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Lanthanum doped multiferroic DyFeO3 was synthesized by solid state reaction. X-ray diffraction
and refinement show that the lattice parameters of Dy1−xLaxFeO3 increase linearly with the La
content. Raman spectroscopy reveals that the short-range force constant in Dy1−xLaxFeO3 is
decreased by La3+ ion substitution. The spin reorientation phase transition temperature �TSRPT� is
observed to decrease along with the doping level. The antiferromagnetic ordering temperature TN of
Fe3+ ions is depressed with increasing doping level. Both decreasing TSRPT and decreasing TN

indicate that Fe–Dy and Fe–Fe interactions are weakened by La substitution. It is found that the
electron configuration of Fe3+ is high spin state and not affected by the La doping in all the samples
above TN. © 2010 American Institute of Physics. �doi:10.1063/1.3360354�

Compounds which display coexistence of magnetic and
ferroelectric �FE� orders are known as multiferroic
materials.1 Among these materials, FE �anti-�ferromagnets
have been extensively studied due to their possible applica-
tions in many fields,2–4 such as nonvolatile memory devices,
sensors, and actuators. However, only a very few single-
phase multiferroic materials which exhibit both large electric
polarization �P� and strong magnetoelectric �ME� coupling
have been studied so far.5–7 Recently, a magnetic-field-
induced FE state has been observed in DyFeO3 single
crystal.8 A large linear ME tensor component �2.4�10−2

was found below �4 K. It was reported that the exchange
striction working between antiferromagnetically ordered
Fe3+ and Dy3+ layer structures is the possible origin for the
multiferroic behavior. Thus, study of the interaction between
the two types of magnetic atoms �Dy and Fe� in DyFeO3 is
quite important to reveal the microscopic mechanism behind
multiferroic behavior. As one of typical perovskite ReTmO3

�Re: rare-earth; Tm: transition metal� compounds, DyFeO3

crystallizes in the orthorhombic structure with space group
Pnma. The Dy3+ ions are located in the space between the
FeO6 octahedra in the crystal structure. The magnetic inter-
actions in DyFeO3 should follow the hierarchy of Fe–Fe,
Fe–Dy, and Dy–Dy in descending order.9 In previous works,
the magnetic structure, as well as the Fe–Dy and Dy–Dy
antiferromagnetic �AFM� interactions were studied by Möss-
bauer spectrometry and neutron diffraction.10,11 Generally,
substitution into Re or Tm sites in ReTmO3 compounds will
result in modifications of the crystal structure, causing
changes in the physical properties. In the case of DyFeO3,
doping with La3+ ions, which have a larger ionic radius than
Dy3+ ions, would lead to structural distortion, which possibly
alters the electronic structure and magnetic properties. In ad-
dition, the doped nonmagnetic La3+ ions are expected to di-
lute the concentration of Dy3+ ions, which would depress the
AFM Dy–Dy and Fe–Dy interactions.

In the present work, the crystal structure, magnetic prop-
erties, and electron configuration of Dy1−xLaxFeO3 �x=0.0,
0.1, 0.2, 0.3, and 0.4� are investigated. The goal of this work
is to provide useful information on the chemical pressure
effects resulting from Re-site doping on the crystal structure
and magnetic properties.

Dy1−xLaxFeO3 �x=0.0, 0.1, 0.2, 0.3, and 0.4� powder
samples were prepared by solid state reaction of the ternary
oxides Dy2O3, La2O3, and Fe2O3. The purity of all the
chemicals, obtained from Sigma-Aldrich, is 99.9%. The mix-
tures were pressed into pellets and sintered at 1200 °C for
12 h. Then, the products were crushed, ground, pressed into
pellets, and sintered again at 1300 °C for 24 h.

The crystal structures of samples were examined by
x-ray diffraction �XRD; GBC Mini-Materials Analyzer�, us-
ing Cu K� radiation at �=1.540 56 Å. XRD refinement cal-
culations were conducted via the RIETICA software package
�version 1.7.7�. Raman scattering measurements, with a shift
ranging from 100 to 2000 cm−1, were performed with a laser
Raman spectrometer �HORIBA Jobin Yvon HR320� at room
temperature. An Ar+ laser with wavelength of 632.8 nm was
used for excitation of the Raman signals. The magnetic mea-
surements were carried out using a 14 T physical properties
measurement system �PPMS; Quantum Design� equipped
with a vibrating sample magnetometer over a wide tempera-
ture range from 2 to 700 K.

