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Abstract. We propose a new authentication protocol that is provably secure
based on a ring variant of the learning parity with noise (LPN) problem. The pro-
tocol follows the design principle of the LPN-based protocol from Eurocrypt’11
(Kiltz et al.), and like it, is a two round protocol secure against active attacks.
Moreover, our protocol has small communication complexity and a very small
footprint which makes it applicable in scenarios that involve low-cost, resource-
constrained devices.

Performance-wise, our protocol is more efficient than previous LPN-based
schemes, such as the many variants of the Hopper-Blum (HB) protocol and the
aforementioned protocol from Eurocrypt’11. Our implementation results show
that it is even comparable to the standard challenge-and-response protocols based
on the AES block-cipher. Our basic protocol is roughly 20 times slower than AES,
but with the advantage of having 10 times smaller code size. Furthermore, if a few
hundred bytes of non-volatile memory are available to allow the storage of some
off-line pre-computations, then the online phase of our protocols is only twice as
slow as AES.

Keywords: HB protocols, RFID authentication, LPN problem, Ring-LPN
problem.

1 Introduction

Lightweight shared-key authentication protocols, in which a tag authenticates itself to
a reader, are extensively used in resource-constrained devices such as radio-frequency
identification (RFID) tags or smart cards. The straight-forward approach for construct-
ing secure authentications schemes is to use low-level symmetric primitives such as
block-ciphers, e.g. AES [DR02]. In their most basic form, the protocols consist of the
reader sending a short challenge c and the tag responding with AESK(c), where K is
the shared secret key. The protocol is secure if AES fulfils a strong, interactive security
assumption, namely that it behaves like a strong pseudo-random function.

Authentication schemes based on AES have some very appealing features: they are
extremely fast, consist of only 2 rounds, and have very small communication complex-
ities. In certain scenarios, however, such as when low-cost and resource-constrained
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devices are involved, the relatively large gate-count and code size used to implement
AES may pose a problem. One approach to overcome the restrictions presented by low-
weight devices is to construct a low-weight block cipher (e.g. PRESENT [BKL+07]),
while another approach has been to deviate entirely from block-cipher based construc-
tions and build a provably-secure authentication scheme based on the hardness of some
mathematical problem. In this work, we concentrate on this second approach.

Ideally, one would like to construct a scheme that incorporates all the beneficial prop-
erties of AES-type protocols, while also acquiring the additional provable security and
smaller code description characteristics. In the past decade, there have been proposals
that achieved some, but not all, of these criteria. Most of these proposals are extensions
and variants of the Hopper-Blum (HB) protocol, recently a protocol following a differ-
ent blueprint has been proposed by Kiltz et al. [KPC+11]. Our proposal can be seen as
a continuation of this line of research that contains all the advantages enjoyed by LPN-
based protocols, while at the same time, getting even closer to enjoying the benefits of
AES-type schemes.

OVERVIEW OF OUR RESULTS. In this work we present a new symmetric authentica-
tion protocol which (i) is provably-secure against active attacks (as defined in [JW05])
based on the Ring-LPN assumption, a natural variant of the standard LPN (learning
parity with noise) assumption; (ii) consists of 2 rounds; (iii) has small communication
complexity (approximately 1300 bits); (iv) has efficiency comparable to AES-based
challenge-response protocols (depending on the scenario), but with a much smaller
code size. To demonstrate the latter we implemented the tag part of our new proto-
col in a setting of high practical relevance – a low-cost 8-bit microcontroller which is
a typical representative of a CPU to be found on lightweight authentication tokens, and
compared its performance (code size and running time) with an AES implementation
on the same platform.

PREVIOUS WORKS. Hopper and Blum [HB00, HB01] proposed a 2-round authenti-
cation protocol that is secure against passive adversaries based on the hardness of the
LPN problem (we remind the reader of the definition of the LPN problem in Section
1.2). The characteristic feature of this protocol is that it requires very little workload
on the part of the tag and the reader. Indeed, both parties only need to compute vector
inner products and additions over F2, which makes this protocol (thereafter named HB)
a good candidate for lightweight applications.

