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Abstract 

Upconversion photoluminescence is a nonlinear effect where multiple lower energy 
excitation photons produce higher energy emission photons. This fundamentally interesting 
process has many applications in biomedical imaging, light source and display technology, 
and solar energy harvesting. In this review we discuss the underlying physical principles and 
their modelling using rate equations. We discuss how the understanding of photophysical 
processes enabled strategic influence over the optical properties of upconversion especially in 
rationally designed materials. We subsequently present an overview of recent experimental 
strategies to control and optimize the optical properties of upconversion nanoparticles, 
focussing on their emission spectral properties and brightness. 
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Abbreviations 

UC - upconversion 
UCL - upconversion luminescence 
Ln  or Ln3+ - lanthanide ion 
UCNP – upconversion nanoparticle 
ETU – energy transfer upconversion 
GSA – ground state absorption 
ESA – excited state absorption 
ET – energy transfer 
EM – energy migration 
A – activator 
S – sensitizer 
ED – electric dipole 
MD – magnetic dipole 
DOS – density of states 

PAT – phonon-assisted energy transfer 
UV – ultraviolet 
VIS - visible 
NIR – near infrared 
FRET - fluorescence resonance energy transfer 
CE - conversion efficiency 
QY - quantum yield 
Pem - emitted power 
Pabs - absorbed power 
Iex - excitation intensity  
Eph - photon energy 
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1. Introduction 

The process of upconversion (UC) has been discovered in solid state materials in the 1960s and 
for a long time it has remained a scientific curiosity, as a very weak effect with limited practical 
applications1-3. Later, with the introduction of solid state lasers it gained increased visibility as a 
parasitic process competing with laser action on the one hand4, or indeed it can provide the basis 
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of an efficient nonlinear laser excitation scheme5, 6. Since the mid-1970s first reports of efficient 
upconversion in co-doped materials have started to appear which led to renewed interest in this 
field7-9. The interest in this field intensified further when high brightness upconversion has been 
reported in nanomaterials10, 11, as they can be produced more cheaply than thin films or crystals. 
This was followed by the realisation that upconverting nanomaterials lend themselves to a variety 
of applications across many fields recently summarised by Zhou et al.12. A significant amount of 
work has now been published on various aspects of upconverting nanomaterials, and we refer the 
reader to a number of excellent reviews, including on advances in the synthesis and chemistry of 
upconversion nanoparticles (UCNPs)13, 14, the application of UCNPs to theranostics15 and drug 
delivery16, and theoretical advances in the understanding of upconversion in nanomaterials17. We 
highlight a recent review by Liu et al.18 focused on measurement techniques for UCNPs, and 
their physical and optical parameters. Much of the published work centres around nanomaterials 
chemistry, where successes are often achieved by trial and error. Further progress can be made by 
more detailed understanding of these materials, currently far from complete. Therefore we feel 
that this field will benefit from wider understanding of physical principles of UC which may 
inspire a more rational materials design. To this aim we discuss here photophysics of 
upconversion, with aspects such as the influence of defect density on UCL, establishing the key 
upconversion mechanisms in the rate equations, and the limitations of the rate equations being 
reviewed for the first time. The photophysical processes are, generally, common to bulk materials 
(bulk crystal and thin films), nanoparticles and molecular clusters; however some of their aspects 
subtly differ. In particular, nanomaterials and molecular clusters are significantly more affected 
by the processes occurring on and near the surface (such as for example ligand and solvent 
quenching), while bulk materials and nanomaterials benefit from the opportunities afforded by 
the scaffolding of the crystalline lattice such as the ability to introduce secondary ions actively 
participating in the upconversion process. Molecular upconverting systems do not currently 
utilise this option19. 

The process of upconversion luminescence (UCL) involves excitation of a material (solid state 
material or a molecular system) with lower energy photons which stimulates the emission of 
higher energy photons. The process must satisfy the energy conservation principle, and, to ensure 
that, each higher energy emission photon requires two or more lower energy excitation photons. 
The UCL mechanism is distinctly different from other optical processes which also use two or 
more lower energy photons to yield higher energy emissions, such as multiphoton (most 
frequently two-photon) fluorescence and second (third, fourth etc) harmonic generation20-22. The 
key distinction is the involvement of intermediate electronic states in the upconverting system. 
The process of UCL is mediated by real electronic states, while in multiphoton fluorescence and 
second (third, etc) harmonic generation, such real intermediate electronic states do not take part. 
Due to this difference, the two-photon fluorescence and second harmonic generation based on 
simultaneous interaction of two or more photons require 5–10 orders of magnitude higher 
excitation powers but yield more than 5 orders of magnitude lower quantum efficiency in 
comparison to UCL20, 23-25.  
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The intermediate states involved in UC must be excited, and because of that, the process is most 
pronounced in material systems where these states have relatively long lifetimes. This is because 
a state with long lifetime is able to accumulate sufficient transient population, which increases the 
probability of interaction with subsequent photons. This condition is met by quantum systems 
with parity-forbidden, but partly allowed optical transitions, such as lanthanide (Ln) and 
transition metal ions and other heavier elements in the periodic table26, 27. Due to a high degree of 
shielding of the f and d orbitals in such ions, they retain their atomic-like emission characteristics 
even when placed in a crystalline matrix. These parity-forbidden transitions exhibit long 
lifetimes, often in the range of hundreds of microseconds to milliseconds. Ln-doped materials are 
most frequently investigated in the context of  upconversion, and they have been attracting 
increased attention since the discovery of efficiently upconverting materials on a nanoscale10, 11. 
We note that Ln-doped materials have also proven useful as downconverting photoluminescent 
agents, and refer the reader to excellent reviews by Bünzli 28, 29.   

This review is organised as follows. In Section 2 we present an overview of the principal 
parameters that influence upconversion, such as the luminescent centres and the host lattice 
materials, and we briefly discuss its core mechanisms, focusing on two-photon excitation. Section 
3 discusses in-depth the photophysics of upconversion and explains the fundamental 
photophysical processes. Section 4 describes practical approaches to formulating rate equations 
and the establishment of mechanisms of relevance for UCL. Section 5 then describes how the 
knowledge of the UCL processes can be used to influence the optical properties of upconverting 
nanoparticles (UCNPs), by providing an overview of recent reports concerned with spectral 
emission properties (colour) and brightness of UCL. We conclude with a short outlook on future 
directions in the field of UCL.  

2. Principal factors that influence upconversion 

2.1 Luminescent centres 

Many of the well-known UC materials use trivalent lanthanide (Ln3+) ions as the luminescent 
centre, typically Er3+, Tm3+, Ho3+, Pr3+, Nd3+, although transition metal and actinide ions are also 
capable of upconversion30.  Ln3+ doped materials are particularly well suited for UCL because the 
f electrons in the inner shells of Ln3+ ions are well shielded from their chemical environment by 
the outer-lying s and p electrons, which are involved in the bonding with the host material. These 
strongly shielded f states are rather insensitive to the surrounding host lattice (i.e. the crystal field 
and, to a lesser extent, the site symmetry), resulting in weak electron–phonon coupling. As a 
consequence, the energy states of Ln3+ ions in varying lattices are similar to those in free Ln3+ 
ions, with sharp and well defined spectroscopic features (10~20 nm FWHM).  Due to these f 
states, Ln3+ ions commonly have  multiple spectroscopically active levels (with the exception of 
Yb3+ and Ce3+) characterised by long lifetimes typically in the microseconds to millisecond 
range, and a large number of close energy levels, which can therefore facilitate multiple types of 
upconversion processes. The energy states of Ln3+ ions are specified in terms of spin (S), orbital 
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(L) and total angular momentum (J) of each of their f electrons, and denoted in Russell–Saunders 
notation as 2S+1LJ 

31.  

UCL frequently involves more than one type of a centre. The luminescent centre emitting UCL is 
always involved; this centre is referred to as an “activator”. However, in 1966 Auzel reported on 
the much more efficient UCL process involving partner ions that harvest the light, followed by 
energy transfer to the activator3, 32. The light harvesting ions are referred to as “sensitizers”. 
Sensitized upconversion is discussed in more details in the forthcoming sections.  

2.2 Host lattice  
The host lattice plays a significant role in enabling bright UCL. As a rule of thumb, the host 
lattice is required to be transparent to excitation light and upconversion emissions. Most 
crystalline lattices of relevance to UCL have bandgaps greater than ~6 eV, corresponding to the 
wavelength in the deep UV of 206 nm. These host materials are transparent to a range of f-f 
transitions that occur within its bandgap. To ensure high UCL efficiency the host lattice must 
provide asymmetrical crystal field, achieved when the site symmetry of the Ln3+ ion is low. This 
is because the f-f electric dipole (ED) transitions of a free Ln3+ are parity-forbidden. In an 
asymmetrical crystal field, the f states of Ln3+ ions are able to interact with other Ln3+ states of 
opposite parity, leading to mixed parity states between which the original parity-forbidden f-f 
electric dipole transitions become allowed33. In principle, a stronger asymmetric contribution 
from the crystal field increases the extent of opposite parity mixing, hence enhancing the optical 
transition probabilities (absorption and emission) in Ln3+ ions.  The allowed magnetic dipole 
(MD) transitions are much less affected by the crystal field. 

Varying the degree of crystal asymmetry of the host is one of leading methods to enhance the 
efficiency of UCL. This can be seen, for example when the site symmetry of the Er3+ ion is 
reduced from the most symmetric Oh symmetry in cubic NaYF4 to C3h in hexagonal NaYF4, and 
from D4h in tetragonal ZrO2 to C2h in monoclinic ZrO2

10, 34-37. In both cases, the Er3+ ion exhibit 
approximately 10 times brighter UCL in a lower symmetry host lattice. The host lattice not only 
has a significant effect in transition probabilities of Ln3+ ions by lower site symmetry but it also 
can influence the UCL wavelength by shifting the energy levels.  

The f energy levels of Ln3+ are affected by a combination of Coulomb force, spin-orbit coupling, 
and the influence of the surrounding distributed charge including the crystal field which induce 
their splitting. The 2S+1L splitting imposed by the electrostatic interaction is on the order of 104 
cm–1, while the spin-orbit coupling removes the degeneracy of states with the same J, with 
splitting of the order of 103 cm-1. The crystal field strength is responsible for their further shifts, 
in the order of 102 cm–1 38. Therefore, the resulting energies of Ln3+ electron states are primarily 
determined by the site symmetry and crystal-field strength of the lattice. The energy shifts of 
Ln3+ emissions in various host materials can be quite significant17, 39, 40. Adjusting the energies of 
electronic states of the 2S+1LJ multiplets through selecting and modulating the host lattice has 
therefore become one of the important methods to enhance and tune UCL. 
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Another key requirement for a host lattice suitable for efficient UCL is low phonon energies. The 
absence of high energy phonons reduces the effects of undesired nonradiative multiphonon 
relaxation (details are discussed in the following section). This enables the conversion of a higher 
ratio of excited photons into UC emission. The effect of phonon energy on the UCL efficiency 
may be more significant than the effect of low site symmetry of the Ln3+ ion in a crystalline 
lattice. For example, Ln3+ dopants in β-NaYF4 (hexagonal phase NaYF4) occupy a crystalline site 
with a relatively high C3h symmetry, while β-NaYF4 is currently recognized as the most efficient 
host lattice for UCL41. This indicates that the site symmetry effect is more than compensated by 
the average low phonon energy.  

2.3 Other parameters of significance  

The recent surge or research interest in UCL has led to multiple sophisticated approaches to 
optimise its spectral properties and brightness. In Fig. 1a we present a schematic overview of the 
different routes to influence these properties. The spectral properties are affected by (a) the 
choice and combination of activators with available radiative transitions42, or (b) by judiciously 
selecting the host matrix and designing optical properties around the emitters (see Sections 2.1 
and 2.2). Other routes involve (c) the variation of concentration of Ln3+ ions43, 44; (d) changing 
the nanocrystal size45, 46; or (e) changing the excitation schemes in both excitation power density 
and excitation pulse duration47, 48,  all resulting in favouring certain radiative and nonradiative 
processes within the Ln3+ (co)-doped matrix, and eventually tuning the output colour. Finally, (f) 
external materials can also influence the UC spectral properties, this can be accomplished, for 
example, by coating the particles with absorbing or fluorescent dyes49, 50. The application of these 
routes for controlling the UCL spectral properties, individually, or in combinations, are described 
in Section 4.1. Similar approaches can be utilized to enhance the UCL brightness. For example, 
(a) optimizing the types and concentrations of Ln3+ ions can result in brighter particles, but 
equally important is (b) the composition and geometry of the host matrix: intuitively a high Ln3+ 

concentration would yield a higher UCL brightness, however, it was shown early on that high 
concentrations result in quenching of UCL10. This can be overcome by (c) separating the ions in 
core-shell structures51, (d) clustering of sensitizers52, or (e ) using high excitation power density 
schemes23, 25. Finally, (f) external materials can be used to enhance the upconversion brightness, 
for example using metal substrates to induce surface plasmon resonance53. These approaches are 
described in more details in Section 4.2. 
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Fig. 1. Schematic diagram showing different avenues to influence the UCL spectral (a) and brightness (b) properties. 
More details are described in Sections 3 and 5.  
 

3. Photophysics of upconversion  

3.1 Upconversion mechanisms  
The UC process can take place through a number of complex but remarkably efficient pathways. 
Indeed, it is the discovery of one of these complex pathways (energy transfer upconversion, 
ETU) has transformed the field of UCL30. The UCL involves several photophysical processes in 
the centre(s) involved: ground state absorption (GSA), and either excited state absorption (ESA), 
or energy transfer (ET), or both, and optional energy migration (EM) (Fig 2).  
 

