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Mathematical Institute, Academy of Sciences, Czech Republic

koucky@math.cas.cz

Mario Szegedy
Rutgers University, New Jersey, USA

szegedy@cs.rutgers.edu

Pascal Tesson
Laval University, Québec, Canada
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Abstract

We study languages with bounded communication complexity in the multiparty “input on
the forehead model” with worst-case partition. In the two-party case, languages with bounded
complexity are exactly those recognized by programs over commutative monoids [20]. This can
be used to show that these languages all lie in shallow ACC0.

In contrast, we use different coding techniques to show thatthere are languages of arbitrarily
large circuit complexity which can be recognized in constant communication byk players for
k ≥ 3. However, if a language has a neutral letter and bounded communication complexity in
thek-party game for some fixedk then the language is in fact regular and we give an algebraic
characterization of regular languages with this property.We also prove that a symmetric language
has boundedk-party complexity for some fixedk iff it has bounded two party complexity.

1 Introduction

The “input on the forehead” multiparty model of communication, introduced by Chandra, Furst and
Lipton [7], is a powerful tool in the study of branching programs [2, 6, 7] and shallow-depth Boolean
circuits (among many others [11, 14, 15]). However, it is still, in many regards, not well-understood
as both upper bounds [1, 12] and lower bounds [2, 7, 19] for themodel appear very challenging. In
particular, good lower bounds on thek-party non-interactive communication complexity of an explicit
functionf whenk > log n have long been sought since they would yield size-lower bounds for ACC0

circuits computingf [9], and even more modest lower boundsΩ(log3 n) for particular functions like
Disjointness in three-party setting would imply separation of different proof systems [5].

We obtain significant insight in the multiparty model by focusing on functions that have bounded
k-party complexity fork ≥ 3 an arbitrary constant. For the two-party model, languages with bounded
communication complexity have many nice characterizations [20] implying, in particular, that any
language with bounded two-party complexity can be computedby very shallow ACC0 circuits. In
contrast, we show in Section 3 that there are languages with arbitrarily large uniform circuit complex-
ity whose three-party communication complexity is boundedby a constant even for the worst-case
partition of the input instances among the players. An analog result for non-uniform circuit com-
plexity can also be derived. These languages are constructed using specially craftederror-correcting
codes. Because of these results, we cannot expect to obtain characterizations of languages of bounded
multiparty complexity which are as nice as those for the two-player case.

There are several key features that make the multiparty communication model so powerful: first,
every input bit is seen by several players, second, every(k − 1)-tuple of input positions is seen by
at least one of thek players, and third, all players know the partitioning of theinput, i.e., they know
which positions they actually see. Multiparty communication complexity upper bounds typically rely
heavily on all these properties. If we remove the first two properties then we obtain essentially the
multiparty “input in the hand” model which is computationally even weaker than the two-party com-
munication model. To understand how crucial the last property is, we consider two restricted classes
of languages/functions in which this advantage is in some sense taken away.
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First, we consider in Section 4 languages with aneutral letter[4, 3], i.e. a letter which can be
inserted or deleted at will in an input word. We show that every such language having boundedk-
party communication complexity for some fixedk is regular. Furthermore, we characterize this class
of regular languages in terms of algebraic properties of their minimal automaton. Our results indicate
that the presence of a neutral letter is thus a severe handicap in the multiparty game and suggests that
it might be easier to prove communication complexity lower bounds under this assumption.

Finally, in Section 5 we use the Ramsey-like theorem of Gallai [10] to prove that for any fixed
k ≥ 3 the symmetric functions that can be computed in boundedk-party communication complexity
by k-players are exactly the symmetric functions that have bounded 2-party complexity.

Two of our main proofs rely on the same lower bound which is of independent interest: In Section 2
we show, using a Ramsey-theoretical argument reminiscent of [7], thatk parties need to exchangeω(1)
bits of communication to verify that theirk inputs in{0, 1}n represent a partition of[n].

2 Multiparty Communication Complexity

The multiparty model of communication complexity was first introduced by Chandra, Furst and Lipton
[7]. In this game,k playersP1, . . . , Pk wish to collaborate to compute a functionf : Σn → {0, 1}.
The n input letters are partitioned intok setsX1, . . . ,Xk ⊆ [n] and each participantPi knows the
values of all the inputsexceptthe ones ofXi. This game is often referred to as the “input on the
forehead” model since it is convenient to picture that player i has the letters ofXi written on his
forehead, available to everyone but himself. Players exchange bits, according to an agreed upon
protocol, by writing them on a public blackboard. The protocol specifies whose turn it is to speak,
and what the player broadcasts is a function of the communication history and the input he has access
to. The protocol’s output is a function of what is on the blackboard after the protocol’s termination.
We denote byDk(f) the k-party communication complexity off , i.e. the minimum number of bits
exchanged in a protocol forf on the worst case input and for the worst-case partition of inputs. More
generally, we consider functionsf : Σ∗ → {0, 1} and thus viewDk(f) as a function of input length.

The information available to individual players overlaps alot since any input letter is known to
k − 1 of thek players. Thus, the power of the multiparty model increases with the number of players
involved as the fraction of inputs available to each player increases.

