
ANL/BK--7 5732

DE92 010936

LAPACK Users' Gu e

Release 1.0

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen

31 January 1992

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer.,

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expresse_ herein do not nex,essari'y state or reflect those of the _'_"__"i[_
United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT 18 UNUMITED

Abstract

L APACK is a transportable library of Fortran 77 subroutines for solving the most common problems

in numerical linear algebra: systems of linear equations, linear least squares problems, eigenvalue

problems and singular value problems.

LAPACK is designed to supersede LINPACK and EISPACK, principally by restructuring the soft-

ware to achieve much greater efficiency on vector processors,, high-performance "superscalar" work-
stations, and shared-memory multi-processors. LAPACK also adds extra functionality, uses some

new or improved algorithms, and integrates the two sets of algorithms into a unified package.

The LAPACK Users' Guide gives an informal introductio.n to the design of the algorithms and

software, summarizes the contents of the package, describes conventions used in the software and

documentation, and includes complete specifications for calling the routines.

This edition of the Users' Guide describes Release 1.0 of LAPACK.

Dedication

This work is dedicated to Jim Wilkinson whose ideas and spirit have given us inspiration and

influenced the project at every turn.

Contents

Preface 8

1 Essentials 11

1.1 LAPACK 11

1.2 Problems LAPACK Can Solve 11

1.3 Computers for which LAPACK is suitable 12

1.4 LAPACK compared with LINPACK and EISPACK 12

1.5 LAPACK and the BLAS 12

1.6 Documentation for LAPACK 12

1.7 Availability of LAPACK 13

1.8 Installation of LAPACK 13

1.9 Support for LAPACK 13

1.10 Known Problems in LAPACK 14

2 Contents of LAPACK 15

2.1 Structure of LAPACK ' 15

2.1.1 Levels of routines 15

2.1.2 Data types and precision 16

2.1.3 Naming Scheme 16

2.2 Driver Routines 18

2.2.1 Linear Equations 18

2.2.2 Linear Least Squares Problems (LLS) 20

2.2.3 Standard Eigenvalue And Singular Value Problems 20

2

_

2.2.4 Generalized Eigenvalue Problems 23

2.3 Computational routines 24

2.3.1 Linear Equations 24

2.3.2 Orthogonal Factorizations 29

2.3.3 Symmetric Eigenproblem : 31

2.3.4 Nonsymmetric Eigenproblem 33

2.3.5 Singular Value Decomposition 34

2.3.6 Generalized Symmetric-Definite Eigenproblems 36

3 Performance of LAPACK 38

3.1 Factors That Affect Performance 38

3.1.1 Vectorization 39

3.1.2 Data movement 39

3.1.3 Parallelism , . 39

3.2 The BLAS as the Key To Portability 39

3.3 Block Algorithms And Their Derivation 41

3.4 Examples of block algorithms in LAPACK 43

3.4.1 Factorizations for solving linear equations 44

3.4.2 QR factorization 45

3.4.3 Eigenvalue problems 45

4 Accuracy and Stability 48

4.1 Roundoff Errors in Floating Point Arithmetic 48

4.2 Vector an_ Matrix Norms 49

4.3 Standard Error Analysis 50

4.4 Improved Error Bounds 51

4.5 How to Read Error Bounds 52

4.6 Error Bounds for Linear Equation Solving 53

4.7 Error Bounds for Linear Least Squares Problems 54

4.8 Lrror Bounds for the Singular Value Decomposition 55

3

4.9 Error Bounds for the Symmetric Eigenproblem 57

4.10 Error Bounds for the Nonsymmetric Eigenproblem 58

4.10.1 Summary 58

4.10.2 Balancing and Conditioning 60

4.10.3 Computing 8 and sep ". 60

4.11 Error bounds for the generalized symmetric-definite eigenproblem 62

4.12 Error bounds for Fast Level 3 BLAS 64

5 Documentation and Software Conventions 65

5.1 Design and Documentation of Argument Lists 65

5.1.1 Structure of the Documentation 65

5.1.2 Order of Arguments 65

5.1.3 Argument Descriptions ' 66

5.1.4 Option Arguments 66

5.1.5 Problem Dimensions 67

5.]..6 Array Arguments 67

5.1.7 Work Arrays 67

5.1.8 Error handling and the diagnostic argument INFO 68

5.2 Determining the block size for block algorithms 68

5.3 Matrix storage schemes 69

5.3.1 Conventional Storage 70

5.3.2 Packed Storage 71

5.3.3 Band Storage 71

5.3.4 TridiagonaJ and Bidiagonal Matrices 73

5.3.5 Unit Triangular Matrices : 73

5.3.6 Real Diagonal Elements of Complex Matrices 73

5.4 Representation of orthogonal or unitary matrices 73

6 Installing LAPACK routines 75

6.1 Points to note ... 75

6.2 Installing ILAF.NV 76

7 .Troubleshooting 79

7.1 Failures or wrong results 79

7.2 Poor performance. 80

Bibliography 82

A Index of Driver and Computational Routines 85

B Index of Auxiliary Routines 95

C Quick Reference Guide to the BLAS 102

D Converting from LINPACK or EISPACK 107

E LAPACK Working Notes 115

F Specifications of Routines 118

\

List of Tables

2.1 Matrix types in the LAPACK naming scheme 17

2.2 Driver routines for linear equations 19

2.3 Driver routines for linear lea.st squares problems 20

2.4 Driver routines for standard eigenvalue and singular value problems 22

2,5 Driver routines for generalized eigenvalue problems 23

2.6 Computational routines for Linear equations ' 27

2,7 Computational routines for linear equations (continued) 28

2.8 Computational routines for orthogonal factorizations 30

2.9 Computational routines for the symmetric eigenproblem 32

2.10 Computational routines for the nonsymmetric eigenproblem 35

2.11 Computational routines for the singular value decomposition , , 36

2.12 Computational routine" for the generalized symmetric-definite eigenproblem 37

3,1 Speed In megaflops of Level 2 and Level 3 BLA.S operations on a CRAY Y-MP . , . 40

3,2 Speed m megaflops of Cholesky factorization A = uTU for n = 500 43

3.3 Speed m megaitops of SGETRF/DGETttF for square matrices of order n 44

3.4 Speed m megaa_Iops of SPOTRF/DPOTRF for matrices of order n with UPLO = 'U' 44

3.5 Speed in mega.flops of SSYTRF for matrices of order n with UPLO = 'U' on a CRAY-2 45

3.6 Speed m megaflops of SGEQRF/DGEQRF for square matrices of order n 46

3.7 Speed m megaflops of reductions to condensed forms on an IBM 3090E VF 47

4,1 Vector and Matrix Norms 49

4.2 Asymptotic error bounds for the Nonsymmetric Eigenproblem 59

4,3 Global error bounds for the Nonsymmetric Eigenproblem 59

" 6.1 Use of the block parameters NB, NBMIN, and NX in LAPACK 77

Preface

The development of LAPACK was a natural step after specifications of the Level 2 and 3 BLAS

were drawn up in 1984-86 and 1987-88. Research on block algorithms had been ongoing for several

ye,re, but agreement on the BLAS made it possible to construct a new software package to take

the place of LINPACK and EISPACK. This also seemed to be a good time to implement a number
of algorithmic advances that had been made since LINPACK and EISPACK were written in the

1970's. The proposal for LAPACK was submitted while the Level 3 BLAS were still being developed

and funding was obtained from the National Science Foundation beginning in 1987.

LAPACK is more than just an update of its popular predecessors. It extends the functionality

of LINPACK and EISPACK by including driver routines for linear systems, iterative refinement

and error bounds, eigencondition estimation, and the capability for finding selected eigenvalues

and eigenvectors. LAPACK improves on the accuracy of the standard algorithms in EISPACK

by including high accuracy algorithms for finding eigenvalues of the bidiagonal and tridia.jonal

matrices that arise in SVD and symmetric eigenvalue problems. It is also a research project on

achieving good performance in a portable w_y by calling the BLAS. We have tried to be consistent

with our documentation and coding style throughout LAPACK in the hope that LAPACK will

serve a_ a modcl ibr other software development efforts. In particular, we hope that LAPACK and

this guide will be of value in the classroom. Finally, we hope that LAPACK will be used, both as

a library of subroutines and as a source of building blocks for larger applications.

We have encountered scrae obstacl_ to our goal of a portable library, most of which should not

be apparent to a casual user. We have assumed the BLAS are implemented efficiently on the

target machine, but the optimal performance of the LAPACK routines depends to some extent

on a small set of parameters, such as the block size, which mus_ be computed for each machine

(reasonable default values are provided). Most of the LAPACK code is written in standard Fortran

77, but the double precision complex data type is not part of the standard, so we have had to
make some assumptions about the names of intrinsic functions that do not hold on all machines

(see section 6.1). Finally, our rigorous testing suite included test problems scaled at the extremes

of the arithmetic range, which c_n vary greatly from machine to machine. On some machines, we

have had to restrict the range more than on others.

Since most of the performance improvements in LAPACK come from restructuring the algorithms

to use the Level 2 and 3 BLAS, we benefited greatly by having access from the early stages of the

project to a complete set of BLAS developed for the CRAY machines by Cray Research. Later, the

BLAS library developed by IBM for the IBM RISC/6000 was very helpful in proving the worth of

block algorithms and LAPACK on super-scalar workstations. Many of our test sites, both computer

vendors and research institutions, also worked on optimizing the BLAS and thus helped to get good

performance from LAPACK. We are very pleased at the extent to which the user community has

embraced the BLAS, not only for performance reasons, but also because we feel developing software

around a core set of common routines like the BLAS is good software engineering practice.

A number of technical reports were written during the development of LAPACK and published as

LAPACK Working Notes, initially by Argonne National Laboratory and later by the University of

Tennessee. Many of these reports later appeared as journal articles. Appendix E lists the LAPACK

Working Notes, and the bibliography gives the most recent published reference,

A tbllow-on project, LAPACK 2, has been funded in the US by the NSF and DARPA. One of its

aims will be to add a modest amount of additional functionality to the current LAPACK package--

for.example, routines for the generalized SVD and additional routines for generalized eigenproblems.

These routines will be included in a future release of LAPACK when they are available. LAPACK

2 will also produce routines which implement LAPACK-type algorithms for distributed-memory

machines, routines which take special advantage of IEEE arithmetic, and versions of parts of

LAPACK in C and Fortran 90. The precise form of these other software packages which will result
from LAPACK 2 has not yet been decided.

As the successor to LINPACK and EISPACK, LAPACK has drawn heavily on both the software

and documentation from those collections. The test and timing software for the Level 2 and 3

BLAS was used as a model for the LAPACK test and timing software, and in fact the LAPACK

timing software includes the BLAS timing software as a subset. Formatting of the software and

conversion from single to double precision was done using Toolpack/1 [9], which was indispensable

to the project. We owe a great debt to our colleagues who have helped create the infrastructure of

scientific computing on which LAPACK has been built.

The development of LAPACK was primarily supported by NSF grant ASC-8715728. Zhaojun Bal

had partial support from DARPA grant F49620-87-C0065, Christian Bischof was supported by the

Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of

Energy, under contract W-31-109-Eng-38, James Demmel had partial support from NSF grant

DCR-8552474, and Jack Dongarra had partial support from the Applied Mathematical Sciences

subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-
AC05-84OR21400.

We acknowledge with gratitude the support which we have received from the following organiza-

tions, and the help of individual members of their staff'. Cornell Theory Center; Cray Research Inc;

IBM ECSEC Rome; IBM Scientific Center, Bergen; NAG Ltd.

We also thank many, many people who have contributed code, criticism, ideas and encouragement.

We wish especially to acknowledge the contributions of: Mario Arioli, Mir Assadullah, Jesse Barlow,

Mel Ciment, Percy Delft, Augustin Dubrulle, Iain Duff, Alan Edelman, Sam Figueroa, Pat Gaffney,

Nick Higham, Liz Jessup, Bo K_gstrSm, Velvel Kahan, Linda Kaufman, L.-C. Li, Bob Manchek,

Peter Mayes, Cleve Moler, Beresford Parlett, Mick Pont, Giuseppe Radicati, Tom Rowan, Pete

Stewart, Peter Tang, Carl(,s Tomei, Char]le Van Loan, Kre_imir Yeseli/', Phuong Vu, and Reed
Wade.

Finally we thank all the test sites who received three preliminary distributions OfLAPACK software

and who ran an extensive series of test programs and timiiLg programs for us; their efforts have

influenced the final version of the package in numerous ways,

10

Chapter 1

Essentials

RTFM - Anonymous

1.1 LAPACK

LAPACK is a library of Fortran 77 subroutines for solving the most commonly occurring problems

in numerical linear algebra. It has been designed to be e.ff;.cient on a wide range of modern high-

performance computers. The name LAPACK is an acronym for Linear Algebra PACKage.

1.2 Problems LAPACK Can Solve

LAPACK can solve systems of linear equations, linear least squares problems, eigen value problems

and singular value problems. LAPACK can also handle many associated computations such as

matrix factorizations or estimating condition numbers.

LAPACK contains driver routines for solving standard types of problems, computational rou-

tines to perform a distinct computational task, and auxiliary routines to perform a certain

subtask or common low-level computation. Each driver routine typically calls a sequence of com-

putational routines. Taken as a whole, the computational routines can perform a wider range of

tasks than are covered by the driver routines. Many of the auxiliary routines may be of use to

numerical analysts or software developers, so we have documented the Fortran source for these
routines with the same level of detail used for the LAPACK routines and driver routines.

Dense and band matrices are provided for, but not general sparse matrices. In all areas, similar

functionality is provided for real and complex matrices. See Chapter 2 for a complete summary of
the contents.

11

1.3 Computers for which LAPACK is suitable

LAPACK is designed to give high efficiency on vector processors, high-performance "superscalar"

workstations, and shared-memory multi-processors. LAPACK in its present form is less likely to

give good performance on other types of paraJlel architectures (for example, massively parallel

SIMD machines, or d,stributed-memory machines), but work has begun to try to adapt LAPACK

Cothese new architectures. LAPACK can also be used satisfactorily on all types of scalar' machines

(PC's, workstations, mainframes). See Chapter 3 for some examples of the performance achieved

by LAPACK routines.

1.4 LAPACK compared with LINPACK and EISPACK

LAPACK has been designed to supersede LINPACK [15] and EISPACK [39, 27], principally by

restructuring the software to achieve much greater efficiency (where possible) on modern high-

performance computers; also by adding extra functionality, by using some new or improved algo-

rittlms, and by integrating the two sets of algorithms into a unified package.

Appendix D fists the LAPACK counterparts of LINPACK a.nd EISPACK routines. Not all the

facilities of LINPACK and ELSPACK are covered by Release 1.0 of LAPACK.

1.5 LAPACK and the BLAS

LAPACK routines are written so thut as much as possible of the computation is performed by calls

to the Basic Linear Algebra Subprograms (BLAS) [36, 19, 17]. Highly efficient machine-specific

implementations of the BLAS are available for many modern high-performance computers. The

BLAS enable LAPACK routines to achieve high performance with portable code. The methodology

for constructing LAPACK routines in terms of calls to the BLAS is described in Chapter 3.

The BLAS are not strictly speaking part of LAPACK, but Fortran 77 code for the BLAS is dis-

tributed with LAPACK, or can be obtained separately from netlib (see below). This code constitutes

the "model implementation" [18, 16].

The model implemeI._ation is not expected to perform as well as a specially tuned implementation

on most high-performance computers -- on some machines it may give much worse performance-

but it allows users to run LAPACK code_ on machines that do not offer any other implementation
of the BLAS.

1.6 Documentation for LAPACK

This Users' Guide gives an informal introduction to the design of the package, and a detailed

description of its contents. Chapter 5 explains the conventions used in the software and documen-

• tation. Appendix F contains complete specifications of all the driver routines and computational

12

routines. These specifications have been derived from the leading comments in the source text.

1.7 Availability of LAPACK

Individual routines from LAPACK are most easily obtained by electronic mail through netlib [21].
At the time of this writing, the _mail addresses for netlib are

he,lib@ornl,gov
netlib@research,atf.com

General information about LAPACK can be obtained by sending mail to one of the above addresses
with the message

send index from lapack

The complete package, including test code and timing programs in four different Fortran data types,

constitutes some 600,000 lines of Fortran source and comments. A magnetic tape of the complete

LAPACK package can b(_btained from NAG for a nominal handling charge.

For "further details contact NAG at one of the following addresses:

NAG Inc NAG Ltd NAG GmbH
Wilkinson House

1400 Opus Place, Suite 200 Jordan Hill Road ::jchleissheimerstrasse 5
Downers Grove, [L 60515-5702 W-8046 Garching bei Miinchen

USA Oxford OX2 8DR Germany
Tel: +1 708 971 2337 England Tel: +49 89 3207395

Tel: +44 865 511245
Fax: +1 708 971 2706 Fax: +49 89 3207396

Fax: +44 865 310139

1.8 Installation of LAPACK

A compreb,e,_.;ve Implementors' Guide [2] is distributed with the complete package. This includes

descriptic, ns of the test programs and timing programs, and detailed instructions on running them.

See also Chapter 6.

1.9 Support for LAPACK

• LAPACK has been thoroughly tested before release, on many different types of computers. Tile

LAPACK project supports the package in the sense that reports of errors or poor performance will

gain immediate a'ttention from the developers. Such reports -- and also descriptions of interesting

applications and other comments -- should be sent to:

13

LAPACK Project

c/o J.J. Dongarra

Computer Science Department

University of Tennessee

Knoxville, Tennessee 37996-1301
USA

Emaih lapack_cs.utk.edu

1.10 Known Problems in LAPACK

A list of known problems, bugs, and compiler errors for LAPACK is maintained on netlib. For a
copy of this report, send email to netlib of the ibrm:

send bugreport from lapack

14

Chapter 2

Contents of LAPACK

2.1 Structure of LAPACK

2.1.1 Levels of routines

The subroutines in LAPACK are classified as follows:

• driver routines, each of which solves a complete problem, for example solving a system

of linear equations, or computing the eigenvalues of a real symmetric matrix. Users are

recommended to use a driver routine if there i_ one that meets their requirements. They are
listed in Section 2.2.

• computational routines, each of which performs a distinct computational task, for example

an LU factorization, or the reduction of a real symmetric matrix to tridiagonal form. Each

driver routine calls a sequence of computational routines. Users (especially software develop-

ers) may need to call computational routines directly to perform tasks, or sequences of tasks,

that cannot conveniently be performed by the driver routines. They are listed in Section 2.3.

• auxiliary routines, which in turn can be classified as follows:

- routines that perform subtasks of block algorithms -- in particular, routines that imple-

ment unblocked versions of the algorithms;

- routines that perform some commonly required low-level computations, for example

scaling a matrix, computing a matrix-norm, or generating an elementary Householder

matrix; some of these may be of interest to numerical analysts or software developers

and could be considered for future additions to the DLAS;

- a few extensions to the BLAS, such as routines for applying complex plane rotations, or

matrix-vector operations involving complex symmetric matrices (the BLAS themselves

are not strictly speaking part of LAPACK).

15

Both driver routines and computational routines are fully described in this Users' Guide, but not

the auxiliary routines. A list of the auxiliary routines, with one-line descriptions of their functions,

is given in Appendix B.

2.1.2 Data types and precision

LAPACK provides the same range of functionality for real and complex data.

For most computations, there are matching routines_ one for real and one for complex data, but

there are a few exceptions. For example, corresponding to tile routines for real symmetric indefinite

systems of linear equations, there are routines for complex Hermitian and complex symmetric

systems, because both types of complex systems occur in practical applications. However, there is

no complex analogue of the routine for finding selected eigenvalues of a real symmetric tridia_onal

matrix, because a complex Hermitian matrix can always be reduced to a real symmetric tridiagonal
matrix.

Matching routines for real and complex data have been coded to maintain a close correspondence

between the two, wherever possible. However, in some areas (especially the nonsymmetric eigen-
problem) the correspondence is necessarily weaker.

All routines in LAPACK are provided in both single and double precision versions. The double

precision versions have been generated automatically, using Toolpack/1 [9].

Double precision routines for complex matrices require the non-standard Fortran data type COM-

PLEX*16, which is available on most machines where double precision computation is usual.

2.1.3 Naming Scheme

The name of each LAPACK routine is a coded specification of its function (within the very tight

limits of standard Fortran 77 6-character names).

All driver and computational routines have names of the form XYYZZZ, where for some driver
routines the 6th character is blank.

The first letter, X, indicates the data type as follows:

S REAL

D DOUBLE PRECISION

C COMPLEX

Z COMPLEX*16 or DOUBLE COMPLEX

When we wish to refer to an LAPACK routine generically, regardless of data type, we replace the
first letter by "x'. Thus xGESV refers to any or ali of the routines SGESV, CGESV, DGESV and
ZGESV.

The next two letters, YY, indicate the type oi' matrix (or of the most significant matrix). Most of

these two-letter codes apply to both real and complex matrices; a few apply specifically to one or

16

Table 2.1: Matrix types in the LAPACK naming scheme

BD bidiagonal

GB general band

GE general (i.e. unsymmetric, in some cases rectangular)

GG general matrices, generalized problem (i.e. a pair of general m_.trices)
GT general tridiagonal

HE (complex) Hermitian

HG upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a triangular matrix)
HP (complex) Hermitian, packed storage

HS upper Hessenberg

OR (real) orthogonal

OP (real) orthogonal, packed storage

PB symmetric or Hermitian positive definite band

PO symmetric or Hermitian positive definite

PP symmetric or Hermitian positive definite, packed storage

PT symmetric or Hermitian positive definite tridiagonal
SB (real) symmetric band

SP symmetric, packed storage

ST (real) symmetric tridiagonal
SY symmetric

TB triangular band

TG triangular matrices, generalized problem (i.e. a pair of triangular matrices)
TP triangular, packed storage

TI_ triangular (or in some cases quasi-triangular)
TZ trapezoidal

UN (complex) unitary

UP (complex) unitary, packed storage

the other, as indicated in Table 2.1.

When we wish to refer to a class of routines that performs the same function on different types of

matrices, we replace the first three letters by "xyy'. Thus xyySVX refers to all the expert driver
routines for systems of linear equations that are listed in Table 2.2.

The last three letters ZZZ indicate the computation performed. Their meanings will be explained

in Section 2.3. For example, SGEBRD is a single precision routine that performs a bidiagonal

reduction (Bt_D) of a real general matrix.

The names of auxiliary routines follow a similar scheme except that the 2hd and 3td characters YY

are usually LA (for example, SLASCL or CLARFG). There are two kinds of exception. Auxiliary

routines that implement an unblocked version of a block algorithm have similar names to the

routines that perform the block algorithm, with the 6th character being _2' (for example, SGETF2

is the unblocked version of SGETRF). A few routines that may be regarded as extensions to the

17

BLAS are named according to the BLAS naming schemes (for example, CROT, CSYl_).

8

2.2 Driver Routines

This section describes the driver routines in LAPACK. Further details on the terminology and the

nurherical operations theyperform are given in Section 2.3, which describes the computational
routines.

2.2.1 Linear Equations

Two types of driver routines are provided for solving systems of linear equations:

• a simple driver (name ending -SV), which solves the system AX = B by factorizing A and

overwriting B with the solution X;

• an expert driver (name ending -SVX), which can also perform the following functions:

- estimate the condition number of A and check for near-singularity;

- refine the solution and compute forward and backward error bounds;

- (optionally) equilibrate the system if A is poorly scaled.

The expert driver requires roughly twice as much storage as the simple driver in order to

perform these extra functions.

Both types _:)(driver routines can handle multiple right hand sides (the columns of B).

Different driver routines are provided to take advantage of special properties or storage schemes of

the matrix A, as shown in Table 2.2.

All of the computational routines for solving linear systems are used in the context of the driver

routines except the matrix inversion routines (xyyTRI). In most cases, a factorization plus solve is

faster and more accurate than inverting the coefficient matrix explicitly.

18

Table 2.2: Driver routines for linear equations

Type of matrix Operation " Single pre_'ision Double precisi'on "

and storage scheme real complex real complex
general simple"driver SGESV CGESV DGESV ZGES_ r'

expert driver SGESVX CGESVX DGESVX ZGESVX

'general band simple driver SGBsV CGBSV DGBSV ZGBSV

' expert driver SGBSVX CGBSVX DGBSVX ZGBSVX

general tridiagonal simple driver SGTSV CGTSV DGTSV 'ZGTSV

expert driver SGTSVX CGTSVX DGTSVX Z.,rSVXY r !

S ' 11 Q _ 0 11' ,, ymmetrm/Hermltlan simple driver sPOSV CPOSV DPOSV ZPOSV

positive-definite expert driver SPOSVX CPOSVX DPOSVX ZPOSVX

symmetric]'Hermitian sim'ple driver SPPSV CPPSV DPPSV ZPPSV--

positive-definite (packed storage) expert driver SPPSVX CPPSVX DPPSVX ZPPSVX

--symmetric/Hermitian ' " simple driver sPB'SV CPBSV 'DPBSV ZPBSV

positive-definite band expert driver SPBSVX CPBSVX DPBSVX ZPBSVX

symmetric/Hermitian simple 'driver SPTSV CP'TSV DPTSV ZPT'SV

.positive-definitetridiagonal .. expert driver SPTSVX CPTSVX DPTSVX ZPTSVX
symmetric/Hermitian simple 'driver SSYSV CHESV DSYSV ZHESV

indefinite expert driver SSYSVX CHESVX DSYSVX ZHESVX

complex symmetric simple driver ' CSYSV ' ZSYSV

expert driver CSYSVX ZSYSVX
"S ' i ' , 4ymmetrlc/Hermman simple driver SsPSV CHPSV DSPSV ZHPSV

indefinite (packed storage) expert driver SSPSVX CHPSVX DSPSVX ZHPSVX

complex symmetric " simple'"cl'river CSPSV ZSPSV

._(packed storage) expert driver CSPSVX ZSPSVX
,,

19

Table 2.3: Driver routines for linear least squares problems

Operation Single precision Double)recision

real compiex real Complex
solve LLS or using QR or LQ factorization SGELS CGELS DGELS ZGELS

solve LLS using complete erthogonal factorization SGELSX CGELSX DGELSX ZGELSX

solve LLS using SVD SGELSS CGELSS DGELSS ZGELSS

i

2.2.2 Linear Least Squares Problems (LLS)

The linear least squares problem is'

minimize lib- Axll 2 (2.].)

where A is an m-by-n matrix, b is a given m element vector and z is the n element solution vector..

When m > n the problem is also referred to as finding a least-squares solution to an over-

determined system of linear equations, and when m < n the problem is also referred to as finding
a least-squares solution to an under-determined system of linear equations.

In the most usual case m :> n and rank(A) = n, and in this case the solution to problem (2.1) is

unique. When m < n, or m _>n and rank(A) < n, then the solution is not unique. The particular
solution for which [[x[[2 is minimized is called the minimum norm solution.

The driver routine xGELS solves tile problem (2.1) on the assumption that A has full rank_ using
a Q/_ or LQ factorization of A.

The driver routines xGELSX and xGELSS solve problem (2.1), allowing for the possibility that A

is rank-deficient; xGELSX uses a complete orthogonal factorization of A, while xGELSS uses
the singular value decomposition of A.

The routine xGELS (but not xGELSX or xGELSS) allows A to be replaced by A T in the statement

of the problem. The linear least squares driver routines are listed in Table 2.3.

2.2.3 Standard Eigenvalue And Singular Value Problems

Symmetric eigenproblems (SEP)

The symmetric eigenvalue problem is t_ find the eigenvalues, _, and corresponding eigen-
vectors; z _ 0, such that

Az=Az, A=AT, where A is real.

For the Hermitian eigenvalue problem we have

Az = Az, A= A u ,

2O

For both problems the eigenvalues _ are real.

When all eigenvalues and eigenvectors have been computed, we write:

AZ = Zh

where A is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal

(or unitary) matrix whose columns are the eigenvectors.

Two types of driver routines are provided for symmetric or Hermitian eigenproblems:

a simple driver (name ending -EV), which computes all the eigenvalues and (optionally) the
eige_Lvectors of a symmetric or Hermitian matrix A;

• an expert driver (name ending -EVX), which can compute either all or a selected subset of

the eigenvalues_ an d (optionally) the corresponding eigenvectors;

Differenl5 driver routines are provided to take advantage of special structure or storage of the matrix
A, as shown in Table 2.4.

Nonsymmetric eigenproblems (NEP)

The nonsymmetric eigenvalue problem is to find the eigenvalues, _,, and corresponding
eigenvectors, v _ O, such that

Av =)_v.

This problem can be solved via the Schur factorization of A, defined in the real case as

A - ZTZ T,

where Z in an orthogonal matrix and T is an upper quasi-triangular matrix with 1-by-1 and 2-by-2

diagonal blocks, the 2-by-2 blocks corresponding to complex conjugate pairs of eigenvalues of A.
In the complex case the Schur factorization is

A = ZTZ H,

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 _< k _< n), the first k columns of

Z form au orthonormal basis for 'the invariant subspace corresponding to the first k eigenvalues

on the diagonal of T. Because this basis is orthonormal, it is preferable in many applications to

compute Schur vectors rather than eigenvectors. It is possible to order the Schur factorization so

that any desired set of k eigenvalues occupy the k leading positions on the diagonal of :/

Two pairs of drivers are provided, one pair focusing on the Schur factorization, and the other pair

on the eigenvalues and eigenvectors as shown in Table 2.4:

• xGEES: a simple driver that computes all or part of the Schur factorization of A, with optional

ordering of the eigenvalues;

21

Table 2.4: Driver routines for standard eigenvahle and singular value problems

Type of-- Functlonand storagescheme 1 Single precision ' []..........D0ubleprecisionproble m :........... [rea!" ...::.".["complex.. li real....."..[comple x
SEP 's'imP]e'driver SSYEV CHEEV DSYEV ZHEEV

expert driver SSYEVX CHEEVX DSYEVX ZHEEVX

simple"driver"("_)a_cked' stor£ge) ' SSi_EV CHPEV DSPEV zttP'Ev

expert driver (packed storage).. SSPEVX CHPEVX DSPEVX ZHPEVX
..... simple driver (band matrix) " SSBEV ' C'HBEV" DSBEV ZHBEV

...... expert driver (band matrix) SSBEVX CHBEVX DSBEVX ZHBEVX
simple driver (trtdiagonai matrix)SSTEV DSTEV

expert driver (tridiagonal matrix) SSTEVX [DSTEVX
:": NEP" 'siznp!e driver fo'r"Schur factorization 'sG'EE$ CGEES ;""DGEES "' ZGEES

expert driver for Schur factorization SGEESX CGEESX DGEESX ZGEESX

simple driver for eigenvalues/vectors SGEEV CGEEV DGEEV ZGELV

expert driver for eigenvalues/vectors SGEEVX CGEEVX DGEEVX ZGEEVX

__]singul'ar"'val"ues/vect0rs '']]'"SGESVD' C'G'E"svD [i"DG'ESVI)" ZGEsv'D

® xGEESX: an expert driver that additionally can compute a condition number for the average

of a selected subset of the eigeitvalues, and for the corresponding right invariant subspace;

• ×GEEV: a simple driver that computes aU the eigenval.ues of A, and (optionally) the right or

left eigenvectors (or both);

• xGEEVX: a.n expert driver that additionally can balance the matrix to improve the con-

ditioning of the eigenvahtes and eigenvectors, and can compute condition numbers tbr tlle

eigenvalues or right eigenvectors (or both).

Singular value decomposition (SVD)

The singular value decomposition of an m-by-n matrix A is given by

A = U_-,V T A = UEV H (in the complex case),

where U and V are orthogonal (unitary) and _ is an m-by-n matrix with real diagonal elements,
ai, such that

al :> a2 >_...amin(,n,,,) >_0.

The ai are the singular values of A and the first rain(ro, n) columns of U and V are tlm left

and right singular vectors of A. A single driver routine xGESVD computes all or part of the

singular value decomposition of a general nonsymmetric matrix (see Table 2,4).

22

Table 2.5: Driver routines for generalized elgenvalue problems

I Type°f[Functi°nandst°ragescheme l] Single preciston tl Double ,recision 11problem real I complex rea] complex

DSPGV ZHPGV

2.2.4 Generalized Eigenvalue Problems

Generalized symmetric-definite elgenproblems (GSEP)

Simple drivers are provided to compute aH the eigenvalues and (optionally) the eigenvectors of the _
following types of problems'.

1. Az = ,_Bz

2. AB z = hz

3. BAz = hz

where A and B are symmetric or Hermitian and B is positive-definite, as shown in Table 2.5.

Generalized nonsymmetric eigenproblems (GNEP)

Routines for generalized nonsymmetric eigenproblems will be provided iu a future release of LA-
PACK.

23

t
2,3 Computational routines

2.3.1 Linear Equations

We use the standard notation for a system of simultaneous Unear equations:

Ax = b (2,2)

where A is the coefficient matrix, b is the right hand side, and x is the solution, A is assumed

to be a square matrix of order n, but the LU factorization is provided for a general m-by.n matrix,
If there are several right hand sides, we write

AX = B _ (2_3)

where the columns of B are the individual right hand sides, and the columns of X are th,_ cc)rre-

sponding solutions, The basic task is to compute z, given A and b.

If A is upper or lower triangular, (2.2) can be solved by a straightforward process oi' backward or

forward substitution. Otherwise, the solution is obtained after first factorizing A as a product of

triangular matrices (and possibly also a diagonal matrix or permutation matrix).

The form of the factorization depends on the properties of the matrix A, LAPACK provides
routines for the following types of matrices, based on the stated factorizatlons:

® general matrices (LU factorization with partial pivoting):

A = PLU

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower

trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n),

® general band matrices (LU factorization with partial pivoting): If A is m-by.n with kl

subdiagonals and ku superdiagonals, the factorization is

A=LU

where L is a product of permutation and unit lower triangular matrices with kl subdiagonals,
and U is upper triangular with kl + ku superdiagonals.

S '
• yrnmetmc positive-definite matrices (Cholesky factorization):

A= uTu or A = LL T

where U is an upper triangular matrix and L is lower triangular.

® symmetric positive-definlte tridiagonal matrices (LDL T factor ization):

A = UDU T or A = LDL T

where U is a unit upper bidiagonal matrix, L is unit lower bidiagonal, and D is diagonal.

24

. • symmetric indefinite matrices (symmetric indefinite factorization):

A= UDU T or A = LDL T

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and

D is symmetric and block diagonal with diagonal blocks of order 1 or 2.