 
Fig. 2. Key mechanisms for UCL involve GSA, ESA and ET steps, resulting in (a) GSA/ESA, (b) GSA/ETU 
(activator-activator, AA), (c) GSA/ETU (sensitizer-activator, SA), and (d) EMU mechanism. As shown in (b) and 
(c), GSA/ETU can occur in the same type of ions (b), or two different ions (c). The EMU mechanism involves 
multiple types of ions and a core-shell design, as described in Ref 54.  
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The key upconversion mechanisms GSA/ESA, GSA/ETU, and GSA/EMU30, 54, 55, illustrated in 
Fig. 2a-d combine these fundamental processes. GSA/ESA is the simplest single-centre UC 
mechanism in which two photons are sequentially absorbed by GSA in an ion responsible for UC 
called “activator”. Subsequent to that an ESA takes place via a real intermediate energy level, and 
the same centre then emits UCL (Fig. 2a). The most frequently exploited GSA/ETU mechanism 
involves a second, auxiliary centre which is excited by GSA and then transfers its excitation 
energy by ET to the activator centre responsible for UCL. Simultaneously, the auxiliary centre 
relaxes to its ground level. There are two types of GSA/ETU mechanisms. One of them is the 
GSA/ETU which involves a pair of identical ions, an activator-activator pair (AA, Fig. 2b), 
where intermediate states of two identical centres are excited by GSA, followed by further 
excitation of one of the centres to a higher energy level via the ET. The alternative GSA/ETU 
mechanism (Fig 2c) involves two different centres - sensitizer-activator pair, SA. Here, a non-
upconverting sensitizer ion absorbs the excitation photons by the GSA step and the activator 
centre which is sequentially excited to its intermediate and emitting energy levels emits the UC 
signal. Finally, the EMU is a derivative GSA/ETU mechanism combining GSA, ET, and EM 
steps, and it may involve up to four types of centres54. In the EMU mechanism, a sensitizer centre 
excited by GSA first transfers its excitation energy to an accumulator centre. The ideal sensitizer 
has a large absorption cross section, and energy levels closely matching the energy gaps of the 
accumulator’s intermediate levels. The accumulator is required to have a long lifetime to 
consecutively accept and accumulate energy from the sensitizer. The EM then occurs from the 
high-lying excited state of the accumulator to a migrator centre, followed by migrating the 
excitation energy via the migrator ion through the core–shell interface. The ideal migrator has a 
long lifetime which decreases the decay rate of the excitation energy through optical transitions. 
The sensitizer/accumulator and the activator are spatially confined in different layers of the core–
shell structure, bridged by arrays of energy transferring migrators, which reduces cross relaxation 
and ensuing luminescence quenching.  Subsequently, the migrated energy is trapped by the 
activator centre in the shell which then emits the UCL. The migrator facilitates one-step energy 
transfer to the activator, significantly relaxing the requirements on the activator (such as long 
lifetime and intermediate energy levels). This recently introduced GSA/EMU mechanism54 for 
the first time expands the UCL to Ln3+ ions where the intermediate states cannot be excited at 
980 nm, such as Eu3+, Tb3+, and Sm3+.  

3.2 Photophysical processes 
The key photophysical processes in UCL of Ln3+ ions discussed above include the absorption of 
excitation photons (possibly stepwise in the case of ESA), subsequent energy transfer processes, 
and finally the release of excitation energy, in particular radiative emission of the upconverted, 
high energy photons. Numerous competing radiative and nonradiative relaxation processes and 
phonon-assisted energy transfers may also be involved simultaneously. They all play a vital role 
to determine the luminescence efficiency and relative intensities of UCL at different wavelengths. 
Therefore, understanding of these key photophysical processes of UCL is essential for materials 
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design and optimisation, and it enables qualitative and quantitative interpretation of experimental 
data.  

3.2.1 Photon absorption and emission – Judd-Ofelt theory 
Absorption of the excitation photons by GSA initiates UCL. The theory of absorption and 
emission in quantum systems such as Ln3+ ions is well established56, 57. The emission intensities 
are related to quantum-mechanical transition rates between the energy levels involved58. These 
transition rates depend on the details of the initial and final states taking part in the emissions. In 
the case of Ln3+ ions, these initial and final states are two different 4fN states with added 
components of opposite parity 4fN5d states whose magnitude depends on the electric field 
strength of the surrounding crystal. The effects of the crystal field on the wavefunctions of free 
Ln3+ ions are not easily accessible experimentally. 

In order to enable practical calculations of optical properties of Ln3+ ions in crystals, Judd and 
Ofelt introduced a simplified approach to the calculation of radiative rates in these ions 
embedded in a crystalline matrix. This approach is based on a number of approximations about 
energies of the component states. It assumes that all Stark levels in a manifold are equally 
populated and that the matrix elements are isotropic59, 60. These assumptions are reasonably well 
met by many specific lanthanide-matrix configurations. The Judd-Ofelt approach is important 
because it makes it possible to replace some parameters that are quite difficult to accurately 
estimate theoretically by experimental parameters easily obtained by fitting optical absorption or 
emission (line strength) data. This enables us to estimate radiative rates for the Ln3+ ion-matrix 
combinations with the aid of simple absorption or photoluminescence experiments61.  

In Judd-Ofelt approach,  the radiative rate Wrad (in photons/sec) between two manifolds of a Ln3+ 
ion, the initial state |SLJ〉 and the final state |S’L’J’〉 for an electric dipole (ED)-allowed transition 
can be approximated by57, 62-68: 

                                                                    (1) 

Here, e is electron charge,   is the average angular frequency of the optical transition,   is the 
reduced Planck constant, c is the speed of light, n is the refractive index  and [(n2+2)/3]2 is the 
Lorentz local field correction factor,  2J+1 is the degeneracy of the initial state.  〈SLJ||U λ ||S’L’J’〉 2 are the squared matrix elements of the ED operator between the initial and 
final manifolds, which depend on the angular momentum of the Ln3+ ion but are independent of 
the host matrix. These have been tabulated in the literature including in frequently cited works by 
Carnall56 and Kaminskii69. The Ωλ (λ = 2,4,6) are phenomenological parameters, known as Judd-
Ofelt parameters. They capture the influence of the host matrix on the ED transition probabilities. 
The Judd-Ofelt parameters can be obtained by optical characterization of the material under 
investigation. This is because the quantity under the sum in Eqn. (1), SED (J →J’ ) defined as: 



10 
 

     →                                            (2) 

and known as the line strength between two states       , and          , is related to spectrally 
integrated absorption cross-sections for the relevant  →    transitions: 

     →                                              (3) 

where σ(λ) is the absorption cross section as a function of wavelength. The line strengths, and 
consequently the Judd-Ofelt parameters can be derived from absorption measurements. The 
details of the fitting procedure are described in Ref.70. Judd-Ofelt parameters can also be obtained 
from the emission spectra (see Ref.61 and references therein). The Judd-Ofelt theory with due 
consideration of the possible branching makes it possible to obtain radiative lifetimes of excited 
states.  

We discussed here the ED transitions only, but we should add that both electric and magnetic 
dipole transitions can be observed in luminescence or absorption spectra of Ln3+ ions in a host 
matrix. The MD transitions are particularly pronounced in the infrared spectral range. These MD 
transitions are allowed between states with the same parity. The MD transitions in free ions are 
normally orders of magnitude weaker than ED transitions. However since the ED transitions for 
the Ln3+ ions are, in principle, forbidden and only partly allowed because of the perturbations 
caused by the host crystal, the spectral signatures of ED and MD transitions may be comparable 
in specific cases. MD transitions are only weakly affected by the crystal field and they can 
therefore be used as a benchmark for ED transitions described by the Judd-Ofelt formalism61. 
Alternatively, the relevant MD transition rates may be added to the Judd-Ofelt rates as in Ref. 71.  
For completeness we add that the full quantum-mechanical theory of the optical transitions as 
well as the Judd-Ofelt approach is applicable to all optical transitions in the lanthanides including 
upconversion luminescence. 

3.2.2 Resonant energy transfer 
After absorbing the excitation photons, resonant energy transfer within the sensitizer-activator 
pair successively transfers the excitation energy of the sensitizer in an excited electronic state to a 
nearby activator centre either in its ground state or intermediate state. The energy transfer may be 
either non-radiative or radiative. The non-radiative resonant energy transfer is through long-range 
dipole-dipole interactions while the radiative resonant energy transfer requires emission and 
reabsorption of a photon. In this review, only the leading resonant non-radiative energy transfer is 
considered30. 

The energy transfer rate between the sensitizer and activator ions, WSA, in the Förster-Dexter 
model30, 72, 73, can be expressed using the spectral overlap of the sensitizer emission and activator 
absorption. The resonant energy transfer rate is given by: 
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                                                   (4) 

where Ws is the radiative rate of the sensitizer ions in the absence of activators (equal to its 
reciprocal of the radiative lifetime, see Section 3.2.5),   is the reduced Plank’s constant, c is the 
speed of light, n is the refractive index of the host lattice medium, QA is the integrated absorption 
cross section of the activator ion, and the integral expresses the spectral overlap of sensitizer ion 
emission and activator ion absorption, as a function of photon energy E (E=hc/λ).  

Eqn. (4) can be rewritten in a simplified form:  

                           (5) 

where R is the distance between the sensitizer and activator ion, and R0 is known as the Förster 
radius. The Förster radius is, the distance at which the energy transfer rate WSA is equal to WS. 
Eqn. (5) indicates that WSA is proportional to an inverse power of the distance R (as R-6), and it 
rapidly decreases when R>R0. In a random distribution of ions in the material, R may be taken as 
the average distance between the sensitizer and activator ions, Eqn. (5) then indicates that a 
sufficient ion density of sensitizers and activators is necessary for efficient energy transfer to 
produce bright UCL until the concentration quenching takes effect (as discussed below). In 
addition, the sensitizer ions with larger WS are beneficial for more efficient energy transfer. The 
ET step (introduced in Section 3.1) can be described by a generalization of the Förster-Dexter 
energy transfer model of the case where the activator is in an excited state instead of ground state.  

The average distance between the sensitizer and activator is a useful parameter for the evaluation 
of chosen dopant concentrations and a host lattice. As an example, we show here the calculation 
of a typical average distance of between Yb3+ -Er3+  in NaYF4, one of most efficient 
upconversion host materials74. The Yb3+ and Er3+ can be used to substitute the host Y3+ ions 
without changing the crystal structure. The lattice mismatch between β-NaYF4 and β-NaErF4 is 
only 0.13% and 0.25% for the lattice parameters a and c, respectively, therefore differences in the 
lattice parameters resulting from the Yb3+ and Er3+ ions doping can be neglected74. β-NaYF4 
crystallizes in a space group P6  and its unit cell corresponds to the structured cell formula β-
Na1.5Ln1.5F6. This means that there is Z= 1.5 Y3+ ions in each unit cell75. The respective lattice 
parameters for β-NaYF4 are a = 5.9757 Å and c = 3.5305 Å (+/- 0.1%). The Ln3+ cation sites are 
considered to be disordered and randomly distributed. The average Yb−Er distance d can be 
approximated by the cubic root of the corresponding unit cell volume divided by Z and the Yb3+ 
and Er3+ doping percentages x and y over total Ln3+ cationic sites: 

                                         (6) 
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where a and c are the lattice parameters of the hexagonal unit cell with a volume of        . 
According to Eqn. (6), for 20% Yb and 2% Er in NaYF4, we can estimate the average Yb−Er 
distance to be around 6.5068 Å.  

The sensitizer-activator pairs in a crystal have a varying distance determined by the lattice 
parameters. For each pair, the corresponding energy transfer rate WSA varies as R-6. The statistical 
analysis of WSA at such varying distances has been considered by assuming a random spatial 
distribution of activator ions around a sensitizer in a crystal. The calculated average energy 
transfer rate 〈WSA〉  is given by:30, 76   〈   〉                              (7) 

where ω R)dR is the probability distribution function of the sensitizer-activator distance R. This 
function specifies the fraction of sensitizer ions having an activator ion in a shell between R and 
R+dR.  

We should also note that when activators are present, the relaxation of the sensitizers occurs not 
only because of the energy transfer, but also due to a competing process of their spontaneous 
deactivation including light emission and nonradiative relaxation in the sensitizer. However, at 
the optimal doping concentration of activators, the relaxation rate of sensitizers is dominated by 
the energy transfer. Secondly, sensitizer ions are most likely present at high concentration, e.g., 
Yb3+ ions in the range of 20~40%. This facilitates high energy diffusion rate between sensitizers 
which may be faster than their own spontaneous decay rate and sensitizer-activator energy 
transfer rate. In these conditions, Eqn. (7) can be simplified as30, 77: 〈   〉  〈   〉                 (8) 

where 〈   〉 is the statistical averaging of relaxation rate of sensitizers codoped with activators, C 
is the excitation migration constant (cm3 sec-1) associated with the average distance activator-
sensitizer distance, and NA is the activator concentration. As a result, the energy transfer rate is 
linearly dependent with the activator concentration. This agrees well with experimental 
observations at low activator concentrations30, 77. However, the UCL intensity reaches an 
optimum with increasing ion concentration, after which the UCL intensity decreases with further 
increasing ion concentration. This concentration quenching effect, which over-compensates the 
increased transfer rate at high doping levels, imposes a significant constraint to generate bright 
UCNPs. The mechanism leading to concentration quenching will be discussed in Section 3.2.5. 

Finally we comment that any model of energy transfer established for bulk materials have to be 
modified in nanocrystals because of the reduction of phonon density of states (DOS) and limited 
number of sensitizers and activators in a nanoscale system, which can decrease the energy 
transfer rate. For example, there is a 14% decrease of the energy transfer rate in a 10 nm UCNPs 
compared with the bulk counterpart17. The effects of size in the DOS are well understood as 
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discussed from a theoretical perspective in Ref.78. Briefly, the overall DOS dramatically 
decreases in a nanoscale system. The integral of the phonon density of states over frequency is 
equal to the total number of phonon modes, 3N-6, where N is the number of atoms in the 
nanoparticle. This decrease has a significant impact on all processes where the probability of 
interaction with a phonon is involved, such as multiphonon recombination and phonon-assisted 
energy transfer whose probabilities decrease with nanoparticle size. As a result of the reduced 
DOS with nanoparticle size, the relevant rates should decrease as well79-81. Moreover, in 
nanocrystals, the phonons being confined no longer have well-defined wave vectors, leading to 
the relaxation of the selection rules. Simultaneously, the overall electron-phonon coupling 
strength in nanocrystals decreases monotonically with increasing size82. The maximum phonon 
energy is determined by the interatomic spacing and is independent of nanoparticle size. 
However many low frequency phonons that exist in solids are no longer supported in 
nanoparticles, so the DOS is slightly rebalanced82. 

3.2.3 Phonon-assisted non-resonant energy transfer  

The resonant energy transfer between sensitizer and activator considered by Förster requires 
identical energy gaps for the involved ions, as shown in Fig. 3a. However, frequently there is an 
energy mismatch between the energy levels of the sensitizer and activator ions, illustrated in Fig. 
3b. It has been experimentally found that the energy transfer can still take place even the energy 
mismatch  between Ln3+ ions as high as of the order of 103 cm-1, (such as the 1600 cm-1 energy 
gap between 2F5/2 Yb state and 3H5 Tm state83) . The energy transfer in this case is facilitated by 
the nonradiative, phonon-assisted processes, where the energy mismatch is compensated by 
simultaneous emission or absorption of one or more phonons by the host lattice.  

The phonon-assisted energy transfer (PAT) plays an especially important role in UCL when 
many stepwise energy transfers have an energy mismatch. The Equations (4) and (5) are still 
applicable to assess the energy transfer rate WSA, but phonon sidebands must be included in the 
modified relationship. According to the Miyakawa-Dexter theory84, 85, the probability of 
multiphonon-assisted energy transfer          is given by:                                 (9) 

where    is the energy gap (mismatch) between the levels of sensitizer and activator ions,         is the energy transfer rate without energy gap, and β is a parameter determined by the 
strength of electron-lattice coupling as well as the nature of the phonon involved.  
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Fig. 3. Energy transfer (ET) from a sensitizer to an activator ion in an excited state. Non-radiative energy transfer can 
be resonant, with no energy mismatch (a); or phonon-assisted (PAT), with energy mismatch (b). 