The phase and crystallinity of the as-prepared
Dy1−xLaxFeO3 �x=0.0, 0.1, 0.2, and 0.3� samples were ex-
amined with XRD, as shown in Fig. 1. All the samples are
phase-pure without any observable impurities. The diffrac-
tion patterns could be indexed with an orthorhombic perov-
skite structure �space group Pnma� according to Joint Com-
mittee on Powder Diffraction Standards Card No. 47–0069.
The Rietveld XRD refinement was carried out to calculate
the lattice parameters, bond lengths, and bond angles. The
lattice parameters a, b, and c are increased along with the La
doping level. Overall, the lattice expands as a result of La
substitution. In addition, the distortion of Fe–O octahedra in
Dy1−xLaxFeO3 samples is reduced with doping. The in-plane

a�Author to whom correspondence should be addressed: Electronic mail:
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JOURNAL OF APPLIED PHYSICS 107, 09D908 �2010�

0021-8979/2010/107�9�/09D908/3/$30.00 © 2010 American Institute of Physics107, 09D908-1

Downloaded 15 Aug 2012 to 130.130.37.84. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3360354
http://dx.doi.org/10.1063/1.3360354


Fe–O bond lengths decrease, and the out-of-plane bond
lengths increase along with the doping level. Distances of the
nearest Re3+ ions in Dy1−xLaxFeO3 were calculated to in-
crease along with the x value as well. The modified crystal
structure can be attributed to the different radii of the La3+

and Dy3+ ions.
Due to the relatively weak contribution to the structural

factors by O2− ions in the XRD analysis, some disorder ef-
fects in the anion sublattice cannot be distinguished. There-
fore, Raman spectroscopy analysis of Dy1−xLaxFeO3 �x
=0.0, 0.1, 0.2, 0.3, and 0.4� has been performed with special
attention to the vibration bands that are most affected by
crystal structure disorder. Figure 2 shows Raman spectros-
copy results for the Dy1−xLaxFeO3 �x=0.0, 0.1, 0.2, 0.3, and
0.4� samples at room temperature. The irreducible represen-
tation for DyFeO3 at the center of the Brillouin zone is given
by

� = 7A1g + 8A1u + 7B1g + 8B1u + 5B2g + 10B2u + 5B3g + 10B3u,

in which there are 24 Raman-active modes, 28 infrared
modes, and 8 inactive modes.12 In order to identify the Ra-
man shift peaks for different samples, the Dy1−xLaxFeO3 Ra-
man spectra were fitted in the range of 100–550 cm−1 by the
Gaussian fitting method, as is shown in Fig. 2�b�. There are
ten vibration modes that have been identified. This agrees
with results from a previous study on DyFeO3 ceramics.9

Based on a Raman study of SmFeO3, the effective mass
�meff�,

13 which is defined as meff=x mLa+ �1−x�mDy, is in-
troduced for the discussion of the doping effect on the Ra-
man shift in Dy1−xLaxFeO3. Most of the Raman modes above
100 cm−1 show a frequency decrease with the effective mass
�meff� of Re3+ ions in Dy1−xLaxFeO3. Due to the systematic
increase in the cell size with the decreased meff of the Re3+

ions, the Re−O and Fe–O force constants will be slightly
decreased, which results in decreased frequency of the vibra-
tion modes. Unlike the sharp vibration peaks observed in
pure DyFeO3, the Raman spectra of La doped samples ex-
hibit significantly broadened peaks. This effect is related to
the disordered crystal structure induced by the La3+ ion sub-
stitution in DyFeO3. The presence of La3+ in Dy3+ sites
causes less distortion of the FeO6 octahedra than in pure

DyFeO3, which has been confirmed by the XRD refinement
calculations. The high frequencies ��100 cm−1� of these vi-
bration modes and the broadening of the peaks should be
attributed to the disordered O2− ions, as well as the different
masses of La3+ and Dy3+ ions.

The field cooled magnetic susceptibility ��� as a function
of temperature T from 10 to 700 K in magnetic field of H
=1000 Oe is plotted in Fig. 3. The data were collected by a

FIG. 1. �Color online� XRD patterns of Dy1−xLaxFeO3 �x=0.0, 0.1, 0.2, 0.3,
and 0.4� samples synthesized by solid state reaction. All the peaks were
indexed with JCPDS Card No. 47–0069.

FIG. 2. �Color online� Raman spectra of Dy1−xLaxFeO3 collected at room
temperature: �a� Raman spectra for samples with x=0.0 to 0.4. �b� Normal-
ized Raman spectra with fitted Raman peaks for undoped specimen. The
vibration modes are indexed.