A subsetS of ΣX1×...×Xk is a cylinder in theith dimensionif membership inS is independent
of theith coordinate, i.e. if for allx1, x2, . . . , xk and anyx′

i we have(x1, . . . , xi, . . . , xk) ∈ S if and
only if (x1, . . . , x

′
i, . . . , xk) ∈ S. We say thatS is acylinder intersectionif S =

⋂
1≤i≤k

Si whereSi

is a cylinder in theith dimension. A cylinder intersection is calledf -monochromaticif the functionf
evaluates to the same value on every input instance in the intersection. The following lemma underlies
all lower bound arguments for the multiparty model:

Lemma 1 (see [14]) Let f : ΣX1×...×Xk → {0, 1} be a function ofk-inputs. Anyk-party commu-
nication protocol of costc computingf partitions the input space into at most2c f -monochromatic
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cylinder intersections corresponding to the communication exchanged on a particular input.

We say that a set ofk elements ofΣX1×...×Xk forms astar if it is of the form:

(x′
1, x2, . . . , xk), (x1, x

′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)

where thexi are values for the input bits letters inXi for eachi with xi 6= x′
i. In that case, we call

(x1, x2, . . . , xk) the centerof this star. These notions lead to a useful characterization of cylinder
intersections.

Lemma 2 A setS ⊆ ΣX1×...×Xk is a cylinder intersection if and only if the center of any star con-
tained inS is itself an element ofS.

A k-rectangular reductionr from L ⊆ {0, 1}n×k to K ⊆ {0, 1}l(n)×k is ak-tuple of functions
(r1, . . . , rk) with eachri : {0, 1}n → {0, 1}l(n) such that(x1, . . . , xk) ∈ L iff (r1(x1), . . . , rk(xk)) ∈
K. We calll the length of the reduction. The following simple observation shall be useful:

Observation 3 Let L ⊆ {0, 1}n×k and K ⊆ {0, 1}l(n)×k be languages such that there exists a
rectangular reduction fromL to K of lengthl. Then,Dk(L)(n) ≤ Dk(K)(l(n)).

Lower bounds for thek-party communication complexity of the functionsPartk andGIPk,p will
be particularly useful. Both functions take as input ann× k Boolean matrixA and we think of theith

column ofA as representing a subsetxi of [n] = {1, . . . n}. We definePartk(A) = 1 iff each row
contains exactly one1 (i.e. thexi form a partition of[n]) andGIPk,p = 1 iff the number of all-1 rows
of A (i.e. the size of the intersection of thexi) is divisible byp. It is clear that for thek-party game
the worst input partition forGIPk,p andPartk is the one where playerPi holds the bits of columni
on his forehead.

Lemma 4 ([2, 13]) Dk(GIPk,p) = Ω(n) for all constantsk, p ≥ 2.

More precisely, the best known lower bounds forGIP areΩ(n/2k) [8, 19] and hold even fork
growing as a function ofn but we only consider the case wherek is constant.

We establish a lower bound on thek-party communication complexity ofPartk by applying a
Ramsey-theoretical result known as the Hales-Jewett Theorem. Then-tuplesv1, . . . , vt ∈ [t]n are
said to form acombinatorial lineif the vj are distinct and for each1 ≤ i ≤ n either all thevj agree
on positioni (i.e.vj

i = vj′

i for all 1 ≤ j ≤ j′ ≤ t) or we havevj
i = j for all 1 ≤ j ≤ t.

Theorem 5 (Hales-Jewett [10]) For any integersc, t there exists an integern such that if all vectors
in [t]n are colored withc colors then there is a monochromatic combinatorial linev1, . . . , vt (i.e. a
line whose elements all were assigned the same color).

We now prove:
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Lemma 6 For all k, Dk(Partk) = ω(1).

Proof: Consider the input as a collection ofk subsets of[n]. Every input(S1, . . . , Sk) ∈ P([n])k that
is acceptedby a protocol forPartk is such that for every1 ≤ j ≤ n, the elementj lies in exactly one
of theSi. Using this observation, these inputs can be put in one-to-one correspondence withn-tuples
in [k]n. As an example fork = 3 andn = 4, we havePart3({4}, {1, 3}, {2}) = 1 and this input
corresponds to then-tuple(2, 3, 2, 1).

Suppose that thek-party communication complexity ofPartk is bounded, for somek, by a con-
stantc. To every input accepted by a protocol forPartk, (i.e. to every element in[k]n), we assign one
of 2c colors corresponding to the communication history resulting from that particular input. Ifn is
large enough then by the Hales-Jewett Theorem this set contains a monochromatic combinatorial line
v1, . . . , vk. Let T ⊆ [n] be the (non-empty) set of positions on which thevj differ and for eachi ≤ k
denote asSi the set of positions on which all thevj arei. By definition of the above one-to-one corre-
spondence, we have thatT, S1, . . . , Sk form a partition of[n] and all the inputs(S1 ∪ T, S2, . . . Sk),
(S1, S2 ∪ T, . . . Sk), . . . , (S1, S2, . . . Sk ∪ T ) induce the same communication history. By Lemma 2,
and since these inputs form a star, their center(S1, S2, . . . Sk) also induces that same communication
and must thus belong toPartk. HoweverS1 ∪ . . . ∪ Sk = [n] − T 6= [n] so we get a contradiction.

