ANL/BK--75732
DE92 010936

LAPACK Users’ Guide AR i
Release 1.0

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen

31 January 1992

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favering by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the "“ 5
United States Government or any agency thereof. q ﬁ a

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

v(p/,

[TR oo bk R L R T TTT YR

Abstract

LAPACK is a transportable library of Fortran 77 subroutines for solving the most common problems
in numerical linear algebra: systems of linear equations, linear least squares problems, eigenvalue
problems and singular value problems.

LAPACK is designed to supersede LINPACK and EISPACK, principally by restructuring the soft-
ware to achieve much greater efficiency on vector processors, high-performance “superscalar” work-
stations, and shared-memory multi-processors. LAPACK also adds extra functionality, uses some
new or improved algorithms, and integrates the two sets of algorithms into a unified package.

The LAPACK Users’ Guide gives an informal introduction to the design of the algorithms and
software, summarizes the contents of the package, describes conventions used in the software and
documentation, and includes complete specifications for calling the routines.

This edition of the Users’ Guide describes Release 1.0 of LAPACK.

et ol e e

dbwe w it

W

Dedication

This work is dedicated to Jim Wilkinson whose ideas and spirit have given us inspiration and
influenced the project at every turn.

Contents

Preface | 8
1 Essentials 11
L1 LAPACK . . o e e 11
1.2 Problems LAPACK CanSolve i 11
1.3 Computers for which LAPACK is suitable 12
1.4 LAPACK compared with LINPACK and EISPACK 12
1.5 LAPACKand the BLAS e 12
1.6 Documentation for LAPACK it it 12
1.7 Availability of LAPACK e e e 13
1.8 Imstallation of LAPACK e 13
1.9 Support for LAPACK e e 13
1.10 Known Problems in LAPACK 14

2 Contents of LAPACK 15
2.1 Structure of LAPACK e e e e e e e e 15
2.1.1 Levelsofroutines i i 15

2.1.2 Data types and precision e e e 16

2.1.3 Naming Scheme e 16

22 Driver Routines o . o e e 18
2.2.1 Linear Equations e 18

2.2.2 Linear Least Squares Problems (LLS) 20

2.2.3 Standard Eigenvalue And Singular Value Problems - 20

I

2.2.4 Génera.lized Eigenvalue Problems, 23

2.3 Computational routines e e e e e e 24
2.3.1 Linear Equations i e e e 24
2.3.2 Orthogonal Factorizations 29
2.3.3 Symmetric Eigenproblem 0o 31
2.3.4 Nonsymmetric Eigenproblem 33
2.3.5 Singular Value Decomposition oo 34
2.3.6 Generalized Symmetric-Definite Eigenproblems 36

3 Performance of LAPACK 38

3.1 Factors That Affect Performance 38
3.1.1 Vectorization e 39
3.1.2 Datamovement. v vttt e e e e e e e e e e 39
3.1.3 Parallelism e 39

3.2 The BLAS as the Key To Portability 39

3.3 Block Algorithms And Their Derivation 41

3.4 Examples of block algorithms in LAPACK P 43
3.4.1 Factorizations for soiving linear equations 44
3.4.2 QR‘factorization.................................: 45
3.4.3 Eigenvalueproblems 45

4 Accuracy and Stability 48

4.1 Roundoff Errors in Floating Point Arithmetic 48

4.2 Vector and Matrix Norms P 49

4.3 Standard Error Analysis e e ... 80

4.4 Improved Error Bounds e 51

45 HowtoRead ErrorBounds 52

4.6 Error Bounds for Linear Equation Solving 53

4.7 Error Bounds for Linear Least Squares Problems 54

4.8 FKrror Bounds for the Singular Value Decomposition, 55

4.9 Error Bounds for the Symmetric Eigenproblem 57
4.10 Error Bounds for the Nonsymmetric Eigenproblem58
4.10.1 Summary S 58
4.10.2 Balancing and Conditioning P 60
4.10.3 Computing sand sep "« vt i i e e e e e e 60

4.11 Error bounds ror the generalized symmetric-definite eigenproblem 62
4.12 Error bounds for Fast Level 3 BLAS 64
Documentation and Software Conventions 65
5.1 Design and Documentation of Argument Lists 65
5.1.1 Structure of the Documentation ,...... e e 65
5.1.2 Order of Arguments e e 65
51,3 Argument DeSCTiptions e e e e " 66
5.1.4 Option Arguments v vt i i e e e e e e 66
5.1.5 Problem Dimensions e 67
5.1.6 Array Arguments oo e e e e e 67
5.1.7 Work ATTays . . . v v v v v v e e et e e e e 67
5.1.8 Error handling and the diagnostic argument INFO e e e e e 68

5.2 Determining the block size for block algorithms U 68
5.3 Matrixstorageschemes e 69
5.3.1 Conventional Storage e 70
53.2 Packed Storage e 71
5.3.3 Band Storage S 71
5.3.4 Tridiagonal and Bidiagonal Matrices 73
5.3.5 Unit Triangular Matrices 73
5.3.6 Real Diagonal Elements of Complex Matrices 73

5.4 Representation of orthogonal or unitary matrices 73
6 Installing LAPACK routines 75
6.1 Pointstonote. e e 75

6.2 Installing ILAENV e e e e e e e 76
7 Troubleshooting 79

7.1 Failures or wrongresults e e 79

7.2 Poor performance. [80
Bibliography 82
A Index of Driver and Computational Routines 85
B Index of Auxiliary Routines | 95
C Quick Reference Guide to the BLAS | 102
D Converting from LINPACK or EISPACK 107
E LAPACK Working Notes 118
F Specifications of Routines | 118

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

Matrix types in the LAPACK namingscheme 17
Driver routines for linear equations, 19
Driver routines for linear least squares problems e e e e 20~
Driver routines for standard eigenvalue and singular value problems 22
Driver routines for generalized eigenvalue problems, 23
Computational routines for linear equations e e e 27
Computational routines for linear equations (continued) 28
Computational routines for orthogonal factorizations 30
Computational routines for the symmetric eigenproblem 32
Computational routines for the nonsymmetric eigenproblem, 35
Computational routines for the singular value decomposition 36
Computational routine: for the generalized symmetric-definite eigenproblem 37
Speed in megaflops of Level 2 and Level 3 BLAS operations on a CRAY Y-MP ... 40
Speed in megaflops of Cholesky factorization A = UTU forn =500. 43
Speed in megaflops of SGETRF/DGETRF for square matrices of ordern 44

Speed in megaflops of SPOTRF/DPOTRF for matrices of order n with UPLO = ‘U’ 44
Speed in megaflops of SSYTRF for matrices of order n with UPLO = ‘U’ on a CRAY-2 45

Speed in megaflops of SGEQRF/DGEQRF for square matrices of ordern 46
Speed in megaflops of reductions to condensed forms on an IBM 3090E VF 47
Vector and Matrix Norms 0 o e e e e 49
Asymptotic error bounds for the Nonsymmetric Eigenproblem 59

4.3 Global error bounds for the Nonsymmetric Eigenproblem . . .

* 6.1 Use of the block parameters NB, NBMIN, and NX in LAPACK

............

oooooooooooo

Preface

The development of LAPACK was a natural step after specifications of the Level 2 and 3 BLAS
were drawn up in 1984-86 and 1987-88. Research on block algorithms had been ongoing for several
yeair, but agreement on the BLAS made it possible to construct a new software package to take
the place of LINPACK and EISPACK. This also seemed to be a good time to implement a number
of algorithmic advances that had been made since LINPACK and EISPACK were written in the
1970’s. The proposal for LAPACX was submitted while the Level 3 BLAS were still being developed
and funding was obtained from the National Science Foundation beginning in 1987.

LAPACK is more than just an update of its populat predecessors. It extends the functionality
of LINPACK and EISPACK by including driver routines for linear systems, iterative refinement
and error bounds, eigencondition estimation, and the capability for finding selected eigenvalues
and eigenvectors. LAPACK improves on the accuracy of the standard algorithms in EISPACK
by including high accuracy algorithms for finding eigenvalues of the bidiagonal and tridia.;onal
matrices that arise in SVD and symmetric eigenvalue problems. It is also a research project on
achieving good performance in a portable way by calling the BLAS. We have tried to be consistent
with our documentation and coding style throughout LAPACK in the hope that LAPACK will
serve as a modcl for other software development efforts. In particular, we hope that LAPACK and
tais guide will be of value in the classroom. Finally, we hope that LAPACK will be used, both as
a library of subroutines and as a source of building blocks for larger applications.

We have encountered scrue obstacles to our goal of a portable library, most of which should not
be apparent to a casual user. We have assumed the BLAS are implemented efficiently on the
target machine, but the optimal performance of the LAPACK routines depends to some extent
on a small set of parameters, such as the block size, which mus. be computed for each machine
(reasonable default values are provided). Most of the LAPACK code is written in standard Fortran
77, but the double precision complex data type is not part of the standard, so we have had to
‘make some assumptions about the names of intrinsic functions that do not hold on all machines
(see section 6.1). Finally, our rigorous testing suite included test problems scaled at the extremes
of the arithmetic range, which can vary greatly from machine to machine. On some machines, we
have had to restrict the range more than on others.

Since most of the performance improvements in LAPACK come from restructuring the algorithms
to use the Level 2 and 3 BLAS, we benefited greatly by having access from the early stages of the
project to a complete set of BLAS developed for the CRAY machines by Cray Research. Later, the
BLAS library developed by IBM for the IBM RISC/6000 was very helpful in proving the worth of

block algorithms and LAPACK on super-scalar workstations. Many of our test sites, both computer
vendors and research institutions, also worked on optimizing the BLAS and thus helped to get good
performance from LAPACK. We are very pleased at the extent to which the user community has
embraced the BLAS, not only for performance reasons, but also because we feel developing software
around a core set of common routines like the BLAS is good software engineering practice.

A number of technical reports were written during the development of LAPACK and published as
LAPACK Working Notes, initially by Argonne National Laboratory and later by the University of
Tennessee. Many of these reports later appeared as journal articles. Appendix E lists the LAPACK
Working Notes, and the bibliography gives the most recent published reference.

A follow-on project, LAPACK 2, has been funded in the US by the NST and DARPA. One of its
aims will be to add a modest amount of additional functionality to the current LAPACK package —
for.example, routines for the generalized SVD and additional routines for generalized eigenproblems.
These routines will be included in a future release of LAPACK when they are available. LAPACK
2 will also produce routines which implement LAPACK-type algorithms for distributed-memory
machines, routines which take special advantage of IEEE arithmetic, and versions of parts of
LAPACK in C and Fortran 90. The precise form of these other software packages which will result
from LAPACK 2 has not yet been decided.

As the successor to LINPACK and EISPACK, LAPACK has drawn heavily on both the software
and documentation from those collections. The test and timing software for the Level 2 and 3
BLAS was used as a model for the LAPACK test and timing software, and in fact the LAPACK
timing software includes the BLAS timing software as a subset. Formatting of the software and
conversion from single to double precision was done using Toolpack/1 [9], which was indispensable
to the project. We owe a great debt to our colleagues who have helped create the infrastructure of
scientific computing on which LAPACK has been built.

The development of LAPACK was primarily supported by NSF grant ASC-8715728. Zhaojun Bai
had partial support from DARPA grant F49620-87-C0065, Christian Bischof was supported by the
- Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of
Energy, under contract W-31-109-Eng-38, James Demmel had partial support from NSF grant
DCR~-8552474, and Jack Dongarra had partial support from the Applied Mathematical Sciences
subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE~
AC05-840R21400.

We acknowledge with gratitude the support which we have received from the following organiza-
tions, and the help of individual members of their staff: Cornell Theory Center; Cray Research Inc;
IBM ECSEC Rome; IBM Scientific Center, Bergen; NAG Ltd.

We also thank many, many people who have contributed code, criticism, ideas and encouragement.
We wish especially to acknowledge the contributions of: Mario Arioli, Mir Assadullah, Jesse Barlow,
Mel Ciment, Percy Deift, Augustin Dubrulle, Iain Duff, Alan Edelman, Sam Figueroa, Pat Gaffney,
Nick Higham, Liz Jessup, Bo Kéagstrom, Velvel Kahan, Linda Kaufman, L.-C. Li, Bob Manchek,
Peter Mayes, Cleve Moler, Beresford Parlett, Mick Pont, Giuseppe Radicati, Tom Rowan, Pete
Stewart, Peter Tang, Carlcs Tomei, Charlie Van Loan, Kresimir Veseli¢, Phuong Vu, and Reed
Wade.,

Finally we thank all the test sites who received three preliminary distributions of LAPACK software
and who ran an extensive series of test programs and timing programs for us; their efforts have
influenced the final version of the package in numerous ways.

10

Chapter 1

Essentials

RTFM - Anonymous

1.1 LAPACK

LAPACK is a library of Fortran 77 subroutines for solving the most commonly occurring problems
in numerical linear algebra. It has been designed to be efficient on a wide range of modern high-
performance computers. The name LAPACK is an acronym for Linear Algebra PACKage.

1.2 Problems LAPACK Can Solve

LAPACK can solve systems of linear equations, linear least squares problems, eigenvalue problems
and singular value problems. LAPACK can also handle many associated computations such asc
matrix factorizations or estimating condition numbers.

LAPACK contains driver routines for solving standard types of problems, computational rou-
tines to perform a distinct computational task, and auxiliary routines to perform a certain
subtask or common low-level computation. Each driver routine typically calls a sequence of com-
putational routines. Taken as a whole, the computational routines can perform a wider range of
tasks than are covered by the driver routines. Many of the auxiliary routines may be of use to
numerical analysts or software developers, so we have documented the Fortran source for these
routines with the same level of detail used for the LAPACK routines and driver routines.

Dense and band matrices are provided for, but not general sparse matrices. In all areas, similar

functionality is provided for real and complex matrices. See Chapter 2 for a compleie summary of
the contents.

[
-

1.3 Computers for which LAPACK is suitable

LAPACK is designed to give high efficiency on vector processors, high-performance “superscalar”
workstations, and shared-memory multi-processors. LAPACK in its present form is less likely to
give good performance on other types of parallel architectures (for example, massively parallel
SIMD machines, or d.stributed-memory machines), but work has begun to try to adapt LAPACK
to these new architectures. LAPACK can also be used satisfactorily on all types of scalar machines

(PC’s, workstations, mainframes). See Chapter 3 for some examples of the performance achieved
by LAPACK routines.

1.4 LAPACK compared witih LINPACK and EISPACK

LAPACK has been designed to supersede LINPACK [15] and EISPACK [39, 27], principally by
restructuring the software to achieve much greater efficiency (where possible) on modern high-
performance computers; also by adding extra functionality, by using some new or improved algo-
rithms, and by integrating the two sets of algorithms into a unified package.

Appendix D lists the LAPACK counterparts of LINPACK and EISPACK routines. Not all the
facilities of LINPACK and EISPACK are covered by Release 1.0 of LAPACK.

1.5 LAPACK and the BLAS

LAPACK routines are written so that as much as possible of the computation is performed by calls
to the Basic Linear Algebra Subprograms (BLAS) (36, 19, 17]. Highly efficient machine-specific
implementations of the BLAS are available for many modern high-performance computers. The
BLAS enable LAPACK routines to achieve high performance with portable code. The methodology
for constructing LAPACK routines in terms of calls to the BLAS is described in Chapter 3.

The BLAS are not strictly speaking part of LAPACK, but Fortran 77 code for the BLAS is dis-
tributed with LAPACK, or can be obtained separately from netlib (see below). This code constitutes
the “model implementation” [18, 16].

The model implemercation is not expected to perform as well as a specially tuned implementation
on most high-performance computers — on some machines it may give much worse performance —

but it allows users to run LAPACK codes on machines that do not offer any other implementation
of the BLAS.

1.6 Documentation for LAPACK

This Users’ Guide gives an informal introduction to the design of the package, and a detailed
description of its contents. Chapter 5 explains the conventions used in the software and documen-
tation. Appendix F contains complete specifications of all the driver routines and computational

12

routines. These specifications have been derived from the leading comments in the source text.

1.7 Availability of LAPACK

Individual routines from LAPACK are most easily obtained by electronic mail through netlib [21].
At the time of this writing, the e-mail addresses for netlib are

netlibQornl.gov
netlib@research.att.com

General information about LAPACK can be obtained by sending mail to one of the above addresses
with the message

send index from lapack

The complete package, including test code and timing programs in four different Fortran data types,
constitutes some 600,000 lines of Fortran source and comments. A magnetic tape of the complete
LAPACK package can be nbtained from NAG for a nominal handling charge.

For further details contact NAG at one of the following addresses:

NAG Ltd

Wilkinson House
Jordan Hill Road
Oxford 0X2 8DR
England

Tel: +44 865 511245
Fax: 444 865 310139

NAG Inc

1400 Opus Place, Suite 200
Downers Grove, IL 60515-5702
USA

Tel: +1 708 971 2337

Fax: +1 708 971 2706

NAG GmbH
chleissheimerstrasse 5
W-8046 Garching bei Miinchen
Germany

Tel: +49 89 3207395

Fax: +49 89 3207396

1.8 Installation of LAPACK

A comprebzusive Implementors’ Guide [2] is distributed with the complete package. This includes
descripticns of the test programs and timing programs, and detailed instructions on running them.
See also Chapter 6.

1.9 Support for LAPACK

LAPACK has been thoroughly tested before release, on many different types of computers. The
LAPACK project supports the package in the sense that reports of errors or poor performance will
gain immediate attention from the developers. Such reports — and also descriptions of interesting
applications and other comments —— should be sent to:

13

.M”l' i f |

LAPACK Project

c/oJ.J. Dongarra

Computer Science Department
University of Tennessee
Knoxville, Tennessee 37996-1301
USA

Email: lapack@cs.utk.edu

1.10 Known Problems in LAPACK

A list of known problems, bugs, and compiler errors for LAPACK is maintained on netlib. For a
copy of this report, send email to netlib of the form:

send bugreport from lapack

14

Chapter 2

Contents of LAPACK

2.1 Structure of LAPACK

2.1.1 Levels of routines

The subroutines in LAPACK are classified as follows:

¢ driver routines, each of which solves a complete problem, for example solving a systen
of linear equations, or computing the eigenvalues of a real symmetric matrix. Users are
recommended to use a driver routine if there ic one that meets their requirements. They are
listed in Section 2.2.

e computational routines, each of which performs a distinct computational task, for example
an LU factorization, or the reduction of a real symmetric matrix to tridiagonal form. Each
driver routine calls a sequence of computational routines. Users (especially software develop-
ers) may need to call computational routines directly to perform tasks, or sequences of tasks,
that cannot conveniently be performed by the driver routines. They are listed in Section 2.3.

¢ auxiliary routines, which in turn can be classified as follows:

- routines that perform subtasks of block algorithms — in particular, routines that imple-
ment unblocked versions of the algorithms;

- routines that perform some commonly required low-level computations, for example
scaling a matrix, computing a matrix-norm, or generating an elementary Householder
matrix; some of these may be of interest to numerical analysts or software developers
and could be considered for future additions to the 3LAS;

— a few extensions to the BLAS, such as routines for applying complex plane rotations, or
matrix-vector operations involving complex symmetric matrices (the BLAS themselves
are not strictly speaking part of LAPACK).

15

Both driver routines and computational routines are fully described in this Users’ Guide, but not
the auxiliary routines. A list of the auxiliary routines, with one-line descriptions of their functions,
is given in Appendix B.

2.1.2 Data types and precision

LAPACK provides the same range of functionality for real and complex data.

For most computations, there are matching routines, one for real and one for complex data, but
there are a few exceptions. For example, corresponding to the routines for real symmetric indefinite
systems of linear equations, there are routines for complex Hermitian and complex symmetric
systems, becausz both types of complex systems occur in practical applications. However, there is
no complex analogue of the routine for finding selected eigenvalues of a real symmetric tridiagonal
matrix, because a complex Hermitian matrix can always be reduced to a real symmetric tridiagonal
matrix.

Matching routines for real and complex data have been coded to maintain a close correspondence
between the two, wherever possible. However, in some areas (especially the nonsymmetric eigen-
problem) the correspondence is necessarily weaker.

All routines in LAPACK are provided in both single and double precision versions. The double
precision versions have been generated automatically, using Toolpack/1 [9].

Double precision routines for complex matrices require the non-standard Fortran data type COM-
PLEX*16, which is available on most machines where double precision computation is usual.

2.1.3 Naming Scheme

The name of each LAPACK routine is a coded specification of its function (within the very tight
limits of standard Fortran 77 6-character names).

All driver and computational routines have names of the form XYYZZZ, where for some driver
routines the 6th character is blank.

The first letter, X, indicates the data type as follows:

REAL

DOUBLE PRECISION

COMPLEX

COMPLEX*16 or DOUBLE COMPLEX

NQUOD W

When we wish to refer to an LAPACK routine generically, regardless of data type, we replace the
first letter by “x”. Thus xGESV refers to any or ali of the routines SGESV, CGESV, DGESV and
ZGESYV.

The next two letters, Y'Y, indicate the type of matrix (or of the most significant matrix). Most of
these two-letter codes apply to both real and complex matrices; a few apply specifically to one or

16

Table 2.1: Matrix types in the LAPACK naming scheme

BD bidiagonal

GB general band

GE general (i.e. unsymmetric, in some cases rectangular)

GG general matrices, generalized problem (i.e. a pair of general matrices)

GT general tridiagonal

HE (complex) Hermitian ‘

HG upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a triangular matrix)
HP (complex) Hermitian, packed storage

HS upper Hessenberg

OR (real) orthogonal

OP (real) orthogonal, packed storage

PB symmetric or Hermitian positive definite band

PO symmetric or Hermitian positive definite

PP symmetric or Hermitian positive definite, packed storage

PT symmetric or Hermitian positive definite tridiagonal

SB (real) symmetric band

SP symmetric, packed storage

ST (real) symmetric tridiagonal

SY symmetric

TB triangular band

TG triangular matrices, generalized problem (i.e. a pair of triangular matrices)
TP triangular, packed storage : ‘ '
TR triangular (or in some cases quasi-triangular)

TZ trapezoidal

UN (complex) unitary

UP (complex) unitary, packed storage

the other, as indicated in Table 2.1.

When we wish to refer to a class of routines that performs the same function on different types of
matrices, we replace the first three letters by “xyy”. Thus xyySVX refers to all the expert driver
routines for systems of linear equations that are listed in Table 2.2.

The last three letters ZZZ indicate the computation performed. Their meanings will be explained
in Section 2.3. For example, SGEBRD is a single precision routine that performs a bidiagonal
reduction (BRD) of a real general matrix.

The names of auxiliary routines follow a similar scheme except that the 2nd and 3rd characters YY
are usually LA (for example, SLASCL or CLARFG). There are two kinds of exception. Auxiliary
routines that implement an unblocked version of a block algorithm have similar names to the
routines that perform the block algorithm, with the 6th character being ‘2’ (for example, SGETF2
is the unblocked version of SGETRF). A few routines that may be regarded as extensions to the

17

BLAS are named according to the BLAS naming schemes (for example, CROT, CSYR).

2.2 Driver Routines

This section describes the driver routines in LAPACK. Further details on the terminology and the
numerical operations they perform are given in Section 2.3, which describes the computational
routines.

2.2.1 Linear Equations

Two types of driver routines are provided for solving systems of linear equations:

¢ a simple driver (name ending -SV), which solves the system AX = B by factorizing A and
overwriting B with the solution X

o an expert driver (name ending -SVX), which can also perform the following functions:

— estimate the condition number of A and check for near-singularity;
- refine the solution and compute forward and backward error bounds;

— (optionally) equilibrate the system if A is poorly scaled.

The expert driver requires roughly twice as much storage as the simple driver in order to
perform these extra functions.

Both types oi driver routines can handle multiple right hand sides (the columns of B).

Different driver routines are provided to take advantage of special properties or storage schemes of
the matrix A, as shown in Table 2.2,

All of the computational routines for solving linear systems are used in the context of the driver
routines except the matrix inversion routines (xyyTRI). In most cases, a factorization plus solve is
faster and more accurate than inverting the coefficient matrix explicitly.

18

Table 2.2:

Driver routines for linear equations

Type of matrix

Operation

Single precision

Double precision

and storage scheme real complex real complex

general ‘ simple driver || SGESV | CGESV DGESV | ZGESV
expert driver | SGESVX | CGESVX || DGESVX | ZGESVX

general band simple driver || SGBSV | CGBSV DGBSV | ZGBSV
: expert driver || SGBSVX | CGBSVX || DGBSVX | ZGBSVX

general tridiagonal simple driver || SGTSV | CGTSV DGTSV | ZGTSV
expert driver || SGTSVX | CGTSVX || DGTSVX | ZGTSVX

symmetric/Hermitian simple driver || SPOSV CPOSV DPOSV ZPOSV
positive-definite expert driver | SPOSVX | CPOSVX || DPOSVX | ZPOSVX

symmetric/Hermitian simple driver || SPPSV CPPSV DPPSV ZPPSV
positive-definite (packed storage) | expert driver || SPPSVX | CPPSVX | DPPSVX | ZPPSVX

symmetric/Hermitian simple driver || SPBSV CPBSV DPBSV ZPBSV
positive-definite band expert driver || SPBSVX | CPBSVX || DPBSVX | ZPBSVX

symmetric/Hermitian simple driver || SPTSV CPTSV DPTSV ZPTSV
positive-definite tridiagonal expert driver || SPTSVX | CPTSVX || DPTSVX | ZPTSVX

symmetric/Hermitian simple driver || SSYSV CHESV DSYSV ZHESV
indefinite expert driver || SSYSVX | CHESVX || DSYSVX | ZHESVX

complex symmetric simple driver ‘ CSYSV Z5YSV
expert driver CSYSVX ZSYSVX

symmetric/Hermitian simple driver || SSPSV CHPSV DSPSV ZHPSV
indefinite (packed storage) expert driver || SSPSVX | CHPSVX || DSPSVX | ZHPSVX

complex symmetric simple driver CSPSV L8PSV
(packed storage) expert driver CSPSVX ZSPSVX

19

Table 2.3: Driver routines for linear least squares problems

Operation : . Single precision Double precision
real complex || real complex
solve LLS or using QR or LQ lactorization SGELS | CGELS || DGELS [ZGELS
solve LLS using complete crthogonal factorization || SGELSX | CGELSX || DGELSX | ZGELSX
golve LLS using SVD SGELSS | CGELSS || DGELSS | ZGELSS

2.2.2 Linear Least Squares Problems (LLS)

The linear least squares problem is:
minimize ||b~ Az|| (2.1)

where A is an m-by-n matrix, b is a given m element vector and z is the n element solution vector..
When m > n the problem is also referred to as finding a least-squares solution to an over-
determined system of linear equations, and when m < n the problem is also referred to as finding
a least-squares solution to an under-determined system of linear equations.

In the most usual case m > n and rank(A) = n, and in this case the solution to problem (2.1) is
unique. When m < n, or m > n and rank(A) < n, then the solntion is not unique. The particular
solution for which ||z||, is minimized is called the minimum norm solution.

The driver routine xGELS solves the problem (2.1) on the assumption that A has full rank, using
a QR or LQ factorization of A,

The driver routines xGELSX and xGELSS solve problem (2.1), allowing for the possibility that A
is rank-deficient; xGELSX uses a complete orthogonal factorization of A, while xGELSS uses
the singular value decomposition of A.

The routine xGELS (but not xGELSX or xGELSS) allows A to be replaced by A7 in the statement
of the problem. The linear least squares driver routines are listed in Table 2,3.

2.2.3 Standard Eigenvalue And Singular Value Problems
Symmetric eigenproblems (SEP)

The symmetric eigenvalue problem is to find the eigenvalues, A, and corresponding eigen-
vectors, z # (0, such that
Az =Xz, A= AT, where A is real.

For the Hermitian eigenvalue problem we have

Az =)z, A= A",

20

For both problems the eigenvalues A are real.