FIG. 3. �Color online� Field cooled magnetic susceptibility as a function of
temperature for the Dy1−xLaxFeO3 �x=0.0, 0.1, 0.2, 0.3, and 0.4� samples in
a magnetic field of 1000 Oe over the temperature range from 10 to 700 K.
Inset �a� shows M-T curves measured from 2 to 100 K, in which TSRPT

decreases with increasing doping level �with TSRPT indicated by the corre-
sponding arrows�. Inset �b� shows M-T curves measured in the high tem-
perature range.
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field cooling measurement on the Dy1−xLaxFeO3 samples. A
spin reorientation phase transition �SRPT� of Fe3+ ions was
observed at TSRPT=60.1 K. It was found that TSRPT de-
creases linearly with increasing La doping level, as shown in
inset of Fig. 3�a�. There are three possible Fe3+ spin configu-
rations, labeled �4, �2, and �1, which are compatible with
the canting of the iron spins, the magnetic symmetry group
�m�m�m� of these crystals, and the strong AFM coupling
between nearest-neighbor Fe3+ sites.14 According to a previ-
ous study,15 DyFeO3 undergoes a �4-�1 SRPT at TSRPT. It
has been proven that this temperature-induced SRPT is de-
termined by the exchange interactions between Fe3+ and
Re3+ ions in ReFeO3 compounds.9 Because the total angular
momentum is J=0 for La3+ ions, this results in a zero mag-
netic moment for the La3+ ion. The La3+ substitution will
reduce the contribution of Re3+ to the magnetic interactions
in Dy1−xLaxFeO3 samples. Thus, the exchange interaction of
Fe–Dy is weaker in doped samples, which results in decreas-
ing TSPRT with increasing content of La3+ ions in
Dy1−xLaxFeO3. In addition, the magnetic moments of
Dy1−xLaxFeO3 at TSRPT decreased along with the increasing
value of x, which should be ascribed to the increasing con-
centration of nonmagnetic La3+ ions. An antiferromangetic
transition temperature �TN� was observed for Dy1−xLaxFeO3

above 300 K. It indicates that TN is depressed with increas-
ing doping level. Broadening of the AFM peaks was ob-
served due to the weaker AFM ordering in doped samples.
The Dy1−xLaxFeO3 samples with x�0.1 show weak ferro-
magnetic behavior �inset of Fig. 3�b�� in the high tempera-
ture M-T curve due to a possible canting angle arising from
nearby Fe3+ AFM ordering �similar to the spiral magnetic
structure in BiFeO3 �Ref. 16��. However, further neutron dif-
fraction study of this material is necessary to determine its
detailed magnetic structure.

Figure 4 shows the Curie–Weiss law fitting of 1 /�−T
from 600 to 700 K for all the samples. The total effective
magnetic moments in Dy1−xLaxFeO3 were calculated to be
5.872 �B, 5.791 �B, 5.895 �B, 5.906 �B, and 5.210 �B

for samples with x=0.0, 0.1, 0.2, 0.3, and 0.4, respectively,
where �B is the Bohr magneton. Because only Fe3+ ions
contribute to the total effective magnetic moment in
Dy1−xLaxFeO3 above TN, the spin state S of Fe3+ can be used
to calculate �eff via the formula �eff=2�S2+S�1/2. The Fe3+

ions in Dy1−xLaxFeO3 have five electrons in the 3d shell,
which leads to a total possible spin quantum number S with
values 1/2, 3/2, and 5/2. Therefore, the possible �eff are
5.916 �B /Fe3+ for the high spin state �HS�, 3.873 �B /Fe3+

for the intermediate spin state, and 1.732 �B /Fe3+ for the
low spin state, respectively. Compared with the results from
linear fitting of the 1 /�−T curves, the spin state was found
to be HS for all the samples.

In summary, the effects of La doping on the structure
and magnetic properties of DyFeO3 have been studied. XRD
refinement and Raman spectroscopy revealed that the crystal
structure of Dy1−xLaxFeO3 �x=0.0, 0.1, 0.2, 0.3, and 0.4� is
modified sequentially by the increasing La content. The vi-
bration modes in the Raman spectra show a frequency de-
crease with increasing doping level in Dy1−xLaxFeO3, which

is attributed to decreasing Re−O and Fe–O force constants.
The doped nonmagnetic La3+ ions weaken the Fe–Dy inter-
action in Dy1−xLaxFeO3, which results in a decreased TSRPT

and moment. The AFM temperature TN decreases due to dis-
torted Fe–O bond lengths, which leads to weak ordering of
Fe–Fe. The electron configuration of Fe3+ ions is found to be
HS for all the samples above TN.
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