission relations ---— is added. z --*— y means that x allows a even if it is
‘after’ z in the MSC, and this results in z changing into y (y can be unequal to z if
x contains a choice, which may be a choice between options some of which do and
some of which do not allow a). The basic SOS-rules for the permission relation are:

l (b
(@) f ®) and T . Here, I(a) is the instance on which the action a takes
b-—b €€

place. Thus, the empty process permits anything, while an action stops other actions
on the same instance, but allows actions on different instances.

Three rules exist for the delayed choice regarding the permission relation, depend-
ing on whether the part to the left of the F, the part to the right, or both permit the
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action:

a a a a a a
€T ---— a’;’,y..._/_; x..._f;,y..._) y’ €T --— a’;’,y..._) y’
TFy -y sFy - Fy

a
TFY --— 1

With this addition, we can give the deduction rules for the weak sequential com-
position (see [Ren99] for more explanation):

zd,yl x&m’,x---a—/»Vy#

xoyl zoy S oy
-ty -y et o -l y Sy
oy - aoy zoy Sz oy

a1 @ " a .
z—=z,x—=2y—y

a / " /
zoy s x'oyFaoy

With these rules and the associativity of o (which is proven in [Ren99]), we find
that the process action(i,a) o action(j,b) o action(i,c) can execute action(i,a) and
go over in € o action(j,b) o action(i,c), and can execute action(j,b) to go over in
action(i,a) o € o action(i, c), but cannot execute action(i,c) because action(i,a) does
not permit action(i,c).

For messages, there is something more to do. If we look at the MSC in Fig-
ure 4.9, the semantics as far as we have seen it now are out(i, -, j,m) o in(i, -, j,m)
(the _ here shows the absence of gates, which are not dealt with in this thesis). Be-
cause [(out(i,, j,m)) # l(in(i, -, j, m)), this process would be permitted to start with
in(i, -, j, m), which is of course unwanted. Fiddling with the permission relation would
not help, because this same MSC could also be split as in(i, -, j,m) o out(i, -, j, m).
Instead, the information is added to the weak sequencing operator, and the expression
is written as out(i, -, j, m) QOUH(ismsy) 5ini - jm) in(i, -, j,m).

The condition @ + b means that before b can be executed, first a has to be
executed, but that b can still be executed n times because a has already been executed
n times more than b. There is a predicate enabled(a, S) which is true if and only if a
is allowed by the set of conditions S, and an update function upd(a,S), which gives
the new set of conditions S after a has been executed. Their definitions are:

enabled(a,S) <&  VpeeAnenNd BeeS=(cZzaVvn>0),
upd(a, S) = {(bBchbBceSAbZaNcEal

u {bn»:>10|b»£>cES/\cEa/\n>0}

u B b ceSAb=a)

The deduction rules for oS are similar to those of o, but to execute an a step,
enabled(a, S) has to be true, while doing so changes S into upd(a, S). This leads to:
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msc message

Figure 4.9: A simple MSC with a message

zl,yd z % @'z - Vy £, enabled(a, S)
oS Y i> ! oupd(a,S) y

xSyl
T ...a_) :L'I,y ...a_> yl T 7L),1- ---a—) xl,y i} y',enabled(a,S)
oS y i> ! oupd(a,S) yl

a
xOSy vy ! oSy
a
r 5oz y Sy enabled(a, S)

:L.Sy i> ! ouprd(a,S) YT 2! oupd(a,S) yl

Then there is the parallel composition operator ||. z || y consists of all actions of

z and y interleaved. Its semantics are:

5y A
a i
rlly—=a2'|ly
Ay Sy
a1
vlly—=zly
a4 [
ll'—)ll',y—)y
a ! !
rlly—=2|lyFz|y

zl,yl
zllyd
a ’ @ '
m..._)m,y ._)y
a ' '
zlly-—=2'y

There are a few more operators, namely a version of the parallel composition with
requirement ||S and repetitions z* and z™f, but those will not be dealt with in this

thesis. Instead, we will refer the interested reader to [Ren99].
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Chapter 5

MSC and Communication
Models

5.1 Introduction

In MSC, a message can be sent and received at any time. In particular, a message
can overtake another message, even if it is sent between the same pair of instances.
Apparently, MSC uses the assumption that either the communication mediums or the
buffers involved in a system can send messages through in any order. If there were
for example only a FIFO buffer between each pair of instances, message overtaking
would be impossible.

The assumptions about the buffering of messages in MSC, are in contrast with
the situation in a specification language such as SDL [IT94], where every entity has
its own FIFO input buffer. Since MSC and SDL are often used in conjunction, there
is a need to clarify this seemingly contradictory situation.

When considering restricted communication mechanisms, it is very natural to
identify subclasses of MSC which exactly satisfy such buffering properties. One can
consider the class of FIFO buffered MSCs, the class of synchronous MSCs, etc. In
fact, the Interworkings language [MvWW93, MRO1] is the latter class.

When considering Interworkings simply as a subset of MSC, an obvious question
to ask is: what exactly is the distinction between synchronous and asynchronous
MSCs? Or, phrased a little bit differently, how can we formally characterise the class
of synchronous MSCs? Finding an answer to this question is not too difficult. An
MSC is synchronous if and only if in every execution trace of the MSC there are no
events between every pair of corresponding send and receive events.

But, how about the question whether an MSC can be implemented using only one
FIFO buffer. And what, if we are allowed to use a number of FIFO buffers? This
gives rise to a more general question. Can a given MSC be implemented by means
of a given communication model? This is the question which will be studied in this
chapter.

Thereto, we define the notion of communication model, we present a formal se-

69



70 CHAPTER 5. MSC AND COMMUNICATION MODELS

mantics of MSC based on partial orders, and we define criteria for an MSC being
implementable in a given communication model. We will not study the complete
range of all possible communication models, but we will single out a number of inter-
esting options, which we systematically derive by looking at the locality of the buffers
between the communicating entities. One can, e.g., assume one single FIFO buffer
for the complete system, or a FIFO buffer between each pair of entities, etc. We will
also take into account the difference between output buffers and input buffers, since
in practice this distinction is often made.

Apart from studying the fundamental concepts behind the implementability of
Message Sequence Charts, there are also more practical motivations for the research
presented here. First of all, the formal relation between scenario specifications in
MSC and complete system specifications in a Formal Description Technique, such
as SDL [IT94], is an important issue in the software engineering process. Not only
the derivation of MSC scenarios from a Formal Description Technique, but also the
synthesis of a complete specification from a collection of MSC scenario specifications
is considered of great importance by many authors and tool builders (see [SDV95,
RKG97, SD97, KRBG98, LMR9IS, Fei99, KGSB99, AKB99, MZ99, HJ00]). This nat-
urally leads to the question which MSCs can and which MSCs cannot be implemented
in the given specification language.

One can also study the same question from a different perspective, namely, given
an arbitrary MSC, how can we restrict (or extend) its semantics in such a way that
it can be implemented in a given communication model. This question is partly
studied by Alur et al. [AHP96], who also derived supporting tools. Our starting
point, however, will be that we consider the standard MSC semantics.

This brings us to the variety of ways in which MSCs are used, some of which
are essentially different. We mention the distinction between hot and cold MSCs
(see [DH99]) where (parts of) MSCs must or may occur in the implementation and
we mention the difference between positive and negative use of MSC (an MSC must
occur or is not allowed to occur). Finally, some users apply MSC to specify one single
trace, while others consider the complete set of traces generated by an MSC. This
latter dichotomy is wide-spread and, therefore, we will study the main question from
both perspectives: one trace of an MSC must be implementable (the weak case) or
all traces of an MSC must be implementable (the strong case).

Since all implementation relations introduced in this chapter identify subclasses
of the class of Message Sequence Charts, it is interesting to know how these classes
relate. The answer to this question is formulated as a hierarchy of communication
models for Message Sequence Charts.

We present our research in the following way. In Section 5.1.1 we introduce the
subset of the MSC language called basic MSCs, and give a simple formal semantics
based on partial orders. The communication models which we study are defined in
Section 5.2.1. In order to be able to deal with two distinct buffers between two commu-
nicating entities, we will extend the standard partial order semantics in Section 5.2.2.
The definition of implementability of a single trace with respect to a communication
model is given in Section 5.2.3. In Section 5.3, we classify traces according to their
implementability. This work is lifted to the level of MSCs in Section 5.4, where we
first study the strong case (Section 5.4.1), and then the weak case (Section 5.4.2).



5.1. INTRODUCTION 71

The overall picture combining the strong and the weak case is given in Section 5.4.3.
We also give a number of characterisations of the implementability relations, which
make it possible to determine the implementability of a given MSC algorithmically
(see Section 5.5). Section 5.6 contains a comparison with related literature and in
Section 5.7 we summarise our findings and discuss options for further research.

5.1.1 Basic Message Sequence Charts

In this chapter, we will not be looking at the complete MSC language. Rather, we
take only a subset, consisting of just instances and messages. In particular, we will
have no co-regions, no HMSCs and no inline expressions. Because we have no HMSCs,
each description will consist of just a single MSC. We will also not use the official
semantics, but use a much simpler semantics that is equivalent to it when used for
these simple MSCs, but not strong enough to give the semantics of more complicated
structures. Furthermore, we will be assuming that the MSCs are all semantically
correct, that is that they do not contain deadlocks through cyclic dependencies.

The easiest way to express the semantics of such a simple MSC is by using a
partial order on the events that are comprised in an MSC. Depending on the particular
dialect of the MSC language, one can assign different classes of events to an MSC.
For example, in Interworkings [MvWW93, MR01] every message is considered to be
a single event. There is no buffering, and thus communication is synchronous.

In MSC [IT00], messages are divided into two events, the output and the input
of the message. The output of message m is denoted by !m and the input by ?m.
The only assumption about the implementation of communication is that an output
precedes its corresponding input. An MSC describes a partial order on output and
input events.

Definition 1 (basic MSC) A basic MSC is a quintuple (I, M,from,to, {<;}icr),
where [ is a finite set of instances, M is a finite set of messages, from and to are
functions from M to I, and {<;}ies is a family of orders. For each i € I it is required
that <; is a total order on {Im | from(m) = i} U {?m | to(m) = i}. We use the
shorthand Ens(M) to denote the set {lm,?m | m € M}.

In the above definition, from(m) denotes the instance which sends message m.
Likewise, to(m) denotes the instance which receives message m. Given an instance 4,
the ordering <; denotes in which order the events attached to instance ¢ occur.

The partial order denoting the semantics of an MSC £ is derived from two re-
quirements. First, the ordering of the events per instance is respected, and second, a
message can only be received after it has been sent. The first requirement is formalised
by defining the instancewise partial order <"t (k being the MSC under discussion):

<= <

icl
and the second requirement is formalised by the output-before-input order <zi:

<9={(!m,?m) | m e M}.
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Now, we define the partial order induced by the MSC as the transitive closure
(denoted by T) of the instancewise order and the output-before-input order. For an
MSC k, we denote this order by <™ or by <™ if k is known from the context.

Definition 2 For a given MSC k = (I, M,from,to, {<;}icr), the relation <'*¢ is
defined by <se= (<ipst U <9)t.

From an operational point of view, one can say that an MSC describes a set of
traces. Such a trace denotes the ordering of output and input events (!m and ?m).

Definition 3 (Traces) Given a set of messages M, a trace t over M is a total order-
ing (e1,es,...,6,) of the set Emsc(M). A trace (e1,e2,...,€,) is denoted e ez ... e,.

We denote the ith element of a trace t by ¢;, and its length by |¢|. As a consequence
of the above definition we can associate with each trace ¢ an order <}®“®. This order
is useful in expressing that a certain trace ¢ is actually a trace of an MSC k.

Definition 4 (msc-trace) A trace t is said to be an msc-trace of the MSC k if and
only if it is defined over the messages M of k, and <*cC<jrce,

Lemma 5 For an MSC k over M, and events e, e’ € Ens(M), we have e <{ ¢’ for
all msc-traces t of k if and only if e <*¢ €'

Proof The ‘if’-part is trivial. For the ‘only if’-part we use contraposition. Suppose
that e £ ¢’. Then the relation <J'* U{(¢/, )} does not contain a cycle. Thus, it can
be extended to a total order <. Because <™°C<, < will be the trace-order <} of
some msc-trace ¢ of k. In this msc-trace we will have e’ <{" ¢, and thus e i ¢'. B

5.2 Implementation Models

5.2.1 Implementation Models for Communication

In this section we discuss possible architectures for realising an MSC. We consider
only implementation models consisting of FIFO buffers for the output and input of
messages. For msc-traces, we define what it means to be implementable on some
architecture.

The particular implementation models which we are interested in are constructed
of entities that communicate with each other via FIFO buffers. We assume that the
buffers have an unbounded capacity. We discern two uses of buffers, namely for the
output and for the input of messages.

A second distinction can be made based on the locality of the buffer. From most
global to most local we distinguish the following types:

e global: A global FIFO buffer: All messages from all instances pass this buffer.

e inst: A FIFO buffer, local to an instance: All messages sent (or received) by one
single instance go through the same buffer.
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e pair: A FIFO buffer, local to two instances: All messages that are sent from one
specific instance to another specific instance go through this buffer.

e msg: A FIFO buffer, local to a message: There is one buffer for every message.

This last model, a buffer per message, is a specific architecture to catch up the
cases in which the buffers do not behave like FIFO queues, but as random-access
buffers. Taking into account the assumption that messages are unique, it can easily
be seen that it is equivalent to a global random-access buffer. A communication model
with only a random-access buffer represents the implied model of the MSC standard:
the only assumption made about the implementation of communication is that output
precedes input, no more, and no less.

Finally, we consider the following possibility:

e nobuf: There are no buffers; communication is synchronous.

We assume that all output buffers are of the same type, and similarly that all
input buffers are of the same type. This results in four possibilities for the output as
well as for the input. Adding the possibility of using no buffer at all, we have a total
of 25 possible architectures, as shown in Figure 5.1. To denote the elements of this
scheme, we use the notation (X,Y), where X denotes the type of output buffer, and
Y the type of input buffer.

input
outpu nobuf global inst pair msg
nobuf o ® () o ®
global [ o o ) ®
inst ® o ® () ®
pair o o o o o
msg ® [ ® o o

Figure 5.1: Implementation models.

In Figure 5.2 we give examples of a physical architecture of three communication
models. A circle denotes an instance, an open rectangle denotes an output buffer,
a filled rectangle denotes an input buffer, and an arrow denotes a communication
channel. Each example contains three instances. The first example illustrates the
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(nobuf,global) model. There is no output buffer, and one universal input buffer. As
there is no output buffer, the messages go straight into the input buffer. This single
buffer could be regarded as an output buffer as well, so this example is an illustration
of (global,nobuf) too if we replace the input buffer by an output buffer. The second
example shows the (global,inst) model. There is one general output buffer and every
instance has a local input buffer. The third architecture is an example of the (pair,pair)
model.

Figure 5.2: Some models: (nobuf,global), (global,inst) and (pair,pair).

Please note that not all models described in Figure 5.1 make sense to an equal
degree. For example, the model (global,inst) (i.e., a shared medium for transmit-
ting messages and an input buffer for each entity) is more natural than the exotic
(global,pair) model.

Many of these architectures occur in practice as either the underlying commu-
nication architecture of a programming language or as a physical architecture. We
give some examples of languages. The model (nobuf,nobuf) is typical for process al-
gebraic formalisms based on synchronous communication, such as LOTOS [ISO88b]
and ACP [BK84]. The specification language SDL [IT94, BHS91], which is closely
related to MSC, has as a general communication model (pair,msg), but if we leave out
the save construct we obtain (pair,inst) and if we also do not consider the possibility
of delayed channels, we have (nobufinst). Some examples of physical architectures
are: an asynchronous complete mesh has a (nobuf,pair) architecture, and an Ethernet
connection with locally buffered input and output behaves like (inst,inst).

5.2.2 Extending the Semantics

In the previous section we have seen that we consider implementation models of
communication in MSCs where each message passes at most two FIFO buffers. In
order to reason about such implementation models we will extend the semantics of
MSC in this section. In this extension of the semantics, a single communication of
message m will be modeled by three events. These are the events !m, !!'m, and ?m.
The intuition here is, as expressed in Figure 5.3, that !m denotes the putting of a
message into an output buffer, !!m is the transmission of the message from the output
buffer to the appropriate input buffer, and ?m is the removal of the message from the
input buffer. We assume these events to be instantaneous.

The intermediate transmit events !!m play a crucial role in our description of
the communication models. However, we have formulated the semantics of an MSC
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C 'm I"m - m C

Figure 5.3: Events associated with a communication.

without using transmit events. In the remainder of this section we will define a
semantics of MSC in which the transmit event occurs. The approach is similar to the
previously defined semantics.

The order <; is lifted in the trivial way to the set Eimp(M) = {Im,?m,!lm | m €
We define the output-before-transmit-before-input order by

<= {('m,""m), ("'m,?m) | m € M},

impl

and the relation <};* by adding the instancewise ordering on the MSC.
Definition 6 For a given MSC k = (I, M, from,to,{<;}icr), the ordering <ikmpl is
defined by <}"™'= (<ifst U <§¥)*.

It is easy to see that <™ is the restriction of <'™P' to output and input events.

From an operational point of view, one can say that an MSC describes a set of
traces. We distinguish msc-traces and impl-traces. An msc-trace denotes the ordering
of output and input events (!m and ?m), an impl-trace those of transmit events (!'m)
as well.

Definition 7 (impl-traces) An impl-trace is the same as an msc-trace (see Defini-
tion 4), except for the fact that it contains transmit events as well.

Definition 8 (Trace order) For a trace ¢t over a set of messages M we define an
order <§ on Eimp(M), for all 1 <i <|t| and 1 < j <|t| by ¢; <€ ¢; & i< j.

Definition 9 (MSC-trace) A trace ¢ is said to be an impl-trace of the MSC k if
and only if it is defined over the messages M of k, and <'kmp|§<§”°e.

An impl-trace can be turned into an msc-trace by removing all transmit events
("'m). If, for an impl-trace t this results in an msc-trace t', then ¢ is said to be an
extension of ¢'. It is not hard to see that an impl-trace ¢ is an MSC-trace of an
MSC k if and only if the trace of which it is an extension is a trace of the MSC and
additionally the output-before-transmit-before-input order is respected: <zti§<§”°e.

The MSC from Figure 5.4 implies the following orderings: la <™¢7a, b <™M7h,
and ?a <™<?b. The first two are implied by the <®-order, the third by the <"t-
order. The MSC has exactly three msc-traces: !la?a!b?h, la!b?a?b, and bla?a?h.
These msc-traces can be extended to ten impl-traces, such as la!la?a!b!!'b?b and
la!b!b!la ?a 7h.
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msc Example 2

i j k

Figure 5.4: Example MSC.

5.2.3 Implementability

The main question of this chapter is, whether a system with a given implementation
model can exhibit the behaviour described by a certain MSC. To answer this question,
we first give a formal definition of what it means for a trace to have a certain im-
plementability property. The definitions below can be seen as a formalisation of the
notions introduced in Section 5.2.1.

Definition 10 (Output-implementability)

e nobuf-output: Every output event is directly followed by the corresponding
transmit event. Thus, output and transmit events may be combined into one
new event. An impl-trace ¢ is nobuf-output implementable if and only if

Voo 3 e g gty
meM eEEimpl(M)

e global-output: The order of two output events is respected by the corresponding
transmit events. An impl-trace ¢ is global-output implementable if and only if

trace ! trace !
YEM!m <PClm! =m <GB Im/ .
m,m

e inst-output: The order of any two output events from the same instance is
respected by the corresponding transmit events. An impl-trace ¢ is inst-output
implementable if and only if

v from(m) = from(m') = (Im <{Im' =!lm <{lm').
m,m’ €M
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e pair-output: The order of two output events with the same source and the same
destination, is respected by the corresponding transmit events. An impl-trace ¢
is pair-output implementable if and only if

Y from(m) = from(m') A to(m) = to(m')
M EM o (Im <ol = llm <iRCellm!).
e msg-output: An impl-trace t is always msg-output implementable.

For msg-output implementability we can remark that it can be put in line with
the three definitions preceding it, by restating it as

vV m=m'= (Im <m' =m <2elm).
m,m’' €M

For nobuf-output implementability such a translation is not possible; this is qualita-
tively another definition. Also note that, because < is a total order, !m <}rce
Im’ =lm <{P!lm/ is equivalent to both !m <j?Im’ &!llm <!m' and Im <}2c
Im! <llm <brecellm/!,

The input implementabilities are defined analogously.
Definition 11 (Input-implementability)

e nobuf-input: An impl-trace ¢ is nobuf-input implementable if and only if

- 3 lm <trace o tracep,

meM eeEimp|(M) t t

e global-input: An impl-trace ¢ is global-input implementable if and only if

trace ! trace !
V,EM!!m <Alm! = m <GP tm/ .
m,m

e inst-input: An impl-trace ¢ is inst-input implementable if and only if

- mIEMto(m) =to(m') = (Im <?lm' =?m <{??m/').

e pair-input: An impl-trace ¢ is pair-input implementable if and only if
Y from(m) = from(m') A to(m) = to(m')
T EM = (Itm <ERcellm! = 7m, <ireetm/),
e msg-input: An impl-trace ¢ is always msg-input implementable.