When all eigenvalues and eigenvectors have been computed, we write:
AZ = ZA

where A s a diagonal matrix whose diagonal elements are the eigenvalues and Z is an orthogonal
(or unitary) matrix whose columns are the eigenvectors,

Two types of driver routines are provided for symmetric or Hermitian eigenproblems:

v a simple driver (name énding -EV), which computes all the eigenvalues and (optionally) the
eigenvectors of a symmetric or Hermitian matrix 4;

¢ an expert driver (name ending -EVX), which can compute either all or a selected subset of
the eigenvalues, and (optionally) the corresponding eigenvectors;

Different driver routines are provided to take advantage of special structure or storage of the matrix
A, as shown in Table 2.4,

Nonsymmetric eigenproblems (NEP)

The nonsymmetric eigenvalue problem is to find the eigenvalues, A, and corresponding
eigenvectors, v # 0, such that

Av = M.
This problem can be solved via the Schur factorization of A4, defined in the real case as
A= 2727,

where Z in an orthogonal matrix and T is an upper quasi-triangular matrix with 1-by-1 and 2-by-2
diagonal blocks, the 2-by-2 blocks corresponding to complex conjugate pairs of eigenvalues of A.
In the complex case the Schur factorization is

A=2TZ%,
where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors, For each k£ (1 < k < n), the first k¥ columns of
Z form an orthonormal basis for the invariant subspace corresponding to the first k eigenvalues
on the diagonal of T, Because this basis is orthonormal, it is preferable in many applications to
compute Schur vectors rather than eigenvectors. It is possible to order the Schur factorization so
that any desired set of k eigenvalues occupy the & leading positicns on the diagonal of 7,

Two pairs of drivers are provided, one pair focusing on the Schur factorization, and the other pair
on the eigenvalues and eigenvectors as shown in Table 2.4:

o xGEES: a simple driver that computes all or part of the Schur factorlzatlon of A, with optional
ordering of the eigenvalues;

21

Table 2.4: Driver routines for standard eigenvalue and singulat valuc problems

Type of | Function and storage scheme Single precision Double precision
problem _ _r real | complex real | complex
SEP | simple driver - SSYEV [CHEEV [DSYEV |[ZHEEV
expert driver SSYEVX | CHEEVX || DSYEVX | ZHEEVX
simple driver (packed storage) SSPEV CHPEV DSPEV ZHPEV
expert driver (packed storage) SSPEVX | CHPEVX || DSPEVX | ZHPEVX
simple driver (band matrix) SSBEV CHBEV DSBEV ZHBEV
expert driver (band matrix) SSBEVX | CHBEVX || DSBEVX | ZHBEVX
simple driver (tridiagonal matrix) SSTEV DSTEV
expert driver (tridlagonal matrix) SSTEVX DSTEVX
NEP [simple driver for Schur factorization || SGEES | CGEES || DGEES | ZGLES
expert driver for Schur factorization || SGEESX | CGEESX || DGEESX | ZGEESX
simple driver for eigenvalues/vectors | SGEEV | CGEEV || DGEEV | ZGEWLV
expert driver for eigenvalues/vectors || SGEEVX | CGEEVX || DGEEVX | ZGEEVX
~|L_SVD | singular values/vectors | SGESVD [CGESVD [DGESVD [ZGESVD ||

¢ xGEESX: an expert driver that additionally can compute a condition number for the average
of a selected subset of the eigenvalues, and for the corresponding right Invariant subspace;

e xGEEV: a simple driver that computes all the eigenvalues of A, and (optionally) the right or
left eigenvectors (or both);

o xGEEVX: an expert driver that additionally can balance the matrix to improve the con-
ditioning of the eigenvalues and eigenvectors, and can compute condition numbers for the
eigenvalues or right eigenvectors (or both).

Singular value decomposition (SVD)

The singular value decomposition of an m-by-n matrix A is given by

A=ULVT A=ULVH (in the complex ca.se)‘,

where U and V are orthogonal (unitary) and £ is an m-by-n matrix with real diagonal elements,
oi, such that

gy 2 09 2>

O ningmm 2 0

The o; are the singular values of A and the first min(m,n) columns of U and V are the left
and right singular vectors of A. A single driver routine XxGESVD computes all or part of the
singular value decomposition of a general nonsymmetric matrix (see Table 2.4).

22

Table 2.5: Driver routines for generalized elgenvalue problems

Type of | Function and storage scheme Single precision Double precision
J_p_roblem real complex || real | complex
GSEP [simple driver SSYGV [CHEGV [DSYGV [ZHEGV
simple driver (packed storage) || SSPGV | CHPGV || DSPGV | ZHPGV

2.2.4 Generalized Eigenvalue Problems
Generalized symmetric-deﬁnite eigenproblems (GSEP)

Simple drivers are provided to compute all the eigenvalues and (optionally) the eigenvectors of the
following types of problems: :

1. Az = ABz
2. ABz = \z
3. BAz = Az

where A and B are symmetric or Hermitian and B is positive-definite, as shown in Table 2.5.

Generalized nonsymmetric eigenproblems (GNEP)

Routines for generalized nonsymmetric eigenproblems will be provided in a future release of LA-
PACK.

23

2.3 Computational routines

2.3.1 Linear Equations

We use the standard notation for a system of simultaneous linear equations:
Az =b | (2.2)

where A is the coefficient matrix, b is the right hand side, and z is the solution, A is assumed

to be a square matrix of order n, but the LU factorization Is provided for a general m-by-n matrix.
If there are several right hand sides, we write

AX =B (2.3)

where the columns of B are the individual right hand sides, and the columns of X are the corre-
sponding solutions. The basic task is to compute z, given A and b.

If A is upper or lower triangular, (2.2) can be solved by a straightforward process of backward or
forward substitution. Otherwise, the solution is obtained after first factorizing A as a product of
triangular matrices (and possibly also a diagonal matrix or permutation matrix).

The form of the factorization depends on the properties of the matrix A, LAPACK provides
routines for the following types of matrices, based on the stated factorizations:
e general matrices (LU factorization with partial pivoting):
A= PLU

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

o general band matrices (LU factorization with partial pivoting): If A is m-by-n with ki
subdiagonals and ku superdiagonals, the factorization is

A=LU

where L is a product of permutation and unit lower triangular matrices with ki subdiagonals,
and U is upper triangular with k! + ku superdiagonals.

¢ symmetric positive-definite matrices (Cholesky factorization):
A=UTU or A=LLT
where U is an upper triangular matrix and L is lower triangular.
o symmetric positive-definite tridiagonal matrices (LDLT factor ization):
A=UDUT or A=LDLT

where U is a unit upper bidiagonal matrix, L is unit lower bidiagonal, and D is diagonal.

24

¢ symmetric indefinite matrices (symmetric indefinite factorization):
A=UDUT or A=LDL”

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with diagonal blocks of order 1 or 2.

The factorization for a general tridiagonal matrix is like that for a general band matrix with kl = 1
and ku = 1. The factorization for a symmetric positive-definite band matrix with & superdiagonals
(or subdiagonals) has the same form as for a symmetric positive-definite matrix, but the factor
U (or L) is a band matrix with k superdiagonals (subdiagonals). Band matrices use a compact
band storage scheme described in section 5.3.3. LAPACK routines are also provided for symmetric
matrices (whether positive-definite or indefinite) using packed storage, as described in section 5.3.2.

While the primary use of a matrix factorization is to solve a system of equations, other related
tasks are provided as well. Wherever possible, LAPACK provides routines to perform each of these
tasks for each type of matrix and storage scheme (see Table 2.6). The following list relates the
tasks to the last 3 characters of the name of the corresponding computational routine:

xyyTRF: factorize (obviously not needed for triangular matrices);

xyyTRS: use the factorization (or the matrix A itself if it is triangular) to solve (2.3) by forward
or backward substitution;

xyyCON: estimate the reciprocal of the condition number x(A) = ||A|].]|A}|]; Higham’s modifi-
cation [33] of Hager’s method [30] is used to estimate ||A~!||, except for symmetric positive-
definite tridiagonal matrices for which it is computed directly with comparable efficiency [31];

xyyRFS: compute bounds on the error in the computed solution (returned by the xyyTRS rou-
tine), and refine the solution to reduce the backward error (see below);

xyyTRI: use the factorization (or the matrix A itself if it is triangular) to compute A~! (not
provided for band matrices, because the inverse does not in general preserve bandedness).

xyyEQU: compute scaling factors to equilibrate A (not provided for tridiagonal, symmetric in-
definite, or triangular matrices);

Note that some of the above routines depend on the output of others:

xyyTRF: may work on an equilibrated matrix from xyyEQU + xLAQyy, if yy is one of {GE, GB,
PO, PP, PB} (see driver routine xyySVX for sample usage);

xyyTRS: requires the factorization returned by xyyTRF;

xyyCON: requires the norm of the original matrix A, and the factorization returned by xyyTRF;

xyyRFS: requires the original matrices A and B, the factorization returned by xyyTRF, and the
solution X returned by xyyTRS;

25

Ho

xyyTRI: requires the factorization returned by xyyTRF.

The RFS (“refine solution”) routines perform iterative refinement and compute backward and
forward error bounds for the solution. Iterative refinement is done in the same precisior as the
input data. In particular, the residual is not computed with extra precision, as has been traditionally
done. The benefit of this procedure is discussed in Chapter 4.

26

N H“mwm LN IR TR L T I

5o g %lv N AR LR IR N AT

TR

AR AR Il

Table 2.6: Computational routines fur linear equations

Type of matrix Operation Single precision Double precision
and storage scheme real complex real complex
g neral factorize SGETRF | CGETRF || DGETRF | ZGETRF |
solve using factorization SGETRS | CGETRS || DGETRS | ZGETRS
estimate condition number | SGECON | CGECON || DGECON | ZGECON
error bounds for solution SGERFS | CGERFS || DGERFS | ZGERFS
invert using factorization SGETRI | CGETRI || DGETRI | ZGETRI
equilibrate SGEEQU | CGEEQU || DGEEQU | ZGEEQU
general factorize SGBTRF | CGBTRF || DGBTRF | ZGBTRF
band solve using factorization SGBTRS | CGBTRS || DGBTRS | ZGBTRS
estimate condition number | SGBCON | CGBCON || DGBCON | ZGBCON
error bounds for solution SGBRFS | CGBRFS || DGBRFS | ZGBRFS
equilibrate SGBEQU | CGBEQU || DGBEQU | ZGBEQU
general factorize SGTTRF { CGTTRF || DGTTRF | ZGTTRF
tridiagonal solve using factorization SGTTRS | CGTTRS || DGTTRS | ZGTTRS
estimate condition number | SGTCON | CGTCON || DGTCON | ZGTCON
error bounds for solution SGTRFS | CGTRFS || DGTRFS | ZGTRFS
symmetric/Hermitian | factorize SPOTRF | CPOTRF || DPOTRF [ZPOTRF
positive-definite solve using factorization SPOTRS | CPOTRS || DPOTRS | ZPOTRS
estiinate condition number || SPOCON | CPOCON || DPOCON | ZPOCON
error bounds for solution SPORFS | CPORFS | DPORFS | ZPORFS
invert using factorization SPOTRI | CPOTRI | DPOTRI | ZPOTRI
equilibrate SPOEQU | CPOEQU | DPOEQU | ZPOEQU
symmetric/Hermitian | factorize SPPTPF | CPPTRF || DPPTRF [ZPPTRF
positive-definite solve using factorization SPPTRS | CPPTRS || DPPTRS | ZPPTRS
(packed storage) estimate condition number || SPPCON | CPPCON || DPPCON | ZPPCON
error bounds for solution SPPRFS | CPPRFS || DPPRFS | ZPPRFS
invert using factorization SPPTRI | CPPTRI || DPPTRI | ZPPTRI
equilibrate SPPEQU | CPPEQU || DPPEQU | ZPPEQU
symmetric/Hermitian | factorize SPBTRF | CPBTRF || DPBTRF | ZPBTRF
positive-definite solve using factorization SPBTRS | CPBTRS || DPBTRS | ZPBTRS
band estimate condition number | SPBCON | CPBCON | DPBCON | ZPBCON
error bounds for solution SPBRFS | CPBRFS | DPBRFS | ZPBRFS
equilibrate SPBEQU | CPBEQU | DPBEQU | ZPBEQU
symmetric/Hermitian | factorize SPTTRF | CPTTRF || DPTTRF | ZPTTRF
positive-definite solve using factorization SPTTRS | CPTTRS | DPTTRS | ZPTTRS
tridiagonal estimate condition number || SPTCON | CPTCON || DPTCON | ZPTCON
error bounds for solution CPTRFS || DPTRFS | ZPTRFS

SPTRFS

27

Table 2.7: Computational routines for linear equations (continued)

Type of matrix Operation Single precision Double precision
and storage scheme real complex real complex
symmetric/Hermitian | factorize SSYTRF | CHETRF || DSYTRF | ZHETRF
indefinite solve using factorization SSYTRS | CHETRS || DSYTRS | ZHETRS
estimate condition number [SSYCON | CHECON || DSYCON | ZHECON
error bounds for solution || SSYRFS | CHERFS |-DSYRFS | ZHERFS
_ invert using factorization SSYTRI | CHETRI || DSYTRI | ZHETRI
complex symmetric factorize CSYTRF ZSYTRF
solve using factorization CSYTRS ZSYTRS
estimate condition number CSYCON ZSYCON
error bounds for solution CSYRFS ZSYRFS
invert using factorization CSYTRI ZSYTRI
symmetric/Hermitian | factorize SSPTRF | CHPTRF || DSPTRF | ZHPTRF
indefinite solve using factorization SSPTRS | CHPTRS || DSPTRS | ZHPTRS
(packed storage) estimate condition number || SSPCON | CHPCON || DSPCON | ZHPCON
error bounds for solution SSPRFS | CHPRFS || DSPRFS | ZHPRFS
invert using factorization SSPTRI | CHPTRI | DSPTRI | ZHPTRI
complex symmetric factorize CSPTRF ZSPTRF
(packed storage) solve using factorization CSPTRS ZSPTRS
estimate condition number CSPCON ZSPCON
error bounds for solution CSPRFS ZSPRFS
invert using factorization CSPTRI ZSPTRI
triangular solve STRTRS | CTRTRS || DTRTRS | ZTRTRS
estimate condition number || STRCON | CTRCON || DTRCON | ZTRCON
error bounds for solution STRRFS | CTRRFS || DTRRFS | ZTRRFS
invert STRTRI | CTRTRI || DTRTRI | ZTRTRI
triangular solve STPTRS | CTPTRS || DTPTRS | ZTPTRS
(packed storage) estimate condition number | STPCON | CTPCON || DTPCON | ZTPCON
error bounds for solution STPRFS | CTPRFS || DTPRFS | ZTPRFS
invert STPTRI | CTPTRI || DTPTRI | ZTPTRI
triangular solve STBTRS | CTBTRS || DTBTRS | ZTBTRS
band estimate condition number || STBCON | CTBCON || DTBCON | ZTBCON
error bounds for solution STBRFS | CTBRFS || DTBRFS | ZTBRFS

[N
Go

2.3.2 Orthogonal Factorizations

LAPACK provides a number of routines for performing orthogonal factorizations (unitary in the
complex case) of #.n m-by-n matrix A, for use in applications such as the solution of linear least
squares problems. They may also be used as steps in the solution of eigenvalue or singular value
problems.

The most common, and best known, of these factorizations is the QR factorization given by

A=Q(§), m > n,

where R is an n-by-n upper triangular matrix and @ is an m-by-m orthogonal (or unitary) matrix.
If A is of full rank n, then R is non-singular.

The routine xGEQRF performs the QR factorization. The matrix Q is not formed explicitly, but
is represented as a product of elementary reflectors, as described in section 5.4. Users need not be
aware of the details of this representation, because associated routines are provided to work with Q:
XORGQR (or xUNGQR in the complex case) can generate all or part of @, while xXORMQR. (or
xUNMQR) can multiply a given matrix by @ or its transpose (conjugate transpose if complex).

The QR factorization can be used to solve the linear least squares problem of equation (2.1) when
A is of full rank, since

¢ — Rz

-~

“b = A:sz =

, Wwherec= () =QTb (QHbin the complex case);

O O

2

¢ can be computed by xORMQR (or xtUNMQR) and then z is the solution of the upper triangular
system ‘
Rr=2¢

and the residual sum of squares is given by

”b‘ A"’”z = ”6“2

If A is not of full rank, or the rank of A is in doubt, then we can perform either a Q R factorization
with column pivoting or a singular value decomposition (see section 2.3.5). The QR factorization
with column pivoting is given by

A‘-—'Q(g)PTv m 2 n,
where @ and R are as before and P is a permutation matrix, chosen so that
_(B Rp
(%).

where Ry, is non-singular. The so-called basic solution to the linear least squares problem can be
obtained from this factorization.

29

Table 2.8: Computational routines for orthogonal factorizations

Type of factorization | Operation Single precision Double precision
and matrix real complex real complex
@ R, general factorize with pivoting || SGEQPF | CGEQPF | DGEQPF | ZGEQPF
factorize, no pivoting | SGEQRF | CGEQRF | DGEQRF | ZGEQRF
generate @ SORGQR | CUNGQR || DORGQR | ZUNGQR
multiply matrix by @ || SORMQR | CUNMQR || DORMQR | ZUNMQR
L@, general factorize, no pivoting || SGELQF | CGELQF | DGELQF | ZGELQF
generate @ SORGLQ | CUNGLQ || DORGLQ | ZUNGLQ
multiply matrix by @ || SORMLQ | CUNMLQ || DORMLQ | ZUNMLQ
Q@ L, general 1actorize, no pivoting SGEQLF | CGEQLF | DGEQLF | ZGEQLF
generate ¢ 1 SORGQL { CUNGQL |} DORGQL | ZUNGQL
multiply matrix by @ || SORMQL | CUNMQL || DORMQL | ZUNMQL
RQ, general factorize, no pivoting SGERQF | CGERQF || DGERQF | ZGERQF
generate @ SORGRQ | CUNGRQ || DORGRQ | ZUNGRQ
multiply matrix by @ || SORMRQ | CUNMRQ || DORMRQ | ZUNMRQ
RQ, trapezoidal factorize, no pivoting STZRQF | CTZRQF || DTZRQF | ZTZRQF

By applying further orthogonal (or unitary) transformations from the right to the upper trapezoidal
matrix (R11R12), using xXTZRQF, Ry2 can be eliminated:

(B R)Z=(FRy o)

This gives the complete orthogonal factorization

Ry 0,
A::Q(o 0)47‘

from which the minimum norm solution can be obtained. See Golub and Van Loan [28] for further
details.

Apart from the QR factorization, other flavors of orthogonal factorization are provided, namely
the L@, QL and RQ factorizations. These may be useful when m < n or when a lower triangular
matrix L is required rather than an upper triangular R. In fact, all four basic factorization routines
allow arbitrary m and n, so that in some cases the matrices R or L are trapezoidal rather than
triangular. A routine that performs pivoting is provided only for the Q R factorization.

As for the @ R factorization, associated routines are provided for the LQ, Q@ L, and RQ factorizations
either to generate Q (or part of it) explicitly, or to compute matrix products of the form QC, QTC
(or QHC), CQ or CQT (or CQH) without explicitly forming Q. See Table 2.8.

30

2.3.3 Symmetric Eigenproblem

Let A be a real symmetric or complex Hermitian n-by-n matrix. A scalar A is called an eigenvalue
and a nonzero column vector z the corresponding eigenvector if Az = Xz, A is always real when
A is real symmetric or complex Hermitian.

The basic task of the symmetric eigenproblem routines is to compute values of A and "optionally”
corresponding vectors z for a given matrix A.

This computation proceeds in the following stages:

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T.
If A is real symmetric this decomposition is 4 = QT'QT with Q orthogonal and T symmetric
tridiagonal. If A4 is complex Hermitian, the decomposition is A = QTQH with Q unitary and
T', as before, real symmetric tridiagonal.

2. The real symmetric tridiagonal matrix T is factorized as 7' = PAPT, where P is orthogonal
and A is diagonal. The diagonal entries of A are the eigenvalues of T' and the columns of P
the eigenvectors of T'. The eigenvectors of A are in turn the columns of Q P.

In the real case, the decomposition A = QTQT is computed by one of the routines xSYTRD,
xSPTRD, or xSBTRD, depending on whether the symmetric matrix is stored in a two-dimensional
matrix, as a packed matrix, or as a band matrix. The complex analogues of these routines are
called xHETRD, xHPTRD, and xHBTRD. The matrix @ is stored as a dense, packed, or banded
matrix, depending on the storage mode of A. A different routine is used for each storage mode
(xSYTRD, xSPTRD and xSBTRD for real 4, and xHETRD, xHPTRD and xHBTRD for complex
A, respectively). The matrix Q is stored in factored form by these routines. If A is real, the matrix
@ may be computed explicitly with the subroutine xORGTR, or it may be multiplied by another
matrix without forming @ explicitly using the subroutine xORMTR. If 4 is complex, one instead
uses the subroutines xXUNGTR and xUNMTR, respectively.

There are several routines for the computation 7' = PAPT to cover the cases of computing some or
all of the eigenvalues, and some or all of the eirenvectors, In addition, some routines run faster in

some computing environments or for some matrices than for others. Also, soine routines are more
accurate than other routines.

xSTEQR This routine uses the implicitly shifted QR algorithm of Wilkinson. It switches between
the QR and QL variants in order to handle graded matrices more effectively than the simple

QL variant that is provided by the EISPACK routines IMTQL1 and IMTQL2. See [29] for
details.

xSTERF This routine uses a square-root free version of QR, and can only compute all the eigen-
values, See [29] for details.

xPTEQR This routine applies to symmetric positive-definite tridiagonal matrices only. It uses a
combination of Cholesky factorization and bidiagonal QR iteration (see xBDSQR) and may
be significantly more accurate than the other routines. See [8, 13, 10] for details.

31

Table 2.9: Computational routines for the symmetric eigenproblem

Type of matrix

Operation

Single precision

Double precision

positive-definite

and storage scheme real complex real complex
dense symmetric tridiagonal reduction | SSYTRD [CHETRD | DSYTRD | ZHETRD
(or Hermitian) ‘ '
packed symmetric | tridiagonal reduction | SSPTRD | CHPTRD | DSPTRD | ZHPTRD
(or Hermitian)
band symmetric tridiagonal reduction SSBTRD | CHBTRD | DSBTRD | ZHBTRD
(or Hermitian) ‘
orthogonal/unitary | generate matrix after | SORGTR | CUNGTR | DORGTR | ZUNGTR
reduction by xXSYTRD
multiply matrix after | SORMTR | CUNMTR | DORMTR | ZUNMTR
reduction by xXSYTRD
orthogonal/unitary | generate matrix after | SOPGTR | CUPGTR [DOPGTR | ZUPGTR
(packed storage) reduction by xXSPTRD
multiply matrix after | SOPMTR | CUPMTR | DOPMTR | ZUPMTR
reduction by xSPTRD ,
symmetric eigenvalues/ SSTEQR | CSTEQR | DSTEQR | ZSTEQR
tridiagonal eigenvectors
eigenvalues only SSTERF DSTERF
via root-free QR
eigenvalues only SSTEBZ DSTEBZ
via bisection
eigenvectors by SSTEIN CSTEIN DSTEIN ZSTEIN
inverse iteration
symmetric eigenvalues/ SPTEQR | CPTEQR | DPTEQR | ZPTEQR
tridiagonal eigenvectors

XSTEBZ This routine uses bisection to compute some or all of the eigenvalues. Options provide
for computing all the eigenvalues in a real interval or all the eigenvalues from the ith to the
7P largest. It can be highly accurate, but may be adjusted to run faster if lower accuracy is

acceptable.

xSTEIN Given accurate eigenvalues, this routine uses inverse iteration to compute some or all of

the eigenvectors.

See Table 2.9.

32

2.3.4 Nonsymmetric Eigenproblem

Let A be a square n-by-n matrix. A scalar A Is called an eigenvalue and a non-zero column
vector ¢ the corresponding right eigenvector if Az = Az. A nonzero column vector y satisfying
yHA = MyH is called the left eigenvector (the superscript H denotes conjugate-transpose). The
first basic task of these routines is to compute all n values of A\ and, if desired, its associated
eigenvectors z and/or y for a given matrix A,

A second basic task is to compute the Schur decomposition of a matrix. If A is complex, then
its Schur decomposition is A = QTQH, where @ is unitary and T is upper triangular. If A Is
real, its Schur decomposition s A = QT'QT, where @ s orthogonal (the superscript 7' denotes
transpose) and T Is upper quasi-trlangular; thus, T' may have 2-by-2 as well as 1-by-1 blocks on its
diagonal. The columns of @ are called the Schur vectors of A. The eigenvalues of A appear on
the diagonal of T'; complex conjugate eigenvalues of a real A correspond to 2-by-2 blocks on the
diagonal of T'. The Schur form depends on the order of the ejgenvalues on the diagonal of T' and
this may optionally be chosen by the user. Suppose the user chooses that Aq,.. WA, 0< g <,
appear in the upper left corner of T'. Then the first j columns of ¢ span the right invariant
subspace of A corresponding to Ay, .. Cy A

The user may want to compute condition numbers as well as eigenvalues, eigenvectors, and the
Schur form, for these quantities. Routines for this purpose are provided as well,

These computations proceed in the following stages:

1. A general matrix A is reduced to upper Hessenberg form. If A is real this decomposition
is A =QHQT with @ orthogonal and H zero below the first subdiagonal, If A is complex,
this decomposition is 4 = QHQH with ¢ unitary and H as before.

2. The upper Hessenberg matrix H is reduced to Schur form H = PTPT (for H real) or
H = PTPH (for H complex). The matrix P may optionally be computed as well. The
eigenvalues are obtained from the diagonal of T'. This Is done by subroutine xHSEQR.

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. xHSEIN
performs inverse iteration on H to compute H's eigenvectors, and xTREVC computes the
eigenvectors of T'. One may optionally transform the right eigenvectors of H (or of T') to the
right eigenvectors of the original matrix A by multiplying them by Q (or by QP); the left
eigenvectors may be similarly transformed.

The reduction to Hessenberg form is performed by subroutine xGEHRD, which represents @) in a
factored form. If A is real, the matrix ¢ may be computed explicitly using subroutine xORGHR,
or multiplied by another matrix without forming it using subyoutine xORMHR. If A is complex,
one instead uses subroutines XUNGHR and xUNMHR, respectively.

In addition, the routine xGEBAL may be used to balance the matrix 4 prior to reduction to Hes-
senberg form. Balancing involves applying a similarity transformation with permutation matrices
to try to make A as nearly triangular as possible, and a diagonal similarity transformation to make
the rows and columns of A as close in norm in possible, These transformations can improve speed

33

and accuracy of later processing in some cases, xGEBAL performs the balancing, and xGEBAK
backtransforms the elgenvectors of the balanced matrix,

In addition to these basic routines, four other routines XTREXC, xTRSYL, xTRSNA and xTRSEN
are available for further processing,

1. xTREXC will move an eigenvalue (or 2-by-2 block) on the diagonal of the Schur form from
its original position to any other position. It may be used to choose the order In which
eigenvalues appear in the Schur form.,

2. XTRSYL solves the Sylvester matrix equation BX + XC = D for X given matrices B, ' and
D, with B and C (quasl) trlangular. It is used In the routines xTRSNA and xXTRSEN, but
it is also of independent interest.

3. XTRSNA computes the condition numbers of the eigenvalues and/or right elgenvectors of a
matrix T in Schur form. These are the same as the condition numbers of the eigenvalues and
right elgenvectors of the original matrix A from which T'Is derived. The user may compute
these condition numbers for all eigenvalue/eigenvector pairs, or for any selected subset. For
more detalls, see {7].

4, xXTRSEN moves a selected subset of the eigenvalues of a matrix 7' in Schur form to the upper
left corner of T', and optionally computes the condition numbers of their average value and of
their right invariant subspace. These are the same as the condition nuiabers of the average
elgenvalue and right invariant subspace of the original matrix A from which T' is derived. For
more details, see (7] (see Table 2.10).

2.3.5 Singular Value Decomposition

Let A be a general real m-by-n matrix. The singular value decom position (SVD) of A is the
factorization A = UDVT, where U/ and V are orthogonal, the superscript T denotes tranapose,
and ¥ = diag(oy,...04), 7 = min(m,n), and oy > -+ > g, 2 0. If A i8 complex, then its SVD is
A = UZVH where U and V are unitary, the superscript H denotes conjugate transpose, and 5 is
as before with real diagonal elements. The ¢; are called the singular values, the first » columns
of V the right singular vectors and the first 7 columns of U the left singular vectors,

The routines described in this section, and listed in Table 2.11, are used to compute this decom-
position. This computation proceeds in the following stages:

1. The matrix A is reduced to bidiagonal form: A4 = U; BV{T if A is real (A = U; BV if 4
is complex). Here U; and V) are orthogonal (unitary if A is complex), and B ls real and
bidiagonal. This means that B is nonzero only on the main diagonal and either on the first
superdiagonal (if m 2 n) or the first subdiagonal (if m < n).