3.2.5 Nonradiative relaxation  

The total radiative lifetime of a transition is the inverse of the relevant radiative rate, τrad = 

(Wrad)-1. This rate can be estimated from the Judd-Ofelt analysis with or without the addition of 
MD transitions, and with due consideration of branching ratios. If a state can decay radiatively to 
several different final states with different values of J, the total radiative decay rate for the 
population of this state, Wrad, is obtained by adding their respective radiative rates. The total 
depopulation rate of this state, Wtot, is the sum of total radiative Wrad and total nonradiative rate 

Wnrad :                           (10) 

This total depopulation rate is the inverse of the observed luminescence decay lifetime τ, Wtot 

=(τ)-1. Eqn. (10) highlights that during the course of the excitation energy returning to lower 
energy states, the nonradiative relaxation in a luminescent system always competes with radiative 
transitions. Therefore, generally, the suppression of nonradiative relaxation is one of most 
straightforward methods to increase the upconversion brightness. Only in some specific cases 
nonradiative relaxation may be desired, by facilitating the energy transfer which cannot be 
realized by the phonon-assisted energy transfer and in tuning the optical properties of UCNPs, 
e.g., relative intensity for colour and lifetime for multiplexing. These applications will be 
illustrated and discussed in Section 5.  

Among many nonradiative relaxation channels of an excited Ln3+ ion, multiphonon relaxation has 
a special place due to the shielding of f electrons in Ln3+ ions77. Miyakawa and Dexter developed 
a unified theoretical treatment to various multiphonon processes in the adiabatic approximation85. 
In this approach the multiphonon-assisted relaxation rate, WPAR, is expressed in same form as in 
Eqn. (9):                                 (11) 

where ΔE is the energy difference between the relevant levels occurring phonons relaxation in the 
luminescent system, WPAR(0) is a constant, and α  is a host-specific parameter. Multiphonon 
relaxation is significant in perfectly crystalline materials; however real materials are frequently 
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contain high density of lattice defects, many of which may significantly contribute to 
nonradiative energy decays. This occurs via a two-step process: first the excited Ln3+ ion 
transfers its energy to a nearby defect centre. Subsequent to that the excited defect undergoes 
nonradiative relaxation. In particular, for small size nanoparticles where the near-surface region 
with higher defect density comprises most of the nanoparticle volume, these defect processes 
may dominate nonradiative relaxation. This effect underpins the well-documented size 
dependence of the observed UC luminescence lifetimes46. There is limited literature on specific 
effect of defects in nanoparticles due to characterization challenges86, 87. We were first to analyze  
the X-ray diffraction data  in UCNPs to obtain information on defect densities46.The XRD peak 
position is sensitive to the variation of the lattice constant due to defect induced strain, which 
provides a measure of the overall defect density. The XRD peak width depends on three major 
contributions, being crystallite size, instrumental broadening and defect density. In our previous 
work46 measurement of the XRD peak width after correction for nanocrystallite size showed an 
increase of defect density with decreasing nanocrystal size. These crystalline defects provide the 
channels for nonradiative recombination88, leading  to a reduced lifetime as per the Stern-Volmer 
model89.  
 

Cross-relaxation is another nonradiative relaxation process of core significance in UCL. As 
shown in Fig. 4, in cross-relaxation, activator 1 is depopulated to a lower-energy level while 
activator 2 is populated to a higher-energy level, though not necessarily from the ground state. 
Obviously, cross-relaxation is a reverse of the upconversion process regarding the energy transfer 
step. Therefore, the concepts that explain resonance energy transfer can be generalised to 
describe cross-relaxation: the rate of cross-relaxation increases when two ions are in close 
proximity to each other. The cross-relaxation rates are related to the concentration of the relevant 
centres30, 77, 90:  〈   〉        (for ions with fast energy diffusion)       (12) 〈   〉        (for ions with limited rate of energy diffusion)      (13) 

where CM is the  excitation migration constant which depends on the average ion distance, and NA 
is the activator concentration, respectively. 
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Fig. 4. (a) Schematic illustration of the energy transfer (ET) in upconversion and cross-relaxation (CR) processes and 
energy level diagram (b) of the ETU process followed by deleterious cross-relaxation, quenching the radiative 
energy level of  activator 1.  
 

For a dipole-dipole interaction, the overall upconversion rate of an excited Ln3+ activator ion after 
spatial averaging is reduced by the cross relaxation rate (-〈WCR〉 . Owing to the excited ion 
population dependence of -〈WCR 〉, the resulting UCL can only increase with activator 
concentration at low concentrations. Upon increasing the activator concentration, cross-relaxation 
becomes more pronounced, eventually leading to UCL decrease when it exceeds the optimal 
concentration threshold. This phenomenon is called concentration quenching, also well-known 
from the studies of fluorescence91-93.  

3.2.5 Competing luminescence processes 
Among various processes that compete for excitation energy with the upconversion is 
conventional “downconversion” luminescence, as a range of Ln3+ ions have optical transitions at 
energies lower than the excitation energy of the upconversion. A classic example is the Er3+ ion, 
with a 1.54 µm transition commonly utilized in the optical fibre technology94, and similar 
infrared (IR) transitions in the Yb3+ ions30 which reduce the excitation energy available to 
sensitize activators. There is also a possibility of downstream processes where excited higher 
energy levels responsible for the UC emissions decay via decay channels involving lower energy 
luminescence. The challenge of enhancing the UCL by reducing the downconversion emissions is 
compounded by the fact that they are both enhanced by making optical transitions more strongly 
allowed (by the influence of site asymmetry). This was demonstrated by the simultaneous 
enhancement of upconversion and downconversion luminescence at the same 980nm excitation 
in Al2O3 doped with Er, Yb:Er and Yb:Zn:Er, reported in Ref. 95. We are not aware of 
engineering approaches to simultaneously enhance UCL and decrease the downconversion 
luminescence, while the excitation is at the same wavelength (e.g. 980 nm). Current efforts to 
optimize downconversion luminescence and UCL in the same material focus on applications in 
solar cells, where excitation energies for both luminescence processes are different and the 
enhancement of both is desired, as illustrated in 95-97. There have been various efforts to analyse 
downconversion luminescence in Ln3+ ions98.  
 
3.2.6 Ligand/solvent quenching 

The luminescence intensity in nanoparticles is quenched by solvent and/or ligands conjugated to 
the surface of nanoparticles. Ligand quenching occurs by any of the chemical ligands, but those 
comprising light elements whose vibrational energy is higher (such as -OH or –CH groups) 
quench nanoparticle luminescence more effectively. This is quantified by the generalized “gap 
rule”, which relates the “gap” between initial and final energy level to the nonradiative rate and 
vibrational energy: Wnrad  ∝ e-α ΔE ħω (see also Eqn. (11) and  ħω is the maximal vibrational 

energy)46. The vibrating bonds may be inside of the nanoparticle or immediately adjacent to it. 
As long as the vibrations are able to interact directly with the electronic excitations they will be 
able to dissipate energy. The degree of quenching by a specific ligand depends on the abundance 
of these ligands on the surface. The vibrating bonds do not have to be chemically attached to the 
nanoparticle surface, frequent collisions of molecules in the solvent with nanoparticle surface 
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provide enough opportunity for the excitation energy to be transferred to the vibrations of solvent 
molecules. 
 

4. Rate equations 

Experimental measurements of luminescence intensity and luminescence decay times are 
generally acquired from populations of luminescent ions. Thus, in order to link these observations 
to theoretical models, the models need to describe the behaviour of these populations. The rate 
equation approach centres on population behaviour and, although simplified, it enables 
quantitative predictions, as long as the required multiple parameters are known with sufficient 
accuracy. In the rate equations approach23, 25, 46, 71, 100, individual energy transfers and other 
processes are represented by their population averages. This is a fairly coarse approximation for 
upconversion which generally requires a more nuanced and detailed understanding of random 
walks of excitation energy through the entire sensitizer-activator system. The physically most 
clear and intuitive understanding of upconversion in such systems is provided by a Markovian 
model which relates the rate of change of the probability that a single Ln3+ ion site is excited to 
the various microscopic molecular transfer probabilities101-104. This stochastic approach considers 
the interactions in the Ln3+ system of   ions as a random-walk process where occupation 
probabilities execute a hopping motion across the different ionic sites. However, such random 
walks are currently impossible to describe analytically and they have been addressed through 
numerical simulations only. Very few experimental works published so far have actively 
engineered these random walks, with notable exception of smart clustering approaches presented 
by Liu’s group52.  

When setting up the rate equation model to analytically evaluate the UCL, the authors include 
mechanisms they regard to be of key relevance in the examined the system. Thus in each case 
specific assumptions and simplifications have been made, but without losing sight of core 
distinctions of interest in a particular problem. This is why different references show subtly 
different rate equations even in the same material system23, 25. Well-designed rate equations can 
give us valuable insights into microscopic processes in materials. For example, by experimentally 
measuring the decay rate Wtot and calculating the Wrad from the fundamental quantum-mechanical 
Judd-Ofelt analysis we can obtain Wnrad (Eqn. (10) and Section 3.2.1). While radiative rates of the 
Ln3+ ions are determined by the properties of the Ln3+ ions themselves and the matrix, the 
nonradiative rate depends on the choice of matrix and its phonons as well as by synthesis 
conditions which determine the defect density and conjugated ligands. They both critically affect 
not just observed decay times but also the overall brightness, as shown in the following simple 
analysis. 

4.1. Basic rate equation 

As an example, we show a basic rate equation describing luminescence in a three-level model of 
the ion with the aim to show how luminescence intensity is affected by the nonradiative 
relaxation. In this model the pump light, at the energy matching the energy difference between 
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the ground state 0 and the highest state 2, excites the electrons. We assume that they immediately 
relax to the level 1 (with an infinite rate) and these electrons, now on level 1 further decay to 
level 0 emitting luminescence, see the schematic drawing in Fig. 5a. 

The basic equation for the transition rate between levels 1 and 0 at low excitation (N0 >> N1, 
where N0  is the number of ions in ground state,    is the population of ions in the first excited 
state) is:                                 (14) 

Here, dN1/dt is the net transition rate from level 1 to level 0, τ is the decay constant (of radiative 
and nonradiative processes combined), and A   is the absorption rate of the excitation photons 
between levels 0 and 2, Wtot is defined in Eqn. (10). In steady state conditions where dN1/dt = 0, 
this becomes                    (15) 

The photon emission rate from the emitting level 1 and using Eqn. (10) is then:                                                      (16) 

The emitted luminescence intensity, I [in Watts], related to the transition from initial level 1 to 
final level 0, is given by 61:                         (17) 

where      is the transition energy between the levels 0 and 1.  

Thus, in this basic model the luminescence intensity can be increased by increasing the activator 
doping (if no other processes are present) and the reduction of the nonradiative relaxation rate. 

Below we show examples of how to set up rate equation models in more complex situations. The 
first case involves a minimal set of rate equations to model red and green UCL in a well-
established upconverting Er:Yb system46. This model has been developed following Refs.105, 106.  

4.2. Example of rate equations describing red and green UC in an Yb-Er system 

The relevant Yb3+ and Er3+states are shown in Fig. 5b. We note that in this system the ground 
state is denoted ‘1’, the first excited state ‘2’, etc. These simplified rate equations describe the 
evolution of populations in the Yb3+ excited state (Yb2) and four Er3+ states (Er2), (Er3), (Er5), and 
(Er6). NEr(Yb),i is the population density of the occupied level i of Er(Yb), and NEr is the total 
density of Er3+ ions. We assumed that the Er3+ states above (Er6) relax very rapidly to the state 
(Er6) by multiphonon relaxation due to the small energy gaps, and the same argument applies to 
the state (Er4), thus these were ignored in the rate equations. Our rate equations involve single-ion 
and two-ion processes only. The first single ion mechanism accounts for decay processes 
occurring within Er3+starting from level i (i = 2, 3, 5, 6).  
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Fig. 5. (a) Schematic representation of simple 3-level model described in Section 4.1. (b) Main radiative and 
nonradiative transistions and energy transfer processes relevant for UCL in a NaYF4:Yb,Er nanocrystal, described in 
section 4.2. The energy levels relevant in the rate equations are denoted Yb1,2 and Er1-6. Reproduced from Zhao et 

al.46 with permission from The Royal Society of Chemistry.  

 
Wij describes the rate of population transfer of population from the i-th level to the j-th level (i > 
j). We also include single-ion processes within Yb3+ such as ground state absorption (GSA) and 
excited state absorption in Er3+ (ESA) described by the absorption cross sections σYb for the 
ground state of Yb3+ and σESA2(3) for levels 2 and 3 in Er3+. The latter process produces 
upconversion via ESA. Among the two-ion process, we only consider those that involve pairs of 
Yb3+–Er3+ (cooperative upconversion via energy transfer upconversion (ETU)), and neglect the 
pairwise Er–Er energy transfer (cumulative upconversion). This is because Yb3+ sensitisation is 
well-known to be critical for strong upconversion emission in Er3+ doped nanocrystals at low 
excitation density30. We define kc2(3) as the cooperative upconversion coefficient for the 2->5 and 
3->6 upconversion processes, respectively. kFT is the coefficient of forward energy transfer 
Yb3+/Er3+, the main pathway for exciting Er3+. However, we ignore the decay of Yb3+ by other 
channels than forward energy transfer to Er3+ because it is comparatively weak107. Back energy 
transfer from Er3+ to Yb3+ is ignored as well107, 108, and radiative and non-radiative decay from 
Er3+ level 2 is considered to be negligible109, 110. With these conditions, the rate equations are 
formulated as46:                                                                      (18) 

 
                                                                           (19)                                                                                 

(20)                                                                      (21)     
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                                                         (22) 

The symbol    denotes the excitation power variable, given by                                 (23) 

Here, P is the incident pump power,   and   are the pump wavelength and beam radius, 
respectively, h is Planck’s constant and c is the speed of light. 
 
4.3. Example of rate equations to describe concentration quenching 

The second example is a similarly minimal set of rate equations with the smallest number of 
energy levels able to describe UCL in the ETU mechanism, in the presence of concentration 
quenching25, 45. This concentration quenching was not included in the previous model. In our 
simplified approach the Ln3+ ion (activator) is represented by three states, Ln0 , Ln1, and Ln2, with 
the same energy spacing between adjacent states, see Fig. 6a. The Ln3+ ions are excited by the 
sensitizer, Yb3+. This requires the excitation of Yb3+ (GSA) between two energy states Yb,0 and 
Yb,1. The reverse energy transfer from Ln3+ back to Yb3+ is ignored, consistent with the situation 
in the Yb3+ - Er3+ system107, 108, and the Ln3+ - Ln3+ cross-relaxation is taken into account. We 
also ignore radiative and nonradiative recombination within Yb3+. The key energy transfer 
processes are illustrated in Fig. 6b.  
 