Having defined formally the notions of output- and input-implementability, we
now combine them and obtain our notion of communication model.

Definition 12 An impl-trace is said to be (X, Y)-implementable (for X,Y € {nobuf,
global, inst, pair, msg}) if and only if it is X-output implementable and Y-input im-
plementable. An msc-trace is said to be (X, Y)-implementable if and only if it can be
extended (by adding !!/n’s) to an impl-trace that is (X, Y)-implementable.
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5.3 Classification of Implementability of Traces

To each of the implementation models defined in the previous section we can associate
the set of all traces that are implementable in the model. Based on the subset relation
on these sets of traces, we can order implementation models. We consider two models
equivalent if they have the same set of implementable traces.

In Lemma 13 we give a classification of the notions of output-implementability. It
states that a trace that is implementable on a certain architecture is also implement-
able on an architecture where these buffers are partitioned into buffers with a more
restricted locality. For example, if a trace can be implemented on an architecture
with one output buffer per instance, it can also be implemented on an architecture
with an output buffer per pair of instances (provided the input buffers remain the
same).

Lemma 13 (Classification of output-implementability)
e Every nobuf-output implementable trace is global-output implementable.
e Every global-output implementable trace is inst-output implementable.
e Every inst-output implementable trace is pair-output implementable.
e Every pair-output implementable trace is msg-output implementable.

Proof  For impl-traces this follows directly from the definitions. For msc-traces
this follows from the definition plus the fact that it holds for impl-traces. |

The following lemmas give the orderings between the implementation models.

Lemma 14
e Every (inst,global)-implementable msc-trace is (inst,nobuf)-implementable.

(
e Every (global,global)-implementable msc-trace is (global,nobuf)-implementable.
e Every (pair,pair)-implementable msc-trace is (pair,nobuf)-implementable.
e Every (msg,msg)-implementable msc-trace is (msg,nobuf)-implementable.

Proof  We show the proof for (inst,global). The other proofs are roughly analogous.
Let ¢ be an msc-trace over the set of messages M, and let ¢’ be an impl-trace that is
an (inst,global)-implementable extension of ¢. It suffices to construct an (inst,nobuf)-
implementable extension t”’ of t. We create t”, for which we will prove that it is
(inst,nobuf)-implementable, in the following way: Starting from ¢, for each message
m € M we add the transmit event !!m just before the input event ?m. This ¢ is
nobuf-input implementable by definition, so it suffices to prove that ¢ is inst-output
implementable. Thereto, let m, m' € M such that from(m) = from(m’). We have to
prove that !m <[2lm' =!lm <J2¢!m’.

Suppose that !m <}?°!m/. Then, since ¢" is an extension of ¢, we have !m <}
'm/, and similarly, since ¢’ is an extension of ¢, Im <}*®!m'. Using that t' is inst-
output implementable and from(m) = from(m') we have !!m <}{*®!!m’. By using that
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t' is global-input implementable, we also have ?m <}?®?m’. Since ¢’ is an extension
of ¢ we have ?m <{™“?m' and since t" is an extension of ¢ also ?m <}?°*?m/'. Since
t'" is nobuf-input implementable, we obtain !!m <}2¢!lm’, which completes the proof.
|

Lemma 15 e Every nobuf-input implementable trace is global-input implement-
able.

Every global-input implementable trace is inst-input implementable.
e Every inst-input implementable trace is pair-input implementable.

e Every pair-input implementable trace is msg-input implementable.

Every (global,inst)-implementable msc-trace is (nobufinst)-implementable.

(
Every (global,global)-implementable msc-trace is (nobuf,global)-implementable.
e Every (pair,pair)-implementable msc-trace is (nobuf,pair)-implementable.

(

e Every (msg,msg)-implementable msc-trace is (nobuf,msg)-implementable.
Proof Fully analogous to Lemmas 13 and 14. u

Next, we describe how the above lemmas are useful in ordering the models. Lemma
13 provides us with a partial ordering on the various implementations: Any (X,Y)-
implementable trace is implementable by all implementation models located to the
right of or below (X,Y) in Figure 5.1. Lemmas 13 to 15 give us the equivalences as
expressed in Figure 5.5 by means of the clustering of implementation models.

For example, the models from the last column are equivalent. This can be seen as
follows. Because of the analogue of Lemma 14, any (msg,msg)- implementable msc-
trace is (nobuf,msg)-implementable, while Lemma 13 gives that any (nobuf,msg)-im-
plementable msc-trace is (X,msg)-implementable, and every (X,msg)-implementable
msc-trace is (msg,msg)-implementable.

Now we have reduced the number of implementation models to only seven different
classes. Of course, some of these could still be equivalent for other reasons than the
above lemmas. That this is not the case, will be seen in Corollary 20 below. We name
the equivalence classes as follows: nobuf, global, inst_out, inst_in, inst2, pair, msg (see
Figure 5.5).

Of these, the first two and last two will be clear immediately, inst_out means that
there are instancewise output buffers and global or no input buffers, inst_in means
that there are instancewise input buffers and global or no output buffers, and inst2
means that there are both an instancewise output buffer and an instancewise input
buffer.

Theorem 16 For traces, the seven implementation models are ordered as is shown
in Figure 5.6.
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input
outpu nobuf global inst pair msg

nobuf [ o o o o
nobuf

global [ [ [ o o
global inst_in

inst o o o o [
inst_out inst2

pair o o o o o
pair

msg [ o o o o
msg

Figure 5.5: Equivalence of implementation models for traces.

Proof  This follows from the Lemmas 13 to 15 as explained above. ]

Note that of these seven cases only inst2 is not of the form (X, nobuf) or (nobuf, X).
As these forms imply that there is respectively no input buffer or no output buffer, of
these seven cases only the case inst2 needs two buffers, all other cases can be modelled
such that each message goes through at most one buffer.

It will prove useful to have a characterisation of these implementabilities (except
for inst2 of course) that does not use transmits.

Lemma 17 Let ¢t be an msc-trace over a set of messages M. Then:

e ¢ is nobuf-implementable if and only if

v - 3 Im <tt:race e<;race?m;
MmEM  e€Ems.(M)

e tis global-implementable if and only if

trace ! trace I,
Vo Im <GPS =S m GPTm
m,m’' €M

e tis inst_out-implementable if and only if

‘Y’EMfrom(m) = from(m') = (Im <{®Im' =7m <{?°m’);
m,m

e ¢ is inst_in-implementable if and only if

VIEM to(m) = to(m') = (Im <{**Im/ =2m <{*?m/);
m,m
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nobuf
global

inst_out inst_in
inst2

pair

® -

Figure 5.6: Ordering of the implementation models for traces.

e { is pair-implementable if and only if

\ from(m) = from(m') A to(m) = to(m')
M EM = (Im <celm! =?m <{Peem!);

e ¢ is always msg-implementable.

Again note that because <} is a total order, Vpm, menm!m <{2€Im' =?m <jrace
?m' can be replaced by Vi, menm!m <?€Im’ &?m <i™€?m' without loss of correct-
ness.

Proof  The proofs for this are easily found by realising that a msc-trace is (X,nobuf)-
implementable exactly if the conditions for X-output implementability hold with !'m
everywhere replaced by ?m. |

5.4 Classification of MSCs

The use of MSCs in practice (and theory) is twofold. First, MSCs are often used
to restrict the behaviour of communicating entities. In this use, it is the intention
that the actual behaviour of the system is contained in the behaviour specified by
the MSC. It does not mean that all behaviour of the MSC must be realised in the
system. In this case only one of the traces of the MSC has to be implementable
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in the given communication model. This notion of implementability is called weak
implementability.

On the other hand, if the language MSC is used for the description of required
behaviour (as for example in use cases), it is intended that each of the behaviours
specified by the MSC is realised. In this case all traces of the MSC have to be im-
plementable in the given communication model. This notion of implementability is
called strong implementability.

We first focus on strong implementability, then on weak implementability. After
this we consider the relation between classes from the strong and weak spectrum.

5.4.1 Strong Implementability

Definition 18 An MSC £k is said to be strongly X-implementable, notation X;-im-
plementable, if and only if all msc-traces t of k are X-implementable.

From this definition it follows immediately that the ordering of the implementation
models for traces as given in Figure 5.6 also holds for MSCs as far as strong implement-
ability is concerned (see Figure 5.10). Next, we demonstrate that the implementation
models, obtained by lifting them from the trace level to MSCs in the strong way, are
indeed different. This is achieved by finding examples of MSCs that are in one class
but not in another.

MSC 1 in Figure 5.7 shows an example that is globalg-implementable, but not
nobufs-implementable. It is not nobuf;-implementable, because the trace !a!b?a 7b is
not. The input events necessarily have to be ordered in the same way as the output
events, so it is globals-implementable.

msc 1

Figure 5.7: MSCs to distinguish the implementation models: strong case (1)

MSC 2a in Figure 5.8 is inst_outg-implementable, but not globals-implementable
due to the trace !bla?a?b. That MSC 2a is inst_outs-implementable can be seen as
follows: All messages go through a different output buffer, so there is no problem
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with the output buffers at all. Similarly, MSC 2b is inst_ing-implementable, but not
globals-implementable due to the trace !a!b?b7a.

MSCs 2a and 2b show the difference between inst_outs and inst_ing. MSC 2a is
inst_outs-implementable, as mentioned before, but not inst_ing-implementable. The
trace !b!a ?a 7b is not inst_in-implementable, because the input events of instance j do
not reach the input buffer in the order in which they are to be manipulated. For MSC
2b the reverse is the case: It is inst_ing-implementable, but not inst_outs-implement-
able. MSC 2a is inst_outs-implementable and therefore also inst2g-implementable. We
have already established that it is not inst_ing-implementable. Similarly, MSC 2b is
inst_ing and inst2s-implementable, but not inst_outs-implementable. Together, these
show that inst_outg, inst_ing and inst2; are all different.

One might suspect that the class of inst25-implementable MSCs is simply equal to
the intersection of the classes of inst_outs-implementable and inst_ing-implementable
MSCs. This is not the case, as can easily be shown by combining the MSCs 2a and
2b into one MSC (see MSC 8 in Figure 5.16).

MSC 3 in Figure 5.9 is an example of an MSC that is pairs-implementable, but
not inst2;-implementable. It is easy to see that it is pairg-implementable, because
each message goes through a different buffer. Its only msc-trace is lcla?alb?b?c.
If we try to extend this to an inst2-implementable impl-trace t', we need to have
e <fracellg <tracellp <tacelle, which is impossible (the first <! is because of the
inst-output implementability and !e <"la, the second is clearly true for every impl-
trace of the MSC, and the third is because of the inst-input implementability together
with 7b <t@ce?¢).

Finally, MSC 4 shows the difference between pairs- and msgg-implementability. All
other implementation models are also pairwise different. This result is obtained due
to the transitive closure of the ordering as presented in Figure 5.10.

Together the examples used above show that if we look at strong implementability,
the seven remaining implementation models are indeed different for MSCs, and thus
that they are also different for msc-traces.

Theorem 19 The implementation models for strong implementability of Figure 5.10
are different and these are ordered as expressed in Figure 5.10.

Proof In the above text we have demonstrated by means of counterexamples that
the implementation models must be different. Also the ordering has been explained
above. |

Corollary 20 The classes nobuf, global, inst_out, inst_in, inst2, pair, and msg are
different for MSC-traces.

5.4.2 Weak Implementability

Definition 21 An MSC £ is said to be weakly X-implementable, notation Xy -imple-
mentable, if and only if there is an X-implementable msc-trace ¢ of k.
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msc 2a

mse 2b

Figure 5.8: MSCs to distinguish the implementation models: strong case (2)
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msc 3

Figure 5.9: MSCs to distinguish the implementation models: strong case (3)

As was the case for strong implementability, for weak implementability we also
have the ordering as expressed in Figure 5.6 as a starting point. However, using weak
implementability, we do not have anymore that all implementation models differ. To
see this, we first give an alternative way to characterise some of the implementations
and prove that these are equivalent to the original definition.

We will use some new relations (to denote these relations we will use the same type
of symbols as we have used to denote partial orders) to give this new definition. The
idea is that these new relations give an ordering requirement that must be fulfilled by
a trace so as to be inst_out-implementable, inst_in-implementable or inst2-implement-
able. For example, to be inst_out-implementable, each time two messages m and m/
come from the same instance, they must be received in the same order as the order
in which they were sent. Because they are on the same instance, there will be some
<Msc_order between !m and !m'. To ensure that the trace has the receipts in the same
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nobuf;

globalg

inst_outs inst_ing

inst2

pair;

msgs

Figure 5.10: Ordering scheme for strong implementability.

order, we will have to add the equivalent order between ?m and ?m/'.

Definition 22 Let k be an MSC over the set of messages M. Then we define the
relations <} and <} on Ems (M) and <?2 on Eimp (M) as follows:

<o= (<msey {(?m,?m') | m,m' € M Afrom(m) = from(m')Alm <Pslm'})*,
<= (<msey {(Im,!m') | m,m' € M Ato(m) = to(m')A?m <P<tm'})*,

<i= (<i1cmp| U{("'m,!'m/) | m,m’ € M Afrom(m) = from(m')A!m <ikmp|!m’}
U{(1tm, 'm’) | m,m’ € M Ato(m) = to(m')A?m <;™'?m'})*.

A picture of these orderings can be seen in Figure 5.11. It shows an MSC together
with its <msc, <Ml <o il and <2 relations. For the last three, the orderings
that have been added when compared to <™ or <P have been dashed, while the
orderings that caused these extra orderings have been drawn fat.

The inst_out-implementable traces of the MSC are also traces of the ordering <
as they respect the requirements for inst_out-implementability by definition, and vice
versa. Basically this is what is expressed in Lemma 23.

Lemma 23 Let t be an msc-trace of an MSC k. Then,

e t is inst_out-implementable if and only if <o C<trace;
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Figure 5.11: Explanation of the <°, < and <'? relations

e t is inst_in-implementable if and only if <}l C<trace;

e ¢ is inst2-implementable if and only if there exists an extension ¢ of ¢ such that
<2 trace,

Proof We only give the proof for the last proposition. The proofs for the first two
propositions follow the same line.

First, suppose that ¢ is inst2-implementable. Then we must prove that <?C<tace
for some impl-trace ¢’ which is an extension of ¢. Let the impl-trace ¢’ be an arbitrary
inst2-implementable extension of ¢ (the existence of such a trace follows trivially from
Definition 12). Suppose that e <2 e’ for arbitrary events e, e’ € Emp(M). Now it
suffices to prove e <! ¢’. Since e <2 e’ we have the existence of events ej, - , e,
such that e = e;, €/ = e, and for all 1 <7 < n we have one of the following:

impl .
® e; < €iy1;

e ¢; =!lm and e;1; =!!m' for some m,m' € M such that from(m) = from(m’) and
'm <'kmpl!m’;

e ¢; =!'m and e;41 =!!'m’ for some m,m’ € M such that to(m) = to(m') and
?m <P

In the first case we immediately have e; <! e;41. Due to the fact that ¢’ is an
inst2-implementable impl-trace, and thus both inst-output and inst-input implement-
able, we can conclude that e; <§5a°e e;+1 for the second and third case as well (see
Definitions 10 and 11). Since <!f*® is transitive we have e <}[*®® ¢’, which completes

this part of the proof.
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Second, suppose that <i,3§<ﬂace for some impl-trace ¢’ which is an extension of .
We must prove that ¢ is (inst,inst)-implementable. Thereto, it suffices to show that
t' is (inst,inst)-implementable, i.e., that ¢’ is inst-output implementable and inst-input
implementable. We prove that ¢’ is inst-output implementable, the proof that ¢’ is inst-
input implementable is analogous. Let m,m’ € M such that from(m) = from(m').
Then it suffices to show that !m <{*!m’ =!Im <{°!lm’. Thus, suppose that
Im <aclm/. Since from(m) = from(m'), we have Im <P*!m’. So !lm <2!!m'. Be-
cause <Z2C<!ac® we therefore have !lm <fac!lm’. [

Thus far, we have seen that the ordering <i,§ contains all inst_out-implementable
traces of MSC k. An MSC k is inst_outy-implementable if and only if it has a trace
t that is inst_out-implementable. Clearly, such a trace exists if and only if there is a
trace for the ordering <i,?, in other words, if and only if <i,§ is cycle-free.

Theorem 24 Let k& be an MSC. Then,
e k is inst_outy-implementable if and only if <i,? is cycle-free;
e k is inst_in,-implementable if and only if <! is cycle-free;
e [ is inst2-implementable if and only if <?? is cycle-free.

Proof Follows immediately from Lemma 23. ]

We use the alternative characterisations provided by Theorem 24 in the proof of
the equivalence of the classes inst_out,, inst_in,, and inst2,,.

Lemma 25 Let k be an MSC over the set of messages M and let m,m' € M. If
?m <i°?m', then !!m <2!lm’

Proof  Suppose that ?m <!°?m/'. Then by the definition of <!* we have the existence
of events ey, - ,e, such that e; =?m, e, =?m/, and for 1 < ¢ < n we have one of
the following;:

msc .
® ¢e; <p o €itl;

e ¢; =7p, e;11 =7p’ for some p,p’ € M such that from(p) = from(p’) and !p <J*¢

Ip'.

In the second case we have !!p <ik2!!p’ directly from Definition 22. In the first case
we have a sequence of events where the smallest steps are due to <™t or due to <°'.
In this sequence any subsequence of events which are defined on the same instance
can be replaced by one single step. As a result we have the existence of messages
my,--- , My such that

e; Sznst!ml <0|?1n1 <|nst!1n2 <°'?m2 <|nst <|nst!mn, <°'?mn/ Sznst eitl,

where f <5t f' is short for f <™t f’ or f = f’. Now we observe that we only have
the following three possibilities for <'"st:
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e lg <™tlg’ for some ¢,q' € M such that from(q) = from(g'). Then also !lq <2ng'
by the definition of <™.

o 7q <"t?¢' for some q,q' € M such that to(g) = to(q'). Then also !lg <21g,
again by the definition of <2.

e 7g <i_”5t!q’ for some ¢,¢' € M such that to(g) = from(¢'). Then !lg <ikmp'?q <i,cmpI
lq' <'kmp|!!q', so clearly !lg <'kmp|!!q’ and !lg <2!lg’ (since <',62§<'kmpl).
Thus, we obtain !le; <ikz!!ei+1 for all 1 <4 < n. Therefore !!m <ik2!!m’. |

Lemma 26 The implementation models inst_out, inst_iny, and inst2,, are all equiv-
alent.

Proof  We show that each inst2,,-implementable MSC is also inst_out-implement-
able. The reverse implication is trivial, and the proofs with inst_iny, are analogous.
From Lemma 24 we see that it suffices to prove that <© is cycle-free if <2 is cycle-
free. We prove this using contraposition, so we assume that < has a cycle. Let
er <© ey < ... < e, < ¢ be an arbitrary cycle such that for every ordering
in the cycle, say e; <'° e;;1, either e; <™ e;,1, and hence e; <2 e;;1, or ¢; =?m,
eir1 =!m' for some m,m' € M such that !m <™<!m’ and from(m) = from(m') (any
cycle can be extended to some cycle of this form by the addition of events).

If the first is always the case, then we have a cycle in <™, so certainly in <'2.
Now assume we have the second at least once in the cycle. In that case we have at
least two input events in the cycle, say ?m and ?m/. Then ?m <°?m’ and ?m' <°?m.
Lemma 25 gives that this implies that !!m <?2!!m/ and !!m’ <*?!!m, so <2 has a cycle.
|

Lemma, 26 establishes that the classes inst_out,,, inst_iny,, and inst2,, are equivalent.
In the remainder we denote this class by inst,,. The remaining models are all different.
MSC 3 and MSC 4 in Figure 5.9 show the difference between insty, and pairy, and
pairy, and msgy,, respectively, in the weak case too (these MSCs have only one msc-
trace, so their weak implementability equals their strong implementability). MSC 5
in Figure 5.12 is global,-implementable, but not nobufy-implementable. The trace
la'b?a?b is global-implementable, but because both output events must have been
executed before any input event can be processed, there is no nobuf-implementable
trace.

MSC 6 is insty-implementable, but not global,-implementable. It is not globaly,-
implementable, as can be seen thus: la <™€lb, so if a trace ¢ of this msc is global-
implementable, we must have ?a <!®?h. Because !d <™?q and ?b <™¢le, we get
Id <irle. But we also have 7¢ <™¢?d, and thus ?¢ <}“?d, from which it follows that
t cannot be global-implementable. On the other hand, the trace la!b!d?a 7b!c?c?d is
inst_out-implementable, so the MSC is inst,-implementable.

Theorem 27 The implementation models for weak implementability of Figure 5.13
are all different and they are ordered as expressed in Figure 5.13.
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msc 5

~
.

msc 6

Figure 5.12: MSCs to distinguish the implementation models: weak case.