2. The SVD of the bidlagonal matrix B is computed: B = U,ZVJ. Here U; and V; are
orthogonal and ¥ is diagonal as described above. The singular vectors of A are then U = U/,
and V = V|V,

34

‘Table 2.10: Computational routines for the nonsymmetric elgenproblem

Type of matrix

Operation

Single precision

Double preclsion

and storage scheme ‘ real complex real complex

general Hessenberg reduction | SGEHRD | CGEHRD | DGEHRD | ZGEHRD
balancing SGEBAL | CGEBAL | DGEBAL | ZGEBAL
backtransforming SGEBAK | CGEBAK | DGEBAK | ZGEBAK

orthogonal/unitary | generate matrix after | SORGHR | CUNGHR | DORGHR | ZUNGHR

‘ Hessenberg reduction

multiply matrix after | SORMHR | CUNMHR | DORMHR | ZUNMHR
Hessenberg reduction

Hessenberg Schur factorization SHSEQR | CHSEQR | DHSEQR | ZHSEQR
eigenvectors by SHSEIN CHSEIN DHSEIN ZUSEIN
Inverse lteration

(quasl)triangular elgenvectors STREVC | CTREVC | DTREVC | ZTREVC
reordering eigenvalues | STREXC | CTREXC | DTREXC | ZTREXC
Sylvester equation STRSYL | CTRSYL | DTRSYL | ZTRSYL
condition numbers of | STRSNA | CTRSNA | DTRSNA | ZTRSNA
elgenvalues/vectors ‘
condition numbers of | STRSEN | CTRSEN | DTRSEN | ZTRSEN

eigenvalue cluster/
invariant subspace

Table 2.11: Computational routines {or the singular value decomposition

Type of matrix Operation Single precision Double preclsion
and storage scheme real complex real complex
general bidiagonal reduction | SGEBRD | CGEBRD | DGEBRD | ZGEBRD
orthogonal/unitary | generate matrix after | SORGBR | CUNGBR | DORGBR | ZUNGBR
bidiagonal reduction
multiply matrix after | SORMBR [CUNMBR | DORMBR | ZUNMBR
bidlagonal reduction
bidiagonal singular values/ SBDSQR | CBDSQR | DBDSQR | ZBDSQR
singular vectors

This reduction to bidlagonal form is performed by the subroutine xGEBRD, which represeuts Uy
and Vy In factored form. If A s real, the matrices U; and Vi may be computed explicitly using
routine xORGBR, or multiplied by other matrices without forming them using routine xORMBR.
If A is complex, one instead uses xXUNGBR and xUNMBR, respectively, The SVD of the bidlagonal
matrix is computed by the subroutine xBDSQR. xBDSQR also has the option to mv itiply a separate

input matrix by the transpose of the right singular vectors; this feature ls used to suive least squares
problems,

xBDSQR is more accurate than its counterparts in LINPACK and EISPACK: barring underflow
and overflow, it computes all the singular values of B to nearly full relative precision, independent

of thelr magnitudes, It also computes the singular vectors much more accurately, See (13, 10] for
details, '

2.3.86 Generalized Symmetric-Definite Eigenproblems

This section is concerned with the solution of the generalized eigenvalue problems Az = A\Bu,
ABz = Az, and BAr = Az, where A and B are symmetric and B is positive definite. Each of these
problems can be reduced to the standard symmetric elgenvalue problem by factorizing B as elther
LLT or UTU through a Cholesky factorization and applying the factors to the matrix A.

For the matrix B, storing the lower triangle, we have B = LLT,
Az = ABz = (L7'AL™T)(LTz) = MLT2).

Hence the eigenvalues of Az =

ABz are those of Cy = Ay, where C ls the symmetric matrix
C=L"1AL"T and y = LT,

Similarly we have,
ABr =Xz = (LTAL)(LTz) = ML)

and,

36

Table 2.12: Computational routines for the generallzed symmaetric-definite eigenproblem
Type of matrix Operation Single preclsion Double precision
and storage scheme real complex | real complex
symmetric/Hermitlan | reduction | SSYGST | CHEGST | DSYGST | ZHBEGST
symmetric/Hermitlan | reduction [SSPGST | CHPGST | DSPGST | ZHPGST
(packed storage) '

BAz = Az = (LTAL)(L™'z)= A(L"'z).

When the matrix B is stored in the upper triangle, we have B = UTy,

Az =ABz = (U TAU-')Uz)= A(Uz),

ABx =Xz = (UAUT)(Uz)= A(Uz)
and,
BAz =Xz = (VAUT)U Tz)=ANU"T2).

Given A and a Cholesky factorization of B, the routines xyyGST overwrlte A with the matrix '
of the corresponding standard problem C'y = Ay (see Table 2.12). No special routines are needed
to recover the eigenvectors z of the generalized problem from the eigenvectors y of the standard
problem, because these computations are simple applications of Level 2 or Level 3 BLAS.

37

Chapter 3

Performance of LAPACK

Note: this chapter presents some performance figures for LAPACK routines. The figures are pro-
vided for illustration only, and should not be regarded as a definitive up-to-date statement of per-
formance. They have been selected from performance figures obtained in 1990-91 during the devel-
opment of LAPACK. Performance is affected by many factors that may change from time to time,
such as details of hardware (cycle time, cache size), compiler, and BLAS. To obtain up-to-date
performance figures, use the timing programs provided with LAFPACK.

3.1 Factors That Affect Performance

Can we provide portable software for computations in dense linear algebra that is efficient on a
wide range of modern high-performance computers? 1f so, how? Answering these questions — and
providing the desired software -— has been the goal of the LAPACK project.

LINPACK [15] and EISPACK [39, 27] have for many years provided high-quality portable software
for linear algebra; but on modern high-performance computers they often achieve only a small
fraction of the peak performance of the machines. Therefore, LAPACK has been designed to
supersede LINPACK and EISPACK, principally by achieving much greater efficiency —— but at the
same time also adding extra functionality, using some new -or improved algorithms, and integrating
the two sets of algorithms into a single package.

LAPACK was originally targeted to achieve good performance on single-processor vector machines
and on shared-memory multi-processor machines with a modest number of powerful processors.
Since the start of the project, another class of machines has emerged for which LAPACK software
is equally well-suited—the high-performance “super-scalar” workstations. (LAPACK is intended
to be used across the whole spectrum of modern computers, hut when considering performance,
the emphasis is on machines at the more powerful end of the spectrum.)

Here we discuss the main factors that affect the performance of linear algebra software on these
classes of machines.

38

Iy T

3.1.1 Vectorization

Designing vectorizable algorithms in linear algebra is usually straightfbrwa.rd. Indeed, for many

computations there are several variants, all vectorizable, but with different characteristics in perfor-
mance (see, for example, [22]). Linear algebra algorithms can come close to the peak performance
of many machines — principally because peak performance depends on some form of chaining of
vector addition and multiplication operations, and this is just what the algorithms require.

However, when the algorithms are realized in straightforward Fortran 77 code, the performance may
fall well short of the expected level, usually because vectorizing Fortran compilers fail to minimize
the number of memory references — that is, the number of vector load and store operations. This
brings us to the next factor.

3.1.2 Data movement

What often limits the actual performance of a vector—or scalar— floating-point unit is the rate of
transfer of data between different levels of memory in the machine. Examples include: the transfer
of vector operands in and out of vector registers, the transfer of scalar operands in and out of a
high-speed scalar processor, the movement of data between main memory and a high-speed cache
or local memory, and paging between actual memory and disk storage in a virtual memory system.

It is desirable to maximize the ratio of floating-point operations to memory references, and to re-
use data as much as possible while it is stored in the higher levels of the memory hierarchy (for
example, vector registers or high-speed cache).

A Fortran programmer has no explicit control over these types of data movement, although one

can often influence them by imposing a suitable structure on an algorithm.

3.1.3 Parallelism

The nested loop structure of most linear algebra algorithms offers considerable scope for loop-based
parallelism on shared-memory machines. This is the principal type of parallelism that LAPACK
at present aims to exploit. It can sometimes be generated automatically by a compiler, but often
requires the insertion of compiler directives.

3.2 The BLAS as the Key To Portability

How then can we hope to be able to achieve sufficient control over vectorization, data movement,

and parallelism in portable Fortran code, to obtain the levels of performance that machines can
offer?

The LAPACK strategy for combining efficiency with portability is to construct the software as
much as possible out of calls to the BLAS (Basic Linear Algebra Subprograms); the BLAS are used
as building blocks.

39

coulid e

Table 3.1: Speed in megaflops of Level 2 and Level 3 BLAS operations on a CRAY Y-MP

(a.ll matrices are of order 500; U is upper triangular)

| Number of processors: | 1{ 2| 4] 8]

Level 2: y «— aAz + fy 311 [611 | 1197 | 2285
Level 3: C —~ aAB + 8C | 312 | 623 | 1247 | 2425

Level 2: z — Uz 203 | 544 | 898 | 1613
Level 3: B~ UB 310 | 620 | 1240 | 2425
Level 2: z — U~z 272 {374 | 479 | 584
Level3: B — U-'B 309 | 618 | 1235 | 2398

The efficiency of LAPACK software depends on efficient implementations of the BLAS being pro-
vided by computer vendors (or others) for their machines. Thus the BLAS form a low-level interface
between LAPACK software and different machine architectures. Above this level, aimost all of the
LAPACK software is truly portable.

There are now three levels of BLAS:

Level 1 BLAS [38]: for vector operations, such as y —'az + y
Level 2 BLAS [18}: for matrix-vector operations, such as y «— aAz + By

Level 3 BLAS [17]: for matrix-matrix operations, such as C «— aAB + C

Here, A, B and C are matrices, z and y are vectors, and « and /3 are scalars.

The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: they
perform an insignificant fraction of the computation, and they cannot achieve high efficiency on
most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector-processors, such as a single
processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However on other vector processors,
such as a CRAY-2 or an IBM 3090 VF, their performance is limited by the rate of data movement
between different levels of memory.

This limitation is overcome by the Level 3 BLAS. which perform O(n?) floating-point operations
on O(n?) data, whereas the Level 2 BLAS perform only O(n?) operations on O(n?) data.

The BLAS also allow us to exploit parallelism in a way that is transparent to the software that
calls them. Even the Level 2 BLAS offer some scope for exploiting parallelism, but greater scope
is provided by the Level 3 BLAS, as Table 3.1 illustrates.

40

3.3 Block Algorithms And Their Derivation

It is comparatively straightforward to recode many of the algorithms in LINPACK and EISPACK
so that they call Level 2 BLAS. Indeed, in the simplest cases the same floating-point operations
are performed, possibly even in the same order: it is just a matter of reorganizing the software. To
illustrate this point we derive the Cholesky factorization algorithm that is used in the LINPACK
routine SPOFA, which factorizes a symmetric positive-definite matrix as A = UTU. Writing these
equations as:

' An a; A13 Ul"zi 0 0 Uu Uj U13
. oag; a]T = u;—; uj; 0 0 uyj u;"

and equating coefficients of the jt* column, we obtain:

R T, .
a; = Uju;

. T, . 2
ajj uj U; +ujj

Hence, if U1y has already been computed, we can compute %; and u;; from the equations:

Tu: = g
Uiyve; =
22

- g Ty
uj; = @jj — Uju;

Here is the body of the code of the LINPACK routine SPOFA, which implements the above method:

D030 J=1, N

INFO = J

S = 0.0E0

M1 = J -1

IF (JM1 .LT. 1) GO TO 20

DO 10 K = 1, JM1
T = A(K,J) - SDOT(K-1,A(1,K),1,A(1,3),1)
T = T/A(K,K)

AK,J) =T
S =S + T*T
i0 CONTINUE
20 CONTINUE
S = 4(J,)) -8
c ... EXIT

IF (S .LE. 0.0E0) GO TO 40
A(J,J) = SQRT(S)
30 CONTINUE

41

I

wihs

Cudk b

And here is the same computation recoded in “LAPACK-style” to use the Level 2 BLAS routine
STRSV (which solves a triangular system of equations). The call to STRSV has replaced the loop
over K which made several calls to the Level 1 BLAS routine SDOT. (For reasons given below, this
is not the actual code used in LAPACK — hence the term “LAPACK-style”.)

DO 10 J =1, N
CALL STRSV(’Upper’, ’Transpose’, ’Non-unit’, J-1, A, LDA,
$ A(L,D), 1)
S = A(J,J) - sSDOT(J-1, A(1,D), 1, AC(1,0), 1)
IF(S.LE.ZERO) GO TO 20
ACJ,J) = SQRT(S)
10 CONTINUE

This change by itself is sufficient to make big gains in performance on a number of machines— for
example, from 72 to 251 megaflops for a matrix of order 500 on one processor of a CRAY Y-MP.
Since this is 81% of the peak speed of matrix-matrix multiplication on this processor, we cannot
hope to do very much better by using Level 3 BLAS. ‘

On an IBM 3090E VF (using double precision) there is virtually no difference in performance he-
tween the LINPACK-style and the LAPACK-style code. Both run at about 23 megaflops. This is
unsatisfactory on a machine on which matrix-matrix multiplication can run at 75 megaflops. To
exploit the faster speed of Level 3 BLAS, the algorithms must undergo a deeper level of restruc-

turing, and be re-cast as a block algorithm — that is, an algorithm that operates on blocks or
submatrices of the original matrix.

To derive a block form of Cholesky factorization, we write the defining equation in partitioned form
thus:

Al Az A vL o 0 Unn Uiz Uis
Ay A |=| UL UL 0 0 Uz Uy
Ass vhL UL UL 0 0 Uss

Equating submatrices in the second block of columns, we obtain:

Az = UfiUsp
Az ULhUiz + ULUsz,

Hence, if Uy; has already been computed, we can compute Uy as the solution to the equation
UfiUiz = Arz
by a call to the Level 3 BLAS routine STRSM; and then we can compute Uy, from
ULUs = Ay — UL UL,

This involves first updating the symmetric submatrix As; by a call to the Level 3 BLAS routine
SSYRK, and then computing its Cholesky factorization. Since Fortran does not allow recursion, a
separate routine must be called (using Level 2 BLAS rather than Level 3), named SPOTF2 in the
code below. In this way successive blocks of columns of U are computed. Here is LAPACK-style

code for the block algorithm. In this code-fragment NB denotes the width of the blocks. .

42

Table 3.2: Speed in megaflops of Cholesky factorization A = UTU for n = 500

Machine: TBM 3090 VF | CRAY Y-MP | CRAY Y-MP
Number of processors: 1 1 8
j-variant: LINPACK 23 72 72
J-variant: using Level 2 BLAS 24 251 378
J-variant: using Level 3 BLAS 49 287 1225
i-variant: using Level 3 BLAS 50 290 1414

DO 10J =1, N, NB
JB = MIN(NB, N-J+1)
‘CALL STRSM(’Left’, 'Upper’, ’Transpose’, ’Non-unit’, J-1, JB,

$ ONE, A, LDA, A(1,]), LDA)
CALL SSYRK('Upper’, ’Transpose’, JB, J-1, -ONE, A(1,J), LDA,
$ ONE, A(J,J), LDA)

CALL SPOTF2(JB, A(J,J), LDA, INFO)
IF(INFO.NE.O) GO TO 20
10 CONTINUE

This code runs at 49 megaflops on a 3090, more than double the speed of the LINPACK code. On
a CRAY Y-MP, the use of Level 3 BLAS squeezes a little more performance out of one processor,
but makes a large improvement when using all 8 processors.

But that is not the end of the story, and the code given above is not the code that is actually
.used in the LAPACK routine SPOTRF. We mentioned in subsection 3.1.1 that for many linear
algebra computations there are several vectorizable variants, often referred to as i-, j- and k-
variants, according to a convention introduced in {22] and used in [28]. The same is true of the
corresponding block algorithms.

It turns out that the j-variant that was chosen for LINPACK, and used in the above examples, is
not the fastest on many machines, because it is based on solving triangular systems of equations,
which can be significantly slower than matrix-matrix multiplication. The variant actually used in
LAPACK is the i-variant, which does rely on matrix-matrix multiplication. '

Table 3.2 summarizes the results.

3.4 Examples of block algorithms in LAPACK

Having discussed in detail the derivation of one particular block algorithm, we now describe exam-
ples of the performance that has been achieved with a variety of block algorithms.

See Gallivan et al. (26] and Dongarra et al. [20] for an alternative survey of algorithms for dense
linear algebra on high-performance computers.

Table 3.3: Speed in megaflops of SGETRF/DGETRF for square matrices of order n

No. of Block Values of n

processors | size | 100 [200 | 300 [400 [500
IBM RISC/6000-530 1 32 19 25| 29 31 33
Alliant FX/8 8 16 9| 26| 32 46 57
IBM 3090J VF 1 64 23| 41| 52 58 63
Convex C-240 4 64 31 60 | 82 100 | 112
CRAY Y-MP 1 1 132 | 219 | 254 | 272 | 283
CRAY-2 1 64 110 | 211 [292 | 318} 358
Siemens/Fujitsu VP 400-EX | 1 64 46 | 132 | 222 | 309 | 397
NEC SX2 1 1 118 | 274 | 412 | 504 | 577
CRAY Y-MP 8 64 195 | 556 | 920 | 1188 | 1408

Table 3.4: Speed in megaflops of SPOTRF/DPOTRF for matrices of order n with UPLO = ‘U’

No. of Block Values of n

processors | size 100 | 200 | 300 | 400 | 500
IBM RISC/6000-530 1 32 21 29| 34 36 38
Alliant FX/8 8 16 10 | 27| 40 49 52
IBM 3090J VF 1 48 26 | 43| 56 62 67
Convex C-240 4 64 | 32| 63| 82 96 | 103
CRAY Y-MP 1 1 126 | 219 | 257 | 275 | 285
CRAY-2 1 64 109 | 213 | 294 | 318 | 362
Siemens/Fujitsu VP 400-EX 1 1 53 | 145 | 237 | 312 | 369
NEC 5X2 1 1 155 | 387 | 589 | 719 | 819
CRAY Y-MP 8 32 146 | 479 | 845 | 1164 | 1393

3.4.1 Factorizations for solving linear equations

The well-known LU and Cholesky factorizations are the simplest block algorithms to derive. No
extra floating-point operations nor extra working storage are required.

Table 3.3 illustrates the speed of the LAPACK routine for LU factorization of a real matrix,
SGETRF in single precision on CRAY machines, and DGETRF in double precision on all other
machines. Double precision corresponds to 64-bit floating point arithmetic on all machines tested.
A block size of 1 means that the unblocked algorithm is used, since it is faster than — or at least
as fast as — a blocked algorithm.

Table 3.4 gives similar results for Cholesky factorization, extending the results given in Table 3.2,

LAPACK, like LINPACK, provides a factorization for symmetric indefinite matrices, so that A is
factorized as PUDUT PT, where P is a permutation mairix, and D is block diagonal with blocks

44

Table 3.5: Speed in megaflops of SSYTRF for matrices of order n with UPLO = ‘U’ on u CRAY-2

Block Values of n
size 100 | 200 | 300 | 400 | 500
1 75 1128 | 164 | 164 | 176
64 78 | 160 | 213 | 249 | 281

of order 1 or 2. A block form of this algorithm has been derived, and is implemented in the
LAPACK routine SSYTRF/DSYTRF. It has to duplicate a little of the computation in order to
“look ahead” to determine the necessary row and column interchanges, but the extra work is more

than compensated for by the greater speed of updating the matrix by blocks, as is illustrated in
Table 3.5.

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The LIN-
PACK algorithms can easily be restructured to use Level 2 BLAS, though that has little effect on
performance for matrices of very narrow bandwidth. It is also possible to use Level 3 BLAS, at the
price of doing some extra work with zero elements outside the band [25]. This becomes worthwhile
for matrices of large order and semi-bandwidth greater than 100 or so.

3.4.2 QR factorization

The traditional algorithm for QR factorization is based on the use of elementary Householder
matrices of the general form ‘

H=1I-rvoT
where v is a column vector and 7 is a scalar. This leads to an algorithm with very good vector
performance, especially if coded to use Level 2 BLAS.

The key to developing a block form of this algorithm is to represent a product of b elementary
Householder matrices of order n as a block form of a Householder matrix. This can be done in
various ways. LAPACK uses the following form [38]:

H\Hy..Hy=1T-vTVT

where V is an n-by-b matrix whose columns are the individual vectors vy, v,, ..., vy associated with
the Householder matrices Hy, Hy,...,Hy, and T is an upper triangular matrix of order b. Extra
work is required to compute the elements of T, but once again this is compensated by the greater
speed of applying the block form. Table 3.6 summarizes results obtained with the LAPACK routine
SGEQRF/DGEQRF.

3.4.3 Eigenvalue problems

Eigenvalue problems have so far provided a less fertile ground for the development of block algo-
rithms than the factorizations so far described. Nevertheless, useful improvements in performance
have been obtained.

&
[wh]

Table 3.6: Speed In megaflops of SGEQRF/DGEQRF for square matrices of order n

No. of | Block Values of n

processors | size || 100 | 200 | 300 | 400 | 500
IBM RISC/6000-530 1 32 181 26 | 30| 32| 34
Alliant FX/8 8 16 11| 28| 39| 47| 50
IBM 3090J VF ' 1 32 28 | b4 | 68| 75| 80
Convex C-240 4 16 35| 65| 82| 97 | 106
CRAY Y-MP 1 1 177 | 253 | 276 | 286 | 292
CRAY-2 \ 1 32 105 | 208 | 269 | 303 | 326
Siemens/Fujitsu VP 400-EX 1 1 101 | 237 | 329 | 388 | 426
NEC §X2 1 1 217 | 498 | 617 | 690 | 768

The first step in solving many types of eigenvalue problems is to reduce the original matrix to a
“condensed form” by orthogonal transformations.

In @R factorizations, the unblocked algorithms all use elementary Householder matrices and have
good vector performance. Block forms of these algorithms have been developed [23], but all require
additional operations, and a significant proportion of the work must still be performed by Level 2
BLAS, so there is less possibility of compensating for the oxtra operations.

The algorithms concerned are:

e reduction of a symmetric matrix to tridiagonal form to solve a symmetric eigenvalue problem:
LAPACK routine SSYTRD applies a symmetric block update of the form

A= A-UXT-xUT
using the Level 3 BLAS routine SSYR2K; Level 3 BLAS account for at most half the work.

o reduction of a rectangular matrix to bidiagonal form to compute a singular value decompo-
sition: LAPACK routine SGEBRD applies a block update of the form

A—A-UXT_yvT

using two calls to the Level 3 BLAS routine SGEMM; Level 3 BLAS account for at most half
the work.

¢ reduction of a nonsymmetric matrix to Hessenberg form to solve a nonsymmetric eigenvalue
problem: LAPACK routine SGEHRD applies a block update of the form

A (I-VTTVT)A-XxVT)

Level 3 BLAS account for at most three-quarters of the work.

46

i

Table 3.7: Speed In megaflops of reductions to condensed forms on an IBM 30905 VF

(all matrices are square of order n)

Block Values of n

size || 128 | 256 | 384 | 512
SSYTRD | 1 5] 22| 26 27
16 15 26| 32| 34
SGEBRD 1 23 | 26| 28| 29
12 23| 33| 38 41
SGEHRD 1 271 29 30 30
24 36 | 51 57 | 58

~ Note that only in the reduction to Hessenberg form Is it possible to use the block Householder

representation described in subsection 3.4,2. Extra work must be performed to compute the n-
by-b matrices X and Y that are required for the block updates (b is the block-size) — and extra
workspace is needed to store them.

Nevertheless, the performance gains can be worthwhile on some machines, for example, on an IBM
3090, as shown in Table 3.7.

Following the reduction to condensed form, there is no scope for using Level 2 or Level 3 BLAS
in computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix, or in computing
the singular values and vectors of a bidiagonal matrix,

However, for computing the eigenvalues and eigenvectors of a Hessenberg matrix—or rather for
computing its Schur factorization— yet another flavour of block algorithm has been developed: a
multishift QR iteration [6]. Whereas the traditional EISPACK routine HQR uses a double shift
(and the corresponding complex routine COMQR uses a single shift), the multishift algorithm uses
block shifts of higher order. It has been found that the total number of operations decreases as the
order of shift is increased until a minimum is reached typically between 4 and 8; for higher orders
the number of operations increases quite rapidly., Because the speed of applying the shift increases
steadily with the order, the optimum order of shift is typically in the range 8-16.

47

Chapter 4

Accuracy and Stability

In addition to providing faster routines than previously available, LAPACK provides more com-
prehensive and better error bounds.

Our ultimate goal is to provide error bounds for all quantities computed by LAPACK, although
this work is not yet complete. It is beyond the scope of this manual to prove all these error bounds
are valid. Instead, we explain the overall approach, provide enough information to use the software,
and give references for further explanation. The leading comments of the individ ual routines should
be consulted for details, Much standard material on error analysis can be found in [28],

Traditional error bounds are based on the fact that the algorithms in LAPACK, like their prede-
cessors in LINPACK and EISPACK, are normwise backward stable; the tighter error bounds
provided by some LAPACK routines depend on algorithms which satisfy a stronger criterion called
componentwise relative backward stability,

In section 4.1 we discuss roundoff error. Section 4.2 discusses the vector and matrix norms we need
to measure errors, as well as other notation. Standard normwise error bounds satisfied by LAPACK
(as well as LINPACK and EISPACK) routines are reviewed in section 4.3. Section 4.4 discvsses
the new componentwise approach to error analysis used in some LAPACK routines. Section 4.5
discusses how to read and understand the error bounds stated in the following sections, 4.6 through
4.11, which present bounds for linear equation solving, least squares problems, the singular value
decomposition, the symmetric eigenproblem, the nonsymmetric eigenproblem, and the generalized
symmetric-definite eigenproblem, respectively. Section 4.12 discusses the impact of fast Level 3
BLAS on the accuracy of LAPACK routines.

4.1 Roundoff Errors in Floating Point Arithmetic

We will let € denote the machine precision, which is loosely described as the largest relative error
in any floating point operation which neither overflows nor underflows. In other words, it is the
smallest number satisfying

Fl(a®b)~ (¢ b) < c-ae o

48

- L

where ¢ and 6 are floating polnt numbers, ® 18 one of the four operations +, —, X and +, and
fl(a®b) Is the floating polnt result of a @ b. A preclse characterlzation of € depends on the detalls
of the machine arithmetic and even of the compller, I'or example, if addition and subtractlon are
implemented without a guard digit! we must redefine € to be the smallest number such that

|flla£b6) — (a£b)| < e (Ja] +[b])

There are many other parameters required to specify computer arithmetic, such as the overflow
threshold, underflow threshold, and so on. In order that LAPACK be portable, they are computed
at runtime by the auxiliary routine xLAMCH?,

Throughout our discussion, we will ignore overflow and significant underflow ln discussing error
bounds.

LAPACK routines are generally insensitive to the detalls of rounding, just as their counterparts in
LINPACK and EISPACK. One newer algorithm (xLASV2) can return significantly more accurate
results if addition and subtraction have a guard digit (see the end of section 4.8). Future releases
of LAPACK will contain more routines whose performance depends strongly on having accurate
and robust arithmetic, such as IEEE Standard Floating Point Arlthmetic [3).

4.2 Vector and Matrix Norms

Loosely speaking, a norm of a vector or matrix measures the size of its largest entry. This is true
for the norms we shall use, which are defined in Table 4.1,

Table 4,1: Vector and Matrix Normsg

Vector Matrix
infinity-norm |z]lco = max;|z;] [Alloe = max; Y-, |eis]
one-norm | =l = Zifedl A}l = max; 5= |aj;]|
two-norm ll2llz = (i l2il®)t/? | [|All2 = maxapo || Az|l2/||2]l2
Frobenlus norm | ||z||r = |2 [Allr = (5 lai;)2

The two-norm of A, ||A||z, is the largest singular value oyu(4) of A. The smallest singular
value, mingo [|Az||2/||z|l2, i8 denoted omin(A). These last two definitions make sense for rectan-
gular A as well (if A has more columns than rows, transpose A4 in the definition of omin). The two
norm, Frobenius norm, and singular values of a matrix do not change if It is multiplied by a real
orthogonal (or complex unitary) matrix.

kp(A) will denote ||Af}, -+ [|JA~|p for p = 1, 2 and oo, and A square and invertible.

We will denote the vector of absolute values of & by || (|z|i = |#i]), and similarly for |A| (|A];; =
lai;]). The dimensions of A will be n by n if not otherwise specified.

'This is the case on Cybers and current Crays.
*See subsection 2.1.3 for explanation of the naming convention used for LAPACK routines.