 
Fig. 6. (a) Energy spacing and energy transfer between different states of sensitizer Yb and the activator Ln-ion. (b) 
Schematic diagram of the key energy transfer processes represented in the rate equations (24)-(27). Rectangles 
represent state populations. Reproduced with permission from Zhao et al.25, copyright 2013, Nature Publishing 
Group. 
 
The rate equations for the excited state populations of the Yb3+ and Ln3+ ions are as follows:                                          (24)                                          (25)                  −                           (26) 
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                +                    (27) 

Here             where      is the forward energy transfer rate from Yb3+ to Ln3+, and                 is related to the upconversion process involving excited Yb3+ and Ln3+ in its 
first excited state, c is the concentration of Ln ions which have their first excited state empty, and 
k1 is the decay rate between the second and first excited state of the Ln ion.      is a product of 
the excitation power variable and absorption cross section,          . The power constant is 
defined above, Eqn. (23). 

We comment that the latter two models presented here (Eqns 18-27) describe the case of 
excitation which is high enough to ensure that the excited ion distribution is spatially 
homogeneous. In this case, by suitable statistical averaging over the distribution of the Ln3+ ions, 
the excitation probabilities can be integrated within a set of differential equations with 
macroscopic rate constants describing the populations on various excited states. 

We also emphasise that the rate equation approach generally assumes that each of the included 
processes can be adequately represented by its average over the relevant population(s). Strictly 
speaking, this is not applicable to energy transfer processes because due to the short range of the 
energy transfer in the Forster formalism compared to the lattice constant, effective energy 
transfer may occur only between near or even nearest neighbours. However this does not affect 
the structure of the appropriate terms in the rate equation, as long as each specific energy transfer 
rate is characterised by a different constant. 

Once the rate equations have been formulated one can consider various excitation regimes, by 
appropriately setting the excitation power variable. For example with a pulsed excitation we can 
explore the behaviour of populations of various states and UC signal as a function of time. This 
enables us to connect the model with experimental measurements of the decay constants46. Or we 
may want to consider a case of constant excitation and look at the steady state behaviour of 
various populations25. 

Finally we emphasise that the rate equations reflect a choice of processes to be included and to be 
ignored. This is a pivotal decision discussed in Section 4.4 below. 

4.4 How to establish key upconversion mechanisms in the rate equations  

Setting up rate equations involves a decision which processes should be included. For example, 
in the most popular and Yb-Er  sensitizer-activator pair, the arrangement of the energy levels 
enables several mechanisms including GSA/ETU (SA), GSA/ETU (AA), and even GSA/ESA. It 
is not clear a priori which UC mechanisms are the leading ones, but the measurement of the UC 
excitation spectrum may provide their fingerprints, for example it can be used to rule out 
GSA/ESA compared with GSA/ETU. In the first case successive absorptions in the GSA/ESA 
mechanism involve a combination of several energy levels of the activator ion in the resulting 
excitation spectra. In contrast, the GSA/ETU effect involves only the GSA levels in the 
sensitizer, so the whole excitation spectrum should arise from the sensitizer ion30. This is 
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illustrated in the 2%Er-18%Yb NaYF4 and 2%Er NaYF4 systems studied by Suyver et al.27 In the 
Yb-Er co-dopant system, only a clear Yb3+ signature related to the electronic excitations into the 
2F5/2 and 2F7/2 is recognised. This implies that the GSA/ETU (SA) is the leading process and 
directly proves that the excitation of all the upconversion emission bands is sensitized via Yb3+. 
As indicated earlier, reasons include a large σGSA of Yb (one order of magnitude high than Er) 
and more efficient energy transfer Yb-Er than Er-Er due to around 10 times higher concentrations 
of Yb than Er27. For the 2% Er system, the excitation spectrum is distinctly different, showing 
multiple transitions, e.g., 4I15/2 →  4I1/2, and 4I11/2 → 4F7/2. In this case, excitation takes the form of 
successive absorption of pump photons by the single Er3+ ions, by the GSA/ESA mechanism27. 
Conversely, in a 10% Er-doped sample, Auzel et al have observed the multiphoton excitation 
spectra confirming the GSA/ETU (AA) mechanism instead of GSA/ESA111. The results suggest 
that as the energy transfer rate varies as R-6, in materials with a single type of ion, such as Er3+, 
the GSA/ESA mechanisms often dominate the upconversion processes in samples with low 
doping, whereas the GSA/ETU (AA) is dominant in highly-doped samples.  

Another effective scheme to distinguish GSA/ESA and GSA/ETU is to record the time-
dependent UC luminescence after a short (ns or less) excitation pulse27. The absorption in the 
ground and intermediate excited states in the case of GSA/ESA occurs on a less than nanosecond 
timescale, resulting in rapid onset of upconversion luminescence. The subsequent decay should 
show a single exponential curve after the excitation pulse (Fig. 7). In the case of GSA/ETU, the 
activators are excited via at least two subsequent energy transfer processes, which are much 
longer than the excitation pulse. Therefore, the population on the emitting levels gradually 
increases after the excitation pulse, so the UC lifetime decay first shows a rise (on a microsecond 
scale in common materials) reflecting the increasing population on the emitting level followed by 
an exponential decay. The resulting time-dependence of the UC reflects the decay rate of the 
excited state of the sensitizer, the energy transfer rate, and the decay rate of the emitting levels of 
the activator. In the case when GSA/ESA and GSA/ETU exist simultaneously in a system, the 
UC signal will show bi-exponential characteristics. 

The UC decay characteristics can also help recognise energy diffusion. If diffusion of excitation 
occurs, then the excitation energy will migrate among sensitizer ions within the crystal lattice 
until a suitable activator ion is found. Since the sensitizer-activator ion pairs with the shortest 
separation have the highest energy transfer rates, an excitation gradient may be established within 
the crystal. If no diffusion occurs, the sensitizer-activator pair density distribution would favour 
pairs with the largest radial separation; pairs with shorter separations would be more likely to 
undergo cooperative energy transfer. One manifestation of this would be the non-exponential 
decay of UCL, reflecting the different transfer rates for different pair separations. The frequently 
observed exponential UCL decay at pulsed excitation indicates rapid energy diffusion. In this 
case spatial inhomogeneities of the sensitizer ions are effectively averaged out and the rate 
limiting step of direct energy transfer determines the time dependence of UCL. These examples 
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indicate that a combination of excitation spectra and decay time measurements are two useful 
methods to distinguish and determine the relative weight for various UC mechanisms.  

 
Fig. 7. Schematic representation of the GSA/ESA (a) and GSA/ETU (c) processes. Dotted and straight arrows 
represent nonradiative and radiative ET, respectively. The graphs in (b) and (d) describe the UCL time-evolution of 
the emission after a short excitation pulse, resulting from the two processes. Reprinted with permission from Suyver 
et al.27 Copyright 2005, Elsevier.  
 
4.5. Example application of rate equations: effect of nanocrystal size on UCL 

The principal strategies for modifying properties of the UCL discussed earlier involve: (a) 
variation of the host lattice and (b) variation of type(s) and concentrations of dopant Ln3+  ions in 
the lattice and (c) modification of excitation conditions – wavelength and irradiance. However 
UCL can also be tuned by modifying the nanoscale morphology such as the size and shape of 
UCL-emitting nanostructures, and many experiments confirm that the UC luminescence decay 
characteristics and upconversion efficiency are size-dependent45, 46, 112. Changing size may 
dramatically influence the nonradiative properties (multiphonon relaxation and energy transfer), 
and changing the nanostructure shape may, in principle, influence the radiative and energy 
transfer processes. In particular, the ETU process in nanosystems is not only dependent on the 
initial distribution of the excited states, but also on the boundary conditions of the nanoparticles 
and material properties. Near the surface two additional mechanisms become important: one is 
the modification of the phonon density of states17, another is the disordering in the surface layer 
in whose electronic and structural properties differ from that in the core. A simple approach to 
interpret size effects is to separate the transition and relaxation rates of all upconversion steps into 
surface and core contributions46. 

Our rate equation analysis in Section 4.4 links the observed decay rates to microscopic, molecular 
level parameters in the rate equations. The contributions of the nonradiative recombination 
mechanisms in the centre and near surface of nanocrystals are, generally, different. This makes it 
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possible to propose a quantitative model of the observed upconversion decay times which takes 
into account different material properties near the nanocrystal surface and within its volume46. 
This yields the relationship between the observed decay rates and nanocrystal size. 
In this model, the nanocrystal is separated into the a spherical shell  near the surface, of thickness  
d and a spherical  core88, 113. The corresponding luminescence decay rates in the shell and in the 
core are denoted, respectively as    and   . The observed decay rate for each luminescence 
transition in the nanocrystal is given by a weighted average of the rates    and    with weights 
determined by the respective fractions of the shell and /core volumes, denoted Fs and Fc.  In this 
way, the observed rate becomes a function of the nanocrystal’s radius R and shell thickness: 

W                                                              (28) 

Since the behaviour of the observed decay rates in smaller nanocrystals is dominated by the 
contribution from the near-surface decay rate which is generally higher than in the core due to 
higher defect density in the near-surface region, this model is able to describe a reduction of the 
decay time with decreasing size113. 

Now, we can also combine Eqn. (16) and Eqn. (28) to obtain an alternative expression for the 
photon emission rate as a dependency on R and d (via Fs and Fc) and the radiative and 
nonradiative decay times, τrad and τnrad : 

                                                   (29) 

Since the surface fraction has a higher nonradiative decay rate (Ws,nonrad > Wc,nonrad), while Wrad is 
the same for either fraction, we can see that by reducing the nanoparticle size, and hence 
increasing Fs, the photon emission rate N1/ τrad will be reduced resulting in a lower UCL for 
smaller particles (if all other parameters are unchanged) .  

4.6 Numerical solutions of the rate equations 

Rational design of UC materials requires theoretical modeling because the relevant 
multidimensional parameter space cannot be probed accurately enough in practical experiments, 
despite recent availability of combinatorial high throughput material synthesis methods. Some 
level of insights concerning solutions of the rate equations can be obtained by using mathematical 
analysis. In some specific cases, with more assumptions, it might be possible to obtain 
analytical25 or approximate solutions114. However, generally, solving these and other similar rate 
equations requires numerical simulations and this, in turn, requires the knowledge of all 
parameters. This is really challenging given their sheer number and the complexity of the 
underpinning mechanisms. A good source of these parameters is the area of solid state lasers 
where rate equations have been commonly utilised. Solid state laser materials have been designed 
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either to minimise the UC to promote more efficient laser action, or in the case of UC lasers, to 
optimise the UC5, 6, 115.  
 
The parameters in the rate equation are derived from optical experiments focusing on 
luminescence dynamics and steady state luminescence intensities for all transitions of relevance 
for UC. These transitions need to be selectively and individually excited71, 116, 117. A specific rate 
equations model is then proposed and its parameters adjusted to fit the experimental data. The 
parameters for the particular crystal-matrix combination determined in this way and those 
available from the literatures are supplemented with those measured for other similar crystals118. 
Additional adjustments to the parameters are made when the rate equations are applied to 
nanomaterials (with increased role of surface effects and modified energy transfer rates) but the 
parameters were taken from bulk crystals, with some having been modified by two orders of 
magnitude118. The accuracy of these parameters is difficult to determine and this affects the 
uncertainty of the simulated results. 
 
Several groups demonstrated numerical solutions of the rate equations describing upconversion, 
including in Refs 71, 119-124. These and other informative publications discussing rate equations are 
listed in Table 1. See original references for diagrams of the relevant transitions. Among the most 
advanced recent approaches was the modeling carried out in Ref.71 aimed at funneling excitation 
energy into the most efficient UC transitions in NaYF4: Er,Tm. Ref. 125 discussed a similar model 
in NaYF4 Yb,Tm focusing on accurate description of energy migration. A detailed model of UC 
in the classic NaYF4: Er,Yb has been presented in Ref.120 although the focus was not on UC but 
on fundamental study of plasmon enhancement of energy transfer. The rate equations have been 
also used in Ref. 121 to understand the record 12% UC quantum yield in Er-doped Gd2O2S. 
Broadband upconversion was modelled in Refs. 122, 123. We particularly highlight Ref.124 in a 
classic material NaYF4: Yb, Er where two different rate equation models have been carefully 
compared. These and other publications suggest that, despite challenges and limitations, the 
interest in further refining the rate equations for the UCL will continue. 

Material Comments reference 

NaYF4:Yb3+/Er3+ The equations consider the 2F5/2 and 2F 7/2 levels of Yb3+, and the 
4S3/2, 

4F 9/2, 
4I11/2, 

4I13/2, and 4I15/2 levels of Er3+. 
120 

Nd3+ doped ZBLAN glass 
ceramic The model considers the first 15 states of Nd3+ 122 

Nd3+ doped fluorozirconate 
glasses with BaCl2 

nanocrystals 
The model considers the first 15 states of Nd3+ 123 

β-NaEr0.2Y0.8F4 

The UC model considers ground state absorption, excited state 
absorption, stimulated emission, spontaneous emission, multi-
phonon relaxation, energy transfer upconversion and cross-
relaxation. 

126 
 

Er3+-doped Gd2O2S 
Limited to the 4I15/2 , 

4I13/2 , 
4I11/2 , and 4I9/2 states of the Er3+ ion. 

Short pulse excitation. Only the ETU mechanism 
121 

NaYF4, various lanthanide 
dopant pairs and other 

materials 

Holistic rate equation modelling. All photophysical transitions. Rate 
constants calculated using the Judd–Ofelt theory for electric dipole 
emission, the energy gap law for multiphonon relaxation, and 

127 
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theories byKushida and Miyakawa and Dexter for phonon assisted 
ET. 

β-NaYF4:Yb:Tm 
The total system of equations combines the rate equations of all 
levels of every ion in the sample, no population averages. 

125 

YF3:Yb:Tm Two lowest levels of Yb, seven lowest states in Tm, back-transfer 
from Tm to Yb has been neglected, multiple other assumptions. 

116 

Brium-thorium fluoride 
glass with Yb:Tm and 

Yb;Er 

Seven levels in Tm, six levels in Er, two levels in Yb, only 
cooperative upconversion. Analytical expressions for luminescence 
intensities under steady state conditions. 

8 

Fluoride glass doped with 
Yb:Tm and Yb:Ho 

Modelled two-photon processes for 3F4 → 3H6, 
2S2 → 5I8 transitions 

and three-photon processes for the 1G4 → 3H6 transition 
128 

Various phosphors doped 
with Tb:Tm and Yb:Er Seven states of Er and Tm, two states of Yb. Multiple assumptions. 119 

β-NaYF4:Yb:Er A new mechanism involving Yb3+ to Er3+ energy transfer 
UC out of the green-emitting 2H11/2 ,

4S3/2 states 
124 

LaF3:Tm 9 levels, 4 groups of transitions 114 
Tm doped ZBLAN 6 levels, no energy transfer between pairs of ions 115 
NaYF4:Er3+/Tm3+ 

 
 

Incoming and outgoing rates of electric dipole and magnetic dipole 
radiative transitions, nonradiative multiphonon relaxation and 
energy transfer, 8 levels in Er, 7 levels in Tm 

71 

NaYF4:Yb,Tm@NaYF4 2 levels in Yb, 7 levels Tm, pulsed excitation. 118 
Yb:Tm-doped KY3F10, 

LiYF4 and BaY2F8 
2 levels Yb, 6 levels Tm 129 

Table 1. Overview of publications discussing rate equations.  
 