The factorization for a general tridiagonal matrix is like that for a general band matrix with kl = 1

and ku = 1. The factorization for a symmetric positive-definite band matrix with k superdiagonals

(or subdiagonals) has the same form as for a symmetric positive-definite matrix, but the factor

U (or L) is a band matrix with k superdiagonals (subdiagonals). Band matrices use a compact

band storage scheme described in section 5.3.3. LAPACK routines are also provided for symmetric

matrices (whether positive-definite or indefinite) using packed storage, as described in section 5.3.2.

While the primary use of a matrix factorization is to solve a system of equations, other related

tasks are provided as weil. Wherever possible, LAPACK provides routines to perform each of these

tasks for each type of matrix and storage scheme (see Table 2.6). The following list relates the

tasks to the last 3 characters of the name of the corresponding computational routine:

xyyTRF: factorize (obviously not needed for triangular matrices);

xyyTRS: use the factorization (or the matrix A itself if it is triangular) to solve (2.3)by forward
or backward substitution;

xyyCON: estimate the reciprocal of the condition number s(A)= HAII.[[A-111; Higham's modifi-

cation [33] of Hager's method [30] is used to estimate [lA-ill, except for symmetric positive-

definite tridiagonal matrices for which it is computed directly with comparable efficiency [31];

xyyRFS: compute bounds on the error in the computed solution (returned by the xyyTRS rou-

tine), and refine the solution to reduce the backward error (see below);

xyyTRI: use the factorization (or the matrix A itself if it is triangular) to compute A -1 (not

provided for band matrices, because the inverse does not in general preserve bandedness).

xyyEQU: compute scaling factors to equilibrate A (not provided for tridiagonal, symmetric in-

definite, or triangular matrices);

Note that some of the above routines depend on the output of others:

xyyTRF: may work on an equilibrated matrix from xyyEQU + xLAQyy, if yy is one of {GE, GB,

PO, PP, PB} (see driver routine xyySVX for sample usage);

xyyTRS: requires the factorization returned by xyyTRF;

xyyCON: requires the norm of the original matrix A, and the factorization returned by xyyTRF;

xyyRFS: requires the original matrices A and B, the factorization returned by xyyTRF, and the

solution X returned by xyyTRS;

25

t
xyyTRI: requires the factorization returned by xyyTRF.

The _It,FS ("refine solution") routines perform iterative refinement and compute backward and

forward error bounds for the solution. Iterative refinement is done in the same precision, as the

input data. In particular, the residual is not computed with extra precision, as has bee,n traditionally

done. The benefit of this procedure is discussed in Chapter 4.

26

!

, _l_lf ''_' 'qlqr'l'lJ"' r_....]I III',pI II'li lr rq ,, ilrl,_,',_''lP''P'Vlp'''_ lr ,'_'11' _, rlIp,,_....... ,,li "' ,q.... P......... qel....... ,I,r

1

Table 2.6: Computational routines f_'r linear equations

Type of matrix Operation Single precision Double precision

and storage scheme real complex real complex
g_neral factorize SGETRF CGETRF DGETRF ZGETRF

solve asing factorization SGETRS CGETRS DGETRS ZGETRS

estimate condition number SGECON CGECON DGECON ZGECON

error bounds for solution SGERFS CGERFS DGERFS ZGERFS

invert using factorization SGETRI CGETRI DGETRI ZGETRI

equilibrate SGEEQU CGEEQU DGEEQU ZGEEQU
"'general factorize SGBTRF CGBTRF DGBTI_F ZGBTRF

band solve using factorization SGBTRS CGBTRS DGBTRS ZGBTRS

estimate condition number SGBCON CGBCON DGBCON ZGBCON

error bounds for solution SGBRFS CGBRFS DGBRFS ZGBRFS

equilibrate SGBEQU CGBEQU DGBEQU ZGBEQU
general factorize " SGTTRF CGTTRF DGTTRF ZGTTRF

tridiagonal solve using factorization SGTTRS CGTTRS DGTTRS ZGTTRS

estimate condition number SGTCON CGTCON DGTCON ZGTCON

error bounds for solution SGTRFS CGTRFS DGTRFS ZGTRFS

symmetric/Hermitian factorize SPOTRF CPOTRF DPOTRF '_ZPOTRF

positive-definite solve using factorization SPOTRS CPOTRS DPOTRS ZPOTRS

estimate condition number SPOCON CPOCON DPOCON ZPOCON

error bounds for solution SPORFS CPORFS DPORFS ZPORFS

invert using factorization SPOTRI CPOTRI DPOTRI ZPOTRI

equilibrate SPOEQU CPOEQU DPOEQU ZPOEQU
-- ,--,

symmetric/Hermitian factorize SPPTP,F CPPTRF DPPTRF ZPPTRF

positive-definite solve using factorization SPPTRS CPPTRS DPPTRS ZPPTRS

(packed storage) estimate condition number SPPCON CPPCON DPPCON ZPPCON

error bounds for solution SPPRFS CPPRFS DPPRFS ZPPRFS

invert using factorization SPPTRI CPPTRI DPPTRI ZPPTRI

equilibrate SPPEQU CPPEQU DPPEQU ZPPEQU

symmetric'c/Hermitian factorize SPBTRF CPBTRF DPBTRF ZPBTRF

positive-definite solve using factorization SPBTRS CPBTRS DPBTRS ZPBTRS

band estimate condition number SPBCON CPBCON DPBCON ZPBCON

error bounds for solution SPBRFS CPBRFS DPBRFS ZPBRFS

equilibrate SPBEQU CPBEQU DPBEQU ZPBEQU

symmetric/Hermitian factorize SPTTRF CPTTRF DPTTRF ZPTTRF

positive-definite solve using factorization SPTTRS CPTTRS DPTTRS ZPTTRS

tridiagonal estimate condition number SPTCON CPTCON DPTCON ZPTCON

error bounds for solution SPTRFS CPTRFS DPTRFS ZPTRFS

27

j

Table 2.7: Computational routines for linear equations (continued)

Type of matrix Operation Single _recision Double _recision

and storage scheme real complex real complex

symmetric/Hermitian factorize SSYTRF CHETRF DSYTRF ZHETRF

indefinite solve using factorization SSYTRS CHETRS DSYTRS ZItETRS

estimate condition number SSYCON CHECON DSYCON ZHECON

error bounds for solution SSYRFS CHERFS -DSYRFS ZHERFS

invert using factorization SSYTRI CHETRI DSYTRI ZHETRI

complex symmetric factorize CSYTRF ZSYTRF

solve using factorization CSYTRS ZSYTRS
estimate condition number CSYCON ZSYCON

error bounds for solution CSYRFS ZSYRFS

invert using factorization CsY'rRI ZSYTRI

symmetric/Hermitian factorize SSPTRF CHPTRF DSPTRF ZHPTRF

indefinite solve using factorization SSPTRS CHPTRS DSPTRS ZHPTRS

(packed storage) estimate condition number SSPCON CHPCON DSPCON ZHPCON

error bounds for solution SSPKFS CHPKFS DSPRFS ZHPRFS

invert using factorization SSPTRI CI-IPTRI DSPTRI ZHPTRI

complex symmetric factorize CSPTKF ZSPTRF

(packed storage) solve using factorization CSPTRS ZSPTRS
estimate condition number CSPCON ZSPCON

error bounds for solution CSPRFS ZSPRFS

invert using factorization CSPTRI ZSPTRI

triangular solve STRTRS CTRTRS DTRTRS ZTRTRS

estimate condition number STRCON CTRCON DTRCON ZTRCON

error bounds for solution STRRFS CTRRFS DTRRFS ZTRRFS

invert STRTRI CTRTRI DTRTRI ZTRTRI

triangular solve STPTRS CTPTRS DTPTRS ZTPTRS

(packed storage) estimate condition number STPCON CTPCON DTPCON ZTPCON
error bounds for solution STPRFS CTPRFS DTPRFS ZTPRFS

invert STPTRI CTPTRI DTPTRI ZTPTRI

triangular solve STBTRS CTBTRS DTBTRS ZTBTRS
band estimate condition number STBCON CTBCON DTBCON ZTBCON

error bounds for solution STBRFS CTBRFS DTBRFS ZTBRFS

2.3.2 Orthogonal Factorizations

LAPACK provides a number of routines for performing orthogonal factorizations (unitary in the

complex case) of _,n m-by-n matrix A, for use in applications such as the solution of linear least

squares problems. They may also be used as steps in the solution of eigenvalue or singular value
problems.

The most common, and best known, of these factorizations is the QR factorization given by

0 , m>_n,

where R is an n-by-n upper triangular matrix and Q is an m-by-m orthogonal (or unitary) matrix.
If A is of full rank n, then R is non-singular.

The routine xGEQRF performs the QR factorization. The matrix Q is not formed explicitly, but

is represented as a product of elementary reflectors, as described in section 5.4. Users need not be

aware of the details of this representation, because associated routines are provided to work with Q:

xORGQR (or xUNGQII, in the complex case) can generate all or part of Q, while xORMQR (or

xUNMQR) can multiply a given matrix by Q or its transpose (conjugate transpose if complex).

The QR factorization can be used to solve the linear least squares problem of equation (2.1) when
A is of full rank, since

II '1 ()iib _ Azl 2 = _-_Rx , where c -- _c = QTb (QHb in the complex case);
2

c can be computed by xOI_MQR (or xUNMQR) and then x is the solution of the upper triangular
system

Rz=_

and the residual sum of squares is given by

lib- Azll 2 = 11_112.

If A is not of full rank, or the rank of A is in doubt, then we can perform either a QR factorization

with column pivoting or a singular value decomposition (see section 2.3.5). The QR factorization

with column pivoting is given by

0 , m>_n,

where Q and R are as before and P is a permutation matrix, chosen so that

(Rll R12)
R= 0 0 '

where Rll is non-singular. The so-called basic solution to the linear least squares problem can be
obtained from this factorization.

29
=

fi

Table 2.8: Computational routines for orthogonal factorizations

Type of factorization Operation Single precision Double precision

and matrix real complex real complex

QR, general factorize with pivoting SGEQPF J CGEQPF DGEQPF ZGIEQPF

factorize, no pivoting SGEQRF CGEQRF DGEQRF ZGEQRF

generate Q SORGQR CUNGQR DORGQR ZUNGQR

multiply matrix by Q SORMQR CUNMQR DORMQR ZUNMQR

LQ, general factorize, Ilo pivoting SGELQF ''CGELQF DGELQF ZGELQF

generate Q SORGLQ CUNGLQ DORGLQ ZUNGLQ

multiply matrix by Q SORMLQ CUNMLQ DORMLQ ZUNMLQ

QL, general fi_,ctorize, no pivoting SGEQLF CGBQLF DGEQLF ZGEQLF

ge:aerate Q SORGQL CUNGQL DORGQL ZUNGQL

multiply matrix by Q SORMQL CUNMQL DORMQL ZUNMQL

RQ, general factorize, no pivoting SGERQF CGERQF DGERQF ZGEI_QF

generate Q SORGRQ CUNGRQ DORGRQ ZUNGRQ

multiply matrix by Q SORMRQ CUNMRQ DORMRQ ZUNMRQ
RQ, trapezoidal factorize, no pivoting STZRQF CTZRQF DTZRQF ZTZ't_QF....

By applying further orthogonal (or unitary) transformations from the right to the upper trapezoidal

matrix (RllR12), using xTZRQF, R12 can be eliminated'.

0)
This gives the complete orthogonal factorization

A=Q([{110 00) ZT

from which the minimum norm solution can be obtained. See Golub and Van Loan [28] for further
details.

Apart from the QR factorization, other flavors of orthogonal factorization are provided, namely

the LQ, QL and RQ factorizations. These may be useful when m < n or _,hen a lower triangular

matrix L is required rather than an upper triangular R. In fact, all four basic factorization routines

allow arbitrary m and n, so that in some cases the matrices R or L are trapezoidal rather than

triangular. A routine that performs pivoting is provided only for the Q R factorization.

As for the QR factorization, associated routines are provided for the LQ, QL, and RQ factorizations

either to generate Q (or part of it) explicitly, or to compute matrix products of the form QC, QTC

(or QHC), CQ or CQ T (or CQ H) without explicitly forming Q. See Table 2.8.

3f}

2.3.3 Symmetric Eigenproblem

Let A be a real symmetric or complex Hermitian n.by-n matrix. A scalar A is called an eigenvalue

and a nonzero column vector z the corresponding eigenvector if Az = Az. A is always real when

A is real symmetric or complex Hermitian.

The basic task of the symmetric eigenproblem routines is to compute values of A and "optionally"
corresponding vectors z for a given matrix A.

This computation proceeds in the following stages:

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T.

If A is real symmetric this decomposition is A = QTQ T with Q orthogonal and T symmetric

tridiagonal. If A is complex Hermitian, the decomposition is A = QTQ H with Q unitary and
T, as before, real symmetric tridiagonal.

2. The rea,1 symmetric tridiagonal matrix T is factorized as T = PAP T, where P is orthogonal

and A is diagonal. The diagonal entries of A are the eigenvalues of T and the columns of P

the eigenvectors of T. The eigenvectors of A are in turn the columns of QP.

In the real case, the decomposition A = QTQ T is computed by one of the routines xSYTRD,
xSPTRD, or xSBTRD, depending on whether the symmetric matrix is stored in a two-dimensional

matrix, as a packed matrix, or as a band matrix. The complex analogues of these routines are

called xttETRD, xHPTRD, and xHBTRD. The matrix Q is stored as a dense, packed, or banded

matrix, depending on the storage mode of A. A different routine is used for each storage mode

(xSYTRD, xSPTRD and xSBTRD for real A, and xHETRD, xHPTRD and xHBTRD for complex

A, respectively). The matrix Q is stored in factored form by these routines. If A is real, the matrix

Q may be computed explicitly with the subroutine xORGTR, or it ma)' be multiplied by another

matrix without forming Q explicitly using the subroutine xORMTR. If A is complex, one instead

uses the subroutines xUNGTR and xUNMTR, respectively.

There are several routines for the computation T = PAP T to cover the cases of computing some or
all of the eigenvalues, and some or all of the eisenvectors. In addition, some routines run faster in

some computing environments or for some matrices than for others. Also, solne routines are more
accurate than other routines.

xSTEQR This routine uses the implicitly shifted QR algorithm of Wilkinson. It switches between

the QR and QL variants irt order to handle graded matrices more effectively than the simple

QL variant that is provided by the EISPACK routines IMTQL1 and IMTQL2. See [29] for
details.

xSTERF This routine uses a square-root free version of QR, and can only compute all the eigen-
values. See [29] for details.

xPTEQR This routine applies to symmetric positlve-definite tridiagonal matrices only. It uses

combination of Cholesky factorization and bidiagonal QR iteration (see xBDSQR) and m_ty

be significantly more accurate than the other routines. See [8, 13, 10] for details.

31

Table 2.9: Computational routines for the symmetric elgenproblem

Type of matrix Operation Single precision " D0'ul_ie pr'ecisiori

and storage scheme "real c'omplex realcomplex
dense, symmetric trid'iagonal 'reduction ' S'sYTRD 'CHETI_D DSYTI_D ZHETR, D

(or Hermitian)
packed symmetric tridiagonal reduction SSPTP_D.... CHPTItD DS'PTI_D ZHPTR.D

(or Hermitian)
band symmetric "tri¢i]ag0nal reductionSSBTttD CHBTR, D D"SBTR,D ZIIBTRD

(or Hermitian)
orthogonal/unitary generate matrix after S0'RGTI_ CUNGTR, DORGTI_ zuNc 'rrt

reduction by XSYTRD

multiply matrix after sOrtMTR, CUNMTR DORMTrt ZUNMTR

reduction by xSYTR, D

-orth0g'onal/unitary generate matrix afte'r SOPGTtt CUPGTR, DOPGTR, ZUPCTt_

(packed storage) reduction by xSPTR, D

multiply matrix after SOPM'rR CUPMTI_ DOPMTI_ ZUPMTR

reduction by xSPTR, D

symmetric 'eigenvalues/ SSTEQP_CSTEQR, " DSTEQR, ZSTE'QP_ '
t ridiagonal eigenvectors

eigenvalues only SSTERF D STER, F

via root-free QR

eigenvalues only SSTEBZ DSTEBZ
via bisection

. eigenvectors by SSTEIN CSTEIN DSTEIN ZSTEIN
inverse iteration

symmetric eigenvalues/ SPTEQR CP'_TEQ'R..... _ "Dp_[EQR. . .,_ZP .FEQll,

tridiagonal eigenvectors
positive-de finite

xSTEBZ This routine uses bisection to compute some or all of the eigenvalues. Options provide

for computing all the eigenvalues in a real interval or all the eigenvalues from the ith to the

jth largest. It can be highly accurate, but may be adjusted to run faster if lower accuracy is
acceptable.

xSTEIN Given accurate eigenvalues, this routine uses inverse iteration to compute some or all of
the eigenvectors.

See Table 2.9.

32

I
2.3.4 Nonsymmetric Eigenproblem

Let A be a square n-by,n matrix, A scalar A is called ali eigenvalue and a non-zero column

vector x the corresponding right eigenvector if Ax = Ax. A nonzero column vector y satisfying

yHA = Ay g is called the left eigenvector (the superscript H denotes conjugate, transpose), The
first basic task of these routines is to compute all n values of A and, if desired, its associated
eigenvectors x and/or y for a given matrix A,

A second basic task is to compute the $chur decomposition of a matrix. If A is complex, then

its Schur decomposition is A -- QTQ H, where Q is unitary arid T is upper triangular. If A is

real, its Schur decomposition is A = QTQ T, where Q is orthogonal (the superscript T denotes

transpose) and T is upper quasi-triangular; thus, T may have 2-by-2 as well as 1-by-1 blocks oil its

diagonal. The columns of Q are called the Schur vectors of A. The eigenvalues of A appear on

the diagonal of T; complex conjugate eigenvalues of a real A correspond to 2..by-2 blocks on the

diagonal of T. The Schur form depends on the order of the eigenvalues on the diagonal of T and

this may optionally be chosen by the user. Suppose the user chooses that A1,...,Aj, 0 < j < n,

appear in the upper left corner of T. Then the first j columns of Q span the right invariant

subspace of A corresponding to A1,...,Aj.

The user may want to compute condition numbers as well as eigenvalues, eigenvectors, and the
Schur form, for these quantities. Routines for this purpose are provided as weLl.

These computations proceed in the following stages:

1. A general matrix A is reduced to upper Hessenberg form, IrA is real this decomposition

is A = Q HQ T with Q orthogonal and H zero below the first subdiagonal. If A is complex,

this decomposition is A-- QHQ g with Q unitary and H as before.

2. The upper tlessenberg matrix H is reduced to Schur form H = PTP T (for H real) or
H = PTP H (for H complex). The matrix P may optionally be computed as weil. The

eigenvalues are obtained from the diagonal of T. This is done by subroutine xHSEQtt.

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. xHSEIN

performs inverse iteration on H to compute H's eigenvectors, and xTREVC computes the

eigenvectors of T. One may optionally transibrm the right eigenvectors of H (or of T) to the

right eigenvectors of the original matrix A by multiplying them by Q (or by QP); the left
eigenvectors may be similarly transformed.

The reduction to Hessenberg form is performed by subroutine xGEHRD, which represents Q in a

factored form. If A is real, the matrix Q may be computed explicitly using subroutine xORGtIR,

or multiplied by another matrix without forming it using subroutine xORMHtt. If A is complex,
one instead uses subroutines xUNGHR and xUNMHR, respectively.

In addition, the routine xGEBAL may be used to balance the matrix A prior to reduction to Hes-

senberg form. Balancing involves applying a similarity transformation with permutation matrices

to try to make A as nearly triangular as possible, and a diagonal similarity transformation to make

the rows and columns of A as close in norm in possible. These transformations can improve speed

33

and accuracy of later processing in some cases, xGEBAL performs the balancing, and xGEBAK

backtransforms the eigenvectors of tile balanced m_trix,

In addition to these b_tc routines, four other routines xTP_EXC, xTILSYL, xTRSNA _n(t xTRSEN

are available for further processing,

1. xTREXC will move an eigenvalue (or 2-by-2 block) on the diagonal of the Sctlur form from

its original posittt_n to any other position, it may be used to choose the order in which

eigenvalues _ppear in the Schur form,

2. xTR.SYL solves the Sylvester rn_trix equation BX +XC = D for X given matrices B, C and

D, with B and C (quasi) triangular. It is used In the routines xTRSNA and xTI_SI'_N, but

it is also of independent interest.

3. xTRSNA computes the condition numbers of the elgenw,lues and/or right eigenvectors of a

matrix T in Schur form. These are the same _ the condition numbers of the eigenw_lues and

right eigenvectors of the original matrix A from which T is derived. The u,,ler m_ty compute

these coildition numbers for all eigenvalue/eigenvector pairs, or for any selected subset. For

more details, see [7].

4, xTRSEN moves a selected subset of the eigenvalues of a matrix T in Schur form to the upper

left corner of T, and optionally computes the condition numbers of their average value and of

their right invariant subspace. These are the same _ the condition nuiabers of the average

eigenvalue and right invariant subspace of the original matrix A from whictl 7' is derived. For

more details, see [7] (see Table 2,10),

2.3.5 Singular Value Decomposition

Let A be a general real m-by-n matrix. The singular value decomposition (SVD) of A is the

factorization A = U_V T, where U and V are orthogonal, the superscript T denotes transpose,

and 2 = diag(crl,...at), r = min(m,n), and ai >_ .,. "_)a_ :> 0. If A is complex, then its SVD is

A = UZ,V tt where U and V are unitary, the superscript H denotes conjugate transpose, and Z, ts

as before with real diagonal elements. The rsi are called the singular values, the first r columns

of V the right singular vectors and the first r columns of U the left singular vectors.

The routines described in this section, and listed in Table 2.11, are used to compute this decom-

position. This computation proceeds in the following stages:

1. The matrix A is reduced to bidiagonal form: A = U1BV1r if A is real (A = U1Bt_ g if A

is t.omplex). Here Ul and V1 aide ortimgonal (unitary if A is complex), and B In real and

bidiagonal. This means that B in nonzero only on the main diagonal and either on the first

s uperdiagonal (if m _ n)or the first subdiagonal (if m < n).

2. The SVD of the bidlagonal matrix B in computed: B = U_F_,VT, Here U2 and V2 are

orthogonal and _ is diagonal as described above. The singular vectors of A are then U = UI U_

and V = Vi V_.

34

Table 2,10: Computational routines for the nonsymmetric eigenproblem

Type of matrix Operation Single precision Double precision
and storage scheme r'e_l "complex -re_i "-_in--p_'--

general ttessenberg reduction SGEHRD CGEHRD DGEIIRD ZGEHRD

balancing SGEBAL C,GEBAL DGEBAL ZGEBAL

backtransforming SGEBAK CGEBAK DGEBAK ZGEB AI(

orthogonal/unitary generate 'matrix after SORGHR CUNGH.R DORGttR ZUNGHR
ttessenberg reduction

multiply matrix after SORMHR CUNMHR DORMHR ZUNMHR

Hessenberg reduction

Hessenberg Schur factorization SHSEQR CHSEQR DHSEQR ZItSEQR

eigenvectors by SHSEIN CHSEIN DHSEIN ZIISEIN
inverse iteration

(quasi)triangular eigenvectors STREVC CTItEVC DTtLEVC ZTItEVC

reordering eigenvalues s'rRExc CTREXC DTREXC ZTREXC

Sylvester equation STI_S YL CTRSYL DTRSYL ZTRSYL
condition numbers of STRSNA CTRSNA DTR, SNA ZTRSNA

eigen values / vectors
condition numbers of STRSEN CTRSEN DTRSEN ZTRSEN

eigenvalue cluster/

, invarian, t subspace L..........

35

Table 2,11: Computational routines ['or the singular value decomposition

Type of matrix Operation Single precision Double precision

aud storage scheme real complex r_'a-[complex

:gen-erai b[tala__uctton _ItDCG'EBItD DGEBItD ZGEBIt

orthogonal/unitary generate matrix afterSORGBI_ CUNGBR " D0_GBR ZUNGBR

bldlagonal reduction

multiply inat,'tx after SOrtMBR CUNMBI_ DORM ZUNMBR,

bidtagonal reduction

btdiagonal singular valuesT-"--_SBDSQR CBDSQR DIJ'DSQI_, ZBDSQIt

singular vectors

This reduction to bidlagonal form is performed by the subroutine xGEBI_D, which represents U1

and V1 tn factored form. If A Is real, the matr,tces U1 and Vi ,nay be computed explicitly using

routine xOttGBtt, or multiplied by other matrices without forming them using routine xORMBIL

If A is complex, one instead uses xUNGBK and xUNMBR, respectively. The SVD oi' the bidlagonal

matrix is computed by the subroutine xBDSQIt, xBDSQR also has the option to m, :tiply a separate

input m_rtrix by the transpose of the right singuhtr vectorsl this feature Is used to so, ¢e least squares

problems.

xBDSQrt is more accurate than its counterparts in LINPACK and EISPACK: ba,'ring underflow

and overflow, it computes all the singular values of B to nearly full relative precision, tndependerlt

of their magnitudes. It also computes the singular vectors much more accurately. See [13, 10] for
details.

2.3.6 Generalized Symmetric-Definite Eigenproblems

This section is concerned with the solution of the generalized eigenwtlue problems Ax = ABx,

AB'.r, = Ax, and BAx = Ax, where ,4. and B are symmetric and B is positive definite. Each of these

problems can be reduced to Lhestandard symmetric eigenvalue problem by factorizing B as either

LL T or UTU through a Cholesky factorization and applying the factors to the matrix A.

For the matrix B, storing the lower triangle, we have B = LL T,

Ax = ABx _ (L-IAL-T)(LTx) = A(LTx).

Hence the eigenvalue_ of Ax = ABx are those of Cy = Ay, where C Is tlm symmetric matrix

C = L-1AL -T and y = LTx.

Similarly we have,

ABx = Ax _ (LTAL)(LTx) = A(LTx)

and,

36

Table 2.12: Computational routines for the generalized symmetric-definite eigenproblem
Type of matrix Operation " Single precision ' D'ouble precision

and storage schemereal complex real complex

_symmetrtc/Hermttian _red'uctlo'n SSYGST CH'EGST DSYGST ZHEGST
symmetric/Hermliian reduction SSPGST CHPGST Ds'P'GST ZHPGST

(packed storage)
,, , , ,H,

BAx = ,_x _ (LTAL)(L-lx) = A(L-lx).

When the matrix B is stored tri the upper triangle, we have B = uTu,

Ax = ,\Bx :e,, (U-TAU-1)(Ux) =)_(Ux),

ABx = Ax .'V. (UAUT)(ux) = A(Ux)

and,

BAx = Am :¢. (UAUT)(u-Tx,) = A(U-Tx).

Given A and a Cholesky factorization of B, the routines xyyGST overwrite A with the matrix C

of the corresponding standard problem Cy = ,_y (see Table 2.12). No special routtne_ are needed

to recover the eigenvectors x of the generalized problem from the eigenvectors y of the standard

problem, because these computations are simple applications of Level. 2 or Level 3 BLAS.

37

Chapter 3
p

Performance of LAPACK

Note: this chapter presents some performance figures for LAPA CK routines. The figures are pro-

vided for illustration only, and should not be regarded as a definitive up-to.date statement of per-

formance. They have been selected ft'ore performance figures obtained in i990-91 d_ring the devel-

opment of LAPACK. Performance is affected by many factors that may change from time to time,

such as details of hardware (cycle time, cache size), compiler, and BLAS. To obtain up.to.date

performance figures, use the timing programs provided with LAPACK.

3.1 Factors That Affect Performance

Can we provide portable software for computations in dense linear algebra that is efficient on a

wide range of modern high-performance computers? if so, how? Answering these questions -- and

providing the desired software-- has been the goal of the LAPACK project.

LINPACK [1.5]and EISPACK [39, 27] have for many years provided high-quality portable software

for linear algebra; but on modern high-performance computers they often achieve only a small

fraction oi" the peak performance of the machines. Therefore, LAPACK has been designed to

supersede LINPACK and EISPACK, principally by achieving much greater efficiency -- but at the

same time also adding extra functionality, using some new.or improved algorithms, and integrating

the two sets of algorithms into a single packaze.

LAPACK was originally targeted to achieve good performance on single-processor vector machines

and on shared-memory multi-processor machines with a modest number of powerful processors.

Since the start of the project, another class of machines has emerged tat' which LAPACK software

is equally well-suited_the high-performance "super-scalar" workstations. (LAPACK is intended

to be used across the whole spectrum of modern computers, but when considering performance,

the emphasis is on machines at the more powerful end of the spectrum.)

Here we discuss the main factors that affect the performance of linear algebra software on these

, classesofmachines,

38,

3.1.1 Vectorization

Designing vectorizable algorithms in linear algebra is usually straightforward. Indeed, for many

computations there are severM variants, all vectorizable, but with different characteristics in perfor-

mance (see, for example, [22]). Linear algebra algorithms can come close to the peak performance

of many machines m principally because peak performance depends on some form of chaining of

vector addition and multiplication operations, and this is just what the algorithms require.

However, when the algorithms are realized in straightforward Fortran 77 code, the performance m_',y

fall well short of the expected level, usually because vectorizing Fortran compilers fail to minimize

the number of memory references u that is, the number of vector load and store operations. This
brings us to the next factor.

3.1.2 Data movement

What often limits tile actual performance of a vector--or scalar-- floating-point unit is the rate of

transfer of data between different levels of memory in the machine. Examples include: the transfer

of vector operands in and out of vector registers, the transfer of scalar operands in and out of a

high-speed scalar processor, the movement of data between main memory and a high-speed cache

or local memory, and paging between actual memory and disk storage in a virtual memory system.

It is desirable to mammize the ratio of floating-point operations to memory references, and to re-

use data as much as possible while it is stored in the higher levels of the memory hierarchy (for
example, vector registers or high-speed cache).

A Fortran programmer has no explicit control over these types of data movement, although one

can often influence them by imposing a suitable structure on an algorithm.

3.1.3 Parallelism

The nested loop structure of most linear algebra algorithms offers considerable scope for loop-based

parallefism on shared-memory machines. Tiffs is the principal type of parallelism t:hat LAPACK

at present aims to exploit. It can sometimes be generated automatically by a compiler, but often
requires the insertion of compiler dir_tives.

3.2 The BLAS as the Key To Portability

How then can we hope to be able to achieve sufficient control over vectorization, data movement,

and parallelism in portable Fortran code, to obtain the |evels of performance that machines can
offer?

The LAPACK strategy for combining efficiency with portability is to construct the software as

much as possible out of calls to the BLAS (Basic Linear Algebra Subprograms); the BLAS are used

as building blocks,,

- 39

Table 3.1' Speed in megaflops of Level 2 and Level 3 BLAS operations on a CRAY Y-MP

(ali matrices areof order 500; U is upper triangular)

IN umberofprocessors: I 11 '2 [, ,4'] ,8 1

[Level2:y_aAz+_y 1'3.11[611]1197 I 228.5 I
l 3:c- +ZC(i 12I623_1 24712425I

Level 3: B -- UB [310 [620[12"T0'[2420], , ,

[Level2: z-- U-la I-,__2 t 374 I 479 [584]
1Level3: B _--U-*B t309,1 618 1123,512398}

The efficiency of LAPACK software depends on efficient implementations of the BLAS being pro-

vided by computer vendors (or others) for their machines. Thus the BLAS form a low-level interface

between LAPACK software and different machine architectures. Above this level, almost all of the

LAPACK software is truly portable.

There are now three levels of BLAS:

Level 1 BLAS [36]: for vector operations, such as y ,---c_z + y

Level 2 BLAS [19]: for matrix-vector operations, such as y ,-- naz +/3y

Level 3 BLAS [17]: for matrix-matrix operations, such as C ,--- nAB +/3C

Here, A, B and C are matrices, x and y are vectors, and _ and _ are scalars,

The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: they

perform an insignificant fraction of the computation, and they cannot achieve high efficiency on

most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector-processors, such as a single

processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However on other vector processors,

such as a CRAY-2 or an IBM 3090 VF, their performance is limited by the rate of data movement

between different levels of memory.

This limitation is overcome by the Level 3 BLAS. which perform O(n 3) floating-point operations

on O(n 2) data, whereas the Level 2 BLAS perform only O(n _') operations on O(n 2) data.

The BLAS also allow us to exploit paraJJelism in a way that is transparent to the software that

calls them. Even the Level 2 BLAS offer some scope for exploiting parallelism, but greater scope

is provided by the Level 3 BLAS, as Table 3.1 illustrates.

I
3.3 Block Algorithms And Their Derivation

It is comparatively straightforward to recode many of the algorithms in LINPACK and EISPACK

so that they call Level 2 BLAS. Indeed, in the simplest cases the same floating-point operations

are performed, possibly even in the same order: it is just a matter of reorganizing the software. To

illustrate this point we derive the Cholesky factorization algorithm that is used in the LINPACK

routine SPOFA, which factorizes a symmetric positive-definite matrix as A = uTu. Writing these

equations as:

(All aj A13].ajj. A33a T - (uT o 0) (Ull uj U13)V_13u T ujjt2j UT0 O0 ujj0 U33/zT

and equating coefficients of the jth column, we obtain:

aj = UTuj
2

ajj - uTuj + ujj

Hence, if Ull has already been computed, we can compute uj and Ujj from the equations:

U1Tluj = aj

• 2 _ uTujujj ---- ajj

Here is the body oi' the code of the LINPACK routine SPOFA, which implements the above method'

DO 30 J = I, N
INFO ffiJ

S = O.OEO

JMI = J- I

IF (JMI .LT. I) GO TO 20

DO I0 K = I, JMI

T = A(K,J) - SDOT(K-I,A(I,K),I,A(I,J),I)

T = T/A(K,K)

A(K,J) ffi T
S = S + T,T

I0 CONTINUE

20 CONTINUE

S = A(J,J) - S
CEXIT

IF (S .LE. O.OEO) GO TO 40

A(J,J) = SORT(S)

30 CONTINUE

-- 41

I
.knd here is the same computation recoded in "LAPACK-style" to use the Level 2 BLAS routine

$TI_SV (which solves a triangular system of equations). The call to STRSV has replaced the loop

over K which made severa,1 calls to the Level 1 BLAS routine SDOT. (For reasons given below, this

is not the actual code used in LAPACK -- hence the term "LAPACK-style".)