49

W \lh

4.3 Standard Error Analysis

We illustrate standard error analysis with the simple example of evaluallng the scalar function
¥ = f(z). Let the output of the subroutine which implements f(z) be denoted alg(z); this includes
the effects of roundoff, If alg(z) = f(z+ 6) where § s small, then we say alg Is a backward stable
algorithm for f, or that the backward error § is small. In other words, alg(z) s the exact value
of f at a slightly perturbed input z + 6.3

Suppose now that f s a smooth function, so that we may approximate it near z by a straight line:
f(z+6)~ f(2)+ f'(2) 6. Then we have the simple error estimate

alg(2) - f(2) = f(z + 6) = f(2) = f'(2) 6

Thus, if 6 is small, and the derivative f(z) is moderate, the error alg(z) — f(2) will be small4, This
is often written in the similar form

alg(z) - f(2)| . | f(2) 2
/(2) f(2)

M. ' 3 H u]g Z)-—/(Z) s 9 . 1 Nl
This approximately bounds the relative error "%FT_“ by the product of the condition number

of f at z, K(f, z), and the relative backward error | g-| Thus we get an error bound by multiplying
a condition number and a backward error (or bounds for these quantities). We call a problem ill-

conditioned if its condition number is large, and ill-posed if its condition number is infinite (or
does not exiat)8,

)

5 -
z

=x(r): 3|

1If f and z are vector quantities, then f/(z) is a matrix (the Jacobian). So instead of using absolute

values ag before, we now meagure ¢ by a vector norm |6 and f'(z) by a matrix norm || f/(2)||. The
conventional (and coarsest) error analysis uses the infinity norm (or similar norm). We therefore
call this normwise backward stability. For example, a normwise stable method for solving a
system of lnear equations Az = b will produce a solution # satisfying (A 4+ E)¢& = b + f where
HE|loo/||Alloc and || flloo/||blloc are both small (close to €). In this case the condition number is
Koo(A) = ||Alloo [|A7! |0 (see section 4.6 below).

Almost all the algorithms in LAPACK (as well as LINPACK and EISPACK) are stable in the sense
just described®: when applied to a matrix 4 they produce the exact result for a slightly different
matrix A + E, where || E||o0/||Allco 18 near e.

*Sometimes our algorithms satisfy only alg(z) = f(z + 8) + n where both 6§ and 7 are small. This does not
significantly change the following analysis.

‘More generally, we only need Lipschitz continuity of f, and may use the Lipschitz constant in place of f' in
deriving error bounds.

*This is a different use of the term ill-posed than used in other contexts. For example, to be well-posed (not
ill-posed) in the sense of Hadamard, it is sufficient for f to be continuous, whereas we require Lipschitz continuity.

®There are some caveats to this statement, When computing the inverse of a matrix, the backward error E is
small taking the columns of the computed inverse one at a time, with a different E for each column [24]. The same is
true when computing the eigenvectors of a nonsymmetric matrix. When computing the eigenvalues and eigenvectors
of A~AB, AB— M or BA— Al, with A symmetric and B symmetric and positive definite (using SSYGV or CHEGV)
then the method may nov be backward normwise stable if B has a large condition number koo (B), althcugh it has
useful error bounds in this case too (see section 4.11), Solving the Sylvester equation AX + X B = C for the matrix
X may not be backward stable, although there are again useful error bounds for X,

50

Condltion numbers may be expensive to compute exactly. For example, It costs O(n®) operations
to solve Az = b for a general matrix A4, and computing K.(A4) exactly is at least three tlmes
as expensive. But Keo(A) can be estimated in only O(n?) operations beyond those necessary
for solution. Therefore, most of LAPACK’s condition numbers and error bounds are based on
estimated condition numbers, using the method of [30, 32, 33). The price one pays for using an
estimator is occasional (but very rare) underestimates; years of experience attest to the rellability
of our estimators, although examples where they badly underestimate can be constructed [34]. In
partlcular, once an estimate ls large enough (usually O(1/¢)) it means that the computed answer
may be completely Incorrect, but the condition estimate itself may be a serious underestimate.

4.4 Improved Error Bounds

The standard error analysis just outlined has a drawback: by using the infinity norm 16]leo to
measure the backward error, entries of equal magnitude in 6 contribute equally to the final error
bound &(f, 2)(||6]|/||z||). This means that if z is sparse or has some very tiny entries, a normwise
backward stable algorithm may make very large changes in these entries compared to their original
values. If these tiny values are known accurately bv the user, these errors may be unacceptable, or
the error bounds may be unacceptably large.

For example, consider solving a diagonal system of linear equations Az = b. Each component of
the solution is computed accurately by Gaussian elimination: @; = b;/a;;. The usual error bound

is approximately €+ Keo(A4) = € - max; |ai;|/ min; |a;i|, which can arbltrarily overestimate the true
error,

LAPACK addresses this inadequacy by providing some algorithms whose backward error 6 Is a
tiny relative change in each component of z: |6;| = O(€)|2|. This backward error retains both the
sparsity structure of z as well as the information in tiny entries, These algorithms are therefore
called componentwise relative backward stable, Furthermore, computed error bounds reflect
this tinier backward error’,

If the input data has independent uncertainty in each component, each component must have at
least a small relative uncertainty, since each is a floating point number. In this case, the extra
uncertainty contributed by the algorithm is not much worse than the uncertainty in the input data,

so one could say the answer provided by a componentwise relative backward stable algorithm is as
accurate as the data deserves [1].

When solving Az = b using expert driver xyySVX or computational routine xyyRFS, for example,
this means that we (almost always) compute & satisfying (A + E)& = b + f, where ¢;; is a small
relative change in a;; and fx s a small relative change in by, In particular, if 4 is diagonal, the
corresponding error bound is always tiny, as one would expect (see the next section).

LAPACK can achieve this accuracy for linear equation solving, the bidiagonal singular value decom-
position, the symmetric tridiagonal eigenproblem, and provides facilities for achieving this accuracy

"For other algorithms, the answers (and computed error bounds) are as accurate as though the algorithms were
componentwise relative backward stable, even though they are not. These algorithms are called forward component.
wise relative stable,

51

for least squares problems. Future versions of LAPACK will also achleve this accuracy for other
linear algebra problems, as discussed below.

4.5 How to Read Error Bounds

Here we discuss some notation used in all the error biounds of later subsections,

All our bounds will contain the factor p(n) {or p(m,n)), which grows as a function of matrix
dimension n (or matrix dimensions m and n). It measures how errors can grow as a function of
matrix dimension, and represents a potentially different function for each prohlem. In practice, it
usually grows just linearly; p(n) < 10n Is often true. But we can generally only prove much weaker
bounds of the form p(n) = O(n®), since we can not rule out the extremely unlikely possibility of
rounding errors all adding together instead of canceling on average. Using p(n) = O(n®) would
give very pessimistic and unrealistic bounds, especially for large n, so we content ourselves with

describing p(n) as a “modestly growing” function of n, For detalled derivations of various p(n), see
28, 43).

There is also one situation where p(n) can grow as large as 2"~1: Gaussian elimination. This only
occurs on specially constructed matrices presented in numerical analysis courses {43, p. 212). Thus
we can assume p(n) < 10n in practice for Gaussian elimination too.

For linear equation and least squares solvers for Az = b, we will bound the relative error ||z —#||/||z||
in the computed solution & where z is the true solutnon (the choice of norm || - || will differ). For
eigenvalue problems we bound the error |A; — Ail in the i-th computed eigenvalue \;, where A; Is
the true i-th eigenvalue. For singular value problems we similarly bound |o; — &].

Bounding the error in computed eigenvectors and singular vectors 9; is more subtle because these
vectory are not unique: even though we restrict ||9iflz2 = 1 and |Jvi||z = 1, we may still multiply them
by arbitrary constants of absolute value 1, So to avoid ambiguity we bound the angular difference
between 9; and the true vector v;:

6(vi,?;) = acute angle between v; and ¥
= arccos [v/T ;| (4.1)

When 6(v;,#;) is small, one can choose a constant a with absolute value 1 so that ||av; — d'||; =~
6(v;, ;).

In addition to bounds for individual eigenvectors, we supply bounds for the spaces spanned by
collections of eigenvectors, because these may be much more accurately determined than the in-
dividual eigenvectors which span them. These spaces are called invariant subspace in the case of
eigenvectors, because if v is any vector in the space, Av is also in the space, where A is the matrix.

Again, we will use angle to measure the difference between a computed space § and the true space
S

#(S,8) = acute angle between S and §

= measxmm 6(s,3) or max mlnﬂ(a,ﬂ) (4.2)
s
a0 :sg Ao :#D

52

[Tl IHI

[T

We may compute (5. 8) as follows. Let & be a matrix whose columns are orthonormal and span
S, Similarly let § be a orthonormal matrix with columns spanning §. Then

9(S,S) = arccos ol SHS)
Finally, we remark on the accuracy of our bounds when they are large. Relative errors like
I|£ — z||/||z|| and angular errors like 6(8;,v;) are only of interest when they are much less than
L. We have correspondingly stated some bounds so that thev are not strictly true when they are
close to L. since rigorous bounds would have been mwore complicated and suppliod Hitle oxrra fnlor-
waiion in the interesting case of small errors. We have indicated these hownds by nsine the syl
S.oor fapproximately less than™, instead of the nsnal <. Thus, when these hounds are closo to L or

greater, they indicate that the computed answer may have no significant digits at all. but do not,
otherwise bound the error.

4.6 Error Bounds for Linear Equation Solving

The conventional error analysis of linear equation solving eoes as follows. Let tr = b Lo the svstom
to be solved, Let o be the solution computed by LAPNCK (or LINPACK) usiv s any of their lnear
equation solvers. Let r be the residual r = b — AZ. In the absence of rounding error » would be
zero and £ would equal r; with rounding error one can only say the following:

The normwise backward error wa, measured using the infinity norm. is the smallest

value of
Ly
RN RV I

suche that the computed solution & exactly satislies (V4 £y = b+ f.
backward error is given by

W, = H’”\ < il
R Y Y T P TR

where p(n) is a modestly growing function of n. The corresponding condition number
5 Kool) = A4 o - 1A Y e, The error £ — & is bounded by

The normwise

”i___i”L 52w s Kgl A)
izl

Approximations of K~(A) are computed by computational routines xy. CON (subsec-
tion 2.3 1) or LAPACK driver routines xyvyS VX (subsection 2.2.1).

Driver xyvSV X returns an estimate of 1/no(A) (called RCOND),

A stated o the last section, this approach does not respect the presence of zero or tiny entries in

A Dncountrast, the LAPACK comprtational routines xyvRES (subsection 2.3.1) or driver rontines

Xy v VX (sabsection 2.2.1) will (except in rare cases) compute a solution & owithe the [ollowing

nreanart ine.
Pl aeriiest

The componentwise backward error w, is the smallest value of

max { 1€l il
ik \ laij| bkl

(where we interpret 0/0 as 0) such that the computed solution Z exactly satisfies (A +

E)e = b+ f. The componentwise backward error is given by

|7 :
W, = max —————————— < p(n) €
SOATTE R
where p(n) is a modestly growing function of n. In other words, & is the exact solution
of the perturbed problem (A + £)f = b+ f where F and f are small relative pertur-
bations in each entry of 4 and b, respectively. The corresponding condition number is
k(A b,2) = | [ATY(A] - 18] + 18] [l /]|2]|cc- The error # — & is bounded by

Iz — 2l

T <we - Ke(Ayh, 7).

The routines xyyRFS and xyySVX return bounds on the componentwise relative back-
ward error w. (called BERR) and the actual error ||z — 2|/ /l|Z|js (called FERR).
xyySVX also returns an upper bound RCOND on the reciprocal of k.. (A).

Even in the rare cases where xyyRFS fails to make w. close to its minimum ¢, the error hound
computed by the routine may remain small. See [4] for details.

4.7 Error Bounds for Linear Least Squares Problems

The conventional error analysis of linear least squares problems goes as follows. The problem is
to find the r minimizing |4z — b||2. Let & be the solution computed by LAPACK using one of
the least squares drivers xXGELS, xGELSS or xGELSX (see subsection 2.2.2). We discuss the most
common case, where A is overdetermined (i.e., has more rows than columns) and has full rank [28]:

The computed solution # has a small normwise backward error. In other words &

minimizes |[(4 + E)Z - {b+ f)||., where
LET|2 l|f|l2> »
e (e) <7

where p(n) is a modestly growing function of n. Let ny(d) = Gmax(A)/ Tmin(1), p =
liAz — blla, and sin(8) = p/|lbll,. Then if p(n)e is small enough, the error & — r is
bounded by

llr = il

Il

‘ 2r,(A)
S plnje { cos{#)

+ tan((})ﬁg(:\)}

i I o

(T

et : T IR U IR T O R R T G IEEERTRRETN IEEEE e e ' ca

K2(A) = Tmax(A)/Omin(A) may be computed from the singular values of .{ returned
by xGELSS or xGESVD (in array S, sorted from largest to smallest). bl and p =

lAZ — bll2 (and then sin(8) = p/||b||2, cos(#) and tan(#)) may be easily computed from
the arguments of xGELSS.

If 4 is rank deficient, xGELSS and xGELSX can be used to regularize the problem by
treating all singular values less than a user-specified threshold (RCOND - Omax{4)) as
exactly zero. The number of singular values treated as nonzero is returned in RANK.
See [28] for error bounds in this case, as well as [11, 28] for the underdetermined case.

The solution of the overdetermined, full-rank problern may also be characterized as the solution of

the linear system of equations
I AN [r)_ [0
AT o z /] 0

By solving this linear system using xyyRFS or xyvSVX (see section 4.6) componentwise error
bounds can also be obtained [5].

4.8 Error Bounds for the Singular Value Decomposition

The singular value decomposition (SVD) of a real m by n matrix is the factorization A = USV7T
(4 = USVH in the complex case), where I/ and V are orthogonal (unitary) matrices and © =
diag(a1,. ..\ Oin(m.n)) is diagonal, with oy > gy > -+ > Tmin(m.n) 2 0. The ¢; are the singular

values of A and the leading min(m,n) columns u; of I7 and »; of V' the left and right singular
vectors, respectively,

The usual error analysis of the SVD algorithm xGESVD in LAPACK (see subsection 2.92.:) or the
routines in LINPACK and EISPACK is as follows [28, 37):

The computed SVD /SV'T s nearly the exact SVD of A + E, ie. A+ E = ([+
SU)S(V + 6V) is the true SVD, where NEN:/All2 € p(myn)e, ||6U) < p(m,n)e, and
16V < plm,n)e. Here plm,n) is a modestly growing function of m and n. Each
computed singular value &; differs from the true o, by at most

|60 — 0il < p(m,n) € o

Thus large singular values (those near o)) are computed to high relative accuracy and
small ones may not be. The singular values are returned in array S.

The angular difference between the computed singular vector i; and the true u; hy at
most about

-

B(i, u) 5

).
gap;

where gap, = min, g, [0, — 7] is the absolute gap between o, and the nearest other

(1M, n e

singular value. Thus, if o, is close to other singular values, its corresponding singular

n
1

vector u; may be inaccurate. The same bound applies to & and r;. The gaps may be
easily computed from the computed singular values in array S.

Let S be the space spanned by a collection of computed singular vectors {a;, i € I},

where 7 is a subset of the integers from 1 to n. Let § be the corresponding true space.

Then

0(8,8) 5 L)

gapr

where

gapy = r}'leiln loy —)]

Irs

is the absolute gap between the singular values in Z and the nearest other singular
value. Thus, a cluster of close singular values which is far away from any other singular
value may have a well determined space S even if its individual singnlar vectors are
ill-conditioned. The same bound applies to {b;, i€ I}.

In the special case of bidiagonal matrices. the singular values and singular vectors may be computed
much more accurately, A bidiagonal matrix B has nonzero entries only on the main diagonal and
the diagonal immediately above it {or immediately below it), xGESVD compntes the SVD of a
general matrix by first reducing it to bidiagonal form B, and then calling xBDSQR (subsection
2.3.3) to compute the SVD of B. Reduction of a dense matrix to bidiagonal form B can introduce
additional errors, so the following bounds for the bidiagonal case do not apply to the dense case®,

Each computed singular value of a bidiagonal matrix is accurate to nearly full relative
accuracy, no matter how tiny it is:

oy = < pluny-o o,
The computed singular vector @; has an angular ecror at most about

plon)e

Ol w) S
relgap,
where relgap, = minjg; |0y — 0;|/(0; + 0;) is the relative gap between o; and the
nearest other singular value. The same bound applies to @; and u;. Since the relative
gap may be much larger than the absolute gap, this error bound may be much smaller
than the previous one. The relative gaps may be easily computed from the singular
values in array S.

In the very special case of 2 by 2 bidiagonal matrices, xBDSQR. calls anxiliary routine xLAS\?2
to compute the SVD, xLASV2 will actually compute nearly correctly rounded singular vectors
independent of the relative gap. but this requires accurate computer arithmetic: if leading digits
cancel during floating point subtraction, the resulting difference must be exact. On machines
without guard digits one has the shightly weaker result that the algorithm is componentwise relative
backward stable.

"Recen work has extended some of these results to dense matrices {1], This work will appear in a later version

of LAPACK.

4.9 Error Bounds for the Symmetric Eigenproblem

The eigendecomposition of an n by n real symmetric matrix is the factorization A = ZAZT (A =
ZAZH in the complex Hermitian case), where Z is orthogonal (unitary) and A = diag(\(, ..., An) is
real and diagonal. The A; are the eigenvalues of A and the columns z; of Z are the eigenvectors.
This is also often written Az; = \;z;.

The usual error analysis of the symmetric eigenproblem (using any LAPACK routine in subsec-
tion 2.2.3 such as drivers xSYEV and xSYEVX, or any EISPACK routine) is as [ollows [37]:

The computed eigendecomposition ZAZT is nearly the exact eigendecompuosition of
A+ E e, A+E = (2 + bZ)/\(Z +62)T is the true eigendecomposition, where
N EN2/1lAllz € p(n)e and ||6Z]]z < p(n)e. Here p(n) is a modestly growing function of n.
Each computed eigenvalue A; differs from the true \; by at most

i = il < p(n) €]

2
Thus large eigenvalues (those near max;|\;| = [|]|2) are computed to high relative
accuracy and small ones may not be. The cigenvalves are returned in array 11,

The angular difference between the computed unit singular vector 3; and the true z; by
.+ at most about

. p(n)e
B(%i.20) S
gap;
if p(n)e is small enough, where gap; = minjzi |A\i — Aj| is the absolute gap between
A; and the nearest other eigenvalue. Thus, il A; is close to other eigenvalues, its corre-
i g) i B)
sponding eigenvector zp may be inaccurate, The gaps may be casily computed from the
computed eigenvaliues in array W,

Let $ be the space spanned by a collection of cigenvectors {2;,41 € T}, where 7 is a
subset of the integers from 1 to n. Let & be the corresponding true space. Then

where
gapr = min PV
1€1
is the absolute gap between the eigenvalues in 7 and the nearest other eigenvalue. Thus,
a cluster of close eigenvalues which is far away from any other eigenvalue may have a
well determined space S even if its individual cigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix 7, the cigenvalues and eigenvectors
can be computed much more accurately. xSYIEV (and the other symmetric cigenproblem drivers)
computes the cigenvalues and eigenvectors of a dense symmetrie matrix by first reducing it to
tridiagonal form T, and then finding the eigenvalues and eigenvectors of T Reduetion of a dense

W

it

matrix to tridiagonal form T' can introduce additional errors, so the following bounds for the
tridiagonal case do not apply to the dense case”.

The eigenvalues of T may be computed with small componentwise relative backward
error (O(¢€)) by using subroutine xSTEBZ (subsection 2.3.3) or driver xXSTEVX (subsec-
tion 2.2.3). If T is also positive definite, they may also be computed at least as accurately
by xPTEQR (subsection 2.3.3). To compute error bounds for the computed eigenvalues
A; we must make some assumptions about 7. The bounds discussed here are from (8]
Suppose T is positive definite, and write 7' = DAD where D = (ling(t:{?, o ,,],{12) and

ai; = 1. Then the computed eigenvalues A; can differ from the true eigenvalues A; by
1Ai = Xl € p(n) e ma(A) A

where p(n) is a modestly growing function of n. Thus if k3(A) is moderate, each
eigenvalue will be computed to high relative accuracy, no matter how tiny it is, The
eigenvectors z; computed by xPTEQR can differ from the true eigenvectors z; by at
most about ;
. p(n) e Ky 4
(3, 2 P mald)
relgap,

if p(n)e is small enough, where relgap; = minjg; [A;i = A;|/(Ai + A;) is the relative gap
between A; and the noarest other eigenvalue. Since the relative gap may be much larger
than the absolute gap, this error bound may be much smaller than the previous one.

Ka() could be computed by applying xPTSVX (subsection 2.2.1) or xPTCON (sub-
section 2.3.1) to 4. The relative gaps are easily computed from the eigenvalues.

For further results, including error bounds appropriate to indefinite matrices, see [8].

4.10 Error Bounds for the Nonsymmetric Eigenproblem
4.10.1 Summary

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem.

[n this subsection, as in previous sections, we will just summarize the bounds; in later subsections
we provide some further details.

Bounds for individual eigenvalues and eigenvectors are provided by driver xGEEVX (subsec-
tion 2.2.3) or computational routine XTRSNA (subsection 2.3.4). Bounds for clusters of eigen-
values and their associated invariant subspace are provided by driver xGEESX (subsection 2.2.3)
or computational routine xXTRSEN (subsection 2.3.4). Further details can be found in [7].

We et Ay be the -th computed eigenvalue and A; the i-th true eigenvalue. Let 8 Le the cor-
responding computed right cigenvector, and vy the true right eigenvector (so vy = Aoy). 101
is a subset of the integers from 1 to n, we let Az denote the average of the selectod eigenvalues:

“Recent work has extended some of these results to dense symmetric positive definite matrices [14], This work
will appear in a later version of LAPACK.

|

[l

A1 = (e A/ (Lier)y and similarly for Az, We also let Sz denote the subspace spanuned by
{viy i€ I} it is called a right invariant subspace because if v is any vector in S then Awv is also
in 7. &7 is the corresponding computed subspace, '

The algorithms for the nonsymmetric eigenproblem are backward stable: they compute the exact
eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices 4 + F, where

|IE|| € p(n)e. Some of the bounds are stated in terms of ||E||; and others in terms of || £||r; one

may use p(n)e for either quantity.

SGEEVX (or XTRSNA) returns two quantities for each Ay, 9; pair: s; and sep;. sGEESN (or
XTRSEN) returns two quantities for a sclected subset I of eigenvalues: s and sepr. The error
bounds in the Table 4.2 are true for sufficiently small || £]], whicliis why they are called asymptotic:

Table 4.2: Asymptotic error bounds for the Nonsymmetric Eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small |
Therefore, we also provide global bounds which are guaranteed to hold for all

Simple eigenvalue

i = M| S | Ell2/si

Eigenvalue cluster

A7 = Az| S ||&]]2/s7

AN s
Figenvector

O(i, v;) S || El #/sep;

[nvariant subspace

0

(S7.80) SN Er/sepr

|

|

<

I
& sep/d:

—~ ¢
4

Table 4.3: Global error bounds for the Nonsymmetric Eigenproblem

Simple eigenvalne

A= Nl <[]/ s } Holds for all

Figenvalue cluster A7 = Ar| < 20| B2/ s

Requires || I]| 5 < a7« sepgp/
<

Eigenvector 00, v;) < arctan(2)| £/ (sep; — A E#/5:) Requires || K| < s;«sep, /-
Invariant subspace | 8(S57,87) < arctan(2||E||p/(sepy — || E||1/s7)) | Requires [[E]|p < s7 - sepg /-

Finally, the quantities s and sep tell use how we can best (block) diagonalize a matrix 4 by a
similarity, V1AV = diag(Ay1,..., 4w), where each diagonal block Ay has a selected subset of
the eigenvalues of A. The goal is to choose a V with a nearly minimum condition number £y(V)
which performs this decomposition. This may be done as follows. Let A;; be n; by n;. Then
columns | + Jj;ll nj through ijl nj of V span the invariant subspace of A corresponding to the
cigenvahues of Ay these columns should be chosen to be any orthonormal basis of this space (as
computed by xGEESX, for example). Let s; be the value corresponding to the eluster of eigenvalues
of Ay as computed by xGEESX or xT'RSEN. Then ky(V) < b/ ming s;, and no other choice of V7
can make its condition number smaller than 1/ min; s;. Thus choosing orthonormal subblocks of
Vogets k(1) to within a factor b of its minimum value.

4.10.2 Balancing and Conditioning

There are two preprocessing steps one may perform on a matrix 4 in order to'make its eigenproblem
eagier, The first is permutation, or reordering the rows and columns to make A more nearly
upper triangular (closer to Schur form): A’ = PAPH, where P is a permutation matrix. If A’/
is permutable to upper triangular form (or close to it), then no floating point operations (or very

~ few) are needed to reduce it to Schur form. The second is scaling by a diagonal matrix D to

make the rows and columns of A’ more nearly equal in norm: A” = DA'D=', Scaling can make
the eigenvalues larger with respect to the matrix norm, and so possibly reduce the inaccuracy
contributed by roundoff [44, Chap 2/11]. We refer to these Lwo operations as balancing,

Balancing is performed by driver xGEEVX, which calls computational routine xGEBAL, The user
may tell xGEEVX to optionally permute, scale, do both, or do neither; this is specified by input
parameter BALANC. Permuting has no effect on the condition numbers or their interpretation as

described in previous subsections. Scaling, however, does change their interpretation, as we now
describe. -

The output parameters of XGEEVX ~ SCALE (real array of length N), ILO (integer), IHT (integoer)
and ABNRM (real) — describe the result of balancing a matrix A into A”, where N is the dimension
of A. The matrix A” is block upper triangular, with at most three blocks: from | to [LO=1, from
ILO to IHI, and from IHI4+1 to N. The first and last blocks are upper triangular, and so already
in Schur form. These are not scaled; only the block from ILO to I is scaled. Details of the
scaling and permutation are described in SCALE (see the specification of xGEEVX or xGEBAL
for details). The one norm of A” is returned in ABNRM.

The condition numbers described in earlier subsections are computed for the balanced matrix 17,
and so some interpretation is needed to apply them to the eigenvalues and eigenvectors of the
original matrix A. To use the bounds for eigenvalues in Tables 1.2 and 1.3, we must replace o,
and ex by O(€)||4"|| = O(¢€) - ABNRM. To use the bounds for eigenvectors, we also noed 1o take
into account that bounds on rotations of eigenvectors are for the eigenvectors 2/ of A”, which are
related to the eigenvectors ¢ of A by DPz = z”, or & = PTD~'a, One coarse but simple way to
do this is as follows: let #” be the bound on rotations of z” from the Perturbation Table, and let 6
be the desired bound on rotation of 2. Let

maxiLo<i<inr SCALE(Y)

k(D) = - — e
(miniLo<i<iH SCALE(¢)

be the condition number of D. Then

0 < arccos ((:059“)
S arccos ‘;‘-,2*‘(-/-5-)-

4.10.3 Computing s and sep

To explain s and sep, we need to introduce the spectral projector /I’ [10, 35]. and the separation
of two matrices A and B, sep(A, B) [40, 42].

60

We may assume the matrix A Is in Schur form, because reducing it to this form does not change
the values of s and sep. Consider a cluster of m > 1 eigenvalues, counting multiplicities, Further

assume the n by n matrix A is
_ [Aun A
A= (0 Ap (4.3)

where the eigenvalues of the m by m matrix A4, are exactly those in which we are interested. In
practice, if the eigenvalues on the diagonal of A are in the wrong order, routine xTREXC can be
used to put the desired ones in the upper left corner as shown,

We define the spectral projector, or simply projector P belonging to the eigenvalues of Ay as

(I. R
P~(; 0) (4.4)

where R satisfies the system of linear equations
AR - RAzp = Aqo (4.5)

Equation (4.5) is called a Sylvester equation. Giiven the Schur form (4.3), we solve equation (4.5)
for R using the subroutine xTRSYL.

We can now define s for the eigenvalues of A;;:
1 1
1Pl 1+ (IRI3

In practice we do not use this expression since ||R||2 is hard to compute. Instead we use the more
easily computed underestimate

8

(4.6)

1

L+[R[%

(4.7)

which can underestimate the true value of s by no more than a factor \/min(m,n — m). This
underestimation makes our error bounds more conservative.

The separation sep(Ay;, Agz) of the matrices A;; and Ayy is defined as the smallest singular value
of the linear map in (4.5) which takes X to 411 X — X Agq, l.e.

|41 X — X Agl|F
1 X7

This formulation lets us estimate sep(A;1, Ag3) using the condition estimator xLACQN (30, 32, 33],
which estimates the norm of a linear operator ||T||; = max; ¥, |ti;| given the ability to compute 7'z
and 77z quickly for arbitrary z. In our case, multiplying an arbitrary vector by 7' means solving
the Sylvester equation (4.5) with an arbitrary right hand side using xXTRSYL, and multiplying by
TT means solving the same equation with Aj; replaced by AT, and Agy replaced by A%,. Solving
either equation costs at most O(n®) operations, or as few as O(n?) if m < n. Since the true value
of sep is ||T||; but we use ||T||;, our estimate of sep may differ from the true value by as much as
Vm(n - m).

sep(A11, Ay2) = ?i% (4.8)

Another formulation which in principle permlits an exact evaluation of sep(A,y, dgp) s
SCP(AH, f122) = anl[n(ln..yn ® 1“111 - 4111’212 ® l",n) ('1.())

where X ©Y = [2;;Y] Is the Kronecker product of X and Y. This method ls generally Impractical,
however, because the matrix whose smallest singular value we need is m(n —m) dimensional, which
can be as large as n?/4. Thus we would require as much as O(n*) extra workspace and O(n®)
operations, much more than the estimation method of the last paragraph.