5. Optical properties of upconversion luminescence at a nanoscale  

5.1 Colour (emission spectrum) 

The colour of UCL, is a result of the optical (radiative) transitions within the f-orbitals of the 
Ln3+ ions which are influenced by multiple processes, as explained in Sections 2 and 3. The 
eventual spectral shape of the emission spectrum is a result of a complex interplay between the 
population and depopulation of various emitting states. This, in turn, depends on the energy 
transfer rates influencing all intermediate states playing a role in the final emission. The relevant 
processes involve cross-relaxation, phonon-assisted energy transfer and resonant energy transfer 
and migration all varying with the inter-ion distance. Thus tuning the colour of UCL requires 
careful management of photophysical interactions between ions, to enhance or suppress specific 
mechanisms130. In this way, tuning desirable colour of UCNPs frequently involves engineering 
the relative intensities of multiple emissions or achieving a single emission band by balancing 
many photophysical processes. The most obvious way to influence the colour is by using 
different dopant Ln3+ ions, with different optical transitions, in the inorganic matrix (fluoride or 
oxide or alternative). For example, for the widely used host matrix β-NaYF4 doped with sensitizer 
Yb3+ ions and Ln3+ activator ions, the UC emission appears green to the eye when co-doped with 
Yb/Er and blue when codoped with Yb/Tm ions75. In addition, the available radiative transitions 
result in additional red and NIR peaks in the emission spectra, respectively. Depending on the 
envisioned application, broad or narrow emission peaks can be desirable. Broad emission is for 
example advantageous for colour management of light sources131; controlled colour fine-tuning is 
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advantageous for display technology48, 132, and narrow emission spectra in specified colours are 
useful for applications such as colour multiplexing in biological media50 or security coding133. 
We will discuss the different strategies that have been developed in recent years to obtain 
emission covering a wide spectral range; colour tuning or single-band emission spectra. 

5.1.1 Spectrally wide emission  

As discussed earlier, individual Ln3+ activator ions have multiple energy levels which can be 
depopulated by radiative and nonradiative transitions. Choosing dopant/host combinations that 
allow the population of multiple emitting states, with comparable probability, results in spectra 
consisting of multiple bands which may overlap and form broad emissions. This may be desired 
in some applications, for example for the development of light sources. 

Enhancing higher-order upconversion 

Co-doping Yb3+ and Tm3+ in a LiYF4 matrix yields emission bands spanning the UV, VIS and 
NIR regions with the dominant visible peaks in the blue region134. In addition,  higher order 
three- and four-photon upconversion processes (emitting at 368, 450 and 480 nm) were amplified 
when the Yb-concentration was increased from 20 to 25 mol% unlike the red emission (at 650 
nm), attributed to increased total energy transfer from Yb3+ to Tm3+. However higher 
concentrations of Yb3+ induce UCL quenching, especially with respect to the higher order 
emissions75. Through rational design, Wang and co-workers have recently increased the 
efficiency of energy transfer between Yb3+ at high concentrations and Er3+, resulting in enhanced 
four-photon upconversion and UC emission from the 2H9/2 level of Er3+ at 407 nm52. In addition, 
the 4F9/2 → 4I15/2 (red emission) was enhanced, while the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 (both 
green emissions) retained high emission rates as well, resulting in a broad emission spectrum in 
the blue, green and red regions (see Fig. 8). This increase in blue and red emission resulted from 
a novel design where the Yb-sensitizers are located in clusters throughout the host matrix, in an 
orthorhombic crystallographic structure in KYbF7:Er (2 mol%) nanocrystals. This design 
facilitates Er3+→Yb3+ back-energy-transfer from the 4S3/2 level of Er3+ to the 4F7/2 state of a 
nearby Yb3+. Subsequently, the 4I13/2 state thus populated produces red and blue emission as a 
result of the third and fourth energy transfer process, respectively (Fig. 8b). In addition to the 
broadening of the emission spectrum, this also resulted in an increase in brightness as discussed 
in Section 5.2.  

Core-shell approach 

The core-shell strategies have also been employed to cover a wide emission spectral range. Ye et 

al. recently broadened the emission spectrum by isolating the activator in the core from the 
sensitizer in the shell135. Their NaYF4:Yb(50 mol%)@NaYF4:Ho(1 mol%) nanocrystals exhibited 
emission peaks in blue, green and red regions resulting in an overall white appearance of the 
emission. In addition, the doping concentration of Yb in the core influenced the red/green 
emission ratio from 3 to 13 for 20 to 80 mol% Yb. Compared to non-core-shell counterparts the 
isolated activator/sensitizer structures showed slower decay rates and different emission spectra 
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peak ratios, which the authors attribute to strain-induced modifications of the crystal field in the 
active shells.  

Introducing additional activators 
Another way to extend the spectral range of the emission is by introducing additional activators, 
and thus additional emitting states, in the host matrix. As an example, Wang and Liu synthesized 
tri-doped NaYF4:Yb,Tm,Er(20:0.2: [0.2-1.5] mol%) nanocrystals where multiple emitting states 
of Tm3+ and Er3+ were populated and their respective emission peaks covered the blue, purple, 
green and red colour bands44. The ratio between the peaks was tuned by increasing the Er3+ 
doping concentrations from 0.2 to 1.5 mol%, tuning the colour output from blue to white. More 
recently, Zhang et al., designed NaGdF4:Yb,Tm,Er@NaGdF4:Eu@NaYF4 core-shell-shell 
nanoparticles resulting in a white colour output48. They also found that the emission could be 
further tuned by changing the excitation power density, as further explained in the following 
section.  
 

 
Fig. 8. Spectrally wide emission through the enhanced 3- and 4-photon upconversion process resulting from Yb-
clustering. (a) Schematic of the proposed energy transfer mechanisms between Yb- ion clusters and Er-ions, leading 
to enhanced red (3-photon) and blue (4-photon) emissions. The dashed-dotted, dashed, dotted and full arrows 
represent photon excitation, energy transfer, multiphonon relaxation and emission processes, respectively. (b) 
Excitation energy clustering by Yb3+ tetrad clusters in orthorhombic-phase KYbF7. (c) Resulting emission spectra 
from KYbF7:Er(2 mol%) nanocrystals (top), and for KYbF7:Er,Lu(2, [0-80] mol%) crystals where Yb3+ is replaced 
by Lu3+ in increasing concentration (bottom), excited by 980 nm at 10 W/cm2. The spectra were normalized for green 
Er3+ emission. The inset shows a photograph of KYbF7:Er (2 mol%) nanocrystal luminescence. As can be seen, the 
red and blue peak (4 and 5-photon process) increase with increasing concentration of Yb3+. Reprinted with 
permission from Wang et al.52. Copyright 2014, Nature Publishing Group. 

5.1.2 Colour tuning  

Emission spectra with multiple emission bands can be further fine-tuned to specific ratios for the 
optical transitions, and to yield a spectrum corresponding to a desired colour.  

Red/green emission ratio 
Fine-tuning of the emission spectrum has been widely achieved in the case of  the red and green 
emission bands of Er3+ and Ho3+ ions136-138. By increasing the concentration of Yb3+ from 0 to 15 
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mol% in Gd2O3 hosts Liu et al. employed the phonon-assisted increased back-energy-transfer 
rates from Er3+ to Yb3+ to obtain tuneable emission spectra43. At 0 mol% the green emission 
dominated, while at 15 mol% the red emission was dominant. Punjabi et al. synthesized α-
NaYF4:Yb,Er(80:2 mol%)@CaF2 where the addition of the CaF2 shell resulted in a 15 times 
stronger red emission peak as compared with β-NaYF4:Yb,Er(20:2 mol%)@NaYF4

139. In 
addition, the doping concentration of Yb3+ influenced the red/green emission ratio from 1 to 2 for 
20 to 98 mol% Yb. The high Yb-concentration resulted in higher population of the red 4F9/2 
emitting state of Er3+ again due to back-energy-transfer between Yb3+ and Er3+ ions, and the thick 
CaF2 shell prevented quenching of the absorbed energy.  

A low red/green luminescence ratio has been achieved by a judicious choice of dopants in a 
NaYF4 matrix42. By co-doping Er3+ and Sm3+, the intermediate states that populate the red 
emitting states of Er3+ (4F9/2) were quenched by nonradiative energy transfer to Sm3+, see Fig. 9. 
Energy transfer from 4I11/2 and 4I13//2 levels of Er3+ to the available manifolds in Sm3+ reduce the 
population of these states by a factor of 10 and 70, respectively, resulting in a red/green ratio of 
~0.25. As red emission is dependent on both the 4I11/2 and 4I13//2 population, while green only on 
the 4I11/2 population this results in dominant green emission in Er/Sm-doped NaYF4 crystals. As 
Sm3+ dissipates this energy via multiphonon relaxation there is no enhancement of green 
emission, only quenching of red emission.  

Besides doping concentration, the size, crystallinity and shape137, 140 and excitation power 
density141 also influences the red/green ratio, especially when nonradiative recombination plays a 
significant role.  

 

Fig. 9. Co-doping Er3+ with Sm3+  in NaYF4 crystals  results in a green/red emission ratio of 4, due to quenching of 
the red emitting states of Er3+ by Sm3+. Reproduced from Chan et al.42. Copyright (2012) American Chemical 
Society. We made a minor correction by inserting the (brown) energy transfer arrows for the Er 4I13/2 → Sm 6F3/2 
6H15/2 

6F1/2 transition for completeness.  
 

Colour tuning by excitation 
For some applications it might be desirable to tune the colour output of a material with a fixed 
composition of both core and shell materials including the dopants, for example in (three-
dimensional) display technology or data storage. To achieve this, Deng et al. varied the excitation 



30 
 

wavelength (980 nm and 808 nm) and pulse width (980 nm, 200 μs - 6 ms) to tune the colour 
ratio of NaYF4-based core-shell nanocrystals47. In this strategy, the core was doped with Nd/Yb; 
the first shell - Yb/Tm; second shell - undoped; third shell - Yb/Ho/Ce; and the outer shell again 
was undoped. Under 808 nm excitation the energy absorption by Nd3+, subsequent energy 
transfer to Yb3+ and sequential energy transfer from Yb3+ to Tm3+ results in blue emission. Under 
980 nm excitation, the Yb/Ho/Ce system is active. As established earlier45-47, the Yb3+ sensitizers 
transfer the energy to the Ho3+ activators that possess a green and a red emitting state, while Ce3+ 
ions mediate the cross relaxation from (intermediate) green emitting states to (intermediate) red 
emitting states of Ho3+, enhancing the red emission. Importantly, Deng et al. demonstrated that 
the contribution of the red emitting state is highly dependent on the excitation pulse width. At 
steady-state conditions (> 5 ms pulse width) the red/green ratio was ~8, independent of pump 
power, but decreasing the pulse-width gradually reduced this ratio, down to 0.5 for 200 μs pulses. 
This phenomenon is ascribed to the fairly slow non-radiative cross relaxation of Ho3+ green to red 
emitting states, which need sufficiently long excitation pulses durations in order to become 
noticeably populated. Thus, by using two different excitation wavelengths and other than steady 
state excitation conditions the emission spectra were engineered to cover the full visible 
spectrum, see Fig.10 (a) and (b). As previously mentioned, Zhang et al. engineered white 
core@shell@shell UCNPs by doping six kinds of lanthanides: NaGdF4:Yb,Tm,Er 
@NaGdF4:Eu@NaYF4 in the core@shell@shell structure48, with the doping concentrations 50, 
0.05, 0.5, 10 mol% for Yb3+, Tm3+, Er3+ and Eu3+, respectively. The white colour was present at 
15 W/cm2 and by changing the excitation power density from 3 to 30 W/cm2 they were able to 
dynamically tune the colour output from green to purple, as shown in Fig. 10 (c) and (d). With 
increase of excitation density all emission bands increased in intensity but with a different rate, 
leading to different final colours. The fine-tuning is due to early saturation of the limited amount 
of Er3+ activators (green emission), followed by an increase in blue emission from Tm3+ and, 
finally, a higher-order energy transfer from Tm3+ via Gd3+ to Eu3+ generates red emission from 
Eu3+ at high excitation density.  

Colour tuning by energy migration   
Geometric separation of ions holding different functions in the upconversion process to achieve 
colour tuning was introduced by Liu’s group54, 55. The functional ions identified as sensitizers, 
accumulators, migrators and activators were doped in multiple separate shells to realize energy 
migration-mediated upconversion, as schematically drawn in Fig. 2d. In this work, Yb3+ and 
Tm3+ ions in the core sensitize and accumulate the absorbed energy respectively. The Tm3+ ion 
successively accumulates energy from Yb3+ ions, and when 5 of such energy transfers have 
occurred (5 excitation photons), it can transfer this energy from its 1I6 state to the 6P7/2 of Gd3+. 
The Gd3+ ions in the migration shell facilitate fast energy transfer to the high 6P7/2 energy state, 
with low probability of energy loss by multiphonon or cross-relaxation processes due to the large 
energy gap to the ground state (~3.2 x 104 cm-1). This energy eventually reaches the outer shell 
doped with activators resulting in the population of their emitting state. Due to the accumulation 
and efficient migration of the absorbed energy, the last energy transfer step to the activator can be 
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single-step which means the requirement for activators with long-lived intermediate states is 
alleviated. Wang et al. showed that emission spanning the visible spectrum from activators such 
as Tb3+, Eu3+, Dy3+ and Sm3+ was feasible, whereas otherwise anti-Stokes emission from these 
ions would only be possible at high Iex ~ 106 W/cm2 or extremely low temperatures.  

 
Fig. 10. Colour tuning of UCNPs with a fixed composition based on pulse duration (a and b) or excitation power 
density (c and d). (a) TEM image and schematic design of core-shell UCNPs with multiple dopants (left), and their 
emission spectrum for 3 different excitations: 6 ms pulse at 980 nm, 200 μs pulse at 980 nm, and continuous wave 
808 nm excitation. The red green and blue emission from a solution of these particles is shown in the photograph in 
the inset. Other excitation schemes resulted in the colour output as depicted in (b). In (c), the tuneable colour output 
from NaGdF4:Yb,Tm,Er @NaGdF4:Eu@NaYF4 core@shell@shell UNCPs is shown when excited with different 
power densities. The nanoparticles were combined with colourless ink and printed on paper to display several images 
in different colour (excitation density) as shown in (d). Panel a and b: Reprinted with permission from Deng et 

al.47.Copyright 2015, Nature Publishing Group. Panel c and d: Reprinted with permission from Zhang et al.48. 
Copyright 2015, Wiley-VCH Verlag GmbH & Co. KgaA.  