Proof The counterexamples that imply that the implementation models are dif-
ferent are given above. The ordering of the models is inherited from the ordering
of the implementation models with respect to traces. Lemma 26 provides that the
implementation models inst_out,, inst_iny,, and inst2,, are equivalent. |

5.4.3 Combining the Strong and Weak Hierarchies

The relations between the classes in one of the two hierarchies have been studied
extensively in the previous sections. We have 12 possible implementations left: nobufy,
global, inst_outs, inst_ing, inst2g, pairs and msg, in the strong case, and nobufy,, globaly,,
insty, pairy, and msgy, in the weak case. From the definitions of strong and weak im-
plementability it is clear that any Xs-implementable MSC is also Xy-implementable.
The remaining classes are ordered as shown in Figure 5.14.
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nobuf,,

globals,

inst,

pairy,

msgy,

Figure 5.13: Ordering scheme for weak implementability.

nobuf, =T nobuf

global, > global,
inst_out, inst_ing

inst2 =~ insty,

pair, ~@ rair.

msgs '. MSgw

Figure 5.14: Incomplete hierarchy.
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An arrow pointing from one of the classes to another means that all MSCs that are
implementable in the communication model corresponding to the first class are also
implementable in the communication model corresponding to the second class. Any
superfluous arrows (those that can be inferred from the transitivity of the relation)
have been removed.

These evident relationships between the two hierarchies have led us to the further
investigation of such relationships. As it turns out there are more relationships be-
tween and identifications of the classes from the two hierarchies. First, we prove that
some classes can be identified.

Lemma 28 An MSC £k is pairg-implementable if and only if it is pairy,-implementable.

Proof Clearly, any pairs-implementable MSC is also pairy-implementable. It re-
mains to prove that any pairg-implementable MSC is also pairg-implementable. Let k
be a pairy-implementable MSC. Let ¢ be an arbitrary msc-trace of k. Let m,m' € M
such that from(m) = from(m') and to(m) = to(m'). We want to prove that !m <}ce
Im! =?m <t??m/, from which it follows that the (arbitrary) trace ¢ is pair-imple-
mentable.

Suppose that !m <!®lm'. Then, because from(m) = from(m') and Im <}?Im/,
we have !m <P*“!m’ (when from(m) = from(m'), either !m <P*!m’ or !m' <P*Im ,
and the second cannot be the case). Since k is pairy-implementable there exists a trace
t' that is pair-implementable. Since !m <J'*“!m' we have lm <}{*®lm’. Since t' is pair-
implementable we have by Lemma 17 that ?7m <}**®?m’. Because to(m) = to(m') we
then have ?m <J'**?m/. Therefore we have ?m <}°?m/', which completes the proof.
|

Lemma 29 An MSC k is msgs-implementable if and only if it is msgy-implementable.

Proof Trivial, because every impl-trace is msg-implementable, and thus each msc-
trace is as well. [}

Lemmas 28 and 29 establish that the classes pairs and pairy,, and msgs and msgy,
are equivalent. In the remainder we denote these by pair and msg, respectively.

Next, we will prove that any inst_outs-implementable MSC is globaly-implement-
able and that any inst_ing-implementable MSC is globaly-implementable. To do this
we first give some alternative characterisations for these implementations.

Lemma 30 An MSC £ is inst_outs-implementable if and only if <lo—<msc. An MSC
k is inst_ing-implementable if and only if <j=<J"*.

Proof  We only give the proof for the first proposition. The proof of the second
proposition follows the same lines.

First, suppose that MSC £ is inst_outs-implementable. Directly from the definition
we know that <,';‘S°g<i,g, so it only remains to be proven that <i,;’§<,:‘5°. Suppose that
e <i,? e' for arbitrary e, e’ € Ens(M). Then we have the existence of e, --- , e, such
that e = eq, ¢/ = e, and for all 1 < i < n we have one of the following;:
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msc .
® ¢e; <p o €itl;

e ¢; =?m and e;11 =?m/ for some m, m' € M such that from(m) = from(m') and
Im <™l

In the second case we have, by Lemma 5, Im <!?lm’ for every msc-trace t of k.
Since k is inst_outg-implementable we have that every MSC trace of k is inst_out-im-
plementable. Thus, by Lemma 17 and the assumption that from(m) = from(m') we
have ?m <{"?m' for every msc-trace ¢ of k. Then, again by Lemma 5, we have
m <P?m’. In the first case we already know that e; <J™*° e;;1, and taking all these
steps together we have e < ¢/, from which it follows that <i?C<Ps.

Second, suppose that <i,§:<km5°. Then we must prove that MSC k is inst_outg-im-
plementable. Let ¢ be an msc-trace of k, and let m,m’ € M such that from(m) =
from(m'). Suppose !m <}?<Im'. Then because of from(m) = from(m'), we have
Im <PClm/. By the definition of <!° we then have ?m <?m'. By the assumption
that <P=<"¢, this implies ?m <J'**?m’, and thus ?m <}??m/. [ |

For a similar characterisation of globaly-implementability we define a relation <%.

Definition 31 Let £ be an MSC. The relation <% on Ens(M) is defined as the
smallest relation that satisfies:

g.
L <eC<y;
2. <& is transitive;

3. Im <&lm/ ©?m <&?m’ for all m,m’ € M.

Lemma 32 An MSC £ is globaly-implementable if and only if the relation <§ is
cycle-free.

Proof First, suppose that MSC k is globaly-implementable. Let ¢ be a global-im-
plementable trace of k. Then <! adheres to the restrictions in Definition 31, and
thus <§ C<i® and <§ is cycle-free.

Second, suppose that the relation <% is cycle-free. The idea of the proof is that
we extend this relation until it is a total order. Then, if we can prove that the trace
corresponding with this total order is global-implementable, we are done.

We extend the relation <% to form an ordering < by repeatedly choosing a smallest
element that has not yet been chosen, and taking that as the next element of our total
order, all the while ensuring that the preconditions of Definition 31 are still being met.
More formally, we will use the following algorithm (with S and < as our variables):

1. S = Epec(M), <:=<8

2. Let e be any smallest element of S with respect to <, that is, any element of S
for which there is no e’ € S with €’ < e.

3. 5:=85\{e}
4. <:= (< U{(e, )|’ € SHT
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5. if e =lm for some m € M, then <:= (< U{(?m,?m/)|!m’ € S})*
6. Repeat steps 2 to 5 until S =0

We first remark that the following invariant holds: ?m <?m’ =?m <§?m'vim ¢ S
for all m, m' € M. This clearly holds at the beginning, and only pairs (?m,?m') are
added for which !m & S since, otherwise, 7m would not be a smallest element of S.
Also, after every execution of the body of the repetition (i.e. after step 5), < is a
total ordering on those events that are not contained in S.

Before we can make any arguments regarding the resulting ordering <, we have
to prove that the algorithm is well-defined. In particular, for step 2 of the above
algorithm it is necessary that < is cycle-free. After step 1 < is cycle-free because
by the assumption <% is cycle-free. There are two places where the relation < is
extended, namely step 4 and step 5. Step 4 maintains cycle-freeness of <. This can
be seen as follows. Let e be an arbitrary smallest element of S with respect to <.
Suppose that by adding the pairs (e,e’) for e’ € S\ {e} to < a cycle appears. Then
e' < e for some e’ € S\ {e} which contradicts the assumption that e is a smallest
element of S with respect to <.

Step 5 maintains cycle-freeness as-well. Suppose that !m is a smallest element of
< with respect to S. Suppose that a cycle is introduced by step 5. This can only be
the case if a pair (?m,?m') is added to < for which we already had ?m’ <?m and
!m' € S. By the previously mentioned invariant we have ?mn’ <8?m. By the definition
of <% then also !m' <8!m. As !m’ € S this contradicts the assumption that !m was
a smallest element of S with respect to <. Thus, we have established that step 2 of
the algorithm is well-defined. The other steps cause no problems, so the algorithm is
well-defined.

The algorithm is guaranteed to terminate as the number of elements of the finite set
S is decreased by one every time the body of the repetition is executed. Furthermore,
because < is a total order on those events that are not contained in .S, and S is empty
when the algorithm ends,

Thus, upon termination of the algorithm, < is a total order on Ems.(M). This
total order corresponds to a trace of the MSC as <[P**C<§C<.

All that remains to be proven is that < corresponds to a global-implementable
trace of k. Note that, after step 1, for all m,m’ € M we have 'm <!m' =?m <?m/.
If in step 4, an ordering !m <!m' is added then in step 5 ?m <?m' is added. Thus,
Im <!m' =7m <?m’ is an invariant, from which it follows that the trace correspond-
ing with < is global-implementable. |

Lemma 33 If e <% ¢/, there is a sequence of events e; e, ..., e,, such that:
J— ! —
l.e=e, e =e,

2. Either e; <J"*¢ e;11 or e; =?m and e;;1 =!m for a certain m (for each i €

{1...n—1})

3. The number of ¢;’s for which e; £7°¢ e;+1 (and thus e; =?m and e;+1 =!m hold)
is less than or equal to the number of e;’s for which e; =!m and e; 11 =?m.
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Thus, the sequence consists of <™M*-orderings with additionally some messages
that are passed ‘in the wrong direction’, but there are at least as many messages
passed in the right as in the wrong direction.

As an example, look at MSC 2a in Figure 5.8. In this MSC, la <¢!b. The sequence
of events corresponding to the Lemma is !a-?a-?b-1b. There is one message (b) that is
passed from receipt to sending, and one message (a) that is passed from sending to
receipt.

Proof In this proof we will denote the sequence e = e1,...,e, = €' for a given e
and e’ by (e,e’). This sequence is of course in general not uniquely defined, but this
does not matter for the proof.

First we note that <§ can be constructed by the following algorithm:

L <Gi=<pee

2. <E:=<8 U{(?m,?m') |'m <§!m'}

3. <E:=<8 U{(!Im,!m) |?m <§?m'}

4. <B:=<B U{(e,e) |Te" e <B e’ Ne" <K e}

5. Repeat steps 2 to 4 until no change occurs

We will prove that the lemma remains true throughout the running of this algo-
rithm.

It is trivially true after step 1.

Suppose step 2 introduces a new pair into <§, ?m <8?m’. Then !m <§!m' already

is part of <%, so by induction hypothesis (!m,!m’) exists. Then

- —
o ) = ()

(where (eq,...,en)+H(f1,..., fn) is defined to be (e1,...,en, f1 ..., fn)) satisfies the
requirements. There is one pair of the form (?m,!m) added, but also one of the form
(Im/,?m'), so this is ok.

Likewise, if step 3 introduces a new pair !m <§!m’, we can choose (Im,!m') =

(!m)++-(?m,?m’;—++(!m’).
Finally, if step 4 introduces a new pair e <§ ¢’, the lemma is preserved by mak-

ing the choice (e,e') = (e,e")++(e", €') (or rather, we should remove one of the now
double e’ to get a correct sequence). [ ]

Lemma 34 Every inst_outg-implementable MSC is globaly-implementable. Every
inst_ing-implementable MSC is global-implementable.

Proof  We prove this for an inst_outs-implementable MSC. The proof is completely
analogous for a inst_ing-implementable MSC.

We prove this by contradiction, so we assume that k is an inst_outs-implementable
MSC that is not global,-implementable. By Lemma 30 we have <i,f:<,:‘5°, and by
Lemma 32 we have that <% has a cycle.
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Because <§ has a cycle, we can conclude from Lemma 33 that there is a cycle of
steps which are either steps of <J**¢ or of the form (?m,!m), where, furthermore, the
number of steps of the form (?m,!m) is not greater than the number of steps of the
form (m, ?m). We call such a cycle a quasi-cycle of order N, where N is the number
of times that a step of the form (?m,!m) occurs in the cycle.

We prove that this cycle can be changed into a quasi-cycle of order 0. Let the
order be greater than 0. Because the quasi-cycle is a cycle, and contains at least one
(?m, !m)-step and at least one (lm, ?m)-step, there will be at least one (!m, ?m)-step,
such that after that (lm,?m)-step a (?m,!m)-step will take place before the next
(?m, !m)-step. Thus, the quasi-cycle contains a subsequence (?m,!m,--- ,!m’,?m’),
where there are no steps of the forms (?m, m) or (!m,?m) between !m and !m/'.

Because we have !m <P*lm’, by definition we get ?m <i?m’, from which we
get ?m <P?m' from the assumption that <,Tscz<i,§. Thus, by removing all steps
between ?m and ?m', and replacing them with a single step, we still have a cycle of
<€ and (!m,?m) steps, but with one less occurrence of both the type (!m,?m) and
the type (?m,!m). Thus, this is a quasi-cycle of order N — 1. Repeating this, we will
finally obtain a quasi-cycle of order 0. However, a quasi-cycle of order zero is a cycle
of only <™-steps.

Thus, we see that, given the assumption, <™ must have a cycle. This is impos-
sible, so the assertions cannot simultaneously hold, so each inst_outs-implementable
MSC is globaly-implementable. |

In Figure 5.15 we give all communication models that remain after the identifi-
cations obtained until now. The arrows between these models follow also from the
previous theorems and lemmas. Finally, we have to prove that the arrows between
models from the strong and weak hierarchy are strict and that there are no additional
arrows necessary. It suffices to show that the following arrows do not exist: globalg
to nobufy,, nobufy to inst2s, and inst2; to globaly,. The rest then follows because of
transitivity. For example, the nonexistence of an arrow from globalg to nobufy, implies
the nonexistence of an arrow from inst_outs to nobufy, because if the second arrow
exists then, by transitivity, also the first must exist. Similarly we obtain the nonexis-
tence of arrows from inst_ing and inst25 to nobufy. We use the MSCs in Figure 5.16 to
indicate that the first two arrows do not exist. MSC 7 is globalg-implementable, but
not nobuf,-implementable. It has one trace, !a !b?a 7b, which is global-implementable,
but not nobuf-implementable. We see that MSC 7 contains only one instance, so all
messages are messages to the same instance that sent them. This is no coincidence,
it can be shown that all possible counterexamples have such messages.

MSC 8 is nobufy-implementable, but not inst2s-implementable. That it is nobufy,-
implementable can be seen from the picture, which shows that there is the trace
la?a!b?b'c ¢, which is nobuf-implementable. However, the trace !b!c?cla ?a 7b is not
inst2-implementable: Because 7b is after 7a in the trace, !!b must be after !la to make
the trace inst-input implementable, while, because !b is before !¢, !'b must be before
¢ to make the trace inst-output implementable. However, !la must be after !a and
e before ?¢, so !!'e will be before !!a in any extension of this trace, which implies that
!Ib cannot be both before !lc and after !!a.

The non-existence of an arrow from inst2; to globaly, is taken care of by MSC
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nobuf;

inst_outg inst_ing o

nobuf,,
inst2 globals,
insty,

pair

msg

Figure 5.15: Final hierarchy.
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msc 7

msc 8

Figure 5.16: Distinguishing MSCs: comparing strong and weak.

6 in Figure 5.12. It has already been shown not to be global,-implementable. It
is inst2g-implementable because every msc-trace of this MSC can be extended to an
inst2-implementable impl-trace by adding !!a and !'b immediately after !a and !b, and
¢ and !'d immediately before ?c and ?d.

Theorem 35 The implementation models from Figure 5.15 are all different, and they
are ordered as expressed in Figure 5.15.

Proof  This has been explained in the text above. |

5.5 Characterisations

Thus far, we have considered the notions of strong and weak implementability and we
have ordered those in a hierarchy. In this section, we will consider how to determine
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the implementability of a given MSC with respect to a given communication model.
That is, we study the algorithmic aspects of the implementation models. The original
definitions of the implementation models are hard to check automatically. To do so
would require one to look at all traces, possibly even all impl-traces, of the MSC
and check whether or not they are implementable with respect to the communication
model. An MSC can have many traces, in fact their number is exponential in the
number of events of the MSC.

In the previous sections, for the communication models globaly, globalg, insty,
inst_outs, and inst_ing characterisations have already been given that are easier to
check. These are based on cycle-freeness of relations between the events, or the equal-
ity of two orderings. Both the creation of these relations and orderings, and checking
for their cycle-freeness or equality can be done in polynomial time in the number of
events. For the communication models pair and msg the fact that weak and strong
implementability coincide leads directly to an easy to use characterisation: Because
implementability of a single trace and implementability of all traces are equivalent,
looking at one single trace suffices. Thus, we only need new characterisations for
nobufy,, nobuf, and inst2;.

Definition 36 Let k£ be an MSC over the set of messages M. The relation <} on M
is for all m,m’ € M such that m <}’ m' if and only if Im <*?m' and m # m/.

Lemma 37 An MSC k is nobufy-implementable if and only if the relation <Y} is
cycle-free.

Proof Let k be an MSC over the set of messages M. First, suppose that k is
nobuf,,-implementable. Suppose furthermore that <}/ has a cycle, say mi <} ma <J/
- <} m, for some mi,my, - ,m, € M such that m; = m,. Then, from the
definition of <} and <}™¢, we obtain for all 1 < i < n that 'm; <**?m;;1 and
'mip1 <*°?mji1. Then, for every trace t of k, we must have !m; <}“®?m;;; and
Imipr <i@®?m;yq for all 1 < 4 < n. Since k is nobufy-implementable, there is a
nobuf-implementable trace t'. In this trace, there can be no events between !m;y;
and ?m;y1, so lm; <FP?m;yq implies !m; <}P%Imgyq.. Thus we get lmq <}
Imy <i2ce ... <ty and since !'my =!m,, we thus have a cycle of <}**®. Thus such
a nobuf-implementable trace ¢ does not exist. This contradicts the assumption that
k is nobufy-implementable. Therefore, <} is cycle-free.
Second, suppose that <}/ is cycle-free. We extend <} to a total order <, say
my < mg < -+ < my where M = {my,ma, -+ ,my}. Then the trace

t =!mq ?mq !ms Tms - - 'my, Tmy,

is clearly nobuf-implementable. Thus, if suffices to prove that the trace ¢ is a trace of
MSC k. Thereto, suppose that e <[’ e’ for some e, e’ € Ens.(M). We distinguish
four cases:

e e =!m and e’ =!m' for some m,m' € M. As !Im <P*!m' and !'m' <P*?m/, we
also have !m <J*“?m’. Then, by the definition of <}/, we have m <}/ m’, and
therefore Im <{lm/'.
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e ¢ =!m and e’ =?m/ for some m,m' € M. If m = m/, then trivially lm <!2?m’.
Otherwise, by the definition of <}/, we have m <}/ m', and therefore !m <{2c
m'.

e ¢ =?m and €' =!m’ for some m,m' € M. As!m <P*?m, ?m <*!m' and
Im! <P*?m!, we have !'m <{*“?m'. Then, by the definition of <}/, we have
m <y m', and therefore ?7m <}!m’.

e ¢ =?m and ¢ =?m’ for some m,m’ € M. As !m <**?m and ?m <*?m/,
we have !m <*?m'. Then, by the definition of <}/, we have m <}/ m’, and
therefore ?m <{@¢?m/.

In each of the four cases we have e <} ¢’, which completes the proof. |

Lemma 38 If an MSC £ is nobufs-implementable, then <} is a total order.

Proof Let k be an MSC over the set of messages M. We use contraposition, so
assuming that <J'* is not a total order, we prove that £ is not nobufs-implementable.
Let t be an arbitrary msc-trace of the MSC. Because <}’*¢ is not a total order, there
are events e,e’ € Ems (M) such that e <} ¢/, but not e <P'* ¢’. For any event
€' € Emsc(M) with e <} e <} ¢’ we have either e £J"* e” or e £ ¢’ as
otherwise e <J™¢ e’. So there also is a such a pair of events that are immediately after
one another in the trace ¢t. Then, interchanging these events would result in another
trace t' of the MSC. It cannot be the case that both ¢ and ¢' are nobuf-implementable.
|

Lemma 39 Let < be a partial order, such that b ¢ a and d £ ¢, and let <'=<
U{(a,b), (¢,d)}* contain a cycle. Then it contains a simple cycle with both (a,b) and
(¢, d) part of this cycle.

Proof If <’ has a cycle, then so does < U{(a,b),(¢c,d)}. Look at an arbitrary
simple cycle of < U{(a,b), (¢c,d)}. If this cycle did not contain (a,b) or (c,d), then
this would also be a cycle of <. If it contained (a,b) but not (¢,d), we would have
b < a, and if it contained (¢, d) but not (a,b), we would have d < ¢. Thus, the cycle
must contain both (a,b) and (¢, d). [ ]

Lemma 40 An MSC k is globalg-implementable if and only if for all m,m’' € M,
we either have both !m <P'!m’ and 7m <J'*?m/, or we have both !m’ <}"*!/m and
m’ <Pstm.

Proof  First, suppose that MSC k is globals-implementable. Let m,m’ € M.
Without loss of generality we may assume !m’ £7"*!m. Then it suffices to prove that
Im <PIm' and ?m <P*?m’. Now we can distinguish two cases: !m <P*!m' and
Im £7%CIm/.

Suppose that !'m <P m'. Then, by Lemma 5, !m <}!m/ for every msc-trace
t of k. Since every msc-trace of k is global-implementable, we have by Lemma 17
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that ?m <{"<?m' for every msc-trace ¢ of k. Then, again by Lemma 5, we have
?m <P*?m’, which completes this part of the proof.