The expression sep(A;y, Ayy) measures the “separation” of the spectra of Ay and Agy in the
following sense. It is zerr: il and only if Ajy and Agy have a common eigenvalue, and small if there
is a small perturbation of either one that makes them have a common cigenvalue, If Ay and gy
arc both symmetric matrices, then sep(Ajq, Agz) is just the gap, or minimum distance between an
eigonvalue of Ayy and an eigenvalue of Azz. On the other hand, if A}, and Ayy are nonsymmetric,
sep(A1, A22) may be much smaller than than this gap.

In the case of a symmeltric matrix, ¢ = 1 and sep is the absolute gap, as defined in subsection 4.9,

4.11 Error bounds for the generalized symmetric-definite eigen-
problem

There are three types of problems to consider. In all cases A and B are real symmetric (or complex
Hermitian) and B is positive definite,

I A=Al The eigendecomposition may be written A = ZTAZ and [= ZTB7 (ov A = Z11AZ
and I =Z1"BZ il Aand B are complex), Iere A ds real and diagonal, and the columns z; of
Z are independent vectors, The diagonal entries A; = Ay are called eigenvalues and the z;
are eigenvectors. This may also be written Az =)\ Bz,

2. AB — Al The eigendecomposition may be written AB = ZAZ='. Here A is real diagonal
with diagonal entries A;, and the the columns z of Z are independent vectors. The A; are
called eigenvalues and the z; are eigenvectors. This may also be written ABz; = Az,

3. BA — Al. The eigendecomposition may be written BA = ZAZ~1. Here A is real diagonal
with diagonal entries A;, and the the columns 2; of Z are independent vectors., The \; are
called eigenvalues and the z; are eigenvectors, This may also be written BAz; = Az,

The error analysis of the driver routine xXSYGV, or xHEGV in the complex case (see subsection
2.2.4) goes as follows, In all cases gap; = minjx; |A; — Aj| is the absolute gap between \; and the
nearest other eigenvalue,

1. A= AB. The computed eigenvalues A; can differ from the true eigenvalues A; by at most
about

A= AL S pn) e B el Al

62

The angular difference between the computed eigenvector 2 and the true olgenvector 2 s

pln) e || B!

|2 [[A2« (ra(£3))!/*

B(2, 21)
0(Zi,2) & oD,

2, AB = A or BA = Al The computed elgenvalues ;\,‘ can differ from the true eigenvalues \;
by at most about
Ni = N S p(n) e || B2+ (|A

|2
The angular difference between the computed eigenvector 3 and the trine eigenvector = is
: g

a(n) - c | Bla - lAllz - (wa(1))/

gap;

i —zills 8

T'hese error bounds are large when B is ill-conditioned (kg(B) Is large). It is often the case that
the elgenvalues and eigenvectors are much better condltioned than indicated here, We mention two
ways to geb tighter bounds, The first way is effective when the diagonal entries of B differ widely
in magnitude!;

. A=AD Let D = (’lia.g;(Hrll/z, C .,B,T,{/Q) be a diagonal matrix, Then replace B by DBD
and A by DAD in the above bounds. ‘

20 AD = A or BA = NI, Let D = (lizmg‘(l}fll/z,. . 13,]}1/2) be a diagonal matrix, Then replace
B by DBD and A by D=1AD=1 in the above bounds,

Thesecond way to get tighter bounds does not actually supply guaranteed bonnds, but its estimates
are often better in practice. It is not guaranteed because it assumes the algorithimn is backward
stable, whicli is not necessarily true when £ is ill-conditioned. It estimates the chordal distance
between a true eigenvalue A; and a computed eigenvalue :\,‘:

: X(hi i) = i~ A

v/ TR

To interpret this measure we write A; = tan 8 and A; = tanf. Then ¥(\i, \i) = |sin((j - 8)]. Thus
X is bounded by one, and is small when both arguments are large!!, It applies only to the first
problem, 4 — AB,

Suppose a computed eigenvalue Nioof A= AB is the exact cigenvalue of a perturbaed
problem (A 4 £) = AN(B 4 F). Let a; be the unit eigenvector (f|ails = 1) Tor the exact

Y'TNis is true only il the Level 3 BLAS are implemented in a conventional way, not in a fast way as deseribed in

section 4,14,
HAnother interpretation of chordal distance s as half the usual Buclidean distance bhetween the projections of A,
and Ay on the Riemann sphere, Leo half the leugth of the chord connecting the projections,

G4

elgenvalue Ay Then AU E)] s small compared to || A]), and 0| F)] s small compared to
|]|, we have ' 4
[£ + 1| 1]

\/(alt Awg)? + (af Buy)e

Thus 1/\/ (e Aw)? + (el Br;)? 1s a conditlon number for elgenvalue A;,

Y(Aiy M) S

Other yet more refined algorithms and error bounds are discussed tn [S, 41, 43), and will he available
in future releasoes,

4.12 Error bounds for Fast Level 3 BLAS

The Level 3 BLAS specifications [17] specify the input, ottput and call sequence for each routine,
but allow freedom of implementation, subject to the requirement that the routines be numerically
stable. Level 3 BLAS implementations can therefore he bullt using matrix multiplication algo-
rithms that achieve a more favoralile operation count (for suitable dimensions) than the standard
multiplication techuigque, provided that these “fast™ algorithms are numerically stable, The most,
well-known fast matrix multiplication technique is Strassen’s method, which can multiply twon < n
matrices in fewer than 4.7n'%8 7 operations, where log, 7 = 2.807.

The effect on the results in this chapter of using a fast Levol 3 BLAS implementation can be
explained as follows. In general, reasonably implemented fast Level 3 BLAS preserve all the bounds
presented here (except those at the end of subsection 4.11), but the constant p(n) may increase
somewhat, Also, the iterative refinement routine xyyRF'S may take more stops to converge.

This is what we mean by reasonably implemented fust Lovel 3 BLAS, Here, ¢ denotes a constant
depending on the specified matrix dimensions,

(I s m=xmn, Bisnxpand C' s the computed approximation to C' = A, then

¢

Hﬁ = ABllee < ex(myn, p)el| Alleol| Blloo + O(c?).

(2) The computed solution X to the triangular systems 77X = 3, where 7" is m x m and B is m x p,
satisfies

NT'X = Bllso < eg(m,p)e||T

lco“-“?”co + O(CQ).

I'or conventional Level 3 BLAS implementations these conditions hold with ¢((m,n,p) = n? and
colmyp) = m{m+). Strassen’s method satisfies these bounds for slightly larger ¢ and ey,

For further details, and reforences to fast multiplication techniques, see [12],
l

64

Chapter b

Documentation and Software
Conventions

5.1 Design and Documentation of Argument Lists

The argument lists of all LAPACK routines conform to a single set of conventions for their design
and documentation.

specifications of all LAPACK driver and computational routines are given in Appendix F. These
are derived from the specifications given in the leading comments in the code, but In Appendix F
the specifications for real and complex versions of each routine have been merged, in order to save
space,

5.1.1 Structure of the Documentation

The documentation of each LAPACK routine includes:
o the SUBROUTINE or FUNCTION statement, followed by statements declaring the type and
dimensions of the arguments
e a summary of the Purpose of the routine
o descriptions of each of the Arguments in the order of the argument list
o (optionally) Further Details (only in the code, not in Appendix It)

¢ (optionally) Internal Parameters (only in the code, not in Appendis 1)

[4

5.1.2 Order of Arguments

Arguments of an LAPACK routine appear in the following order:

e argutients specifylug optlons

s problem dlmensions

e array or scalar arguments defining the lnput datay some of them may be overwritton by results
e other array or scalar arguments returning results

o work arrays (and associated array dimenslons)

o diagnostic argument INFO

5.1.3 Argument Descriptions

The style of the argument descriptions is illustrated by the following example:

N (input) INTEGER
The number of columns of the matrix A, N > 0.
A (input/output) REAL array, dimension (LDA,N)

On eatry, the m-by-n matrix to be factored,
On exit, the fuctors L and U from the factorization A = PLU; the
unit diagonal eletents of L are not, stored.

‘The description of each argument gives:

o a classilication of the argument as input, output, input/output or workspace;
o the type of the argument;
¢ (for an array) its dimension(s);

o a specification of the value(s) that must be supplied for the argument (if it’s an input argu-
ment), or of the value(s) returned by the routine (if it’s an output argument), or both (if it's
an input/output argument). In the last case, the two parts of the description are introduced
by the phrases “On entry” and “On exit”,

o (for a scalar input argument) any constraints that the supplied values must satisly (such as

“N > 0" in the example above).

5.1.4 Option Arguments

Arguments specifying options are usually of type CHARACTER*1. The meaning of each valid
value is given, as in this example:

UPLO (input) CHARACTER*I
= U Upper trinngle of A s stored;

= 'L" Lower triangle of A is gtored.

66

i (T

T

Tlie corresponding lower-case characters may be supplied (with the same meaning), but any other
value js illegal (see subsection 5.1.8).
A longer character string can be passed as the actual argument, making the calling program more

readable, but only the first character is significant. For example:

CALL SPOTRS (’upper’, . . .)

5.1.5 Problem Dimensions

[t is permissible for the problem dimensions to be passed as zero, in which case the computation
(or part of it) is skizped. Negative dimensions are regarded as erroneous.

5.1.6 Array Arguments

Each 2-dimensional array argument is immediately followed in the argument list by its leading
dimension. whose name has the form LD<array-name>. For example:

A (input/output) REAL/COMPLEX array, dimension (LDA,N)

LDA (input) INTEGER
The leading dimensicn of the array A. LDA > max(1,M).

[t should be assumed, unless stated otherwise, that vectors and matrices are stored in - and 2-
dimensional arrays in the conventional manner. That is, if an array X of dimension (N) Lolds a
vector o, then X(1) holds r, for i = 1.....n. If a 2-dimensional array A of dimension (LDAN)
bolds an m-by-n matrix A then A(.) holds a;, for 0= 1. .omand J = Lo...on (LDA must be
at least m). See Section 5.3 for more about storage of matrices.

Note that array arguments are usually declared in the software as assumed-size arrays (last dimen-
sion *), for example:

REAL A(LDA, *)

although the documentation gives the dimensions as (LDA.N). The latter form is more informative
since it specifies the required minimum value of the last dimension. However an assumed-size array
declaration has been used in the software, in order to overcome some limitations in the Fortran 77
standard. In particular it allows the routine to be called when the relevant dimension (N, in this
case) s zero. However actual array dimensions in the calling program must be at least 1 (LD \ in
this example).

5.1.7 Work Arrays

Many LAPACK routines require one or more work arravs to be passed as arguments, The name
of a work array is usnally WORK - sometimes IWORK or RWORK to distinguish work arravs of

67

]\H.Hll NI

integer or real type.

A number of routines implementing block algorithms require workspace sufficient to hold one block
of rows or columns of the matrix, for example, workspace of size n-by-nb, where nb is the block size.
In such cases, the actual declared length of the work array must be passed as a separate argument
LWORK, which immediately follows WORK in the argument-list.

See Section 3.2 for further explanation.

5.1.8 Error handling and the diagnostic argument INFO

All documented routines have a diagnostic argument INFO that indicates the success or failure of
thie computation, as follows:

¢ INFO = 0: successful termination
o INFO < 0: illegal value of one or more arguments - no computation performed

o INFO > 0: failure in the course of computation

All routines described in this document check that input arguments such as N or LD A or option
arguments of type character have permitted values. If an illegal value of the i** argument is
detected, the routine sets INFO = —i, and then calls an error-handling routine XERBLA.

The standard version of XERBLA issues an error messaga and halts execution, so that no LAPACK

routine would ever return to the calling program with INFO < 0. However this might occur if a
nou-standard version of NERBLA is nsed. ‘

5.2 Determining the block size for‘b‘lock algorithms

LAPACK routines that implement block algorithms need to determine what block size to use. The
intention behind the design of LAPACK is that the choice of block size should be hidden from users
as much as possible, but at the same time easily accessible to installers of the package when tuning
LAPACK for a particular machine.

LAPACK routines call an auxiliary enquiry function ILAENV, which returns the optimal block
size to be used, as well as other parameters. The version of ILAENV supplied with the package
contains default values that led to good behavior over a reasonable number of our test machines,
but to achieve optimal performance, it may be beneficial to tune ILAENV for your particular
machine environment. Ideally a distinct implementation of ILAENV is needed for each machine
environment (see also Chapter 6). The optimal block size may also depend on the routine, the
cotabination of option argurments (if any), and the problem dimensions.

[N ILAENV returns a block size of 1. then the rontine performs the unblocked algorithui, calling
Level 2 RLAS and makes no ealle to Lovel 3 RIAS,

68

"

Some LAPACK routines require a work array whose size is proportional to the block size {sco
subsection 5.1.7). The actual length of the work array is supplied as an argument LWORK. The
description of the arguments WORK and LWORK typically goes as follows:

WORK (workspace) REAL array, dimension (LWORK)
If INFO = 0, then WORK(1) returns the optimal LWORK.

LWCRK (input) INTEGER
The dimension of the array WORK. LWORK > max(1,N). For optimal perfor-
mance LWORK > N*NB, where NB is the optimal blocksize returned by ILAENV.

The routive determines the block size to be used by the following steps:

L. the optimal block size is determined by Cal.ling ILAENYV;

2. if the value of LWORK indicates that enough workspace has been supplied, the routine uses

the optimal block size;

3. otherwise, the routine determines the largest block size that can be used with the supplied
amount of workspace;

. if this new block size does not fall below a threshold value (also returned by ILAENV), the
routine uses the new value;

5. otherwise, the routine uses the unblocked algorithm.
The minimum value of LWORK that would be needed to use the optimal block size, is returned in
WORKI().

Thus. the routine uses the largest block size allowed by the amount of workspace supplied. as long
as this is likely to give better performance than the unblocked algorithm, WORK(1) is not always
a simple formula in terms of N and NB. The comments will specify a lower bound on LWORK for

correct functioning.

I LWORK indicates thal there is insufficient workspace to perform the unblocked algorithm, the
value of LWORK is regarded as an illegal value, and is treated like any other illegal argument value
(see subsection 5.1.8). l

I[f'in doubt about how much workspace to supply, users should supply a generous amount (assume
a block size of 64, say), and then examine the value of WORK(1) on exit.

5.3 Matrix storage schemes
LAPACK allows the following different storage schemes for matrices:

o conveutional storage in a 2-dimensional arrav;

[

69

hum W

[1

i

o packed storage for symmetric, Hermitian or triangular matrices;
e band storage for band matrices;

o the use of two or three 1-dimensional arrays to store tridiagonal or bidiagonal matrices.

These storage schemes are compatible with those used in LINPACK and the BLAS, but EISPACK
uses incompatible schemes for band and tridiagonal matrices.

In the examples below, # indicates an array element that need not be set and is not referenced
by LAPACK routines. Elements that “need not be set™ are never read, written to. or otherwise
accessed by the LAPACK routines. The examples illustrate only the relevant part of the arrays;
array arguments may of course have additional rows or columns, according to the usual rnles for
passing array arguments in Fortran 77. ‘

5.3.1 Conventional Storage

The default scheme for storing matrices is the obvious one described in subsection 5.1.6: a matrix
Ais stored in a 2-dimensional array A, with matrix clement a;, stored in array element A(d, j).

If a matrix is triangular (upper or lower, as specified by the argument UPLO), only the elements
of the relevant triangle are accessed. The remaining elements of the array need not be set. Such
clements are indicated by = in the examples below. For example, when n = 1;

UPLO Triangular matrix A Storage in arrav A
tyy . 3 g wyy Uyg ayp g
SR tyy Uzy iy ¥ Uy gy (yy
a3y gy * ¥ gy dpy
Ly * * * g4y
ayy a * * *
L 21 Uy ayy Qazy % *
a3y 4z daAzy a3 a3y a3z *
41 A4y Q43 Q44 a41 A4 Qq3 Oyy

Similarly, if the matrix is upper Hessenberg, elements below the first subdiagonal need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower
triangle of the matrix (as specified by UPLO) to be stored in the corresponding elements of the
array; the remaining elements of the array need not be set. For example, when n = [

-1
e

[UPLO Hermitian matrix A Storage in array A
ity dayp 1y (Ln\ gy gz g g

O i_im Gop Q23 (24 ¥ gy o3 Qg
13 (23 Qgy a3y * ¥ 3y 34

Ayg Qg4 d3aq Qaq ¥k ok (g

@11 @1 @31 G4 \ O

q, a1 @z a3y (:7—4'2 a1 Qg2 * *
a3y 3z 433 (143 31 dzp aggy *

Ayl gy gy gy A g2 gy gy

5.3.2 Packed Storage
Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by UPLO) is packed by columns in a 1-dimensional array. In LAPACK, arrays

that hold matrices in packed storage, have names ending in ‘P, So:

o if UPLO

‘U, g is stored in AP(i+ 57 = 1)/2) for i < J;

Il

o if UPLO = ‘L’ a;; is stored in AP(i 4 (2n — j)(j — 1)/2) for j < 4.

For example:

UPLO Triangular matrix A Packed storage in array AP
Q. Q12 Qi3 dyy
e Ay dpy Uy
{ . Ayp Ay Wpg Ly Ao e Qg Qg A3 Ay
33 (g S’ ~
44

/flxl

o a1 Q2

L

a3y agz a3y

ayp Qg9 dg3 4y

@11 A21 Ay 41 Uy 432 Agg 433 043 Q4y
41)

Note that for real or complex symmetric matrices, packing the upper triangle by columns is equiv-
alent to packing the lower triangle by rows; packing the lower triangle by columns is equivalent to
packing the upper triangle by rows. For complex Hermitian matrices, packing the upper triangle
by columns is equivalent to packing the conjugate of the lower triangle by rows; packing the lower
triangle by columns is equivalent to packing the conjugate of the upper triangle by rows.

5.3.3 Band Storage

A band matrix with A0 subdiagonals and Au superdiagonals may be stored compactly in a 2-
dimensional array with A 4+ ku + 1 rows and n columns. Columns of the matrix are stored in
corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.

This storage scheme should be used in practice only if &l ku < n, although LAPANCK routines
work carrect]ly for all values of AU and ku, In LAPACK, arrays that hold matrices in hand storage
have names ending in ‘B,

To be precise, aij is stored in AB(Au 4 14 i~ j,7) for max(1,j — ku) < ¢ < min(n,j + kl). For
example, when n = 5, kl = 2 and ku = 1:

Band matrix A Band storage in array AR
ity 2

* (g o gy (yn
Ly (. dpy
yy g dyy (g (gs
yy dyy (yy iy
gy (g gy (g *
gy gy gy Las

3y g2 sz % *
g3y ds4 (55 ! ’

The clements marked * in the upper left and lower right corners of the array AT need not be set,
and are not referenced by LAPACK routines.

Note: when a band matrix is supplied for LI/ factorization, space must be allowed to store an
additional k0 superdingonals, generated by fill-in as a result of row interchanges, This means that
the matrix is stored according to the above scheme, but with &0 4 ku superdiagonals.

Lriangular band matrices are stored in the same format, with either & = 0 if upper triangular, or
kw =0 if lower triangular,

Forsymmetric or Hermitian band matrices with Ad subdiagonals or superdiagonals, ouly the upper

or lower triangle (as specified by UPLOY need be stored:

o it UPLO = "L uy, is stored in AB{L 47— 4, j) for j <0< min(n, j + kd).

Forexample. when =5 and kd = 2:

UPLO Hermitian band matrix 4 Band storage in array AB
ayy Ay dyy

A1y gy 23 (o4 * ¥ Uyy (g Qag

‘U’ ()3 Q93 Q33 Q34 U35 ¥ G1p gy (3q dag

a4 34 Q44 Q45 @)1 G2 Q33 Qg4 sy

2135 fl45 sy

A Ggp 2y

A2y Gy (zy (g Wy Ggp gy gy sy
g W) Ung @uy (g dsy Uyl Uy gy gy *
(Lgy Ml yq (5, (Lyy (lyy gy * ¥

ny (rng (lsy

EISPACK routines use a different storage scheme for band matrices, in which rows of the matrix
are stored in corresponding rows of the array, and diagonals of the matrix are stored in columus of
the array.

vl

il

5.3.4 Tridiagonal and Bidiagonal Matrices

An unsymmetric tridiagonal matrix of order n is stored in three l-dimensional arrays, one of
length n containing the diagonal elements, and two of length n — 1 containing the subdiagonal and
superdiagonal elements in elements 1in — 1,

A symmetric tridiagonal or bidiagonal matrix is stored in two 1-dimensional arrays, one of length
n containing the diagonal elements, and one of length n — 1 containing the off-dlagonal elements.
(EISPACK routines store the off-diagonal elements in elements 21 n of a vector of length n,)

5.3.5 Unit Triangular Matrices

Some LAPACK routines have an option to handle unit triangular matrices (that is, triangular
matrices with diagonal elements = 1). This option is specified by an argument DIAG. If DIAG

= "0’ (Unit triangular), the diagonal elements of the matrix need not be stored, and the corre-
sponding array elements are not referenced by the LAPACK routines. The storage scheme for

“the rest of the matrix (whether conventional, packed or band) remains unchanged, as described in

subsections 5.3.1, 5.3.2 and 5.3.3.

5.3.6 Real Diagonal Elements of Complex Matrices

Complex Ilermitian matrices have diagonal matrices that are by definition purely real. In addition,
some complex triangular matrices computed by LAPACK routines are defined by the algorithm to
have real diagonal elements — in Cholesky or Q R factorization, for example.

[sueh matrices are supplied as input to LAPACK routines, the imaginary parts of the diagonal
cloments are not referenced, but are assumed o be zero, 10 such matrices are returned as output
by LAPACK routines, the computed imaginary parts are explicitly set to zero,

5.4 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted @) is often represented in LAPACK
as a product of elementary reflectors — also referred to as elementary Householder matrices
{usually denoted H;). For example,

Q = 11’1 [12 e [Ikv

Most users need not he aware of the details, because LAPACK routines are provided to work with
[his representation:

e routines whose names begin SORG- (real) or CUNG- (camplex) can generate all or part of
() explicitly;

e routines whose name begin SORM- (real) or CUNM- (complex) can multiply a given matrix
by @ or Q! without forming () explicitly.

The foIlowiﬁg further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of
the form

H=1- 7;'1)1)H (5'1)

where 7 is a scalar, and v is an n-vector, with |7|?||v||} = 2Re(r); v is often referred to as the
Householder vector, Often v has several leading or trailing zero elements, but for the purpose
of this discussion assume that H has no such special structure.

There is some redundancy in the representation (5.1), which can be removed in various ways. The
representation used in LAPACK (which differs from those used in LINPACK or EISPACK) sets
vy = 1; hence v; need not be stored. In real arithmetic, 1 < 7 < 2, except that 7 = 0 implies
H=1.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(r) € 2 and |r — 1] < 1. Thus
a complex H is not Hermitian (as it is in other representations), but it is unitary, which is the
important property. The advantage of allowing 7 to be complex is that, given an arbitrary complex
vector , H can be computed so that

Hz = f(1,0,...,0)"

with real 8. This is useful, for example, when reducing a complex Hermitian matrix to real
symmetric tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

74

Chapter 6

Installing LAPACK routines

6.1 Points to note

For anyone who obtains the complete LAPACK package from NAG (see Chapter 1), a comprehen-
sive installation guide will be provided. We recommend installation of the complete package as the
most convenient and reliable way to make LAPACK available,

People who obtain copies of a few LAPACK routines from netlib, need to be aware of the following
points:

1. Double precision complex routines (names beginning Z-) use a COMPLEX*16 data type.
This is an extension to the Fortran 77 standard, but is provided by many Fortran compilers
on machines where double precision computation is usual. The following related extensions
are also used: ‘

e the intrinsic function DCONJG, with argument and result of type COMPLEX*16;

e theintrinsic functions DBLE and DIMAG, with COMPLEX*16 argument and DOUBLE
PRECISION result, returning the real and imaginary parts respectively;

¢ the intrinsic function DCMPLX, with DOUBLE PRECISION argument(s) and COM-
PLEX*16 result;

¢ COMPLEX*16 constants, formed from a pair of double precision constants in parenthe-
ges.

Some compilers provide DOUBLE COMPLEX as an alternative to COMPLEX*16, and an
intrinsic function DREAL (rather than DBLE) may be used to return the real part of a
COMPLEX*16 argument. ‘

2. Machine-dependent parameters such as the block size, minimum block size, crossover point
when an blocked routine should be used, etc. are set by calls to an inquiry function ILAENV
which may be set with different values on each machine. See section 6.2 for more about
ILAENV.

75

3. SLAMCH/DLAMCH determines the propertles of the floating point arithmetic at runtime.
It tries to determine the roundoff level, underflow threshold, overflow threshold, radix and
related parameters. It works satisfactorily on all commercially important machines of which
we are aware, but will necessarily be updated from time to time as new machines and compilers
are produced.

6.2 Installing ILAENV

Machine-dependent parameters such as the block size are set by calls to an inquiry function which
may be set with different values on each machine. The declaration of the environment inquiry
- function Is

INTEGER FUNCTION ILAENV(ISPEC, NAME, OPTS, Ni, N2, N3, N4)

where ISPEC, N1, N2, N3, and N4 are integer variables and NAME and OPTS are CHARAC-
TER*(*). NAME specifies the subroutine name, OPTS is a character string of options to the sub-
routine, and N1-N4 are the problem dimensions. ISPEC specifies the parameter to be returned;
the following values are currently used in LAPACK:

ISPEC = 1: NB, optimal blocksize
= 2: NBMIN, minimum block size for the block routine to be used
= 31 NX, crossover point (in a block routine, for N < NX, an unblocked
routine should be used)
= 4: NS, number of shifts
= 6: NXSVD, crossover point for the SVD
= 8: MAXB, crossover point for block multishift QR

The three block size parameters, NB, NBMIN, and NX, are used in many different subroutines (see
Table 6.1). NS and MAXB are used in the block multishift QR algorithm, xHSEQR. NXSVD is
Jjust a constant multiple of N: 1.6 V; it is used in the driver routines xGELSS and xGESVD.

The LAPACK timing programs were designed to collect data for all the routines in Table 6.1. The
range of problem sizes needed to determine the optimal block size or crossover point is machine-
dependent, but the input files provided with the LAPACK test and timing package can be used
as a starting point. For subroutines that require a crossover point, it is best to start by finding
the best blocksize with the crossover point set to 0, and then to locate the point at which the
performance of the unblocked algorithm is beaten by the block algorithm. The best crossover point
will be somewhat smaller than the point where the curves for the unblocked and blocked methods
Cross.

For example, for SGEQRYF on a single processor of a CRAY-2, NB = 32 was observed to be a good
block size, and the performance of the block algorithm with this block size surpasses the unblocked
algorithm for square matrices between N = 176 and N = 192, Experiments with crossover points
from 64 to 192 found that NX = 128 v.as a good choice, although the results for NX from 3*NB

76

[REAL

| COMPLEX [NB [NBMIN JNX']

SGETRF | CCETRE .
SGBTRE | CGBTRE | o
SPOTRI* | CPOTRF .
SPBTRF | CPBTRF .
SSYTRF | CHETRF . »
CSYTRF ° o
SGETRI | CGETRI . .
SPOTRI | CPOTRI .
STRTRI | CTRTRI .
SGEQRIt | CCEQRET | o .
SORGQR! | CUNGQRT | e .
SORMQR! | CUNMQR! | o .
SGEHRD | CGEHRD | .
SSYTRD | CHETRD | .
SGEBRD | CGEBRD | e .
SSTEBZ .

t-also RQ, QL, and 1.Q
Table 6.1: Use of the block parameters NB, NGMIN, and NX in LAPACK

to 5*NB are broadly similar, This means that matrices with N < 128 should use the unblocked
algorithm, and for N > 128 block updates should be used until the remaining submatrix has order
less than 128, The performance of the unblocked (NB = 1) and blocked (NB = 32) algorithms for
SGEQRI and for the blocked algorithm with a crossover point of 128 are compared in Figure 6.1,

By experimenting with small values ol the block size, it should be straightforward to choose NBAIN,
the smallest block size that gives a performance improvement over the unblocked algorithm. Note
that on some machines, the optimal block size may be 1 (the unblocked algorithm gives the best
performance); in this case, the choice of NBMIN is arbitrary.