5.1.3 Single-band emission spectra  

Strategic co-doping with lanthanide or metal ions 
Single-band emission can be obtained by increasing the depopulation rate of intermediate states 
responsible for the unwanted emissions, while, ideally, at the same time using this energy to 
increase the population of the intermediate state of the desired radiative energy states. This can be 
achieved by strategic co-doping with selected ions, whose energy gaps match non-radiative 
transitions necessary to depopulate the unwanted and populate the desirable emitting states. Chen 
et al. used this strategy to increase the red/green ratio by triple doping NaYF4:Yb/Ho (20:2 
mol%) with Ce3+ ions, which facilitate the cross relaxation from the Ho3+-green emitting state 
(5S2/

5F4) or the green intermediate state (5I6), to the Ho3+-red emitting state (5F5) or the red 
intermediate state (5I7), respectively, to promote red emission142, see Fig.11a. At 15% Ce3+ doping 
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the red/green ratio was ~11, however the green peak never completely disappeared. More 
recently, a 30% doping of Ce3+ with Ho3+ and Yb3+ in the core of active-core@active-shell NPs 
increased the red/green ratio to > 20, although in expense of the emission brightness due to cross 
relaxation from the red emitting 5F5 state in Ho3+ to Ce3+ as well, see Fig. 11a 143. Wang et al. 
obtained pure red, red and NIR emission by synthesizing nanocrystals consisting of a KMnF3 
host co-doped with either Yb/Er (18:2 mol%), Yb/Ho (18:2 mol%) or Yb/Tm (18:2 mol%), 
respectively144. The complete disappearance of the blue and green emissions is a result of the 
non-radiative energy transfer from the green (4S3/2) and blue (2H9/2) emitting state of Er3+ to the 
4T1 level of Mn2+, which in turn transferred energy non-radiatively to the red emitting state (4F9/2) 
of Er3+(Fig. 11b). Similar energy transfers to the red and NIR emitting states of Ho and Tm were 
suggested for the Yb/Ho and Yb/Tm co-doping pairs, which resulted in single-band emission 
spectra of the UCNPs (Fig. 11 (c) and (d)). Moreover, this single-band feature was independent 
of the dopant concentration (in the Yb/Er range [0-18]/[2-5] mol%) and of the pump power. The 
extremely efficient exchange-energy transfer process between the lanthanide Er3+ and transition 
metal Mn2+ ions was possible thanks to advances in the oil-based synthesis procedure which 
ensured homogeneous high doping of Ln3+ ions into the KMnF3 host lattice. An alternative 
method to facilitate red emission through non-radiative energy transfer between Er3+ and Mn2+ 
was presented by Tian et al.145, who introduced high concentrations of Mn2+ ions into the NaYF4 
host lattice, additionally doped with Yb/Er (18:2 mol%). They demonstrated that the higher the 
concentration of Mn2+ the more energy was transferred to the red emitting states at the expense of 
green and blue emitting states. At the highest concentration of 30% Mn2+ the emission showed a 
single red peak, independent of Yb-doping concentration ([0-28] mol%), pump power and 
temperature. Similar enhancement of red emission has been attributed to energy transfer between 
Er3+ and Tm3+ ions doped in NaYF4. 

42. The authors explain the 50 times enhancement of the red 
emission by energy transfer taking place from the 4I11/2 and 4I13//2 levels of Er3+ via the 3F4 level of 
Tm3+ back to the red emitting 4F9/2 level of Er3+ in an ETU process (see Fig. 11e). Because both 
the 3F4 level of Tm3+ as well as the 4T1 level of Mn2+ have a large energy difference with the 
ground state (5800 cm-1 Tm3+, >17 000 cm-1 Mn2+ 146) multiphonon relaxation to the ground state 
is essentially prohibited and the excitation energy available for further energy transfer. This 
strategy not only results in the reduction of unwanted emission peaks but also in the enhancement 
of the desired emissions. 

An efficient strategy thus entails that the strategic ion responsible for depopulating unwanted 
states has a low probability to lose the energy (e.g. via multiphonon relaxation to ground state) 
and instead recycles this energy to desired wavelengths42, 71, 144, 145. If this is not the case, there 
can still be promotion of desired wavelengths as long as the desired wavelength energy is lower 
(e.g. red vs green) and low energy phonon relaxation results in population of this state142. Both 
strategies have only been demonstrated for purifying red emission. In the case of the higher 
laying green emission state the only strategy reported so far is the quenching of red emission, 
without the ability to recycle this energy42.  
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Fig. 11. Energy diagrams showing different strategies to obtain single-band emission spectra. (a) Co-doping Ho3+ 
with Ce3+ results in non-radiative energy transfer processes in favour of radiative red emission142, 143, while co-doping 
Er3+ (b), Ho3+ (c) or Tm3+ (d) in a KMnF3 host results in non-radiative energy transfers in favour of red, red and NIR 
emissions, respectively144. Co-doping Er3+ and Tm3+ in NaYF4 resulted in purified red emission for doping 
concentrations of 2% each 42. In (e) we made a minor correction with respect to Ref.42 by inserting the (blue) energy 
transfer arrows for the Er 4I13/2 → Tm 3F4 transition for completeness. 
 

Strategic changes in host matrix 
Colour purification can also be achieved by judicious changes in the host matrix. To purify the 
red emission peak, Dong et al. modified the local structure of lanthanides in cubic NaxLnF3+

x 
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nanocrystals by tuning the Na/Ln and F/Ln ratios to synthesize nonstoichometric nanocrystals147. 
As the Na/Ln and F/Ln ratios reduced, the red/green ratios increased, leading to highly purified 
red emission. For example, the red/green ratio varied from 1.9 to 71 for NaxYF3+

x hosts and 1.6 to 
116 for NaxGdF3+

x hosts both doped with Yb3+ and Er3+. The authors found that moderate 
amounts of Na+ and F- vacancies should appear when the Na/Ln and F/Ln ratios reduce, which 
results in lattice shrinkage (decreased lattice parameters were obtained from XRD 
measurements), decreased coordination number of Y3+ (or other Ln3+ in the Ln-F shell) and lower 
local symmetry around luminescent centres. As discussed in Section 2.2 a lower local symmetry 
strengthens the crystal field effects, which increased the overall brightness. It also influenced the 
purity of red emission, by facilitating cross-relaxation to depopulate (intermediate) green emitting 
states and simultaneous population of (intermediate) red emitting states in Er3+. A further 
addition of a CaF2 shell promoted the red emission by another 450 times, to enhance it suitability 
as a contrast agent in a biological context.  

Absorbing dyes 
Another strategy to modify spectral properties of the UCL is to quench unwanted radiation is by 
coating the UCNPs with an extra layer of highly absorbing dye in the unwanted spectral region, 
while leaving the desired colour unabsorbed. Zhou et al. followed this approach by synthesizing 
core-shell UCNPs with bright emission in the desired colour band by selecting appropriate 
dopant-host combinations, and subsequently, coating the particles with absorbing dyes to further 
eliminate the unwanted emission peak50. To achieve this, the core-shell UCNPs were first coated 
with a pure silica spacer layer, to prevent fluorescence resonance energy transfer (FRET) 
between fluorescent dye and the filtered upconversion band. The second coating layer consisted 
of silica doped with amino-reactive organic dyes. To obtain single-band green and single-band 
blue emission, nickel (II) phthalocyanine-tetrasulfonic acid tetrasodium salt (NPTAT) organic 
dyes were used, with an absorption maximum at 657 nm to filter the red emission band from Er-
doped (green) respectively Tm- doped (blue) UCNPs. To obtain single-band red emission the 
absorbing dye rhodamine B isothiocyanate was used to filter the green emission. Coating with the 
dye-doped silica layer did not result in a significant alteration of emission lifetimes or a change in 
the slope of the log-log plot of excitation density versus emission intensity. Furthermore, the 
photostability of the UCNPs was not compromised and the optical absorption peaks of the 
organic dyes were maintained under long duration illumination with 980-nm as well using xenon 
lamp illumination. Fig. 12 illustrates the synthesis strategy, colour coding and multiplexed cell 
labelling applicability of these UCNPs. Zhou et al. further pursued the specific labelling of three 
different receptors associated with breast cancer cells, and demonstrated the advantages of using 
UCNPs for background-free multiplexed quantitative immunohistochemical identification of 
breast cancer.  

To summarize, fine tuning of the UCL emission wavelengths can be achieved by changing the 
location, geometry, concentration and selection of the lanthanide ions, in addition to selecting 
appropriate host lattices and mediation by transition metal ions such as Mn3+. The mechanisms 
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include changing the energy transfer distances, introducing additional energy transfer/cross-
relaxation energy levels, and incorporating energy extractors or passivators other than the 
lanthanide ions148. Surface plasmon resonance processes, or excitation power dependencies can 
also influence colour, though usually are employed for UCL-brightness enhancement and will be 
discussed in the next section.  

 
Fig. 12. Colour purification by coating UCNPs with highly absorbing dyes (molecular structures are shown). The 
resulting single-band UCNPs were further modified with antibodies (anti-PR, anti-ER and anti-HER2) to breast 
cancer biomarkers PR, ER and HER2, respectively. Colour multiplexed in situ molecular mapping of breast cancer 
biomarkers is schematically shown on the top right. Reproduced from Zhou et al.50 under the Creative Commons 
(CC BY) licence.  

5.2 Intensity and conversion efficiency 

Lanthanide transitions and multiple-step upconverting processes generally lead to relatively low 
upconversion intensity and conversion quantum yield119. However, due to their unique optical 
properties they are intensely investigated in the context of application to life sciences, security 
and display technologies, and photovoltaics. For example, the signal-to-background ratios 
obtained using UCNPs outperforms that of alternative fluorescent nanoparticles in biomedical 
imaging149. Thus, the enhancement of the upconversion intensity is a key target to develop 
meaningful applications of upconversion, for example in biomedical deep tissue imaging150. 

Historically, the key approach here was the discovery of cooperative upconversion which has, for 
the first time, allowed a higher fraction excitation energy to be funnelled into the upconverting 
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activator centres30. This approach centres at maximising the absorption of the lanthanide 
sensitizer ions. These sensitizer ions are chosen to have a ground-state absorption cross-section, 
σGSA, that is higher than the corresponding quantity in the activator ions. Additionally, their 
absorption coefficient αGSA is also maximised by increasing the ion density N (αGSA = NσGSA)151-

154. A typical example of such strongly absorbing sensitizer ion is Yb3+, frequently used with 
activators such as Er3+, Tm3+, or Ho3+, to increase their upconversion brightness. Yb3+ ion has an 
extremely simple energy structure in the VIS–NIR region: the ground state 2F7/2 and the excited 
state 2F5/2, separated by 10 000 cm−1 . The absorption of Yb3+ due to the 2F7/2→ 2F5/2 transition 
occurs at about 980 nm. The corresponding σGSA (1.2×10-20 cm2) is large compared with the 
absorption cross section of the Er3+ ion (1.7×10-21 cm2) at 980 nm excitation155. Recently, Nd3+ 
has become another popular sensitizer for UCNPs. The Nd3+ ions have multiple NIR excitation 
bands at shorter wavelengths such as 730, 808, and 865 nm, with large absorption cross sections, 
e.g., 5.1×10-29 cm2 at 808 nm156-158. Both sensitizers and their absorption energy levels are shown 
in Fig. 13.  

The concentration of sensitizer ions is usually chosen to be much higher than that of activator 
ions to maximise absorption of the excitation energy. For example, at weak excitation conditions 
(<100 W cm-2) the Yb3+ doping is usually optimised to be within the 20~40% molar 
concentration range. This is much higher in comparison to typical doping levels of 1~2% for Er3+ 
and 0.2~0.5% for Tm3+ activator dopants. In most cases, an intensity decrease could be observed 
when the doping levels of Yb3+ ions are above the optimal threshold (in the weak excitation 
irradiance regime < 100 W cm-2). This is attributed to back energy transfer from activators to 
sensitizers159, 160 and/or nonradiative energy reabsorption between Yb3+ ions. 
 

 
Fig. 13. Schematics of the energy levels taking part in GSA by two commonly used sensitizers, Yb3+ and Nd3+.  

 
The introduction of cooperative upconversion was a breakthrough in the field of UCL and it has 
led to a variety of new materials including nanoparticles with ever increasing upconversion 
brightness and other desirable features such as small nanoparticle size or unique characteristics at 
high pumping levels25. Progress in this field is continuing, due to critical significance of 
upconversion brightness for its applications. Here we summarise the approaches to UCL 
brightness including an overview of reported conversion efficiencies, followed by the discussion 
of strategies to further enhance the upconversion intensity.  
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5.2.1 Conversion efficiency and quantum yield 

In order to objectively quantify the brightness of UCNPs one needs to quantify the UCNP’s 
ability to absorb excitation light, and subsequently, convert this energy to emit photons in the 
desired wavelength. The first is governed by the absorption coefficient of the UCNP, that is the 
combined absorption cross section and concentration of the sensitizer ions, as explained in the 
previous section. The second is given by the conversion efficiency (CE), or quantum yield (QY), 
and we emphasise that these two terms are differently defined. Measurement of the 
absolute quantum yield of luminescent materials is described in161, 162. Conventionally, in 
fluorescent photoluminescence, the term quantum yield is used which is defined as163:      photons emitted

 photons absorbed
          (30) 

In the case of UC, this means that a two-photon process can have a maximum QY of 50%, while 
a 3-photon process can have a maximum QY of 33%. Normalizing this value by multiplying by 2 
or 3 has been suggested27, 164, but the complex multiphoton excitation pathways in upconversion 
make this approach tricky. The parameter 'conversion efficiency' on the other hand is defined 
as119: 

CE  power emitted,       
power absorbed,        

         (31) 

 By taking the quotient of the respective powers, the CE more adequately reflects the net output of 
the upconversion process. Of course, the QY and the CE can be derived from each other by the 
emission respectively excitation spectra and photon energies via Eph = hv. 
 
The functional dependency of the CE (or QY) on excitation intensity, Iex in W/cm2, adds another 
complexity to its measurement. For a 2-photon process the CE generally increases linearly with 
excitation density (since Pem ~ Iex

2) until the emitting energy level population starts saturating, 
resulting in saturation of the CE. However, the majority of articles that report the QY/CE only do 
this for a single Iex, ignoring the functional power density dependency.  

To measure the QY/CE of high refractive index samples, such as UCNPs, one needs to take into 
account the influence of angular distribution of photoluminescence emission, and scattering of 
excitation light resulting in a higher chance for absorption. A suggested method is the use of the 
integrating sphere112, 119, which spatially integrates the internal light resulting in the measurement 
of the emitted as well as the absorbed light independent of scattering by the sample (see Fig. 
14a), and recently a simplified measurement scheme has been proposed165.  The integrating 
sphere method involves an elaborate set-up and calibration procedure, which might be the reason 
why absolute CE measurements of UCNPs are reported scarcely in literature. In Table 2 we 
summarized the thus far reported values of absolute CE or QY using integrating sphere 
measurements. In Fig. 14b we plotted the reported literature values versus size and Iex.   
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The UCL brightness is an important but complicated parameter to quantify across different 
studies. In different excitation density regimes the competition between energy absorption, 
energy transfer, surface and concentration quenching ultimately defines the brightness. The 
balance of this competition can be influenced by different strategies, as discussed next.  