Following this initial work, Juels and Weis constructed a protocol called HB+ [JW05]
which they proved to be secure against more realistic, so called active attacks. Subse-
quently, Katz et al. [KS06a], [KS06b, KSS10] provided a simpler security proof for
HB+ as well as showed that it remains secure when executed in parallel. Unlike the
HB protocol, however, HB+ requires three rounds of communication between tag and
reader. From a practical aspect, 2 round authentication protocols are often advantageous
over 3 round protocols. They often show a lower latency which is especially pronounced
on platforms where the establishment of a communication in every directions is accom-
panied by a fixed initial delay. An additional drawback of both HB and HB+ is that
their communication complexity is on the order of hundreds of thousands of bits, which
makes them almost entirely impractical for lightweight authentication tokens because of
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timing and energy constraints. (The contactless transmission of data on RFIDs or smart
cards typically requires considerably more energy than the processing of the same data.)

To remedy the overwhelming communication requirement of HB+, Gilbert et al. pro-
posed the three-round HB� protocol [GRS08a]. A particularly practical instantiation of
this protocol requires fewer than two thousand bits of communication, but is no longer
based on the hardness of the LPN problem. Rather than using independent randomness,
the HB� protocol utilized a Toeplitz matrix, and is thus based on a plausible assumption
that the LPN problem is still hard in this particular scenario.

A feature that the HB,HB+, and HB� protocols have in common is that at some point
the reader sends a random string r to the tag, which then must reply with 〈r, s〉+ e, the
inner product of r with the secret s plus some small noise e. The recent work of Kiltz et
al. [KPC+11] broke with this approach, and they were able to construct the first 2-round
LPN-based authentication protocol (thereafter namedEC11) that is secure against active
attacks. In their challenge-response protocol, the reader sends some challenge bit-string
c to the tag, who then answers with a noisy inner product of a random r (which the
tag chooses itself) and a session-key K(c), where K(c) selects (depending on c) half
of the bits from the secret s. Unfortunately, the EC11 protocol still inherits the large
communication requirement of HB and HB+. Furthermore, since the session key K(c)
is computed using bit operations, it does not seem to be possible to securely instantiate
EC11 over structured (and hence more compact) objects such as Toeplitz matrices (as
used in HB� [GRS08a]).

1.1 Our Contributions

PROTOCOL. In this paper we propose a variant of the EC11 protocol from [KPC+11]
which uses an “algebraic” derivation of the session key K(c), thereby allowing to be
instantiated over a carefully chosen ring R = F2[X ]/(f). Our scheme is no longer
based on the hardness of LPN, but rather on the hardness of a natural generalization
of the problem to rings, which we call Ring-LPN(see Section 3 for the definition of
the problem.) The general overview of our protocol is quite simple. Given a challenge
c from the reader, the tag answers with (r, z = r · K(c) + e) ∈ R × R, where r is
a random ring element, e is a low-weight ring element, and K(c) = sc + s′ is the
session key that depends on the shared secret key K = (s, s′) ∈ R2 and the challenge
c. The reader accepts if e′ = r ·K(c) − z is a polynomial of low weight, cf. Figure 1
in Section 4. Compared to the HB and HB+ protocols, ours has one less round and a
dramatically lower communication complexity. Our protocol has essentially the same
communication complexity as HB�, but still retains the advantage of one fewer round.
And compared to the two-round EC11 protocol, ours again has the large savings in the
communication complexity. Furthermore, it inherits from EC11 the simple and tight
security proof that, unlike three-round protocols, does not use rewinding.