Complicating the determination of optimal parameters is the fact that the orthogonal factorization
routines and SGEBRD accept non-square matrices as input, The LAPACK timing program allows
Mand N to be varied independently. We have found the optimal blocksize to be generally insensitive
to the shape of the matrix, but the crossover point is more dependent on the matrix shape. For
example, if M >> N in the QR factorization, block updates may always be faster than unblocked
updates on the remaining submatrix. For example, one might set NX = NB if M > 2N,

Parameter values for the number of shifts, etc. used to tune the block multishift QR algorithm can
be varied from the input files to the eigenvalue timing program. Interested users should consult [2]
for a description of the timing program input files,

-3
-3

i \M I

MFLOPS

350

300

250

150

100

50

T

T

50 100 150 200 250 300 350 400 450 500

M = N = order of matrix»

Figure 6.1: QR factorization on CRAY-2 (1 processor)

78

Chapter 7

Troubleshooting

7.1 Failures or wrong results

Failures and wrong results can often be due to incorrect argument types or count in a subroutine
call, particularly when users are not familiar with Fortran. The following points give some common
mistakes, which are worth considering before assuming that the LAPACK routine is failing.

Array dimensions Check that array arguments are correctly dimensioned in the (sub)program
from which LAPACK is called. In particular, all two-dimensional array arguments in LA-
PACK have an associated leading dimension argument, which must be set to the value of

the first dimension of the array in the calling (sub)program. For example, SPOTRI" has the
calling sequence:

SUBRQUTINE SPOTRF(UPLO, N, A, LDA, INFO)

CHARACTER UPLO
INTEGER INFO, LDA, N
REAL AC LDA, *)

and so a calling program might have the structure:

PROGRAM MAIN

PARAMETER (NMAX = 100, LDA = NMAX)
REAL AC LDA, NMAX)

N = 50

CALL SPOTRF('Upper’, N, A, LDA, INFO)

Precision and type Check that arguments have the correct type declarations for the LAPACK
routine being called. In particular, the precision of real and complex arguments should

79

N L

matceh the preclsion belng used: REAL and COMPLEX for Sxxxxx and Cxxxxx routlnes,
and DOUBLE PRECISION and COMPLEX*16 for Dxxxxx and Zxxxxx routines.

Argument matching The order and the number of arguments should match the calling sequence,
Unfortunately most compllers accept, without complalnt, an incorrect calling sequence.

Workspace A number of LAPACK routines require one or more workspace arguments, Check
that sufficlent workspace is belng supplled to the LAPACK routine, Some LAPACK routines
that require workspace have an agsociated length argument agsoclated with the workspace
argument, (..., WORK, LWORK, ...) for example, and this should match the declared
length of the workspace,

INFO Check the parameter INFO on exit from an LAPACK routine. If an LAPACK routine
detects an error or failure, then a non-zero value of INFO is returned. For example, if
A ls not poslitive-definite, then the above routine SPOTRF cannot compute the Cholesky
factorization and returns a positive value of INFO,

Failures during installation Iu the course of running our LAPACK testcode on various machines
and compilers, a number of compiler and mathematical library bugs were discovered and
reported to the developers of these products. While these bugs are a rare cause of failure,

they do represent a possible reason for our testcode to indicate the presence of inaccuracies
during testing.

In addition to the above polnts, the LAPACK routine to determine machine parameters, SLAMCH
in single precision and DLAMCH in double preclsion, may have been incorrectly installed on your
machine. A simple test routine is supplied with LAPACK, so If there is any doubt this test should
be run, See Chapter 6 for further information.

7.2 Poor performance
To avoid poor performance of an LAPACK routine, please note the following recommendations:

BLAS Whenever possible, one should link to efficient versions of the BLAS for the machine being
used. A number of manufacturers supply highly efficient versions, and to gain the best
possible performance from LAPACK those versions should be used. A portable set of Fortran
77 BLAS are supplied with LAPACK, so that it is always possible to run LAPACK, but no
attempt has been made to tune these for specific machines.

ILAENV The LAPACK routine ILAENV returns machine dependent parameters, guch as the
block size, that are Important for the efficiency of many LAPACK routines, Correct installa-
tion of this routine is essential. See Chapter 6 for further information on installing ILAENV,

Workspace A number of the LAPACK routines require additional workspace, which is dependent
upon the block size, to work efficiently. The routines will work correctly with less than
the optimum workspace, but the efficiency may be compromised. For example, an unblocked

80

algorithm may be used in place of the blocked algorithm. Routines that require this additional
workspace return the value of the optimum workspace in the first element of the workspace

array and hence, if necessary, the workspace can be increased so that subsequent runs can be
performed with the optimum workspace.

xLAMCH The first call to xXLAMCH in a program may be quite expensive, as it attempts to
determine dynamically the parameters of the machine arithmetic. These values are saved
within the routine so that the cost of subsequent calls is trivial. A good practice is to include
a call to xLAMCH in the timing program, before any calls to LAPACK routines being timed,
for @‘(ample in single precision:
XXXXXX = SLAMCH('P’)

or in double precision:

XXXXXX = DLAMCH(’P’)

Installers way wish to save the values computed by SLAMCH/DLAMCH for a specific machine
and hard code them in DATA statements, provided that no accuracy is lost in the translation.

"1

T T

Bibliography

[1] E. ANDERSON, Z. Bai, C. Biscaor, J. W. DEMMEL, J. J. DoNgARRA, J. DuCRroz,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND S. D., LAPACK: A portable linear
algebra library for high-performance computers, Computer Science Dept. Technical Report
CS-90-105, University of Tennessee, Knoxville, 1990. (LAPACK Working Note #20).

(2] E. ANDERSON, J. J. DONGARRA, AND S. OSTROUCHOV, Implementation guide for LAPACK,
Computer Science Dept. Techuical Report CS-91-138, University of Tennessee, Knoxville, 1991.
(LAPACK Working Note #35).

(3] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, New York, Std 754-
1985 ed., 1985.

(4] M. ArioLr, J. W. DEMMEL, AND L. S. DUFF, Solving sparse linear systems with sparse
backward error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165-190.

[5] M. ArioLl, I. S. Durr, AND P. P. M. DE RUK, On the augmented system approach to sparse
least-squares problems, Num. Math., 55 (1989), pp. 667-684.

(6] Z. Ba1AND J. W. DEMMEL, On a block implementation of Hessenberg multishift QR iteration,

International Journal of High Speed Computing, 1 (19%9), pp. 97-112. (also LAPACK Working
Note #8; submitted to ACM Trans. Math. Soft.).

(7] 2. Bal, J. W. DEMMEL, AND A. McKENNEY, On the conditioning of the nonsymmetric
eigenproblem: Theéory and software, Computer Science Dept. Technical Report 469, Courant
Institute, New York, NY, October 1989. (LAPACK Working Note #13).

(8] J. BaArRLOW AND J. DEMMEL, Computing accurate eigensystems of scaled diagonally dominant
matrices, SIAM J. Num. Anal., 27 (1990), pp. 762-791.

(9] W. R. CowkLL, S. J. HAGUE, AND R. M. J. ILES, Toolpack/! Introductory Guide, Numerical
Algorithms Group Ltd, 1985. publication reference NP1007.

[10] P. DerrT, J. W, DEMMEL, L.-C. Li, AND C. ToMEl, The bidiagonal singular values de-
composition and Hamiltonian mechanics, SIAM J. Num. Anal., 28 (1991), pp. 1463-1516.
(LAPACK Working Note #11).

[11] J. W. DemMmeL anp N. J. HicHAM, Improved error bounds for underdetermined sys-
tems solvers, Computer Science Dept. Technical Report CS.90-113; Unijversity of Tennesses
Knoxville, 1990. (LAPACK Working Note #23; to appear in SIAM J. Mat. Anal. Appl.).

82

il

N [I

(12] , Stability of block algorithms with fast level § BLAS, Computer Science Dept. Technical
Report CS-90-110, University of Tennessee, Knoxville, 1990. (LAPACK Working Note #22;

to appear in ACM Trans. Math. Soft.).

(13] J. W. DEMMEL AND W. KAHAN, Accurate singular values of bidiagonal matrices, SIAM J.
Sci. Stat. Comput., 11 (1990), pp. 873-912.

(14) J. W. DEMMEL AND K. VESELIS, Jacobi’s method is more accurate than QR, Computer
Science Dept. Technical Report 468, Courant Institute, New York, NY, October 1989. (also
LAPACK Working Note #15), to appear in SIAM J. Mat. Anal. Appl.

[15) J. J. DoNGARRA, J. R. BuncH, C. B. MOLER, AND G. W. STEWART, LINPACK User’s
Guide, STAM, Philadelphia, PA, 1979.

(16] J. J. DONGARRA, J. DU Croz, I. S. DUFF, AND S. HAMMARLING, dlgorithm 679: A set of
Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 18-28.

[17] ——, A set of Level 8 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990),
pp. 1-17.

[18]) J. J. DoNGARRA, J. DU C'ROZ, S. HAMMARLING, AND R. J. HANsSON, Algorithm 656: An
extended set of FORTRAN Basic Linear Algebra Subroutines, ACM Trans. Math. Soft., 14
(1988), pp. 18-32.

(19] ——, An ertended set of fortran basic linear algebra subroutines, ACM Trans. Math. Soft., 14
(1988), pp. 1-17.

[20] J. J. DoNGARRA, I. S. DUFF, D. C. SORENSEN, AND H, A. VAN DER VORST, Solving Linear
Systems on Vector and Shared Memory Computers, STAM Publications, 1991,

(21] J. J. DONGARRA AND E. GROsSE, Distribution of mathematical software via electronic mail,
Communications of the ACM, 30 (1987), pp. 403-407.

[22] J. J. DoNGARRA, F. G. GUSTAFSON, AND A. KARP, Implementing linear algebra algorithms
for dense matrices on a vector pipeline machine, SIAM Review, 26 (1984), pp. 91-112.

[23] J. J. DONGARRA, S. HAMMARLING, AND D. C. SORENSEN, Block reduction of matrices
to condensed forms for eigenvalue computations, JCAM, 27 (1989), pp. 215-227. (LAPACK
Working Note #2).

[24] J. Du Croz AND N. J. HicuAM, Stability of methods for matriz inversion, IMA J. Num.
Anal., (1992). (LAPACK Working Note #27).

[25] J. Du Croz, P. J. D. MavyEes, AND G. RADICATI n1 BrozoLO, Factorizations of band
matrices using Level 8 BLAS, Computer Science Dept. 'l'echnical Report CS-90-109, University
of Tennessee, Knoxville, 1990. (LAPACK Working Note #21.

[26] K. A. GaLLivan, R, J. PLEMMONS, AND A, H. SaAMEH, Parallel algorithms for dense linear
algebra computations. SIAM Review, 32 (1990), pp. 54-135.

83

ull, il e

LT

[27] B. S. GarBow, J. M. BovtiEg, J. J. DoNGARRA, AND C., B, MOLER, Matriz Eigensystem
Routines - EISPACK Guide Ertension, vol. 51 of Lectuzre Notes in Computer Science, Springer-
Verlag, Berlin, 1977.

[28] G. GoLuB AND C. F. VAN LoAN, Matriz Computations, Johns Hopkins University Press,
Baltimore, MD, 2nd ed., 1989.

(29) A. GREENBAUM AND J. J. DONGARRA, Ezperiments with QL/QR methods for the symmetric
tridiagonal eigenproblem, Computer Science Dept. Technical Report CS-89-92, University of
Tennessee, Knoxville, 1989. (LAPACK Working Note #17).

[30] W. W. HAGER, Condition estimators, SIAM J. Sci. Stat. Ceruput., 5 (1984), pp. 311-316.

[31] N. J. HicHAM, Efficient algorithms for computing the condition number of a tridiagonal ma-
triz, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 150-165.

[32] ——, A survey of condition number estimation for triangular matrices, SIAM Review, 29
(1987), pp. 575-596.

(33] , FORTRAN codes for estimating the one-norm of a real or complex matrir, with appli-
cations to condition estimation, ACM Trans. Math. Soft., 14 (1988), pp. 381-396.
[34] ——, Ezperience with a matriz norm estimator, SIAM J. Sci. Stat. Comput., 11 (1990),

pp. 804-809.

[35] T. KATO, Perturbation Theory for Linear Operators, Springer Verlag, Berlin, 2 ed., 1980.

[36] C. L. Lawson, R. J. HansoN, D. KINcAID, AnND F. T. KROGH, Basic linear algebra
subprograms for fortran usage, ACM Trans. Math. Soft., 5 (1979), pp. 308-323.

[37] B. PARLETT, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ, 1980.

[38] R. ScHREIBER AND C. F. VAN LoaN, A storage efficient WY representation for products of
Householder transformations, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 5357,

[39] B. T. SmiTH, J. M. BovLg, J. J. DONGARRA, B. S. GarBOw, Y. IKEBE, V. C. KLEMA,
AND C. B. MoLER, Matriz Eigensystem Routines - EISPACK Guide, vol. 6 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1976.

[40] G. W. STEWART, Error and perturbation bounds for subspaces associated with certain eigen-
value problems, SIAM Review, 15 (1973), pp. 727-764.

[41] G. W. STEWART AND J.-G. SUN, Matriz Perturbation Theory, Academic Press, New York,
1990.

(42] J. VARAH, On the separation of two matrices, SIAM J. Num. Anal., 16 (1979), pp. 216-222.
[43] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

[44] J. H. WiLKINSON AND C. REINSCH, eds., Handbook for Automatic Computation, vol 2.:
Linear Algebra, Springer-Verlag, Heidelberg, 1971.

84

Appendix A

Index of Driver and Computational
Routines

Notes

1. This index lists related pairs of real and complex routines together, for example, SBDSQR

and CBDSQR.

2. Driver routines are listed in bold type, for example SGBSV and CGBSV,

3. Routines are listed in alphanumeric order of the real (single precision) routine name (which
always begins with §-). (See subsection 2.1.3 for details of the LAPACK naming scheme.)

1. Double precision routines are not listed here; they lave names beginning with D- instead of

S-.or Z- instead of C-.

5. This index gives only a brief description of the purpose of cach routine, For a precise descrip-

tion, consult the specifications in Appendix I, where the routines appear in the same order

as here,

6. The text of the descriptions applies to both real and complex routines, except where al-
ternative words or phrases are indicated, for example “symmetric/Hermitian”, “orthogo-

)

nal/unitary” or
(The same convention is used in Appendix F.)

-1

‘quasi-triangular/triangular”. For the real routines A% is equivalent to AT,

In a few cases, three routines are listed together, one for real symmetric, one for complex

symmetric, and one for complex Hermitian matrices (for example SSPCON, CSPCON and

CIHPCON).

S. A few roatines for real matrices have no complex equivalent (for example SSTEDBZ),

85

I
i

Routine Description
real complex . ’
SBDSQR CBDSQR Computes t;&.a“s-i‘n_‘f_gular value decomposition (SVD) of a real bidiag-
‘ onal matris, using the bidiagonal QR algorithm.

SGBCON CGBCON | Estimates tlie reciprocal of the condition number of a general band
matrix, in either the 1-nomi or the infinity-norm, using the LU fac-
torization computed by SGBTRF/CGBTRF.

SGBEQU CGBEQU | Computes row and column scalings to equilibrate a general band
matrix and reduce its condition number.

SGBRFS CGBRFS Improves the computed solution to a general banded system of linear
equations AX = B, ATX = B or A" X = B, and provides forward
and backward error bounds for the solution.

SGBSV CGBSYV Solves a general banded system of linear equations AX = B.

SGBSVX CGBSVX | Solves a general banded system of linear equations AX = B, ATX =
B or A X = B, and provides an estimate of the condition numbaer
and error bounds on the solution.

SGBTRF CGBTRF | Computesan LU factorization of a general band nmtrw using partial
pivoting with row interchanges.

SGBTRS CGBTRS Solves a general banded system of linear equations AX = B,
ATX = B or A"X = B, using the LU factorization computed by
SGBTRF/CGBTRF.

SGEBAK CGEBAK | Transforms eigenvectors of a balanced matrix to those of the original
matrix supplied to SGEBAL/CGEBAL.

SGEBAL CGLEBAL | Balances a general matrix in order to improve the accuracy of com-
puted eigenvalues.

SGEBRD CGEBRD Reduces a general rectangular matrix to real bidiagonal form by an
orthogonal/unitary transformation.

SGECON CGECON | Estimates the reciprocal of the condition number of a general matrix,
in either the l-norm or the infinity-norm, using the LU factorization
computed by SGETRF/CGETRF.

SGEEQU CGEEQU | Computes row and column scalings to equilibrate a general rectan-
gular matrix and reduce its condition number.

SGEES CGEES Computes the eigenvalues and Schur factorization of a general ma-
trix, and orders the factorization so that selected e1gcn'values are at
the top left of the Schur form.

SGEESX CGEESX | Computes the eigenvalues and Schur factorization of a general ma-
trix, orders the factorization so that selected eigenvalues are at the
top left of the Schur form, and computes reciprocal condition num-
bers for the average of the selected eigenvalues, and for the associated
right invariant subspace,

SGEEV CGEEV Computes the eigenvalues and left and right eigenvectors of a general
matrix.

SGEEVX CGEEVX | Computes the eigenvalues and left and right eigenvectors of a general

matrix, with preliminary balancing of the matrix, and computes re-
ciprocal condition numbers for the eigenvalues and right eiganvectors.

ol

R6

LI

N T

‘Routine Description

real complex

SGEHRD CGEHRD | Reduces a general matrix to upper Hessenberg form by an orthogo-
nal/unitary similarity transformation.

SGELQF CGELQYF | Computes an L) factorization of a general rectangular matrix.

SGELS CGELS Computes the least-squares solution to an over-determined system of

| linear equations, AX = B or AHX = B, or the minimum-norm solu-
tion of an under-determined system, where A is a general rectangular
matrix of full rank, using a QR or LQ factorization of A.

SGELSS CGELSS | Computes the minimum-norm least-squares solution to an over- or
under-determined system of linear equations AX = B, using the
singular value decomposition of A.

SGELSX CGELSX | Computes the minimum-norm least-squares solution to an over- or
under-determined system of linear equations AX = B, using a com-

' plete orthogonal factorization of A.

SGEQLF CGEQLF | Computes a QL factorization of a general rectangular matrix.

SGEQPEF CGEQPF | Computes a QR factorization with column pivoting of a general rect-
angular matrix,

SGEQRF CGEQRF | Computes a QR factorization of a general rectangular matrix,

SGERFS CGERFS Improves the computed solution to a general system of linear equa-
tions AX = B, ATX = B or AHX = B, and provides forward and
backward error bounds for the solution.

SGERQF CGERQF | Computes an R factorization of a general rectangular matrix.

SGESV CGESV Solves a general system of linear equations AX = B,

SGESVD CGESVD | Computes the singular value decomposition (SVD) of a general rect-
angular matrix.

SGESVX CGESVX | Solves a general system of linear equations AN = £, ATX = I} or
AHX = B, and provides an cstimate of the condition number and
error bounds on the solution,

SGETRF CGETRF | Computes an LU factorization of a general matrix, using partial
pivoting with row interchanges.

SGETRI CGETRI Computes the inverse of a general matrix, using the LU factorization
computed by SGETRF/CGETRF.

SGETRS CGETRS | Solves a general system of linear equations AX = B, ATX =
B or AHX = B, using the LU factorization computed by
SGETRF/CGETRF.

SGTCON CGTCON | Estimates the reciprocal of the condition number of a general tridi-
agonal matrix, in either the 1-norm or the infinity-norm, using the
LU factorization computed by SGTTRF/CGTTRY.

SGTRIS CGTRFS Improves the computed solution to a general tridiagonal system of
linear equations AX = B, ATX = B or A"X = B, and provides
forward and backward error bounds for the solution.

SGTSV CGTSV Solves a general tridiagonal system of linear equations AN = B,

(AT

P

87

Routine Description
real complex
SGTSVX CGTSVX | Solves a general tridiagonal system of linear equations AX = B,
| ATX = B or A" X = B, and provides an estimate of the condition

number and error bounds on the solution.

SGTTRF CGTTRF | Computes an LU factorization of a general tridiagonal matrix, using
partial pivoting with row interchanges.

SGTTRS CGTTRS | Solves a general tridiagonal system of linear equations AX = B,
ATX = B or AHX = B, using the LU factorization computed by
SGTTRF/CGTTREF.

SHSEIN CHSEIN Computes specified right and/or left eigenvectors of an upper Hes-

o senberg matrix by inverse iteration.

SHSEQR CHSEQR Computes the eigenvalues and Schur factorization of an upper Hes-
senberg matrix, using the multishift () R algorithm.

SOPGTR CUPGTR | Generates the orthogonal/unitary transformation matrix from a re-
duction to tridiagonal form determined by SSPTRD/CHPTRD.

SOPMTR CUPMTR | Multiplies a general matrix by the orthogonal/unitary transforma-
tion matrix from a reduction to tridiagonal form determined by
SSPTRD/CHPTRD.

SORGBR CUNGBR | Generates the orthogonal/unitary transformation matrices {rom a
reduction to bidiagonal form determined by SGEBRD/CGEBRD.

SORGHR CUNGHR | Generates the orthogonal/unitary transformation matrix from a re-
duction to Hessenberg form determined by SGEHRD/CGEHRD.

SORGLQ CUNGLQ | Generates all or part of the orthogonal/unitary matrix @ from an
LQ factorization determined by SGELQF/CGELQF.

SORGQL CUNGQL | Generates all or part of the orthogonal/unitary matrix @ from a QL
factorization determined by SGEQLYF/CGEQLF.

SORGQR CUNGQR | Generates all or part of the orthogonal/unitary matrix @ from a Q2
factorization determined by SGEQRF/CGEQRF,

SORGRQ CUNGRQ | Generates all or part of the orthogonal/unitary matrix @ from an
RQ) factorization determined by SGERQF/CGERQF.

SORGTR CUNGTR | Generates the orthogonal/unitary transformation matrix from a re-
duction to tridiagonal form determined by SSYTRD/CHETRD.

SORMBR CUNMBR | Multiplies a general matrix by one of the orthogonal/unitary trans-
formation matrices from a reduction to bidiagonal form determined
by SGEBRD/CGEBRD.

SORMHR CUNMHR | Multiplies a general matrix by the orthogonal/unitary transforma-
tion matrix from a reduction to Hessenberg form determined by
SGEHRD/CGEHRD.

SORMLQ CUNMLQ | Multiplies a general matrix by the orthogonal/unitary matrix from
an LQ factorization determined by SGELQYF/CGELQF.

SORMQL CUNMQL | Multiplies a general matrix by the orthogonal/unitary matrix from
a @ L factorization determined by SGEQLF/CGEQLF.

SORMQR CUNMQR | Multiplies a general matrix by the orthogonal/unitary matrix from

a Q R factorization determined by SGEQRF/CGEQRF.

88

Rottine

real complex

Description

SORMRQ CUNMRQ

SORMTR CUNMTR

SPBCON CPBCON

SPBEQU CPBEQU

SPBRFS CPBRFS

SPBSV CPBSV

SPBSVX CPBSVX

SPBTRF CPBTRF

SPBTRS CPBTRS

SPOCON ('POCON

'SPOEQU CPOEQU

SPORFS CPORFS

SPOSV CPOSV

SPOSVX CPOSVX

SPOTREF CPOTRFE

SPOTRI CPOTRI

Multiplies a general matrix by the orthogonal/unitary matrix from
an R(Q) factorization determined by SGERQF/CGERQF.

Multiplies a general matrix by the orthogonal/unitary transforma-
tion matrix from a reduction to tridiagonal form determined by
SSYTRD/CHETRD,

Estimates the reciprocal of the condition number of a symmet-
ric/Hermitian positive definite band matrix, using the Cholesky fac-
torization computed by SPBTRF/CPBTRF.

Computes row and column scalings to equilibrate a symmet-
ric/Hermitian positive definite band matrix and reduce its condition
number.

Improves the computed solution to a symmetric/Hermitian positive
definite banded system of linear equations AX = B, and provides
forward and backward error bounds for the solution.

Solves a symmetric/Hermitian positive definite banded system of lin-
ear equations AN = B,

Solves a symmetric/llermitian positive definite banded system of lin-
ear equations AX = B, and provides an estimate of the condition
number and error bounds on the solution,

Computes the Cholesky factorization of a symmetric/Hermitian pos-
itive definite ban/i matrix.

Solves a symmet| ic/Hermitian positive definite banded system of lin-
ear equations AN = B, using the Cholesky factorization computed
by SPBTRE/CPBTRF,

Estimates the reciprocal of the condition number of a symmet-
ric/Hermitian positive definite matrix, using che Cholesky factor-
ization computed by SPOTRI'/CPOTRF,

Computes row snd column scalings to equilibrate a symmet-
ric/Hermitian pasitive definite matrix and reduce its condition
number, '

Improves the computed solution to a symmetric/Hermitian positive
definite system of linear. equations AX = B, and provides forward
and backward error bounds for the solution.

Solves a symmetric/Hermitian positive definite system of linear equa-
tions AX = B.

Solves a symmetric/Hermitian positive definite system of linear equa-
tions AN = A, and provides an estimate of the condition number
and error bounds nn the solution,

Computes the Cholesky factorization of a symmetric/Hermitian pos-
itive definite matrix.

Computes the inverse of a symmetric/Hlermitian positive def-
inite matrix, uslug the Cholesky factorization computed by

SPOTRF/CPOTREF.

89

i

|
A M!H‘\H

Routine

real

complex

Description

SPOTRS

SPPCON

SPPEQU

SPPRI'S

SPPSV

SPPSVX

SPPTRF

SPPTRI

SPPTRS

SPTCON

SPTEQR

SPTRTS

SPTSV

SPTSVX

SPTTRIE

CPOTRS
CPPCON
CPPEQU
CPPRFS
CPPSV
CPPSVX

CPPTRF

CPPTRI
CPPTRS
CPTCON
CPTEQR
CPTRFS

CPTSV

CPTSVX

CPTTRF

Solves a symmetric/Hermitlan positive definite system of linear equa-
tlons AX = B, using the Cholesky factorization computed by
SPOTRI'/CPOTRF,

Estimates the reciprocal of the condition number of a symmet-
ric/Hermitian positive deflnite matrix in packed storage, using the
Cholesky factorization computed by SPPTRI/CPPTRIE,

Jomputes row and column scalings to equilibrate a symmet-
ric/Hermitian positive definlte matrix in packed storage and reduce
Its conditlon number.

Improves the computed solution to a symmetric/Hermitian positive
definite system of lincar equations AX = B, where A is held In
packed storage, and provides forward and backward error bounds for
the solution, |
Solves a symmetric/Hermitlan positive definite system of linear equa-
tions AX = B, where A is held in packed storage.

Solves.a symmetric/Ilermitian positive definite system of linear equa-
tions AX = B, where 4 is held in packed storage, and provides an
estimate of the condition number and error bounds on the solution,
Computes the Cholesky factorization of a symmetric/Hermitian pos-
itive definite matrix in packed storage.

Computes the inverse of a symmetric/Hermitian positive definite ma-
trix In packed storage, using the Cholesky factorization computed by
SPPTRF/CPPTRF, '
Solves a symmetric/Ilermitian positive definite system of linear equa-
tions AX = B, where A is held in packed storage, using the Cholesky
factorization computed by SPPTRI/CPPTRF.

Computes the reciprocal of the condition number of a symmet-
ric/Hermitian positive definite tridiagonal matrix, using the LD LH
factorization computed by SPTTREF/CPTTRI,

Jomputes all eigenvalues and eigenvectors of a real symmetric pos-
itive definite tridiagonal matrix, by computing the SVD of its bidi-
agonal Cholesky factor.

Improves the computed solution to a symmetric/Hermitian pcsitive
definite tridiagonal system of linear equations AX = B, and provides
forward and backward error bounds for the solution.

Solves a symmn _.ric/Hermitian positive definite tridiagonal system of
linear equations AX = B.

Solves a symmelric/Hermitian positive definite tridiagonal system of
linear equations AN = B, and provides an estimate of the condition
nuwmber and error bounds on the solution.

Computes the LDLH fartorization of a symmetric/Hermitian posi-
tive definlte tridiagonal matrix.

90

Routine Description

real complex

SPTTRS CPTTRS Solves a symmetric/Hermitlan positive definite tridiagonal system
of linear equations, using the L DLH factorlzation computed by
SPTTRF/CPTTRF.

SSBEV CHBEV | Computes all eigenvalues and eigenvectors of a symmetric/Hermitian

‘ band matrix.

SSBEVX CHBEVX | Computes selected eigenvalues and elgenvectors of a symmet-
ric/Hermitian band matrix.

SSBTRD CHBTRD | Reduces a symmetric/Hermitlan band matrix to real symmetric tridi-
agonal form by an orthogonal/unitary similarity transformation.

SSPCON CSPCON | Estimates the reciprocal of the condition number of a real

' CHPCON | symmetric/complex symmetric/complex Hermitian indefinite ma-
trix In packed storage, using the factorization computed by
SSPTRF/CSPTRF/CHPTRF.