Fig.14. Measurement of absolute QY or CE. (a) General setup of integrating sphere measurement. Reprinted with 
permission from Zhao et al.46. Copyright 2013, Nature Publishing Group. (b) Reported literature values for absolute 
QY as a dependency of size and Iex from table 2, excluding values from ref.42. 
 

Material 
Core-
shell 

size CE or QY [%] Iex Ref 

NaYF4:Yb0.18 ,Er0.02 no 
Micron 
sized 

CE 
[0.05 - 4] 

[0.04 - 200] 
W/cm2 

Page et al.119 

NaYF4:Yb0.27 ,Tm0.001 no 
Micron 
sized 

CE 
[0.004 - 2] 

[0.15 - 1000] 
W/cm2 

Page et al.119 

NaYF4:Yb0.2 ,Er0.02 no 100 nm 
QY 
0.30±0.10 

150 W/cm2 Boyer et al.112 

NaYF4:Yb0.2 ,Er0.02 no 30 nm 
QY 
0.10±0.05 

150 W/cm2 Boyer et al.112 

NaYF4:Yb0.2 ,Er0.02 no 8-10 nm 
QY 
0.005±0.005 

150 W/cm2 Boyer et al.112 

NaYF4:Yb0.2 ,Er0.02@NaYF4 yes 30 nm 
QY 
0.30±0.10 

150 W/cm2 Boyer et al.112 

NaLuF4:Gd0.24,Yb0.2 ,Tm0.01 no <10 nm 
QY 
0.47±0.06 

17.5 W/cm2 Liu et al.166 

NaYF4:Yb0.2 ,Er0.02 no 5.4 nm 
QY 
0.0022±0.0001 

103 W/cm2 
Ostrowski et 

al.167 

NaYF4:Yb0.2 ,Er0.02@ NaYF4 yes 
9 nm 
5@2 nm 

QY 
0.18±0.01 

103 W/cm2 
Ostrowski et 

al.167 

NaYF4:Yb0.2 ,Er0.02 no 37 nm 
QY 
0.14±0.01 

103 W/cm2 
Ostrowski et 

al.167 

NaYF4:Yb0.25,Tm0.003@NaYF4 yes 42 nm QY [0.02 - 78 ] Xu et al.168 
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30@6 nm [0.04 - 3.5] W/cm2 

NaYF4:Yb0.2 ,Er0.02 no 70 nm 
CE 
[0.1 - 1.9] 

[1 - 230] 
W/cm2 

Nadort et 

al.145 

NaYF4:Yb0.25,Tm0.003 no 33 nm 
QY 
[0.45 - 0.91] 

[1.3 - 20] 
W/cm2 

Liu et al.165 

NaYF4: Yb0.25,Tm0.003@NaYF4 yes 
43 nm 
33@5 nm 

QY 
[1.2 - 2.6] 

[3.8 - 20] 
W/cm2 

Liu et al.165 

NaYF4:Yb0.2,Tm0.005 no 40 nm 
CE 
[1 – 5] 

[3 - 300] 
W/cm2 

Zhao et al.25 

NaYF4:Yb0.2,Tm0.04 no 40 nm 
CE 
[0.4 – 1] 

[3 - 300] 
W/cm2 

Zhao et al.25 

NaYF4:Er0.1 No Unknown 
QY 
0.9±0.2 

10 
W/cm2 

Chan et al.42 

NaYF4:Er0.1,Tm0.05 No Unknown 
QY 
1.3±0.5 

10 
W/cm2 

Chan et al.42 

NaYF4:Er0.1,Pr0.05 No Unknown 
QY 
0.04±0.02 

10 
W/cm2 

Chan et al.42 

NaYF4:Yb0.8,Er0.02@CaF2 yes 26 nm 
QY 
3.2±0.1 

10 
W/cm2 

Punjabi  et 

al.139 

LiLuF4:Yb0.2Er0.01 no 28 nm 
QY 
0.11 

127 W/cm2 
Huang  et 

al.169 

LiLuF4:Yb0.2Er0.01@ LiLuF4 yes 
40 nm 
28@6nm 

QY 
3.6 

127 W/cm2 
Huang  et 

al.169 

LiLuF4:Yb0.2Er0.01@ LiLuF4 yes 
51 nm 
28@11nm 

QY 
5.0 

127 W/cm2 
Huang  et 

al.169 

LiLuF4:Yb0.2Tm0.005 no 28 nm 
QY 
0.61 

127 W/cm2 
Huang  et 

al.169 

LiLuF4:Yb0.2Tm0.005@ LiLuF4 yes 
51 nm 
28@6nm 

QY 
6.7 

127 W/cm2 
Huang  et 

al.169 

LiLuF4:Yb0.2Tm0.005@ LiLuF4 yes 
51 nm 
28@11nm 

QY 
7.6 

127 W/cm2 
Huang  et 

al.169 

NaGdF4:Yb0.22Er0.025@NaYF4 

(heterogenous doping) 
yes 

21 nm 
10.5@5nm 

QY 
0.47±0.05 

50 W/cm2 Li et al.170 

NaGdF4:Yb0.22Er0.025@NaYF4 

(homogenous doping) 
yes 

21 nm 
10.5@5nm 

QY 
0.89±0.05 

50 W/cm2 Li et al.170 

NaYF4:Yb0.2 ,Er0.02@NaYF4 yes 
14 nm 
8@3nm 

QY 
0.49±0.25 

100 W/cm2 Gargas et al.23 

Table 2. Overview of absolute QY or CE measured using the integrating sphere method. 

 

5.2.2 Strategies to enhance upconversion intensity 

The brightness of UCL depends on the absorption probability of excitation light, the energy 
transfer efficiency from sensitizer to activator (in co-doped systems) and subsequently, the 
radiative emission efficiency of the activator. Impaired upconversion intensity can be due to 
down-converted emission, surface quenching (from bound organic moieties, surface defects, or 
phonons), cross-relaxation and further excitation171. These properties can be influenced using 
several strategies, including host lattice manipulation, energy transfer modulation, surface 
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passivation, surface plasmon coupling, broadband sensitization and photonic crystal engineering, 
as summarized in a recent review by Liu’s group172. We will describe the latest results reported 
within these categories, applied to enhance UCL brightness.  

Energy transfer modulation through host lattice manipulation 
Host lattice manipulation can induce increased crystal field asymmetries around the emitting Ln, 
which increases the probability of ED transitions and luminescence emission. Direct 
demonstration of the influence of the crystal lattice properties on UC luminescence can be 
realized in-situ and real-time by using a physical approach. Hao et al. applied an external electric 
field to Yb/Er-doped BaTiO3 thin films, which increased the distance between the positive Ti4+ 
and negative O2- ions and therefore lowered the symmetry at the Er3+ ions (which substituted the 
Ti4+ ions in BTO, 5 mol% doping), resulting in increased green emission of more than 2.5 
times173. Another clear demonstration of crystal host lattice influenced brightness was recently 
reported by Wisser et al174. By placing α- and β-phase NaYF4:Yb/Er co-doped UCNPs in a 
diamond anvil cell they could be subjected to pressures as high as 25 GPa. The increasing 
pressure resulted in lattice compression and thus a reduced distance between the lanthanide ions, 
as well as altered crystal field symmetry. As α-particles have centrosymmetric geometry at 
atmospheric pressure, increasing the pressure results in increased asymmetry and therefore 
enhanced transition probability. Together with a reduced distance between lanthanide ions (as 
apparent by reduced lattice parameters) this resulted in up to two-fold enhancement of UCL 
brightness for α-NaYF4:Yb/Er NPs at 2.1 GPa, corresponding to a 1% decrease in lattice 
constant. On the other hand, β-particles exhibited a substantial decrease in UCL as a dependency 
of induced pressure (e.g. UCL halved at 2.1 GPa). Since the ionic distances were also decreased 
for the β-particles, the authors attribute the decrease in UCL to an increase in pressure-induced 
lattice defects that enhance the non-radiative relaxation rates. It should be noted that the particle 
size in these two cases was different, 200 and 90 nm for α- and β-phase respectively, and they 
were immersed in silicone oil. In addition to changes in UCL, red-shifts (+ ~1.2 nm) and blue-
shifts (- ~1nm) of emitting states were also observed, these were indicative of crystal field 
modification.  

The above examples of physically manipulating lattice properties enable modulation of the UCL 
which can be reversible up to the damage threshold173, 174, which is not applicable in the case of 
chemical host lattice manipulation. It can thus provide additional insights into brightness 
enhancements caused by nuanced crystal field asymmetries. These can subsequently be used as 
feedback for chemically changing the host. Chemical host lattice manipulation can be realized by 
tailoring the crystal lattices through doping with differently sized ions. A dopant that is smaller 
compared to the oxide or fluoride host lattices, for example Li+, results in crystal lattice 
contraction while a relatively large ion will result in lattice expansion172. Li+ doping has resulted 
in 1 to 2 orders of magnitude enhancement in upconversion luminescence175, 176. Alternatively, 
doping of transition-metal ions can also lead to increased upconversion luminescence, as the 
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large d-orbitals of transition metals lead to strengthening of the electron-phonon coupling of the 
lanthanides172, 177.  

A strategy that falls in both categories of host lattice manipulation and energy-transfer 
modulation is the previously mentioned novel approach of clustering the Yb-sensitizers in the 
KYb2F7 host matrix doped with 2 mol% Er3+, which results in both colour tuning and 
upconversion enhancement52, 178. Usually, high-doping levels of Yb3+ result in concentration 
quenching: due to an increased energy-migration distance the probability of quenching by lattice 
or surface defects is enhanced. However, in this novel lattice design the energy transfer remains 
within the tetrad Yb-clusters which reduces the quenching probability, while the high 
concentration of Yb-ions increases the absorption cross section for 980 nm and enhances the 
energy-transfer between Yb3+ and Er3+ (see fig. 8). The back-energy transfer between Yb3+ and 
Er3+ results in increased 3- and 4-photon radiative emission processes resulting in increased red 
(3x higher) and blue (8x higher) emission.  

Increasing activator concentration and power density 

High concentrations of activator ions (i.e. 2 mol% for Er3+ and 0.2 mol% for Tm3+ ions) usually 
also lead to concentration quenching due to cross-relaxation between the dopants75, 172, 179, 180. 
Two recent studies have demonstrated that concentration quenching can be overcome by 
excitation in the high-power regime. The first study was published by our group and reveals a 70-
fold increase in 802 nm UCL from Tm3+ ions at 8% doping concentration and 2.5 x 106 W/cm2 
excitation density25. Basically, with increasing excitation densities the number of Tm3+ ions in 
intermediate states starts to saturate (3F4 and 3H4 states in Fig. 15a), inducing alternative energy 
loss channels involving higher states (1G4 and 1D2 states) which progressively switch on until 
they are also saturated. Thus, a low doping concentration and high Iex result in an increased 
emission from 4- and 5-photon processes and saturation of UCL25, 181. By increasing the Tm3+ 
content in the nanocrystals, the absorbed and transferred energy is distributed over more of the 
intermediate states and the emission from the 3H4 level at 802 nm is substantially increased (Fig. 
15b). The absolute CE and integrated UCL brightness also significantly increase for densely-
doped nanocrystals (Fig. 15c). The reduced distance between sensitizer and activator ions, and 
the increased activator concentration, are the causes for this enhanced upconversion efficiency in 
the high-power excitation regime, where the activation rate dominates the quenching rate25. The 
second study by Gargas et al. was directed at minimizing the NP size, while maintaining enough 
UCL to enable detection23. In the high-power regime, their sub-10 nm densely-doped NPs (20% 
Yb3+, 20% Er3+) were an order of magnitude brighter as compared with conventionally doped-
NPs (20% Yb3+, 2% Er3+) of the same size. They reason that for such small UCNPs the surface-
related energy losses are substantial (the dark surface layer occupies >80% of the total volume) 
and it dominates the self-quenching by cross-relaxation. In addition, as we have shown, the decay 
rate of smaller particles (surface/volume ratio > 0.5, size < 12 nm) is dominated by the defect-
related decay, as crystalline defects provide channels for nonradiative transitions46. At high 
excitation density, the availability of many activator sites is most important, as the sensitizers 
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saturate and the radiative relaxation rates of Er3+ are significantly slower than photon absorption 
rates in this regime. Thus, for small single-particle imaging under high Iex the design strategy 
should be aimed at as high as possible emitter concentrations, without compromising nanocrystal 
structural integrity. Such high sensitivity lends itself for detection of rare biomarkers, for example 
in blood or urine samples as the high excitation density is less favourable for in vivo imaging. A 
microstructured suspended core optical-fibre dip sensor represents a promising platform 
technology for such applications25.  
.

 
Fig. 15. Increasing the UCL by high doping concentrations of Tm3+ and high Iex (a) Simplified energy-level diagram 
showing photon absorption/emission (solid arrows), energy transfer (dashed arrows) and multiphonon relaxation 
(curvy arrows) in Yb/Tm ions. (b) Emission spectra with increasing Tm3+ concentration in NaYF4:Yb/Tm 
nanocrystals at high Iex = 2.5 x 106 W/cm2, show an increase in UCL especially for the 802 nm (3H4 → 3H6) peak. (c) 
Graph showing the importance of high Iex for high Tm3+ concentration, to obtain the highest absolute UCL. Reprinted 
with permission from Zhao et al.46. Copyright 2013, Nature Publishing Group.  
 

Core-shell strategies for surface passivation and geometric separation 

As mentioned prevously, energy losses at the surface of NPs reduce their brightness. As the 
surface-to-volume ratio increases with decreasing size, the size of NPs is an important factor for 
UCL brightness as was discovered early on11, 65, and later modelled by rate equations176. 
Furthermore, high-energy oscillators on the surface (surface impurities, ligands, solvent 
molecules) also induce non-radiative relaxation of the dopants close to the surface. An interesting 
recent study by Arppe et al. investigated on the effect of the vibrational modes of OH-groups in 
water by comparing the UCL intensity of bare and silanized NPs in H2O and heavy water D2O

182. 

As expected, in Fig. 16 the intensity decreased in H2O as compared with D2O, and to a greater 
extent for the bare particles than the silica-shell particles. Further investigation on the decay times 
of the radiative transitions in Er3+ (via higher order excitation at 980 nm and direct excitation at 
380 nm) and Yb3+ (via direct excitation at 930 nm) revealed that the Yb3+ relaxation rate 
increased much more in water than the Er3+ relaxation rates. Thus, this study exposes that the Yb 
ions interact more strongly with vibrational modes of water than the Er  and Tm ions. Since Yb-
Yb energy migration is efficient and it can travel long distances, a large crystal volume can 
effectively be quenched by the surface. Thus, surface passivation which prevents ion contact with 
the solvent by means of core-shell structures represents an important strategy for brightness 
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enhancement183. The shell may consist of the same crystal as the core (epitaxial shell); it can be 
built from other materials like polymers, non-crystalline silica, and carbon coating (nonepitaxial 
shell); or a combination of both. Usually, coating the UCNPs has other functions besides surface 
passivation, such as the inclusion of absorbing50 or fluorescent dyes184 for optical interactions, or 
the production of water-soluble NPs amenable to further surface modification for biological 
interactions185. Recently, a comprehensive review on the advantages, synthesis and applications 
of core-shell NPs was published by Prasad’s group186. Here, we will mainly focus on the effects 
of core-shell strategy on brightness enhancement through the suppression of surface quenching 
and cross-relaxation processes.  
 