Now, suppose that !m £*!m’. A similar reasoning as above shows that ?m <}’
?m’ implies !'m <J*!m' (remember that the single arrow in Lemma 17 is allowed to
be read as a double arrow), so ?m £7“?m’, and analogously ?m' £7?m. We will
now show that there exists a msc-trace ¢ of k such that lm <{Im’ and ?m’ <{"?m,
thereby contradicting the assumption that k is globalg-implementable.

We define the ordering < as follows: <= (<P U{(!m,!m’), (?m',?m)})*. We
prove that < is cycle-free, from which it immediately follows that there is a trace ¢
such that lm <i™lm' and ?m' <!™®?m (just extend < to a total order). Assume
that < is not cycle-free. From Lemma 39 we can conclude that there exists a simple
cycle in < with both !'m <!m' and ?m’ <?m. Because this is a simple cycle, this
would imply that !m <!m' <P*?m' <?m <**!m. However, ?m <{**“!m is impossible
because !m <*“?m and <}*° is cycle-free. Thus, < is cycle-free, which leads to a
contradiction with the assumption that k& is globals-implementable, so this possibility
cannot occur.

Second, suppose that for all m,m' € M we have !m <P**!m’ and ?m <J'*?m/, or
Im! <P*lm and ?m' <P**?m. We must prove that MSC k is globals-implementable.
Let ¢ be an arbitrary msc-trace of MSC k. Let m,m' € M. By Lemma 17 it suffices
to prove that !m <i®lm’ =?m <i®?m’. Suppose that !m <ilm’. Then, by
Lemma 5, !m' £*!m. Therefore, by the assumption, !m <*!m' and ?m <J'**?m’.
So, by Lemma 5, we have ?m <!"?m/', [ |

impl

Lemma 41 An MSC £ is inst2;-implementable if and only if <Z=<}

Proof Let £k be an MSC over the set of messages M. First, suppose that k is
inst2s-implementable. By definition, <'kmp|§<'k2, so it only remains to be proven that

<Rc <Ml Suppose that e <2 ¢ for some e,e/ € Eimp(M). Then we have the
existence of eq, - , e, such that e = e, ¢’ = e, and for all 1 < i < n we have one of
the following:
e ¢ <ikmpl €it1;
e ¢; =!!m and e;1 =!!'m’ for some m,m' € M such that from(m) = from(m') and
Im <ikmpl!m’;

e ¢; =!!m and e;41 =!!m/ for some m,m' € M such that to(m) = to(m') and
?m <"7m!.

In the second case we use induction on the number of output events !m” that can be
in between !m and !m’ to prove that !!m <'kmp|!!m’.

e If there is no output event m” such that lm <{"™'lm" <{™lm’ then cither

Im <™tm! or ?m <ikmpl!m’. In the first case, if !'m <ikmpl!!m' did not hold,
<'kmp| U{('m’,"/m)} would be cycle-free. Any extension of this relation to a
total order would be <} for a trace ¢ that is not inst output-implementable,
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and thus not inst2-implementable. In the second case we have !!m <'mp|7 <ikmp|
'm/ <'mpl”m.

e If there is at least one output event !m' such that !m <'mpI " <'mp|'m then,
using the induction hypothesis, we have !lm <™'!lm/ <'mpl”m

. .. . . i | . .
For the third case a similar reasoning gives e; < * e;y1. Thus, in all cases we obtain

impl

e; <'kmpI ei+1 and therefore also e < e’ which was to be proven.

Second, suppose that <k 'mpl Let ¢ be an impl-trace of k, and let m,m' € M
with from(m) = from(m'). We have to prove that !m <i=clm/ :>”m <”ace”m for an
arbitrary 3-trace t of k. _

Im <trlm/ implies 'm <'mpl'm’ Then, by the definition of <2, we have !lm <
m!. Since we assumed that <2=<!" we also have m <™!!m/, and therefore
!!m <trace||m

The proof that to(m) = to(m') = (?m <;"™?m' &!lm <™m/) is analogous,

and taken together we can conclude that & is |nst2s—implementable. |

In the following theorem we list the characterisations for implementability we have
given in this chapter and we add characterisations for the implementabilities not yet
characterised. An overview is presented in Figure 5.17.

Theorem 42
1. An MSC k is nobufy-implementable if and only if <}’ is cycle-free.

2. An MSC £k is nobufs-implementable if and only if it has exactly one trace, and
that trace is nobuf-implementable.

3. An MSC k is globalg-implementable if and only if for each pair of messages
m and m' either both !m <**!m' and ?m <P*?m/, or both !m’ <*“!m and
m’ <P*?m hold.

4. An MSC £ is globaly-implementable if and only if < is cycle-free.
5. An MSC k is inst_outs-implementable if and only if <°=<sc.

6. An MSC F is inst_ing-implementable if and only if <i=<Ts.

7. An MSC k is inst2s-implementable if and only if <k —<'kmp|.

8. An MSC k is insty-implementable if and only if <',§ is cycle-free.

9. For any trace t of an MSC k, k is pair-implementable if and only if ¢ is pair-im-
plementable.

10. An MSC k is always msg-implementable.
Proof

1. See Lemma 37.
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Figure 5.17: Overview.
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2. If the MSC k is nobufs-implementable it has one trace because <™ is a total

order (Lemma 38).
See Lemma 40.
See Lemma 32.
See Lemma 30.
See Lemma 30.
See Lemma 41.

See Lemma 24.

© »® N o ook W

First, if k is pair-implementable, it is pairs-implementable and thus every trace
t of k is pair-implementable. Second, if a randomly chosen trace ¢ is pair-imple-
mentable, then k is pairy-implementable, and thus also pairg-implementable.

10. See Lemma 29.

5.6 Related Work

In this section we will compare our conclusions with those found in related literature.

In [CBMT96] Charron-Bost et al. discuss three different implementations for MSC-
like diagrams: RSC (Realizable with Synchronous Communication), CO (Causally
Ordered) and FIFO. They also define A (asynchronous), but this is (just like msg
in our hierarchy) used to denote the set of all allowable diagrams, not some subset.
They find that there is a strict ordering RSC C CO C FIFO C A. In the following,
we will compare their ordering with our work.

Theorem 43 The implementations that in [CBMT96] are named RSC and FIFO
are equivalent to the implementations nobufy,, and pair. The implementation CO is
strictly between the implementations inst,, and pair.

Proof

e RSC-nobufy,: Definition 3.6 in [CBMT96] states, after translating it into our
terminology, that a computation is RSC' if and only if there is a trace ¢ for which
for each m € M we have that the set {z € C |lm <} z <{™?*®?m} is empty,
which is equivalent to the definition that is obtained by combining Lemma 17
and Definition 21.

e FIFO-pair: The definition for FIFO in [CBMT96] (Definition 3.3) translates
to (by rewriting the terminology of Charron-Bost et al. in ours): !m <J'*
Im’ A from(m) = from(m') A to(m) = to(m') =7m <P*?m', or from(m) =
from(m') A to(m) = to(m') = (Im <P*!m' =7m <P**?m'), which is seen to
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be equivalent to the definition in Lemma 17 once it is realised that (for the
basic MSCs considered here) to(m) = to(m') = (?m <P*?m'Vim' <P*?m)
and from(m) = from(m') = (Im <P<Im'V Im! <P5m).

e (CO: That the class of pair-implementable MSCs is strictly greater than that of
CO-implementable MSCs is shown in [CBMT96]. Remains to be shown that
the class of CO-implementable MSCs is strictly greater than that of inst,-im-
plementable MSCs. The definition of CO as given in [CBMT96] (definition 3.4)
can be translated to to(m) = to(m/)Alm <P*¢!m’ =7m <**?m'. An example of
an MSC that is CO-implementable, but not insty-implementable, is the MSC
lobster in Figure 5.18. It is CO-implementable, because there is no pair of
messages with to(m) = to(m') where !m and !m' are ordered, but it is not
insty-implementable, as can for example be seen by the fact that la <™*€lc and
Ib <™cld, and thus ?a <°?c and ?b <*°?d, while at the same time we clearly
have ?c <°?b and ?d <°?a, so <'° contains a cycle.

It remains to be proven that each insty-implementable MSC is CO-implement-
able. We do this using contraposition, so let & be an MSC that is not CO-imple-
mentable. We then have that there are messages with m <J'*!m/, 7m £7*7m/’
and to(m) = to(m'). From the last two we can derive that ?m' <™?m, and
thus we have both ?m <°?m’ (because !m <P*lm’) and ?m’ <°?m (because
?m' <M<?m), so the MSC k is not insty-implementable.

mse lobster

Figure 5.18: MSC to distinguish the implementation models: CO.

Another paper in which different communication models for MSC have been stud-
ied, is [AHP96]. Although some of their communication models are similar to some of
ours, the works cannot be directly compared, because of the different focus. Whereas
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our question is whether an MSC can be implemented in a given communication model,
their question is whether an MSC will run as expected if it is implemented on a given
communication model.

Their main point of focus is the problem of race conditions, in which two messages
which might be supposed by the user to be received in the ordering prescribed by
the MSC, might in reality arrive in the reverse order. The implementation model
influences both which messages the user assumes to arrive in the correct order and
which messages actually do.

This line of thought has been extended in [RKG97]. There a set of channels
is assumed, which can be any implementation model between pair and msg (other
possible models can be inserted easily, but were not looked at because of the specific
subject of the paper, namely characterization of an MSC in SDL). Then, for each
message it is checked which messages on the same channel that have to be dealt with
later may have been received earlier.

5.7 Concluding Remarks and Future Research

We have considered implementation models for asynchronous communication in Mes-
sage Sequence Chart. These models consist of FIFO buffers for the sending and
reception of messages. By varying the locality of the buffers we have arrived, in a
systematic way, at 25 models for communication. With respect to traces, consisting
of putting a message into a buffer and removing a message from a buffer, there are
seven different models.

By lifting this implementability notion from traces to Message Sequence Charts
in two ways, strong and weak, we obtain fourteen models. After identification, ten
essentially different models on the level of Message Sequence Charts remain.

For defining the models we have used the notion of impl-traces; these are a natural
extension of normal MSC-traces if a message can pass two buffers on its way from
source to destination.

In this chapter, we have only considered Basic Message Sequence Charts. An
interesting question is how to transfer the notions and properties defined for this
simple language to the complete language MSC. As many of our theorems rely on the
fact that the events on an instance are totally ordered, an extension to MSC with more
sophisticated ordering mechanisms (e.g., coregion and causal ordering) will imply a
revision of the hierarchy. Another interesting question is whether the implementation
properties are preserved under composition by means of the operators of MSC.

Furthermore, we have restricted ourselves to the treatment of architectures in
which each message has exactly one possible communication path and where each
such path contains at most two buffers. The extension to more flexible architectures
is non-trivial and is expected to lead to an extension of the hierarchy.

An important assumption that we have made in this chapter, which is often not
true in real-life examples, is the assumption of homogeneity, that is, the assumption
that all instances have exactly the same type of buffers. In real life it may for example
well be the case, that there is more than one channel between two instances, but
some channels are still used for more than one message, thus creating an architecture
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somewhere between our ‘one buffer per pair’ and ‘one buffer per message’. This
subject has been given some attention in [AHP96] and [RKG97].

Finally, our assumption of infinite FIFO buffers may be relaxed, allowing other
types of buffers and buffers with finite capacity.

The results obtained in this chapter form a solid base for several applications.
First, they allow us to discuss the relation between different variants of MSC, such as
Interworkings [MvWW93]. Interworkings presuppose a synchronous communication
mechanism. An Interworking can be considered as the restriction of the semantics of
an MSC to only the nobuf-implementable traces. Thus, an MSC can be interpreted
as an Interworking if and only if there is at least one such trace, i.e., the MSC is
nobufy-implementable. This implies that using the theory in this chapter, a formal
semantics of Interworkings can be derived in a systematic way from the semantics of
MSC. We also envisage tool-oriented applications. One could for example consider a
tool in which a user can select a communication model, draw an MSC and invoke an
algorithm to check whether the MSC is implementable with respect to the selected
model. Alternatively, the user can provide an MSC and use a tool to determine the
minimal architecture, according to our hierarchy, which is needed for implementation.

Often, a user is interested in the question whether all traces of his MSC are im-
plementable with respect to a certain architecture. We can also envisage two possible
uses relying on the implementability of a single trace. First, MSCs are often used
to display one single trace, for example if it is the result of a simulation run. In
this case, the question is not whether the MSC is strongly or weakly implementable,
but whether the implied trace is implementable (as defined in Section 5.3). Second,
given an MSC, a user may want to know if at least one trace is implementable and
if so, which trace that is. He is interested in a witness. Both applications can easily
be derived from the results on weak implementability. The algorithms (see below)
can easily be modified to check implementability of a given trace and to produce a
witness.

A more involved application would be to use a selected communication model to
reduce the set of traces defined by a given MSC to only those traces that are imple-
mentable on the given model. In this way, the semantics of an MSC would be relative
to some selected model.

For most of these applications computer support would be useful. Based upon the
definitions presented in this chapter, it is feasible to derive efficient algorithms. All
models in the weak spectrum can be characterised in terms of the cycle-freeness of an
extended ordering relation, see Theorem 42. An example of such a characterisation
is given in Theorem 24. There it is stated that an MSC k is inst_outy-implement-
able iff the ordering <¥ (which is an extension of <P'*¢) is cycle-free. Thus checking
whether an MSC is inst_outy-implementable boils down to checking cycle-freeness
of this relation. This immediately gives a wide range of efficient implementations for
checking class-membership as many algorithms are known in literature for determining
whether a given ordering is cycle-free. For the strong spectrum characterisations are
given as well.

Note that the MSCs that distinguish between the different models are surprisingly
simple. This indicates that the differences between the classes will appear not only in
theory, but also in practice. Besides that, for these distinguishing MSCs, it is not easy
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to indicate at a glance to which class they do or do not belong. This also supports
our view that mechanical support for determining whether a given Message Sequence
Chart belongs to a given class is necessary.



Chapter 6

Data in MSC

6.1 Introduction and History

When the new MSC2000 standard [IT00] was introduced, one of the additions to the
language was the incorporation of data. In this chapter, we will look at the history
of this aspect of MSC, and the way in which data languages and MSCs are actually
combined, and we will try to give a semantics for data in MSC.

The first attempt to formally combine MSC with a data language was made by
Grabowski, Hogrefe, Nussbaumer and Spichiger, who combined MSC and ASN.1
[GHNS95]. Baker and Jervis next presented a more generally usable data language
[BJ97]. Starting from the work of Baker and Jervis, Feijs and Mauw opted for a
more general approach. Instead of defining one standard language to go along with
MSC, they introduced a framework in which a large range of languages could be de-
scribed, thus for each of these giving the interface of the language with MSC [FMO98].
This method of incorporating data has several advantages, which will be discussed in
Section 6.2.

Although the MSC standardisation community agreed with this principle, there
was a strong wish to extend the work of Feijs and Mauw, more specifically to introduce
the possibility of dynamic data. In the original framework, variables could only be
used as placeholders for an unknown value. The semantics would then be that any
of the possible values for the variable could occur. There was a wish to have the
possibility to assign values to a variable which then could be used later in the MSC.
Feijs and Mauw, together with the current author, investigated the possibilities and
problems of incorporating this possibility in a second paper [EFM99]. Partially based
on this paper, in an ITU experts meeting at the Eindhoven University of Technology,
the subject of data was then incorporated in the MSC2000 standard [IT00].

Another extension of the MSC language that is closely related to data, is the
subject of guards. In the MSC’92 and MSC’96 standards, conditions were included,
but did not have any formal meaning [IT98, Ren99], except for some static restrictions
on HMSCs [Ren96]. In practice they were often used to combine MSCs — a final
condition was given to some MSCs, an initial condition to others, and two MSCs could
be combined (only) if the final condition of the first MSC corresponded to the initial

109
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condition of the second [RGG96a]. This feature was originally intended to be included
in the MSC language, but it was kept out of the semantics to the MSC’92 language
because its meaning was felt to be insufficiently clear [MR95]. Nevertheless, some
attempts have been made to provide a semantics for conditions [LL94, GHRWOS].
The MSC standardisation community felt that it would be a good idea to standardise
and extend this feature, by defining some conditions to act as guards, meaning that
one can only pass the condition if their text is in some sense ‘true’. Others would define
a kind of state for the MSC, which could then be used by the guarding conditions.
Obviously, the text in a guarding condition would often be some boolean expression
in a data language, and thus this subject was seen as closely related to that of data.

In this chapter we will first give an overview of the problems and choices regarding
data that were indicated in [EFM99], together with the choices that have been made
on these points in the final MSC2000 standard, sometimes with an indication of the
reasons for these choices. We will also show some of the problems that occurred espe-
cially on the subject of conditions and guards, and how these led to the actual static
requirements on conditions that can be found in the standard. By showing which
choices have been made, and why, the language hopefully becomes more transparent.
Also, the problems that have occurred in this extension of the language may be similar
to problems that occur later.

After this part, we will look at the interface as it was defined in [IT00], and make
an attempt to define a formal semantics for MSC with data.

6.2 Reasons for Parameterisation

As was first argued by Feijs and Mauw [FM98], introducing a single data language
in MSC has several adverse consequences, most or all of which can be overcome by
parameterising MSC with a data language instead. Four such advantages of parame-
terisation can be distinguished:

1. Introducing a specific data language to MSC would inevitably be problematic
for certain groups of users who are more used to different languages or different
types of languages. If the data language is parameterised instead, all of these
groups can use their own preferred language (as long as the language keeps to
some general restrictions).

2. In a parameterised model, MSC and the data language both get their own, well
described domains. Because of this, the data language does not influence the
non-data parts of the MSC language, or vice versa.

3. If a specific data language is added to MSC, all its semantic problems will be-
come problems of the MSC language as well. Although parametrisation prob-
ably does not completely solve this problem, it at least greatly diminishes the
problem by looking only at the interface of the data language with MSC, and
not considering the underlying aspects of the language itself.

4. If a specific data language were chosen, the MSC community would burden itself
with the task of maintenance of whichever data language would be chosen. If
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MSC does not, couple itself to a specific data language, there is no reason for
such an enterprise.

5. If through time, it was felt that another data language would have been a better
choice, the language would have to be rewritten completely. This could also lead
to a situation where several different versions of the language would exist, one
for each data language. This situation for example happened with SDL, where
there are now two versions, an original one using an algebraic specification
languages, and a newer one that uses ASN.1 [Ste90], which is considered easier
to use.

This parametrisation takes place through the definition of an interface, that con-
tains all aspects of the data language that are of importance for MSC. Later in this
chapter, we will show what interface has been defined in the standard [IT00], and in
what way this could be used to provide a semantics for MSC with data. Before doing
that, we will first discuss the choices that have been made.

6.3 Basic Principles

During the discussions on the new standard, the work has been guided by a number
of principles. In some cases these principles clashed, and problems arose. Here, some
difficult choices had to be made, as we will see later.

In the subject at hand, the following principles are of importance:

1. Backward Compatibility

Old MSCs, made according to the MSC’96 or MSC’92 standard, should still be
usable under the new MSC2000 standard. Within the standardisation commit-
tee a ‘loose’ definition of backward compatibility has been followed: it might
be allowed to have the necessity to change a Message Sequence Chart made
according to the MSC’96 standard, as long as there were only small, syntactic
changes to be made. However, large changes, or changes that could not be made
on a syntactic level were not considered acceptable.

2. Correspondence to Existing Practice

Several of the subjects that are introduced, and this certainly holds for data, are
already being used in existing practice. The standardisation committee wanted
to link with this existing practice — the new MSC standard should include as
much as possible of this existing practice. Where possible, what is already done
unofficially should be made official.

3. Semantic Clarity and Simplicity

When something is introduced, its semantics should be clear. That does not
mean that the formal semantics should immediately be added (at the moment
there are no plans known to us for a complete formal semantics of MSC2000),
but it does mean that there should be a good and complete intuition of what
those semantics should look like.
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The semantics should not only be clear, they should also be simple. Creating the
semantics should not be unduly hard, and it should be relatively straightforward,
once the semantics have been defined, to decide what the semantics of a given
MSC are. This is of importance both to people working with the language on
a theoretical level and to tool builders, who want to include functionality such
as the simulation of the behaviour of an MSC, which can only be done if the
semantics are not too complex.

Intuitive Semantics

In line with the second principle, the semantics should be intuitive for the user.
Many MSCs, even though they include not yet officially implemented features,
have a meaning that is intuitively clear. The semantics should conform to this
intuitive meaning.

6.4 Choices

A number of choices were mentioned in [EFM99]. There, no actual choices were made,
but rather, the advantages and disadvantages of the various choices were presented,
to allow the standardisation committee to make a choice themselves. In this section,
we will look at these choices once more with some discussion of which choice was
finally made, and why.