SSPEV CHPEV | Computes all eigenvalues and eigenvectors of a symmetric/Hermitian
matrix in packed storage.

SSPEVX CHPEVX | Computes selected eigenvalues and eigenvectors of a symmet-
ric/Hermitian matrix in packed storage.

SSPGST CHPGST | Reduces a symmetric/Hermitian-definite generalized eigenproblem

: Az = ABz, ABzx = Az, or BAz = Az, to standard form, where
A and B are held in packed storage, and B has been factorized by
+ - T"PTRF/CPPTRF,

SSPGV CHPGV ;omputes all eigenvalues and eigenvectors of a generalized
: symmetric/Hermitian-definito generalized eigenproblem, Az = ABz,

ABz = Az, or BAz = Az, where A and B are in packed storage.
SSPRI'S CSPRFS Improves the computed solution to a real symmetric/complex sym-
CHPRFS metric/complex Hermitian indefinite system of linear equations
AX = B, where A is held in packed storage, and provides forward

and backward error bounds for the solution.

SSPSV CSPSV Solves a real symmetric/complex symmetric/complex Hermitian in-

CHPSV definite system of linear equations AX = B, where A is held in
packed storage.

SSPSVX CSPSVX | Solves a real symmetric/complex symmetric/complex Hermitian in-

CHPSVX | definite system of linear equations AX = B, where A is held in
packed storage, and provides an estimate of the condition number
and error bounds nn the solution,

SSPTRD CHPTRD | Reduces a symmetric/Hermitian matrix in packed storage to real
symmetric tridiagonal form by an orthogonal/unitary similarity
transformation.

SSPTRF CSPTRF Computes the factorization of a real symmetric/complex symmet-

CHPTRF ric/complex Hermitian indefinite matrix in packed storage, using the

diagonal pivoting method.

91

Routine Description
real complex
SSPTRI CSPTRI Computes the Inverse of a real symmetric/complex syminet-
CHPTRI ric/complex Hermltlan Indefinite matrix In packed storage, using the
factorization computed by SSPTRF/CSPTRF/CHPTRF.

SSPTRS CSPTRS Solves a real symmetric/complex symmetric/complex Hermitlan

CHPTRS | indeflnite system of linear equations AX = B, where 4 I
held in packed storage, using the factorization computed by
SSPTRF/CSPTRF/CHPTRF.

SSTEBZ Computes selected elgenvalues of a real symmetric tridiagonal matrix
by bisectlon,

SSTEIN CSTEIN Computes selected elgenvectors of a real symmetric tridiagonal ma-
trix by inverse iteration.

SSTEQR CSTEQR | Computes all elgenvalues and eigenvectors of a real symmetric tridi-
agonal matrix, using the lmplicit QL or QR algorithm.

SSTERF Computes all eigenvalues of a. real symmetric tridiagonal matrix, us-
Ing a root-free variant of the @L or QR algorithm.

SSTEV Computes all eigenvalues and eigenvectors of a real symmetric tridi-
agonal matrix.

SSTEVX Computes selected eigenvalues and elgenvectors of a real symmetric
tridiagonal matrix.

SSYCON CSYCON | Estimates the reciprocal of the condition number of a real symmet-

CHECON | ric/complex symmetric/complex Hermitlan indefinite matrix, using
the factorizatlon computed by SSYTRF/CSYTRF/CHETRF,

SSYEV CHEEV Computes all eigenvalues and eigenvectors of a symmetric/Hermitlan
matrix,

SSYEVX CHEEVX | Computes selected eigenvalues and elgenvectors of a symmet-
ric/Hermitlan matrix.

SSYGST CHEGST | Reduces a symmetric/Hermitian-definite generalized eigenproblem
Az = ABz, ABx = Az, or BAz = Az, to standard form, where B
has been factorized by SPOTRF/CPOTRF.

SSYGYV CHEGV | Computes all eigenvalues and the elgenvectors of a generalized
symmetric/Hermitian-definite generalized elgenproblem, Az = AB«,
ABz = Az, or BAz = Az.

SSYRFS CSYRFS Improves the computed solution to a real symmetric/complex sym-

CHERFS metric/complex Hermitlan indefinite system of linear equations
AX = B, and provides forward and backward error bounds for the
solution.

SSYSVY CSYSV Solves a real symmetric/complex symmetric/complex Hermitian in-

CHESV definite system of linear equations AX = B,
SSYSVX CSYSVX | Solves a real symmetric/complex symmetric/complex Hermitian in-
CHESVX | definite system of linear equations AX = B, and provides an estimate
of the condition number and error boun:ls on the solution.
SSYTRD CHETRD | Reduces a symmetric/Hermitian matrix to real symmetric tridiago-

nal form by an orthegonal/unitary similarity transformation.

92

Routine Description
real complex :
SSYTRF CSYTRF | Computes the factorization of a real symmetric/complex symmet-
CHETRF | ric/complex Hermlitian indefinlte matrix, using the diagonal pivoting
method.

SSYTRI CSYTRI Computes the lnverse of a real symmetric/complex symmet-

CHETRI ric/complex Hermitlan indefinite matrix, using the factorization
computed by SSYTRF/CSYTRF/CHETRT. ’

SSYTRS CSYTRS Solves a real symmetric/complex symmetric/complex Hermitian in-

CHETRS definite system of linear equations AX = B, using the factorization
computed by SSPTRF/CSPTRY/CHPTRF,

STBCON CTBCON | Estimates the reciprocal of the condition number of a trlangular band

‘ matrix, in either the l-norm or the infinity-norm.

STBRFS CTBRFS | Provides forward and backward error bounds for the solution of a
triangular banded system of linear equations AX = B, ATX = B or
AH..X = .B.

STBTRS CTBTRS Solves a triangular banded system of linear equations AX = B,
ATX =B or AHX = B,

STPCON CTPCON | Estimates the reciprocal of the condition number of a trlangular ma-
trix in packed storage, in either the 1-norm or the inflnity-norm.,

STPRFS CTPRFS Provides forward and backward error bounds for the solution of a
triangular system of linear equations AX = B, ATX = Bor AHX =
B, where A Is held in packed storage.

STPTRI CTPTRI Computes the inverse of a trlangular matrix in packed storage.

STPTRS CTPTRS Solves a triangular system of linear equations AX = B, ATX = B
or AHX = B, where A4 is held In packed storage.

STRCON CTRCON | Estimates the reciprocal of the condition number of a triangular ma-
trix, in either the l-norm or the infinity-norm.

STREVC CTREVC | Computes left and right eigenvectors of an upper quasi-
triangular/triangular matrix.

STREXC CTREXC Reorders the Schur factorization of a matrix by a unitary similarity
transformation.

STRRFS CTRRFS Provides forward and backward error bounds for the solution of a
triangular system of linear equations AX = B, ATX = Bor AHX =
B.

STRSEN CTRSEN Reorders the Schur factorization of a matrix in order to find an or-
thonormal basis of a right invariant subspace corresponding to se-
lected eigenvalues, and returns reciprocal condition numbers (sensi-
tivities) of the average of the cluster of elgenvalues and of the invaii-
ant subspace.

STRSNA CTRSNA | Estimates the reciprocal condition numbers (sensitivities) of selected
eigenvalues and elgenvectors of an upper gquasi-triangular/triangular
matrix.

STRSYL CTRSYL Solves the Sylvester matrix equation AX £ XD = C' where A and B

are upper quasi-triangular/triangular, and may be transposed.

93

Routine Descriptlon

real complex

STRTRI CTRTRI [Computes the lnverse of a trlangular matrix.

STRTRS CTRTRS | Solves a triangular system of linear equations AX = B, ATX = B
or AX = B,

STZRQF CTZRQF | Computes an RQ factorization of an upper trapezoldal matrix,

94

Appendix B

Index of Auxiliary Routines

Notes

3.

. This index lists related pairs of real and complex routines together, in the same style as in

Appendix A.

. Routines are listed in alphanumeric order of the real (single precision) routine name (which

always beging with S-). (See subsection 2.1.3 for details of the LAPACK naming scheme.)

A few complex routines have no real equivalents, and they are listed first; routines listed in
italics (for example, CROT), have real equivalents in the Level 1 or Level 2 BLAS.

Double precision routines are not listed here; they have names beginning with D- instead of
S-, or Z- instead of C-. The only exceptions to this simple rule are that the double precision
versions of [CMAX1, SCSUM1I and CSRSCL are named IZMAX1, DZSUM1 and ZDRSCL.

A few routines in the list have names that are independent of data type: [ILAENV, LSAME,
LSAMEN and XERBLA.

. This index gives only a brief desription of the purpose of each routine. For a precise description

consult the leading comments L the code, wkich have been written in the same style as for

‘the driver and computational routines.

95

Routine Description
real complex |
CLACGYV | Conjugates a complex vector.
CLACRT | Applies a plane rotation with complex cosine and sine to a pair of
_complex vectors..

CLAESY | Computes the eigenvalues and eigenvectors of a 2-by-2 complex sym-
metric matrix, and checks that the norm of the matrix of eigenvectors
is larger than a threshold value.

CROT ~Applies a plane rotation with real cosine and complex sine to a pair
of complex vectors.

CSPMYV | Computes the matrix-vector product y = aAz + [y, where @ and 3 |
are complex scalars, ¢ and y are complex vectors and 4 is & complex

' symmetric matrix in packed storage.

CSPR Performs the symmetric rank-1 update A = azz? + A, where a is a
complex scalar, z 18 a complex vector and A is a complex symmetric |
matrix in packed storage.

CSROT Applies a plane rotation with real cosine and sine to a pair of complex
vectors. ‘

CSYMV | Computes the matrix-vector product y = adz + By, where @ and 7 |
are complex scalars, ¢ and y are complex vectors and A4 is a complex
symmetric matrix.

CSYR ' Performs the symmetric rank-1 update A = arz” + A, where @ is a
complex scalar, z is a complex vector and A is a complex symmetric
matrix. :

[CMAX! | Finds the index of the element whose real part has maximum absolute
value (similar to the Level 1 BLAS ICAMAX, but using the absolute
value of the real part).

[LAENV Environmental enquiry function which returns values for tuning al-
: gorithmic performance.

LSAME Tests two characters for equality regardless of case.

LSAMEN Tests two character strings for equality regardless of case.

SCSUM! | Forms the 1-norm of a complex vector (similar to the Level 1 BLAS
SCASUM, but using the true absolute value).

SGBTF2 CGBTF2 | Computes an LU factorization of a general band matrix, using partial
' pivoting with row interchanges (unblocked algorithm).
SGEBD2 CGEBD?2 | Reduces a general rectangular matrix to real bidiagonal form by an
orthogonal/unitary transformation (unblocked algorithm).
SGEHD2 CGEHD?2 | Reduces a general matrix to upper Hessenberg form by an orthego-
nal/unitary similarity transformation (unblocked algorithm).
SGELQ2 CGELQ2 | Computes an L@ factorization of a general rectangular matrix (un-
blocked algorithm).
SGEQL2 CGEQL2 | Computes a QL factorization of a general rectangular matrix (un-
blocked algorithm).
SGEQR2 CGEQR2 | Computes a QR factorization of a general rectangular matrix (un-

" blocked algorithm).

96

w

Pl

Routine Description

real complex ‘

SGERQ2 CGERQ2 | Computes an RE) factorization of a general rectangular matrix (un- |
blocked' algorithm). v

SGETF2 CGETF2 | Computes. an LU factorization of a general matrix, using partial |
pivoting with row interchanges (unblocked algorithm).

SLABAD Returns the square root of the underflow and overflow thresholds. if |
the exponent-range is very large.

SLABRD CLABRD | Rednces the first nb rows and columns of a general rectangular ma-
trix A to real bidiagonal form by an orthogonal/unitary transforma-
tion, and returns auxiliary matrices which are needed to apply the
transformation to the unreduced part of A.

SLACON CLACON | Estimates the L-norm of a square matrix, using reverse communica-
tion for evaluating matrix-vector products.

SLACPY CLACPY | Copies all or part of one two-dimensional array to another.

SLADIV ~ CLADIV | Performs complex division in real arithmetic, avoiding unnecessary
overflow.

SLAE2 Computes the eigenvalues of a 2-by-2 symmetric matrix.

SLAFEBZ Computes the number of eigenvalues of a real symmetric tridiagonal
matrix which are less than or equal to a given value, and performs
other tasks reguired by the routine SSTEBZ.

SLAEIN CLAEIN | Computes a specified right or left eigenvector of an upper Hessenberg |

. matrix by inverse iteration.

SLAEV2 CLAEV2 | Computes the eigenvalues and eigenvectors of a 2-by-2 symmet-
ric/Hermitian matrix.

SLAEXC Swaps adjacent diagonal blocks of a real upper quasi-triangular
matrix in Schur canonical form, by an orthogonal similarity
trangformasion.

SLAGTF Computes an LU factorization of a matrix (T — A[), where T is a |
general tridiagonal matrix, and A a scalar, using partial pivoting with
row interchanges.

SLAGTM CLAGTM | Performs a matrix-matrix product of the form ' = aAB + 3C', where
A is a tridiagonal matrix, B and C are rectangular matrices, and o
and @ are scalars, which may be (0, 1, or —1. ‘

SLAGTS Solves thie system of equations (T — Az = y ot (T — ATz = y,
where T is a general tridiagonal matrix and A a scalar, using the LT
factorization computed by SLAGTF.

SLAHQR CLAHQR | Computes the eigenvalues and Schur factorization of an upper Hes-
senberg matrix, using the double-shift/single-shift QR algorithm.

SLAHRD CLAHRD | Reduces the first nb columns of a general rectangular matrix 4 so
that elements below the k** subdiagonal are zero, by an orthog-
onal/unitary transformation, and returns auxiliary matrices which
are needed to apply the transformation to rthe unreduced part of A.

SLAICT CLAIC! Applies one step of incremental condition estimation.

i

97

Routine

. real

complex

Description

SLALN2
SLAMCH
SLANGB
SLANGE
SLANGT
SLANES
SLANSB
SLANSP
SLANST
SLANSY

SLANTB

SLANTP

SLANTR.
SLANV2
SLAPY2
SLAPY3

SLAQGB

CLANGB

CLANGE

CLANGT

CLANHRS

CLANSB
CLANHB

CLANSP
CLANHP

CLANST
CLANSY
CLANHE
CLANTB

CLANTP

CLANTR

CLAQGB

' Solves a 1-by-1 or 2-by-2 system of equations of the form (74 —
AD)x = obor (YAT = AD)x = ob, where D is a diagonal matrix, A, b |
and r may be compler, and ¢ i a scale factor set to avoid overflow.
Determines machine parameters for floating-point arithmetic. ‘
Returns the value of the 1-norm, Frobenius norm, infinity-norm, or |

the largest absolute value of any element, of a general band matrix.

- Returns the value of the 1-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element, of a general rectangular
matrix.

Returns the value of the l-norm, Frobenius norm, infinity. nerm, or
the largest absolute value of any element, of a general tridiagonal |
matrix. ‘ ‘

Returns the value of the 1-norm, Frobenius norm, infinity-nerm, or
the largest absolute value of any element, of an upper Hessenberg
matrix.

Returns the value of the l-norm, Frobenius norm, infinity-norm, |
“or the largest absolute value of any element, of a real symmet-
'ric/complex symmetric/complex Hermitian band matrix. :
Returns the value of the l-norm, Frobenius norm, infinity-nosm, |
or the largest absolute value of any element, of a real symmet-
ric/complex symmetric/complex Hermitian matrix in packed storage. |
Returns the value of the l-norm, Frobenius norm, infinity-norm, cr |
the largest absolute value of any element, of a symmetric/Hermitian |
tridiagonal matrix.
Returns the value of the l-norm, Frobenius norm, infinity-nerm, |
or the largest absolute value of any element, of a real symmet-
ric/complex symmetric/complex Hermitian matrix. ‘
Returns the value of the l-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element, of a triangular band matrix.
" Returns the value of the 1-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element, of a triangular matrix in
packed storage.

Returns the value of the l-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element, of a triangular matrix.
Computes the Schur factorization of a real 2-by-2 nonsymmetric ma- |
trix in Schur canonical form.

Returns /z® 4 y%, avouding unnecessary overflow or harmful
underflow.

Returns /22 + 2 + 22, avoiding unnecessary overflow or harmful
underflow.

'Scales a general band matrix. using row and column scaling factors
computed by SGBEQU/CGBERQT.

08

Routine Description
real complex
SLAQGE CLAQGE | Scales a general rectangular matrix, using row and column scaling |
’ factors computed by SGEEQU/CGEEQU. :
SLAQSB CLAQSB | Scales a symmetric/Hermitian band matrix, using scaling factors |
‘: ' computed by SPBEQU/CPBEQU. ,
SLAQSP CLAQSP | Scales a symmetric/Hermitian matrix in packed storage, using scal- |
ing factors computed by SPPEQU/CPPEQU.
SLAQSY CLAQSY | Scales a symmetric/Hermitian matrix, using scaling factors com- |
‘ . puted by SPOEQU/CPOEQU.
' SLAQTR Solves a real quasi-triangular system of eguations, or a complex |
- gnasi-triangular sytem of special form, in real arithmetic.
SLAR2V CLAR2V Applies a vector of plane rotations with real cosines and real/complex |
- sines from both sides to a sequence of 2-by-2 symmetric/Hermitian |
. ~ matrices. |
SLARF CLARF - Applies an elementary reflector to a general rectangular matrix. ;
SLARFB CLARFB Applies a block reflector or its transpose/conjugate-transpose to a |
“general rectangular matrix.
SLARFG CLARFG | Generates an elementary reflector (Householder matnix).
SLARFT CLARFT Forms the triangular factor T of a block reflector H = [— VTV H,
SLARFX CLARFX | Applies an elementary reflector to a general rectangular matrix, with |
. loop unrolling when the reflector has arder < 10.
SLARGV CLARGV | Generates a vector of plane rotations with real cosines and |
real/complex sines. '
SLARNV CLARNV | Returns a vector of random numbers from a uniform or normal
distribution.
SLARTG CLARTG Generates a plane rotation with real cosine and real/complex sine.
SLARTV CLARTV Applies a vector of plane rotations with real cosines and real/complex |
sines to the elements of a pair of vectors.
SLARUV Returns a vector of n random real numbers from a uniform (0,L) |
distribution (n < 128).
aLAS2 Computes the singular values of a 2-by-2 triangular matrix.
SLASCL CLASCL Multiplies a general rectangular matrix by a real scalar defined as
' Cto/ Cfrom-
SLASET CLASET [nitializes the off-diagonal elements of a matrix to @ and the diagonal
elements to 3.
SLASR CLASR Applies a sequence of plane rotafions to a general rectangular matrix.
SLASSCG CLASSQ Updates a sum of squares represented in scaled form.
SLASV?2 Computes the singular value decomposition of a 2-by-2 triangular
matrix.
SLASWP CLASWP | Performs a sequence of row interchanges on a general rectangular
matbrix.
SLASY?2 Solves the Sylvester matrix equation AX £ X B = o where A and

' B are of order 1 or 2, and may be transposed, and ¢ is a scale factor.

99

Routine Description
real complex
'SLASYF CLASYF | Computes a partial factorization of a real symmetric/complex sym-
CLAHEF | metric/complex Hermitian indefinite matrix, using the diagonal piv- |
! - oting method.
'SLATBS CLATBS | Solves a triangular banded system of equations Az = b, ATz = ob,
‘ or A¥p = ob, where ¢ is a scale factor set to prevent overflow. !

SLATPS CLATPS | Solves a triangular system of equations Az = b, ATa = ob, or |
Afg = ob, where 4 is held in packed storage, and o is a scale factor |

: - set to prevent overflow. ‘

SLATRD CLATRD | Reduces the first nb rows and columns of a symmetric/Hermitian |

- matrix A to real tridiagonal form by an orthogonal/unitary similarity |
Ctransformation, and returns auxiliary matrices which are needed to |

K - apply the transformation to the unreduced part of A. :

'SLATRS CLATRS Solves. a triangular system of equations Az = ob, ATz = ob, or |

: AHg = ob, where o is a scale factor set to prevent overflow. !

SLATZM CLATZM | Applies an elementary reflector generated by STZRQF /CTZRQF to |
' a general rectangular matrix.

SLAUU2 CLAUU2 | Computes the product UU# or LHL, where [/ and L are upper or |
lower triangular matrices (unblocked algorithm). !

SLAUUM CLAUUM | Computes the product UIV¥ or LHL, where U and L are upper or |
lower triangular matrices.

SLAZRO CLAZRO Initializes the off-diagonal elements. of a matrix to o and the diagonal |
elements to A

SORG2L CUNG2L | Generates all or part of the arthogonal/unitary matrix from |
a QL factorization determined by SGEQLF/CGEQLF (unblocked
algorithm). :

SORG2R CUNG2R | Generates all or part of the orthogonal/unitary matrix @ from a |
@R factorization determined by SGEQRF/CGEQRF (nnblocked
algorithm). :

SORGL2 CUNGL2 | Generates all or part »f the orthogonal/unitary matrix @ from |
an L@ factorization determined by SGELQF/CGELQF (unblocked |

‘ algorithm). :

SORGR2 CUNGR2 | Generates all or part of the orthogonal/unitary matrix @ from |
an RQ factorization determined by SGERQF/CGERQF (unblocked
algorithm). 1

SORM2L CUNM2L | Multiplies a general matrix by the orthogonal/unitary matrix from
a QL factorization determined by SGEQLF/CGEQLF (unblocked
algorithm).

SORM2R CUNM2R | Multiplies a general matrix by the orthogonal/unitary matrix from
a R factorization determined by SGEQRF/CGEQRF (unblocked |
algorithm).

SORML2 CUNML2 | Multiplies a general matrix by the orthogonal/unitary matrix from

an L@ factorization determined by SGELQF/CGEFLQF (unblocked
algorithm).

100

XERBLA

Routine Description

. real complex , v
SORMR2 CUNMR2 | Multiplies a general matrix by the orthogonal/unitary matrix from |
' an RQ factorization determined by SGERQF/CGERQF (unblocked |
, algorithm). ‘ |
SPBTF2 CPBTF2 | Computes the Cholesky factorization of a symmetric/Hermitian pos- |
: itive definite band matrix (unblocked algorithm). |
'SPOTF2 CPOTF2 | Computes the Cholesky factorization of a symmetric/Hermitian pos- |

itive definite matrix (unblocked algorithm).
SRSCL CSRSCL | Multiplies a vector by the reciprocal of a real scalar. »
SSYGS2 CHEGS2 | Reduces a symmetric/Hermitian-definite generalized eigenproblem. |
' Az = ABz, ABz = A\r, or BAz = Az, to standard form, where B |
“has been factorized by SPOTRF/CPOTRF (unblocked algorithm). |
S35YTD2 CHETD2 | Reduces a symmetric/Hermitian matrix Yo real symmetric tridiag- |
onal form by an osthogonal/unitary similarity transformation (un- |
- blocked algorithm).
SSYTF2 CSYTT2 | Computes the factorization of a real symmetric/complex symmet- |
CHETZ2 ric/complex Hermitian indefinite matrix, using the diagonal pivoting |

method (unblocked algorithm).

sTRII2 CTRTIR2 Computes. the inverse of a triangular matrix (unblocked algorithm). |

Error handling routine called by LAPACK routines if an input pa- |

- rameter has an invalid value.

Lot

Appendix C

Quick Reference Guide to the BLAS

102

Level 1 BLAS

dim scalar vector vector scalars 5-element prefixes
' array

SUBROUTINE _ROTG (¢ A, B, C, 8) 3, D
SUBROUTINE _ROTMG(D%, D2, A, B, PARAM)» S, D
SUBROUTINE _ROT: (N, X, INCX, Y, IECY, c, 3) S, b
SUBROUTINE _ROTM (N, X, I€cx, Y, INCY, PARAM > S, D
SUBROQUTLINE _SWAP (N, %, INCX, Y, INCY) s, D, C, Z
SUBROUTINE _SCAL (N. ALPHA, X, INCX) s, b, ¢, Z, C§, 7P
SUBRQUTINE _COPY (¥, X, INCX, Y, INCY) s, n, €, 2
SUBROUTINE _AXPY (¥, ALPHA, X, INCX, Y, INCY) s, b, €, Z
FUNCTION LDar ¢ N, X, INcx, Y, INCY) g, D, DS
FUNCTION _DOTW ¢ N, X, INCX, Y, INCY) ¢, Z
FUNCTION _DOTC ¢ N, X, INCX, Y, INCY) c, 2
FUNCTION __DGT ¢ N, ALPHA, X, INCX, Y, INCY) SDs
FUNCTION _NBRM2 (N, X, INCX) s, D, 8C, D%
FUNCTIGN _ASUH (W, X, INCX) s, Dy, S€, DZ
FUNCTION AMAX(N, %, INCX) 3, D, €, Z

Name Operation ' Prefixes

ROTG Generate plane rotation 'S, D

ROTMG Geneyate modified plane rotation S, D

ROT Apply plane rotation S, D

ROTM Apply modified plane mtation S, D

SWAP T~y '35, D, C,Z

SCAL T — T S, D, C,Z, CS, Zb

LOPY y—z S, D,C 2

AXPY Y -ty 'S, D, C 2

DoT dot — 1Ty S, D, DS

DOTU dot — 5Ty 'C,Z

DOTC dot — cHy - C, Z

DOT dot — o+ 1Ty - SDS

NRM2 nrm2 ~ ||z{|2 3, D, SC, DZ

ASUM a.tmm.o—{]re(W+ Jlim(z)l S, D, 8C, DZ

[AMAX amar — 1k 3 |re(z)| + |im(zy)] 3, D,C 2

= maz(|re(z.)| + lim(z)]) |

103

GEMV. (
GEMY
_HEMV
_HaMv

STy

SPMV
TEMY
TPHV
TRSV
_TBSV
TPSV (

-GER
-GERU (¢
_GERC
HER
HPR

(
(
(
(
(
LHER2 (
(
(
(
(
(

_HPR2
_STR
_SPR
_SYR2
_SPR2

Level 3

¢
¢
€
(
(
(
_5eMv (
¢
(
(
(
€
(
(

BLAS

R T VY gy

X,
X,
X,
X,
A, LDA, X, INCX)
X,
X,
X,
X,

INCX,
INCE,
INGX,
INGX)

INCX)
INCX)
INCX)
INCX)

scalar vector

BETA, Y, INCY
BETA, Y, INCY
BETA, Y, IECY
BETA, Y, INCY
BETA, Y, INCY
BETA, Y, INCY
BETA, Y, INCY
BETA, Y, INCY

matrix prefixes

A, LDA
A, LDA
A, LDA
A, LDA
AP)
A, LDA
AP)
A, LDA
AP)
A, LDA
AP)

matrix

LDA,

LDA,
LDA,
Lh4,
LD4,
, LDA,
LDA,

-

-

PR I B N A

options b-width scalar matrix vector
TRANS, t, N, ALPHA, A, LDA, X, INCX,
TRAAS, M; N, XL, KU, ALPHA, A, LDA, X, INCI,
. TPLO, ‘N, ALPHA, A, LDA, X, INCX,
UPLO, N K, ALPHA, A, LDA, X, INCX,
UPLO, u, ALPHA, AP, X, INCX,
| UPLO, N, ALPHA, A, LDA,
UpPLE, ¥ K, ALPSA, A, LDA,
uUPLE, ¥, ALPHA, AP,
UPLO, THANS, DIAG, N, A, LDA,
UPLO, THANS, DIAG, N, K,
UPLO, TRANS, DIAG. N, AP,
(UPLD, TRANS, DIAG, ¥, A, LDA,
UPLO, TRANS, DIAG, N, K, A, LDA,
UPLO, TRANS, DIAG, N, AP,
options dim scalar vector vector
M, N, ALPHA, X, INCX, Y, INCY,
M, ¥, ALPHA, X, IBCX, Y, INCY,
M, E, ALPHA, X, INCX, Y, IKCY,
UPLD, B, ALPHA, X, INCX,
uPLa, ¥, ALPHA, X, IECX,
uPLo, ¥, ALPHA, X, INCX, Y, INCY,
UPLO, W, ALPHA, X, INCX, Y, INCY,
uPLO, B, ALPHA, X, INCX,
UPLO, N, ALPHA, X, INCX,
UPLO, N, ALPHA, X, INCX, Y, IRCY,
. UPLD, 8, ALPHA, X, INCX, Y, INCY,
BLAS
options dim scalar
TRANSA, TRANSH, M, ¥, X, ALPHA,
' SIDE, UPLO, MY, ALPHA,
- QIDE, UPLO, M, 5, ALPHA,
UPLO, TRANS, B, K, ALPHA,
UPLO, TRAKS, N, K, ALPHA,
UPLO, TRANS, ¥, K, ALPHA,
UPLO, TRANS, ¥, K, ALPHA,
(SIDE, UPLO, TRANSA, DIAG, M, B, ALPHA,
SIDE, UPLO, TRANSA, DIAG, M, B, ALPHA,
104

)
3
)
)

Bnwuwmaa

v e w e

DO QOMMNNNNND

-

prefixes

}) s, D, ¢, 2Z

) 8,D,0C, 2

1 ¢,z

) ¢, 2

y e, 2

) 8, D

) S, D

) 8, B
s, Db, C, Z
s, Db, C, Z
s, b, ¢, 2
s, D, 2,2
s, D, ¢, 2
s, D, ¢, 2

matrix scalar matrix prefixes

LDB, BETA,
LDB, BETA,
LDH, BETA,
BETA,
BETA,
LDB, BETA,
LDB, BETA,
LDB)
LDB)

(RERTRE TR

¢, Lb¢) s,D,¢C, 2
c, Lbc) S, D,¢C, Z
¢, ¢)¢,z
c, Lb¢)s, b, ¢, 2
c, LbCc) ¢, T
c, Wk)s,D,C,2Z
C.Lb)ec, 2z
s, b, ¢, T
s, D, ¢, 2

‘n 10w ”w‘”l‘ww- R LR T]

[L L

e

Name Operation | Prefixes
CGEMV y —adz +0y,y — aAVr + By, y — ad¥z + 9y, A~mxn | $,D,C, 2
GBMV y— adz +8y,y — aATs + 0y, y — ad¥rs + fy, A —mxn S,D,C, Z
HEMV y — adz + By . C, Z
HBMY g — adzr + fFy C, Z
HPMV g - adz + By - C, 2
SYMV y — adx + (y 5D
SBMV y —adz + Gy S, D
SPMV y «~— aAx + fy S, D

C TRMV 1 — Az, z— ATr 2z~ A¥g § D C7Z
TBMV ze—ds, 2+~ ATg o — 48 8, D,C,2Z
TPMV z e Ar,z e ATe z — A¥: 'S, b, C, 2
TRSV = A"'z, 53— ATz 0~ A"Hg $,D,C 2
TIBSV s e A"'s, 50— ATz, 5w 48 'S, D,C, 2
TIPSV gm A7 e, x — A~ Tp 2 — A~ ¥y - S, D,C, 2
GER: Aw—oaryT +4, 4—mxn . S, D
GERU Ae—oaryT+A A-mxn ' C, 2
GERC A—asy¥+4,4-mxn C, 7z
HER A—oarz¥ 4+ 4 C 7
_HPR Aw—orzT 4+ 4 C, 2
_HER2 A—azy¥ + ylar)f + A C Z
HPR2 A —oazu® +y(ax)¥ + 4 C,Z
SYR A—arzT+ A S, D
SPR Aw—arzT4+ A4 S, D
SYR2 A—ozyT +aysT + A S, D
SPR2 Ae~oazyT +ayrT +4 5, D
Name QOperation Prefixes
GEMM € —aop(A)op(B) + H4C, 0p(X) = X, XT, XF C~mxn S5,D,C,Z
SYMM C—adB+8C,C —aBA+ACC-mxn A=AT 5,D,C, 2
HEMM € —aAB+4C,C —aBA+4C,C ~mxn A=A C,Z
SYRK € —aAdT+3C, C—aATA+8C,C~nxn '$,D,C, 2
HERK Cw~adA¥ + 8C,C —aA¥A+0C,C-nxn C,Z
SYR2K C —aABT +aBAT+8C,C — aATB+ aBTA+48C,C-naxn |8, D C,Z
HER2K C — aAB? +aBA¥ + 8C,C — aA¥B +aBfA+BC,C~-nxn | C 1
TBRMM B+« aop(4)B, B — aBop(A),op(A) = A, AT, A¥ B-mxn S, D,C,Z
TRSM B — aop{A™')B, B — aBop(A~"),op(A) = A, AT, i¥ B-mxn |5,D,C,Z

Notes
Meaning of prefixes

S - REAL ' C - COMPLEX
I} - DOUBLE PRECISION Z - COMPLEX*16 (this may not be supported
. by all machines)

For the Level 2 BLAS a set of extended-precision routines with the prefixes ES. ED, EC, EZ may also be available.