 
Fig. 16. By measuring the UCL in H2O and D2O the effects of surface quenching by OH-groups can be quantified as 
shown in (a) for NaYF4:Yb,Er UCNPs and in (b) for NaYF4:Yb,Tm UCNPs, both bare and silanized. Reproduced 
from Arppe et al. ref.182 with permission from The Royal Society of Chemistry.  

 
Surface quenching can occur when excited Ln3+ ions are located close to the UCNP surface, 
either via local absorption and energy transfer processes, or through energy migration from the 
core. Thus, increasing the distance from the surface by coating the particle with an inert epitaxial 
or non-epitaxial shell will reduce this loss, with a trade-off of a larger particle size. The addition 
of a shell can increase UCL by orders of magnitude, for example 450 times by the addition of a 
~7 nm CaF2 shell147 and 104 times by the addition of a ~10 nm NaYF4 shell187, both to small (~10 
nm) particles. The absolute quantum yields of these particles are still below 1.5%. The 
extraordinary enhancements also suggest a large difference in imperfections in the core particles, 
and the ability of the different core types to passivate these imperfections and minimize surface 
quenching183. For larger 28 nm core particles, the UCL increased 10 – 100 times upon the 
addition of a 11 nm LiLuF4 shell. These LiLuF4:Yb0.2Er0.01@LiLuF4 and 
LiLuF4:Yb0.2Tm0.005@LiLuF4 NCs exhibited absolute quantum yields of 5.0% and 7.6% 
respectively169. The brightness increase with shell thickness has also been studied, with authors 
coming to different conclusions. Gargas et al. find that the UCL increases with shell thickness but 
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saturates above 1.8 nm thickness23, while other studies find optimum thicknesses of ~2.4 – 3 nm 
or 6 nm183, 186. Recently, Chen and Huang showed that the core size and the ratio of shell 
precursors to core size in the reaction, impact on the completeness of the epitaxial shell covering 
the core and resulting morphology of the nanocrystals187. As incomplete core-shell structures will 
also give rise to enhanced UCL, this could clarify the variable outcomes of UCL increase in core-
shell UCNPs171.  

As described in Section 3.2, energy transfer can result in desired ETU, energy migration or 
phonon-assisted energy migration, but also in the undesired cross-relaxation. Cross-relaxation 
can be reduced by spatially separating the dopant ions by the core-shell strategy, which is 
achieved by adding a so-called active shell doped with activators or sensitizers. The active shell 
can be used to enhance harvesting of excitation light by increasing the concentration of 
sensitizers, as was shown first for NaGdF4:Er,Yb(2:20 mol%)@NaGdF4:Yb(20 mol%) UCNPs 
that were significantly brighter compared to inert-shell and core-only particles51. In more recent 
designs, alternative sensitizers were doped in the shell. Xie et al. designed NCs with an active 
Nd-doped (20 mol%) NaYF4 shell (~ 5 nm), and found that Nd3+ sensitizers are less susceptible 
to surface quenching compared to Yb3+ 156. Importantly, the NaYF4 (~ 30 nm) core was doped 
with Yb3+ ions (30 mol%) to accept and efficiently migrate the absorbed energy by Nd3+ to the 
activator ions Tm3+(0.5 mol%), Er3+ (0.5%) or Ho3+ (1 mol%). Although the Nd-sensitized 
UCNPs usually exhibit reduced UCL compared to Yb-sensitized counterparts, the current design 
resulted in equal performance, while having the additional biomedical advantage to be excited at 
around 800 nm where tissue absorption is low. Recently, Huang amended this design by adding 
Yb3+ ions together with Nd3+ ions in the 3 nm shell (5 mol% respectively 30 mol%), coating the 
20.6 nm NaYF4:Nd,Yb,Ho(1:19:0.5 mol%) cores188. By codoping the shell with Yb3+ the UCL 
increased another 2.5 times. The overall UCL enhancement as compared to core-only UCNPs 
was 405 times for the Nd-doped shell156 and 990 times for the Nd/Yb-doped shell188, although the 
comparison seems unfair due to the much smaller number of sensitizers in the core-only UCNPs. 
However, increasing the number of sensitizers in the core-only NPs would induce concentration 
quenching and reduction of UCL. In this case the shell functions to suppress surface and 
concentration quenching and increase the absorption of excitation light, all leading to enhanced 
UCL. An important remark here is that the particles have not been tested in aqueous solutions 
able to efficiently quench the Yb3+ excited state, as previously described182.  

Recently, more advanced UCNP structures have been designed, such as UCNPs with 
homogeneous doping throughout the core by successive layer-by-layer synthesis170, or the 
addition of multiple functional shells. The shells can for example serve as energy migration 
buffers from the sensitizing and accumulating core to the outer activator-doped shells54, 
ultimately coated with an inert shell to reduce surface quenching55. In another application to 
increase the efficiency of solar cells, UCNPs with multiple individual shells containing different 
types of activators were synthesized with an inert NaYF4 layer in between each shell: 
NaYF4:Er(10mol%)@NaYF4@ NaYF4:Ho(10mol%)@NaYF4@ NaYF4:Tm(1mol%)@NaYF4, 
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see Fig. 17189. This prevented cross-relaxation between different types of dopants. The resulting 
particles could absorb a broad spectrum in the IR (Ho3+: 1120-1190 nm, Tm3+: 1190 – 1260 nm 
and Er3+: 1450-1580 nm) and emit efficiently in the VIS/NIR, about 1 order of magnitude 
brighter as compared to a single core@inert shell particle containing the same amounts of 
dopants. The utilization of different types of Ln3+ able to function as sensitizers (like Yb3+, Nd3+, 
Er3+ and Ho3+) thus additionally results in broadband spectral sensitizing of NIR light, and can 
enhance UCL brightness.  

 
Fig. 17. Multilayered design with inert sub-layers to reduce cross-relaxation between activators: 
NaYF4:Er(10mol%)@NaYF4@NaYF4:Ho(10mol%)@NaYF4@NaYF4:Tm(1mol%)@NaYF4. Reprinted with 
permission from Shao et al189. Copyright 2014, Wiley-VCH Verlag GmbH & Co. KGaA.  
 

Plasmonic enhancement and other external resonators 

Upconversion brightness can also be increased by external effects, such as enhanced 
electromagnetic fields. Confined free electrons on the surface of noble metal nanomaterials can 
oscillate with an incoming optical field, which is largely enhanced at resonance frequencies. If 
the resonant frequencies of these surface plasmons are coupled to the UCNPs, they can influence 
the the decay rates, absorption cross section and energy transfer coefficients of the Ln ions. The 
surface plasmon resonant frequencies can be influenced by the size and shape of the noble metal 
nanomaterials. As derived by Park et al. in a recent review on plasmon enhancement in 
upconversion, the plasmon enhancement factor F for UCNPs is mainly proportional to the 
transfer rate from sensitizer to activator (Fd4), the square of the absorption enhancement factor 
(Fa) and inversely proportional to the square of the sensitizer decay rate (FD10), in the weak 
excitation limit53, 120:                    .          (32) 

In the strong excitation limit, the enhancement factor is simply: 

                        (33) 
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because all other processes leading to UC are saturated. The absorption enhancement factor Fa  is 
proportional to the absorption cross section, which in turn is proportional to the square of the 
plasmon-enhanced external electric field: |Eloc/E0|

2, where Eloc and E0 are the local electric field 
and the incident electric field respectively. Since the UC intensity proportional to the n-th power 
of the excitation light irradiance (n>1)100 plasmonic enhancement is particularly strong near the 
excitation wavelength of UCL. Moreover, the rate of energy transfer between sensitizers and 
activators can also be increased by surface plasmons. It has been shown that this enhancement 
factor depends on the relationship between the plasmon energy and the energy mismatch of the 
levels involved in energy transfer. It also depends on the distance from the plasmonic surface and 
the separation between sensitizer and activator53. Finally, surface plasmons can increase the 
number of photon states due to the large increase in local photon density, and thereby the 
radiative decay rates. The enhancement of radiative decay rates is measured by the Purcell factor, 
named after the first pioneer in this area190. The presence of metal can also quench the UC by 
offering additional non-radiative decay channels. Together with the Purcell effect, these enhance 
the unwanted sensitizer decay rate FD10. At a certain distance close to the surface the quenching 
effect dominates the electric-field enhancement effect on Fa and Fd4. Therefore, there is always 
an optimal spacing between plasmonic nanostructures and the upconverting ions where 
plasmonic enhancement is maximal53, 191, 192. From Eqn. (32) and its explanation, it is obvious 
that choosing the plasmon frequency close to the excitation frequency will induce the largest 
enhancement effect, especially in the low excitation regime. The enhancement of the energy 
transfer rate is limited, as it is generally already high due to small ion-ion separations53. In Fig. 18 
a literature overview is given on the achieved enhancement factors using surface plasmons from 
gold and silver, in different geometries.  

Obviously, the size and geometry of the UCNP-plasmonic hybrid structure has a large influence 
on the applicability. For biomedical applications the favourable small size is achievable by using 
core-shell architecture where the metallic nanostructure can form the core or the shell of the 
UCNPs, often with a silica layer to optimize the spacing183. In 2011, we reported the synthesis of 
gold-shell coated NaYF4:Er,Yb@SiO2 nanoparticles, with enhancement factors of ~9.1 and ~6.7 
for green and red emission respectively, due to plasmon-enhanced absorption at 980 nm193. 
Recently, it was shown that the combination of gold nanorods and UCNPs deposited on thin 
films can function as a plasmon-enhanced nanothermometric structure194. Gold nanorods showed 
collective heating upon surface plasmon activation, which in turn tuned the green-to-red emission 
ratio of the UCNPs. Though the current geometry is not compatible with in vivo delivery, future 
designs of gold-UCNP hybrid structures can potentially be used for photothermal therapy, while 
the UCNP emission can be utilized to monitor the actual temperatures. With applications in solar 
technology, Lee et al. recently created a plasmonic nanostructure based on a metal nanodisk-
insulator-metal design with plasmon resonance frequencies in both the excitation and emission 
wavelengths of Er3+, resulting in a UCL enhancement factor of 174 times97. They also included a 
layer consisting of Tb3+ ions for downconversion (UV absorption to VIS emission), and 
calculated the downconversion enhancement factor to be 29-fold. This structure is thus very 
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efficient for enhancing visible luminescence from UV and NIR to match the optimal spectral 
responsivity of solar cells.  

Other external materials such as photonic-crystals and resonant waveguides can also cause an 
enhancement of local electric field intensity and enhanced density of optical states172, 195. The 
highest enhancement factor reported to date was published this year by Lin et al.196. They 
constructed a resonant waveguide grating structure, in which 30 nm NaYF4:Yb,Tm (20:2mol%) 
nanocrystals were embedded in the top cladding layer. Matching the excitation and emission 
wavelength to the guided-mode resonance of the structure resulted in very high UCL 
enhancement of blue and red light, by a factor of up to 104 in case of excitation resonance, and an 
additional factor 3 for the case of emission (or ‘extraction’) resonance. This extreme 
enhancement is in part due to the 3- and 4-photon UC processes in Tm3+, resulting in higher-
order enhancement in a strongly enhanced local-field at the excitation wavelength.  

 
Fig. 18 Overview of literature reports of the enhancement factor for UCL as function of surface plasmon resonance 
(SPR) wavelength and for various geometries utilizing gold and silver, represented by red and blue symbols, 
respectively. NP – nanoparticle, PS – patterned structure. Reproduced from Park et al.53 with permission from The 
Royal Society of Chemistry.  

Optimizing the QY/CE through varying excitation schemes  

Generally, increasing the excitation density results in an increased UCL brightness. For 
biomedical applications, the excitation density and therefore the QY/CE are limited by safety 
standards for radiation exposure (ANSI). The maximum permissible exposure for pulsed 
excitation is higher as compared with CW excitation, due to the ability of tissue to dissipate heat 
during excitation. By utilizing these rules and analyzing the time-resolved rate equations while 
changing the pulse parameters (pulse width, repetition rate, and peak power) it was shown that a 
higher CE can be accomplished using pulsed excitation schemes while maintaining the same 
average power density118. The modelling showed that it is important to choose the excitation 
parameters to ensure a sufficiently long pulse width while keeping the energy transfer transitions 
non-saturated. For example, a CE-gain factor of 8 was obtained for a 20 ms pulse at 25 W/cm2 in 
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a 2 Hz repetition rate, as compared with the equivalent CE under CW excitation with excitation 
power density of 0.12 W/cm2.  

6. Summary and Outlook 

This review provides a guide to the understanding of the fundamental photophysical processes 
leading to upconversion luminescence, discusses practical rate equation approaches to 
quantitatively interrogate them, and provides an overview of experimental strategies to influence, 
control and optimize the optical properties of upconversion at nanoscale. Given the volume and 
scope of theoretical and experimental research articles recently published, the progress in the 
field is expected to rapidly increase. We note that it is important to find key application niches for 
UCNPs in various fields, by keeping a realistic view on their optical properties and practical 
synthesis methods. For example, the large dependency of brightness on host lattice defects 
dictates the need for high quality and predictable synthesis chemistry46, 127. Another important 
remark is the need to assess the nanotoxicity, not only for use in biomedical applications, but also 
regarding the fate of nanoparticles in laboratory waste197, 198. Potential toxicity may result not 
only from the chemical composition, but also from the small size of UCNPs, enabling them to 
bypass biological barriers and/or accumulate in the tissue197.  

At the same time, the increasing information on the optimization of the photophysical processes 
in UCNPs will enhance their quality and applications in many fields12. One aspect not highlighted 
in this review is the application and control of the UCL lifetime. Using the lifetime feature 
extends the functionality of UCNPs towards lifetime multiplexing applications for the 
simultaneous detection of a large number of biomarkers, and towards new strategies for data 
storage and security measures199. Strategies to influence the UCL lifetime46, 199, 200 are likely to be 
intensely investigated in the future.  

Increasing the absorption efficiency and refining the energy transfer within UCNPs are two key 
directions of current research, aimed at enhancement of the desired optical properties. The 
combinations of recent successes, such as high concentration of clustered Yb-sensitizers52 and 
enhancement by external resonance structures53, 196 may prove to be instrumental to further 
advancement, and pave the way to groundbreaking interdisciplinary applications of this exciting 
class of nanoparticles.  
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