DO 10 J = 1, N

CALL STI_Y('Upper', 'Transpose', 'Non-unit', J-l, A, LDA,
$ A(1,J), 1)

S = A(J,J) - SDOT(J-l, A(1,J), 1, A(1,J), 1)

IF(S.LE.ZEKO) GO TO 20

A(J,J) = SQKT(S)
I0 CONTINUE

This change by itself is sufficient to make big gains in performance on a number of machines-- for

example, from 72 to 251 megaflops for a matrix of order 500 on one processor of a CRAY Y-MP.

Since this is 81% of the peak speed of matrix-matrix multiplication on this processor, we cannot

hope to do very much better by using Level 3 BLAS.

On an IBM 3090E VF (using double precision) there is virtually no difference in performance be-

tween the LINPACK-style and the LAPACK-style code. Both run at about 23 megaflops. This is

unsatisfactory on a machine on which matrix-matrix multiplication can run at 75 megaflops. To

exploit the faster speed of Level 3 BLAS, the algorithms must undergo a deeper level of restruc-

turing, and be re-cast as a block algorithm -- that is, an algorithm that operates on blocks or

submatrices of the original matrix.

To derive a block form of Cholesky factorization, we write the defining equation in partitioned form
thus:

• A22 A23 = UT U2T 0 0 U22 U23

• A33 UT VT VT 0 0 U33

Equating submatrices in the second block of columns, we obtain:

Al2 = UTUx2

An = uTu12 + uTu22

Hence, if U_I has already been computed, we can compute U12 as the solution to the equation

u1T1U12= Al2

by a call to the Level 3 BLAS routine STRSM; and then we can compute U22 from

T U;f2 U I2U22U2,, = A22 -

This involves first updating the symmetric submatrix A22 by a call to the Level 3 BLAS routine

SSYRK, and then computing its Cholesky factorization. Since Fortran do_ not allow recursion, a

separate routine must be called (using Level 2 BLAS rather than Level 3), named SPOTF2 in the

code below. In this way successive blocks of columns of U are computed. Here is LAPACK-style

code for the block algorithm. In this code-fragment NB denotes the width of the blocks.

= 42

Table 3.2: Speed in megaflops of Cholesky factorization A = uTu for n = 500

Machine: IBM 3090 VF CRAYY-MP CRAY Y-MP

Number of proc_sors: 1 1 8
.... I ,

j-_riant: LINPACK 23 72 72

j-variant: using Level 2 BLAS 24 251 378

j-variant: using Level 3 BLAS 49 287 1225

/-variant: using Level 3 BLAS 50 290 1414

DO 10 J " 1, N, NB

JB -- MIN(NB, N-J+I)

CALL 5TRSM('Left', 'Upper', 'Transpose', 'Non-unit', J-l, JB,
$ ONE, A, LDA, A(1,J), LDA)

CALL SSYRK('Upper', 'Transpose', JB, J-i, -ONE, A(I,J), LDA,
$ ONE, A(J,J), LDA)

CALL SPOTF2(aB, A(J,J), LDA, INFO)
IF(INFO.NE.O) GO TO 20

i0 CONTINUE

This code runs at 49 megMiops on a 3090, more than double the speed of the LINPACK code. On

a CRAY Y-MP, the use of Level 3 BLAS squeezes a little more performance out of one processor,

but makes a large improvement when using all 8 processors.

But _hat is not the end of the story, and the code given above is not the code that is actually

used in the LAPACK routine SPOTRF. We mentioned in subsection 3.1.1 that for many linear

algebra computations there are several vectorizable variants, often referred to as i-, j- and k-

variants, according to a convention introduced in [22] and used in [28]. The same is true of the

corresponding block algorithms.

It turns out that the j-variant that was chosen for LINPACK, and used in the above examples, is

not the fastest on many machines, because it is based on solving triangular systems of equations,

which can be significantly slower than matrix-matrix multiplication. The variant actually used in

LAPACK is the/-variant, which does rely on matrix-matrix multiplication.

Table 3.2 summarizes the results.

3.4 Examples of block algorithms in LAPACK

Having discussed in detail the derivation of one particular block algorithm, we now describe exam-

ples of the performance that has been achieved with a variety of block algorithms.

See Galliva.n et al. [26] and Dongarra et al. [20] for an alternative survey of algorithms for dense

linear algebra on high-performance computers.

43

Table 3.3: Speed in megaflops of SGETRF/DGETRF for square matrices of order n
t

No. of Block Values of n
processors size 100 200 300 400 500

IBM RISC/6000-530 1 i 32]9 25 29 ' 31 33
!

,_liant FX/8 8 ! 16 9 26 32 46 57

IBM 3090J VF 1 ! 64 23 41 52 58 63
Convex C..240 4 64 31 60 82 100 112

CRAY Y-MP 1 1 132 219 254 272 283

CRAY-2 1 64 110 211 292 318 358

Siemens/Fujitsu VP 400-EX 1 64 46 132 222 309 397 :

NEC SX2 1 1 118 274 412 504 577

CRAY Y-MP 8 64 195. 556 92__0_.... !188 1408]

Table 3.4" Speed in megaflops of SPOTRF/DPOTRF for matrices of order n with UPLO = 'U'

 oof il' v u sofprocessors size -i 2001 30"0"[--400] 500

IBM RISC/6000-530 1 32 291 34] 36] 38-

Alliant FX/8 8 16 27 '. 40] 49 52
IBM 3090J VF 1 48 26 43 I 56 I 62 67

Convex C-240 4 64 32 63 I 82 I 96 103

CRAY Y-MP 1 1 126 219]257 [275 285

CRAY-2 1 64 109 213 1294 / 318 362

Siemens/Fujitsu VP 400-EX 1 1 53 I 145 1237 I 312 369

NEC SX2 1 1 155] 387 1589] 719 819
CRAYY-MP 8 32 146 j 479 1845]1164 139,_

3.4.1 Factorizations for solving linear equations

The well..known LU and Cholesky factorizations are the simplest block algorithms to derive. No

extra floating-point operations nor extra working storage are required.

Table 3.3 illustrates the speed of the LAPACK routine for LU factorization of a real matrix,

SGETRF in single precision on CRAY machines, and DGETRF in double precision on all other

machines. Double precision corresponds to 64-bit floating point arithmetic on all machines tested.

A block size of 1 means that the unblocked algorithm is used, since it is faster than -- or at least

as fast as -- a blocked algorithm.

Table 3.4 gives similar results for Cholesky factorization, extending the rKqults given in Table 3.2.

LAPACK, like LINPACK, provides a factorization for 3ymmetric indefinite matrices, so that A is

•factorized as PUDUTp T, where P is a permutation matrix, and D is block diagonal with blocks

Lta

t

Table 3.5: Speed in megaflops of SSYTRF for matrices of order n with UPLO = 'U' on a CRAY-2

Block Values of n

size 100 200 300 400 500

1 _ 75 128 154 164 i76

64 78 160 213 249 281

of order 1 or 2. A block form of this algorithm has been derived, and is implemented in the

LAPACK routine SSYTRF/DSYTRF. It has to duplicate a little of the computation in order to

"look ahead" to determine the necessary row and column interchanges, but the extra work is more

than compensated for by the greater speed of updating the matrix by blocks, as is illustrated in
Table 3.5.

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices, The LIN-

PACK algorithms can easily be restructured to use Level 2 BLAS, though that has little effect on

performance for matrices of very narrow bandwidth. It is also possible to use Level 3 BLAS, at the

price of doing some ex*,ra work with zero elements outside tile band [25]. This becomes worthwhile

for matrices of large order and semi-bandwidth greater than 100 or so.

3.4.2 QR factorization

The traditional algorithm for QR factorization is based on the use of elementary Householder

matrices of the general form
H = f- rvv T

where v is a column vector and r is a scalar. This leads to an algorithm with very good vector

performance, especially if coded to use Level 2 BLAS.

The key to developing a block form of this algorithm is to represent a product of b elementary
Householder matrices of order n as a block form of a Householder matrix. This can be done in

various ways. LAPACK uses the following form [38]:

H1H2 . . . Hb = I- VTV T

where V is an n-by-b matrix whose columns are the individual vectors v1, v2,..., Vb associated with

the Householder matrices Hl, H2,.,., Hb, and T is an upper triangular matrix of order b. Extra

work is required to compute the elements of T, but once again this is compensated by the greater

speed of applying the block form. Table 3.6 summarizes results obtained with the LAPACK routine

SGEQRF/DGEQRF.

3.4.3 Eigenvalue problems

Eigenvalue problems have so far provided a le,_s fertile ground for the development of block algo-

rithms than the factorizations so far described. Nevertheless, useful improvements in performance
have been obtained.

= 45

Table 3,6: Speed in megaflops of SGEQI_F/DGEQP_F for square matrices of order n

No, of Block Values of n

processors size i00 20'0 ! 300 400 5'0'0

....IBM RISC/6000-530 1 32 18 26 30 32..... 34

AlUant FX/8 8 16 11 28 39 47 50
IBM 3090J VF 1 32 28 54 68 75 80

Convex C-240 4 16 35 65 82 97 106

CRAY Y-MP 1 1 177 253 276 286 292

Ct_AY-2 1 32 105 208 269 303 326

Siemens/Fujitsu VP 400-EX 1 1 101 237 329 388 426

NEC, SX2 1 1 217 498 617 690 768

The first step in solving many types of eigenvalue problems is to reduce the original matrix to a

"condensed form" by orthogonal transformations.

In QR factorizations, the unblocked algorithms all use elementary Householder matrices and have

good vector performance. Block forms of these algorithms have been developed [23], but all require

additional operations, and a significant proportion of the work must still be performed by Level 2

BLAS, so there is less possibility of compensating for the extra operations.

The algorithms concerned are:

• reduction of a symmetric matrix to tridiagonal form to solve a symmetric eigenvalue problem:

LAPACK routine SSYTt_D applies a symmetric block update of the form

A +-- A - UX T- XU T

using the Level 3 BLAS routine SSYR2K; Level 3 BLAS account for at most half the work.

• reduction of a rectangular matrix to bidiagonal form to compute a singular value decompo-

sition: LAPACK routine SGEBRD applies a block update of the form

A _A.- UX T-YV T

using two calls to the Level 3 BLAS routine SGEMM; Level 3 BLAS account for at most half
the work.

• reduction of a nonsymmetric matrix to Hessenberg form to solve a ,mnsymmetric eigenvalue
problem: LAPACK routine SGEHRD applies a block update of the i'orm

A *- (I- VTTvT)(A- XV T)

Level 3 BLAS account for at most three-quarters of the work.

46

Table 3,7: Speed In megaflops of reductions to condensed forms on an IBM 3090I_'_VF

(all matrices are square of order n)

]BlockI Wlu_of,, I
SSYTRDI....1.....11 221"261 2¢-I

I 16 II 1_1 2,_,1321 a4,_l
SGEBttD [i 23 26..... 28 1"2-_

11223I 33 3s1 41I
SGE - DI I 29"I 3o13°1

I [] 36] 51] 57 I 58, 24]

Note that only in the reduction to Hessenberg form is lt possible to use the block Householder

representation described in subsection 3.4,2. Extra work must be performed to compute the n-

by-b matrices X and Y that are required for the block updates (b is the block-size) -- and extra
workspace is needed to store them.

Nevertheless, the performance gains cart be worthwhile on some machines, for example, on an IBM
3090, as shown in Table 3.7.

Following the reduction to condensed form, there is no scope for using Level 2 or Level 3 BLAS

in computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix, or in computing

the singular values and vectors of a bldiagonal matrix.

However, for computing the eigenvalues and eigenvectors of a Ilessenberg matrix_or rather for

computing its Schur factorization_ yet another flavour of block algorithm has been developed: a

multishift Q/i_ iteration [6]. Whereas the traditional EISPACK routine HQIt uses a double shift

(and the corresponding complex routine COMQtt uses a single shift), the multishift algorithm uses

block shifts of higher order. It has been found that the total number of operations decreases as the

order of shift is increased until a minimum is reached typicaUy between 4 and 8; for higher orders

the number of operations increases quite rapidly, Because the speed of applying the shift increases

steadily with the order, the optimum order of shift is typically in the range 8-].6.

47

Chapter 4

Accuracy and Stability

In addition to providing faster routines than previously awtilable, LAPACK provides more com-

prehensive and better error bounds.

Our ultim_Lte goal is to provide error bounds for all qua.nttties computed by LAPACK, _tlthough

this work is not yet complete. It is beyond the scope of this manual to prove all these error bounds

are valid. Instead, we explain the overall approach, provide enough information to use the software,

and give references tbr further explanation. The leading comments of the individ ual routines should

be consulted for details. Much standard material on error analysis can be found in [28].

Traditional error bounds are based on the fact that the algorithms in L.APACK, like their prede-

cessors in LINPACK and EISPACK, are normwise backward stable; the tighter error bounds

provided by some LAPACK routines depend on algorithms which satisfy _ stronger criterion called
componentwise relative backward stability,

In section 4.1 we discuss roundoff error. Section 4.2 discusses the vector und matrix norms we need

to measure errors, as well as other notation. Standard normwise error bounds satisfied by LAPAC, K

(as weil as LINPACK and EISPACK) routines are reviewed in section 4.3. Section 4,4 discvsses

the new componentwise approach to error analysis used in some LAPACK routines. Section 4.5

discusses how to read and understand the error bounds stated in the following sections, 4.6 through

4.11, which present bounds for linear equation solving, least squares problems, the singular value

decomposition, the symmetric eigenproblem, the nonsymmetric eigenproblem, and the generalized

symmetric-definite eigenproblem, respectively. Section 4.12 discusses the impact of fast Level 3
BLAS on the accuracy of LAPACK routines.

4.1 Roundoff Errors in Floating Point Arithmetic

We will let e derLote the machine precision, which is loosely described as the largest relative error

in any floating point operation which neither overtlows nor underflows. In other words, it is the

smallest number satisfying

[fl(a ¢9b) - (a @ b)[<e. [a @ bi

d

where a and b are .floating point numbers, _Dis one of tile four operations +, -, × nnd +, nad

ft(a@ b) is ttle floating point result of a _Db, A precise characterization ot'e depeMs on tile detnils
of the machine arithmetic and even of the compiler, For example, if addition and subtraction are

implemented without a gu,_rd digit 1 we must redefine e lobe the smallest number such that

There nrc many other parameters required to specify computer arithmetic, such as the overflow

threshold, underflow thre,hold, and so on, In order that LAPACK be portable, they arc computed

at runttme by the auxiliary routine ×LAMCI-I _,

Throughout our discussion, we will ignore overflow and significant underflow in discussing error
bounds,

LAPACK routines are generally insensitive to the deta,lls of rounding, just as their counterparts in

LINPACK and EISPACK. One newer algorithm (xLASV2) can return significantly more accurate

results tf addition and subtraction have a guard digit (see the end of section 4,8). Future releases

of LAPACK will contain more routines whose performance depends strongly on having nccurate

and robust arithmetic, such as IEEE Standard Flowering Point Arithmetic [3].

4.2 Vector and Matrix Norms '

Loosely speaking, a norm of a vector or matrix measures tile size of its largest entry. This ts true

for the norms we shall use, which are defined in Table 4,1.

TMfie 4,1: Vector and Matrix Norws

Vector Matrtx

infinity-norm Ilxlloo = maxi lxil llAiioo = max/_j aijl
one-norm ' It_llx- E; Ix;I IIAII_--maxj Ei I_ijl
two-norm Ilxll_- (E, 1_12)x/_ Ilall_- max_#o IIA_II_/II_II_.
Frobenius norm I1_F = Ixl_ IlalF= (F,,/_a_jl")_/_

The two-norm of A, IlAll_,is the largest singular value amex(A) of A, The smallest singular

value, min._¢0 IIAxll2/llxll2, is denoted amtn(A). These last two definitions make sense for rectan-

gular A as well (if A has more columns than rows, transpose A in the definition of atom). The two

norm, Frobenius norm, and singular values of a matrix do not change if lt is multiplied by a, real

orthogonal (or complex unitary) matrix.

_¢,,(A) will denote IIAIIp, IId-lllp for p = 1, 2 and co, and A square _nd invertible.

We will denote the vector of absolute values of z by Ixl (Ixli = Ixil), and similarly for IAI(IAlij =

laljl), The dimensions of A will be n by n if not otherwise specified.

|This is the case on Cybers and current Cr._ys.
aSee sub_ction 2.1.3 for explanation of the naming convention used for LAPACK routines,

49

4.3 Standard Error Analysis

We Illustrate standard error analysis with tile siraple example of evaluating tile scalar function

y = f(z), Let the output of the subroutine which Implements f(z) be denoted alg(z); this Includes

the effects of roundoff, If alg(z) = f(z + 6) where/J Is small, then we say alg Is a backward stable

algorithm ibr f, or that the backward error 8 Is small, In other words, alg(z) Is the exact value
of f at a slightly perturbed input z + _,3

Suppose now tha;t f Is a smooth function, so that we may approximate lt near z by a straight line:

f(z + 6) ._ f(z) + ft(z), 6, Then we have the simple error estimate

alg(z)-- f(z) = f(z + 6) - f(z) _ f'(z), 6

Thus, if 6 is small, and the derivative ft(z) is moderate, the error alg(z)- f(z) will be small 4, This
is often written in the similar form

lalg(z)- f(z)l _ lf'(z) , z 6 6

This approximately bounds the relative error _!g(,/=!(zl by the product of the conditlon number/(.)

off at z, _(f, z), and the relative backward error Iz]. Thus weget an error bound by multiplying

a condition number and a backward error (or bounds for these quantities). We call a problem ill-

conditioned if its condition number is large, and _ll-posed if its condition number is infinite (or
does not exist)_,

If f and z are vector quantities, then ft(z) is a matrix (the Jacobian), So instead of using absolute

values as before, we now measure $ by a vector norm 11611and f'(z) by a matrix norm IIf'(z)ll, The

conventional (and coarsest) error analysis uses the infinity norm (or similar norm). We therefore

call this normwise backward stability, For example, a normwlse stable method for solving a

system of linear equations Az = b will produce a solution rf:satisfying (A + E)_ = b + f where
IIEII_/IIAIIc¢ and Ilflloo/llbll ¢are both small (close to E), In this case the condition number is

Ilmlloo,IIA-Xll ¢(seesection4,6below).

Almost all the algorithms In LAPACK (as well as LINPACK and EISPACK) are stable irt the sense

just described_: when applied to a matrix A they produce the exact result for a slightly different

matrix A + E, where IIEIl_/llalloo is near ,,

3Sometimes our algorithms uatisfy only aig(z) = f(z + Ii) + O where both _ and _7are small. This does not

significantly change the following analysis,

4More generally, we only need Lipschitz continuity of f, and may use the Lipschitz constant in piace of f_ in
deriving error bounds.

_This is a ditferent use of the term ill-posed than used in other contexts. For example, to be well-posed (not

ill-posed) in the sense of Hadamard_ it is sufficient for f to be continuous, whereas we require Lipschitz continuity.

eZ'here are some caveats to this statement, When computing the inverse of a matrix, the backward error E is

small taking the columns of the computed inverse one at a time, with a different E for each column [24]. The same is

true when computing the eigenvectors of a nonsymmetrlc matrix. When computing the eigenvalues and eigenvectors

of A - AB, AB - AI or BA - Al, with A symmetric and B symmetric and positive definite (using SSYGV or CHEGV)

then the method may no_ be backward normwise stable if B has a large condition number _(B), althr, agh it has

useful error bounds in this case too (see section 4.11}, Solving the Sylvester equation AX + XB = C for the matrix

X may not be backward stable, Mthough there are again useful error bounds for X',

5O

4

Condition numbers may be expensive to compute exactly. For example, lt costs O(n 3) operations

to solve Aa = b for a general matrix A, and computing _¢co(A) exactly ts at least three times

as expensive, But _;oo(A) can be estimated in only O(n 2) operations beyond those necessary

for solution. Therefore, most of LAPACK's condition numbers and error bounds are based on

estimated condition numbers, using the method of [30, 32_ 33]. The price one pays for using an

estimator ts occasional (but very rare) underestimates; years of experience attest to the reliability

of our estimators, although examples where they badly underestimate can be constructed [34]. In

particular, once an estimate ts large enough (usually O(1/e)) tt means that the computed answer

may be completely Incorrect, but the condition estimate Itself may be a serious underestimate.

4.4 Improved Error Bounds

The standard error analysis just outlined has a drawback: by using the inflntty norm]]¢5]]ooto
measure the backward error, entries of equal magnitude in _ contribute equally to the final error

bound _(f,z)([]i_[[/[[z[I), This means that if z is sparse or hms some very tiny entries, a normwise

backward stable algorithm may make very large changes in these entries compared to their original

values. If these tiny values are known accurately by the user, these errors may be unacceptable, or
I;he error bounds may be unacceptably large.

For example, consider solving a diagonal system of linear equations Az = b. Each component of

the solution is computed accurately by Gaussian elimination', xi = biali. The usual error bound

is approximately e. _oo(A) = E. maxi [aii[/mlnl [ai/[, which can arbitrarily overestimate the true
error.

LAPACK addresses this inadequacy by providing some algorithms whose backward error _ is a

tiny relative change iii each component of z'. [$i[= O(e)[zi[. This backward error retains both the

sparsity structure of z as well as the information in tiny entries. These algorithms are therefore

called componentwise relative backward stable. Furthermore, computed error bounds reflect
this tinier backward error 7,

If the input data has independent uncertainty in each component, each component must have at

least a small relative uncertainty, since each is a floating point number. In this case, the extra

uncertainty contributed by the algorithm is not much worse than the uncertainty in the input data,

so one could say the answer provided by a componentwise relative backward stable algorithm is as

accurate as the data deserves [1].

When solving Az = b using expert driver xyySVX or computational routine xyyRFS, for example,

this means that we (almost always) compute _ satisfying (A + E)_ = b + f, where e0' is a small

relative change in a_'3' and fk is a small relative change in bk. In particular, if A is diagonal, the

corresponding error bound is always tiny, as one would expect (see the next section).

LAPACK can achieve this accuracy ibr linear equation solving, the bidiagonal singular value decom-

position, the symmetric tridiagonal eigenproblem, and provides facilities for achieving this accuracy

7For other algorithms, the answers (and computed error bounds) _re a_ accurate as though the algorithms were

componentwise relative backward stable, even though they are not, These _lgorithms are called forward component.
wise relative stable,

51

for least squares problems, Future versions of LAPACK will also achieve this accuracy for other

lhiear algebra problems, as discussed below,

4.5 How to Read Error Bounds

Here we discuss some notatton used in all the error bounds of later subsections,

All our bounds will contain the factor p(n) (or p(m,n)), which grows as a function of mat, fix

dimension n (or matrix dimensions m and n). It measures how errors can grow as a functiot_ of

matrix dimension, and represents a potentially different function for each proklem. In p,._ctice, tt

usually grows just linearly; p(n) <_10n is often true, But we can generally only prove much weaker

bounds of the form p(n) = O(na), since we can not rule out the extremely unlikely possibility of

rounding errors all adding together Instead of canceling on average, Using p(n) -= O(n _) would

give very pessimistic and. unrealistic bounds, especially for large n, so we content ourselves with

describing p(n) as a "modestly growing" function of n, For detalled derivations of various p(n), see
[2s,4ai,

There is also one situation where p(n) can grow a,s large as 2"-1: Gaussian elimination, Thls only

occurs on specially constructed matrices presented in numeric_l analyals courses [43, p, 212]. Thus

we can assume p(n) <_ 10n in practice for Gaussian elimination too,

For linear equation and least squares solvers for mz = b, we will bound the relative error [[z-L'll/l[x[[

in the computed solution _ where x is the true solution (the choice of norm [[, [1will differ), For

eigenvalue problems we bound the error [Ai- ki[in the i-rh computed eigenvalue _i, where Ai Is
the true i-th eigenvalue. For singula,r value problems we similarly bound [ai - Oi[.

Bounding the error in computed eigenvectors and singular vectors vi i_ more subtle because these

vectors are not unique', even though we restrict 1_i[[2= 1 and [vi _ = 1, we may still multiply them

by arbitrary constants of absolute value 1, So to avoid ambiguity we bound the angular difference

between/_i and the true vector vi:

O(vi, fii) = acute angle between vi and vi

- arccos (4,1)

When O(vi,,Oi) is small, one can choose a constant a with absolute value 1 so that Ilavi - 9ill,_

0(v ,

Iu addition to bounds for individual eigenvectors, we supply bounds for the spaces spanned by

collections of eigenvectors, because these may be much more accurately determined than the in-

dividual eigenvectors which span them, These spaces are called invariant subspace in the case of

eigenvectors, because if v is any vector in the space, Av is also in the space, where A is the matrix,

Again, we will use angle to me_ure the difference between a computed space ,.q and the true space
$:

0(6,$) = acute angle between $ and ,_

= maxrain0(,_,_) or maxmin0(s,,_) (4.2)

52

J

w

We may compute 0(,5.,'4) as follows. Let. b' be _:_matri× whose col_tm_s _re orthonormal a,_l Slml_

S. Sirnil_rty let ,._ be a. orthonormal matrix with columns spa, rtning ,__. Tl._n

0(8,_) = _rccosrr._.(5'HS')

Finally, we remark orr the accuracy of our bounds when th,ey a,re large. Relative errors like

I]_ - z[[/llxt[,_nd amgula_r errors Eke O(Oi,vi) z_re only of interest, when they a,re much tess th:_tt

1. We ha.re co rrespo_dingty sta, ted some bounds so tha, t, they are not strictly trlte when they a,re

close to L, sirtce rigoroi.l.s bo_tnds wollld ha.ve been rttore (ompli_: a,t,,_.l;Lrt,,l :S,ll_l_!i,,tl li l rf,, _.,,:tr.s i!l l',,r-

m;_iion in rho iuteresr, ing c:_.s_:_ot'small ,:,rrors. We lta.v,i, in,lic;_.l:_,,l tll_,s,, I_,,_i,,l.s l,v _il_ Ii1,, ._',:,_1l,,,l

-<i. or "'a.pproxima, t_fly less l.ha.n", inst,mA of the _ls_al <-. Tl_s, wtlon t l_,so I__,ls ar,, ,l,,s,, t,, i ,,r

grea.ter, they indicate th,_t the computed a,nswer rnav ha,re n.o sigrtific_nt digits ;zt all. b_tt do not
otherwise bound the error.

4.6 Error Bounds for Linear Equation Solving

Tile conv_ntional error a.n;_lvsis o[' liwm, r _,(l_a,tion solvin_ <_:)osa.s f,,ll,)ws. [.-t . l:," --- t., t,,, t!l,, ._v..te,l_

I-.,,t)e s,::)[ve([. [.et ..,)l:,e l;]te solut.iolt COlllpl.l.l;,,_[bv LAP.\('l.((or [.IN 1".\('K) ilsil .4 a.ll.V,,f il_,,ir lill(',_r

equal:ion sotvers. L.et r be the residuM r = b- ..l.)). In the a.bsen(:_ of roltttdittg error 'r w,)i_l_l ho

zero -a_td _ would equal x; with rol;t_ding error one can only say tire following:

The norrnwise l.)a,(:kw:_r_t _rror _.,,.-,:,,measl_re_l using rho inliltil:v t_orm, is 1.1_:'sll.mtlost:
value of

f 1[Ell,x. I fl[,.-:,]

k 11.']]r,!i7,)

st_('lt l;]l;7_t,ttr,.' _'{_r_ll-)llt_"ls_:)l,_ti_,n ,*),"xatcl;ly sa.tisli_,s (.l + I'.')./' = b + J'. Til,' t_,,rI!_'.vis_'

b.wkw'a.r_t orror is givon t_v

,, = < p(,,),,-

where p(n) is ;_ mo_testly growing fltn.;:l;ion of ,,. The corr(_spo_._ling" conditi_n n_i_l,,r

i.__::.:.{..-_/-I1._11.-.,•I1:_-'1t.-.o.T> error,- _:i:._bou,de,t_,y

I1_- _-I1_:.,:_'e•_.',,_,•,_,(..-_)
I1_11,,:,

Appro:dma, tions c,f _,:,:,.:.(A) are compute(1 by comp,ttatioaa.l rolttines xy. CON (sltbsoc-

ti,:}n 2.3.1) or L:\P:\(TK drivor routines xys'SVX (s_t}sm:ti,_n "2.2.1).

Driv_,r '(y,yS\"X r,t_lrns a.u ,.,stima.t, _t" t/_c..+(..t) (ca.llo_l. 1{('()NI)).

.,'ts st;_t,!d in rho k:_st s_-,cti(tn, this ;_ppro;_.('l_ _loos not rosl,,rt tt_, l)i'_,sorlco of z,,I_ _r tir,v _,ntri,,s il_

A. Irt contr;tst, l,t_e l,:\[).\('I'((,_mp,lta, ti_._i_a.lr_)_llinos xyyll l"S (sl_t_s,,'l.i_,_ "2.:_.I)or ,triv,,r l_,_till,,s

xyy,_VX (s,_ls_,,ti(,n "2.'2. I)will (,x('opt it_ ra.ro (:a.s_,s)_',)r_l[)llt;,, ;.t s_,l_l,i,,[i 5: will_ I1_,, l;,ll_,w _:v.;

! !

,5;I
N

5

=

Tile componentwise backward error .,'._is the smallest value of

max ('eo' 'fk'),,j,k laql' Ibkl

(where we interpret 0/0 as O) such that the computed solution & exactly satisfies (A +

E)& = b + f. The coraponentwise backward error is given by

Inl
a,: = ma× (I.41" I/'1 + Ibl)i < p(n).e

where p(n) is a modestly growing fuaction of n. In other words, d: is the exact, solution

of the perturbed problem (,4 + E)_ = b + f where E and f are small relative pertur-

bations in each entry of ,4 and b, respectively. The corresponding condition number is

_,:(A,b,/) = IIIA-_I(IAI. I_.1+ Ibl)ll,_/ll_ll_o.The error x- * is bounded by

The routines xyyRFS and xyyS\'X return bounds on the componentwi._e relative back-

ward error _ (cMled BERR)and the actual error]la - i'll._/ll_li,.,_(called FERR).

xyySVX Mso returns an upper bound RCOND on the reciprocal of _c,c(A).

Even in the rare cases where xyyRFS fails to make w_ close to its minimum e, the error bound

computed by" the routine may remain small. See [4] for details.

4.7 Error Bounds for Linear Least Squares Problems

The conventional error analysis of linear least squares problems goes as ff)llows. The probl(,m is

to find the z minimizing II.-lx - bll_. Let 2 be the solution computed by LAPACK using one of

the least squares drivers xGELS, xGELSS or xGELSX (see subsection 2.2.2). \re disc,lss the most

common case, where A is overdetermined (i.e., has more rows than columns) and has full rank [2Sl:

The computed solution '2 has a sma].l normwise backward error. In other words

minimizes 11(,4+ E)_ .- (b + f)l12,where

rnax(llEIl'_ ,lfll2)< p(n)_IIAII2'Ilbli_ -

where p(n) is a modestly growing function of rl,. I, et we(A) = Crmax(A)/#._i.(-|), /) =

l[.4x - bit2, and sin(0) = p/llbl[,2. Then if p(n)e is small enough, the error 5: - x is

bounded by

- li, +IIT!E" _ p('')" cos(0)

54

_2(,4) = Gmax(,4)/Gmin(A may be computed from tile singular values of ,-1 returned

by xGELSS or xGESVD in array S, sorted from largest to smallest). Ilbl12and p =

1!,4:_- bl]2 (and then sin(0) = p/llbll2, cos(0) and tan(0)) ma)' be easily computed from

the arguments of xGELSS.

If A is rank deficient, xGELSS and xGELSX can be used to regularize the problem by

(treating all singular values less than a user-specified threshold (RCOND. Crmo\ A)) as

exactly zero. The number of singular values treated as nonzero is returned in RANK.

See [28] for error bounds in this case, as well as [11, 2.8] for the underdetermined case.

:lT'l_esolution of the overdetermined, full-rank problem may also be characterized as the solut ion of

the linear system of equations

I A r b

' By solving this Linear system using xyyRFS or xyySVX (see section 4.6) componentwise error

bounds can also be obtained [5].

'11

4.8 Error Bounds for the Singular Value Decomposition

The singular value decomposition (SVI)) of a real m by n matrix is the factorization A = UEI ''r

- (A = UEV H in the complex case), where U and V are orthogonal (unitary) matrices and __2=

diag(¢l °'min(,_.,_l) is diagonal, with _rL > rr.2 > ... >_ Cr,ni,,i,,,.,,)> 0. The _.riare the singular
values of A and the leading rain(ro., 7_) columns ui of g: and _-',of _' the left and right singular

vectors, respectively.

[:'L_ usual error a.nalvsis of the S\'D algorithm xGESVD ilk LAPACK (see subsection '2.'2.:1)or t,l_r,

_- routines in LINPACK and EISPA K is as follows [28, 37]:-1 - , Ti

The cornputed SVD ()-¢,f,T is nearly t t_e exact SVD of A + E, i.e. A + E = ((i+

#)E(:" + _;_') is the true SVD, where IIEII2/II,-tli2 < p(m,n)e, II(_(fll _< p(m,n)r_, and

11_I7:ll< p(m,n)e. Here p(m,n) is a modestly growing function of rrz and n. Each

computed singular value Oi differs from the true eri by at most

I&i - r&I _<p(m,n), e.,71
=

Thus large singular values (those near al) are computed to high relative accuracy and

small ones may r_c_tbe. The singular values are returned in array S.

: The angular difference between the comp_lted singular vector i_i and the _rue 'i by at
r_].os { at)out

O(&,,u,)g p(m'")_
gap1

-

: where gap, = nlilta¢iicr, - cral is the absolute gap I)otwc.en rr, an_t tlt(_ nearest ottlor

singular vallm. Thus, if r.s, is close to other singltlar '¢_tl/les, its corresponding singular

=

oo
=

voctorui may be inaccurate. The same boun_l applies t.o i)i and I'i. 'l_ll_.,gaps may bo

easily computed from the computed siilgular values iri array S.

Let S be tile spa, ce spanned by a collection of computed singula, r vectors {/7i, i E Z},

where Z is a subset of the integers from 1 to n. Let S be the corresponding true space.
Then

0(3, <S')£ p(n
gapr

W h e ro.

gap:r = rni|l loi-<'ii

is the absolute gap between t_he singuhtr va.lues in Z and the nearest other slngtilar

value. Thus, a cluster of close singular values which is far away from any oilier singular

value may have a well determined space ,._ even if its individual singlllar vectors are

ill-conditioned. T.he same bound applies to {bi, i E Z}.