Note that ann × k matrix A belongs toPartk iff none of its rows contains two1 and the total
number of1 entries inA is n. If k ≥ 3 thenk players can check the first condition usingk bits of
communication since any pair of input bits is accessible to at least one player. They are then left with
verifying that the sum of the input bits isn which can, surprisingly, be achieved with a communication
cost much less than the trivialO(log n) [7].

3 Functions with bounded multiparty complexity but high time/space
complexity

In this section we exhibit languages of arbitrarily large computational complexity but with bounded
multiparty communication complexity. For a languageL and anencodingC : {0, 1}∗ → {0, 1}∗, we
denote byC(L) the set{C(x); x ∈ L}. We prove that for a suitably chosen error-correcting codeC,
any languageL is such that its encodingC(L) has bounded multiparty communication complexity. We
will chooseC such that the corresponding encoding and decoding functionare efficiently computable
and hence the complexities ofL andC(L) will be closely related.

As a warm-up we start with theunary encodingCU defined as follows: forx ∈ {0, 1}∗, CU(x) =
0x102n−x−1, wheren is the length ofx andx is interpreted as an integer between 0 and2n−1. Hence,
CU encodes bit strings of lengthn into strings of length2n having a single1 in a one-to-one way.

Lemma 7 For any languageL and integerk ≥ 3, Dk(CU(L)) ≤ 3.
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Proof: Without loss of generalityk = 3. On an inputw that is split among the three parties, the
players need to verify two things: 1) whetherw is a valid encoding of some stringx, and 2) whether
the corresponding stringx is in L. To verify the first property the players only need to check whether
at least one of them sees a1 and whether none of them sees two or more1s. They can communicate
their observations regarding this using six bits in total. Next, one of the players who sees the one,
determines the unique stringx with CU(x) = w. He can do this solely based on the position of
the one since he knows howw is partitioned. This player can also determine whetherx ∈ L and
hencew ∈ CU(L). He communicates his conclusion to the other parties by sending one more bit.
Hence in total players exchange at most seven bits. The protocol can be optimized so that each player
simultaneously sends one bit of information for the total ofthree bits.

The disadvantage of the unary encoding is its inefficiency: because codewords are exponentially
longer than the words they encode, we cannot provide efficient reductions betweenL andC(L). A
better encoding can be obtained by concatenating Reed-Solomon codes with the unary encoding. In
the3-party scenario at least one of the parties has on its forehead at least a1/3-fraction of the input.
Hence, if the chosen encoding has the property that from an arbitrary 1/3-fraction of the input the
whole word can be reconstructed (assuming the input is an encoding of some word, i.e., assuming that
the input is a codeword) the other two parties can reconstruct the whole input and verify whether the
parts on remaining foreheads are consistent with such an input. With the proper choice of parameters
Reed-Solomon codes have this property.

Let n be a large enough integer,m = dlog2 3ne andd = n/m. Any stringx ∈ {0, 1}n can be
interpreted as a sequence ofd elements fromGF [2m]. Definepx to be the degreed − 1 polynomial
overGF [2m] whose coefficients are given byx. Define the Reed-Solomon encoding byCRS(x) =
px(g0)px(g1) · · · px(g3d−1), whereGF [2m] = {g0, g1, . . . ,m2m−1} = {0, 1}m. Furthermore, de-
fine the concatenation of the Reed-Solomon encoding with theunary encoding byCRS◦U(x) =
CU(px(g0)) · · ·CU(px(g3d−1)). Codewords thus consist of3d blocks of2m bits (corresponding to
the 3d symbols of the Reed-Solomon encoding) with each block containing exactly one1. Thus,
CRS◦U encodes strings of lengthn into strings of lengthO(n2). Furthermore,CRS◦U can be encoded
and decoded in polynomial time and so the languagesL andCRS◦U(L) are polynomial-time equiva-
lent. Note that the decoding task at hand does not require us to perform error correction in the usual
sense: we simply want to identify if an input is a codeword (since we reject all words that are not
codewords) and we only care about decoding true codewords.

Lemma 8 For any languageL and anyk ≥ 3, Dk(CRS◦U(L)) ≤ 6

Proof: Without loss of generalityk = 3 as all but the first two players can pretend they are the
same party. Letm = dlog2 3ne and d = n/m. To check if an input is a codeword, the players
can easily check that there are never two1s in a single block of input bits. They cannot, however,
verify at constant cost that each of the3d blocks containsat leastone1 since this task is essentially
the partition problem whose complexity we lower bounded in Lemma 6. We proceed differently: an
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input w of length 3d · 2m can only be a codeword if at least one player (say player1) has on its
forehead at leastd ones and this player can be identified with three bits of communication. Thesed
ones determined elements ofGF [2m] hence players2 and3 can each privately reconstruct from them
the unique degreed − 1 polynomialp that coincides with these elements. Players2 and3 now know
that if the input is a codeword then it must be the one corresponding top and player2 can check that
the bits on player3’s forehead are consistent with that hypothesis while player 3 can similarly cross-
check the input bits on player2’s forehead. If this cross-checking procedure is successful, player 2
can determine the uniquex such thatpx = p, verify x ∈ L and send the result to all parties. Overall,
only six bits of communication suffice to decide if the input is fromCRS◦U(L).