We remark that while our protocol is provably secure against active attacks, we
do not have a proof of security against man-in-the-middle ones. Still, as argued in
[KSS10], security against active attacks is sufficient for many use scenarios (see also
[JW05, KW05, KW06]). We would like to mention that despite man-in-the-middle at-
tacks being outside our “security model”, we think that it is still worthwhile investigat-
ing whether such attacks do in fact exist, because it presently seems that all previous
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Table 1. Summary of implementation results

Protocol Time (cycles) Code size
online offline (bytes)

Ours: reducible f (§5.1) 30, 000 82, 500 1, 356
Ours: irreducible f (§5.2) 21, 000 174, 000 459
AES-based [LLS09, Tik] 10, 121 0 4, 644

man-in-the middle attacks against HB-type schemes along the lines of Gilbert et al.
[GRS05] and of Ouafi et al. [OOV08] do not apply to our scheme. In Appendix A,
however, we do present a man-in-the-middle attack that works in time approximately
n1.5 ·2λ/2 (where n is the dimension of the secret and λ is the security parameter) when
the adversary can influence on the order of n1.5 · 2λ/2 interactions between the reader
and the tag. To resist this attack, one could simply double the security parameter, but
we believe that even for λ = 80 (and n > 512, as it is currently set in our scheme) this
attack is already impractical because of the extremely large number of interactions that
the adversary will have to observe and modify.

IMPLEMENTATION. We demonstrate that our protocol is indeed practical by providing
a lightweight implementation of the tag part of the protocol. (The reader is typically
not run on a constrained device and therefore we do not consider its performance.) The
target platform was an AVR ATmega163 [Atm] based smart card. The ATmega163 is
a small 8-bit microcontroller which is a typical representative of a CPU to be found on
lightweight authentication tokens. The main metrics we consider are run time and code
size. We compare our results with a challenge-response protocol using an AES imple-
mentation optimized for the target platform. A major advantage of our protocol is its
very small code size. The most compact implementation requires only about 460 bytes
of code, which is an improvement by factor of about 10 over AES-based authentication.
Given that EEPROM or FLASH memory is often one of the most precious resources
on constrained devices, our protocol can be attractive in certain situations. The draw-
back of our protocol over AES on the target platform is an increase in clock cycles
for one round of authentication. However, if we have access to a few hundred bytes of
non-volatile data memory, our protocol allows precomputations which make the on-line
phase only a factor two or three slower than AES. But even without precomputations,
the protocol can still be executed in a few 100 msec, which will be sufficient for many
real-world applications, e.g. remote keyless entry systems or authentication for financial
transactions. Table 1 gives a summary of the results, see Section 5 for details.

We would like to stress at this point that our protocol is targeting lightweight tags
that are equipped with (small) CPUs. For ultra constrained tokens (such as RFIDs in
the price range of a few cents targeting the EPC market) which consist nowadays of a
small integrated circuit, even compact AES implementations are often considered too
costly. (We note that virtually all current commercially available low-end RFIDs do not
have any crypto implemented.) However, tokens which use small microcontrollers are
far more common, e.g., low-cost smart cards, and they do often require strong authen-
tication. Also, it can be speculated that computational RFIDs such as the WISP [Wik]
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will become more common in the future, and hence software-friendly authentication
methods that are highly efficient such as the protocol provided here will be needed.

1.2 LPN, Ring-LPN, and Related Problems

The security of our protocols relies on the new Ring Learning Parity with Noise
(Ring-LPN) problem which is a natural extension of the standard Learning Parity with
Noise (LPN) problem to rings. It can also be seen as a particular instantiation of the
Ring-LWE (Learning with Errors over Rings) problem that was recently shown to have
a strong connection to lattices [LPR10]. We will now briefly describe and compare these
hardness assumptions, and we direct the reader to Section 3 for a formal definition of
the Ring-LPN problem.

The decision versions of these problems require us to distinguish between two pos-
sible oracles to which we have black-box access. The first oracle has a randomly gen-
erated secret vector s ∈ Fn

2 which it uses to produce its responses. In the LPN problem,
each query to the oracle produces a uniformly random matrix1 A ∈ Fn×n

2 and a vector
As+e = t ∈ Fn

2 where e is a vector in Fn
2 each of whose entries is an independently gen-

erated Bernoulli random variable with probability of 1 being some public parameter τ
between 0 and 1/2. The second oracle in the LPN problem outputs a uniformly-random
matrix A ∈ Fn×n

2 and a uniformly random vector t ∈ Fn
2 .