In the special case of bidiagonal ltlal rices, the sirlgular va]ues and silxgular vectors may be conlptlto_l

m_lch more accurately. A bidiagoilal matrix /7 has nonzero entries only on Iii(, nlain diagonal ;lll_l

tile ,lia_(:iilal iinrilc,(liaielv ab<l;'(, ii (l:lr ilillll_,<liaiolv I>_,low ii). x(',l!:S\'l) collll._ill_,s iii(, S\"I) (>f'a

.goneral matrix by first reducing it to bi_liagonal form //, and then calliilg xBDSQl((subsoclioil

2.3.,5) to compute the SVD of B. Reduction of a dense matrix to bidiagonal form t7 can introduce

additional errors, so the following bounds for the bidiagonal case do not apply to the dense case s .

Each computed singular value of a I,idiagorlal nlal;rix is accurate to ilearly fllll relalive

aecl.tracy, rio matter how tiny ii, is'

- p(m,l_)._ ._,

"I1_,,.coili p _lted "sill_itlar root, or fii has ali an_ular orror al, lilOsl, a.l)o_il,

Ii(' 'Ill, 77,)
O(i_i, _L,) £

relgapi

where relgapl = rninj¢, icr,,- crj]/(cr, + ai) is the relative gap between oi and the

nearest other singular value. The same bound applies to g, arid u,.. Since the relative

gap may be much larger than the absolute gap, this error bound may be much smaller

titan the previous one. The relative gaps may be easily computed from the singular

values in array S.

Iri l.tie very special case of 2 by 2 bidiagonal matrices, xBr)SQI1, calls auxiliary rollline xl,:\S\'2

iri coinpi.ite ttie S\.:I). xi, AS\z2 will a.ctuallv coilll)lit(,)loarly correctly r(:ilin_tod sill_lllar v_,cioi'_

ili(lel)enllerit of tile rf,lai.ive glil), bill this re(luires af, Clll'{ilo CCilllpl.ll, Ol" ai'il lillioi.ic: if I.ea_liil_ (ti<4ils

_';_il<:el during fl<Jal.ili_ poillt, slltJi, racli_ii, Iii<, r+,sultili_ iliff_,relic_, lilllSl tjo oxacl.. Oil ili;lcliillO,_

wiit_oui, guard digits oI1O lias iho sli,:htlv v¢oakor resillt i,lial llie algoril lirli is conlllOiiolil wiso rol;_li\+,
i>act,:war_l si.ablo.

vlJ_'c+'[I, work has extend+:d s(;_lllf_ (ii l.li_.s_ re.still.,, [f,i dl_.llSl_ ina.l.rice._ [1.1], ']'his w_lrk will itl,ll_'a.r iii _i lalvr _,'t,rsiflll

<,fl,APAC t<_.

1

4.9 Error Bounds for the Symmetric Eigenproblem

The eigendecomposition of an n by n real symmetric matrix is tile f_tctorization A - ZAZ z A =

ZAZ g in the complex Hermitian case), where Z is orthogonal (unitary) _uld A - diag(Al,..., ,\,_) is

real and diagonal. The Ai are the eigenvalues of A and the columns zi of Z are the eigenvectors.

This is also often written .4zi= Aizi.

The usual error analysis of the symmetric eigenproblem (using _'+nyLAPACK routine in srJbse(:-

tion 2.2.3 such as drivers xSYE\: and xSYEN,'X, or any EISI";\C,I,_ ro,ltin_,) in as [ollows [37]:

The computed eigendecomposition 2,_,2 'r is nearly the expect eigendecomposition of

A + E, i.e., A + E (2 + + ,S.2)y is tit,, true eigeildecornposition wh:.le

E[2/ A],2 <_p(n)e and 1162;"[u L< p(n)e. Here p(n)is a modestly growing function ot'n.
Each computed eigenvalue ,,Xidiffers from the true ,Xiby at most

IXi- Ali p(,,). IIAI

Th_ts la,rge eigenvalues (those near rnaxi[,\i] = [.'1[[.2!are compute_t to high relative

accllracv .and st_la.llones may fief be. 'File eig_,zlval"es are rettlrned in array Ii".

The a,ngubtr diJI'erence between l,he (:ontputed unit. singular vector _,iand t,he true zi by
+ at most about

z;) g
gap/

if p(n)e is small enough, where gap/ - minj¢i [Ai -- Aj is the absolute gap between

,ii and the nearest other eigenva.lue. Thus, if Ai is close to other eigenvalues, its corre-

.spondill,Z eig+,nv(,t'tor zi Inay I)+,inacc'ural.e, rf'he _al_n tllay I)+,easily (:ol_ll)llt:_'<]I'_'c:_tlllll<,,

COlllI)lll, e(l oi. g_,'r,ltvalll+,s.., iii _trt'a,y [,I'.

Let. S be the space spanned by a collection of eigenvectors {}i,i _ Z}, whereI is a.

subset of the integers from 1 to rr. Let S be the corresponding true space. Then

0(g,$) <Z /')____Z.
gaper

where

gap:/: = rain [,\i- "\.ii
_E'I:

is the a.bsolute gap between the eigenvalues in 2.+and the nearest other eigenvalue. Thus,

;_ clu:ster of close eigenvalues which is far away from any otlter eigenva.l_+, may hart, a.
(_ _" " ' Owell (1.t,(._)tun ...dsp_+u.:e,_@even if its individual ('igenvectors are ill-c()nditione(l.

lt_ t l_e sp,cial c'as_:,of a. rea.l symnwtric t,ri(lia_;<_r_a.It_;_tv'ix T, 1.1_<,eigenwd_l_,s a.I_(Ieiget_v<,c't+_rs

can I_+,c<)ntput+,d nlltcl_ nlor+:,a.ccura+tely, xSYI';V (a.nd t.l_c,oi.her syn+metri<: c,igenl)rol)le_n (lriv+,rs)

<<)_I+_iI_,s;I]_+,(,ia,.'nvalt_,.+satt(I ei,,r,ltvr,ct<)rs <-_['a tl+,,IlS<, svttltt+rq,ri(, irta,trix })v Iii'st r(,d_('it_ it It+)

lri_liz.t_oI,al I'(>t"i_7', atl<l t]_<,_ fi_,<litlNtl_," +>i._<,_lvaluesa_lll _,iK<'nvet:t,orsof 7' l,tt,,(tt_+,t,i<:)t_of it, (l,',_s_:,

57

ma,trix to tridiagonal forrn T can introduce additional errors, so tile t'ollowin_ boul_ls for the

tridi_gonal case do not apply to the dense ca.se__.

The eigenvalues of T tnay be computed with smM1 COml)onentwise rel_tive ba,ckward

• v r"_ i Verror (O(¢)) bv using subroutine xSTEBZ (subsection 2,8.3) or driver xSl E X (subsec-

tion 2.2.2). IfT is Mso positive definite, they may also be computed at least as accurately

by xPTEQR (subsection 2.3.3). To compute error bounds For the computed eigenwdues

,_i we must make some assumptions M)out T. The bounds (liscltssed here a.re from [8].

Sltppose T is; positive definite, and write 7' 1/2= l)/tD where D = diag(l 1/'2 t,,,,) allcl11 _' ' ''_^

(zii - 1. Then the computed eigenvalues A,' can differ from the true eigenvalue,,; ,\i by

)i -Ai[< p(n,).(.. _(,4) , Ai

where p('n) is a modestly growing function of n. Thus if _2(,'1) is moderate, each

eigenvalue will be computed to high relative accuracy, no matter how tiny it is;. The

eigenvectors zi computed by xi].EQR c;_LndifI'er from the true eigenvectors zi])y at
most about

0(._,';z,) _ p(n). E. _'2(A)
relga Pi

if p(n)e is small enough, where relgapi = minj#i]Ai- Ajl/(Ai + Ai) is the relative gap

between ,\i and the n._rest other eigenvalue. Since the relative gap ma,y be much larger

than the absolute gap, this error bound may be much smaller than the previous one.

_,2(A) could be computed by applying xPTSVX (subsection 2.2.1) or xPTCON (sub-

section 2.3.1) to ,4. Tile relative gaps are easily coml)uted from the eigenwfllms.

For further results, including error bounds appropriate to indefinite ma,trices e_, s .,_.[8].

4.10 Error Bounds for the Nonsymmetric Eigenproblem

4.10.1 Summary

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue prol_lem.

In this subsection, as in previous sections, we will just summarize the bounds; in later subsections
we provide some further details.

Bounds for individual eigenvalues and eigenvectors are provided by driver xGEEVX (subsec-

tion 2.2.3) or computational routine xTRSNA (subsection 2.3.4). Bounds for chtsters of eigen-

values arid their associa, ted invariant subspa,ce are provided by driver xC',I'_I_SX (subsertiolt 2.2.3)

,)r colnpul, ational rolltine x'I'IlSt"N (subsection 2.3.,1). l'urtller details ca,xi be t'olln_l in [7].

\\.'e lc'i;)Xi be tile i-l,}l comlJuted eig:erlva.lu_:,aIld Ai llte i-l,tll, rll¢_ei/4oliva,lu¢'. l,et bi I,o file cor-

r_,spo_(lirig coJnpl_ted riEhL eigenvector, and t.,i tt_e true right eig;e_lw,ct_r (so ,.ll:i = /\i;l'i), II'J_,

is a sut)sot of the ilit_w,r's fron_ 1 to 'u., w(, let A;r denolo t,l_e average r_f l.ho select,o(} oigo_wd_les:

'_lt(:cenl. work has extewle_l some of l,ho._e resull,s to dense symmetric po,sil.ivo definite m;tl, rices [1,I], 'Fhis work

will a pp(rar in _t Inter version of I_APACK.

58

,\I -- (_,,i_r Ai)/(_i_ll), _nd simila.rly for ,_¢_. W,., ;l.ls(, let ,-%'1denote 1.11(,stll)sl);_:(-_sl)azl_lo_l I,_'

{t,,, i Ca27}; il, is c;_lled _ righi; inwl.rit_,lt subst)_e:e I)e(:_,tlse. ii' t) is ;l.ll5'v(.,(:tc)ri_ 81" th(_n d'l; is ai.Is(,

in Sz, ff'.z is the corresponding computed subsp_ce,

The algorithms for the nonsymmetric eigenproblem are backward stable: they (:ompute the ex_Lct

eigeIlvalues, eigenvectors and invariant subspaces of slightly perturbed matrices A + E, where

IIEII <_p(n,)e. Some of the bounds _re stated in terms of IIEII2 and others in terms of ilEIIF; otle
may use p(_z)e for either q uanti@.

xCIEE\ZX (or x'lPI1SNk) returns two qua,ntiti(.,s l'or e,l(:h £i, g'i t)_tir: ,si all(l s(,l)i. .x(3ICICSX(,,r

xTRSEN) rei;urns two (.tua,ntil, ies foi' _ s(,lected subset if. of eigellv;tlttes: ,si" a.tl(l s(,l)/-, 'l?ll,_(,rr(_r

l,ounds in the T_tl)l(, .1.2 atr(, true for sulricle_tly sm a,ll liE[I,which is why tho.y _,.re('_,11_.,(1_.s_'ml)t.t,tic:

Ta,ble 4,2: Asymptotic error bounds for the Nonsymmetric Eigenprol)lem

gigenvalt, e cluster I,\z- Azrl,_ IlUll2/._:r

Eigenvector e(.g,i,,,,_)-£Ilz':ll,,/sep,'
It_w,,ri;_nt subsp;_ce _)($.r, $r) ._ II/':ll,,_/sepz.

If the problem is ill-conditioned, the ttsymptotic I)ounds ma,y only hold for extremely sm;_ll t': .
t--I •

l_ht.ret'ore, wt-.,_lso provide global bounds which a.r(_,,gu_ranteed to hold for a,II E t;' < ,_ ' sop/d:

rl'_ I I(.• _,.t;c,)_. 4:1: (Zllol)a.lerror bounds for the Norlsymrn(_.tric l',_,,'(,nprol)l(,l_* , - iT)..

l:;ig;,,nv;tlu,e(:l_ster ,_- ,_1_ '2 Z':I_/.s, l_(>(ll_ir(-'s 1"]t;',C ,_:r ' s('Pkr/'l

lCime,,vector m(,:,z,v_)<(,.,','t',_n('_llzcll,_./(s(:,i,_-,_111/;:11,,/._;))tioq,,ir,,sIII!:IIF< .","s,,p,/.i
Inva.ria,tt sul)sl)a.(:e -O(,._:r,8I)< ;_r(:ta,,_(2IEI,,,/(,,(,p,-,t z!:ll_,/.s,))l{.eq,,i,',,sIlZn2;'< ._T'.,;,,p_/.t

Finally, the quantities s and sep tell use how we can best (1)lo(:k) dia,gon_lize a, m_trix A I_y _,.

simil_rit, y, V-lAV = dia.g(A_l,...,Abb), where e_ch diagonal block Ali ha.s ;_.sele(:ted s_l)set of

the eigenvalues of A. The goal is to (:hoose a V with a, nea,rly minimum co,_(tition _t_mber *r,u(l':)

whi(:h performs this decomi)osition, This may be done _s follows. Let Aii b(: '_zi by '_zi, rl"heI_

columns 1 -t- E}-_ '/'.j through E5'=I rzj of V sI)a.n the inw_riant st, l,,'sp_(:eof A corr(-,Sl,O,l(li,,g to tl,(,

(,ig(,_v;_ll_(,s()1".,1i,; thes(.-'.(:olur_ns shot_l(l be (:hosei_ to I)t, _y orthonorm;_,l I);_.sisof this Sl);_('('(;_s
X " -' ',q(:(._lll)_l.(:(lI)y .'(., I_I:_,X I'(.)r(_x;trl_pl(,). l,(_l,,si t)(, t.l_(,v;_lt_e('_rr_.,sp()_lillg I,()l,l_,,('ll_sl,(,r ,_t',>ig;(,_v;_l_,,s

,_f ..Ii/, _ts (:olr_pl_l,o(lI)y x(;ICI!;SX or x'I"IISICN. 'l'l_el_ ,,:..,.(I,") _ t,/ll,illi ,si, ;_.I_d_(_ (_l.ll(,r,'ll,_i('_,,_t' l"

(';_ _r_;_k,'its ('o_(:lil,i,:)t__ltlll_l)(.,rsr_l;t.ll(!rtha._l 1/_ini ,si. 'l'lll_s (,l_(_,:_si_lgortl_(_ll_)r_;_l sul_l,l(,ck,_;of

59

4.10.2 Balancing and Conditioning

There are two preprocessing steps one may perform on _ matrix A in order to'ma.ke its eig_nproblen_

easier, The first is permutation, or reordering tile rows and coluntns to melee _1 more nearly

upper triangular (closer to Schur form): A _ = PAP H, where P is a perrnut,'ttion ma,trix, II" ,-1/

is permutable to upper triangular form (or close to it), then no floating point opertttions (or very

few) are needed to reduce lt to Schur form, The second Is scaling by a diagonal ma,trix D to

make the rows and columns of A t more nearly equal in norm: A'! = DA'D -1 . Sc_lillg can l]]_-/.k{._,

the eigenvalues larger with respect to tile matrix norm, altd so possibly ro_luce t[_e inacctlracy

contributed by roundoff [44, Chap 2/11]. We refer to these two operations ;_s balancing.

Balancing is performed by driver xGEEVX, which calls computational routine xGI!',I_AI,, T]jo ilser

may tell xGEEVX to optionally permute, scale, do both, or do neither; this is specified by inp_lt,

parameter BALANC. Permuting has no effect on the condition numlmrs or their inlerI)ret.at, ion as

described in previous subsections. Scaling, however, does change their]nterprel, a.l.ion, as we now
describe.

P _ " SCThe output parameters ofxGLEVX- ALE (real arra,y of length N) ILO (illt.,ger), IIII (il_l.¢w,r)

and ABNRM (real) - describe the result of balancing _tmaLI'ix A into .*lt', w.here N is l I1_,_lit_lonsi__i_

of A. The matrix A" is block upper triangular, wiLlt _tt Ill¢_sl,t.llro_, blocks: fl'olll 1 l._ II,O--1, l'rc:,lll

ILO to IHI, and from IIII+l to N. The first and last blocks are upper triangular, and so alrea_ly

in Schur form. These are not scaled; only the block from ILO to IIII is scMed. 1)eta.ils of' l.lle

scaling and permutation are described in SCALE (see the specification of xC,pvvv.'........ or xC,I;',II ..\I,

for details). The one norm of A" is returned in ABNRM.

The condition numbers described in earlier subsections are comput, ed for the Im]anc,d matrix .-1",

and so some tnt_rpretation, is needed to apply them t,o l, hO _,igc,llva.ltles attd ei_otlvec.tx,t's ¢1[' t]lo

original matrix A. To use the bounds for eigenvaltlos izl "l'alJIos .1.2 all_l .1.:l, w,, lllt_sl, r,'l_la,'_' ,.,

and eF by O(e)IIA"II= O(¢). ABNRM. To use the bo,,r, ds for _,ig,,nvt,!'t,ors, w,, alst, ,,_,,,,1 t.,, tel<,,

into account that bounds on rotations of eigenvectors are for l,l_e eiget_v¢,cl¢)rs x" ¢_1': ,

related to the eigenvectors m of A by DPx = m", or a:" = l_V'I)-_:_;. On, coa rso I)111,silnplo way t¢,

do this is a_ follows: let 0" be the bound on rotations of x" from l,he Perlurb_ttion ']'al)le, all¢l lel #
be the desired bound on rotation of z. Let

maxmo<i<mi SCAI,E(i)

_.(D)= minlLo<i<ml SCALE{ i)

be the condition number of D. Then

(cosO")0 _<arccos _:_(i))

4.10.3 Computing s and sep

To explain a and sep, we need to introduce the spectral projector l' [,1(},35], a.I_l t]_, separation

of two matrices A and/3, sep(A,B) [40, 42].

_ 6O

=

We may assume the matrix A is la Schur form, because reducing it to this form does not change

the values of s and sep. Consider a cluster of m >_1 eigenvalues, counting multipllclties. Further

assume the n by n matrix A is

/)A= All A12 (4,3)
0 A2_

where the eigenvalues of the m by m matrix Ali are exactly those in which we are interested, In

practice, if the eigenvalues on the diagonal of A are in the wrong order, routine xTREXC can be

used to put the desired ones in the upper left corner as shown.

We define the spectral projector, or shuply projector P belonging to tile eigenvalues of +ill as

p= (I,,,0 R)O (4.4)

where R satisfies the system of linear equations

AllR- RA22 = A12 (4.5)

' , • •

Equation (4.5)is called a Sylvester equation. Given the Schur form (4.3), we solve equation (4.5)
for R using the subroutine xTRSYL,

,Veca,n now define s for the eigenvalues of AI:

1 1
- :.- (4.6)

IIPIl'2 +IIRI]

In practice we do not use this expression since IIRII=hard to compute. Instead we use,.the more

easily computed _.nderestlmate

i (4,7)

which can underestimate the true value of s by no more than a factor __m,n- m). This
underestimation makes our error bounds more conservative.

The separation sep(All, A22) oi"the matrices All and A22 is defined as the smallest singular value

of the linear map in (4.5) which takes X to A11X - XA22, i.e.

min IIAllX - XA,_21 f
sep(All, A22) = x#0 IIXI]F (4.8)

This formulation lets us estimate sep(All, A22) using the condition estimator xLACON [30, 32, 33],

which estimates the norm of a linear operator IITII1 = rna,xi _; Itijl given the ability to compute Tx

and T T'x quickly for arbitrary x. In our case, multiplying an arbitrary vector by T means solving

the Sylvester equation (4.5) with an arbitrary right hand side using xTR_SYL, and multiplying by

T "r means solving the same equation with A_ replaced by AT and ,42_ replaced by A_'2. Solving

either equation costs at most O(n a) operations, or as few as O(n 2) if m << n. Since the true value

of sep is lT I_ but we use lit _, our estimate of sep may differ from the true value by as much as

Lt A,

Another forn_ulatlon which in principle permll, s an exact eva,luatlon of sep(All, ,'l,a_) Is

sep(.A_,A_2)= _,,,,.(&_., ®,,l_ - .,1,_'_O t,,.,) (4,!))

where X Q Y = [xOY] is the Kronecker product of.X a,nd Y, This method is generally lml)ra,cttcM ,

however, beca,use tile InaA,rix whose sma,llest stngula,r vMue we need is ro(n- m) dtmensiona,l, which

can be a,s la,rge as ¢a/4, Thus we would require a,s much a,s O(rt 4) extra, workspace ;.rod O(n a)

operations, much more tha.n the estimation method of the last paragraph,

The expression sep(A_l,A,_._) |neasui'es the "separation" of the spectrt_ of All and A:ra in tile

following sense. It is zere if tLx_donly ii" Atr and ,'12:aha,ve a common eigen value, and small ii" tlle,'c,

is _zsmall perturbation of either one that makes them have a cotnmoll eigenw.tlue. Ir ,'ttr and el,2,2

are both symmetric In,trices, then sep(All, A:_:_)is just the gap, or minimum distance between az_

eigenvalue of .411 and an eigenvalue of A_2, On the other hand, if All and /1_2 are nonsymmetric,

sep(Al.t, A,._.) ma.y be much smaller than thttn this ga.p,

In the case of a. syrnmetric matrix, ,_ = 1 and sep is the absolute gap, a,s dc,filled in sllbsectioz_ 4.9.

4.11 Error bounds for the generalized symmetric-definite eigen-

problem

There are three types of problems to consider. In all ca.ses A and B are real sym|I|et, ri(: (or (:ornl)lC,x
Hermitian) and B is positive definite,

1. A-Ali. The elgeIldecornposition may t)e written A = ZTAZ and I = Z'rltZ (oi' A = ZltAz

;:l_ll(l[= ZIII)Z ii' ,'l all(]].]are. c(_mplex), Iler(: A is r(m,l ail(l _li;ig(,n;tl, and tile columns =i ()f

Z are indel)endent vectors. Tile diagonal entries Ai = Ali are ('alle_l eigenvalues a.lJ_lthf, zi

a.rt_eigenvectors. This may also be written Azl = Ail]zi,

2. AB - AI. 'rite eigendecomposition may be written AB = ZAZ -_. tIere A is real diagonal

with diagonal entries ,Xi, and the the columns zi of Z are independent vectors. The Ai art.,

called eigenvalues a,nd the z,. axe eigenvectors. This may Mso be written ABzi = Aizi ,

3. BA - AI. The eigendecornposition may be written BA = Z AZ -_. fIere A is rem diagonal

with diagonal entries Ai, and the the columns zi of Z are independent vectors. The ,\i are

called eigenvalues and the zi a,re eigenvectors, This may also be written BAzi = Aizi.

The error analysis of the driver routine xSYGV or xttLGV In the complex ca,se (see subseetloll

2,2,4) goes as follows. In ;til ca,ses gap,. = minj#i lAi- Aj] .iS"he absolute gap Imtween ,Xi and the.
_earest other eigenvalue.

1. A - AL/, 'l?he (:or_pute(l e' r,._g(.nvalues ,_i can differ from the true eig(,nva, l_l(,s Ai I_y al, l_l()st,

lA,-),_1_/,,.). (. IIz_-'I1_,,IIAII_

62

'.L'l_c,_.ngula,.rditt'erc:_nc:ebet,ween t llo cc:_n_putecleigollve¢:l;or _i a,vid l,Jle tru,:: r,,igellvc,c'.l,c:_rsi i,'.i

z,(,,.),_,11_3-'I1_,ItAll,,,,(,,_,(_/3))'/_
0(_;,e.;)£

gc._p;

'2, A/3 - ,\[or BA - AI, The c:omputed elgonwLlues_i c_n dltrer rrom tlm true dgc,_nwiues,\i
by _tmost M)out

IX_-,_I_v(_,,)'_,iIz311,2'IIAII_

'l'lle a,Ngllla.r clifl'4._r_nceI._et,wec:nltir, cOn_l._Ul,c'd _,ig_,i_.voc'lor-_ial_d I,l_eI,rll_: _:i_r,llv_,ctc:,r,_i is

I.,'_i- zil ,_.
ga,pi

These error bounds lm,. l_rrge,when 13 is ill-condli, loned (_(/._) is large), lt is often the cas_ l,ha,t

the eigenvt._l,aes _nd eigenvect, ors _u'e much bett, er condltionecl tha, n indicated here, We nietition two

wa.ys toget; Lighter bounds, The first wa,yis efrec:tlve when tile diagolud entries of 17tcll[t'er widdy
ii\ tr_a,gtlit:tldet°;

1. A ,\./3 Let D clia.g(B_ _1_ n-il_ _', - , : ,,,,,.,+,n,_) be a di;tgoita, l mt_trix, Ihen repla.ce 11 I)y IJl]tJ

;tnd A by DAD in Cim a,bove bounds.

2, AB - AI or B!l - A.[, Let I) = cliag(BH _/2 .--1,,,,, 13,,nI'a) be a,¢lia,gon_Llma.l,rlx, Tlien r_l_la.ce

B by DBD a,nd A by D-t.AD -t in tile a,bove bo_lvtcls,

'Vhe second way 1,_get; l.igtl l,er bolincls doc,.s not a,c'.tually su l)ply gila.ra.vit,o.e¢lboll lids, bu I, its _:sl.ilnal,_,s

;/r_, ot'l,eli I._l,t,_,r ill i_r;.i,c:l.ic:c+,, II, is liot gli;i.r;_nl,e_,¢.lI_eca,_ise ii, a.ssuvlles t,lie a.lgoril, hI_ is I_;_.cl<war_l

sta.ble, wtiich is lxol:necessarily true when /3 is ill-c:onclitloned. It estim;_t,es t.liechordal distance

, I_et.ween a true ,_ig_:.,_riw_lueA,' _Ln¢la computed eigc.,nva,lue]Xi:

li._- a;I
x(;\;,,_;)=

v/7+ +

= s' " .,TTo interpret this me_sure we wt'lte Ai = rien 0 _ncl A_= tan_), Then X(,7\i, k;) I,.ln(0 - 0)[bus

,y is bouncied by one, and is small when both argum_mts a,re la,rge _l, lt a,pplies only to l,lie lit'st

problem, A -AB.

Slll_pOSe a. c:ot_put_,cl eigeliva.lll_]Xi__1',,i -AII is i,llc+,_,xa.ct; _,igevlva.luc:_t' a. p_,rt,,lrl_,_l

l_rol)lern (A 4- E')-- ,\(13 -I- t"'), l,et a:i be l,}_, utiil, ,;ig_,ilvoc:tor (lla'i 'a = 1) t'or t,lic, ,,xac'l,

l°'Phis is l,rue truly if the l,ewd a BI,AS are itllph_mente.d in _t convent.ional wlty, lllil, iii it ['il,_q[.wiry its _l_,scril,e_l iu
s_cl.ion ,t. 12.

l iAitoth(!r iliterl_ret._tliolt of (:h¢n'<lal _lisl,+tnce is _t,,+hall t.h(, tlSlla.] l;',u(:lill<,_tvltlistan(:e b+'t,we_!ll I.h(, i_rc,.il,(:t.iols cii' ._,

ii+lid '\i (iii [lie llieuul+lili uliller<!, i.+!. half l,h,! leugth of t,lie chor<l +:civlli(,(:l.ilig the llrcl,jecl,ions.

f$3

:lgc,nw.iu_;,\i. "l:i_e,_ii' I1':11is s,n_,iic:,:._ui>_L,r,:di;oII,III,_,r_cIi1'I]/;"11Is .s_n_ilc:o_pn.roclt,.,
[li , ,,vc_h_,,ve

• + (,/+I/3,i)_

()t.h,>r y4-,tnlorn r_:,linc,da.lgoritll_ns a.xl¢l_,v'roz'I_c_uudsa.r_:,¢llscuss_,_l in [,'.4,41, ,13], u_l_lwill I)_,;iva ila.l_le
ilJ t'ul ure v'el¢,ases,

4.12 Error bounds for Fast Level 3 BLAS

'T'lle I, ew:_.l3 BLAS sf_ectfic_:tt,iom_ [17] specify the input, olt.l._ut; _tnd ca,li sc,cluence for' _m.c:hmut.ivle,

but Mlow freedom of implenmut;:_tiou, subjet.t, t,o the x'e¢lUirement theLt the V'olitilles I_i_uu_llni'lc'.Mly

stu.l_le, Level 3 BLAS imp lenmxlt_:Ltioru._c:_tn the.reff._rebe built i_six_g_nat.rix tnultil:_lic;_l,i¢_ algo-

ritl_ms l.l_a.tachi_,ve a,mc:_r_,fa.voral._l_,__l_,rat,lon c:c:_uv_t:(fur suita.Me divl_¢,nsions)t,llan t ll_, ,sl_ llcluM

n,_ullil_lica,tioI_ t_,c:ht_i¢lue.,provMed I,ha.l. I,l_es_,"l'a,,_t"alg_._ril,lln_s al'_ nul_el'h:a,lly slal_le, '1'1_:__llosl,

well-known fi-_,sl,zm_l,rix mult.iplica, l,ic._ntec',l_niclueis SI,rassen's mel,hc:M,wllic'h ca,n multil_ly two 'n,x n,

z_;ttrice,s i_ fewer t;ll_u_,1,Tri1''_ 7 oper_ttic_ns, where log_ 7 ,_ 2,807,

'l'l,e efl'ec:t on tile results in this c:httptc,r of using _t [,_st Le vd 21BI, AS in ll:_h,nle nt;_Lt,iox, can be

expl_dned as follows. In gc:neral, reasonably lmplem_nte¢l fix,st Level 3 I]LAS pr¢_servo ali the b¢_unc:ls

pres¢_nted here (except ribose _t, the end of subsection ,l,ll), but the const_uLt p(n)ma,y iI_cz'ease

sc,_ltc,wl_l,, Also, l,llo ll;eral;iv_, v'r,lillonln_t ro_l, iur,.xys'l{l;',q _na.y l,ak(! _n¢_rc!stops l.r:_collvev'ge,

'l'}_i:,is wlt;,t w_, I_m,_ I_5' x'_!a,so_tal_lyil_l_le_L_e_t,ml l'a_sl,l,_,v_,l3].II,AS, ll_'rn, ¢', _l_,l,¢_lesa c:_,l_staz_t

1) If A is m. x 'n,, .li is 'n,x p _nd (.:) Is the computed approxim_tlon to C: = Al3, t,l_en

IIc_- ABII_.S ('_(m,,,,,v)_-II,'_ll_llt_ll_+ O(,:.=).

(2) The computed solution X to the tria,ngul_r systems TX = 13,where T is m x m _x_clB is _n,x 1:_,
,'_tl,is ties

II_'.,_- t.¢1l_os .,a(,,_,p)_l'rll_,l1211oo+ o(_:'_),

F'or c:onventiont, l Level 3 III, AS iml)h..,menta,tions these (:oil(lit,Jolts holct with (:_(m,n,p) = n :a a.n¢l

c,a(m,,p) = m.(m, 4- 1), Strasse_'s vn_!l,ho¢l sa.l,isfies l,h_.,s_,boo,ntis for sliglltly la,rg_,r e_ anti e,2,

6,t

: -=-

Chapter 5

Documentation and Software

Conventions
i

5.1 Design and Documentation of Argument Lists

'I'ho _trgument lists of ali LAPAC, K routines conform to a, single set of couventiorls for their design
_tnd documentation,

S1)ecifications of Ml LAPACK driver _nd conll)utt_tioaal rotttiuc, s are given in Al)pendix F', These

are derived from the spt_cifications given iu the h,a,diug ('.omm(;l_ts iu tl_e (:od(,, I)llt iu Al)l)_ndix F

t,}_.,Sl)etific'a.tious for real and (:Onll)lex vorsious of oat:li routitle l_ave I)(:eu m_:rg_,(l, in ()I'<ler tc, savo

,SI)11(:0,

5.1,1 Structure of the Documentatio|l

"1'1_o.doc ulneuta, tion of _-,a(:h LA PAC'.I(roll ti n(:'.inc'.lll(les:

. tile SU IIP,,OUTIN E or FUN CTIO N statenlc, n t, follow(.,d by sta, temeu ts d(.,.('la.rillgtile, typ(_,a.nd

dimensions of the ;zrguments

• _ summ_try of tile Purpose of the routine

• descriptious of ea,c:h of the Arguments in the order c:)t'the _trgum(:ut list,

, (optionally) Further Details (only i_t tile (:c)de, llot, ill Al)l)(_tl(li× F)

• (Ol)t,ioliallv) Inter_el Pararneters (_Jllly iii til(, c'_,(l(,, ll(-_t,il_ Al)l)[,v_(lix I"

5,1.2 Order of Arguments

(_ •Al'guI_'t, ts o1"a,_],AI),,'\ .,Ix r(_ut,in__a,l)l)ear i_ tl_(, Ibllowi_lg or(l_,l':

65

® argtllnettts specifytug optlotts

® problem dimensions

• _rr_y or sc_da,r _rgumenl, s de,fining the lupul, data; some of tttem ma,y be overwrltit;en I)y result;s

• oi;her arra, y or scsta, r a,l'gttmelll;8 ret, ttrntllg t'eatljts

• work lm'a_ys (_:uld associa, ted array dlntenslons)

, dia.glu_st, ic nrgunlent INF'O

5.1,3 Argument Descriptions

T. he style of the argument descriptions is illustrM;ed by tile following ex_mple:

N (input,) INTEG Elt,
The nunlber of columns of the matrix A, N > 0,

A (input,/oul,put,) R.EA[, tirrtty, dilnensio_l (LDA,N)
011 eIll, ry, (,he lll-l))'-ll lll3.l.rix l,()l)e. ['ft(.,l, or()d,

On exil,, the l't_ctors L and U from l,he f_.mi,orizal, ion A = PLU; tlm

unit, diagonal elements o[' L are nel, stored,

'.['!le des(:ription of each a,rgumenl, gives:

• a classifi(:a, tl()n o1' the a,rgument a,s input, OUtl)Ut , int)lit/oul;pul, or worksl)are' ,

• l,lle type of l,ll(, arg;uIll(,nl.',

, (for _n a,rra,y) its diu_eusioi_(s);

• _ specific;_tion of the wdue(s) l,h_t llltlsl,]L)esupplh,.d for tile al'gulnent (ii' it's ali input a,rgu-

merit), or of the value(s) returned by the routine (if it's an oul, put a,rgumenl,), oi' both (ii' ll,'s

_n input/output _rgument), In tile l_st c_se, the two parts of the description _u'e introduced

by the phr_ses "On entry" _,nd "On exit",

. (t'or a se;dar input _rgument) any eonr_traints theft tile supplied wlues must satisfy (su(:h as

"N _> 0" in the example above),

5.1.4 Option Argurnents

Arguill(.,nts sl)e.cifying ol)tions a.r(; usua, lly of l,yl_, (',IIAI{A(Yri,_'I{.*I. Til(; In_ml_ing _,t' ,:,a('.h va.li(I

v'nl_(., is given, a,s in this (.,x;_mple:

[IP[,O (inl)ut) (III A I{ A(?/I'I",I{,* I
-.= 'II'. IIl_lWr l,ri_mgl_,of A is sl,ore_l;

= 'L" Lower triangle of A is st,ored,

66

Timcorrespondiaglower-casecharacters may besupp[ied with the sametuea, ning), but any other

vatue is illegal (see subsection ,5.t.S).