6.4.1 Static vs. Dynamic Nature of a Variable

The first choice was whether the data would be static, dynamic, or somewhere in
between. In [EFM99], four possibilities were distinguished, which, from most static
to most dynamic, were called:

1. fully static variables

2. parameter variables

3. single time assignable variables

4. multiple times assignable variables

Fully static variables: In a fully static environment, the values of variables are

either completely pre-determined, or not defined at all. In the latter case the semantics
is taken to consist of all possible behaviours for any valuation of the various variables.
This is the situation that was covered by [FM98]. This way of including data causes
the fewest problems. However, the price that has to be paid is that it also provides
the least expressive power.

Parameter variables: Parameter variables play a role within HMSC or MSC

reference expressions, the idea being that one provides a value for one or more variables
while calling the reference MSC. In calling the MSC, the values of some variables are
given as parameters to the reference. An example of how this works is shown in
Figure 6.1.
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msc sending
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sendmessage(1)
L ) msc sendmessage(p)
| N 1 | | J
sendmessage(42)
s(p)
] ] I

Figure 6.1: Parametric Data

The MSC sending calls the MSC sendmessage twice, but the first time with
sendmessage(1) and the second time with sendmessage(42). The effect of this, is
that the MSC sendmessage is used with the value of 1 for p the first time, and the
value of 42 for p the second time. Thus, first the message s(1) is sent and received,
then s(42). Compared to the next two options with assignable variables, Parametric
data is semantically less complicated, because it is easier to connect the occurences of
variables with the place where they get their values. On the other hand, it is also less
powerful. Changing the value of a variable, certainly where the new value depends
on the old one, is difficult and counter-intuitive, if not downright impossible, when
using parametric data. Of course introducing both options results in an even greater
power of expression.

Single time assignable variables: Here a variable can be assigned at any place
in the MSC, but once it is assigned, it cannot get a new value. So each time a variable
is accessed, it will still have the same value. This will solve some of the problems with
variables that are shown below, because these typically occur when the value of a
variable is changed before it is used, or between several uses of the same variable.
However, to actually make this solution work, one would also have to take steps to
make the usage of a variable before its assignment impossible, otherwise one still has
to deal with two different values — an indeterminate one before it is assigned, and a
determinate one afterwards.

Multiple times assignable variables: Here, a variable can at any time be given
a value, and this value can be changed later. This choice offers most possibilities for
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the user, but at the same time also complicates the language more than other options.
A first problem is shown in Figure 6.2.

msc race

Figure 6.2: Problematic MSC (simple case)

What message is to be sent here? m(1) or m(2)? Or does it depend on the order
in which the assignments happen? And what if the change of the value of z from 1 to
2 happens between sending and receiving of the message? Will we have to remember
the old value of z?

Despite these problems, which were mentioned in [EFM99], it was nevertheless
felt that multiple-times assignable variables were needed, because users would like to
have them. To keep this type of ‘race conditions’ manageable, it was decided to have
one specific instance should act as the ‘owner’ of a variable. The variable could only
be changed on this instance.

The first idea was that the usage of such a variable would also be restricted to
that same instance. No other instance could use the value of the variable. However,
this proved too restrictive. From a usage point of view, it seemed necessary that an
MSC like the one in Figure 6.3 could be drawn.

The idea here, is that at one point the value of x is decided, which then through
a series of messages is sent to another part of the system described by the MSC. To
enable this, it was decided that the value of variables of one instance could be used
at another instance, provided that the value had been sent to that instant through
messages. Thus, the value of a variable on an instance other than the owner is changed
only when this instance receives the value through some message. Not only does this
make the semantics more intuitive than one in which a change in value of a variable
is ‘magically’ copied to all instances of the MSC, it also is more in line with the basic
semantic ideas behind MSC: any transfer of information from one instance to another
should be explicitly shown. Introduction of a shared variable paradigm goes against
the spirit of MSC.

Because their added value in expressiveness of the language seemed useful, while
they did not add more problems than the ones that already had to be solved for the
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msc transmission

| sender| | med1 | | med2 | |receiver

7]

m(z)

n(z)

p(z)

Figure 6.3: Transmission of variables

assignable variables, parametric data have also been included in the MSC language.
The variables that are defined in this way are called ‘static variables’. That is, static
variables are variables that are given as a parameter to an MSC, and whose value is
determined when the MSC is called.

6.4.2 Binding of Variables

Another matter was, how these variables could change their values. For static vari-
ables this is obvious: They receive their value because the MSC is called with a certain
actual parameter list. For dynamic variables, we have to distinguish between owning
and not-owning instances.

An instance that is not the owning instance of the variable receives a new value
for the variable when a message arrives that contains that variable in its parameter
list. The new value of the variable, as seen by that instance, will be the value the
variable had on the sending instance at the time of sending.

For the owning instance, two major ways of giving values to variables were dis-
cussed in [EFM99]. Both have been included in the MSC language. The most obvious
is through a direct binding. This occurs when a text like z := 2 is found inside an
action box. A second way is the propagation of a message through a gate. This is
best explained with an example, see Figure 6.4.

The incoming message here gives x the value of 3. Of course this can only be
done if x is a variable of the receiver. In all of these cases, the outgoing message (the
message in the MSC ‘send’) should contain some expression as one of its parameters,
while the incoming message (the same message in the MSC ‘receive’) should contain
a variable to be bound. This can also be done with MSC reference expressions, see
Figure 6.5.

An instance that does not own the variable, changes its (local) value when it
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msc send msc receive

sender receiver
m(3) m(z)

Figure 6.4: Assignment through gated messages

mse send
- msc receive

| sender | | receiver

receiver
m(3) .
receive
m(z)

.| .|

Figure 6.5: Variable assignment for MSC reference expressions

receives a message that has that variable in one of its parameter expressions. It is
then changed to the value that this variable has on the sending instance. Although
this has been designed to correspond to existing practice, it can still lead to results
that some may regard counter-intuitive, as can be seen in Figure 6.6.

Agsume that z is a variable owned by instance .

Intuitively, one might expect that k always sends back ack(2), because 2 is the
latest value of z, and k£ has already received that value. However, k& does not ‘know’
which is the latest value, so it will always assume that z has the last value that it
has received. Thus, if n(1) arrives at k after m'(2), ack(1) rather than ack(2) will be
sent.

6.4.3 Undefined Variables

Another problem raised in [EFM99] was what one had to do with variables being used
before they have any value assigned to them. The main choices possible were:

1. Disallow this by static rules
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msc alert

~
.
=

m’(z)

ack(zx)

Figure 6.6: A counter-intuitive case

2. Regard it as a semantic deadlock
3. Regard all undefined variables as universally quantified
4. Use default values for each variable

All of these options have their drawbacks (the first may be hard, the second leads
to non-intuitive semantics, the third leads to an explosion of the number of possible
traces and the fourth extends the interface with the data language by a default value
for each domain, see [EFM99] for a more extensive discussion). In MSC, the first
option has been chosen (see [IT00], section 5.4: In a defining MSC there must be no
trace through an MSC in which a variable is referenced without being defined.)

6.4.4 Scope of a Variable

A further point on which different choices could have been made, is in the definition
of the scope of a variable. That is, once a variable has been declared, on which part of
the MSC can it be used? This is the scope of that variable. Scopes might be nested,
in which case the variables in the outer scope can also be used in the inner scope,
unless a new declaration of the same variable has taken place. If a variable is used
in two different scopes, then the two uses of the variable have nothing in common,
and they should be regarded as two different variables that happen to share the same
name.
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We can distinguish two different dimensions to the scope: Block scope and archi-
tectural scope.

The block scope of a variable is a separated (framed) part of an MSC where the
variable is defined. For most variables the block scope has been chosen to be the
complete MSC document; however for static variables it consists only of a single
MSC.

Apart from this there is also the architectural scope. This gives the locality with
respect to the instances in an MSC. One could specify that variables exist on only one
instance, or on all instances of the MSC. Possibilities in between, where a variable
is defined on a number of instances (for example, the instances that reside on one
processor), could also be considered, although it might be harder to find a syntax for
that option.

Again, this has been done differently for dynamic and static variables. Dynamic
variables, as mentioned before, have a local architectural scope, although ‘copies’ of
the value of a variable may be present on other instances. On the other hand, static
variables have global architectural scope.

6.5 Guards

The largest problems with data were encountered when trying to introduce guards. In
the older versions of the MSC standard, MSC’92 [IT93] and MSC’96 [IT96], conditions
had very little function. Semantically, they had no meaning at all, except for statically
forbidding some HMSCs (in MSC’96), and thus they formally were no more than
comments. However, in practice conditions were being used in a more functional
manner, namely to create MSCs like those in Figures 6.7 through 6.9.

msc try

< ready >

< sending >

Figure 6.7: Conditions as a coupling mechanism (1)
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masc retry

< sending >

< sending >

Figure 6.8: Conditions as a coupling mechanism (2)

The conditions here function as a method to decide in which order the MSCs are
gone through. More precisely, one may go from one MSC to another if, and only if,
the second MSC starts with the same condition as the first ends with. Thus, after
finishing MSC try, one can go to retry or success, and likewise after MSC retry, while
after MSC success one can only go to MSC try.

6.5.1 Including Guards in the Language

An attempt was made to formalise this method of using conditions. Certain conditions
would act as guards, others as defining conditions. One can only pass through a
guard if it is equal to the last defining condition that was encountered. The above
MSCs would then become a correct MSC when included in an HMSC like the one in
Figure 6.10.

Of course, the HMSC in Figure 6.10 is not very clear. There are a number of paths
which seem to be present from the HMSC description, but are made impossible by the
guards. One would prefer to use an HMSC like the one in Figure 6.11, which shows
the order in which the parts of the HMSC are passed explicitly. This is done by adding
a node for each state, and connecting the MSCs with the node corresponding to each
of its start and final state. However, with the MSCs given, the HMSCs of Figures 6.10
and 6.11 are semantically equivalent — all additional connections in Figure 6.10 are
without effect; they cannot actually be taken because the states do not coincide. To
minimize an HMSC by removing superfluous edges, such as the transformation from
Figure 6.10 into Figure 6.11, might be a useful task for tool support. The process is
similar to that which is used in [Mei00] to create a so-called ‘connectability diagram’.
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msc success

< sending >

ack

< ready >

Figure 6.9: Conditions as a coupling mechanism (3)

,

try retry | success

Figure 6.10: An HMSC for Figures 6.7 to 6.9

The conditions at the bottom of the MSCs should be defining conditions, and the
conditions at the top should be guards. To avoid any confusion about which conditions
are defining conditions and which are guards (confusion could for example arise when
a condition only covers instances that have no events within the MSC), all guards have
the keyword ‘when’ added to them. Defining conditions have no additional keyword.
Thus, in the above case, apart from adding the HMSC one should also change ‘ready’
and ‘sending’ into 'when ready’ and ‘when sending’ in the conditions at the tops of
the MSCs, while leaving the conditions at the bottoms as they are.

When combining these guarding conditions with data, the possibility arises to use
data expressions as guards. More precisely, if a data expression can have boolean
values (true or false), it could be used as a guard, which then can only be passed if it
is true. In this way, behaviour that depends on the value of variables can be described.
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try retry success
| |

Figure 6.11: A more readable HMSC

An example is in Figure 6.12, where it is checked whether a certain variable is zero.

6.5.2 Semantic Proposals

Unfortunately, this option also resulted in some semantic problems. Central question
was, at which time the guard would be evaluated.

Figure 6.13 shows the problem. Suppose that this MSC starts with x := 1, and
after that the message m is sent and received. Which of the messages a and b (if any)
can then be sent? There existed two schools of thought, neither of which in the end
prevailed. Instead, some kind of compromise was made, which will be described in
Section 6.5.3

The first school of thought held to the principle that one should look at the value
of the variable at the time the first instance is trying to pass the guard. In this case,
because the first action after the guard is either the sending of a or the sending of b,
the deciding factor is the value of the variable z at the time either a or b is sent. If
one of the messages is sent before = := 2 is executed, it must be a. After z := 2 has
been executed, only b can be sent.

On the other hand, the second school of thought preferred a more syntactic look
at the MSC. Because the = := 2 is above the guard, and on the same instance, it
seems logical to regard it as happening before the guard, and thus influencing the
choice. In this interpretation, only b can be sent in this MSC.

The disagreement can be described as a disagreement on the time and place where
the guard is evaluated. In the first proposal, the guard is evaluated by the first instance
to do an action after the guard, the principle could be called ‘first past the post’. In
the second proposal, the guard is evaluated by the instance that owns the variables
in the guard.

The arguments for the two proposals came from two of the principles mentioned
before.

The first proposal was based on semantic simplicity. Adopting the second proposal
would require that one first calculates the full semantics of an MSC without looking
at the guard, then removes the traces that do not adhere correctly to the guards
present. This would make it impossible to find out the next event in an MSC trace
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msc zero-check(z:natural)

nonzero

Figure 6.12: Usage of data in guards

without first calculating the complete semantics of the MSC. This makes any semantic
calculation extremely hard. It is also different from the existing semantics of MSC,
in which a deadlock does not have effects at earlier points in time. In one term, this
objection could be called ‘backward causality’: What happens now is dependent on
what happens or can happen at a later time.

The second proposal was based on intuition. This view, which is more whole-
system-based, is closer to the intuition of the users. Thus, having a different semantics
will lead to MSCs that mean something different from what they are thought to mean.

Apart from the lack of intuition (for the first proposal), and the complicated
semantics (for the second proposal), there are also some more profound problems,
certainly with the second proposal. For some MSCs this proposal provides no seman-
tics at all, because guards have to be evaluated by instances that never pass them.
An example of these problems is in the MSC in Figure 6.14.

If we first look at the semantics of this MSC without guards, we see that one
possible trace is to start with « := 1, then send and receive m, then go through the
a-loop indefinitely. Is this trace still a valid trace in the situation where guards are
present? Under the second proposal we do not know: The guard should be evaluated
when the second instance is at the relevant point in time — but in this trace the second
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msc problem example

< when (z=2) >

Figure 6.13: Problems with data in guards

instance never does.

Both proposed semantics also lead to strange behaviours for some MSCs. The first
semantics gives for instance some unexpected ordering requirements for the MSC in
Figure 6.15. Under the first semantics, instance ¢ must defer sending message a until
instance j has done the action z := 2. This thus leads to a synchronisation, or at least
to an extra ordering requirement, which is not clear in the syntax of the language,
and counter-intuitive.

For the second proposal, causality can go strange ways, for example in Figure 6.16.
In this MSC, instance ¢ can send message a if and only if j changes the value of x
to 1. If 7 sends out a message before j sets the value of z, i decides what choice j is
going to make. Again, this is a connection (causal rather than ordering in this case)
that is not obvious from the syntax of the MSC, as well as unwanted.
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msc infloop
i J
| |
[
=
alt
< when (z=1) >
loop zrn,fJ
[ o ]
< when (z=2) >
)
| |

Figure 6.14: An infinite loop causing semantic unclarity
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msc order

< when (z=2) >

Figure 6.15: Unexpected ordering requirements

6.5.3 Static Requirements as a Solution

Neither option seemed very attractive. Instead, one would like a semantics that is
intuitive from both the usage and the semantic point of view, rather than just one.
Instead of choosing one of the alternatives, it was preferred to restrict the MSC
language. Only those MSCs where both interpretations provided the same result
would be allowed.

To see which MSCs these are, we have to go back to where we introduced the two
proposed semantics. There it was said that their difference was in the time and place
where the guard is evaluated. The first semantics evaluates the guard when the first
instance passes the guard (by performing some action coming after the guard), the
second semantics when the owning instance of the variables goes through it.

The two semantics will provide the same result if the value of the guard does not
change, or if they both evaluate it at the same time and place. The evaluation of
a guard does not change if it does not contain any dynamic variables. Thus, any
such guard is unproblematic. If there are dynamic variables involved, the evaluation
may be different at different points in time. Thus, in this case both semantics should
evaluate the guard at the same time. This is only the case if the owning instance of
the variables is the first to do an action after the guard. An instance which is able
to do the first action after a guard is called a ready instance for that guard, and thus
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msc backward causality

| |
D
1]

i

.

[#=7]

< when (z=1) >

< when (z=3) >

b

Figure 6.16: MSC with backward causality
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the following static requirement was added to the language:

If a guard contains a data expression, then this expression must be of
type Boolean. If this expression furthermore contains dynamic variables,
it may only cover a single instance, which thus must be the only ready
instance of the scope.!

6.5.4 Non-Data Guards

Similar problems, where the truth value of a guard becomes indeterminate, can also
occur for guards without data, which get their truth value from defining guards. The
problem occurs in MSCs like the one in Figure 6.17.

msc guards

Figure 6.17: Why not all defining conditions affect a guard

IThe text in the published version [IT00] is slightly different. The quoted text is taken from an
official correction to the published version. In this correction it is also made clear that the restriction
that all ready instances must be covered by the guard holds for all guards, not just for those with
data.
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If one simply would have one state for each instance, instance i would enter the
alt-expression in state A, while instance j would do so in state B, so they disagree
on which of the alternatives has to be chosen. This has been solved by allowing only
conditions on exactly the same instances to be referred to by the guard. The setting
of B is thus not of importance, and both instances here agree that the first alternative
has to be chosen.

6.6 The Interface

The current MSC standard [IT00] defines the interface between a data language and
MSC. It consists of a number of functions which define the information that MSC
needs from the data language to decide the semantics of the combined language. We
will here give an overview of this interface, for two reasons. In the first place, the
interface definition in [IT00] is often not very clear, which we hope will be done better
in this chapter. In the second place, we have made some changes which increased the
clarity while not removing any applicability. In Section 6.7, our new version of the
interface will be used. Finally, while creating the semantics, we found that there was
one function lacking in the interface. This one has been added in this chapter. All
the non-trivial differences between the Interface defined here and the one from [IT00]
can be found in 6.6.4.

The interface can be divided into two types of functions: the static functions, which
are used to check whether a data expression is legal, and the dynamic functions, which
are used to define the actual semantic meaning of a data expression.

6.6.1 Example Language

In this chapter, we will use a simplified data language to explain the various parts of
the interface. Note that this is just a simple language used as an example, this nor
any other data language is specifically adapted for use in MSCs.

Our language will consist of:

e The data types of Naturals and Booleans,

e Variables z, y, z and x1, 23, ...,

e Constants 1,2,3, ..., true and false, with the obvious meanings,
e Operators +, -, A, V, = and =.

Furthermore, we will take the liberty of adding brackets where necessary, and
removing them where possible.

6.6.2 Static Functions

Before going into each of the static functions in a bit more of detail, we will first give
an overview in the table below.
In the rest of this chapter, we will use the following:
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e D € D is a data definition (that is, the data information part of an MSC
document),

Var is the set of all possible variables,

V' C Var is the set of all actual variables (not including wildcards),

e IV C Var is the set of all actual wildcards,

t € T is a data type,

e w C ) is the set of all pairs of actual variables and wildcards with their data
types (thus, Q@ C Var x T, and (z,t) € w for exactly one ¢ if x € V UW and for
notifx gVUW.

e Y is the set of all possible strings of text that can occur in an MSC.

A wildcard in MSC is used to denote a random value. The difference with a
variable is, that a wildcard can have a different value every time it is used, even
within one expression. For example, if _is a wildcard with type natural, then _is any
natural, 2 - _ any even natural, and _+ _ any natural.

Function Type Usage
variable-check ¥ — Bool Checks whether o
cl(o) is a variable.
data-definition-check ¥ — Bool Checks whether o
c2(o) is a data definition.
typeref-check D — ¥ — Bool Checks whether o
c3p(o) is a type reference.
expression-check (D x P(Omega)) — | Checks whether o is an
cAp .(o,t) (X2 x T) — Bool expression of a given type.
variable-equivalence ¥ x ¥ — Bool Checks whether two
EqVar(oy,02) variables are the same

To get a better idea of what these functions do, we will show what they look
like for our example language. Note that our language is slightly overspecified: In
MSC, the types of variables, and which variables and wildcards actually can exist, is
defined in the MSC rather than as an intrinsic part of the data language. For the
current chapter, we will change our language definition by only specifying that there
are variables or wildcards of the forms p, ¢, r, x, y, z, _, £1,... and py,..., and that
the division of these identifiers between variables and wildcards, as well as their types,
are to be defined in the MSC document header.

e The variable-check predicate c¢1, which defines whether a string ¢ is parsed
correctly as a variable is true for any string of the abovementioned syntactic
forms, false otherwise.

e Our language is relatively simple, and when used in combination with MSC will
not require any auxiliary data definition. Because of this, the data-definition-
check predicate ¢2 will be false for any string. In more complicated languages
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it could be used for the definition of non-standard data types, extra operators,
and other such additions.

e Only two strings will pass our type-reference-check c3: the existing types ‘Nat-
ural” and ‘Boolean’. Any other string cannot be a type reference. Note however
that in more general cases, ¢3 depends on the data definition — the data defini-
tion could include the introduction of new types (or even the removal of existing
ones).

e Next we get to c¢4. cdp . (t,0) is true if and only if o is a correct expression of
type t. For our example language this function can be defined inductively as
follows:

— cdp,(c,t) with ¢ a constant is true if and only if ¢ = Natural and c is a
natural constant, or ¢t = Boolean and c is a boolean constant.

— cdp,(x,t), with = a variable or wildcard, is true if and only if (z,t) € w.