As an immediate corollary to this lemma and the fact that the complexity ofCRS◦U(L) is polyno-
mially related to the complexity ofL we obtain:

Corollary 9 The class of languages with bounded multi-party communication complexity contains
languages with arbitrarily large time and space complexity.

In order to obtain also languages with essentially the largest possible circuit complexity we need
codes that mapn bits intoO(n) bits. We can obtain such codes by concatenating Reed-Solomon codes
with codes provided by the following lemma and the unary codeCU .

Lemma 10 For any integern ≥ 1, there exists a linear mapC8 : {0, 1}n → GF [8]39n such that
everyw ∈ C8({0, 1}

n) is uniquely determined by any one-third of its coordinates.

By concatenatingCRS with C8 andCU we obtain the codeCRS◦8◦U with polynomial time encod-
ing and decoding that mapsn bit strings intoO(n) bit strings.

Corollary 11 For anyk ≥ 3, the class of languages with boundedk-party communication complexity
contains languages with2Ω(n) circuit complexity.

4 Languages with a neutral letter

A languageL ∈ Σ∗ is said to have aneutral lettere if for all u, v ∈ Σ∗ we haveuv ∈ L iff uev ∈ L.
Thus, adding or deletinge anywhere in a wordw does not affect membership inL. If a language has
a neutral letter then membership inL cannot depend, as in Lemma 7, on having specific value on a
specific input position and, at least intuitively, this seems to take away a lot of the power inherent to the
multiparty communication model. The neutral letter hypothesis was helpful in obtaining length lower
bounds on bounded-width branching programs [4] and was central to the Crane-Beach Conjecture [3].
In this section, we give a precise characterization of languages with a neutral letter that have bounded
k-party complexity for some fixedk. We first show that all such languages must be regular and then
characterize them in terms of algebraic properties of theirminimal automaton.
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4.1 Proving Regularity

Let C ≥ 0 be an integer and letG be a family of functions overΣ∗ with finite rangeR. We say that
inputs with weight at mostC determinethe functions ofG if every functiong : Σ≤C → R has at most
one extension toΣ∗ in G. Now, let Ck,c be the family of functions with a neutral letter andk-party
communication complexity at mostc. We show:

Lemma 12 There is a constantC = C(k, c) such that functions ofCk,c are determined by inputs of
weight at mostC.

We obtain this lemma as a corollary to

Lemma 13 For anyC > 0 if the functions ofCk,c are not determined by inputs of sizeC thenPartk
can be solved byk parties with2c + 2 communication for sets of sizeC ′ for someC ′ ≥ C .

Lemma 13 implies Lemma 12, since if there were no boundC(k, c) as stated in Lemma 12, then
Partk would havek-party communication complexity at most2c + 2 for arbitrary set size, resulting
in a contradiction with Lemma 6.

Proof:(Lemma 13)For any wordw ∈ Σ∗, we shall denote bywe the word obtained fromw by deleting
all occurrences ofe in w. The ith letter ofw will be denoted bywi. Also, for k wordsw1, . . . , wk,
each of length̀ , let w = w1♦ . . . ♦wk denote the word obtained by interleaving thek words in the
following way : |w| = `k and for all1 ≤ i ≤ `k, wi = wm

j if i = (m−1)k+j with 0 < j < k+1. Let
us assume thatf andg are inCk,c, such that they are not identical, but the minimal stringv ∈ {Σ−e}∗

such thatf(v) 6= g(v) has length at leastC. We consider the followingk-party communication
problem: each player gets|v| bits on their forehead and let us denote the input on playeri’s forehead
by yi. (Note that from our comments following Lemma 6, the function Partk requires unbounded
k-wise complexity even if the input sets are known to be pairwise disjoint.) Consider a family ofk
setsI1, . . . , Ik ⊆ {1, . . . , |v|} = [|v|], such thatIi ∩ Ij = ∅ for all i 6= j. For each such choice ofk
sets, we assign foreheads of the players in the following way: yj

i = vj if j ∈ Ii, otherwiseyj
i = e.

We define the functionh(y1, . . . , yk) = 1 iff the corresponding family ofk subsets partitions[|v|],
i.e.,∪k

i=1Ii = [|v|]. Notice thath is exactly the partition problem for a basis set of size|v| ≥ C. The
reduction(I1, . . . , Ik) → (y1, . . . , yk) is a rectangular reduction. We claim thath(y1, . . . , yk) = 1 iff
f(y1♦ . . . ♦yk) 6= g(y1♦ . . . ♦yk).

To see this we use the minimality property ofv: on words of length less than|v| f andg agree. For
y = y1♦ . . . ♦yk we have|ye| = |v| only if ∪k

i=1Ii = [|v|] and in that caseye = v andf(y) 6= g(y).
Otherwise, we have|ye| < |v| and thereforef(y) = g(y).