A lollger character string can be passed as the actual argument, making the calling program more

readable, but only the first character is significant. For example:

CALL SP0TRS ("tapper', . .)

5.1.5 Problem Dimensions

lt is permissible for the problem dimensions to be passed as zero, irt which case the computatiott
(or part of it) is ski?ped. Negative dimensions are regarded as erroneous.

5.1.6 Array Arguments

Each 2-dimensional a.rra_y argliment is immediately followed ia the argument list by' its leading

dimeasioa, whose name h;_s the form LD<array-name>. For example:

A (input/output) REAL/COMPLEX array', dimensiort (LDA,N)

LDA (input) INTEGER

The leading dimension of the array A. LDA > max(1,M).

[t :_houid be assumed, unless stated otherwise, that vectors and matrices are stored ia [- and '2-

dirnet_siona[arra.ys in the coaventional maaner. That is, if au a.rrav X of dimension (N) holds at

',_>ct.orx, thea X(i) hold._ a', for i = 1..... r_,. If :_ 2-dirnension_l _rray :\ of dimonsion (I.I).\.N)

h,:>l¢[s_tl m-by-r,, matrix :l. then :\(i, j) holds _Lis['OI" i= [..... rll au¢l j -- t r, (LI),\ [_llist be

a,f, [east m). See Section 5.:1 ['or more about storage of matrices.

Note that array z_rgument;s are usually declared in the software as assumed-size arrays (k_st dilnen-

sion *), ['or example:

REAL ,t(LB_., *)

z_It,hough the documentation gives the dimensions as (LDA,N). The latter form is more informativ_._

since it specifies the required minimum value of the last dimension. However an assumed-size array

declaration has been used in the software, in order to overcome some [imitations in the Fortran 77

sl:andard. In pe.rticu[ar it allows the routine to be called when the r..levant_,_ • dimension (N, in this

(:_.tse)is zet'(), t[owevor actl.tM array (limensiolls in the (,ailing program mtlst b_ at I a.... I ([,D.\ ill
t his ,axam pie).

5.1.7 Work Arrays

)_l,,nr L:\.P..'\(:K r_:_ut.in_:'_r_,_lIliro{_ne or uloro wc>rk arra, vs to l_, pass_d as a.rg:,lm,,nts. Tllo narllo

o["a work a.rr;_v is usually WORK s(.m_etimes IWORK or RWORK to distinguish work arrays of

67

integer or real type.

A number oi" routines implementing block algorithms require workspace sufficient to hold one l)lock

of rows or columns of the matri×, for example, workspace of size n-by-hb, where n8 is the block size.

[a such cases, the actual declared length of the work array must be passed as a separate argument

LWORK, which immediately follows WORK in the argument-iist.

See Section 5.2 ibr further explanation.

5.1.8 Error handling ,and the diagnostic argument INFO

Ali documented routines have a diagnostic argument [NFO that indicates the success or f;tilur,, of

L[te computation, as follows:

t [NFO = 0: successful termination

• [NFO < 0' illegal value of one or rnore arguments - no computation performed

• [NFO > 0' fail,ire in t t,_,('ollrse of ('omplltal.iotl

Ali routines described in this document check that input arguments such hS N or LDA or option

a,rg,tments of type character have permitted values. If an illegal value of the i :'h argument is

detected, the routine sets [NFO = -i, and then calls an error-handling routine XEI1BLA.

"['lte standard version of XERBL.\ issues an error messa{t;¢__and halts execution, so that no L,AP:\CI(

rolttine would ever return to the calling program with .iNFO < 0. However tltis might occur ii"a

t,,:)u-.qt,atn{tar,t vorsi{:}n{)I"XE'.tlB[..\ is ,ls{,{t. : { .
, , ,

,i '

, ,

5.2 Determining the block size for block algorithms

L.-\PAC.K routines that implement block algorithms need to determine what blo(:k size to use. The

intention behind the design of LAPACK is that the choice of block size should be hMden from users

a,s much as possible, but at the same time easily accessible to installers of the package when tuning
: LAPACK for a particular machine.

LAPACK routines call an auMliary enquiry function ILAENV, which returns the optimal block

size to be used, hs well as other parameters.. The version of ILAENV supplied with the package

contains default values that led to good behavior over a reasonable number of our test machines,

but to a.chieve optimal performance, it may be beneficial to tuue [LAI?.;NV for your particular

machine environment. Ideally at distinct implementation ()f II,AENV is nee(l_,d t'()r <,('ii ma('llin(,

,nvironnlent (see also Chat)t:,,r (i). T!t(, optimzd block size may also ,:lepon(l on til,, rolltin,, l lte

c(:)tnbinat ion ()f opt ion argu men ts (ii"any), and t he problem (tim(,nsions.

If [I..\IT_NV rel.,.lrns a block size (>f 1. th_,n the r()llti.n_, p,,,'f,)rms ttle unid(u'k_,_l ;tl,_()rillLtn, ('allillg
1_,',.'_,1') It[.A!q ._n,t m'_k,,,: n,"_z'nllqf,,l,_v,,I 2 11I Ag

,I

- (i_
__

Some LAPAC. K routines require a work arra.y whose size is proporlional to the I_lock size se_,

subsection .5.1.7). The actual length oi' the work array is supplie_l as a.n argument lA\:Ot/l'(. 'Fll_,

description of the arguments WORK and LWORK typically goes as follows:

WORK (workspace) REAL array, dimension (LWORK)

II' INFO = 0, then WORK(I) returns the optimal LWORK.

LWORK (input) INTEGER

The dimension of the array WORI'(. [SVORK > max(l.N). For optimal pert'or-

mance LWORI_. > N*NB, where NB is tl)e Ol',tinlal I.Io,:ksize t',,ttlrtt,,,,l I,y IL:kEN\:.

I'[tt, routit_t, cleterlni.nes the block size to be used I:)3• the following steps:

l. the optimal block size is determined by Calling ILAENV;

2. if the value of LWORK indicates that enough workspace has been supplied, the rouline _lses

the optimal block size;

3. otherwise, the routine determines the largest block size that can be use_l with the sul_pli,_l

a.tIlottllt of workspace;

-I. ii" this new block size does not fall below a threshold value (also returned by ILAI:;N\.'), the

routine uses the new value;

5. otherwise, the routine uses the unblocked algorithm.

Tit,.' mininlutn value of L\VOllt,_ that would be needt,_l to Its_, tlle ot,tinlnl block sizt', is rol_lI'n,,_l i_t
\\'() I/1((1).

I'lllls, the routine uses ttle largest block size allowf,d by the arl_ount of workspac_, S_ll)plied, as long

as tltis is likely t_, give better performance than the ulll,locko_l algoritltm. \\:OI{K(1) is not always

a simple formula in terms of N and NB. The comments will specify a lower bound on L\VOI/I_ for

correct functioning.

[f L\VORK indicates that there is insufl:icient workspace to perform the unblocked algorithm, the

value of L\VORK is regarded as an illegal value, and is treated like any other illegal argument value
(see subsection ,5.71.8).

If in doubt about how much workspace to supply, users should supply a generous amount (assume

a block size of 64, say), and then examine the value of WORK(I) on exit.

5.3 1V[atrix storage schemes

I..\t).-k¢'I,2 allows l,t_e t'ollowinu, diff_,r,,nt stora,_,_,, sch,_tl_es for nlatrices:

• convetttional storage in a 2-ditttensh_llal array"

_

-_ 69

_2

• packed storage for syrnmetric, Ilernlitian or triangular matric(,s;
,h

• band storage for band matrices;

• the use of two or three l<limensional arrays to store tridiagonal or bidiagonal matrices.

' ,t - _ -'1 rThese storttge schemes a,re compatible with those used iv _INPAC, Ix and the BLAS but EISPA(;k

uses incompatible schemes h)r band and tridiagonal matrices.

In the examples below, , indicates an array elecaent that need not be set anti is not ret'er(_|lced

l,y L:\PACK routines. Elements that "n(,ed not be s;et" are newer read, written to. or otllerwise

acc__sed',_s'_by. tile LAPACK routines. The examples illustrate only the relevant, tmrt oi'the arrays,

array arguments may of course have additional rows or columns, according to the llsual rules for

passing array arguments in Fortran 77.

5.3.1 Conventional Storage

The default scheIlle t\.)r storinN matrices is the obvious one descrit)ed in sill)section 5.11.(3:a malrix

A is slc)red ill a "2-dilnensioaal array :\, witll ntal fix elem,,,lt "ia :;tort_(l i,l array (.,le,,lent ;\(i,j).

Ira matrix is triangular (upper or lower, as specified by the argument UPLO), only the elements

of the relevant triangle are accessed. The remaining elements of the array need not be set. Such

e[ement:s are indicated by • in the examples below. For example, when n = 4:

UPLO2. --.T-rqangular matrix Aii. Storage in array Al(till al2 (113 (iii (til (112 al3 (/l,l

•U (l '2'2 (l "23 ,'l 2, t , (l '22 (I 2:l (l 2,1

(233 a3,t * * a33 (13-1

(1,1"l * * * (l '1,l

'C' a21 a22 a21 a22 * *

a31 a32 a33 (/,31 a32 (133 *

a41 a42 a,t3 a44 a41 (/42 a43 a44

Similarly, if the matrix is upper Hessenberg, elements below the first subdiagonal need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower

triangle of the matrix (as specified by UPLO) to be stored in the corresponding elements of the

array; the remaining elements of the array need not be sot.. For examl)le, when ,_ =: .l:

= 7O

UI'L() llerlnitian ma£rix ..t Storage in array ,,\

(/ll (LI2 (113 (Lt4 _ I1'I1 (t12 (t13 (ll,I

_g _ lli2 a22 a23 (t24 , (t22 t_23 a24

(_13 t_t23 a33 a34 * * a33 a34

al,I a24 a3,i a44 __ * * * a44

_L' a21 a22 a32 a,12 asi a22 * *
(/31 a32 (t33 11:13 (t3l (132 a33 *

a,tl (/,12 (l.13 (/,I,I (l,l I (I,1'2 (I-13 (l,l,I

5.3,2 Packed Storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle

(again as specified by UPLO) is packed by columns in a 1-dimensional array. In LAPACK, arra.ys
So:that hold matrices in packed storage, have names ending in'P' ":_

• ii" UPLO = 'U', ai i is stored in AP(i + j(j - [)/2) for i <: j;

• if UPLO = 'L", aij is stored in AP(i + (2n - j)(j - :1)/2) for j _< i.

For example:

UPLO Triangular matrix A Packed storage in array ,,XP

;[_' (122 (1"2'3 (1'2'1 ali al'_ (l', 2 " '' '''
(/33 (13,| ""_ : r114 as.t r134 (I,I.l

(/,t ,I

_L' a?l a27 ali a21 a31 a,ll (122 (/32 (t,12 a33 a,13 (t,t,t
(131 a32 (t33 _-------_-_-_ _" _--_

tl ,| 1 (/ ,I 2 (I ,t 3 f1,14

Note that for real or complex symmetric matrices, packing the upper triangle by columns is equiv-

alent to packing the lower tria_ngle by rows; packing the lower triangle by columns is equivalent to

packing the upper tria.ngle by rows. For complex Hermitian matrices, packing the upper triangle

by columns is equivalent to packing the conjugate of the lower triangle by rows; pa.eking (lie lower

)rial,gl(: by coltlrnns is eqliiva, l(,nt t,o l>acl<.ingtile conjugate of fllt-, Ul+)l)ertria.tkglo by rows.

5.3.3 Band Storage

:\ l_;_)l(l I,latrix witll Icl sul.)(liagotlals an(l l,'u. S,ll)<,vdiaZt-)llals ,,ay b(, st.()r(,(l (:o))ll)acllv ill a, 2-
<lii,_+,tlsi()ilal;-trrav wil.ll Icl + Icu.+ I rows ;.).tl(l,l c()l,l)itns. ('(:)Itllntls oi'lhc')nat.fix a.ro s(())'+,(l ill

c<.)rrosporl(titlg collltnnS of t.lle array, and (liagonals oi' rile ma,t.rix art> stor,d in rov,,s (.)t'lh(, array,

71

"['l_is storage sc.hen_o sllouhl I:m _ls_!d in I),'actico otLly iV l,:l,k'tz <.5 ,, ;LJ/.J)()u_lll,Al'.X('lq r(,,llitl_'s

work correctly, for all valt:es of/,:I ail(l /c_t, In I,AI),.\(..'I_', arrays tllat li()l(l Iilal,l'ic(2s ill l,a,l(l ._t()ra_g(>

Ilave names ending in 'B',

To be precise, aij is stored in Al3(ku + 1 + i-j,j) for m;_x(l.,j- ku) < i :<'_.mi1, rt, j + kl). li'or

example, when 'n = 5, kl = 2 and ku = 1:

13a.n(I In_trix A Band stora.ge in a.rray Al:)

(l 11 (I 12 # (I.12 (t2q (I ._ I (I 15
(l,2 I (122 (123

(l I 1 ¢12,2 (l :_3 (I .1,I ¢l 5'5

(1:¢1 a32 (l.3f_ (I.:_,4 (121 (I.32 (I,13 (15.1 *
(L,I2 (1,13 (1,I,1 (1,t5

(131 (£,12 (153 * *
(153 (/'54 (1,55

Ii'll.:_l=)nen s marked ,_,o " , t' in the upper left and lower right corners of the _rray AB ne,::_tuol; be se(.
;1.I1(1 _tl'o flOl referenc_,d I:,v LAPACI_ ro_ltitl_,s.

Note: when it band matrix is supI)lied for Lll factoriza, tiol)., st)ace)ntis(be a.llowed to stc>r(__11i

ad(tit.ional kl superdia.gollals,. _on(,.ta.tt:d'", by fill-i)l as a r(:_sult ()f row intercha.ng(:s. 'I?llis rn(,ans tlLat

Iii,, lllatrix is sl_)I'_,(tac'(:()/'(li_g l.(:)).lie;tl)()vo s(:ll(:,l)i(,,I)))t witl) kl + k,. S_ll)(,rctiag;o))Ms.1

Frial)g_lla.r baud ma.trices are stored in the same format, with either Icl = 0 if ul)per t,ria.ngula.r, or
t,:_ - 0 ii"lower triangular.

l:()r symm(:,tric or |Iermitian band matrices with k(l sul)diagonals or SUl)er(liago)lals, o_ly tt_e _ll)l)(,r
()r l(2w(.,rtria_gl(_ (a.s sl)(>(:ifi(,(1by I;I)I,O) n(,(,<lbo stor(_d'

, if" ('1)1..() = 'I" ai_ is st._)r,,(l in ,\l_(l,'(I .-t-l + i - j j) for I1_ax(l j - l,'(l) <" i -< j"

, it'['l>l.() = "I_' ".i_ is st,>r,,(t i_l AII(I 4- i-.j,j) fi)1"j <" i <v_ill(_l. j+/,,d)...2 _ ') .

l:or (,xa.1)iplo. wl_en , = 5 axed kd = '2:

IJPLO ll(:rn_itian ba_,d n_a.trix A Band stor_ge in array AB

al2 a22 a23 a2,1 * * al:?, a24 (135

'U' 613 //,23 (z33 a:_,l a3s * al2 a23 a3,1 a45

a2,1 ?23,1 a44 a45 a 11 a22 a33 a,l,t aSS

/'23.5 i_4s ass

/ (.t11 _/,21 ¢:/,;I11 r /

(l'21 (1.'2'2 t;i32 ' ¢_.12 (I I 1 022 (133 (1,1,1 (l'.r)5

'I_' (131 (132 (l.3"_ (t.l?, (L53 0'21 (132 (I |3 (/5,1 *

(t,l' 2 (l,1"_, (l ,|4 (1.,.1 (I.31 (l,12 (153 * *

• (1,r,:_(I.._,,i (tr,r,

I".ISI',.\ ('.I,/ 1"(,))li))_,s)_'.<()a (lilf(')'('))l s!(,r_,g(' soil(,),),.' t'()r I)ai,¢1)_al.ric,,._, in whict_ rr,ws of (1_')));_1ri:.:

;,I'(, ._I¢,I',,(1i)_ c<)vr,'sp()i_,.lili_rr)ws ()f l},,, array, i,.)_(ldia._;()))als (_I tl_(, 11_a[1"ix ai'(, slr)['(,(] ill ('()]_l_))is (.)f

l,]l(> ;trl'a y.

72

5,3,4 TPidiagonal and Bidlagonal Matrices

An unsymmetric tridi_gonal ma.trix of order n is stored in three 1.-dimensional ;:rrr_ys, one of

length n conta,ining tile diagonal elements, and two of length n - 1 {:ontMning the su bdiagona, l _tnd

superdiagonM elements in elements l:n- 1.

A symmetric tridiagonal or bidiagonal matrix is stored in two 1-dimensional arrays, one of length

tz containing the diagona,l elements, and one of length n- i containing the olT-dlagona_l elements.

(I'2ISPACIq rolll.illes sl:ore tile ofl'-diagona, I eiement,s iii elenlents 2 : l_of a. voc.tor of longl, l_ I_.)

5,3.5 Unit Triangular Matrices

Some LAPACK routines have _II option to handle unit triangular matrices (that is, triangular

matrices with diagonM elements - 1). This option is specifi(_d by au argument DIAG. If DIAG

= 'U' (Unit triangular), tile diagonal elements of tile matrix need not be stored, and tile corre-

sponding array elements are not referenced by the LAPACK routines. The storage scheme for

the rest of the matrix (whether conventional, packed or band) reina, ins unchanged, as described in
subsections 5.3.1,5,3.2 and 5.3,3,

5.3,6 Real Diagonal Elements of Complex Matrices

Coml}lex Ilermitia.n ma, trices lta,ve diagona.l matrices that a,re by definition purely real. Iii addition,

some complex triangula, r ma.trices computed by LAI"_A(?K routines a,re define{l by Life a,lgorit, hlrl to

lta,ve real diagonal dementsin C,]lolesl¢y or (_17. t'ac.to|'iza,tiott, for exa,mple.

If s_l{'lj Jllat.Pic{_sare sllpl)li_,d ;ts i11pul, I.o I,A I),.\C,I(l'(}tll.ill{,s, tile it_la/inary parts {}1'I.Ii_,{lia/ollal

,'l,,z_enf,s art, J_ot.Pol'or,,nce{l, btll, ape ll.SSlllllod Ii} bO zero, II"such Ilia,trices art, I'O{,11t'11011 i/,S ollll}lll,

I}\' I,APA(III¢ l'outines, l,he {:enel}tired ilna.gina,ry pa,rts a,re explicil.ly set to zero,

5.4 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary ma,trix (usu_Llly denoted Q) is often re,presented in LAPAC, K

as a product of elementary reflectors--- also referred to as elementary Householder matrices

(usually denoted Hi). For example,

Q =HII1,2..,Hk.

,\lost itsez's need not be ;twa.re of the details, bec:a.use I,APAC.I,_ ro_ltines are provi{lo{I l:o work with

I I_is repl'e!solll, al ion:

• ro_ll:ill_,s wl_ose na.m{!s begin SOIl(I- (rea.l) or (?IIN(I- (colnpl{,x) ca.n t,.;oueral.,, ali {,r part of

(p oxplic+it,ly;

® ro_llilt+,s wl_oso _la,_tl+'t}{'g;iI_S()IIN'I- (rea,l)or ('{!NJ\,I- {'<}_lll}lex){'a_ i_l_ltil}ly a. giv<,t_ _latPix

t}y {_ or (£ptl with{}t.ll, t'ori_ing (2 exlJlicit.lY.

_. 7:1

=

Tlm following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of
the form

H = I "- TVV H (5.1)

where v is a scalar, and v is an n-vector, with [r[2[[v[[_ = 2Re(r); v is often referred to as the

Householder vector. Often v has several leading or trailing zero elements, but for the purpose

of this discussion assume that H has no such special structure.

There is some redundancy in the representation (5.1), which can be removed in various ways. The

representation used in LAPACK (which differs from those used in .LINPACK or EISPACK) sets

vi = 1; hence vi need not be stored. In real arithmetic, 1 _< r <_ 2, except that v = 0 implies
H=I.

In complex arithmetic, r may be complex, and satisfies 1 _< Re(r) _< 2 and v- 1[< 1. Thus

a complex H is not Hermitian (as it is in other representations), but tt is unitary, which is the

important property. The advantage of allowing r to be complex is that, given an arbitrary complex
vector x, H can be computed so that

Hz = #(1,0,...,0)*

with real _. This is useful, for example, when reducing a complex ttermitian matrix to real

symmetric tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

74

Chapter 6

Installing LAPACK routines

6.1 Points to note

For anyone who obtains the complete LAPACK package from NAG (see Chapter 1), a comprehea-

sive installation guide will be provided. We recommend installation of the complete package as the

most convenient and reliable way to make LAPACK available.

People who obtain copies of a few LAPACK routines from netlib, need to be aware of the following
points:

1. Double precision complex routines (names beginning Z-) use a COMPLEX*16 data type.

This is an extension to the Fortran 77 standard, but is provided by many Fortran compilers

on machines where double precision computation is usual. The following related extensions
are also used:

• the intrinsic function DCONJG, with argument and result of type COMPLEX*16;

• the intrinsic functions DBLE and DIMAG, with COMPLEX*16 argument and DOUBLE

PRECISION result, returning the real and imaginary parts respectively;

• the intrinsic function DCMPLX, with DOUBLE PRECISION argument(s) and COM-
PLEX*16 result;

® COMPLEX*16 constants, formed from a pair of double precision constants in parenthe-
ses.

Some compilers provide DOUBLE COMPLEX ms an alternative to COMPLEX*IS, and an

intrinsic function DI_EAL (rather than DBLE) may be used to return the real part of a

COMPLEX*16 argument.

2. Machine-dependent parameters such as the block size, minimum block size, crossover point

when an blocked routine should be used, etc. are set by calls to an inquiry function ILAENV

which may be set with different values on each machine. See section 6.2 for more about
ILAENV.

75

3, SLAMCH/DLAMCH determines the properties of the floating point arithmetic at runtlrae.

It tries to determine the roundoff level, underftow threshold, overflow threshohi, r_dlx _uld

related parameters. It works satisfactorily on all commercially important ma.chhms of which

we are aware, but will necessarily be updated from time to time as new machines and compilers

are produced.

6.2 Installing IL.AENV

IViachine-dependent parameters such as the block size are set by calls to an inquiry function which

may be set with different values on each machine. The declaration of the environment inquiry
function is

INTEGER FUNCTION ILAENV(ISPEC, NAME, OPTS, NI, N2, N3, N4)

where ISPEC, N1, N2, N3, and N4 are integer variables and NAME and OPTS are CItARAC-

TER*(*). NAME specifies the subroutine aame, OPTS is a character string of options to the sub-

routine, and N1-N4 are the problem dimensions. ISPEC specifies the parameter to be returned;

the following values are currently used in LAPACK:

ISPEC = 1: NB, optimal blocksize
= 2'. NBMIN, minimum block size for the block routine to be used

= 3: NX, crossover point (in a block routine, for N < NX, an unblocked

routine should be used)
= 4: NS, number of shifts

= 6: NXSVD, croasover point for the SVD

= 8'. MAXB, crossover point for block multishlft QI_

The three block size parameters, NB, NBMIN, and NX, are used in many different subroutines (see

Table 6.1). NS and MAXB are used in the block multishift QR algorithm, xHSEQ1L NXSVD is

just a constant multiple of N: 1,6N; it is used in the driver routines xGELSS and xGESVD.

The L.APACK timing programs were designed to collect data for ali the routines in Table 6.1. The

range of problem sizes needed to determine the optimal block size or crossover point is machine-

dependent, but the input files provided with the LAPACK test and timing package can be used

as a starting point. For subroutines that require a crossover point, it is best to start by finding

the best blocksize with the crossover point set to 0, and then to locate the point at which the

performance of the unblocked algorithm is beaten by the block algorithm. The best crossover point

will be somewhat smalleI than the point where the curves for the unblocked and blocked methods
cross.

For example, for SGEQPd;' on a single processor of a CRAY.-2, NB = 32 was observed to be a good

block size, and the performance of the block algorithm with this block size surpasses the unblocked

algorithm for square matrices between N = 176 and N = 192. Experhnents with crossover points

from 64 to 192 found that NX = 128 ,:,as a good choice, although the results for NX from 3*NB

76

,!t, LAL O[Vl_ " "Iz,l,x Nl ,lIN_
C l-OrD1) lP "-TWYrTlP rDv,c_._.a,t C(,, L,.,.I{,F *

SGBTII, F C(_B'P_ I,_

) i,SPOT1LF CP(TRI *

SPBTRF CP ' '

SSYTItF CI[ETgF * ®

CSYTtLF • ,

SGETIH (.GE.TPd • .

SP OT I1,I C P OT II,I •

-,,-,itr,STIKrRI 61 ,1 RI .
i

SGEQRI ,_f C,GI_QIIdPf • . . !

SORGQII) CUNGQR.t , . ,

SOttMQItt CUNlVIQItt • . '
SGEHI_D CGEHI_D * . • I

SSYTRD CHETRD . . , I

SGEBRD CGEBI1D • . •

SSTEBZ
.

_-- a,lso li.Q, Q L, _u_.dI,Q

Table 6,1: Use of the block parameters NII, NBMIN, and NX in I_AI)AC,I(

to 5*NB are broadly similar, This means that matrices with N < 128 should use the anl)locked

_.dgorithna, _nd for N > 128 block updates should be ttsed until til(.: r(nnaintng subma, trtx has order

less than 128, The perform, ante of the unblocked (NB = 1) and blo(:ked (NB = 32) a,lgol'ithlns for

,..q("_;'nIl.F,.,,_,,._and for the blocked a,lgorithrn with a crossovt:r point of 1281are COml)a,red in Figure 6, 1,

I_y exp(_rimenting with smMl wdues o1'1,heblock _" ,.... tzc, it sllould be stx'aiglttl'orwa,|'d to choose NIINI IN,

the smallest block size tha:t gives a Imrt'o|'ma|lce inlprovement over the unblocked a,lgoril, llln. Note

til at on some machines, the optima, l block size may be 1. (the tlnblocked algorithm gives the best

performance); in this (.',ase, the choice of NBMIN is arbitrary,

Complicating the determination of optimal parameters is the fi_ct that; tile orthogonad factorization
I t _ 3 " ,routines amd SGE[-R.D i_ccept non-square matrices us input The I.APACK timing progra, m allows

M and N to be varied independently, We have found the optim_d blockslze to be generally insensitive

to the shape of the matrix, but the crossover point is more dependent on the matrix shN)e, For

ex_mlple, if M >> N in the QI_ factorization, block updstes may always be faster than unblocked

updates on the remaining submatrix, For example, one might set NX = NB if M > 2N,

Parameter values lhr the number of shifts, etc. used to tune the block multishift QI/, algo|'itttnl ('a,n

be varied t'ronl tit(.' ii|put files to the eigenwdue tinling program, hltereste(l users sllould (:onsl)lt [2]

for _ description ot' the timing program input fih:_s,

AI

350 --_-. "r........... ,i......... _.... r-----'--', r---_r

300 - -..... "" '-'

'NX = i_ "'''_'''j "'-'''S_'''_'
250 .-'- ,'

#¢ ,¢

.,,...... ..,"..... .' '"' NB= 1

200 .,,,//".."" -....'j/

, i q

,150 -"

10050 32

i I, L.-_ i ..l_._......a__

0 50 100 150 200 250 300 350 400 450 ._00

M = N = order of matrix

Figure 6,1' QR factorization on CRAY-2 (1 pr<)cessor)

78

Chapter 7

Troubleshooting

7.1 Failures or wrong results

Failures and wrong results can oftm_ be due to incorrect argument types oi' count in a subroutine

(:all, particularly when users are not t'_.uniliar with Fortran. '1.'lte following points give some common

mistakes, which are worth considering before assuming that the LAPACK routine is falling,

Array dimensions Check that array arguments are correctly dimensioned In the (sub)program

from which LAPACK is called, In particular, ali two-dimensional array arguments in LA.-

PAC.K have an associated leading dimension _rgument, which must be set to the value of

the first dimension of the array in the calling (sub)program, For example, SPOTI(F has the

calling se(I uence:

SUBROUTINE SPOTRF(UPLO, R, A, LDA, INFO)
CHARACTER UPLO

INTEGER INFO, LDA, N

REAL A(LDA, ,)

and so a call ing program rnight have the structure:

PROGRAM HAIR

PARAMETER (NMAX = I00, LDA = NMAX)

REAL A(LDA, NMAX)

N=50

CALL SPOTRF('Upper', N, A_ LDA, INF0)

Preclsmn and type (21tc.ck that 0,rguments have the correct type declarations for the LAPA _,h

routine being culled, In particular, the precision of real and complex arguments should

79

m_tch tile precision being used: REAL and COMPLEX for Sxxx_x _nd Cxxxxx routiues,
andDOUBLE PIt.ECISION _nd COMPLI.';X*16 for Dxxxxx and Zxxxxx routiaes,

Argument matching The order and tlm rLumber of _u'guments shoukl match the cMling sequence,

Unfortunately most compilers accept_ without complaint, _n incorrect cMttng sequence,

Workspace A number nf LAPACK routines require one or more workspace arguments, Check

th.a_tsufficient workspace Is being supplled to the LAPACK routine, Some LAPACK routtnes

that require workspace have _n _tssoci_ted length argument associated with the worksp_ce

argument, (..,, W ORK_ LWOR,I(, ,,.) for example, and this should uu_tch the declared

length of the workspace,

INFO Check the parameter INFO on exit from _ul LAPACK routine. If an LAPACK routine

detects _n error or failure, then a non-zero value of INFO is returned, For example, if

A Is not posltlve-deflnite, then the above routine SPOTtI.F cannot compute the Cholesky _
factorization and returns a positive value of IN FO,

Fa].lures during installation In the course of runnlng our LAI ACh. testcode on various machines

and compilers, a number of compiler and mathematical library bugs were discovered and

reported to the developers of these products. Whlle these bugs are a rare cause of failure,

they do represent a possible reason for our testcode to indicate the presence of inaccuracies
durtng testing,

In _Mdltion to the above polnts, the LAPACK routine to determine machine para.meters, SLAMCI[

in single precision and DLAMCt-I in double precision, may have been Incorrectly installed on your

ma,chine. A simple test routine is supplled with LAPACK, so If there is any doubt this test should
be run. See Chapter 6 for further information.

7.2 Poor performance

To avoid poor performance of an LAPACK routine, please note the following recommendations',

BLAS Whenever possible, one should link to efficient versions of the BLA.S for the machine being

used. A number of manufacturers supply highly efficient versions, and to gain the best

possible performance from LAPACK those versions should be used. A portable set of Fortran

77 BLAS are supplied with LAPACK, so that it is always possible to run LAPACK, but no

attempt has been made to tune these for specific machines.

IL.AENV The LAPACK routine ILAENV returns machine dependent part, meters, such as the

block size, that are important for the efficiency of many LAPACK routines, Correct installa-

tion of this routine is essential, See Chapter 6 for further infbrmation on installing ILAENV.

Workspace A number of the LAPACK routines require a,dditlonal workspace, which is dependent

upon the block size, to work efficiently, The routines will work correctly with less tha, n

the optimum workspace, but the efficiency may be compromised. For example, an unblocked

•.. 80

_lgorithm may be used in piace of the blocked algorithm. Routines that require this addition_d

workspace return the value of the optimum workspace in the first elemeItt of the workspace

array and hertce, if taecessary, the workspace can be increased so that subsequent runs c_n be

performed with the optimum workspace.

xLAMCH The first call to xLAMCH in a program may be quite expensive, as it attempts to

determine dynamically the parameters of the machine arithmetic. These .values are saved

witlhin the routine so that the cost of subsequent callsis trivial. A good practice is to include

a call to xLAMCH in the timing program, before any calls to LAPACK routines being timed,
for example in single precision:

XXXXXX .-SLAMCH('P')

or in double precision:

XXXXXX = DLAMCH('P')

[nstaUers _.I_;_,_'wish to _save the values computed by SLAMCH/DLAM(_H tor a specific machine

and hard code them in DATA statements, provided that no accuracy is lost in the translation.

Sl

Bibliography

[I] E. ANDERSON, Z. Bnl, C. BtSCHOF, J. W. DEMMEL, J, J. DONGAR.RA, J. DuCaoz,

A. GREENBAUM, S. HAMMAKLING, A. MCKENNEY, AND S. D., LAPACK: A portable linear

algebra library for high-performance computers, Computer Science Dept. Technical Report

CS-90-105, University of Tennessee, Knoxville, 1990. (LAPACK Working Note #20).

[2] E. ANDEKSON, J. J. DONGARRA, AND S. OSTROUCHOV, Implementation guide for LAPACK,

Computer Science Dept. Technical Report CS-91-138, University of Tennessee, Knoxville, 1991.

(LAPACK Working Note #35).

[3] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, New York, Std 754-

1985 ed., 1985.

[4] 1VI. ARIOLI, J. W. DEMMEL, AND I. S. DUFF, Solving sparse linear systerns with sparse

backward error, SIAM J. MatrLx Anal. Appl., l0 (1989), pp. 165-190.

[5] M. AIUOLI, I. S. DUFF, AND P. P. M. DE RIJK, On the augmented system approach to sparse

least-squares problems, Num. Math., 55 (1989), pp. 667-684.