— cdp (0 +7,t) and cdp (0 - 7,t) are true if and only if ¢ = Natural and
c4p (0o, Natural) = c4p ,, (Natural, 7) = True

(

(
— cdp (o AT,t) and cdp (0 V T,t) are true if and only if ¢ = Boolean and
c4p (0o, Boolean) = c¢4p ,(Boolean, 7) = True
(
(
(

— cdp,(—o,t) is true if and only if ¢ = Boolean and ¢4p ,, (o, Boolean) = True

— ¢dp(o = 7,t) is true if and only if ¢ = Boolean and ¢4p (o, Natural) =
c4p (7, Natural) = True

Note that normally in a language like our example language, one would have
used brackets to disambiguate the various expressions; for reasons of simplicity,
these have been omitted wherever this did not lead to ambiguity.

e Finally, EqVar for our language is such that that two variable names are equal
if and only if they are identical as strings. This will be true for many languages,
but not for all. EqVar might for example be used to specify that a language is
case-sensitive.

6.6.3 Dynamic Functions

Four functions are required for the dynamic semantics of MSC with data. Three of
these are introduced to be able to manipulate strings on a syntactic level, and are in
the first place (but not only) meant for dealing with wildcards correctly. The last is a
semantic evaluation function. ¢ will from now on stand for a string that is supposed
to be an expression. The set of such strings will be denoted ¥. Although not defined
in the standard, working out the semantics we found that a fifth function is necessary.

Below, € Var is a variable, U is the semantic domain of the data language
(defined below), E : V' — U is a function that gives the current value of each variable,
and & the set of all such functions.
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Function Type Usage
Variable counter DX Gives the variables
Varsp (o) — P(Var) in a string o
Variable replacement D — Replaces a single occurrence

Repp (0, 2, 2')

¥ x Var x Var — ¥

of a variable in a string

New Variable
NewVarp (V)

D — P(Var) = Var

Provides a fresh variable

Semantic Domain U

(not applicable)

The set of all
semantic objects

Semantic Evaluation

DxEE—-Y—>U

Gives the semantic

Evalp g(0) meaning of an expression
Semantic Range D—T—=PU) Gives the semantic
Semp (t) range of a type

We will now look at the various functions just defined, to give an explanation of

what they are supposed to do, and an example of how they would or could look like
in our example language.

e The function Vars checks which variables (or wildcards) appear in a given ex-
pression. For example, Varsp((z +y) - z) = {z,y}.

For our example language, Vars can easily be defined inductively as follows:

— For a constant ¢, Varsp(c) = 0.

For a variable z, Varsp(z) = {z}.

Varsp (o +7) = Varsp(o - 1) = Varsp(o A7) = Varsp(o V1) = Varsp(o =
7) = Varsp(o) U Varsp(7)

Varsp(—o) = Varsp (o)

A definition of this type is possible for most languages, but in some cases more
complicated functions are necessary — for example because some variables are
‘hidden’ by an abbreviation, or because something can be a variable if defined
as such, but have another meaning in other cases.

e The next function, Rep, substitutes a single occurrence of a variable by a given
other variable. For example, Rep,((z +y) - z, x, z) gives the result of replacing
one z in (z +y) -z by z, which, depending on the exact definition of Rep, might
either be (2 +y) -z or (x+y)-z. Note that (z +y) -z would not be an allowable
outcome for this substitution, because then two occurrences of x would have
been replaced.

For our example language, we will choose to have Rep always replace the first
occurence of a variable, which leads to:

— Repp(c,x,y) for ¢ a constant is equal to c.

— Repp(z,z,y) for z a variable is equal to y if z = z, and z otherwise.
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— Repp(o + 7,2,y) equals Repp(o,z,y) + 7 if x € Varsp(o), and o +
Repp (7, z,y) otherwise.

— Similar rules hold for the other operators -, A, V, = and =.

The Rep function is used for two purposes: In the first place to handle wildcards
properly, and in the second place to disambiguate a situation where two static
variables by the same name have been defined.

NewVarp (V) basically provides a new variable from Var, not yet in V. Of
course this is not always possible (just take ¥V = Var), but in actual usage
V' will always have a finite number of variables, so NewVar needs only to be
defined in that case. If Var itself is infinite, this is enough to ensure the possible
well-definedness of NewVar.

For our language, we can define NewVarp (V') for finite sets V to be x,, with n
the smallest n such that z, ¢ V.

Finally, there is the actual semantic interface. It consists of some semantic
domain U, and the function Eval, which gives the semantic meaning of an ex-
pression. This meaning depends on the current value of the variables, which is
encoded in the function E. As a static semantic restriction one could specify
that only those variables that actually occur in o (as defined through the func-
tion Vars) are allowed to influence the result. More formally, we should have
Evalp g(0) = Evalp g (0) if E(z) = E'(z) for each « € Varsp(o).

For our example language we have:

— Evalp g(c) for ¢ a constant equals the ‘natural’ meaning of c.
— Evalp g(z) for x a variable equals V(z).

— Evalp, g(0+7) equals the sum of Evalp (o) and Evalp g(7), and similarly
for the other operators.

The Semantic Range function Semp(t) is necessary for the correct handling of
wildcards. It gives the complete semantic range of a data type, that is, all values
that can be taken by variables of a given type. As such, it specifies the values
that a wildcard of that type can have. For our example language, this function
is defined by Semp(Natural) = N, Semp(Boolean) = {true, false}.

6.6.4 Changes in the Interface

The interface as it has been presented here, differs somewhat from the one in [IT00].
The differences, with justifications, will be mentioned below.

e Compared to [IT00], we have removed some static functions. The reason for

that, is that some of the static functions defined above are the combination of
more than one function from [IT00]. ¢2 and ¢3 both combine two functions
from [IT00], where a well-formedness predicate is checked first to see whether
a string could be a data definition or type reference, after which a type-check
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predicate checks whether it actually is. These functionalities have been com-
bined into a single function in our version. The function ¢4 even combines three
functions, because [IT00] contains both a general and a type-dependent type-
check. Only the latter has been kept — the former can be derived by stating
that something is an expression if and only if for some type it is an expression
of that type.

In [ITO0], Vars also counts the number of occurrences of each variable. For the
semantics this information is actually unnecessary. The semantics does some
extra work that would otherwise be unnecessary because of the removal of this
information, but in general nevertheless looks better without it.

In [IT00], Rep also contains among its arguments a number specifying which
occurrence of a variable has to be changed. Because this information is not of
relevance for the semantics, it has been removed.

The semantic domain U has been mentioned explicitly, whereas in [IT00] it is
only defined implicitly, by the definition of Eval.

The function Sem, which we found to be necessary for a correct semantic han-
dling of wildcards, has been added.

6.7 Semantics for Data in MSC

In this section, we will give an indication how data and guards can be semantically
added to MSC. To do so, we take the semantics for MSC’96 as found in the thesis
of Reniers [Ren99] (see section 4.4 for a short introduction) as a starting point, and
look how data can be added and where it might cause problems.

6.7.1 The State Variable ¥

If we add data to the language, this is most easily done by adding a kind of ‘state
variable’ ¥, which keeps track of the relevant data information. In particular, the
following information is kept:

The data definition information D

A set V of all variables that have been defined

A set W of all wildcards that have been defined

The function d : V' — Bool which specifies whether a variable is dynamic

The function o : V' — I (I being the set of instances), giving the owning instance
for each dynamic variable

The function t : VUW — T (T being the set of types that are allowed), giving
the type of each variable and wildcard



134 CHAPTER 6. DATA IN MSC

e The functions ¢; : V. — U U { L}, giving the local value on the instance i of a
variable. The special value L (L ¢ U) is used if, as far as is ‘known’ to a given
instance, no value has been given to a variable yet

e The function s : IxP(I) = P(X)U{L}, remembering the last defining condition
on a given set of instances that a given instance has met. A set of strings € P(X)
rather than a single string is used because a number of possible states can be
defined by a single condition.

The semantics of MSC, which is currently defined on process algebra expressions,
must now be defined on the combination of these process algebra expressions and
these state variables.

At the start of an MSC document, D, V., W, o and t are initialised in an obvious
way in the document header. Furthermore, at this point d(x) = true for all z € V,
¢i(x) = Lforall x € V)i € I, and s(i,J) = L for each instance ¢ and set of instances
J.

6.7.2 Local Actions

The basic use for data is simple. Every time an expression is encountered, it should
be replaced by its meaning. We will formalise this, first for expressions o which do not
contain wildcards. The more complicated subjects, such as wildcards and messages,
will be dealt with later.

A restriction to such a usage is that each variable z has to be defined on the
instance on which the event takes place of which the expression is a part, that is
¢;(x) # L. This will have to be checked dynamically, although it functions in the same
way as a static restriction: MSCs for which this condition is not true are considered
illegal. If the expression is not connected to a specific event, it is not allowed to
contain any dynamic variables.

For each action a that contains an expression without wildcards, if under the exist-
ing (MSC’96) semantics the step z — y (here z and y are process algebra expressions,

and a is the process algebra event corresponding to the action a) is possible, then
Evalp 4,
under the semantics with data the step (z, ¥) va Ii)¢l(a) (y, ¥) is possible, where i

is the instance on which a takes place, and Evalp 4, (a) is found by replacing each
expression o in a by Evalp 4, (o).

These issues get more complicated when wildcards are used. If an expression
does contain one or more wildcards, it should be evaluated for any possible value of
these wildcards. Furthermore, if the same wildcard is used several times, it should be
possible to instantiate it with different values each time. For the latter purpose, we
first make each occurrence of a wildcard unique, in the following way:

Let o be an expression, and let 7" be some (finite) set of variable-type pairs (we
will see later what the function of the latter is). We define wf(o,T") inductively as
follows (the definition is not complete, because it is not specified which wildcard has
to be chosen at each step; however, the result is valid whichever choice is made).

e If 0 does not contain any wildcards (that is, Varsp (o) UW = ), then wi(o, T') =
(0, T")
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e Otherwise, choose any wildcard z in o (that is, x € Varsp(c) N W). Then
wi(o, T') = wi(o’,T" U {z,t}), where:

— z = NewVarp(VUWUW’), where W' consists of all first elements of pairs
in T’
— t = t(x) (the type of x, and thus of 2)

— o' =Repp(o,z,2)

Thus, wf(o, §) consists of a rewriting of o into a form where every wildcard occurs
only once, and a list of extra wildcards and their types that have to be created to do
so. We will call this rewriting and this list wf(c) and 7", respectively, while we define
W' to be the set of first elements of pairs in 7" and Sem(¢(x)) for € W' to be the
type t such that (z,t) € T".

Provided that Rep and NewVar both work in the way that they are supposed to
work (that is, Rep replaces exactly one occurence of a variable, and NewVar provides
a new variable), the definition above will give a result after a finite number of steps,
although the result may depend on choices that have been made.

We define a ‘choice function’ to be a function ¢ : WUW' — U such that c¢(z) € t(x)
for each wildcard z. It thus gives an arbitrary allowed value for each wildcard. With
this information, we can finally add wildcards to the description of data in simple
expression:

For each action a that contains an expression, if under the existing MSC’96 se-
mantics the step  — y is possible, then under the semantics with data the step

(x,P) Fral(a) (y, ¥) is possible, where i is the instance on which a takes place, and
Eval;(a) is defined by replacing each expression o in a by Evalp ¢,u.(wi(o, V U W))
for any arbitrary choice function ¢ on the wildcards in wf(o, V U W).

To simplify notation, we will define the predicate ¢;(o,u) for an expression o and
a semantic object u € U to be true if and only if there is some choice function ¢ such
that Evalp 4,,.(wf(o,V UW)) = u. The above then becomes: If z % y is possible
under the current semantics, then under the semantics with data (z, ¥) = (y, ¥) is
possible, provided ¢;(o,u) holds.

As a next complicating factor, a local action can contain a binding of the type
x := o (with z a variable and ¢ an expression). In this case the following static
requirements must be met:

e o and z must be of the same type, that is ¢4, 7:(¢(z), o) = true.

e 1 is a dynamic variable that is owned by the instance to which the local action
is connected, that is, d(z) = true and o(z) =i

In this case not only the expression must be replaced, as done above (one can even
imagine that one does not want to replace the expression, but that is a choice that

I do not want to go into at the moment), but also the value of z has to be changed.

. . ti =
Thus, the rule now becomes that if under the current semantics x o lorif °) y, then

under the semantics with data we have (z, ¥) action(gi=u) (

holds, where ¥' equals ¥, except that in ¥', ¢;(z) = u.

y, ¥"), provided c¢;(o,u)
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6.7.3 Simple Messages

Messages behave different from other actions in two ways:

1. The interpretation of an input event depends on the corresponding output event,
rather than on the current value of the variables on the receiving instance itself

2. The message can have the effect of changing the value of a variable, or of com-
municating the value of a variable to another instance.

First, we look at a simple message — a message which contains an expression, but
no bindings, and does not go through any gates. A message consists of two parts, the
sending and the receipt of the message. We cannot handle them as two independent
events for the reasons mentioned above. Instead, we will have to remember the
information of the sending event when the receiving event happens.

The information that is needed, is the value of all variables that are in the ex-
pression. A logical place to do so, is in the ordering requirement that already exists
to ensure that messages are sent before they are received, that is in the requirements
part S of o and ||¥ (see chapter 4.4).

To extend the semantics to also be able to work with data, the information in these
requirements should also contain the value of the variables. To handle wildcards in an
easy way, we also need to put the actual value of the expression as a whole in here. We
need a set of all values of variables in the expression of the contents of the message,
and one such set for each occurrence of the sending of the message. Furthermore, these
lists have to be considered in FIFO (First-In-First-Out) order. Thus, the numbers n
in 5 are replaced by lists of sets E = (e,z1 =e1,z0 = e€9,...,T, = e,), where e is the
value of the expression, x1,...,x, are the variables in the expression and ey,...,e,
their valuations.

The new enabled(a, S) predicate need not be more complicated than the old one.
The rule that the number n is larger than 0 for all orderings with a on the right side
of the ordering, is replaced by the rule that the list of lists E is non-empty.

The new update function upd(a,S) does get more complicated. For a message
sending event out(i,j, m), apart from the ordering out(i,j,m) — in(i,j,m), we add
the valuation of the message m and a list of the variables in m together with the value
of ¢;(z) for each of these variables. For generalised orderings, the list of variables and
values is necessarily empty.

When receiving a message, we need to change the receive action that is done, using
the valuations as defined by the corresponding send action. If z = z' is allowed in
the existing semantics for some receipt event a = in(i,j, m), there will in this case

be exactly one non-empty ordering requirement b K g (to be exactly, this will be the
case for b = out(i,j,m)). From this ordering requirement we get a set of variable
valuations E(x), as well as a value of the expression itself E(m).

The step which now is allowed in the semantics with data, will be: (z, ¥) % (z, ¥'),
where o’ = in(i, j, E(m)) and ¥’ has ¢;(x) = E(z) for all variables that occur in m
(which must necessarily be the same as the variables that occur in E) which have
c(z) = true and o(z) # j, and is equal to ¥ elsewhere.
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6.7.4 Bindings and Gates in Messages

Apart from expressions, a message m can also contain bindings as one of its param-
eters. We could thus have a message m(z + 1,y := 7), which would mean that the
value z + 1 is sent with the message, and y is given the value 7. The number of such
parameters is indefinite.

If the variable that is given a value is a wildcard, everything works just like above.
If it is a real variable, then this variable should be a dynamic variable, owned by the
receiving instance. In this case, the new value for the variable will be set to (the
evaluation during the send event of) the expression. Note that this is the only way
that a message can change the value of an owned variable.

If a message is sent through a gate, the parameters given by the sending event and
those given by the receiving event are not the same. Rather, the sending event is pa-
rameterised with expressions, while the receiving one is parameterised with variables
(or wildcards). The semantics of this should be that the variables given as parameters
on the receiving side should be given the values given as parameters on the sending
side.

In the current semantics, there is already a function to couple the correspond-
ing events on two sides of the gate. This function, which is described on page 141
of [Ren99], at the moment couples the events out(i, G, _,m) (which means, sending
message m from instance ¢ through gate G to an unknown place (-)) and in(_, G, j,m)
to create the events out(i, G, j,m) and in(i,G, j,m). This function can easily be ex-
tended to also combine the data information in a correct way — that is, we have to com-
bine out(i, G, .,m(e1, ea,...,e,)) and in(-, G, j, x1,%2, ..., %n) to out(i,G, j,m(x; :=
€1,T2 = €3,..., Ty = ¢€y)) and in(i, G, j,m(x, := e1,x2 :=€3,..., Ty = €y,)). Apart
from this, the semantics are exactly as described above. There is still a choice here
whether any wildcards are actually put in the binding, or that they are regarded as
signifying that expressions rather than bindings are to be added. That is, whether
out(i,G,_,m(7,2 + 1)) and in(-, G, j, m(y, -)) are combined to out/in(i,G, j,m(y :=
7,_:=x + 1)) or to out/in(i,G, j,m(y := 7,z + 1)). This does however not make an
essential difference in the semantics.

6.7.5 Static Data

The next thing that has to be added to the semantics is the issue of static (parametric)
data. When an MSC has a parameter, say z, it can only be called with an actual
value for that parameter. All occurrences of the variable z are then replaced by its
actual value.

The best way to deal with this, seems to be to create a new variable (using NewVar)
7', add this to the set of variables V', and store its value. This new variable will have
d(z') = false, and ¢; equal to the defined value for each instance i. All events in
the MSC are then labeled with an extra statement x := z’, which has the effect of
replacing each occurrence of z by an occurrence of z’ (by repeated application of
Rep). This renaming is also applied in all MSCs that are called by the MSC itself,
except if this other MSC also has z as one of its parameters.

The reason that we choose to include an extra variable 2’ rather than using the
existing variable z, is that z may be defined at more than one place. In such a case,
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we have to have a mechanism to decide which value of z is to be used, which is done
through this new variable z'.

6.7.6 Guards

Passing a guard is preferably not considered an action. Rather, guards are condi-
tions on the permissibility of actions that happen later. Luckily, in the semantics of
MSC there exists a mechanism to add such a condition in a natural way, namely the
permission relation ---—.

We now turn a guard into a quasi-event, that is, it looks like an event, but it
cannot be actually executed. More precisely, we add one such quasi-event for each
instance covered by the guard. We denote these quasi-events by guard(i, e), where i is
the instance on which (this part of) the guard is defined, and e is the data expression
connected to it (which of course as a static semantic requirement must be of the type
Boolean). We will look at non-data guards later.

For guards, the normal permission rule holds as well:

l(a) #1
(guard(i,e), ¥) RN (gquard(i,e), )

But there is an extra rule here: Something happening on the same instance,
after the guard, may also be executed — but only if the guard evaluates to true.
Furthermore, once we have passed the guard this way, it will not hinder us later — at
least not on this instance. That is:

l(a) = i,Eval;(e) = true
(guard(i,e), ¥) RN (e, )

If we look at non-data guards, the guards themselves work very similar to what is
mentioned above. This time there will be three parameters: The instance, the set of
instances on which the guard is defined, and the texts of the guard (a guard can have
more than one string, it can then be passed if the system is (on the given instances)
in any of the states defined by the guard). The same holds for defining conditions (if
there is more than one string on a defining condition, the system can be in any of the
states defined). We will denote them by guard(i,I,X) and cond(i, I, X), respectively,
with ¢ the relevant instance and I the total set of instances on which the guard or
condition is defined. The guards work just like above, except that the check now is
that there is a state in which the system can be which is allowed by the guard, rather
than the old Eval;(e) = true, and that passing a guard can restrict the number of
states a system is in: If the system (for a given instance and set of instances) is in
a state {4, B,C}, and passes a guard when A, B, D, the system state changes to
{4, B} — it cannot any more be in state C.

l(a) #1
(gquard(i, I,%), ) RN (gquard(i, I,%), )
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la)=4,2Ns(,I)#0
(guard(i, I,$),T) -~ (e, T')

Here ¥’ is equal to ¥ except that the value of s(7, I) is changed to that of s(i, I)NX.
A defining condition can always be passed, but if it is passed, it changes the state:

l(a) # 1
(cond(i, I, %), ¥) - (cond(i,I,T), T)

l(a)=1
(cond(i,I,%), ®) - (¢, U')

Here ¥' is equal to ¥ except that the value of s(i, I) is changed to X.

A few special points have to be noted.

In the first place, under this semantics it can happen that the data state ¥ is not
uniquely defined any more. We could have an MSC like the one in Figure 6.18, where,
after action a has been done, we do not know whether we are in state A or state B.
We are however not in the compound state, since further actions can make it clear
where we are without any guards.

The solution for this is to ‘lift’ the delayed choice operator (F) through the data
part, that is, rather than just allowing pairs (z, ¥) with = a process algebra expression
and ¥ a data state, we allow expressions of the form (z1,¥;) F (22,%¥2).... Then
such a situation where different paths have the same observable actions, but different
data consequences can be solved by changing the current SOS-rule [Ren99]:

a, i a
Z'—)l',y—)y
cFy S Fy

into

(2, %) = (@, ¥), (y,¥) = (y', ")
(Fy,T) = (@, ) F (Y,

Of course, some other extra rules are necessary as well to define the behaviour of
the delayed-choice operator on algebra-data pairs, these are however all easily derived
from the existing semantics.