The functionf(v) 6= g(v) can be computed with2c bits of communication by running thec bit
protocol onf andg separately. ForPartk we also need to verify using two extra bits of communica-
tion that no row contains two ones.
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Let f : Σ∗ → R be a function inCk,c: For a wordw ∈ Σ∗, we define the functionfw : Σ∗ → R
by fw(z) = f(wz). All the fw are also inCk,c and so the functions{fw} are determined by inputs of
length at mostC. It follows that the equivalence relation onΣ∗ defined byu ∼ v iff f(uz) = f(vz)
for all z ∈ Σ∗ has at most(|Σ| + 1)C equivalence classes. It is well-known that if∼ has finite index
thenf is regular and we obtain

Theorem 14 If f is a function with a neutral letter such thatDk(f) = O(1) for some fixedk, thenf
is regular.

4.2 Regular languages with bounded complexity

A monoidM is a set with a binary associative operation and a distinguished identity element1M . A
languageL ⊆ Σ∗ is recognizedby a finite monoidM if there is a morphismφ from the free monoid
Σ∗ to M and a setF ⊆ M such thatL = φ−1(F ). A restatement of Kleene’s Theorem states thatL is
regular iff it is recognized by some finite monoid. IfL is regular, thesyntactic monoidM(L) of L is
the transformation monoid ofL’s minimal automaton [16] and is the smallest monoid recognizing L.

The word problemfor M is the functioneval which maps a stringw = w1 . . . wn ∈ M∗ to
the producteval(w1 . . . wn) = w1 · w2 · · · · · wn. We define thek-party communication complexity
of M , denotedDk(M) as the communication complexity of its word problem. Two of the authors
gave a complete classification result for the two-party communication complexity of finite monoids
[21] and this led to a similar classification for the two-party complexity of regular languages. The
communication complexity of monoids was first studied in [18] from which we use the following:

Lemma 15 Let L be a regular language with a neutral letter and letM = M(L) be its syntactic
monoid. Then for anyk ≥ 2 we haveDk(L) = Θ(Dk(M)).

A finite group isnilpotent if it is the direct product ofp-groups and a monoid lies in the class
Gnil if all its subgroups are nilpotent. The classDO consists of monoids satisfying the identity
(xy)ω(yx)ω(xy)ω = (xy)ω.

Lemma 16 If M is a finite monoid outside ofDO thenDk(M) = ω(1) for all k.

The lemma is proved in the appendix: we show that ifM lies outsideDO then for anyk there
exists a rectangular reduction of linear length from eitherGIPk,p or Partk to the word problem ofM .

Theorem 17 ([18]) Let G be a group. IfG is in Gnil then there exists a constantk ≥ 2 such that
Dk(G) = O(1). OtherwiseDk(G) = Ω(n) for all k.

In this case also, the lower bound is obtained through a rectangular reduction fromGIPk,p to
the word problem of any non-nilpotent finite group. The upperbound, on the other hand, stems
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from a combinatorial description of languages recognized by nilpotent groups. We say that a word
u = a1 . . . at with ai ∈ Σ is asubwordof the wordw if w can be factorized asw0a1w1 . . . wt−1atwt

and we denote by
(w

u

)
the number of such factorizations. We say that a languageL counts subwords

of lengthk modulom if membership ofw in L depends on the values modulom of
(w
u1

)
, . . . ,

(w
ut

)
for

someui with |ui| ≤ k. One can show that the syntactic monoid of a regular languageL is a nilpotent
group iff there existk,m ≥ 2 such thatL counts subwords of lengthk modulom [23].

For a ∈ Σ andL,K ⊆ Σ∗, the concatenationLaK is said to beperfectly unambiguousif L ⊆
(Σ−{a})∗ or K ⊆ (Σ−{a})∗. If LaK is perfectly unambiguous then anyw ∈ LaK can be uniquely
factorized aswLawK with wL ∈ L andwK ∈ K since thea can only be the first or last occurrence ofa
in w. LetVΣ be the smallest class of regular languages overΣ that contains both the subword-counting
languages and the languagesΣ∗

0 for eachΣ0 ⊆ Σ and which is closed under Boolean operations and
perfectly unambiguous concatenations. The next lemma can be inferred from [21].

Lemma 18 A languageL ⊆ Σ∗ is recognized by a monoid inDO ∩ Gnil iff it is in VΣ.

We can now give a characterization of monoids that have bounded multiparty communication
complexity for some suitably large constantk.

Theorem 19 Let L ⊆ Σ∗ be a regular language with a neutral letter and syntactic monoid M . If
M lies in DO ∩ Gnil then there exists a constantk such thatDk(L) = O(1). Otherwise, we have
Dk(L) = ω(1) for all k.

Proof: To obtain the upper bound, it suffices to show, by Lemma 18, that every language inVΣ has
boundedk-party complexity for somek and we argue from the definition ofVΣ.

First, any languageΣ∗
0 has bounded two-party communication complexity since players only need

to check that the input letters they have access to indeed belong toΣ0. Furthermore, ifK counts
subwords of lengthk modulo m, thenDk+1(K) = O(1) because anyk-tuple of input letters is
available to at least one player in the(k + 1)-party game and the value of

(w
u

)
modulom can thus be

computed with communicationk · dlog me if |u| ≤ k. Clearly, Boolean combinations of languages
with boundedk-party complexity also have boundedk-party complexity and it remains to show that if
L andK have boundedk-party complexity andL ⊆ (Σ−{a})∗ thenLaK has bounded(k +1)-party
complexity. Players proceed as follows: each party broadcasts the identity of the player which, in their
opinion, holds on the forehead the first occurrence ofa in the input. This requiresk · dlog ke bits of
communication and the player holding that first occurrence will be the only dissenting voice since that
letter is seen by all other parties. Sincek + 1 ≥ 3, thek remaining players now know the position of
the firsta and they simulate thek-party protocols forL andK on the prefix and suffix at constant cost.