The only difference between LPN and Ring-LPN is in the way the matrix A is gener-
ated (both by the first and second oracle). While in the LPN problem, all its entries are
uniform and independent, in the Ring-LPN problem, only its first column is generated
uniformly at random in Fn

2 . The remaining n columns of A depend on the first column
and the underlying ring R = F2[X ]/(f(X)). If we view the first column of A as a
polynomial r ∈ R, then the ith column (for 0 ≤ i ≤ n− 1) of A is just the vector rep-
resentation of rX i in the ring R. Thus when the oracle returns As+ e, this corresponds
to it returning the polynomial r · s + e where the multiplication of polynomials r and
s (and the addition of e) is done in the ring R. The Ring-LPNR assumption states that
it is hard to distinguish between the outputs of the first and the second oracle described
above. In Section 3, we discuss how the choice of the ring R affects the security of the
problem.

While the standard Learning Parity with Noise (LPN) problem has found extensive
use as a cryptographic hardness assumption (e.g., [HB01, JW05, GRS08b, GRS08a,
ACPS09, KSS10]), we are not aware of any constructions that employed the Ring-LPN
problem. There have been some previous works that considered some relatively similar
“structured” versions of LPN. TheHB� authentication protocol of Gilbert et al.[GRS08a]
made the assumption that for a random Toeplitz matrix S ∈ Fm×n

2 , a uniformly ran-
dom vector a ∈ Fn

2 , and a vector e ∈ Fm
2 whose coefficients are distributed as Berτ , the

output (a, Sa+ e) is computationally indistinguishable from (a, t) where t is uniform
over Fm

2 .
Another related work, as mentioned above, is the recent result of Lyubashevsky et

al. [LPR10], where it is shown that solving the decisional Ring-LWE (Learning with
1 In the more common description of the LPN problem, each query to the oracle produces one

random sample in Fn
2 . For comparing LPN to Ring-LPN, however, it is helpful to consider the

oracle as returning a matrix of n random independent samples on each query.
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Errors over Rings) problem is as hard as quantumly solving the worst case instances of
the shortest vector problem in ideal lattices. The Ring-LWE problem is quite similar to
Ring-LPN, with the main difference being that the ring R is defined as Fq[X ]/(f(X))
where f(X) is a cyclotomic polynomial and q is a prime such that f(X) splits com-
pletely into deg(f(X)) distinct factors over Fq .

Unfortunately, the security proof of our authentication scheme does not allow us
to use a polynomial f(X) that splits into low-degree factors, and so we cannot base
our scheme on lattice problems. For a similar reason (see the proof of our scheme in
Section 4 for more details), we cannot use samples that come from a Toeplitz matrix
as in [GRS08a]. Nevertheless, we believe that the Ring-LPN assumption is very natural
and will find further cryptographic applications, especially for constructions of schemes
for low-cost devices.

2 Definitions

2.1 Rings and Polynomials

For a polynomial f(X) over F2, we will often omit the indeterminate X and simply
write f . The degree of f is denoted by deg(f). For two polynomials a, f in F2[X ],
a mod f is defined to be the unique polynomial r of degree less than deg(f) such that
a = fg + r for some polynomial g ∈ F2[X ]. The elements of the ring F2[X ]/(f) will
be represented by polynomials in F2[X ] of maximum degree deg(f)− 1. In this paper,
we will only be considering rings R = F2[X ]/(f) where the polynomial f factors into
distinct irreducible factors over F2. For an element a in the ring F2[X ]/(f), we will
denote by â, the CRT (Chinese Remainder Theorem) representation of a with respect
to the factors of f . In other words, if f = f1 . . . fm where all fi are irreducible, then

â
.
= (a mod f1, . . . , a mod fm).