A second point that needs to be noticed, is that under the semantics as defined
above, a guard is evaluated when the first action after the guard is done, not at some
earlier stage. This might have some unexpected consequences for situations involving
parallel composition:

In Figure 6.19, the sending of m cannot be done any more after the binding z := 2
is taking place. At that time the value of z is not zero any more, and thus the guard
evaluates to false. That the guard has been true at some previous time does not
matter: in these semantics it is not possible to pass a guard at some time, but then
wait before doing any actions. The guard is connected to the action it guards.

Another issue that has to be covered is the termination predicate |. When there
are no actions to be done any more, just guards or conditions, successful termination
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Figure 6.18: The data state is not always uniquely defined

is possible — provided all guards evaluate to true. As a first attempt, one might try
to simply give guards the possibility to terminate, but a closer look shows that this
will not be sufficient. What if there is a defining condition followed by a non-data
guard on the same instances that is still to be passed? The guard should then be
evaluated using the state as defined by the defining condition. To enable this, we will
have to remember the state variable ¥ also after a termination. Thus, termination
will not any more be given by a simple predicate |, but by a predicate |¢, meaning
‘termination in data state U’.

The existing SOS-rules are to be changed for this predicate. The basic case
((e,¥) lw) and the rules for delayed choice are easy. More complicated is the case of
the merge. For this is good to think of what a guard actually does to ¥: It reduces
the number of states in which the system can be. Now, what will happen if the state
is reduced in two different ways in two places? Then both reductions will happen.
The endstate will be the one with both reductions, which is the same as getting one
of the reductions from the end situation of the other reduction.
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msc choice

Figure 6.19: Possibly unexpected behaviour of parallel composition

(67 ‘Ij) ~l/\Il

(37, ‘I’) \l/\Il’
(Z’ F+y, \II) Jr\I”

(ya‘l!) \l/\Il’
(Z’ Ty, \II) Jr\I”

(.’If, lI’) J/\P’a (y, lI’I) J,q///

(@ [y, ¥) Lur

(y, %) by, (z, ') Lyn

(@ [y, ¥) o

(ZE, ‘Ij) *l/‘l”v (ya ‘I!,) J/\IJ”

(JT °y, ‘I!) \l/\Il”

141



142 CHAPTER 6. DATA IN MSC

There are some more rules regarding | [Ren99], but all are easily translated into
rules for |y.
Termination for conditions and guards can now be defined by:

(cond(i, I: E)a ‘Il) Jf\Il’

Here ¥’ equals ¥ except that in ¥’ s(i,I) = X.

Yns@i,I)#0
(guard(iaja E))\I,) ~L\Il’

Here ¥’ equals ¥ except that s(i,I) has been changed to the previous value of
Yns(i, ).

Eval;(e) = true
(guard(i, 6), \I,) L

6.8 Conclusions

The addition of data to the MSC language was not an easy task. Much work has been
done by a number of people. It was felt early that using a flexible interface would
be better than to using a single pre-defined data language. However, there were
still many choices to be made regarding the way in which a data language could be
combined with MSC. Some of these choices were quite automatic once they had been
identified [EFM99], but others have remained open for a large part of the process.

Even larger problems were found with the inclusion of guards in the MSC language.
The various standards that are being used in extending the language clashed here —
in particular, the intuitive meaning that certain MSCs have could not easily, and in
some cases not at all, be translated into a semantics. Thus, there were two methods of
interpreting guards, one corresponding with intuition, the other semantically ‘clean’.
As both had some disadvantages that were regarded decisive, neither was chosen, but
rather, the language was restricted through static requirements, so as to only allow
those cases where both interpretations resulted in the same semantics.

An overview of what the semantics for data and guards would look like is also given
in this chapter. The semantics in this chapter are based on the existing semantics for
MSC’96 [MR97b, IT98, Ren99]. By extending this semantics at various places with
data concepts or guards, we can create a semantics for the subset of the MSC2000 lan-
guage consisting of MSC’96 plus data features and MSC2000-style guards and defining
conditions. Although the complete semantics is not actually given, the treatment in
this chapter should be enough to make the creation of such a complete semantics rel-
atively easy, providing a solution for all major stumbling blocks. Note that to be able
to work with this semantics, the need was felt to extend the interface between MSC
and the data language, as defined in the standard, with the function Sem. However, it
seems likely that a similar function would be necessary for any reasonable semantics
of this language.
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It would be a good thing to have a semantics for the complete MSC2000 language;
however, such a semantics might well be impossible. The current semantics for MSC
are such that to see what the next action can be, one only has to look at the current
state, not the future. Such a semantics we will call ‘executable’ — it is possible to
‘walk through’ the semantics without problems. The basic problem of the ‘intuitive’
solution regarding guards, was that it would not have this property any more. Rather,
it would create a semantics in which a look-ahead is necessary, one would have to look
at the future behaviour of the system to see whether a certain action would be possible
in the current state. Such a semantics would be complicated from a theoretical point
of view and hard or impossible for toolmakers to understand.

One of the other extensions that has been included in MSC2000 is time. Thus,
a complete semantics for MSC2000 would also contain this extension. If we look at
MSC with time, a look-ahead semantics seems to be the only reasonable solution.
For example, the MSC in Figure 6.20. The notation b@Q3 here means ‘b at time 3’.
If in this MSC we would not allow look-ahead, then one possible trace could be to
first do b (at time 3), then do a (at time 3 or some later time), and then deadlock.
Although it would of course be possible to make a semantics this way, it can in no
way be regarded intuitive.

mse MSC with time

L L]
[ o | 099 ]
c@f

]

Figure 6.20: An MSC with (absolute) time

On the other hand, apart from disadvantages like the one already mentioned, if
we add data (and guards) to MSC, backtracking semantics get even harder: Suppose
we have the MSC like in Figure 6.21 (the inline expression here has to be passed
zero or more times). Can this MSC, under a backtracking semantics, after setting x
equal to 1, start the loop with the action x := f(z)? This is possible if, and only if,
there is some n > 1 such that f™(z) = 1. And that is something that, even for quite
simple languages, might well be undecidable. The problem is that the semantics ask
an infinite amount of information from the data language.

Because this way time clashes with other parts of the language, it seems likely that
a complete semantics of MSC2000 will not be developed in the near future (although
the title of [JPO1] seems to claim it is a semantics for MSC2000, it actually gives
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Figure 6.21: Another problem with backtracking semantics

a semantics only for basic MSCs plus inline expressions plus data, not for time) —
even worse, that it is actually impossibile to make such a semantics. Such problems
are likely to keep occurring wherever a language is developed much faster than its
associated semantics. It would work better to develop both hand-in-hand.

This has been done for data and guards, leading to the problems and solutions
identified in this chapter. For time on the other hand, the semantic checks seem to
have been insufficient. There have certainly been ideas regarding the semantics of
time in MSC [BAL97b, GDO098, Klu99, MH00], but all of these had elements that
make an integration with the existing MSC’96 semantics hard.



Chapter 7

Message Refinement in MSC

7.1 Introduction

7.1.1 Motivation

One of the areas where MSC is most used, and the one for which the language was
originally developed [GR89], is in the description of telecommunication protocols.
Real life telecommunication protocols often have different levels of interpretation.
Something that is regarded a single message at one level, can be a packet of messages
at another, while on yet a lower level a number of regulation messages such as “are
you ready to receive?” and “transmission successfully completed” might be added.
At the lowest level, there are just a large number of bits being transferred in both
directions.

As one single level is already quite complex by itself, one does not want to be
concerned by what is going on at at the lower levels when specifying a higher one.
However, in MSC this can currently only be done by dropping those lower levels
altogether, which might also be undesirable. One might be interested in possible
interactions between the various levels, or the computer system that is used to test
the implementation might only be able to interpret the communication at a lower
level.

Thus, one would like to adapt the formalism in such a way that it is possible to
switch between different levels. That way one can design the system or protocol at
one level while still being able to see the result at a lower level. In this paper we will
introduce the concept of message refinement, in which one message can be used to
denote a collection of events, as a construct that can be used to make such switches.

7.1.2 Composition and Refinement — A Historical Outline

Much discussion has been going on about the possibility of combining several MSCs
to create one larger one. In many applications, MSCs tend to become unduly large,
spanning several pages. One would like to break those up into smaller parts in order
to gain a better overview.

145
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In the oldest MSC-standard, MSC’92 [IT93], only one operation to break up or
combine MSCs was defined, namely the so-called instance refinement [MR96]. Here
one instance is used to show the behaviour of several instances. An example of instance
refinement is given in Figures 7.1 to 7.3.

msc unrefined

j-compound
| i | {z’ecomposeziz’

Figure 7.1: Instance refinement: Original MSC

msc j_compound

outer | | mnner

Figure 7.2: Instance refinement: Refining MSC

The instance j_compound in Figure 7.1 is refined by the MSC in Figure 7.2 That
is, the middle MSC shows the internal behaviour of that instance, which appears to
consist of two parts that communicate with each other as well as with their mutual
environment. The external behaviour of the refining MSC should, of course, be equal
to that of the instance to be refined — in this case, first receiving m, then sending n.
Together the two MSCs shown here describe the same behaviour the single MSC in
Figure 7.3 describes.

In MSC’96 [IT96], some more features were added to explicitly compose MSCs,
namely MSC reference expressions and High-level MSCs (see Chapter 4.

The idea of refinement (using one entity to stand for several of them) could be
extended. Two logical ways of doing this are action refinement, in which a local
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msc dec

Figure 7.3: Instance refinement: Equivalent MSC

action stands for a number of actions, and message refinement, in which one message
stands for a larger protocol consisting of several messages and other events. With the
appearance of MSC’96, action refinement adds little, as it can easily be modelled by
replacing the action by a one-instance reference MSC (see Chapter 4.3.4). Message
refinement will be addressed in this chapter. We will also be proposing another
addition to the language, namely synchronous communication.

7.2 Message Refinement
7.2.1 Protocol MSCs

The basic idea behind message refinement is to use a single message as the notation
for some more complex behaviour. A separate MSC then defines this behaviour. In
general, this behaviour will be some type of protocol, describing how the information
exchange which is represented by the message will occur.

The idea behind message refinement is to have one message stand for an MSC of
its own. This MSC, as it shows the protocol used to send the original message, we
will call a Protocol MSC. What are the properties of such an MSC?

First, there will be two instances, the sender and the receiver, that are to take
the roles of the instances sending and receiving the message to be refined in the
unrefined MSC (that is, the MSC in which only the high-level message is shown, the
MSC in which the message is ‘replaced’ by the protocol MSC will be termed the
refined MSC). The protocol MSC may contain other instances as well. These describe
(parts of) the medium between the communicating processes, or perhaps parts of the
communicating processes themselves that specifically serve purposes in the input or
output process only.

Furthermore, as there should be some sort of communication from the sender
to the receiver, it is reasonable to assume there is some event at the sender that
necessarily happens before some event at the receiver. When e; necessarily happens
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before ey, we will write e; << e;. That is, e; << ey iff e; is before ey in every
possible trace (allowed sequence of events) of the MSC.

A third point is that we want our MSC to reach neither a deadlock (in which the
system has not successfully terminated and yet is unable to perform any actions) nor
a lifelock (in which the system keeps on running in loops without ever terminating).
If any of these two would be the case, the protocol MSC could not really be regarded
as just a refinement of the original message, as it would add some other behaviour as
well. Deadlock is forbidden in the MSC standard [Ren95], and an algorithm has been
published to check for it [BAL97a].

Putting this all together we come to the definition set out below:

Definition 44 A protocol MSC is an MSC with the following added requirements:

1. There are two different special instances, which are termed the sender and the
receiver. The other instances (if present) are termed internal instances.

2. There are events e; at the sender and es at the receiver such that e; << es.

3. The MSC is free of deadlocks, and every finite beginning of a trace of the MSC
can be extended to a finite trace.

7.2.2 Message Refinement

Having defined what a Protocol MSC is, we next define what Message Refinement
means. Thus, given an MSC and a message in that MSC, what is the result when we
replace the message by a given Protocol MSC? To define an MSC, we need to specify
its instances and events, and the orderings between these events.

If an MSC k has a message m that is to be refined by a protocol MSC p, we expect
not to find !m and ?m in the resulting MSC, as they have been replaced by p. All
other events of k will be there, and are as much as possible unchanged. Likewise, all
events of p are present. They too are as much as possible unchanged. All events of
p that are on the sender taken together replace the event !m of k. Thus, apart from
their own orderings in p they also have to confirm to all orderings of !m in k.

Definition 45 (Message Refinement) Let & be an MSC, let m be a message of k,
that is, a message for which the sending !m and the receipt ?m are events of k, and
let p be a protocol MSC. Then the message refinement of m by p in k is the MSC
with the following characteristics.

Its instances are all instances of k, and all internal instances of p.

Its events are all events of k with the exception of !m and ?m, and all events
of p. Those events which in p are at the sender instead placed at the instance
at which the event !m takes place in k. Likewise, the events at the receiver are
placed at the instance at which ?m takes place in k. The other events of p, and
the remaining events on k are not changed.

There is an ordering of a given sort e << e’ between two events e and e’ (for
example, an instance order or a causal order) iff one of the following is the case:
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e and e’ are both events of k and e <<}, €.

e and e’ are both events of p and e <<, ¢'.

e is an event of k with e <<j!m and €’ is an event at the sender of p.

e’ is an event of k with ?7m << €’ and e is an event at the receiver of p.

We will denote the message refinement of m by p in k by k[p/m]. An example of
message refinement we see in Figures 7.4 to 7.6.

msc original

Figure 7.4: Message refinement: original MSC

msc protocol

sender | | internal| | receiver

m

ack

Figure 7.5: Message refinement: refining MSC

The MSC in Figure 7.4 is the original MSC, the MSC in Figure 7.5 the protocol
MSC, and the one in Figure 7.6 the resulting MSC after message m has been refined
by the protocol MSC. For example, because !m is before 7n and at the same instance
j in the original MSC, and !m and ?ack are at the sender of the protocol MSC, they
are also at instance j and before 7n in the resulting MSC.
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msc result

i | | internal | | j

Figure 7.6: Message refinement: equivalent MSC

7.2.3 When is Message Refinement Allowed?

In Figures 7.7 to 7.9, a problem appears: the MSC in Figure 7.7 and the protocol MSC
in Figure 7.8 are both perfectly valid MSCs. Yet, refining m by the given protocol
MSC, will result in the MSC in Figure 7.9, which contains a deadlock. After m has
been sent, all three instances are waiting for a message that will never arrive.

msc original

Figure 7.7: A problem: original MSC

Of course this is undesirable behaviour, so we would like to prevent it. However,
to do so we need to know when such a situation might occur. We will see that for
this purpose it is useful to distinguish between two types of protocol: wunidirectional
and bidirectional protocols. In a unidirectional protocol, information flows in just one
direction. In a bidirectional protocol, interaction occurs:

Definition 46 A protocol MSC is bidirectional if in each trace of the MSC there is
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msc protocol

sender | | receiver

m

ack

Figure 7.8: A problem: protocol MSC

an event e at the receiver and an event e’ at the sender such that e takes place before
e', and is unidirectional otherwise.

We first look at unidirectional protocol MSCs. They are very close to the intuition
of a single message. No deadlocks are created by the refinement of messages with
unidirectional protocols, as the following theorem shows:

Theorem 47 Let k be an MSC, m a message of k, and p be a unidirectional protocol
MSC. Then, provided k and p have no deadlocks themselves, k[p/m] has no deadlocks
either.

Proof  Suppose k[p/m] contains a deadlock. Then there should be events e and
e’ such that e << €’ and ¢’ << e simultaneously hold. If there were no such pair
in which e is an event of k and e’ one of p, then the pair would already have caused
a deadlock in either k£ or p, so we may assume that e and e’ are events of k and p,
respectively.

e << €' then implies that either e <<j!m (<<} of course being the <<-ordering
of the original MSC k) and e” <<, ' for some event e” at the sender, or e <<;?m
and e” << €' for some event e’ of the receiver. Likewise, e/ << e implies that either
Im << e and €' <<, ¢" for some event e” of the sender, or 7m <<, e and ¢’ <<, €"
for some event e at the receiver.

Because !m <<j?m, the only way in which e <<g!m or e <<;?m can be com-
bined with Im <<} e or ?m << e without causing a deadlock in k is when
'm <<p e <<x?m. Then it must be the case that e <<, €' for some e" at the
receiver and e’ <<, '’ for some e’ at the sender. However, in that case e’ <<, €',
which contradicts the unidirectionality of p. Thus we see there are no such e and €,
so the refined MSC is free of deadlocks. |

Bidirectional protocols are trickier. Here the anomaly shown in Figures 7.7 to 7.9
can occur. Luckily we can give the exact conditions under which it occurs. Intuitively
one can say that the output and the input of the m must be able to happen arbitrarily
close to each other to avoid a deadlock.
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msc problem

ack \

Figure 7.9: A problem: equivalent MSC

Theorem 48 Let k be an MSC, p a bidirectional protocol MSC, and m a message
of k. Then k[p/m] is free of cycles if and only if the following conditions hold:

1. !m and ?m are not at the same instance in k
2. There is no event a such that !m << a <<?m

Proof if: If the conditions are met, there is a trace where !m and ?m follow each
other immediately. A valid trace of the refined MSC can now be found by taking
such a trace, and replacing !m-?m in this trace by any trace of p, renaming instances
where needed.

only if: If !m and ?m are at the same instance in k, then in the refined MSC, each
event coming from the sender will come before each event coming from the receiver.
This will obviously lead to a deadlock if the protocol is bidirectional.

Now suppose there is an event !m << a <<?m. There are events e on the re-
ceiver and e’ on the sender such that e << e’ in p. However, in k[p/m] we now have
a << e<< e <<a,and thus a deadlock. [ |

7.2.4 Synchronous Communication

In the present context it would be desirable to have an extra construct in the language
to show synchronous communication, that is, a message being sent which does not



7.3. SEMANTICS 153

take any time to go from the source to the destination directory. This looks like a
useful extension in itself as well.

Such a synchronous communication can be implemented semantically in two ways:
firstly as a single action that is shared by two instances, and secondly as two actions
that have to be done without any other action between them. The first method of in-
terpretation is probably preferable, because the second one is very hard to implement
in process algebra — or in any of the other formalisms that have been used for pro-
posed semantics for MSCs, for that matter. Anyway, any of the two representations
can easily be translated into the other.

If the construct of synchronous communication would be present in the language,
then avoiding deadlocks caused by message refinement can be done in the following
way.

Requirement 49 A normal message may only be refined by a unidirectional proto-
col. A synchronous message may only be refined by a bidirectional protocol.

7.3 Semantics

We will now try to give an operational semantics (in the style of [Ren99]) for message
refinement. Here k[p/m] is the refined version of k, with p for m, while k[p/m]* is
the same, but after !m, or in fact any of the events that replaces it, has already taken
place. We will not explain these semantics any further, as we think there is a better
option that will be given below. These semantics assume that !m and ?m take place
in k exactly once, and the internal instances of p are different from any instances in
k.

kS K ad {Im,?m} XK KL pl
klp/m] = K'[p/m] klp/m]*}
pSpila) {sender, receiver} kl,pl
klp/m] = k[p' /m)] k[p/m]}
ks E',p 5 p'i(a) = sender kl,pl
klp/m] = K'[p' /m]* k[p/m]*}
ks k'K g E'.p 3 pi(a) = receiver k- k" p-- p
Klp/m] 5 o' o K K/l ]
kS K a#m,p-"p' k- k" p s p!
klp/m]* = K'[p" /m]* klp/m]* "= K"[p" /m]"

p > p'i(a) # receiver
klp/m]* = k[p' /m]*
ko E',p > p,i(a) = receiver
E[p/m]* 5 p' ok

However, we prefer another way to include message refinement semantically. If we
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let it be not an operation in but an operation on the language, the problems become
much less. With this I mean that message refinement is regarded as another way of
writing down the MSC where the message has already been defined. That is, to get
the semantics of an MSC with refinement, one performs an operation like the one in
Definition 45 (but more precisely defined) to get the refined MSC. The semantics of
the MSC with refinement is then defined to be equal to that of this refined MSC. The
advantage is that this way the actual semantics of MSC is not changed, and so no
new problems can be introduced either.

Let thus k& be an MSC, m a message of k and p a protocol MSC. The MSC k[p/m]
can then be found in the following way, using the textual syntax of k£ and p (let ¢ and
Jj be the sending and receiving instance of m, respectively):

1. In p, replace every occurence of ‘sender’ by the sending instance of m in k, and
every occurence of ‘receiver’ by the receiving instance of m in k (if these happen
to be the same instance, one should keep track of what was originally on the
sender and what on the receiver).

2. In the syntax of &, replace the event i : out m to j by a series of events, consist-
ing of all events originally on the sender in p, in the order in which they appear
in p. Likewise, replace j : in m from ¢ by the series of all events originally on
the receiver in p.