For the lower bound, ifM is not in DO thenDk(M) = ω(1) for all k by Lemma 16. IfM
contains a non-nilpotent groupG thenDk(G) = Ω(n) for all k by Theorem 17 and we clearly have
Dk(M) ≥ Dk(G). So for allk, we haveDk(M) = ω(1) and, by Lemma 15,Dk(L) = ω(1).

Combining this result with Theorem 14 we get
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Theorem 20 If L is a language with a neutral letter and boundedk-party communication complexity
for some fixedk thenL is regular andM(L) ∈ DO ∩ Gnil.

Note that the classDO∩Gnil is decidable. Also, the corresponding regular languages have a nice
logical characterization [22] and one can see from the definition of VΣ that they all lie inACC0.

5 Symmetric Functions

For w ∈ Σ∗, we denote as|w|a the number of occurrences ofa in w. A function f : Σ∗ → {0, 1} is
symmetricif its value depends only on the values|w|a for a ∈ Σ. Intuitively k ≥ 3 parties computing
a symmetric function only get limited benefits from the features of the multiparty model since their
protocol cannot significantly rely on the precise set of input positions accessible to each player or on
the fact that any(k − 1)-tuple of bits is seen by one party. We formalize this idea by showing that any
symmetricf with boundedk-party complexity for a fixedk in fact has bounded two-party complexity.

Let us first deal with functions with boolean inputs. To any symmetric functionf : {0, 1}n →
{0, 1} we naturally associate the function̂f : {0, . . . , n} → {0, 1} such thatf(x) = f̂(|x|1) for every
x ∈ {0, 1}n and say thatf is (`, r, p)−periodic if f̂(a) = f̂(a + p) for ` ≤ a ≤ n − r.

Theorem 21 If f : {0, 1}n → {0, 1} is symmetric and has boundedk-party communication complex-
ity then in factf has bounded two-party complexity.

In the appendix, we extend this theorem to symmetric functions with non-Boolean domains. The
result in the Boolean case is established through the next lemma. Recall that asimultaneous protocol
is one in which each player sends a single message to an extra party (thereferee) who then computes
the answer solely based on the messages he received. In particular, the message sent by a party does
not depend on messages sent by other parties. Since ak-party protocol of communication costc can
be easily turned into ak-party simultaneous protocol with costck2c, functions of bounded complexity
in the simultaneous model are exactly those with bounded complexity in the standard model.

Lemma 22 For any constantsk, c with k ≥ 1 there exists an integerNk+1 = N(k + 1, c) such that
every symmetric boolean functionf : {0, 1}n → {0, 1} that has ak+1-party simultaneous protocol of
complexityc for the input partition in which playersX1, . . . ,Xk each getNk+1 bits and playerXk+1

gets the remainingn − kNk+1 bits is(`, r, p)-periodic for somè , r ≤ kNk+1 and somep ≤ Nk+1.

Theorem 21 then follows by observing that an(`, r, p)-periodic function has 2-party simultaneous
communication complexity roughly2 · dlog(` + r + p)e. The proof of Lemma 22, given in the
appendix, proceeds by induction onk. The base case is due to [20] and our induction step uses a non-
trivial “player elimination” technique similar to that of [17]. More precisely, we use the Ramsey-like
theorem of Gallai [10] to show that iff has a(k + 1)-party protocol of bounded cost then there exists
a large set of inputsP for the foreheads of the firstk players on which playerPk+1 always sends the
same communication. This renders the(k + 1)st player irrelevant if the input lies inP and allows the
use of the induction hypothesis.
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Appendix

We give here proofs of lemmas that were omitted in the extended abstract.

Proof of Lemma 10

Lemma 10 For any integern ≥ 1, there exists a linear mapC8 : {0, 1}n → GF [8]39n such that
everyw ∈ C8({0, 1}

n) is uniquely determined by any one-third of its coordinates.

Proof:
To prove the existence of our code we only need to prove the following claim.

Claim For c ≥ 37, with high probability a random matrix overGF [8] of dimensionn × cn has the
property that each submatrix of dimensionn × cn/3 has rankn.

For anyn′ < n, n′ vectors overGF [8] of lengthcn/3 span less than8n different vectors. Thus
the probability that a new random vector of lengthcn/3 falls into the space spanned by these vectors
is at most8n−cn/3. Hence, the probability that a random matrix overGF [8] of dimensionn by cn/3
is of rank less thann is at mostn · 8n−cn/3. (We pick the vectors step by step and at each step we fail
to pick a linearly independent vector with probability at most 8n−cn/3.) Thus the expected number of
singularn by cn/3 submatrices of a random matrix of dimensionn by cn is at mostn·8n−cn/3 ·

( cn
cn/3

)
.

Since
( cn
cn/3

)
≤ 2H(1/3)cn, if c ≥ 37 then3 − c + H(1/3)c < 0 and the expected number of singular

submatrices is2−εn for someε > 0. The claim follows.