If f is itself an irreducible polynomial, then â = a. Note that an element â ∈ R has a
multiplicative inverse iff, for all 1 ≤ i ≤ m, a �= 0 mod fi. We denote by R∗ the set of
elements in R that have a multiplicative inverse.

2.2 Distributions

For a distribution D over some domain, we write r
$← D to denote that r is chosen

according to the distribution D. For a domain Y , we write U(Y ) to denote the uniform
distribution over Y . Let Berτ be the Bernoulli distribution over F2 with parameter (bias)
τ ∈ ]0, 1/2[ (i.e., Pr[x = 1] = τ if x← Berτ ). For a polynomial ring R = F2[X ]/(f),
the distribution BerRτ denotes the distribution over the polynomials of R, where each of
the coefficients of the polynomial is drawn independently from Berτ . For a ring R and
a polynomial s ∈ R, we write ΛR,s

τ to be the distribution over R×R whose samples are
obtained by choosing a polynomial r

$← U(R) and another polynomial e
$← BerRτ , and

outputting (r, rs+ e).
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2.3 Authentication Protocols

An authentication protocol Π is an interactive protocol executed between a Tag T and a
readerR, both PPT algorithms. Both hold a secret x (generated using a key-generation
algorithm KG executed on the security parameter λ in unary) that has been shared in
an initial phase. After the execution of the authentication protocol, R outputs either
accept or reject. We say that the protocol has completeness error εc if for all λ ∈ N, all
secret keys x generated by KG(1λ), the honestly executed protocol returns reject with
probability at most εc. We now define different security notions of an authentication
protocol.

PASSIVE ATTACKS. An authentication protocol is secure against passive attacks, if there
exists no PPT adversaryA that can make the readerR return accept with non-negligible
probability after (passively) observing any number of interactions between reader and
tag.

ACTIVE ATTACKS. A stronger notion for authentication protocols is security against
active attacks. Here the adversary A runs in two stages. First, she can interact with the
honest tag a polynomial number of times (with concurrent executions allowed). In the
second phase A interacts with the reader only, and wins if the reader returns accept.
Here we only give the adversary one shot to convince the verifier.2 An authentication
protocol is (t, q, ε)-secure against active adversaries if every PPT A, running in time
at most t and making q queries to the honest reader, has probability at most ε to win the
above game.

3 Ring-LPN and Its Hardness

The decisional Ring-LPNR (Ring Learning Parity with Noise in ring R) assumption,
formally defined below, states that it is hard to distinguish uniformly random samples
in R× R from those sampled from ΛR,s

τ for a uniformly chosen s ∈ R.

Definition 1 (Ring-LPNR). The (decisional) Ring-LPNR
τ problem is (t, q, ε)-hard if for

every distinguisherD running in time t and making q queries,
∣

∣

∣Pr
[

s
$← R : DΛR,s

τ = 1
]

− Pr
[

DU(R×R) = 1
]∣

∣

∣ ≤ ε.

3.1 Hardness of LPN and Ring-LPN

One can attempt to solve Ring-LPN using standard algorithms for LPN, or by special-
ized algorithms that possibly take advantage of Ring-LPN’s additional structure. Some
work towards constructing the latter type of algorithm has recently been done by Hanrot
et al. [HLPS11], who show that in certain cases, the algebraic structure of the Ring-LPN
and Ring-LWE problems makes them vulnerable to certain attacks. These attacks essen-
tially utilize a particular relationship between the factorization of the polynomial f(X)
and the distribution of the noise.

2 By using a hybrid argument one can show that this implies security even if the adversary can
interact in k ≥ 1 independent instances concurrently (and wins if the verifier accepts in at least
one instance). The use of the hybrid argument looses a factor of k in the security reduction.
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Ring-LPN with an Irreducible f(X) When f(X) is irreducible over F2, the ring
F2[X ]/(f) is a field. For such rings, the algorithm of Hanrot et al. does not apply, and
we do not know of any other algorithm that takes advantage of the added algebraic
structure of this particular Ring-LPN instance. Thus to the best of our knowledge, the
most efficient algorithms for solving this problem are the same ones that are used to
solve LPN, which we will now very briefly recount.