[6] Z. BAI AND J. W. DEMMEL, On a block implementation of Hessenbery multishift QR iteration,

International Journal of ttigh Speed Computing, 1 (19S9), pp. 97-112. (also L APACK Working

Note #8; submitted to ACM Trans. Math. Soft.).

[7] Z. BAl, J. W. DEMMEL, AND A. MCKENNEY, On the conditioning of the nonsymmetric

eigenproblem: Theory and software, Computer Science Dept. Technical Report 469, Courant

Institute, New York, NY, October 1989. (LAPACK Working Note #13).

[8] J. BARLOW AND J. DEMMEL, Computing accurate eigensystems of scaled diagonally dominant

matrices, SL_M J. Num. Anal., 27 (1990), pp. 762-791.

[9] W. R. COWELL, S. J. HAGUE, AND R. M. J. ILES, Toolpack/I Introductory Guide, Numerical
Algorithms Group Ltd, 1985. publication reference NP1007.

[10] P. DEIFT, J. V¢. DEMMf:L, L.-C. LI, AND C. TOMEI, The bidiagonal singular values de-

composition and Hamiltonian mechanics, SIAM J. Num. Anal., 28 (1991), pp. 1463-1516.

(LAPACK Working Note #11).

[11] J. W. DEMMEL n_rD N. J. HmsnM, Improved error bounds for underdetermined sys-

terns solvers. Computer Science Dept. Technical Roport C.q-.qf}-!!2; U_iversity of Tennessee,

Knoxville, 1990. (LAPACK Working Note #23; to appear in SIAM J. Mat. Anal. Appl.).
=

82

-

,,,

[12] _, Stability of block algorithms with fast level 3 BLAS, Computer Science Dept. Technical

Report CS-90-110, University of Tennessee, Knoxville, 1990. (LAPACK Working Note #22;

to _ppear in ACM Trans. Math. Soft.).

[13] J. W. DEMMEL AND W. KAHAN, Accurate singular values of bidiagonal matrices, SIAM J.

Sci. Stat. Comput., 11 (1990), pp. 873-912.

[14] J. W. DEMMEL AND K. VESBLI(_, Jacobi's method is more accurate than QR, Computer

Scieace Dept. Technical Report 468, Courant Institute, New York, NY, October 1989. (also

LAPACK Working Note _15), to appear in SIAM J. Mat. Anal. Appl.

[15] J. J. DONGAR.RA, J. R. BUNCH, C. B. MOLER, AND G_ W. STEWART, LINPACK User's

Guide, SIAM, Philadelphia, PA, 1979.

[16] J. J. DONGARRA, J. Du Caoz, I. S. DUFF, AND S. HAMMARLING(AIgorithrn 679: A set of

Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 18-28.

[17] _-, A set of Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990),
pp. 1-17.

[18] J. J. DONGARRA, J. DtJ Ca oz, S. HAMMAP,LING, AND R. J. HANSON, Algorithm 656: An

extended set of FOR_._AN Basic .Linear Algebra Subroutines, ACM Trails. Math. Soft., 14

(1988), pp. 18-32.

[19] _, An extended set of fortran basic linear algebra subroutines, ACM Trans. Math. So:ft., 14

(1988), pp. 1-17.

['.)0] J. J. DONGARRA, I. S. DUFF, D. C. SORENSEN, AND H. A. VAN DER VOI_ST, Solving Linear

Systems on Vector and Shared Memory Computers, SIAM Publications, 1991.

[21] J. J. DONGARRA AND E. GaOSSE, Distribution of mathematical software via electronic mail,
4 _"Communications of the ACM, 30 (1987), pp. 03-40_.

[22] J. J. DONGARRA, F. G. GOSTAF$ON, AND A. KAItP, Implementing linear algebra algorithms

for dense matrices on a vector pipeline machine, SIAM Review, 26 (1984), pp. 91-112.

[23] J. J. DONGARRA, S. HAMMARLING, AND D. C. SORENSEN, Block reduction of matrices

to condensed forms for eigenvalue computations, JCAM, 27 (1989), pp. 215-227. (LAPACK

Working Note #2).

[24] J. Du CP,oz AND N. J. HIGHAM, Stability of methods for matrix inversion, IMA J. Num.

Anal., (1992). (LAPACK Working Note #27).

[25] J. Dc CP,OZ, P. J. D. MAYES, AND G. RADICATI I)[BROZOLO, Factorizations of bartd

matrices using Level 3 BLA ¢" ' 'J, Computer Science Dept. I echnical Report CS-90-109, University

of Tennessee, Knoxville., 1990. (LAPACK Working Note #21.

[26] K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH, Parallel algorithms for dense linear
alqebra coml)utations. SIAM Review. 32 (1990). DD.54--135.

=

_

83
2

! $

[27] B. S. GARBOW, J. M. BOYLE, J. J. DONGARRA, AND C. B. MOt, ER, Matrix Eigensystem

Routines - E[SPACK Guide Extension, vol. 51 OfLecture Notes in Computer Science, Springer-
Verlag, Berlin, 1977.

[28] G. GoLu_ AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 2hd ed., 1989.

[29] A. GrtEENBAUM AND J. J. DONGARRA, Experiments with QL/QR methods for the symmetric

tridiagonal eigenpvoblem, Computer Science Dept. Technical Report CS-89-92, University of

Tennessee, Knoxville, 1989. (LAPACK Working Note #17).

[30] W. W. HAG r,R, Condition estimators, SIAM J Sci. c• otat. Ccr,,put., 5 (1984), pp. 3:1:1-316.

[31] N. J. HIGHAM, Efficient algorithms for computing the condition number of a tridiagonal ma-

trix, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 150-165.

[32] _, A survey of condition number estimation for triangular matrices, SIAM Review, 29
(1987), pp. 575-596.

[33] _, FORTRAN codes for estimating the one-norm of a real or complex matrix, with appli-

cations to condition estimation, ACM Trans. Math. Soft., 14 (1.988), pp. 381-396.

[34]--, Experience with a matrix norm estimator, SIAM J. Sci. Stat. Comput., 11 (1990),
pp. 804-809.

[35] T. KATO, Perturbation Theory for Linear Operator's, Springer Verlag, Berlin, 2 ed., 1980.

[36] C. L. LAWSON, R. J. HANSON, D. KINCAID, AND F. T. KI_OC__;H,Basic linear algebra

subprograms for fortran usage, ACM Trans. Math. Soft., 5 (1979), PI). 308-323.

[37] B. PAI_L_'rT, :/lte Symmetric Eigenvalue Problem, Prentice Hall, Englewood ClifFs, NJ_ 1980.

[38] R. SCHREIBER AND C. F. VAN LOAN, A storage efficient WY representation for products of

Householder transformations, SIAM J. Sci. Star. Comput., 10 (1989), pp. 53--57.

[39] B. T. SMITH, J. M. BOYLE, J. J. DONGArtRA, B. S. GARBOW, Y. IK_B_, V. C. KL_.M,,

AND C. B. MOLER, Matrix Eigensystem Routines - EISPACK Guide, vol. 6 of Lecture Notes

in Computer Science, Springer-Verlag, Berlin, 1976.

[40] G. W. STEWART, Error and perturbation bounds for subspaces associated with certain eigen-
value problems, SIAM Review, 15 (1973), pp. 727-764.

[41] G. W. STEWART AND J.-G. SUN, Matrix Perturbation Theory, Academic Press, New York,
1990.

[42] J. VArtAH, On the .separation of two matrices, SIAM J. Num. Anal., 16 (1979), pp. 216-222.

[43] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

[44] J. H. WILKINSON .AND C. REINSCtt, eds., Handbook for Automatic Computation, vol 2.:

Linear Algebra, Springer-Verlag, Heidelberg, 1971.
--

=

-A

-. 84

l+

i ,

Appendix A

Index of Driver and Computational
Routines

Notes

1. This index lists related pairs of real and complex routines together, for oxa.ntl)le, SBI)SQI_

and CI]DSQIL

2. Driver routines are listed in boht type, for ex;_mple SGBSV and CGBSV.

3. I_outines are listed in Mphanumeric order of the real (single precision) routine name (which

alw;Lys I_egins with S-'). (See s,tbsection 2.1.3 fox' dota.ils of the LAPAC.K naltti,,g scllonl,:,.)

+I. I)_)tjl)l<, l,r<'cision rt+tltittes are tlut liste_l lt+.,r'o;riley lta,vo imines l)<:gilttlitlg witll l)-itlstoad _,f

S-, or Z- iltstoad o1' C-.

,5. 'I'ttis iml_:x gives only a brief description of the purpose of ea,ch routitle, l"_ora precise descrit>-

rien, cot_sult tl,e specifications in Appendix F, where+ the routines api)ear in the sanle order
as hero,

i

(J. The text of the descriptions applies to both real and complex routines, except where al-

terna+tive words or phrases are indicated, for example "symmetric/|termitian", "orthogo-

nal/unitary" or "quasi-triangular/triangttlar". For the real routines A 'q is equivalent to A T.

(The same convention is used in Appendix F.)

7. In a fl_w cases, three routines are listed together, one for real symmetric, one ff_t" complex

sylnm_,tric, and one for COml)h:x lIermitian matrices (ft)r exa.mI)le SSI"CON, ('SI'(:ON a,t(I

('IlI'('()N).

S. A f'<'w rc,:lt.itl<,s fc_r r+,a.l matrices llave no cUlnl)lox ,(t li iva loll t (fur exatlll+h' S.q'I'I:;BZ).

, _1) , i_l,lbl,,_l , JI,L ,lllllJl....

)

Routine Description

rea,l com plex ,.,._;,,-.._.----_i__ ,

SBDSQR C.BDSQR Computes tj:x,,,_.,,:ih_'gularvalue decomposition (SVD) ot'_ real bidiag-

onal matri:._:,"_i_r_'(gthe"bidiagonal Q.R algorithm.
SGBCON CGBCON Estimates t'he reciprocal of the condition number of a general band

matrix, in either the 1-norm or the infinity-norm, using the LU fac-

torization computed by ' 'SGBTRF/CGBTRF.

SGBEQU CGBEQU Computes row and column scalings to equilibrate a general bared
matrix and reduce its condition number.

SGBRFS CGBRFS Improves the computed solution to a general banded system of linear

equations AX = B, ATx = B or AtIX = t?, _tnd provides forward
and backward error bounds for the solution.

SGBSV CGBSV Solves a general banded system of _near equations AX = B.

SGBSVX CGBSVX Solves a general banded system of linear equations AX = B, ATx =

B or AHX = B, and provides an estimate of the condition numbc, r
and error bounds on the solution.

SGBTRF CGBTRF Computes an LU Nctorization of a,general band matrix, using partial

pivoting with row interchanges.

SCIBTRS CGBTRS Solves a general b_.llded system of' linear equzttions AX = B,

ATX = B or AHX = B, using the LU factorization colnputed by

S GB TRF / C G BTRF.

SGEBAK CGEBAK Transforms eigenvectors of a balanced matrix to those of the origina,1

matrix supplied to SGEBAL/CGI'2BAL.

SGEBAL CC,EBAL Ba.lances a general matrix in order to iinprove the accuracy of coin-

puted eigenvalues.

SGEBI-_I) (::GEB ItD II.cduc ..s a."(," general i'ectangula, r ma.trix to real bidiagona, l ft,)rra by an

orthogonal/unitary transformation.

SGECON (2.(.,EC()N Estimates the reciprocal of the condition number of a general matrix,

in either the 1-norm or the infinity-norm, using the LU factorization

computed by SGETIt.F/CGETRt ,_.

SGEEQU CGEEQU Computes row and column scalings to equilibrate a general rectan-

gular matrix and reduce its condition number.

SGEES CGEES Computes the eigenvalues and Schur factorization of a genera,1 ma-

trix, and orders the factorization so that selecte'd eigen[vMues _.tr(_at

the top left of the Schur form.

SGEESX CGEESX Computes the eigenvalues and Schur factorizati,,n of a general ma-

trix, orders the factorization so that selected eigenvalues are ;._t tlm

top left of the Schur form, and computes reciprocal condition num-

bers for the average of the selected eigenvalues, and for the associat, ed

right invariant subspace.

SGEEV CGEEV Computes the eigenvalues and left and right eigenvectors of a genoral
matrix.

SGEEVX CGEEVX Computes the eigenvalues and left and right eigenvectors ofa. gener_fi

matrix, with preliminary balancing of the matrix, and computes re-

ciDrocal condition numbers for the eigen values a.nd rigl_ t _,i,u;_,r_w,ctc)r._.

_

,%

Routine Description

real complex

SCIEI:][RD CGEHRD Reduces a general matrix to upper Itessenberg form by an orthogo-

nal/ unitary similarity transformation.

SGELQF CGELQF Computes an LQ factorization of a general rectangular matrix.

SGELS CGELS Computes the least-squares solution to an over-determined system of

linear equations, AX = 13 or AHX = ,B, or the minimum-norm solu-

tion of an under-deternfined system, where A is a generM rectangular

matrix of full rank, using a OR or LO factorization of A.

SG.ELSS CGELSS Computes the minimunt-norm least-squares solution to an over- or

under-determined system of linear equations AX = /?, using the

singular value decomposition of A.

SGELSX CGELSX Computes the minimum-norm least-squares solution to an over- or

under-determined system of linea, r equations AX = /3, using a corn-

plete orthogonal factorization of A.

SGEQLF CGBQLF Computes a QL factorization of a general rectangular ma.trix.

SGEQPF CGEQPF Computes a QR factorization with column pivoting of a general rect-

_ngul_r matrix.

SGEQRF CGEQIt, F Computes a QR factorization of a. general rectangular matrix.

S GERFS CGERFS Improves the computed solution to a general system of linear equa-

tions AX = B, ATx = B or AHX = B, and provides forward and
backward error bounds for the solution.

SGERQF CGERQF Computes an RQ factorization of a general rectangular matrix,

SGESV CGESV' Solves a general system of linear equations AX = B.

SGESVD CGESVD Computes the singular value decomposition (SVD) of a general rect-
angular matrix.

SGESVX CGESVX Solves agene,'_flsystem of linear e(luations AX = 11, ATX - 11 or

AHX = B, and provides an e_tirnate of the condition number and
error bounds on the solution.

SGETRF CGETRF Computes an LU factorization of a general matrix, using partial

pivoting with row interchanges.

SGE'I'RI CGETRI Computes the inverse of a general matrix, using the LU factorization

computed by SGETRF/CGETRF.

SGETP_S CGETRS Solves a general system of.linear equations AX = B, A'rX =

B or AHX = B, using the LU factorization computed by

SGETRF/CGETRF.

SGTCON CGTCON Estimates the reciprocal of the condition number of a general tridi-

agonal matrix, in either the 1-norm or the infinity-norm, using the

LU factorization computed by SGTTRF/CGTTRF.

SGTI/I!'S CC,TRFS Improves the computed solution to a general tridiagona, l system of

linear equations AX = B, ATx = B or AIfX = B, and provi(les
forward and backward error bounds fl)r the solution.

SGTSV CGTSV Solves a general tridiagonM system of line_tr equa, tions AX = t!.

° 8'7

Routine Description

rea,1 complex

SGTSVX CGTSVX Solves a general tridiagonal system of linear equations AX = B,

' ATX = B or AHX = B, and provides an estimate of tile condition
number and error bounds on the solution.

SGTTRF CGTTRF Computes an LU factorization of a general tridiagonal matrix, using

partial pivoting with row interchanges.

SGTTRS CGTTRS Solves a general tridiagonal system of linear equations AX = B,

ATx = I1 or AHX = B, using tlm LU factoriza, tion corni)uted by

SGTTRF/CGTTRF.

SItSEIN CI-ISEIN Computes specified right and/or left eigenvectors of _n upper Iles-

senberg matrix by inverse iteration.

SHSEQR CtISEQR Computes the eigenvalues and Schur t'actorization of an upper IIes-

senberg matrix, using the multishift QR Mgorithm.

SOPGTR CUPGTR Generates the orthogonM/unitary transformation matrix h'om a re-

duction to tridiagonM form determined by SSPTRD/CtIPTRD.

SOPMTR CUPMTR Multiplies _t general matrix by the orthogonal/unitary transforma-

tion matrix from a reduction to tridiagonal form determined by

SSP'FRD/ C,HP T RD.

SORGBR CUNGBR Generates the orthogonal/unitary transforniation matrices from a

reduction to bidiagonal form determined by SGEBRD/CGEBRD.

SORGHR CUNGHR Generates the orthogonal/unitary transformation matrix from a re-

duction to Hessenberg form determined by SGEttRD/CGEHRD.

SORGLQ CUNGLQ Generates all or part of the orthogonal/unltary matrix Q from an

LQ factorization determined by SGELQF/CGELQF.

SORGQL CUNGQL Generates ali or part of the orthogonal/unitary matrix Q from a, Q I,

factorization determined by SGEQLI:/CC, I_QLF.

SORGQR CUNGQR Generates ali or part of the orthogonal/unitary matrix Q from a O I_

factorization determined by SGEQRF/CGEQRF.

SORGRQ CUNGRQ Generates all or part of the orthogonal/unitary matrix Q front an

RQ factorization determined by SGERQF/CGERQF.

SORGTtt_ CUNGTR Generates the orthogonal/unitary transformation matrix from a re-

duction to tridia, gonal form determined by SSYTRD/CHETRD.

SORIvIBR CUNMBR Multiplies a general matrix by one of the orthogonM/unitary trans-

formation matrices from a reduction to bidiagonal form determined

by SGEBRD/CGEBRD.

SORMHR CUNMttR Multiplies a general matrix by the orthogonal/unitary transforma-

tion matrix from a reduction to Hessenberg form determined by

SGEtIRD/CGEtII1,D.

SOI_MLQ CUNMLQ Multiplies a general matrix by the orthogonal/unitary matrix from

an LQ factorization determined by SC;ELQF/C(;]);I_QI'-',

SORMQL CUNMQL Multiplies a general matrix by the orthogonal/unitary nlatrix from

a (72L factorization determined by SGEQLF/CGFQLF.

SORMQR CUNMQR Multiplies a general matrix by the orthogonal/unitary mMrix from

a QR factorization determined by SGEQRF/CGEQRF.

_

_" 88 -

=

=

_

Routine Description

real complex

SORMRQ CUNMRQ Multiplies a general matrix by tile orthogonal/unitary matrix from

an RQ factorization determined by SGERQF/CGERQF,

SORMTI_ CUNMTR Multiplies a general matrix by the orthogonal/unitary transform;,,-

tion matrix from a reduction to tridlagonal form determined by

SSYTRD/CHETtI.D,

SPBCON CPBCON Estimates the reciprocal of tile condition number of a symmet-

ric/Hermitian positive definite band matrix, using the Cholesky fac-

torization computed by SPBTRF/CPBTRF.

SPBEQU CPBEQU C.'.omputes row and column scaiings to equilibrate a symmet-

ric/Hermitian positive definite band matrix and reduce its condition
number,

SPBRFS C,PBRFS Improves the computed solution to a symmetric/t[ermitiarl positive

definite banded system of linear equations AX = B, and provides
forward and backward error bounds for the solutiori,

SPBSV CPBSV Solves a_symmetric/IIermitian positive definite banded system of lin-

ear equations AX= B.

SPBSVX CPBSVX Solvesasymmetric/IIernlitian positive definite banded system oflill-

ear equations AX = B, and provides an estimate of the condition
number and erro:r bounds on the solution,

SPBTRF CPBTRF Computes the Chiolesky factorization of a symmetric/Hermitian pos-

itive definite ban/t matrix.

SPBTRS Ct'BTRS Solves a symmet{ic/Hermitian positive definite banded system of lin-

ear equations A.¥ = B, using the Cholesky factorization computed

by SF BTII, F / ('P'BTI1 F,

SPOCON (I:'POCON Estimates tlle r:,.,ciprocal of the condition xLuxnl)er of a synlm('t-

ric/tIern_itian positive definite inatrix, using r,he Cholesky factor-

ization computed 1)5, SPOTRF/CPOTRI z'.

SPOEQU C,POEQU Computes row i_,nd column s::alings to equilibrate a symmet-

ric/Hermitian pc_itive definite matrix and reduce its condition
number, i

SPORt:'S CPORFS Improves the corr!puted solution to a symmetric/Hermitian positive
definite system o!' linear, equations AX = B, and provides forward

and backward error bounds for the solution,

SPOSV CPOSV Solves a symmetr!c/Hermitian positive definite system of linear equa-

tions AX = B.

SPOSVX CPOSVX Solvesasymmetr.lc/ttermitianpositlvedefinitesystemoflinearequa-

tions AX = B, a,nd provides an estimate of the condition nurnb_:.,r
and error' bounds on the solution.

SPOTRI:' CPOTtlt ;_ Computes tile C.t,(_lesky factorizatior_ of a symmetric/llernlitiall pos-1

itive definite m_tr:x.

Sl:'O'l'l:l.I CI_OTItl Computes tile, iIiverse of a symmetric/llernlitian positiv__ d,!f-

inite rnatrix, ,ISlllg the Ct_olesky factorization c_z,liJut_'d by

SPO'FRF / C P OT RF. __j

89

Routtne Description
,.

real co,n l/,x
SPOTP_S CPO:--TI_g : g'_'lv-esa symmetric/Hermitian p0si{i-ved-eflnite system orHnear equa-

tions AX = B, using tile Cholesky factorization computed by
"l -_ "I r

SPO'I R,Ii/(,PO rllF,

SPPCON CPPCON Estimates the reciprocal of the condition number oi" a symnlet..
, +t _nc/tIerrnl 1an positive definite matrix in packed storage, using the

, , qp pq, Rlp/ C., ,Cholesky factor|zatmn computed by /..,PPTllF
) P -

SPI LQU CPPEQU Computes row and column sc,allngs to equlllbram a symmet-

ric/llermitian positiw,, definite matrix in packed storage and reduce
Its condition number,

SPPRFS CPPRFS Improves the computed soltttlon to a symmetric/IIermltian positive

delinite system of linear equatlon,,._ A.X = B, where A in lleld in

packed.storage, and provides forward and backward error bounds for
the solution,

SPPSV CPPSV Solves a symmetric/|-lermitlan positive detinite systein of linear (,.qua-

tions AX = B, where A in held in packed stora, ge,

SPPSVX CPPSVX Solves asymmetric/Ilernlitianpositivedefinltesystemoflinea, requa-

tions AX - B, where A is hehl in packed storage, and I)rovides a,n
estimate of the condition number and error bounds on the solution,

"_ ! :_ •SP PTItF CPPTRF Computes the (;holesky factorization of a symrnetri-.,/Hermitian pos-

itive definite matrix in packed storage.

SPPTI{I CPPTRI Computes the inverse of a symmetric/tlermitian positive definite ma-

trix in packed storage, ustng the Cholesky factorlza, tlon computed by

SP PTRIF / C P PTR,F,

S I-)PTILS (.I',I-)I)TI_.S Solves a symmetric/ltern_itia, n positive definite systenl of linear equa,-

tions AX := B, wimre A is hehl in packed storage, using tile Clmlesky
: {_ pfactorization computed by ,') PTRF/CPPTItF,

t)r _ "1 ' "q "jr "_ "1 "t

si I(,oN (,I 1(.,ON Coml)utes the reciprocal of the condition nutnber of a, symlnet-

ric/Hermitian positive definite tridiagonal matrix, using the LDL H
CI .PfRF,factorization computed by SPTTI1A_'/ ' _

SPTE ' ' ' 'QR CP_I LQR Computes all mgenvalues and (ngenvectors of a real symmetrh: pos-

itive detinite tridiagonal matrix, by computing the SVD of its bidl-

a,gonM Chotesky factor.

SPTRFS CPTRFS Improves the computed solution to a symmetric/Hermitian positive

definite tridiagonM system of linear equations AX = B, and provides
forward and backward error bounds for the solution,

SPTSV CPTSV Solves a symr, .._ric/Ilermitian l)osittve definite tridiagonal system of

linear eqllations AX = B.

SPTSVX CPTSVX Solvesasymmel, ric/Ilermitiall positive definite trldiagona, lsystemof

linear equations AX = 13, and provides a,n estima, te of the con(litioi_
number and error bounds on the solution.

SI'TTI(,I;' C,PTTI/,F C',omI)utes the LDL l! factorization of a sytnznetric/Hermitian posi-

t,ire delizlite tri(liag()nal matrix,

-_ 9O

Routine Description

real " complex

"_PTTRS CPTTtl, S S0-iv_s a symmetric/Hermitian positive definite tridlagonal system

of linear equations, using tile LDL H factorization computed by

SPTTRF/CPTT,I:tF.

SSBEV CHBEV Computes all eigenvalues and etgenvectorsof a symmetric/Hermitian
band matrix,

SSBEVX CHBEVX Computes selected eigenvalues and eigenvectors of a symmet-

ric/Hermitian band matrix.

SSBTrt_D CttBTRD Reduces a symmetric/Hermitian band matrix to real symmetric tridl-

agonal form by an orthogonal/unitary similarity transformation.

SSPCON CSPCON Estimates the reciprocal of the condition number of a real

CHPCON symmetric/complex symmetric/complex Hermitian indefinite ma-

trix tn packed storage, using the factorization computed by

SSPTRF / C SP TRF / CH P TRF,

SSPEV CHPEV Computes all eigenvalues and eigenvectors of a symmetric/Itermltian

matrix in packed storage.

SSPEVX CHPEVX Computes selected eigenvalues aad eigenvectors of a symmet-

ric/Hermitian matrix in packed storage,

SSPGST CHPGST Reduces a symmetrlc/Hermitlan-definite generalized eigenproblem

Ax = ABx, ABx = Ax, or BAx = Ax, to standard form, where

A and B are held in packed storage, and B has been factorized by

!"P T I_F / CP PTRF,

SSPGV CHPGV Computes all eigenvalues and eigenvectors of a generalized

symmetric/Hermitian-definite generalized eigenproblem, Ax = ABx,

ABx = Ax, or BAx = Az, where A and B are in packed storage.

SSPII_FS CSPI_FS hnproves the computed solution to a real symlnetric/complex sym-

CHPII_FS metric/complex Hermitian indefinite system of linear equations

AX = B, where A is held in packed storage, and provides forward
and backward error bounds for the solution.

SSPSV CSPSV Solves a real symmetric/complex symmetric/complex Hermitian In-

CHPSV definite system of linear equations AX = B, where A is held in

packed storage.

SSPSVX CSPSVX Solves a real symmetric/complex symmetric/complex Hermitian in-

CHPSVX definite system of linear equations AX = B, where A is held tn

packed storage_ and provides an estimate of the condition number
and error bounds on the solution.

SSPTRD CHPTRD geduces a symmetric/Hermitian matrix lit packed storage to real

symmetric tridiagonal form by an orthogon,d/unitary similarity
transformation.

SSPTRF CSPTI{F Computes the factorization of a real symmetric/complex symmet-

CHPTRF ric/complex Hermitian indefinite matrix in packed storage, using the

diagonal pivoting method.

91

t

Routine Description

real comI)iex

CSPTtLI Computes tile Inverse of a real symInetrtc/complex symInet-

CttPTI_I ric/complex Hermitian indefinite matrix in packed storage, using tilt

factorization computed by SSPTtLF/CSPTrtF/CItPTR, F,

SSPTRS CSPTRS Solves a real symmetric/complex symmetric/complex Hermitian

CHPTI_S indefinite system of linear equations AX = B, where A ts

held in packed storage, using the factorization computed by

S SP TIfF / C SP T I_F / CI-IPTRF,

I I:_DZ Computes selected eigenvalues of a real symmetrm tridiagonat matrix

by bisection,

SSTEIN CSTEIN Computes selected eigenvectors of a real symmetric trtdiagonal ma-

trix by inverse iteration.

SSTEQR CSTEQR Computes all eigenvalues and eigenvectors of a real syrnmetrtc trtdt-

agonal matrix, using the implicit QL or QR algorithm.
ta

SS I EPri Computes all eigenvalues of 0. real symmetric trhttagonal matrix, us-

ing a root-free variant of the QL or QR algorithm,

SSTEV Computes all eigenwlues t_nd eigenvectors of a real symmetric trtdl-

t_gonal matrix.

SSTEVX Computes selected eigenvalues t_nd eigenvectors of a real symmetric

tridiagonal matrix,

SSYCON CSYCON Estimates the reciprocal of the condition nurnber of a real symmet-

CttECON ric/complex symmetric/complex Hermitian indefinite matrix, using

the factorization computed by SSYTP_F/CSYTRF/CHETR, F,

SSYE'V CHEEV Computes all eigenvalues and eigenvectors of a symmetric/Hermitian
matrix,

SSYEVX CHEEVX Computes selected eigenvalues _nd eigenvectors of a symmet-

ric/Hermitian rnatrix,

SSYGST CI-tt_3GST P_educes a symmetric/Hermitian-definite generalized eigenproblem

Ax = XBa_, ABx = Ax, or BAz = Az., to standard form, where B

has been factorized by SPOTKF/CPOTILF,

SSYGV CHEGV Computes aU eigenvalues and the eigenvectors of a generalized

symmetric/Hermitian-definite generalized eigenproblem, Az = ABx,
AB.r, = Az, or BAz = Ax.

SSYR, FS CSY1KFS Improves the computed solution to a real symmetric/complex sym-

CHERFS m.etric/complex Hermitian indefinite system of linear equations

AX = B, and provides forward and backward error bounds for the
solution.

SSYSV CSYSV Solves a real symmetric/complex symmetric/complex Hermitian in-
CHESV definite system of linear equations AX = B,

SSYSVX CSYSVX Solves a real symmetric/complex symmetric/complex Hermitian in-

CHESVX definite system of linear equations AX = B, and provides an estimate
of the condition number and error boun,l:_ on the solution.

SSYTILD CHETtLD I_educes a symmetric/Hermitian mt_trtx to real symmetric tridtago-

nal form by an 0r!.hegonal/unitary similarity transformation.

92

tLouttne Description

real compi_---

factorization of a rea'f sy"mmetr_ sylnmet-SSYTII, If " CSYTP_F Computes the-_'-" '

CHETKF ric/complex I-Iermltian Indefinite matrix, using tile diagonal pivoting
method.

SSYTR_I CSYTI_I Computes the Inverse of a real symmetric/complex symmet-

CHETRI ric/complex Hermitian indefinite matrix, using the factorization

computed by SSYTR.I/CSYTRF/CHETRF.

SSYTt_S CSYT_S Solves a real symmetric/complex symmetric/complex Hermitian In-

C I-IETR.S definite system of linear equations AX = B, using the factorization
}r -_

computed by SSPTRF/CSPTI_F/CtIli rrtI,,

STBCON CTBCON Estimates the reciprocal of the condition number of a triangular band

matrix, in either the 1-norm or the infinity-norm.
STBI_,FS CTBI_FS ,Provides forward and backward error bounds fbr the solution of a

triangular banded system of linear equations AX = B, ATx = 13 or
AHX = B,

STBTRS CTBTRS Solves a triangular banded system of linear equations AX = B,
AT x = B or AHx =.B,

STPCON CTPCON Estimates the reciprocal of the condition number of a triangular ma-

trix in packed storage, in either the 1-norm or the Infinity-norm,
STPr_FS CTPRFS Provides forward and backward error bounds for the solution of a

triangular system of linear equations AX = B, ATX = B or AHX -

B, where A is held in packed storage,

STPTRI CTPTRJ Computes the inverse of a trla_lgular matrix in packed ,,_torage.

STPTI_S CTPTRS Solves a triangular system of linear equations AX = B, ATX = B

or AIfX = B, where A is held in packed stor;xge.

S'FFtC,ON CTRCON Estimates the reciprocal of the collditlon number ot"a tri_ngul_Lr ma_

trix, tn either the 1-norm or the infinity-norm,

STREVC CTREVC Computes left and right eigenvectors of an upper quasi-

triangular/triangular matrix.

STREXC CTREXC Reorders the Schur factorization of a matrix by a unitary similarity
transformation,

STRR, FS CTRRFS Provides forward and backward error bounds for the solution era

triangular system of linear equations AX = B, ATX - [/or AHx =
B,

STRSEN CTRSEN P_eorders the Schur factorization of a matrix in order to find an or-

thonormal basis of a right invariant subspace corresponding to se-

lected eigenvalues, and returns reciprocal condition numbers (sensi-

tivities) of the average of the cluster of eigenvalues _nd of the lnWll i-

ant subspace.

STRSNA CTRSNA Estimates the reciprocal condition numbers (sensitivities) of selected

eigenvalues and eigenvectors of an upper quasi..triangul_r/trittngul_Lr
matrix.

STRSYL CT.I(SYL Solves the Sylvester matrix equatioTl AX 4- X B = C where A and B

are upper quasi-triangular/triangular, and may be transposed.

93

t_outtne _.... Descrlptlot-"_

real c,ompie'_--

STRTRI CTttrttI -Computes t__de 0f::K--triKi_g:Ularmaxtrixi

STRTIt, S CTRTItS Solves a triangular system of lhmar equations AX = B, A'rX = B
orAHX=B,

STZRQF CTZRQF Computes an RQ factorization of an upper trapezoidal matrtx,

94

Appendix B

Index of Auxiliary Routines

Notes

].. This index lists related p_irs of ve_l and' complex routines together, in the s_rne styte a_ in

AppendLx A.

2. ltou,_ines are listed in Mphan.umerie order of the real (single p_ecision:) routine name (which

always begins with= S-). (See sll,bsec.tion 2.1.3 for de_ails, of the LAPA.CK n_ming scheme..)

3. A few complex routines have [to re_l eq,lfiv_].encts, _ad they are lis_ed tirs_; rott_tines list,cd in:

it'a_ics (for e.xample, CROT), have re_l eqafivalen,ts in the Level: 1 or Level 2 BLAS.

4. Double precision routines are not listed here; they have names beginning with D- instead: oi"

S-, or Z- instead of C:. The only exceptions to this simple, mile are _h_t the double precision

versions ofICMAXI., S'CS.UMI and CSR:SCL are n_med IZMAX1, DZSUIv_[1_nd ZDRiSCL.

5. A few routines in the [isr have names that are independent of d_a type: _AENV, LSAM,E,
LSAMEN and XEI_BLA.

6. This index giv_ only a brief dmription of the purpose of ea_.h rou{ine. For a precise description

consult the leading comments [._ the code, which ha.re been written in the s_me style _ for

' the driver and: computational routines.