By concatenatingCRS with C8 andCU we obtain the codeCRS◦8◦U with polynomial time encod-
ing and decoding that mapsn bit strings intoO(n) bit strings. Note thatC8 can be constructed by
brute force in polynomial time as it is used only for strings of logarithmic length. Further speed-up
can be achieved by usingCRS◦RS◦8◦U codes where one would only need to constructC8 for strings of
log-log length. Using Fast Fourier Transform,CRS◦RS◦8◦U can be encoded and decoded in time close
to linear, whereby we obtain Corollary 11.

Proof of Lemma 16

We want to establish

Lemma 16 If M is a finite monoid outside ofDO thenDk(M) = ω(1) for all k.

Recall from Section 4 thatDO is the class of finite monoids satisfying(xy)ω(yx)ω(xy)ω = (xy)ω

for someω ≥ 1. The following lemma (see e.g. [21]) gives a more useful characterization ofDO. An
elemente ∈ M is idempotentif e = e2.
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Lemma 23 If the finite monoidM is not inDO then either

1. There exist idempotentsa, b ∈ M and an integerp ≥ 2 such that(aba)p = a but (aba)t 6= a if
1 ≤ t ≤ p − 1;

2. There exist elementsa, b ∈ M × M such thatab is idempotent but for allx, y ∈ M × M we
havexa2y 6= ab andxb2y 6= ab.

We can now proceed to establish Lemma 16.

Proof: (Lemma 16)
Suppose first that there are idempotentsa, b ∈ M such that(aba)p = a but (aba)t 6= a if 1 ≤ t ≤

p − 1. We claim that for anyk there is a linear-length rectangular reduction fromGIPk,p to the word
problem ofM . The reduction maps ann × k instanceA of GIPk,p to a string of(k + 2)n elements
of M with each block ofk + 2 elements corresponding to a column ofA. The first and last elements
of each block are alwaysa and the(i + 1)th element of the block is ab if the ith bit of the column is
0 and the identity1M otherwise. Sinceb is idempotent, the output of each such block thus multiplies
out toaba if some bit in the column is0 and toa otherwise. Hence, the value of the whole product isa
iff the number of all1 columns is0 modulop. SinceDk(GIPk,p) = Ω(n), we haveDK(M) = Ω(n)
because the length of the reduction is linear.

Suppose that there are elementsa, b ∈ M ×M such thatab is idempotent but for alls, t ∈ M ×M
we havesa2t 6= ab andsb2t 6= ab. Then we claim thatPartk reduces to the word problem ofM ×M .
Again, our reduction producesn blocks ofk + 2 elements ofM ×M . The first element of each block
is always ana and the last one is alwaysab, while the(i+1)th element isb if the ith bit of the column
is 1 and the identity1M×M otherwise. Thus, if a column ofA containsr 1’s, the product of monoid
elements in the corresponding block isabrab. The product of then blocks is thus(ab)2n = ab if each
column contains exactly one1. If some column ofA contains two or more1’s, then the corresponding
block evaluates toa(b2)br−2ab and so the product of then blocks can be written asxb2y and cannot be
ab. Similarly, if a column is all0, the corresponding block evaluates toaab and then blocks multiply
out to somexa2y 6= ab. SinceDk(Partk) = ω(1), we getDk(M × M) = ω(1). Furthermore
Dk(M × M) is at most2 · Dk(M) so we also getDk(M) = ω(1).

Proof of Lemma 22

We now prove:

Lemma 22 For any constantsk, c with k ≥ 1 there exists an integerNk+1 = N(k + 1, c) such that
every symmetric boolean functionf : {0, 1}n → {0, 1} that has ak+1-party simultaneous protocol of
complexityc for the input partition in which playersX1, . . . ,Xk each getNk+1 bits and playerXk+1

gets the remainingn − kNk+1 bits is(`, r, p)-periodic for somè , r ≤ kNk+1 and somep ≤ Nk+1.
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We recall definitions and notations of Section 5: to any symmetric functionf : {0, 1}n → {0, 1}
we naturally associate the function̂f : {0, . . . , n} → {0, 1} such thatf(x) = f̂(|x|1) for every
x ∈ {0, 1}n. A symmetric boolean functionf onn variables is(`, r, p)−periodic if f̂(a) = f̂(a + p)
for ` ≤ a ≤ n − r.

In order to specifyN(k, c) we need to recall the following Ramsey-type theorem which will be
used in our proof. This theorem is a consequence of Gallai’s Theorem (see page 38 and the example
on page 39 in [10]).

Proposition 24 For any integersC, k,m > 0, there is an integerR = R(C, k,m) such that for each
C-coloring of{0, . . . , R}k, there existx0

1, . . . , x
0
k < R and1 ≤ d < R such that all points of the set

P = {(x1, . . . , xk) : xi = x0
i + dyi, 0 ≤ yi ≤ m} have the same color and all lie in{0, . . . , R}k.

Now, N(k + 1, c) is defined by induction onk. We setN(2, c) = 2c + 1 and fork ≥ 2, N(k +
1, c) = R(2c, k,N(k, c)! + 2(k − 1)N(k, c)). We are ready to prove lemma 22.