The computational complexity of the LPN problem depends on the length of the se-
cret n and the noise distribution Berτ . Intuitively, the larger the n and the closer τ is
to 1/2, the harder the problem becomes. Usually the LPN problem is considered for
constant values of τ somewhere between 0.05 and 0.25. For such constant τ , the fastest
asymptotic algorithm for the LPN problem, due to Blum et al. [BKW03], takes time
2Ω(n/ logn) and requires approximately 2Ω(n/ log n) samples from the LPN oracle. If
one has access to fewer samples, then the algorithm will perform somewhat worse. For
example, if one limits the number of samples to only polynomially-many, then the al-
gorithm has an asymptotic complexity of 2Ω(n/ log logn) [Lyu05]. In our scenario, the
number of samples available to the adversary is limited to n times the number of execu-
tions of the authentication protocol, and so it is reasonable to assume that the adversary
will be somewhat limited in the number of samples he is able to obtain (perhaps at
most 240 samples), which should make our protocols harder to break than solving the
Ring-LPN problem. Levieil and Fouque [LF06] made some optimizations to the algo-
rithm of Blum et al. and analyzed its precise complexity. To the best of our knowledge,
their algorithm is currently the most efficient one and we will refer to their results when
analyzing the security of our instantiations.

In Section 5, we base our scheme on the hardness of the Ring-LPNR problem where
the ring is R = F2[X ]/(X532 + X + 1) and τ = 1/8. According to the analysis of
[LF06], the fastest algorithm to solve an LPN problem of dimension 512 with τ = 1/8
would require 277 memory (and thus at least that much time) to solve when given access
to approximately as many samples (see [LF06, Section 5.1]). Since our dimension is
somewhat larger and the number of samples will be limited in practice, it is reasonable
to assume that this instantiation has 80-bit security.

Note: After the appearance of this paper in the pre-proceedings of FSE, Tanja Lange
pointed us to an unpublished paper of Paul Kirchner [Kir11]. In section 4.3.2 of that
paper, the author uses the fact that the secret can come from the same distribution as the
error3, rather than being completely uniform, to achieve a slightly better running time
for solving certain instances of the LPN problem using generalized birthday attacks.
We have not yet studied the paper in detail to see how this improvement can be used in
conjunction with the work of [LF06], but it is conceivable that this improved algorithm
for LPN along with some additional techniques [Lan12], would require a slight increase
in the parameters of our scheme.

Ring-LPN with a Reducible f(X). For efficiency purposes, it is sometimes useful
to consider using a polynomial f(X) that is not irreducible over F2. This will allow us
to use the CRT representation of the elements of F2[X ]/(f) to perform multiplications,

3 For readers familiar with the lattice literature, this is analogous to the result of Applebaum
et al. [ACPS09, Lemma 2]
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which in practice turns out to be more efficient. Ideally, we would like the polynomial
f to split into as many small-degree polynomials fi as possible, but there are some
constraints that are placed on the factorization of f both by the security proof, and the
possible weaknesses that a splittable polynomial introduces into the Ring-LPN problem.

If the polynomial f splits into f =
∏m

i=1 fi, then it may be possible to try and solve
the Ring-LPN problem modulo some fi rather than modulo f . Since the degree of fi is
smaller than the degree of f , the resulting Ring-LPN problem may end up being easier.
In particular, when we receive a sample (r, rs + e) from the distribution ΛR,s

τ , we can
rewrite it in CRT form as

(r̂, r̂s+ e) = ((r mod f1, rs+ e mod f1), . . . ,

(r mod fm, rs+ e mod fm)),

and thus for every fi, we have a sample

(r mod fi, (r mod fi)(s mod fi) + e mod fi),

where all the operations are in the ring (or field) F2[X ]/(fi). Thus solving the (decision)
Ring-LPN problem in F2[X ]/(f) reduces to solving the problem in F2[X ]/(fi). The
latter problem is in a smaller dimension, since deg(s) > deg(s mod fi), but the error
distribution of (e mod fi) is quite different than that of e. While each coefficient of e is
distributed independently as Berτ , each coefficient of (e mod fi) is distributed as the
distribution of a sum of certain coefficients of e, and therefore the new error is larger.4