3. Add to k instance declarations for all instances in p except ¢ and j

4. Add to k, in the order in which they are in p, all events of p which were not yet
added in step 2.

Synchronous communication can be semantically included rather easily. A syn-
chronous communication can simply be implemented as a single event that has a place
in the instance ordering of two different instances. Such a construct does not seem to
cause any major problems.

7.4 Conclusions

An important issue in MSC is the addition of various ways of composition, that is,
combining a number of smaller MSCs into one large MSC. A new way has been
put forward in this chapter, namely message refinement, in which a message can be
replaced by a protocol consisting of a number of messages and possibly other events.

These protocols can be divided into two groups, namely unidirectional protocols
and bidirectional protocols. Replacing a message by a unidirectional protocol causes
no problems, but replacing it by a bidirectional protocol might cause deadlocks. One
solution to this problem is the addition of synchronous communication, which might
also be a useful addition to the language of itself. If we allow only synchronous
messages to be replaced by bidirectional protocols, no deadlocks will occur.

To avoid problems in the semantics of MSC, it would be better to define protocol
refinement, and other composition techniques also, not as an operator in the language,
but as an operator on the language, describing a way in which MSCs can be changed
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into other MSCs. This way, no complicated semantic constructs are necessary to
implement them. For example, above we could do without a rather complicated set
of rules by introducing a relatively simple algorithm to translate an MSC with message
refinement into a ‘standard’ MSC.
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Chapter 8

Interrupt and Disrupt in

MSC

8.1 Introduction

Although extra features been added to the MSC language twice [IT96, IT00], there
remains a wish for new features to be added. In this chapter, we will look into one of
these proposed extensions, namely disrupt and interrupt. A disrupt means that the
system starts executing one type of behaviour, but at a certain point is disrupted,
and starts executing another behaviour instead. An interrupt is similar, but after an
interrupt, the system returns to the previous behaviour, while after a disrupt, this
does not happen.

Our opinion is that the semantics of a new construct should be well thought out
before the construct is added to the language. For disrupt and interrupt this chapter
attempts to make such a pre-introductory semantic overview. We will show the most
important of the many choices that have to be made, and will show some of the
problems that might occur if these operators are introduced.

8.2 Syntax

If disrupt and interrupt would be included in the language, there would not only be a
need for a semantics, but for a syntax as well. These two subjects are not independent.
Semantics that fit well with a certain syntax can be clumsy or counter-intuitive when
combined with another syntax, and vice versa.

The main distinction here is between local and global interrupt (or disrupt). The
difference here is the period during which the disrupt or interrupt can take place. In
a local interrupt or disrupt, the disrupt or interrupt can only take place at a single
point in time, while a global interrupt or disrupt can do so at any time during a given
period.

We would like to stay as close as possible to the existing MSC syntax. In order to
do so we will use inline expressions to describe the disrupt and interrupt.

157
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In Figure 8.1, we see the proposed syntax for local interrupt. At the point where
the interrupt is shown, the behaviour of the encompassing MSC could be interrupted
by the behaviour of the interrupt inline expression.

msc local interrupt

nt m

Figure 8.1: Proposed syntax for local interrupt

The MSC in Figure 8.2 shows our proposed syntax for global interrupt. As it
is important here to specify at which times an interrupt is possible, we now have a
two-component inline expression. The lower part is equal in function to the inline
expression in the left example, giving the interrupting sequence. The interrupt can
take place at any time when the system is in the upper part of the inline expression.

Let’s look more precisely at what is done in the local case. The MSC can essentially
have two different behaviours:

e Not doing the interrupt.

e Doing the interrupt, and doing it at exactly at the time given.

However, such a construct would not be an actual addition to the language. The
opt-construct has exactly this same meaning — when something is placed in an ‘op-
tional’ inline expression it can either be done at that precise moment, or not at all.
Likewise a local disrupt could be replaced by an ‘exception’.

Such an equality has advantages and disadvantages. The advantage is, that a
semantics is easily found, and will cause no problems with the rest of the language,
or at least no problems that were not already there. The problems are thus much
smaller than they would be with most extensions. The disadvantage is, that adding
such a local disrupt or interrupt will not make the language stronger while it would
make it larger. That way some of the problems of language addition would be met
without any useful extension even having been made.
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msc global interrupt

int k

-

Figure 8.2: Proposed syntax for global interrupt

We feel that local interrupt and disrupt are not useful, while if they are, they
are still semantically uninteresting. We will therefore in the rest of this chapter only
discuss global interrupt and disrupt.

8.2.1 Semantic Choices

For global and interrupt a number of other decisions have to be made. Each of these
will influence the resulting semantics. We see at least the following:

1.
2.

Can an interrupt take place only once, or any number of times?

In the second case, can the system be interrupted more than once between any
two actions?

. If yes, can one interrupt interrupt the other?

Can an interrupt or disrupt take place before the first and/or after the last
action of the interrupted behaviour?

. Are all instances interrupted or disrupted at the same time by an interrupt or

disrupt, or is it enough that all instances are interrupted or disrupted at some
time? This point will be explained in more detail below, as it is an important
choice, which is not so obvious, and the most obvious answer might well not be
the best one.

The last point above deserves some extra discussion. At first thought it might
seem that the first interpretation is more natural — an interrupt or disrupt should
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work on the whole system, or at least on all instances on which it is specified, at once.
However, when we look at an example, this might not be as obvious. See for example
Figure 8.3. It models a Telnet-protocol: The server sends two (packets of) messages
to the client. The client can check whether the server is still alive by sending an
ayt-signal (Care you there?’), to which the server answers by saying ‘yes’.

msc ayt
| server | | client
nt ml
m2
_______a;/t_______
yes

Figure 8.3: Example interrupt MSC: Are you there-protocol

Now if we regard the interrupt as interrupting all instances at once, then the
sending of the ayt-message will block the action of the server. However, how is the
server in a practical case to know that the ayt has been sent? It only notices this
upon its receipt, so it is logical to assume it will not be blocked before that. Likewise,
the server does not know when the ‘yes’ is received, only when it is sent. Thus letting
the server be interrupted during all of the period leads to some possibly unwanted
extra causalities. The more logical choice might be to let each process be interrupted
separately, that is, each process has to do the interrupting actions at some point
without doing anything else in between, but they do not have to do it all at the same
time. Choosing to have all instances interrupted or disrupted at the same time goes
contrary to the nature of MSC, where otherwise all communication is explicit and
asynchronous.

When one would choose to have all instances interrupted or disrupted at the same
time, one would in fact introduce synchronization points, which are contrary to the
nature of MSC as it has been practiced until now.

For the other questions our preferred answers are as shown below. However, we
do not feel very strongly about these questions, and if it appears that other choices
would be closer to the wishes of the users these are the ones that have to prevail.

1. Any number of interrupts.

2. More than one interrupt between two events possible.
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3. No interrupts interrupting interrupts.

4. Interrupts and disrupts possible at the given times.

8.3 Semantics

Based on the choices in the last section, we create an operational semantics for the
disrupt and interrupt operators. There have been more attempts to make process
algebraic description of the disrupt and interrupt operators (see for example [BBK86,
Die94, BB00]), but the presence in particular of weak sequencing causes the semantics
of these operators for MSC to be different (and more complicated) than in general
process algebra.

We will define operators < and « to denote the interrupt and disrupt respectively.
That is, z <y is ‘z (possibly) interrupted by y’ and = 4 y ‘z (possibly) disrupted by
Y

When could z € y do an action a? There are in fact two possibilities: Either z
does the action, or y does it. In the first case, the resulting expression can still be
disrupted. In the second case, all instances, except the one on which a takes place do
not have to have been disrupted yet. They have to be disrupted at some time, but
that time can be somewhere in the future, and upto that point can still do actions
of . To describe this situation, we introduce the forced disrupt, €. z<y can do z,
but must at some time in the future be disrupted by y. However, this is not enough
yet: The action of y that has already been taken forbids any actions on the same
instance of = to be taken. That is, some events of z may still happen before being
disrupted, but others have already been disrupted. Therefore we add to the forced
disrupt a set of instances S C I that have already been disrupted. z<4°y can now do
any action from y (provided y could do it), but actions from z only if they happen
on an instance not in S. We will be giving operational semantics for both <€ and «,
although it would be possible to make the semantics without using <, as it can be
eliminated through the equation =z €4 y = (ximy) F.

For the interrupt < we also define a forced interrupt <, but in this case we cannot
get away with re-defining the interrupt, as we need to keep the possibilities of further
interrupts.

We have to check the behaviour of our operators for three operational modifiers:
z |, which is true iff z can terminate, z =, which gives the result of doing an a on z,
and x ---a—>, which gives the result of z permitting a.

First, we consider termination. = <« y can terminate in two ways: FEither z
terminates, or y disrupts = and then terminates without doing any action. For z4°y
to terminate it is necessary and sufficient for y to terminate, while x <y can terminate
by just 2 terminating. Finally, for 2<%y to terminate, both z must be ready and
y must have no interrupting actions left, so <%y only terminates if both = and y
terminate. Thus:
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Tl yl Tl zl,yl
eyl x4yl wayl xSyl
oy
T4yl

Next we look at what happens for doing a step. When could an action a be taken
by =z 4 y? There are in fact two possibilities: either z took the step, after which
a disrupt of course could still take place, or y disrupted, and took the step. In the
second case, we would get into a forced disrupt situation, where the instance on which
a took place (which is denoted [(a)) is already disrupted.

In a forced disrupt z«4°y, = could only take the action a if the instance on which
a takes place was not already disrupted, that is, if I(a) € S. Actions of y can always
occur, and if one does then necessarily its instance must be disrupted as well.

With the interrupt = <y we again see two possibilities. Either the action can be
done by z, and nothing shocking is happening, or it can be done by y. In the latter
case we get into a forced interrupt. However, we will have to keep the ‘old’ interrupt
as well, because the process could be interrupted a second time.

r<°y is the most difficult one in this aspect. = can execute the step a if [(a) € S,
but it can also do it if y allows a. This is, because in this case the instance on which
a takes place has done all it has to do, so it is not interrupted anymore, and can do
steps from the main execution (z) again. Steps from y work just like the former cases.

There is another complicating factor here: We can have just one possible step for
a given action from a given expression, because the semantics of MSC are completely
deterministic. Thus, we have to include a special case for the possibility that both x
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and y can do a given step. Taken together, this leads to:
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Finally, the permission relation. This relation has been introduced in the semantics
of MSC to describe the possibility that in the expression z o y events of y can go
before events of x. However, this can only be done if no events on z are on the
same instance as the event taking place, or are otherwise forced to go first. This can
depend on choices that are made within z. In such a case those choices that would
have made the event taking place impossible are subsequently disallowed. Thus we

get the relation x g , which denotes that z by permitting an event from another

(later) term is reduced to z'.

For z « y this immediately leads to problems. There are two possibilities here:
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Either x has permitted the event, or y has permitted it. However, in the second case,
those events of x that would have permitted it, can still take place. That is, x may
perhaps not take place in full, but it can still do those actions that are not forbidden
by the event just having been allowed. This is not a simple removal of choices as it
was with the permission relation for other MSC operators. Here those parts of = that
would normally be disallowed by the permission of the events can still take place upto
the place where the permission would actually be impossible.

To see how we can deal with this, it is good to look at the forced disrupt z4°y.
Here, in order for an event a to be permitted, it necessarily has to be permitted by y.
On the other hand, whether or not 2 permits it is not interesting — any beginning of
a trace in = can happen as long as it does not contain any events that are disallowed
by the permission of a, that is, as long as it does not contain any events on the same
instance /(a), independent of whether or not they are part of a complete trace that
would have allowed a. Thus we see that, if y permits an event a to go over into
y", z4%y permits that event, and goes over in 45 U (®}y" The strange thing of
course is, that this is independent of whether or not z permits a. The reason is that
z cannot terminate anyway, as it will be interrupted by y at some time. Because of
this it does not matter whether z, or even the trace taken, actually permits a, as long
as that part of the trace that is actually taken does so. The SOS-rules for permission
by = < y now follow through the equality z 4y = = F 24%y.

For z <y to permit a it suffices that x does so. If y does not allow a, the process
cannot be interrupted anymore, if it does it still can. 2<%y, finally, can permit an
event only if both x and y do so. Note that it does not matter in this case whether
or not /(a) is added to S, as all events on [(a) are ‘sifted out’ by the permission of a
anyway. This leads to the following:
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8.4 Conclusions

Interrupt and disrupt can be introduced into MSC in various ways. These choices
have to be made very carefully, because a language construct that is not understood in
the same way by all users and other people concerned will cause many more problems
than it solves. Restriction in the inclusion of new features is advisable from a more
general point of view too.

If interrupt and disrupt are indeed to be included in the language, the first choice
is whether a local or a global interrupt is taken. A local interrupt has the advantage
of being semantically simple and easily understood, but on the other hand it does
not really add anything to the language, so it is nothing but syntactic sugar. A
global interrupt on the other hand is semantically quite complicated, which can lead
to unclarities. There are also a number of additional choices to be made.

Although in this chapter a semantics for disrupt and interrupt in MSC has been
defined, there are still some issues to be dealt with. In particular, the semantics as
they are, are rather complicated. Also, a number of choices have been made before
creating these semantics. Both factors increase the likelihood that, if these constructs
were interrupted in the language, the official semantic meaning of an MSC containing
these constructs might be different from the meaning intended by the user.

We feel that, in general, it is a bad thing to let the language grow too fast or
too large. The MSC’96 language has not been thoroughly researched. It would be
better, in our opinion, to have a solid, stabilized semantics for the existing language,
and if possible also for the proposed extensions, before the language is extended.
There are other reasons for restraint in the adoption of new features as well: If
features are introduced too quickly, tool builders will have problems keeping up.
Having too many features also runs the risk of groups of users using only subsets of
the language, thus diminishing the advantage that using one single languages has.
Another problem is that a large number of features greatly increases the chance that
unforeseen interactions between them lead to unwanted or unexpected behaviour.

We do not intend to claim that additions to the language have to be avoided at
all costs. Far from that, some additions are certainly useful, and not having any
innovation whatsoever will be even more certain to kill the language’s applicability
than a too generous addition of new features would. However, new features should
only be introduced when there is a wish for inclusion by a large number of users, and
a well-defined semantics for it.
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Chapter 9

Conclusions

Formal descriptions, and thus formal languages, can be useful in various parts of the
development of a software system. In this thesis, we have looked at some uses of
formal languages, as well as the process of defining these languages, and in particular
their semantics.

In the first two chapters, the subject of testing has been discussed. In Chapter 2,
we introduced a way to use formal methods created for one function (namely model
checking) in a completely different area (namely test generation). Using existing
methods and tools has the advantage that the amount of work that needs to be done
to create tools is much smaller, and innovations in one area can be used in other areas
as well.

In Chapter 3, a new language, LOGAN , has been developed for the analysis of log
files. Although through circumstances that are not related to the work itself, it could
not be applied at KPN as was originally intended, the language created seems to be
both simple and expressive, and as such seems to be applicable in practice. Using
a formal language certainly seems to be a great improvement over the current KPN
practice of doing the checking of log files by hand.

The rest of the thesis discusses the language MSC, which is introduced in Chap-
ter 4.

Chapter 5 is the last one about the applications of formal methods. The question
of whether a system can be implemented with a given communication architecture is
an important one, and the material in this chapter allows one to answer this question
from the MSC description of the system using relatively simple algorithms.

The second subject of the thesis, about the development of formal languages and
their semantics, also shows up in Chapter 3. Not only has LOGAN been developed
and a semantics defined, but we also gave an algorithm to check the correspondence
between the system described (in this case, a log file) and a description in the language
(a pattern).

Chapters 6, 7 and 8 discuss various extensions of MSC, including discussions of
their semantics. Much of the work in Chapter 6 has been part of the actual discussion
of adding data to the language. Proposals that seem to be reasonable at first sight,
might have hidden semantical problems, and the work in this Chapter has helped
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the development process of MSC2000 by bringing these semantical problems to the
surface, thus allowing them to be resolved before the actual standard was decided
upon.

The Chapters 7 and 8 have a similar function for some extensions that have not
yet been added to the language, but might be in the future. For message refinement,
it seems that most semantical problems can be avoided by making refinement an
operation on rather than in the language. For disrupt and interrupt on the other hand,
a number of choices have to be made, and the resulting semantics are complicated.
This complexity might be a reason to not introduce the constructs to the language,
but that is a decision that falls outside the scope of this thesis.
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Samenvatting

Wie een goed computersysteem wil bouwen, zal moeten beschrijven wat het doet of
zou moeten doen. Natuurlijk talen, zoals Nederlands of Engels, zijn hiervoor niet
zeer geschikt, omdat ze te weinig exact zijn. In plaats daarvan worden hiervoor
zogenaamde ‘formele talen’ gebruikt. Dit zijn beschrijvingsmethoden met een exacte,
wiskundige betekenis. Dit promotie-onderzoek heeft zich op zulke talen gericht, en
meer specifiek op twee aspecten: hun betekenis (‘semantiek’), en hun toepassingen
voor het analyseren en testen van systemen.

In hoofdstuk 2 houden we ons bezig met testafleiding. Als een systeem eenmaal
beschreven en gebouwd is, is het nuttig om te kunnen vaststellen of het systeem ook
daadwerkelijk aan de beschrijving voldoet. Een manier om daar een uitspraak over te
kunnen doen, is door het systeem te testen. In dit hoofdstuk worden testen afgeleid
met behulp van ‘model checking’. Model checking is een methode die ontworpen is
om eigenschappen van een systeem af te leiden uit haar beschrijving: er kan worden
vastgesteld of een systeem een toestand kan bereiken met bepaalde eigenschappen.
70 ja, dan wordt bovendien aangegeven op welke manier. In de methodologie die in
dit hoofdstuk wordt beschreven, wordt deze laatste eigenschap van model checking
gebruikt: door situaties te onderzoeken waarvan al bekend is dat ze bereikbaar zijn,
wordt een pad naar deze situaties gevonden, dat vervolgens als test gebruikt kan
worden.

Hoofdstuk 3 houdt zich ook bezig met testen. Het is gebaseerd op een prakti-
jkprobleem: voor het testen van telefooncentrales wordt een groot aantal gesprekken
gesimuleerd, die vervolgens met de hand worden gecontroleerd. Als een stap in de
automatisering van dit proces, hebben we een taal (LOGAN) ontworpen waarmee op
eenvoudige, geautomatiseerde wijze, afzonderlijke gesprekken uit de lijst met signalen
die door de centrale zijn gegaan, kunnen worden gefilterd.

De volgende hoofdstukken hebben allen betrekking op de taal Message Sequence
Charts (MSC). MSC wordt gebruikt voor de beschrijving van de communicatie binnen
of tussen systemen. Het bestaat uit afbeeldingen zoals figuur 9.1. In dit plaatje zijn
de verticale lijnen (a en b) (delen van) computersystemen, terwijl de pijlen (‘vraag’
en ‘antwoord’) communicaties tussen die systemen zijn. De tijd loopt van boven
naar onder in dit diagram. In dit plaatje stuurt dus eerst a ‘vraag’ naar b, waarna
b ‘antwoord’ naar a stuurt. In hoofdstuk 4 staat een meer uitgebreide uitleg, waarin
ook diverse uitbreidingen van de taal beschreven zijn.

In hoofdstuk 5 bekijken we, hoe uit een beschrijving van een systeem in MSC kan
worden afgeleid wat er nodig is om het communicatiegedrag mogelijk te maken. Soms
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msc example

a | | b

vraag

antwoord

Figure 9.1: Een MSC

is het mogelijk alle berichten te ontvangen in de volgorde waarin ze zijn verzonden,
in andere gevallen is dit onmogelijk. Er zullen dan meerdere buffers gebruikt moeten
worden om de berichten in op te slaan, waar er in het eerste geval slechts een nodig
is. In dit hoofdstuk valt te lezen hoe uit de MSC-beschrijving van een systeem valt
af te leiden wat voor dat systeem het geval is.

Een van de recente uitbreidingen van MSC is de mogelijkheid om data toe te voe-
gen. In hoofdstuk 6 wordt beschreven hoe dit is gedaan, waarom het zo is gedaan, en
welke problemen daarbij overwonnen moesten worden. Het is gedeeltelijk gebaseerd op
discussies binnen de standardisatiecommissie voor MSC. Daarnaast geeft het hoofd-
stuk ook aan hoe de officiéle betekenis (semantiek) van MSC kan worden uitgebreid
om ook dit aspect toe te voegen.

Hoofdstukken 7 en 8 behandelen twee mogelijke toekomstige uitbreidingen van
MSC. In hoofdstuk 7 wordt een methode beschreven om een enkel bericht in MSC te
gebruiken om een volledig communicatieprotocol te beschrijven, terwijl in hoofdstuk 8
de zogenaamde disruptie en interruptie behandeld worden. Met behulp hiervan kun-
nen systemen beschreven worden waarbij verschillende gedragingen elkaar kunnen
onderbreken of stoppen. In deze hoofdstukken worden de mogelijkheden van deze
uitbreidingen beschreven, hun problemen, en de semantiek die hen meegegeven zou
kunnen worden.
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