Proof: (Lemma 22)Our idea is the following: given a constant cost(k + 1)-party protocol for the
symmetric functionf , we use the Ramsey-theoretic fact to ‘eliminate’ the(k+1)st player by restricting
f to a set of inputs on which that player’s message is always thesame. This enables us to construct a
bounded costk-party symmetric functionf ′ closely related tof . Our inductive hypothesis applies to
f ′ and we show that the periodicity off ′ implies the periodicity off .

For k = 1 the lemma was observed in [20] and we briefly mention the argument here. By the
pigeonhole principle, there are two inputsx andx′ for the first player with|x|1 < |x′|1 < 2c + 1 =
N(2, c) such that the second player sends the same message whenx or x′ are on the first player’s
forehead. One can verify thatf is (|x|1, |x

′|1 − |x|1, |x
′|1 − |x|1)-periodic: since the referee does

not know whether the second player seesx or x′ we must havêf(y) = f̂(y + |x′|1 − |x|1) for any
|x|1 ≤ y ≤ n − |x|1 + |x′|1. We now prove the lemma by induction onk for k ≥ 2.

Let Π be a simultaneous(k + 1)-player protocol of costc that computesf under a partition of the
following form. Players1, . . . , k each haveNk+1 bits written on the forehead, and playerk+1 gets the
remainingn − kNk+1 bits. Color each point(x1, . . . , xk) ∈ {0, . . . , Nk+1}

k by the communication
of the(k + 1)-st player when1xi0Nk+1−xi is on the forehead of the playeri. By Proposition 24 there
is a setP of points in{0, . . . , Nk+1}

k, such that playerk + 1 sends the same message for every point
in

P = {(x1, . . . , xk) : xi = x0
i + dyi, 0 ≤ yi ≤ Nk! + 2(k − 1)Nk},

for some1 ≤ d < Nk+1 and somex0
i < Nk+1.

Let ` = d(k − 1)Nk +
∑k

i=1 x0
i , r = kNk+1, andp = d · Nk!. Clearly,`, r, p satisfy the required

bounds from the lemma. Letx ∈ {`, ` + 1, . . . , n − r}. We claim thatf̂(x) = f̂(x + p).
Define a functionf̂ ′

x : {0, . . . , Nk! + 2(k − 1)Nk} → {0, 1} by setting

f̂ ′
x(u) = f̂(x + ud − d(k − 1)Nk).
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The functionf̂ ′
x corresponds to a symmetric functionf ′

x : {0, 1}Nk !+2(k−1)Nk → {0, 1}. We claim
that there is ac bit k-party communication protocol forf ′

x under the input partition in which the first
k− 1 players getNk bits on their foreheads and the remaining bits are on playerk’s forehead. Indeed,
suppose that the players1 throughk have on their foreheads strings of weightsy1 throughyk. To
computef̂ ′

x(
∑k

i=1 yi) the players take advantage of the fact that

f̂ ′
x(

k∑

i=1

yi) = f̂(x + (

k∑

i=1

yid) − d(k − 1)Nk) = f̂((

k∑

i=1

x0
i + yid) + (x − d(k − 1)Nk −

k∑

i=1

x0
i )).

Consequently, the players simply simulate the protocolΠ (which computesf ) on the input where
players1, . . . , k have on their respective forehead strings of weightx0

1 + dy1, x0
2 + dy2, . . . ,x0

k + dyk

and the playerk +1 has on its forehead a string of weightx−d(k−1)Nk −
∑k

i=1 x0
i . The simulation

of the missing party poses no problem since the inputs of the firstk players belong toP.
By the induction hypothesis,f ′

x is periodic for somè ′, r′ ≤ (k − 1)Nk andp′ < Nk. Hence,
f̂(x) = f̂ ′

x((k−1)Nk) = f̂ ′
x(Nk!+(k−1)Nk) = f̂(x+dNk!), where we use the facts thatp′ divides

Nk!, (k − 1)Nk ≥ `′ andNk! + (k − 1)Nk ≤ Nk! + 2(k − 1)Nk − r′. This concludes the proof.

Theorem 21 now follows as well as:

Corollary 25 If f : Σn → {0, 1} is symmetric and has boundedk-party communication complexity
then in factf has bounded two-party complexity.

Proof: Let Σ = {a1, . . . , at}. For anyΣ0 ⊆ Σ and any wordw in (Σ − Σ0)∗, we denote asfΣ0
w

the symmetric function over alphabetΣ0 defined byfΣ0
w (x) = f(wx). We now argue by induction

on t the cardinality ofΣ. Our base case is Theorem 21. Ift ≥ 3 then letΣ0 = {a1, a2} Sincef
has boundedk-party complexity then so doesfΣ0

w for anyw. Applying our result for binary alphabets
we get that for anyw we get thatf1,2

w is (t, r, ρ)-periodic fort = r = (k − 1)Nk andρ = Nk!. In
particular this means that the functionfΣ−Σ0

x is determined by the numbers|x|a1
and|x|a2

up to the
thresholdst, r and moduloρ. This can be computed at constant cost by two players and sincefΣ−Σ0

x is
a symmetric with boundedk-party communication complexity over an alphabet of cardinality smaller
thant it can be evaluated at constant bounded two-party cost by ourinduction hypothesis.
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