= 95

I_ou_ine Descrip _ion

_eal complex

CLACGV Conjugates a compk_x vector.

CLACI_T Applies a plane, rotation, wi_h compli_x cosine and sine _e, a p_ir of

complex vectors.

CL_SY Cempu_e_ the eigenv_l_aes _nd eJgen_vectors of a 2-by-2 compli_,x sym,

metric m_x, _nd checks th_t_ ttie, norm of the m_l_rix of eigenvectors

is I_rger th_n. a threshold v_lue.

CROT Applies z_plane ro_ation wi_h, reM cosine _nd_ complex sine toga p_ir

of complex vectors,

CSPMV Com,pu:_es the m_trix-vector p_odillct y = _A_+/3y, where _ ,_nd/3

are' complex scalars, z and: y are: complex 'veer,ors _nd: .4 is ,_ com,plex

symmetric m_rix m packed storage.

CSPR Performs the symmetric ran,k-1 update A: = azx T + A, where _ is a

complex sc_l_r, z is _ complex vector _ad. ,4 is • complex symmetric

m_trix in packed; s_orage.

CSR'OT A,pplies a plane rot_tiou, with re_l cosine _ndi sine to a p_ir of complex
vep:tots.

Ch'YM'V Computes the m_t,rix-vector prod!utr y = o_Az+ ,01!1,, where c_ _nd _,

_re complex scaJars, z and y, _re complex v,_tors and A is a complex

symmetric matrix.

CSYR :_Per_brms the symmetric raak-I upd:_e A -=_zz :r + A, where _ is a

complex scalar, z is a com.pIex vector _nd A is a comp._ex symmetric
matrix.

fCMAX1 Finds _he index of the elemen_ whose: real pa,ra has macdm_m_ abso[u,te

value (sim_,_r to _he Level]= BL.£S [C AiV.[AX, but using the _bsoh_e

value of _he real p_rt).

[LAENV Environment, al enquiry function which ret_u_ns values for tuning ,_l.-

gori:thmic performance.

LSAI_[E Teats two characters _br equality reg_rdless of case:

LSAI_fEN Tests _wo charaz.ter strings for equa2ity reg_rdless of case.

SCSUMt Forms the t-norm of _ complex vector (:fimilar to the Level' _ BLAS

SCASUM, but u,siag the true absolute value).

SGBTF2 C GBTF2 Comput_ an LU factoriz_t, ion of a general band m_rix, using partiaJ

pivoting _i_h row interchanges tunblocked algorithm).

SGEBD2 CGEBD2 R,ed.uces a genera_ rectangul_r matrix to real bid!iagona_ form by an

' orthogonal/unitary transformation (u_blocked a_gorit,hm).

,_GEHD2 CGEHD2] l_educes a general matrix to upper H'e_senberg form by _n ortl_ogo.

nal/unitary similarity transformation (anblocked algorithm).

SGELQ2 CGELQ2 Computes an: LQ factorization of a general rect_rngular matrix (un_-

blocked algorithm).

SGEQL2 CGEQL2 Computes a QL factorization of a gener:_l rect,,_ngular matrix (un-

blocked algorit, hm).

SGEQ.[_.2 CGEQ'[_2 C:_mputes a Q'//faztoriza_ion of a general_ rectanglflar m_t,rix (un.-

blocked: • lgorithm);

96

R;out,ine Deserip:tion,

reatl: complex

SGEt_Q2 CG:ERiQ2' Compu._es an: .R,Q' faetoriz_t;ion, of a generMi rort.angular matrix _u_-

bloc ked', algori._hm:),._
SGETF2 c,¢,._,_._,)_..,.:_.,_1!_. Comgutes. _n_ L U f_ctori,z_tion, of _ genevM_ matrix, using partiM _

pivoting w.i_h,row in,tercitan:ges t u,a,blockedl algo_i:th_m_)_.

SLABAD lte turns _he sq._e mot of the u,mi!erfl'owandl overfl'aw thresholds, iS

_he exponen, t-range is very I_rge.

SLAB.R:D C.LABR;D R;ednees t.he fi_st, 'n,b,_ows _nd (:o[_lm,nsof a general rectangular ma..

t;rix A: to real: bidiagonM: form by an or_hogon.a,l;/un_itia_ry_,m_nsforma..

_ion,, _nd vetu,rns attx_ilia_y m_t, rices wh,i(:.h_re needed _o.apply (:he

transforma_,ion to the un,rediueedi part of A..

SLAC ON CLACON Estimates tile 1:-norm o:f_ sq_,m,_ero.at:ix, usiag reverse (:omm,,mica-

Ifion for evM',latin:g m_trix-vector prodiuc_s.

SLACPY CLA.CPY Copies ali or part of one two-d!imensienal array i_o,another.

SLADW ' _ , '(.LAD[%' Performs com,plex division, in _eM;arii_h,metic avo,ding u_necessary
overflow.

SLAE2 Compu,_es _he eigen.v,Mues of_ 21-by-2 _sym,metric matrix.

SLAEBZ (-_',ompu,testhenumber o'_eigenv_hms of a rem sym,medici(::_ri(,tii;._g(,mMI:
matrix which are [e,_s than or eq_lal _o,a giruen value,, and performs

or,her tasks t,eq,ui,red by the rou._ine SS'rEB,Z.

SLAEIN .,LAE1N Computes a ,_pecifi.ed r,ig.h_or left eigen,vector of an_upper K,essenberg

m_trix by in,verse i_eration,.

SLAEV2 CLAEV2 Compu_tes _he eigenvalues and: eig(mvect_ors oi..'a 2-by.-2 symmet-

ric/t_ermir, i_n m_t,rix.

SLAE..'(C Swaps adji_cen_, d,iagonMi blocks of _ real upper q,_si.-_,ri_ngu,l_r

ma_trix in. Schu.r (:anoni(:;zl [brm, by an or_hogona,l: simil}_ri,ty
_ransformat, ion.

SLAG'rF Computes an LU factorization of a matrL',: (T - ,\f), where T is

genera_ t,_idiiagon_llma_tcix, and ,\ a scalar, using partial pi:vo_ing with

mw in,terchanges.

SLAGT_I _,LA(.iTM Performs • ma_rix-ma, trix prod, uc_ of _he fbrm C c_AB+,/'3C', where_' _ " "t .--.

.

A is a _ridiagonal matrix, B ,_nd C" are rectangular matrices, and, a

and 3 are scalars, w Nch m_y be 0; 1, or -1:.

_, SLAGTS Solves the system of equations (T- AI)x = y or (T- Af)T:g "-- y,

where T in a general trid;iagonal_ matrix and A a sc;_lar, using the LU

t'_ctorization eom,puted by SLAGTF.

SLAKQR CLAI-I,Q R, Computes the eigenvalues, and Schur fiu"_orizat,ion. of an upper [{es-

: sen berg m_t,rix, using the dou,ble-shi:ft/,single-shift QR algorithm.

SLAHt_D . LAKI_D Ried:aces the ft?tsr nb {:ol:umns of a. general rectang_.fia_r m,_trix A so

that, elemen,_s below _he k th subd:iagonal are zero, by an orthog-

onal'/ u.ni,t_._r_yt,r:_ns'form,_tion, _nd returns _,l:_li_ry ma_tri(:es which.

- are needed _o _pp[y the tr_mfform_tion _o _,he unr(._tuced part, of A.

- S LA[C l CLAIC [Applies one step. o{'incrementM condition estimation.

!)'7

_re Routine DeseriptfionM eom.olex

SLALN2 SoNes a l_-by-i or 2-by-2 system of eq,u_ions of the form (_TA-

AD)x = o'b or (TA T - ,_.D)x = o'b.,where D is a diiagonal' ma,trix, A, b

and x may be ¢om,plez, and o" is a_scale factor set to avoid overflow.

S:LA_Ctt De._e_.nes mac:Nne parame_e_ for tt!oating, poi;n,t azi_h_metic.

SLANGB CLANGB Retttrns _he value of _he 1-norm, Ft,obem,us nob,m,, in_fiM:ty-norm,, or

_he largest absohl_te vMue of any element, of a gener_ b_nd, m_tri_:.
Q_' " 1

JLANGE CLANG.E Re_urus t.he valine of _he _.-norm, Frobenius nora, in,fini_ty-n.orm, or

the 1.a_rgest,a_bsohl_e vM_e of..any elemen.t, of a general rec_;_ngu:lar
matrix.

SLANGT C_,ANGT I_ettt_'ns the value of the 1J-norm,, Ft,obeni,as norm,, in,ff,n,i,t), norm, or

the l_rgest absohlte val_te of an_y elemen, t, of • gener,_l: tvid:iagon_l
manrix.

S:LANI_S CL.AN_S _etu.vus _:he vMue of the1-norm, Frobeni_s norm;., in,ft,nifty-norm, or

the [arges_ ab_ohr_e va,h_e of _n_y elemen.t, of _n. u_pper _,essen.berg
m_trix.

SLANSB' CL.ANS:B Rot,urns the val:ue of the 1-norm, Fmbeni:us norm, in,fi,ni,_y-norm,

CLANHB or t_he largest, absolute vMue of _ay element, of a _eal', symmet-

ric/complex symmetric/complex I'Ie_rrfi,'tian band matrix.

S:LANSP CLANSP t_etu:ras the v_lue of the 1-norm, Frobenius rmrm, in.fini'_y-no_m,

CLANHP' or the largest _bsola.te vallue of any element, o-la _eal symme_;-

ric/complex sym me_ric/coraplex Hermiitian m_t_k_ in packed storage,

SLANST CLANS']: i_etu.rns _he valae o'f the 1-norm, Frobeni_m norm, inliniW.-norm, ,Gr

the largest, absoln_e, value of _ny element,, of • symmet, ri(:,/g,ermi:_ian

tridiagouM m_vix.

SLANSY CLANSY Returns the vMue of the l:-norm, Frobenius norm, infi_.ni:t,y-norm,
"-_ N 'CL.A_ HE or the largest _bsolu_e value of any element, or" a rem symmet,-

ric[complex symmet, ric/complex ['iermitian matrix.

SLANTB C[,A, TB i_eturus, the value of the _-.norm, Frobenius norm, infinity-norm, or

_he l_rgest absolute value of amy element, of a triang_flar b£ad ma_,rix.

SLANTP CLANTP l_eturas the value of the 1-norm, Frobenius norm, in,tinity-norm, or

the l_rgest, absolute value of any element., of a _ri_ngular matrix in

packed storage.

5LA_ TR CLANTtt ltet_ras the walue of the l-norm, F_obeaius norm, infi,aity-no_,m, or

the l_.rge,at absolute value of any element, of a tri_ngnfia, r m_trix.

SLANV2 Computes the Schur factoriz_,_ion of a real 2-by-2 nonsymmetric ma.-

trix i_ Sckur canonical :form.
r_3 '3

5LAP _ ._ R.et_rr'ns v/_z2 + y-, avoiding unne_:essary overflow or harmful
anderflow.

S LAPY3 P,.etur:us v/z'_ + y2 + z'-', ;_voiding t_nnecess_ry overflowor harmful
- underflow.

SLAQGB CLAQGB Scales a generM band matrix., using row and column ._cMing factors

compnr, ed by SGBEQU/CGBEQU.

98

Routine Desc._iption_

re_} com,ptex

SLAQGE CLAQGE Scales • general! vect_ngu,l_.r ma,,trix, usi;ng r.ow _ndl cohl,m,n_scaLii_g

factors courpu_edi by 5GEE'Q,U/CGEEQU.

SLAQSB C_AQSB Sca/a_ a symme_ric/l:_er_,_ian, bandl m,_ix, usi,ng s¢_liin,g factors

compu,_e@ by'SPBEQU/CPB_EQ!U.

SLAQSP CLAQSP' Scal_sa symmetric/_ermi_i_n,m,atr_ in,packed',sto_ge,usingsc_l,
ing factors compu_ted! by S,PPEQ!U/CPPEQ_U.

SLAQSY CEA,Q'SY Sc_l_s.• sym,metric/K_erm,i_i_nm,_t,viX,,usi,ng,so,Mibg f_ctors eom-
O . . ,,-.IVn,re4 by S,P EQU/GPOEQU.

SLAQTI_ Sol_es a reMi q,u,asi-tri_ngu,l_r system of equations, or a com,pl'ox

qiua,si-_riangul_r sy_em of sp_ial_ form,, in re,li _i_.h,metfic.

SL.AI_2V CLAP_2V Applies a vector of plane, rot_i0ns wi._ll__emlcosines _nd: _eMi/com,plex

si_esfrom,botli_sides_o• sequenceof2-by-2symrnetvic/'I_er.m2rti_n,
m_r,ices.

S:LAI_F CLAP_F Appliesa,,nelemen,t_ryreflectorto,• gener,_lrect_ngu,l_rm_trix.
SLAI_FB CLAP_FB Appliesa block _efl_e,:toror i_stranspose#'conjn:_e_nsposeto

gener_lrectang_l.arm_tri;x.

SL.ARIFG C',L.A_FG Generates_n eternen,t_yreflector (_ousehoht'er mz_t_ix),.

SLAI_FT CLARIFT Forms t,he triangular factor T of _ block refl!ec_or/it = [- VTV _r.

SLAR.FX CLARFX Applies an elemen_t_ry reft:ec_or _o • genera_ rec_ngn_lar m_rix, wi_h

loop un,rolling when the reflector h,_ ord'er < J:O.

SLA._GV CLARGV Generates a vector of plane ro_ations wi_h re,li cosines _nd

rea._/complex sines.
SLAR.NV CLAP_NV Rietums a w:<tor of r_ndom numbers from a ur_iform, or nob'mM

distribution.
c' ' ,j _.LAR.TG Generates a plane rotation with _ealcosine a,nd; re_l/compI..x si,no.

S LAR.TV _.LAR._ V A.ppkies a ve_:tor of plane rotations with, rem cosines and'. reM/complex

sinesto theelemen,_sof' a paA_ofvectors.
SLARIUV P_eturnsa vectorof n r_ndom _eal:numbers from _ uniilb_mi(),L)

distribution(n _<128).
S'LAS2 Computes the singular wlues of a 2-by-2 triangular matrix.

SLASCL CLASCL _ultipliesa genera_rectangul_rmat,rixby a rem sca,lardefineda_s

eta Of.ram.

SLASET CLASET Initializes the off-diagonal elements of a matrix to a _nd t.he d:iagonM

elementsto[3,

SLASP_ CLASP_ Appliesa sequenceofplanerotationstoaLgenerM rec.t_ngu_larmatrix..
,, ., _SLASSQ (_,LASS_ Updates a sum ofsqua_eesrepresentedinscaledform.

' O: SLASV2 C,ompn,_.s the singular v_lue decomposition of a 2-by-2 _;iangular
ma,grix.

SLAS WP ._L.AS.WP Performs a sequence of row iat, erchanges oa a general _ _e,:tangu:lar
matrix.

SLASY2 Sol_es _he Sylvester matrix, equa_ion AX ± X.B = _(ii7where A _n(t

B areoforder I o_') and may be _ransposed,_nd crisa scalefa(:to_

i

99

Ilou¢i_le Deseri__,i0n,

real! com,p[ex

S,LASYF C_AS_ Com,p=_esa p_rtia_fkc_o_i_za_ion,of a reM,sym,metric/complexsym_

CLAII,EF metri¢/'complexH,e_¢i_n _indefi_;_emat,rix,usingt,.he_i_gon,_i_pi_v-

oting me_hod.

SLA.TBS CLATBS So[._¢esa t,.ri;_ngntlarbandedisystemofeq,u_ionsA¢= _5,ATz = _b,
or Atfz = o'b.,,where _r is a scale factor set _o preven¢ o.ve_ow.

SLATPS CLATPS Solives a t_ia_gttl_r system of e_u_ifions Az = _b, Afz = (yb, or

A_z o,b., where A is hem in packed storage., a_dl _ is _ scMe fact,or

set _o p_even¢ overflow.
'

SLATltD CLATI_D Iteduces _he fi_s_ r_b rows a..nd cohrm,ns of_ s,ym,metric/,"_e_mii_i_n

m_trix A to. _eM'_ridti_gon,M form By ,_n orthogo_a_/'u_i_ry si,mil_riCy
transformation,, _d re_;u_ns __y m,_rices w,'N'ch,_re needed. _o

app[_ _he tran,¢form.a_ion, _o t_Iteu.n,rec]Juced part, of, A.

SEAT,S CLATKS SOlves. a t_riangula,r system of eq_ual_ions Az - _b, ,4Tz = c_b,,or

A,rgz = ._b, where _ is a some. f_cf,or set _o p,geven,_overfl!ow.

SLATZM CLATZM Applies. _n, eleme_t_ary _efl!ee_or genera, ted' by S. ' :QF/C FZ_QI_ _o

a generM _an, gul_r mat,_i_x.

S_LAU[T2 CLAETU,, Comp_t, es _he p_oduc_ UU tc or Lt'/'.£, w_here U _nd £ are u,p,per or,

lower_rian,gMar matrices(ua.blockedMgori¢ll,m):,.
SLAUUM CLAUU._, CompuCes the product U.U_ or L_L, where U and L are u,pper or

lower _ri_n,gn,]_r rear,rices.

SLAZ_O CLAZRO .I_i,'_iMizestheoff-dliagonMe[emenCs,ofa m_ri_ t_oc_andit,hedii_gom_l
elemen¢.__o/_i

SOR.G2L CLTNG2L Generates.allor part of _he ort'hogonMCuM¢_ryrun,fixQ from
a QL fa,ct,oriza_ion:determi,ned;by SGEQLF/CGEQLF (un,bMcked
_lgocii_hm,).

SOR; ..,21_ (_.UNG2[t Generates all or part of t,he o_hogonM/_n,i_ary mat;ri;x Q ['rom _

S _ , -_ _,- ,Q/_ factorizationdeterminedby _GEQP_F/CC, EQ_F (',mb[ocked
Mgori:_hm).

SOItGL2 CUNGL2 Generates _ or part ff t_he orthogonM/unit_ry m._.trix Q from

an LQ factoriz_tJiondetermined,by SGELQF/CGELQF (u_blocked'

Mgorit,hm).

SOP_G.P_2 CUNGP_2 Generatesa_ or part of _he orthogonM/uM.t_rym_trix Q from
an RQ f._c_orizationde_enninedby SGERQ(F/CGE_QF (u,n,blocked

" Mgori_hm).

S0I_M2L C'UNM2L Multiplies _. genera/matrix by the orthogou_/un.itary matrix from.

a QL fkcmriza_iou deters.ned by SGEQLF/CGEQLF (_n,blocked

. algorithm).
, c '_'Tt " , /SOP_M..2.R. CLNbI2R Multiplies a generM,mat, rfx by _he ortlhogonal./u,m¢,arymatrix from

I

a Q R factorizarAon determined by SGEQItF/CGEQR.F (_mbtocked

Mgori.thm),

SOR,ML2 CUNML2 _ulltipkies a generM mat, rix by the orthogonM¢ani_ry matrbc t:rom

an LQ [actoriz_tdon, de_erm,ined by SGE.LQF/.,G.FLQF (t_nbtocked

' j, I Mgorit'hm.) .

I; Keu,_iee Desc_iip_ioa.rea/: complex

SOmMe2 CVNMR2: Mlfl,_iph.'es a generMi matrix by _.lte or_I_oga_/u,m,_ary m,s_ri_ t_mm,

•n RQ fac, orizs_io,_ d_e_ermined by S,G:EI{Q,FfCGE_QF (u_n,b.l'ocked

algeri._h!m}..

SPBTF2 CPBTF2 Com pu,tes _h/eChol_aky Nc_oriza_ion of • symme_ric/gerrr_iti_r_ pea-

i,ti,ved'ef_m.';_ebart_ mstrbr. (!u,n,blecked a/go_iith,m,),.

SPOTF2 CPOTF2 C0mpu._es _he Cho[esky fac_or.i.zatiou, of s sym,met,.ri(:/'_.-Ierrrfi,tia_pos_

i,_ive diefi,n,i;_em,s_ei_: _',mbtocl_ed Mgorii_h,m)_.

SIRSCL CS,R;SC% N[N._tli,p:_es_ vector by _IIle_ecirpmcM, als ees/}scalar.

SS.YGS2 CKEGS2 [%e@uces s sym,me_riC../"_erm/..'{_iam,..(gefi,N,_e generalized, eigen,peol)['em._
Az= XB,x, A.B.x = .X,x,oc B,Az = Ax, lie s_sndsr.d: form, whe_'e B.

ha,s been fsc _ori:z_: by SPOTRF/'CP OTRF (_n,blocked a/go_i,_,h,a_),.

SS:YTD2 C_ETD'2 Reduces s sym,me_iC/_errrfii_ian_ ma_t__ix_o rea/ sym,me_'cie __i(iiag-

on,a/; fo_'m by sa o_hogor_a/i/a,n/;t_ry si:mil_ri:_,y_rsns:fe_mstion, (iu,n-

blocked, a/govii_h,m),.

SSYTF2 CSYTF2 Com_pu,t,es _lie fsc_ogizstion of _ yea/ symmet, ric/cempIex sym,me_-

CIgETF2 _ic/com, plex [_e_m_4iia,n_ind'efi,ni,te m,s_ri_, using the diisgon,a/! piivo_.i_ng

me_i_od (u,nb l:ocked a/go:ei4]h,m).

STRfiI2 CTRTI2 Com,putes. t_he inverse of a tria_gulsr m.,_t_ix (:u,nbtOcked a/goei.thm),.

.XE:EBLA Error hsnd_g rou,_ine ca/led _ by LAPACK rou_.i;nes i{ an inp,u,_ pa.-
came_er ha_ an invalid va/_e.

L01
_

i

Appendix C

Quick Reference Guide to the BLAS

Level I BLAS

d,',amsca,laxvector vec'_or mca_ars 5-_emex_ prefixes

array

SHB[_arJ_INE.,Rfl,TMGI(D._, D_/, A, B., P'AI%AM), S,. D

SI_ROHr_mE _ROT',,(N, %, IZC%, T, I]IC_, C, S) S, D

SHEiP.OF/T_NE_EO,,'t_,(al, X,]_NCI, ¥, INCY, P'M%AM) S, D

S_I/SRIJI/T_NE_SW'_P (N, X, INCX, Y, INCY) S, D., C, Z

SIO_I_HTIME_SCIL (N, ALPH'A,l, INCI) S, D,.C, Z, CS, ZD

SUBROL_INE _CE)PY(N, 1, _NCX, Y, INCY), S, D, C, Z

SI:IBKOUTII%'E__XP¥ (N, AI.PH_A,X, INCX, ¥, 1NCY) S, D', C, Z

FUN6T'ION ..D0_' (N, l, IIICl_ Y, IIICY) S', D, DS

'FiTNCTIt3H _Dt_TNt(NI, lt, "_NC,X, '?, IZCT) CI, Z

FHN_ION _DOTC,(N, X, INC%, ¥, '_NC¥) C, Z

_X_ICI'IOH __DO_ (11_, AIPH_, X, INCX, ?, IMCY), SDS

FHNCTIO_ _I_.2 (Ii, X, INCX) S, D, SO, I_

F_Ifl_CT_ON_AS[_I(N, X, INCX) S, D,,S_, DZ'
_FI_CT.ION I__ht_(N, X, [_NCX) $, D, C, Z

5[,_me Oper_ion: Prefixes

..I_O_G Gene_e. plane ro_;_io_ S,. D

_KOTMG Gener_e m_:['h_ed p_ae ro_ion S, D

_KOT Appl$ plane ro_ioa S, D

_ROTM Apply modified p_ae rr_t_ioa S, D
_SWAP _ --,y S.,D, C, Z

5CAL z ,-_ S, D, C,.Z,CS, ZD
C ,---__OPY _; _ S, D, C, Z

_AXPY :,] ,- az + _ S, D, C, Z

.DOT d.o_-- _vy S, D, DS

._DOTU do_- _'r_ C, Z

DOTC do -- :r_y C, Z

_.DOT dot. -- _,+ ._'r,V SDS

._N_,_[2 _,_,n2-. Ilxtlz s, D,SC, DZ
ASUM a,._'ttm --JJre(_)] h + Him(:z)[l_ S, D, SC, DZ

= _,,x([_(_,)l + I"m(x,)l)

t03

=

Level _ BLAS

ap_ioma di,, b-wid,_hscalar matrix vQ_or scal_r vector prefixes

GEI/(TRKI$,]P_,I, ALFDWt,A, LDA, X, INC%, BETA, T, IMC¥ } S.,D, C, Z

_GB_P/ (TRJJB,][_, I. EL, KU,', ALPHA, A, LDA, X, INCI, BETA, ¥, IMCT) S, D, C, Z

_BE_N (L_LO, M, ALPHA, A, LDA, l, IMCI, BETA, ¥, IMC¥) C, Z

_I_I_ (b_PLO, l, [, ALPWJt, A, LDA, X, IMCX, BETA, ¥, HIC'T) C, Z

EFRr(UPLO., |, ALPHA, /LP, X, IMCX, BETA, ¥, IMCX),C, Z

S,YM (UPLO, |, A,LP_A, A, LDA, X, IJCX, BETA, T, frM'CT) S, D

SB}/ (, ',UPL_, II, K, ALPHA, A, tDA, I, IMCI, BETA, Y, IMCY) S, D

_SPMV (UPLO, M, ALPHA, AP, X, INCX, BETA, Y, IMC¥) S.,D.

_TKRV (TgLO, TRAMS, DIAG., N, A, tDA, X, _MCX) S, D.,C, Z
_TBW¢ (UPLO, TRAMS, DIAG,, M, K, A, tDA, X, IMCX) S, D, C, Z

_TPRV' (UPLO, _tAlS, D_.IAG,/ N, _P, I, INCX) S, D, C, Z

_TRSV (UPLO, TRAILS,D,IAG, |, A, LDA,,X, IMCX) S, D, C, Z

_TBSV (UPtD',TRAMS, DIAG, I, E, A, LDA, X,.IMCX) S, D, C, Z

_TPSV (UPLO, TRAMS, DIAG, |, AP, X, IMCX) S, D, C, Z

op_ions dim scalar vec_or vector matrix pre,fixes

_GER (}1, |,_ALP ;_t, X, IMCX, Y, IIC¥, A, LDA) S, D

_fiF_Rt/(_, I, ALPHA, X, INCX, T, .II(,W,A, LE'A)C, Z
_GERC (N,,|, AI2HA, X, IMCX, Y, lICY, t, LEA) C.,Z

_HER (UI_LO, |, ALPRA, X, IMCX, A, iDA) C, Z

_EPR (_PLQ, M, ALPHA, X, IMCX, AP) C, Z

..EIF-R2(UPLO, |, ALPKA, X, IMCX, ¥, IWCY, A, LEA') C, Z

__PR2 (U_LO, |, ALPHA, X, IMCX, ¥, I_CT, £P) C, Z

_STR (UPLQ, I, ALPHA, X, IlCl, A, tDA) S, D

_SPR ([_L[_, li,ALPHA, l, IMCI, AP) S, D

_SYR2 (EN=LO, _, A.,EIKA, X, I_CX, T, I_CT, A, LDA) S, D

_SPR2 (UPLB, |, ALPHA, X, IMCX, Y, IWCY, AP), S, D

Le,wel3 BLAS

option_ dim scalar matrix matrix scaJ._u" matrix preftzes

GEI (TRAMSA, TRA_SB, M, M, K, ALPHA, A, LDA, B,,LDB, BETA, C, LDC) S, D, C, Z

S: (SIDE, UPLQ, M, .|, ALPHA, A, LDA, B, LDB, BETA, C, LDC) S, D, C, Z

__ (9!DE, UPLQ, M, II, ALHiA, A, LDA, B, LDB, BE'TA, C, [.DC) C, Z

SYR (UPLO, I"R_MS, W, [, ALPHIt,A, IDA, BETA, C, [.DC) S, D, C, Z

..HER][(UFtr, TRAMS, II, [, ALPHA, A, LDA, BETA, C, [.DC),C, Z

S'T'K?.K(EPPLQ,TRAIS, M, r, ALPHJ, A, LD.i, B', .LOB, BETA, C, [,DC) S, D, C, Z

_KER2K(UPLO, TRANS, N, W, ALPHA, A, LEA, B, LDB, BETA, C, LEC).C, Z

TR (SIDE, LrPLQ, TRAMSA, DM:AG,M, |. ALPHA, A, tDA, B, LDB) S, D, C, Z

_TRSM (SIDE, UPLO, TRAISA, DIAG, M, |, ALPHA, A, LDA, B, LDB) S, D, C, Z

N_me Operation Prefixes

_GEMV ,_t-- _Ax + _y, y -- aAV_ + By, y -- a,,tHz +/3y, ,4 - m x n S,, D, C, Z

_GBMV y--_Ax+_y,_--,_ATz+/3._,'_--aAux +_y,A-m×r_ $,D, C,Z
Q

AEEMV _--_Az+_y C,.Z

AtBMV _ -- _A. + _¢y C, X

_HPMV y -- aAx + 3y C, Z

..SYMV y 4-aA:r +/3y S, 'D

..SBMV y --o,A:_ + SV S, D

.SPMV y ..-. aAz + 3Y S, D

.TRMV .r -- A.,, z -- A_',.r, z -- Anz S, D, C, Z

_TBMV 'x --Az, Z --ATx, 'x --Anx S, D, C, Z

_TPMV z -- Az, z *- Avz, x -- A_rx S, D, C, Z

_TRSV x--A-Iz, z.-A-r.x,x,-A-n,x S, D,, C, Z

_TBSV x -- A -Lz, x -- A-rz, x -- A-Ux S, D, C, Z

TPSV ,r --,4-Lz, z -- A-V'r,. -- A-_t,x S, D, C, Z

_GER " ,4 ,- a_y r + A, .,4 - m x r, S, D

_GERU A--axy T+A,A-mxa C, Z

_GERC A -- axy s + A,.4- m x n C, Z.

.HER A -- azz _ + A C,. Z

_t_PR ,4_ - aZZ g + A C_ Z

_HER2 A -- a.vy s + yi, ax) s + A C, Z

_HPR2 ,4 -- axy H + y(az) _ + A C, Z

.S.YR A -- az _v + A S:,_D

.SPR A -- azx T + A S, D

_SYR2 A -- azy r + a'y'x r + A S,, D

_5PR2 A -- azy r + ayx 'r + A S, D

N_me Ope r_ion Prefixes

_GEMM C--aop(:A)op(B)+_C,o'p(X)=X, Xr, X_,C-mxr_ S, D, C,Z

..SYMM C--aAB+/3C;C--aBA+/3C, C-m ×n,A=A r S, D, C, Z

..KEMM C -- o_A B + /:IC , C -- a B A + /3C ,C - m × n , A = A _r C,Z

.SYRK C -- aAA _r+ _C, C -- aA:r A + _C, C - .a x 71 S, D, C, Z

1:JERK C ,-- aA.A _ + _.C, C -- aA_IA + _C, C - u × n C, Z

.SYR2K C--aABV+aBAT+/SC, C --aA'rB+c_BVA+,_C,C-r* xr_ S, D, C, Z

.._ER2K C .-- a A B g + a B A g + _IC, C -- o_A'_r B + a B _ A + /3C, C - _ × a C,Z

.TRMM B.-c_op(A)B,B --otBop(A),op(A) =A, AT, Ag, B-m x_ S,D, C, Z

.TRSM B --etop(A-t)B, B -- otBop(A-t), op(a) = A,A T, fit_r, B -m x a S, D, C, Z

105

Notes

Meaning of prefixes

S -REAL C - COMPLEX

D - DOUBLE PRECISION Z -COMPLE.X*16 (thismay not be supported
by Ml machines)

For the Level 2 BLAS a set of extended-precision routines with the prefixes ES. ED, EC, EZ may ;_iso be avaUable.

Level I BLAS

[n additionto the listedroutinesthereare two furtherextended-precisiondot product routinesDQDOTI and
DQDOTA.

Level 2 and Level 3 BLAS

:_[atr_typea

GE - GEneral GB - General Band

S'_"- SYmmetric SB - Symmetric Band SP - Symmetric Packed

HE- HErmitian HB- Hermitian Band HP - Hermitian Packed

: 'TR- 'TRiangular TB- Trmngular Band TP. Triangular P_cked

Arguments describing options are declared as CHARACTER*'I and may be passed as character strings.

TRANS = 'No transpose', 'Tran,apooe', 'Conjugate transpose' (X, .V r, X c)

UPLO = 'Upper triangu 'Inr', 'Lowez t_gul_r'

D[AG = 'Non-unit trmngular', 'Unit triangular'

S!DE = 'Left', 'Right' (A or op(A) on the left, or A or op(A} on the right)

For rem ma.trices, TRANS = 'T' and TRANS = 'C' have the same meaning.

For Hermitian matrices,. TRANS = 'T' is not ,_IIowed.

For complex symmetric matrices, TRANS = 'I'{' is not allowed.

106

Appendix D

Converting from LINPACK or
EISPACK

This appendix" is designed to assist people to convert programs that currently c_lll LINPAC, K or
Cl"EISPACK routines, to call _LAPA J[(routines i_stead.

Notes

= i. Tile appendix consists mainly of indexes giving the nearest LAP_C'K eq_fivalents of LINPA(TK

_nd EISPACK routines. These indexes ,,_hould not be followed: blindly _or rigidly, es0ecially

wimn _wo or more LINPA .,K or EISPACK routines are being used together: in many such

(:ases one of the LAPACK driver routines may be _ suit;title repb_(:ement;.

2. When two or more LAP A:CK routines are given in _ single ent;ry, these routines must be

combined, to achieve tlle equivMent function.

3. For LLN.PACK, an index is given for equiv,_lents of the real LINPACK routines; these equiv-

alences apply "also to the corresponding complex routines. For EISPACK, an index is given

fbr all real and c.omplex routines, since there is no direct 1-to-1 correspondem:e between real

and complex routines in EISPACK.

4. A few of the less commonly used routines in LINPACK and EISPACK have no equivalents in

R.elease 1.0 of LAPACK; equivalents for some of these (but not all) are planned for a future
- release.

5. For some EISPACK routines, there '_re LAPACK routines providing similar functionality, but

= using a significantly different met, hpd; such routines are marked by a rethrence to this note.

For example, the EIoPACK routine ELMHES uses non-orthogonal transforma_,ions wherem_

the new,rest equivalent LAPACK routine, SGEHR:D, uses orthogonal transtbrm,_ions.