Level 1 BLAS

In addition to the listed routines there are two further extended-precision dot product routines DQDOT! and
DQDOTA. ‘

Level 2 and Level 3 BLAS
Matriz types

GE - GEneral GB - General Band

SY - SYmmetric SB - Symmetric Band SP - Symmetric Packed
HE - HErmitian HB - Hermitian Band HP - Hermitian Packed
TR - TRiangular TB - Triangular Band TP - Triangular Packed

Options

Arguments describing options are declared as CHARACTER*! and may be passed as character strings.

TRANS = ‘No transpose’, ‘Transpose’, ‘Conjugate transpose’ (X, X7 6 X)
UPLO = ‘Upper tnangular’, ‘Lower triangular’

DIAG = ‘Non-unit triangular’, ‘Unit tnangular’

SIDE = ‘Left’, ‘Right’ (A or op(A) on the left, or A or op(A)} on the right)

For real matrices, TRANS = ‘T’ and TRANS = ‘C’ have the same meaning.
For Hermitian matrices, TRANS = ‘T’ is not allowed.
For complex symmetric matrices, TRANS = ‘H’ is not allowed.

106

ik

il

Appendix D

Converting from LINPACK or
LISPACK

This appendix is designed to assist people to convert programs that currently call LINPACK or
EISPACK routines, to call LAPACYK routines instead.

Notes

1. The appendix consists mainly of indexes giving the nearest LAPACK equivalents of LINPACK
and EISPACK routines. These indexes should not be followed blindly or rigidly, especially
when two or more LINPACK or EISPACK routines are being used together: in many such
cases one of the LAPACK driver routines may be a suitable replacement.

2. When two or more LAPACK routines are given in a single entry, these routines must be
combined to achieve the equivalent function.

3. For LINPACK, an index is given for equivalents of the real LINPACK routines; these equiv-
alences apply also to the corresponding complex routines. For EISPACK, an index is given
for all real and complex routines, since there is no direct 1-to-1 correspondence between real
and complex routines in EISPACK.

4. A few of the less commonly used routines in LINPACK and EISPACK have no equivalents in
Release 1.0 of LAPACK; equivalents for some of these (but not all) are planned for a future
release.

5. For some EISPACK routines, there ste LAPACK routines providing similar functionality, but
using a significantly different method; such routines are marked by a reference to this note.
For example, the EISPACK routine ELMHES uses non-orthogonal transformations, whereas
the nearest equivalent LAPACK routine, SGEHRD, uses orthogonal transformations.

6. In some cases the LAPACK equivalents require matrices to be stored in a different storage
scheme. For example:

107

TR [R R N VIR A L T L U U 1L U L U N AT U LTIV

gy W “"I"W R Y L O R T TN LR yv,v-ly[‘ \Hw\ e ”“mi\'mm‘ "“"f"\‘"”‘ Ty =

i

¢ EISPACK routines BANDR, BANDV, BQR and the driver routine RSB require the
lower triangle of & symmetric band matrix to be stored in a different storage scherie
to that used in LAPACK, which is illustrated in subsection 5.3.3. The corresponding
storage scheme used by the EISPACK routines is:

symmetric band matrix 4 | EISPACK band storage |
ap a1 Az \ | * x @y
|l an agy Ay dag N
| ao ay ean ags asy ! " y A3z A3y
(ay @43 Qg 54 | | By Lag Qg
agy asa Ggs) | A5y A54 A5

s EISPACK routines TRED1, TRED?2, TREDS, HTRIDS, HTRIDIL, TQLL, TQL2, IMTQLI,
IMTQL2, RATQR, TQLRAT and the driver routine' RST store the off-diagonal elements
of a symmetric tridiagona! matnix in elements 2 : n of the array E, whereas LAPACK
routines use elementy 1:n - 1.

7. The EISPACK and LINPACK routines for the singular value decomposition return tle ma-
trix of right singular vectors, V', whereas the corresponding LAPACK routines return the
transposed matrix V7.

8. In general, the argument lists of the LAPACK routines are different from those of the cor-

responding EISPACK and LINPACK routines, and the workspace requirements are offen
different.

108

wid

ol

LRI

TR

W

LAPACK eguivalents of LINPACK routines. for real matrices

LINPACK || LAPACK | Function of LINPACK. routine
SCHDC Cholesky facturization with diagonal pivoting eption
- SCHDD: 'rank-1 downdave of a Cholesky factorization or the triangular factor |
‘ "of a QR factorization:
SCHEX . rank-1 update of a Cholesky factarization or the triangular factor of a
@R factorization
SCHUD modifies & Cholesky factorization under permutations of the original
mabrix ‘
SGBCO SLANGB | LU factorization and eondition estimation of a general band matrix
SGBTRF
SGBCON
SGBDI determinant of a general band matrix, after factorization by SGBCO
‘ or SGBFA
SGBFA SGBTRE | LU factorization of a general band matrix
SGEslL. SGBTRS | solves a general band system of linear equations, after factorization by
SGBCO or SGBFA
SGECO SLANGE | LU factorization and condition estimation of a general matrix
SGETRF
‘ SGECON
SGEDI SGETRI determinant and inverse of a general matrix, after factorization by
SGECQO or SGEFA
SGEFA SGETRF | LU factorization of a general matrix
SGESL SGETRS | solves a general system of linear equations, after factorization by |
SGECO or SGETFA
SGTSL SGTSV solves a general tridiagonal system of linear equations
SPBCO SLANSB Cholesky factorization and condition estimation of a symmetric
SPBTRF | positive-definite band matrix
SPBCON
SPBDI determinant of a symmetric pesitive-definite band matrix, after fac-
; torization by SPBCO or SPBFA
SPBFA SPBTRF | Cholesky factorization of a symmetric positive-definite band matrix
SPBSL -SPBTRS solves a symmetric positive-definite band system of linear eqnatiouns,
after factorization by SPBCO or SPBFA
SPOCO SLANSY | Cholesky factorization and condition estimation of a symmetric
SPOTRF | positive-definite matrix
SPOCON
SPODI SPOTRI determinant and inverse of a symmetric positive-definite matrix, after
factorization by SPOCO or SPOFA
SPOFA SPOTRF | Cholesky factorization of a symmetric positive-definite matrix
SPOSL SPOTRS | solves a symmetric positive-definite system of linear equations, after
factorization by SPQCO ar SPOFA : |
SPPCO SLANSY | Cholesky factorization and condition estimation of a symmetric
SPPTRF | positive-definite matrix (packed storage)
SPPCON

149

do il

Londl

LAPACK equivalents of LINPACK routines for real matrices (conbinued)

LINPACK | LAPACK |

Function of LINPACK routine

SPPDIL SPPTRI | determinant and inverse of a yymmetric positive-definite matrix, after |
factorization by SPPCO or SPPFA (packed storage) |
SPPFA SPPTRF | Cholesky factorization of a symmetric positive-definite matrix (packed |
- gtorage)
SPPSL SPPTRS | solves a symmetric positive-definite system of linear equations, after
- factorization by SPPCO or SPPFA (packed storage)
SPTSL SPTSV | solves a symmetric positive-definite tridiagonal system of linear |
equations
SQRDC SGEQPF | QR factorization with optional column pivoting
- or
SGEQRF |
SQRSL SORMQR | solves linear least sqmares problems after factorization by SQRDC
STRSV ‘
SSICO SLANSY | symmetric indefinite tactorization and condition estimation of a sym-
SSYTRF | metric indefinite matrix.
SSYCON
S3IDIT SSYTRI | determinant, inertia and inverse of & symmetric indefinite matbrix, after
fectorization by SSICO or SSTFA
SSTFA SSYTRE | symmetric indefinite factorization of a symmetric indefinite matrix
SSISL SSYTRS | solves a symmetric indefinite system of linear equations, after factor-
‘ ization by SSICO or SSTFA
SSPCO "SLANSP | symmetric indefinite factorization and condition estimation of a sym-
SSPTRF | metric indefinite matrix (packed storage)
SSPCON
SoPDI SSPTRI determinant, inertia and inverse of a yymmetric indefinite matrix, alter
‘ factorization by SSPCO or SSPFA {packed storage)
SSPFA SSPTRE | symmetric indefinite factorization of a symmetric indefinite matrix
: (packed storage)
SSPSL SSPTRS | solves a symmetric indefinite system of linear equations, after factor-
ization by SSPCO or SSPFA (packed storage)
SSVDC SGESVD | all or part of the singular value decomposition of a general matrix
STRCO STRCON | condition estimation of a triangular matrix
STRDI STRTRI | determinant and inverse of a triangular matrix
STRSL STRTRS | solves a triangular system of linear equations

110

LAPACK equivalents of EISPACTK routines

EISPACK

[TAPACK |

Function of EISgB"A(G'[{ roubine

(note 3)

BAKVEC | Backtransform eigenvectors after transformastion by FIGIT
'BALANC | SGEBAL | Balance a real matrix
'BALBAK [SGEBAK | Backtransform - eigenvectors of a real matrix after balancing by |
BALANC |
BANDR, | 5SBTHRD | Reduce a real symmetpic band matrix to tridiagonal form
BANDV | Selected eigunvectors of a real band matrix by inverse iteration
BISECT S3TEBZ | Eigenvaluey in a specified interval of a real symmetric tridiagonal |
‘, matrix (
BQR. SSBEVX | Some eigenvalues of a real symmetric band matrix
(note 5). ‘ .
CBABK2 [CGEBAK | Backfransform eigenvectors of a complex matrix alter balancing by |
-CBAL J
CBAL CGEBAL | Balance a complex matrix
CG CGEEV " " All eigenvalues and optionally eigenvectors.of a complex general matrix |
(driver routine) ‘
CCH CHEEV All eigenvalnes and optionally eigenvectors of a complex Hermitian
k matrix. (driver routine)
CREIVIT CHSEIN | Selected eigenvectors of a complex upper Hessenberg matrix by inverse
iteration
COMBAK | CUNMHR | Backtransform eigenvectors of a complex matrix after reduction by
(note 5) COMHES
COMHES | CGEHRD | Reduce a complex matrix to upper Hessenberg form by a non-unitary
(note 5) transformation
COMLR CHSEQR. | All eigenvabies of a complex upper Hessenberg matrix. by the LR
(note 3) algorithm
COMLR2 | CUNGHR | All eigenvalues/ vectors of a complex matrix by the L R algorithm, after
CHSEQR. | reduction by COMUES
CTREVC
{note 5)
COMQR CHSEQR | All eigenvalues of a complex upper Hessenberg matrix by the QR
algorvithm
COMQR2 | CUNGHR | All eigenvalues/vectors of a complex matrix by the QR algorithm,
CHSEQR. | after reduction by CORTH
CTREVC
CORTB CUNMHR. | Barktransform eigenvectors of a complex matrix, after reduction by
CORTH
CORTH CGEHRD | Reduce a complex matrix to upper Hessenberg form by a unitary
transformation
ELMBAK | SORMHR | Backtransform eigenvectors of a real matrix after reduction by
(note 5) ELMHES ‘
ELMHES | SGEHRD | Reduce a real matrix to upper Hessenberg form by a non-orthogonal
(note 5) sransformation
ELTRAN | SORGHR. | Generate transformation matrix used by ELMHES

jR A

A

LAPACK equivalents of EISPACK routines (continued)

EISPACK I: LAPACK L Function ot EISPACK mutine
FIGI Transform a nonsymmetric tmdiagonal matrix of special form to a
: - symmetric matrix ' ‘
. FIGI2 , - As FIGI, with generation of the transformation matrix. ‘
HQR SHSEQR | All eigenvalues of a complex upper Hessenberg matrix by the QR ‘i
' j " algorithm :
CHQR2 SHSEQR. | All eigenvalves/vectors of a real npper Hessenberg matrix by the Q'R |
'STREVC | algorithm
HTRIB3 | CUPMTR | Backtransform eigenvectors of a complex Hermitian matrix after re- |
: - duction by HTRID3 A
"HTRIBK | CUNMTR.| Backtransform eigenvectors of a complex Hermitian matrix aftar re-
; "duction by HTRIDL
HTRID3 | CHPTRD | Reduce a complex Hermitian inatrix te tridiagonal form (packed |
? ‘gtorage)
HTRIDI | CHETRD | Reduce a complex Hermitian matrix to tridiagonal form
IMTQLL | SSTEQR | Al eigenvalues of a symmetric. tridiagonal matrix, by the implicit QL |
] algorithm
IMTQL2 | SSTEQR | All eigenvalues/vectors of a symmetric tridiagonal matrix, by the im-
plicit Q'L algorithm :
IMTQLV | SSTEQR | As IMTQLL, preserving the input matrix
INVIT SHSEIN | Selected eigenvectors of a real npper Hessenberg matrix, by inverse
iteration |
MINFIT | SGELSS | Minimum-norm solution of a linear least-squares problem, using, the |
singular value decomposition
ORTBAK { SORMHR | Backtransform eigenvectors of a real matrix after reduction to npper |
Hessenbherg form by ORTHES
ORTHES | SGEHRD | Reduce a real matrix to wpper Hessenberg form by an orthogonal
transformation
ORTRAN | SORGHR | Generate orthogonal transformation matrix used by ORTHES
QZHES Reduce a real generalized eigenproblem Az = ABz toa form in which
A is upper Hessenberg and B is upper triangular
QZIT generalized Schur factorization of a real generalized eigenproblem,
QZVAL after reduction by QZHES '
QZVEC all eigenvectors of a real generalized eigenproblem from generalized
Schur factorization
RATQR SSTEBZ | Extreme eigenvalues of a symmetric tridiagonal matrix using the ra-
(note 5) tional QR algorithm with Newton corrections
REBAK STRSM Backtransform eigenvectors of a symmetric-definite generalized eigen-
problem 4r = ABz or ABz = Ar after reduction by REDUC or
REDUC?2
REBAKB | STRMM | Backtransform eigenvectors of a symmetric-definite generalized eigen-
problem 8Az = Az after reduction by REDUC2
REDUC SS5YGST | Reduce the symmetric-definite generalized eigenproblem Az = ABz |
to a standard symmetric eigenproblem

112

LAPACK equivalents of EISPACK routines (continued)

EISPACK | LAPACK|

Function of EISPACK routine

"REDUC2 [SSYGST | Reduce the symmetric-definite generalized eigenproblem ABz = Az |
: ; cor BAx = Az to a standard symmetric eigenproblem |
'RG - SGEEV | All eigenvalues and optionally eigenvectors of a real general matrix
! . (driver routine), |
'RGG - All eigenvalues and optionally eigenvectors or a real generalized eigen- |
- problem (driver routine) :
RS SSYEV | All eigenvalues and optionally eigenvectors of a real symmetric matnix
(driver routine) :
RSB SSBEV | All eigenvalues and optionally eigenvectors of a real symmetric band |
matriy. (driver routine)
RS5G 9SYGV | All eigenvalues and optionally eigenvectors of a real symmetric-definite |
" generalized eigenproblem 4o = ABz (driver soutine)
RSGAB SSYGV | All eigenvalues and optionally eigenvectors of a real symmetric-definite
- generalized eigenproblem AB2 = Az (driver routine)
R5GBA | SSYGV | All eigenvalues and optionally eigenvectors of a real symmetric-definite
generalized eigenproblem BAr = Az (driver routine) \
RSM 'SSYEVX | Selected eigenvalues and optionally eigenvectors of a real symmetric
- matrix (driver routine)
RSP SSPEV All eigenvalues and optionally eigenvectors of a real symmetric matrix
(packed storage) (driver routine)
RST SSTEV All eigenvalues and optionally eigenvectors of a real symmetric tridi-
agonal matrix (driver routine)
RT All eigenvalues and optionally eigenvectors of a real tridiagonal matrix |
of special form (driver routine)
SVD SGESVD | Singular value decomposition of a real matrix
TINVIT SSTEIN | Selected sigenvectors of a symmetric tridiagonal matrix by inverse
iteration
TQLL SSTEQR | All eigenvalues of a symmetric tridiagonal matrix by the explicit QL
(note 5) | algorithm
TQL2 SSTEQR | All eigenvalues/vectors of a symmetric tridiagonal matrix by the ex-
(note 5) | plicit L algorithm
TQLRAT | SSTERF | All eigenvalues of a symmetric tridiagonal matrix by a rational variant |
of the ¢ L algorithm
TRBAKL | SORMTR| Backtransform eigenvectors of a real symmetric matrix after reduction |
by TRED1
TRBAK3 | SCPMTR| Backtransform eigenvectors of a real symmetric matrix after reduction
by TRED3 (packed storage)
TRED1L SSYTRD | Reduce a real symmetric matrix to tridiagonal form
TRED?2 SSYTRD | As TREDI, but also generating the orthogonal transformation matrix |
SORGTR
TRED3 SSPTRD | Reduce a real symmetric matnx to tridiagonal form (packed storage)
TRIDIB SSTEBZ | Eigenvalues between specified indices of a symmetric tridiagonal

matrix

113

ily

LAPACK equivalents of EISPACK roatines (continued)

}; EISPACK ! EAP‘AC’K[: Function of EISPACK routine

"TSTURM | SSTEBZ | Eigenvalues in a specified interval of a symmetric tridiagonal matoix,
SSTEIN | and corresponding eigenvectars by inverse iteration

Li4

Appendix E

LAPACK Working Notes

Most of these warking notes are available from netlib, where they can only be obtained in postscript
form. To receive a list of available postscript reports, send email to netlib@ornl.gov of the form:

3

send index from lapack

. J. Demrmel, J. Dongarra, J. Du Croz, A. Greenbaum, 5. Hammarling, and D. Sorensen,

Progpectus for the Development of a Linear Algebra Library for High- Performance Computers,
ANL, MCS-TM-97, September 1987,

. J. Dongarra, S. Hammarling, and D. Sorensen, Block Reduction of Matrices to Condensed

Forms for BEigenvalue Compuiations, ANL, MCS-TM-99, September 1987.

. J. Demmel and W. Kahan, Computing Small Singular Values of Bidicgonal Matrices with

CGuaranteed High Relative Accuracy, ANL, MCS-TM-110, February 1988.

J. Demmel, J. Du Croz, S. Hammarling, and D. Saorensen, Guidelines for the Design of Sym-
metric Eigenroutines, SVD, and [terative Refinement and Condition Estimation for Linear
Systems, ANL, MCS-TM-111, March 1988.

. C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and D.

Sorensen, Provisional Contents, ANL, MCS-TM-38, September 1988.

. Q. Brewer, J. Dongarra, and D. Sorensen, Tools to Aid in the Analysis of Memory Access

Patterns for FORTRAN Programs, ANL, MCS-TM-120, June 1988.

J. Barlow and J. Demmel, Computing Accurate Figensystems of Scaled Diagonally Dominant
Matrices, ANL, MCS-TM- 126, December 1988,

. Z. Bai and J. Demmel, On a Block Implementation of Hessenberg Multishift QR Iteratior.,

ANL, MCS-TM-127, January 1989.

. J. Demmel and A. McKenney, A Test Matrizc Generation Suite, ANL, MCS-P69-0339, March

1989,

115

10

LL.

6.

7.

18,

9.

23

24.

[3]
O

E. Anderson and J. Dongarva, Installing and Testing the [nitial Release of LAPACK - [nuz
and Non-{niz Versions, ANL, MCS-TM-130, May 1939.

P. Deift, J. Demmel, L.-C. Li, and C. Tomei, The Bidiagonal Singular Value Decomposition
and Hamiltomian Mechanics, ANL, MCS-TM-133, August 1989,

. P. Mayes and G. Radicati, Banded Cholesky Factorization Using Level 3 BLAS, ANL, MCS-

TM-134, August 1989.

. Z. Bai, J. Demmel, and A. McKenney, On the Conditioning of the Nonsymmetric Eigenprob-

lern: Theory and Software, T, CS-89-86, October 1989.

. J. Demmel, On Floating Point Errors in Cholesky, UT, CS-89-87, October 1989.
5. J. Demmel and K. Veseli¢, Jacobi's Method is More Accurate than QR, UT, CS-89-8%, October

1989.

E. Anderson and J. Dongarra, Results from the [nitial Release of LAPACK, UT, (C5-89-89,
November [989. ‘

A. Greenbaum and J. Dongarra, Frperiments with QR/QL Methods for the Symmetric Tridi-
agonal Eigenproblem, UT, C5-89-92, November 1989,

E. Anderson and J. Dongarra, Implementation Guide for LAPACK, UT, CS-90-10L, April
1990.

E. Anderson and J. Dongarra, Evaluating Block Algorithm Variants in LAPACK, UT, C5-
30-103, Apri 1390.

. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbanm, S.

Hammarling, A. Mckenney, and D. Sorensen, LAPACRK: A Portable Linear Algebra Library
for High-Performance Computers, UT, CS-90-105, May 1990.

. J. Du Croz, P. Mayes, and G. Radicati, Factorizations of Band Matrices Using Level J BLAS,

UT, CS-90-109, July 1990.

. J. Demmel and N. Higham, Stability of Block Algorithms with Fust Level 3 BLAS, UT, C'S-

90-110, July 1990.

J. Demmel and N. Higham, [mproved Error Bounds for [nderdetermined System Solvers,
UT, CS-90-113, August 1990.

J. Dongarraand S. Ostrouchov, LA PACK Block Factorization Aigorithms on the [ntel iPSC/860,
UT, CS-90-115, October, 1990,

25. J. Dongarra, S. Hammarling, and J. Wilkinson, Numerical Congiderations in Computing

Invarant Subspaces, UT, CS-90-117, October, 1990.

. E. Anderson, C. Bischof, J. Demmel, I. Dongarra, J. DuCroz, S. Hammarling, and W. Ka-

han, Prospectus for an Estension to LAPACK: A Portable Linear Algebra Library for High-
Performance Computers, UT, CS-90-118, November 1990.

L6

3]
=1

28.

29.
30.

L.

33.

39.

. J. DuCroz, and N. Higham, Stability of Methods for Matriz nvergion, UT, CS-90-119, Octo-

ber, 1990.

J. Dongarra, P. Mayes, and G. Radicati, The [BM RISC System /6000 and Linear Algebra
Operations, UT, C5-90-122, December 1990.

R. van de Geijn, On Global Combine Operations, UT, C$-91-129, April 1991.

J. Dongarra, R. van de Geijn, Reduction to Condensed Form for the Eigenvalue Problem omn
Distributed Memory Architectures, UT, CS-91-130, April 1991,

E. Anderson, Z. Bai, and J. Dongarra, Generalized QR Factorization and its Applications,
UT, CS-91-131, April 1991.

2. C. Bischof, and P. Tang, Generalized Incremental Condition Estimation, UT, CS-91-132, May

1991.

3. C. Bischof, and P. Tang, Robust [ncremental Condition Estimation, UT, CS-91-133, May

1991.

. I. Dongurra, Workshop on the BLACS, UT, CS-91-134, May 1991.

35. E. Anderson, J. Dongarra, and S. Ostrouchov, Implementation guide for LAPACK, UT, CS-

91-138, August 1991.

. E. Anderson, Robust Triangular Solves for [/se in Condition Estimation, UT, CS-91-142,

August 1991.

7. J. Dongarra and R. van de Geijo, Two Dimensional Basic Linear Algebra Commurication

Subprograms, UT, CS-91-138, October 1991.

Z. Bai and J. Demmel, On a direct algorithm for computing invariaent subspaces urith specified
eigenvalues, UT, CS-91-139, November 1991.

J. Demmel, J. Dongarra, and W. Kahan, On Designing Portable High Performance Numerical
Libraries UT, CS-91-141, July 1991.

LLT

Appendix F

Specifications of Routines

Notes

[V

. The specifications which follow, give the calling sequence, purpose, and descriptions of the

arguments, of each LAPACK driver and computational routine (but not of auxiliary routines).

. Specifications of pairs of real and complex routines have been merged (for example $BD-

SQR/CBDSQR). In a few cases, specifications of three routines have been merged, one for
real symmetric, one for complex symmetric, and one for complex Hermitian matrices (for
example SSYTRF/CSYTRF/CHETRF). A few routines for real matrices have no complex
equivalent (for exampie SSTEBZ).

. Specifications are given only for single precision routines. To adapt them for the double pre-

cision version of the software, simply interpret REAL as DOUBLE PRECISION, COMPLEX
as COMPLEX*L6 (or DOUBLE COMPLEX), and the initial letters S- and C- of LAPACK
roatine names as D- and Z-. '

Specifications are arranged in alphabetical order of the real routine name.

. The text of the specifications has been derived from the leading comments in the source-text of

the routines. It makes only a limited use of mathematical typesetting facilities. To eliminate
redundancy, A7 has been used throughout the specifications. Thus, the reader should note
that A® is equivalent to AT in the real case.

118

n . N N T e

>

. s

AT I e T

Ve e R R RUR TR C e O

" . i o e o g ' neoonim

I