= 6..lh some (:ases the LAPAC, K equivalents re(l_lire mat, rices to be ,,_tored in ;_ different. _tor;_ge

: scheme. For example:

-: 1.07

_z

,',.............................. ',n,,',q_,_......... ,_,',,,',,,'r,,_ ",.... , ,,,_,'III,_IIF................._ ',_r........ ,_llll_........,Ip_*,',,',',''','_",,,",,_,,,_'_,,,',''......'_"'_llll'!_"'"'""_'"I'""'"_]1[[II_''''......Iii'I_''' _"_"_"_"--

• EISPACK routines BIAND,R,, B;AND'V,_ B:Q_R_nd _he dlr.l,ver rou,tine R;S;B req,uire tile.

lower _ri_ngle of _ symmetric b_nd: m_rb_ tc. be, stareff in _ differen,t s*a_r_ge, sche_,m,

to, _h_t used in, LAP:&.CK, wkich_ is illustra_edi in su,bse_:t,ien 5..a:.a. The corresponding

storagescheme abel!by l_,lieEISPACK r,autinesis:

- symmetric baird, m_m,iX _ ELSP_CK, b_ndi s_or,_ge'

_1_1. a21, q'81 * * (I'Tl'

! a21 a22 a32: a'_t2 * a21(a22:

l! a31_: a32. 0_33 gg48, _53, ' ft31 ¢t32 (/,33:

a42 (£43 a'4il, fLS'l I//,12 (£',13_ (Z',t*l'
i

• EISP_(_,K routines TR:ED,I, TREDf2; TR;ED3, :gTgID'3;, I:_T_D_[_,T Q_L_, TQL2, _,TQ,LI:,
" " r i

_TQE2, P_TQ_, TQLR_AT ,_nd¢the: d,r_ver rou_xne R£._ sto_e the off-di_gon_l elements

of _ symmeCric tridiagonai_ matrix in elements 2' n. of '_he e_rr_y E, wherea_s LAPACK
routines ase. ele.ments 1 'n- 1._

7. The EISPACK and LI_PACK coutines for the singular v_h,e decomgosition re_urn rite ma.-

trix of right singular ve<_ars, V, wtiereaz _he corresponding LAPACK mu_ines retnvu the

transposed m_rix V T.

_ A _K routines_re8. In general the argument lists of ehe LAP C different from. those ef the cor-

responding EISPACK ,_nd LITNPACK mut,'ines, z_nd the wor,kspace ceqafiremen_ts ,_re often:
different.

I08

g

,lh

LAPACK eq.uivalen,ts oi: LINPAC, K :routines. for real: mz_rices
M':NPA,CK Function of _ ' " "' "........ EIrN,P_,(_E, cou,tine' , LAPACK ...

, SCI_DC Cholesky factorization with di_gona/i pi_oting option

SCI{D!D ram,lc.l:downda,_e' of _ ChoJ.esky fa¢*o_iZa_ion or _lie triangular factor
' of'_. Q/_ factorization

, SCHEX " , _n,l(- 1:upd;_te ofa Clloli._sk,y factoriz_ion_ or the t,ri_ngTfl_r factor of_

:, Q_R:fac_oviza__ion
L ' '_'IS .H_IJD' modifies • Cholesk?; factorization, undct permu,ta_ions of _he origim_l
:' matrix

SGBCO' SLANGB /;U fa.etoriza_i0n_"and eondation, es.tima_ion of_ general! bared m_rix
i SGB_ttF

SGB _.,ON
" _ -_' ', -i

i SG.BD'_ de;_erminan_t o[a general b_'nd m_rix, artier factorization by SGBC O
or SGBFA

SG:BF_ SGBTKF" /;U f_ctoriza_ion of a general bt_ndl m_rix

- SG]?SL. SG;BTRiS solves, a general', band system ofllne_r eq_uations, _fter fa_7_oriz:i_tl0nby
" SGBCO or SGB,FA

SGECO SLANGE LU t_ctorization and condition estima_tion of _ general matrix
SGETJZF

SGECON

EDI: S'GE'I%I determinant and. inverse of a generMi m_rix, _fter f_ctorization by
SGECO or SGEFA

- SGEFA SGETI_F LU facto_izaticm of _ generM m_r,rix

: SGESL SGETI%S solves a general system of linear eqnations, _ft;er factorization by
SGECO or SGEFA

-SGTSL SGTSV solves _ genera]. _ridiagon_l system of 5near equations

S'PBCO SLANSB Cholesky t'_ctoriz;_tion and' condition estimation" of a, symme"iric

=, S_BrieF positive-de finite band matrix
:_, SPBCON

SPBDI determinant of a '_ymmetrie' positive-definite band m_trix, after fm:_

torization by SP'BCO or SPBFA

SPBFA SPBTP_F Cholesky t_ctoriza_ion of a symmet.ric positive-definite band matrix

S'PB'SL SPBTI%S solves a symmetric p'0sitive-d_efini'te'b_nd ' system of linear eqna_ions,

:' _fter f_mrization, by SPBCO or SPBFA

: -sPoco'" 'SLANSY Cholesky fax:toriza_ion and condition esti.ma_ion of a symm.etric

SPOTRF positive-defimte ma.trix
SPOCON

-_ SPO,D[SPOTRI determinant and inverse il)f_ symmetric po_fitive-definite matrixl a.t_er

fact,orizar, ion by SPOCO or SPO[A
-==_

SPOFA SPOTI{F Ch01esky factoriza, tion of a symmetric positive-definite 'm_t,rix

: SPOSL ' SPOTtt:S solves a symmetric posi,tive-defini!_e system of linear equ_tions_ ;_fte'r
_

-I(" (_faz.toriza_ion by SPOC 3' or _POFA
SPPCO _bLANSY Cholesky th,ctorization _nd condition estimation oI',_ symmetric

- SPPTRF positive-defi_nite m_t,rix (packed stora,ge)_
" CSP P _ON

-_ 109

=

LAPA(3K eq;uivalents of LIN.P:ACK routines foe eetG m,_r,ei(:es (icon_in;uedi)

....

SPPDI P=SP'PT_I: ' de_erminan;{"_nd; in,verso._of a symmet, ric posi,tive-d:eli_ni:_erm_rix, M;t,er

fa_/mriz_ion by SPPCO or SP'P'FA(:'p_¢ked:s_om_ge)_

SP;P"F_k SPPT._F Cholesky fac_oriz_ioni' of a symmetric posi_ive-d.'efi_ti,te m_:rix !.PACked:

SP'PSL SP'PT[_S' stowge), solves a symmetric positive2defi,ni.t,e sys_'em of l/ne_r e,tiu_tions _ a/_t_er

factordz_ion by S_'PCO or SP'PF& (:pazked s_or;_ge),
.......

i S:PTSL SPTSV solves. _ symmetric positDe-definite _ri'd'i_gon_l' system, of hneax

' I eq:u;_tions

SQR,DC SGEQPI_ QR, fax:_orizmt,ion with optiom_l coht,m,n pi_otiag
cir

SGEQi_F

SQ_SL ! SO_tKMQR; solves linear lea_st sq_tares, problems af,ter factor.izi_ion i);ySQR,DC
STI_SV

"SS[CO SLANSY symmet, ric indetim_e i_i:toriza, tion, amd eondi._ion 'estimation of _-_sym-
SSYTR:F metric indefi:ni_e matrix

SSYCON

SS[D[SSYTFt[determim_n,t, inert, i_ _nd inverse of _ symme_rii: indeii,ni:te m_l;eiJ¢.,M:ter

f._.,:toriz_tion by SSICO or So.WA

SSIFA SSYTRF symmetric indefinilte fk"ctorizat,ion, of a symmetric indefi.n,i:te matrix

SSISL SSYTI_,S solves a symmetric indefini._e system of linear equations, _fter factor-
iz_tion by SSICO or SSIt;'A

,.,

SSPCO SLANSP symmetric indefini:t,e fiu:_orization and condiition est,im.;_tion of a__rym.-

SSPTR, F metric indefinite m.a.r,ri_ (packed storage)
SSP .,ON

SSPD[SSPTR.I determinant, inerl:ia and inverse of a. svmmet, eiCind'efinit, e rn;_teix, M:ter

"C (.factoriz_,ion by tSP _0 or SSPFA p;u:ked storage)

!'-_'SPFA' SSPTR, F symmetric indefinite fiu:_orizati0n of a symmetric lhd'eftalto m;_t,rix

(packed:, storage)

sSPSL ' SS'PTR;S, solves a symmetric indefinite sys_;em of linet_r equations, after factor-

iz_r,ion by SSPC.O or SSPFA (packed. storage)

SSVDC SGESVD adl or part, of tlm singula.'r vMue decamposi_ion of a gener_lma_trix

: STI'UTO sTR.CON C'ondition estimat, ion of ,_ tri_ngnfla_ ma_trix '

STRD[STRTRI determinant and inverse of a triaag_flar matr_. "

-, STRSL STRTR.S solves a triang_fl_r system of linear equations
.......

=

LAPACK eq.a_i_:_len,tsoi: E[8:PA(?,K mu.lfiaes
. EISPACK t_,APAf.,IK Fu.:nct,ion, oi E['S,[,\(L.K rou,l;ine

N, ,

F1GI'B,AKVEC Baa:ktra`nsfot_m eigen,v,ec_ors M,'ter _lTa,nsforma,lfion by '' ,

BALANC' SGEB:AL B"ala,aee a, real..! m.a,zriX ,

B:ALB:_ SGEBAK B'a,ek'_ansfo_m. eigen,v_r._(_,rs of a,. eea,l maltrix a,fter ba,la`neing by
BALANC I

i

B._D;R,, SS;BTRiD R.,edltme,a, r_,_a_symme_rlie ba,nd m:altrix _o _Hdia`gona,l [brm
BA:NDV S'elec_ed eig'!{n,vect,ors q_[;_ rea,l' b_nd mar,fix by inverse i_er:_lfion

B'fSEC.T SSTEBZ gigenva,lne:t, in i_ specified mt .rvM or' ;_ ve;fl svm,me_ric t,r.id:i_gonal
matrix

BQR_ SSBEVX Some eigenva,hles ot ;._re,._lsYmmet, ric b_nd, ma_,rix
(:no_e 5), , ,

CB ABK2 (:2GEB:AK BacTt,'ra,nsform-_-1-''4eigenvec'tors or' a, compley m._rix a,f,_er,b;_l_n(:ing by'
C:BAL

1

CB.AL CGEB:AL Bala,nce _ comple:_/, ro.at,fix

CG CGEEV -*- Ali eigenva`lues and, optionally eig.envecgors, oi:,_compl.ex genm, a,l:ma_,rix
(driver r'ou_ine)

C'[-I CE;EEV All eigenvalues and option_lly eigen,vectors of _z comp[ex [:[.ermi_,ia.n

matrix (driver routine)

C_.,rVIT CHSEFg Setect,ed eigenveczors of a,complex apper gessen, berg matrix by inverse
itera.tion

COMBAK CUNMI-IR Backtra`nstb_,m eigenvectors of azcomplex ma`r,rix a,ft,er rmtuct, ion by

(note 5) COM EES

C,OM;IgES CGEI-IP_D Reduce a complex matrix t,o upper [:_essenberg form by ;_ non--uni.ta,ry

(nor,e 5) tra`nsform,_tion

O,ILR. CI-_SEQ'R. Ali eigenv_d,_es oi: a, c,>mplex upper [:[essenbe_g ma.trix, I)y _,he [,R
(no_e 5) Mgorithm

('_ /__OMLR.2 CUNC, ItIK .All:eigenv_l,,o.s/vectors ofa. complex m_t,rix by _he L R Mgorithm, a,fb-.r

C'ESEQR, redaction by COMIIF.S
CTREVC

(.note 5)

COMQP_ CtgSE("4'R Kill eigenva,hms of a, complex ,tpper Eessengerg ma,t,rix by the QR,

a`lgorit,hm
C'CO_Q1K2 CUN aI-ItL Ali eigenva, lues/wmr, ors of a, complex ma,_rix by the Q:R Mgorithm,

CI-ISEQtL after _ed,ac_:ion by COR_TE
CTREVC

(-_ "1_,ORTB CUNMI{P_ Bax'k;r.a,nsform eigen.vep:tots of a, complex matrix, _ffter reduction lsy
COR.Tt{

CO_'JFE ,72GEKiR.D R:edttce a, complex matrix t;o upper Hessenberlr fbrm by a. u.nJ._;aa'y
tta`ns formation

EL_IBAK SO.R.MttR. Bax:ktra,nsform eigenvectors of a, rea,l matrix a,ft,er re'.du.ction by

(note 5) ELMHES

EI:,MHES SGEttRD .R.ed,u:e a, re;_l m,_trix to upper Eessenberg form by a_non-orthogon;_l

(.note 5) tra`nsfbrmation

ELTRAN SOR.GH.R Generate tra,nsfbrmar, ion m;_t,_,ixused by V.LMHES

(note5)

--

=

,, , , , ,,, ,, ,' , Ht

lO

LAPACK eq.,u_i_va_le_tsoi: E[S,PA.CK mu¢,i_nes((con,fin,ned),]

EIS:PA.CK 1!LAP,CK [Fu,ne_ion, of E_SPACK rou,tine 1;,

'FIG:[Transform • nonsymme_ric llridi_gonNt m,'_t:rix o_: speciM' form to, ,_

sym.me_:_ie m_trix
" ..-v 9
F_GL As'_F1GI,, wi._h generation, of the _r_asforma_ion m[a_riix:

_SEQR. Mli eigen,v_l<tes of _ eom,plex u,pper _essen, berg"m,_fix by _he _'R.

aagori,_ti,m.

......_.. i S:_S,EQ(R; _i eigen,va,h:.es/vecmrs of ,_ _ea,l_upper _essen, berg m_tri_ by _he Q'R_

ST'P_EVC Mgori:_tt,m

.....[{.TR;I_:3 C'trP,_'r_ B'_cktr_nsfoi, m e['gen,vec_ers, of _ ¢om,ptex [+I_ermi_i_nm_t_ix M_'_er_e-

diuc_ion: by _T'R_D3:

}tT'_I_BIK ' CVN_v_.T_ B'_cltt,r_nsfoem, eigenvectors of • complex I:_e_mi_ian, 'm_t_k_: M:tar _.e-

' d_c_ion by IcTR;,lD[

'"_T:Rd_3 i_tC_PTR_D' R:educe _ com,plex [_ermi,fiam, m_trix to t_i4ia_gonM fo_m (pacikedi
s_orage)'

:_T[_£D[" _" _" '"(..gE_ R:D R.educe _ complex _ermiltian mal_rix _o._ridliagon,_l'.tb_m

....[MTQLL :,SST'EQ;R: .£1A_eigenvalues of a symmetric, t_id;iagou'M_matrix, by the i,mpki'ci,t_Q L

Mgorithm

MTQL2 " SS.TEQ.t- All' eigen.valUes/.vec._ors of • symmet_ric tridiagon:_] m_trix, b,y _he ira-

' plici_ Q'L _lgori,thm_

EV[TQLV SSTEQR, As DCITQL1','Ip_.eserving the input m_t_ix

-[N_VF]? ST_SErN Selec_(M eigen veeto_s of _ ce_l upper _essen_berg matrix, by in,verse
i_er,_tioa

ilM_INFIT SGELSS _Minim{ro>norm sohf_ii_n oi';_ finest Ie_t.sq,uares" problem, us'i_g, ihe

singular va,h_e de,:omposi, tion

0 P&r.B:AK SOR,Mt,:[R. Backtr,_nslbrmeigen,vectors of _ ce_l m,_tr.iX ;ff_er reduction,_,o.upper

Hessenbergform by ORTHE,_

OP_T['tES GE[:IRoD R,educe a, t,ea,l! maA_:r,_x:_o u;pper _essenberg _Brm by _n orthc_gon.M
transformation

"'(. t ' ,ORi..rRiA.N S.0'R:G:K(R. Genera_e or_hogon'M r,ransfor.m,_ion m_t,rix used by O'R:.r_ES

QZttES' R.educe _ real' generalized eigenpmblem Az.=)_.Ba_t0"_"fo_m in. which.

= A is upper ['I,'essen,berg and B is upper tria,ngnfl_r_

QZIT generaJ.ized Schur factorization of a ret_i-gene_,_lized eigenpr0bieml

QZVAL _f¢,er red:ucgion by QZHES

QZVEC M1 eigenvectors of a_ rem gener'Mizedeigenproblem t:rom gener;._lized
Schur fax:toriza_ion

-- ,,,,

P_ATQR, ;SSTEBZ Extreme eigen.w_Ues of _ symmetric tridiagonal m,_rix using t,he r_-

(sore 5) _ionM Q_ _lgorithm with Newt,on correct.ions

_ "'R:EBAK ! STR.SM B:ack_,r_nstbem eigenvectors of a,symm.e_;t;i,:(iefini"te gener;flized _.igen--

problem. Aa_ = A.Bz or A_Ba_ = Ax _fter reduct, ion by R,EDU(_I or
_EDUC2

-' R,EB AKB STR.MM B'axkt,ranstbrm eigenvectors of ._symmetri(:-d_finite gener_fiZmi e]'gen'-.-
: problem BAz = lx after redaction by RED UC2

.......

R.ED[, C SSY aST R.educe the symmetric-definite generalized eigenpmbiem A:r. k Bz

: _. 1 r,o _ st,an(lard symmetric eigenprobtem

tr2

-(

=

LAPAC.K e@a.iivMen,_sof,'.E}S,PAC'Kmu,_iaesIcon,_i_n,L1edi);]
'' " C'" ,q ""
EISPA _,K LAPACK Ii Fn,nc_ion_of. E.E,PAC K m_t, ine I
RED:qTC2 SSIYGST Rediuce _lie sym,.metric-d_efi;n,ii_egeneralized; eigengroblem ,4Br.= ,_a I

or BAr = .\a_om s_mnd;mrdsym,met,rk eigen,progI_.m. J
I_G SGEEV All' eigen,_vM.._es:amd op_ionadl,y eigenvee_ars, o-f'a, rem general mal_rix

(d¢,i,¢er routine:),

RGG: All eigen,vMues and op_ionMl_" eigen,vectors or _ _eMigeneraAJzed; eigen,-

problem (ld;river routine),

RS, SSYEV Ai1;eigenvM_,l,es andi ep_iona_y eigen_vect,ors of a_veal sym,me_fic m,_vix

d'ri,verroutine):

RSB SSB:EV i_ll' eigenvahles and! ot,_0.ion._ltlyeigen,yet'mrs oi'.a real sym,me_vic ban6

mat,fix (dri;ver rou¢ine),
RSG _: ',:_SYGV All eigen vM_uesan.d op_iona, Uy eigen,vectors of.'a reM,symme_ric-4_efi,ni,_e,

generalized! eigen,probtem .4a_= ,\,.B,'_(id'._iver_o_ine:)_

RS'(2;A,B SSYGV All' eigen_va&lesand _op._ionally eigen_vec_ors of _ _e_l'symm.etrfi(:-deli,n,i_e

gener_lized eigenproblg.m AB.a_ := Aa_(d:_iver rou, lfine)

R.._GLA SS YGV All eigen,vMues _nd op _,ioaa,ll.y eige_tvee_ors o_ ,_ _eM sym,met;.fic-4efi,nJi_e

gen.erMized eigen,problem BA;r = ,\x (4river rou,_i,ne)

RSM SS.YEVX Set.ec_ed eigenval, ues _nd; optionally eigen,vec'_ors oi _ re_l symmetric

"' m,a_rb: (:driver tour, inr)

.R;SP SSP"EV Ali eigenvMues and op_i_Jna_3r'eigen,vec_ors of"a reM.sym,metric ma,t,rix

(packed' stora, ge.) (driver rou,_ine)

R.ST, SS!rEV AU,eigen,vMazes and! opt.ionallS_ eigenvect, ors of a reM_sym,me_ric tridi-

,_gonMima,t.,rix (driver mu.,t,i,ne)

' RT All' eigenvMaes _nd: op tionMly eigen vec_ors of _ reM_nfi3.i_gonal m;_ fix

of speciM form, (d_iver rou,t,ine)_
,_(--!SVD S ..,ESVD Singular value decomposi,t, ion of a reM: m;_trix

TDiVIT SSTE[N Selected eigenvectors of a symmetric _,.rM:iagonM_m;_rix b,y inverse
i::_,eraaion

TQLI SSTEQR: All eigen,values of a sy.mme_ric _ridiiagon.M matrix by nhr explicit, QL

(note 5) Mgorit, hm

TQL2 SSTEQR All eigenva, lues/vect, ors of a symmet, ric trid:iagonM matrix by t.he ex-

(.note 5) pkicit QL Mgori:t,hm

TQLRAT SSTERF All eigenva, htes of _ symm.et, ric _ridiagonal ma,trix by a .ratiortM varistor,

of _he Q L Mgorithm
f. (- "vT-RBAK t a :)RIVI?[R Bark{ransform eigenvectors of a rem symmetric mat, fix M%erreduc_,ion

-- by TR.ED t

T.R;BAK3 S(3 Plv['IT.RiBacktrt_nsform eigenvectors of a rem symmetric m,_rix aft,rr _e,t,_ct,ion

by TR.ED3 (packed st,ors.ge).

TRED1 SSYTRD R,edt_ce _ rem symmetric m_rix _o _ridi_gonal fbrm

__ TRED2 SSYTRD As TRED [, b_g a,l_o gener_t, ing the ort,hogona.I _,_a.n,,dbrmat,ion m_trix
- 5ORGTR

: TRED3 SSPTR,D R,edace a, real symmetric malirix _,o tridiagonal form (;pa,eked ,_t,or_ge)

TR/D[B SSTEBZ gigenvMues between specified ind'ice_ of _ syrnmet, ric _,ridi;_gonM
= matrix

[L3

KKP. "_.: t: EI_SPACK vo,_,_,i,nes(_(:on_tin,ue4)

: E['SP,k-_.K , G_PAt_.K 1 Fil,n('tion_ o_;E_5,PA(. K w_,tiae

ITST'Z,[_i_ SS'_EB,Z I Eigen_v_hlesin. a_,spe_:i_edin,_erv_l',ot'_ymrrlet, ric _ridiia_gon,_l!m_:ix, lSST'EEx[[and corvespon.d:i_g eigen,veagovs by in,verse i_er,_l_ion,

L[4

Appendix E

LAPACK Working Notes

Pl ost, of t.llese working nol_es _re _vai,l_ble lifo:m,herin:b,where _hey c,_a only be ob_i,:aed i_n,postsc_igt;

tbrm. To recei'ce _ hst of mvaLl'&blepos:_sc_igt _epor_s, send; em;_il!_o.ne_lib@or_, go,v oi _he. focm¢

send_indez from l_pack

i. J. Demmel, J. Dougarra, ,l'. D,u C:roz, A. Green, baam, S. t_mm,ma_H!mg, and D. S'ocensen,

Pro,_pe.ctu_ /or the. Development of a Linear Alyebra Library for l_igh-Per_rmance (.'_._.o'mpuCer.h

ANL, _CS'.TM-97, September 1:987.

'2. 5. Dongarra, S. l?_amm:m_ting, and iD. Sorensen, Block Reduction of Matrices to Condensed

Form,_for Ezgenvalue (5o'mpu'_a<non,<ANL, _CS--T_-99, September 1_98_.

3..;. Demmel _a4 W. K_h_n, Comp'tLting Smal'l Si'ng,u.lar Values of Bidi,agor.uzt ft,lattices 'witt_

G_aranCeed t_igh Relative Accwracy_ ANL, _CS--TM- [L0, Febr.u:_vy i_988.

4. J. Demmel _,J. Du Croz, S. :_m,m_Ung, _nd D. Sorensen, G_ddelines for the Design of Sym,

metric Eigenroutines, S'D_D, and Iterative Refinemen.t and Condition g,_timation for Linear

Systems, ANL, MCS..TM-11.'t, M,_reh L988.

5. C. Bischof, J. Demmel, J. Doag_rva, J.. iDa Croz, A. Greenb_a_m, S. tt_mm._rl/_,g, _ndi D.

Sorensen, Provi,_ional Contents., ANL, M _-TM-38, September 11'988'.

6. 0'. Brewer, J. Dong_rra, _ad D. Sorensea, Tovla to _id in the Analysis of Memory Access

Patterna for FORTRAN Proyram_, ANL, MCS'TM-[20, ,I_,ne [988.

7. J. B_r[ow _nd ,I. Demme_, Computing Accurate Eige'r._._y,ste'm:_of Scaled Diagonally Dominant

: ,_Iatrices, ANL, _/_C S-TM-]_26, Decem, ber 1:988.

8. Z. Bai _ad J. Demmel, On a Block Implementation o]: He._sen_rg Mul'tishift QR [teraC,ior_,

.ANL, MCS.-TM-127, J_aaary 1989.

: 9. J. Demmel _ad: A. McKenaey, A Te._t [_[atriz (jeneratz_:n Suite_ ANL MrS-P6,).-0389, M_rch

_989.

: LL5

1.('). E. An d'ersoa _rtd ,I;. Doeg;_r_, [r_:_t,c_l,_l'i'ngom,d Te,_tin# #he frd,_ii_t'fl_el'ea,,_eo] L/IPA '.K - Un,i;_
and Non, Uni_ _/_rsions, ,_.NL, _ ...S.-_ _b IL30,,_ ay li989.

LI.. P. Dei_, J. DemmeL L.-C. BL a,ud. C. Tomei, The B_d_agonal',9ingui'_r Vai'ue Deco,m_,_i,_ion

..,.-Th[-l:3;_, A._gust 11989.and Namilto_ian Meehanie_, ANL .r,,_ •

[2. P. _yes aa.d G. R._dic_i, Banded C,hot.e,,_kyF_c_,o'riza'tion Us,i'_g Level 3. B,LAS; AN [, (-'"

TM-l_34, A_g_ [989.

[3. Z. B:ai,, _. DemmeL _rtd: A. M_cKermey, On _he Condi;_ioni'ag, of _he Non:w._r_metric Eige'n_prob-

/eta'.: Theory and ,5"o_wave, UT, CS-89-86, O,.:_ober 1:9,39.

[4. ,I. Demmel,, On FIoa,t_ng.Point Errors in. Chole,_ky, UT, CS-'3,),8:¢, October _989.

. , 9-88, Oc _,obe_[5. J. Demmel _e.dK Veselii_ ,[acobi."_ Method i,_More Accura_te than QR, UT, CS-,3_

[989.

(.... , C" "_' ,q¢"[6. E. Artdersr0n and ,I.. Do.n.g_rr'_, Rextdt:_fi_om /Ae [nit,la[' Relea;_e of. LAPi, I ;.,K, UT _.5-,_.)....),,
No_vember [989.

iT. A. G_ee.nb_um arm J,. D_.g_rra, .F.,_:perime_._with QR/Q.£ Me$hod,_ fi_r _h.,e,fy_,n.me/Jric Trid_.

aganal Eigenproble'rn, UT, CS-89q)'2, Novembe_ 1989.

h8. g. Anderson and J. Dongs.rv.u, Implementation Guide for LAPA.,K, UT, CS-90-L.0_, &pill'
1990.

, (-_, . ? -_ -a[9. E. An.dersoa _md ,I Dong_rra, Evaluating Block Algoviflzm V'arian._ in LAPA _,K, UT CS-

90-[03, April [990.

20. E. Anderson., Z. Bai, C. FJis,:hof, ,I. Demme[, ,I. Dortgarra,, ,l. DuCt.ez, A. Greeri:ba,lm, S.

Ka_m:mar[Jng, A.._[(:Kermey, i_nd D. Sore r_sen, £APACK: A Port,abl'e Linear Algebra L.ib,rary

fi)r _igh-Pe@)rmance C',)rn,p'ate'r.s, [JT, C8-90-[05, 3[_y [9.90.

- 2[..I. Du Croz, P. M_yes, amd G, Ra,di(:_gi, Factorization,_ of Band Matrice._ U._ing.Level 3 BLAS,

UT, CS-90.-t09, July 1.990.

22. ,J Demmel _nd N. [-Iigham, S_ab,il_ty of Block A_qo.r-itA'm._with Fa._t Level 3 BLAS, [.JT .,_,

90-.t 10, duly _990.

23 ,I. Demmel and N..[-Iigham, Improved Error, Bound,_ fi)r Underdetermined Sy:_tem SoS:ers,

[JT, CS-90-I: [3, ALW_sr,[990.

24. J. Don g_rr_ and S. Os t couchov, LA.PA CR"Block Factorization Aigorithms o.n _he [n_eI iP.5"C/'8_)'0,

UT, CS-90.-t_5, October, 1.990.=

: 25. ,I. Dongr_rra, S. Hamm_rtJng, _nd ,I. Wi.lki'nson, N__merical <:'on..,sideration._.in C'o.m,put,ir_
Invariant '_,_ubo,vaces, UT,, CS-90- l 17, October, t99t?.

=

2.. E. Anderson, C Bischof, J. DemmeL ,I. Don_arra_ ,I. DaC, roz, S. Hammarting, _,nd W. Ka-

hart, Pro:_pe_,:t_sfor an E_:ter_ion to LAPACK: ,4. Portable Linear Algebra Lib_'a'ry for High-
= " ,C _ , ..Performance Computers, [irT .S.-9(],-[18 Novemb,-,r [990.

:LL6

• ' , , C5-,'-)(9,-Ii.t9, 0c_0-27. J D,_C,mz, _n_ hr Eig[_m, b.t(_b,d,'_,,t,yof M,eth.od_ for Ma¢,'rix En,ve'v,_ior_,,UT. ' _ ('"
be_', 1990.

28. J.. Do_g_rr_, P. M.ayes, _a_ G. R_dic_lli, The [B_f R[SC 5y,._tem_6000 a'_d' Li,r_'earA_geb,ra

O,pe.r_t,ir.ms: UT, C5-90--_22, December I_990..

29. P_. v'_n dle Geij_., On Global Com,bin.e O'perati,o,n,s, rgT, C5-9:1.-;_29, Ap,ri_ I9,9,t.

30. J. Doagarra, R. v_ de Geijia, Red;_ct,ion _,:)Co.nden,sed Form for &e E'igenvcd_e Problem, on.

Di.,_$rib,_tedMemow, A rchibee_'ures, UT, CS-9'L-'L30, Ap,ri,l:Ii99,t.

3.L.E. And!erson, Z. BM', _ad J. Do a,g_,r_,, Oenera_%ed QR Fac_orizc_tion ar_.d'i._sAppl_i,ea¢i,_n,,_;

UT, C,S-9_- t3.t, Ap,rR _99 i.

3"2. C. Bisckof, aad P. Ta,ag, Uen..'ra'hzed [ncre'men, gai Con.didon ES'tim,ation., UT, CS-9t-:[32, M[ay
_99I.

(.5-9¢- t:13 _[a,y33. C. Bischo[, aa(i P. Tar_g, _'o&u,st [nc'_'eme'n_al' C.O'r_d_itio,aEt_tim'atio,n, UT "" _ ,
t991..

:34, J. Dong_,r_a, _yrksh.op o'n _he Bf, AC& UT, CS-9_-L34, May 1.'99L[

35. E. ,,knderson, J. Do aga_rra, a_ad S. Os_rou:chov, [m,pteme,n._ati,on g'_,ide for L,4P:4CK, UT, CS-

91,-1.38,At_g_s_ 1,99't.

36. E. ,_knderso_, Rob,_at Triangu_a.r Sol've._ fi_,r Use in Condi_io,n E,@ima_io.n, UT, CS--gI-t42,

Aug_lst, 1:991.,.

3'7. ,I. Dor_g_rra, a,rtd: ._. va,a de Gei.j:p_,Two Di'm,e,na_.ional;Ba.si.c Liner_r .4lg.e.'b,mCo,rnm.'_,_rdca,_io,r_,
.S-.)t t38, October 1:9:-)I;,5'_bp'rog'ra'ms.,,UT_, C'_ (- ,

38. Z. Bal _ad J. De mmeL On a difeet algo.ri_hm for co,mp'_.t,i.n,gm va'ria'r_tsub.space,s _:it,h .s:pecified

eigenva.Iues, UT, CS-9L-[39, November t99L.

39. J. Demmel, J. Don.g_rv_, _nd W. K_kaa, On De,_igning Por_ab& High Pe'rfo'rmance N_'mericat

Libraries rifT, CS-9t..t4L, July _991.

= 1.t7

Appendix F

Specifications of Routines

Notes

1. The s.pec:ifica_ions wk.i:c_ [%_o,w,give _b.e ca_,ng secL,_ence, p t_rpose, and desc_i,pt,ions of the

_,rgume:nts, of each LAPACK driver _nd comp,,_a_ionaf _o11_ine,(b,ll_ not oi a_..'d_.a_y ro.t_,tines_).

2. Speci,fications of p_J_s of reu_ mad complex routines have been me:rged_ (for example SBD-

SQR/CBDSQR). In a :[ew cases, speci_fications of three, routines have been merged, one _r

real. synlmetric., one, for complex sym:metric, and one for com@_ex [qerr_iti:aa m_t:dces (for

example SSYTRF/CSYTRF/CKETRF), A few ro_tkl.es for real matrices have no compte:,:

equJ_v_len.t (for example SSTEBZ).
"-,

3. Speci.fi.cado,nsare given only for si,n,g[ep'rec'i,_io?n_ol_t_nes.TO ad_pt them for t,he do,i_bb pre-

cision version of r,he software, sh'np[_yi:n_erpret REAL as DO UB LE P R.EC _S_ON, COM P LE X

as COMPLEX*L6 (orDOUBLE CO_PLEX), aad the initialfetters S- and C- of LAPAC[<
roa_.iae names a_ D- and Z.-.

4. Specfficatioas are arranged in _phabetical order of the re_i routine name.

5. The text of the specifications h_ been derived from the fend ing comme.n_s _n the sou:roe-text of

the routines. It makes ordy a Umited use of mathematka_' typesetting facilities. To eti,:mi.n_te

redundancy, Aar ha_ been used throughout the specifications. Thus, the reader should no_e

that ,4_ k_equiva_ent to A T in the real case.

LL8

' _,'_I_ aIilHIMIIN['.... ' ' _'" ""'"I_'_ m*_ ,_,............ '-'r'_"-'e-'9__ '''t¢_°

I
_lllr_l ,,, _i , ,rT[r,l,..... , i'_i ,, ,, ,, ,',fill li , _'" "'rr' l_[rll"""_-[_1"_"T['l'q'f'qIT:_ITi_'1_