Exactly which coefficients of e, and more importantly, how many of them, combine to
form every particular coefficient of e′ depends on the polynomial fi. For example, if

f(X) = (X3 +X + 1)(X3 +X2 + 1)

and e =
5
∑

i=0

eiX
i, then,

e′ = e mod (X3+X+1) = (e0+e3+e5)+(e1+e3+e4+e5)X+(e2+e4+e5)X
2,

and thus every coefficient of the error e′ is comprised of at least 3 coefficients of the

error vector e, and thus τ ′ > 1
2 −

(1−2τ)3
2 .

In our instantiation of the scheme with a reducible f(X) in Section 5, we used the
f(X) such that it factors into fi’s that make the operations in CRT form relatively fast,
while making sure that the resulting Ring-LPN problem modulo each fi is still around
280-hard.

4 Authentication Protocol

In this section we describe our new 2-round authentication protocol and prove its active
security under the hardness of the Ring-LPN problem. Detailed implementation details
will be given in Section 5.

4 If we have k elements e1, . . . , ek
$← Berτ , then a simple calculation shows that the element

e′ = e1 + . . .+ ek is distributed as Berτ ′ where τ ′ = 1
2
− (1−2τ)k

2
.
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Public parameters: R, π : {0, 1}λ → R, τ, τ ′

Secret key: s, s′ ∈ R

Tag T ReaderR
c←− c

$← {0, 1}λ

r
$← R∗; e

$← BerRτ ∈ R

z := r · (s · π(c) + s′) + e
(r,z)−−→

if r �∈ R∗ reject
e′ := z − r · (s · π(c) + s′)
if wt(e′) > n · τ ′ reject
else accept

Fig. 1. Two-round authentication protocol with active security from the Ring-LPNR assumption

4.1 The Protocol

Our authentication protocol is defined over the ring R = F2[X ]/(f) and involves a
“suitable” mapping π : {0, 1}λ → R. We call π suitable for ring R if for all c, c′ ∈
{0, 1}λ, π(c) − π(c′) ∈ R \ R∗ iff c = c′. We will discuss the necessity and existence
of such mappings after the proof of Theorem 1

– Public parameters. The authentication protocol has the following public parame-
ters, where τ, τ ′ are constants and n depend on the security parameter λ.
R, n ring R = F2[X ]/(f), deg(f) = n
π : {0, 1}λ → R mapping
τ ∈ (0, 1/2) parameter of Bernoulli distribution
τ ′ ∈ (τ, 1/2) acceptance threshold

– Key Generation. Algorithm KG(1λ) samples s, s′ $← R and returns s, s′ as the
secret key.

– Authentication Protocol. The Reader R and the Tag T share secret value s, s′ ∈
R. To be authenticated by a Reader, the Tag and the Reader execute the authentica-
tion protocol from Figure 1.

4.2 Analysis

For our analysis we define for x, y ∈]0, 1[ the following constant:

c(x, y) :=

(

x

y

)x(
1− x

1− y

)1−x
.

We now state that our protocol is secure against active adversaries. Recall that active
adversaries can arbitrarily interact with a Tag oracle in the first phase and tries to im-
personate the Reader in the 2nd phase.
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Theorem 1. If ring mapping π is suitable for ring R and the Ring-LPNR problem is
(t, q, ε)-hard then the authentication protocol from Figure 1 is (t′, q, ε′)-secure against
active adversaries, where

t′ = t− q · exp(R) ε′ = ε+ q · 2−λ + c(τ ′, 1/2)−n (4.1)

and exp(R) is the time to perform O(1) exponentiations in R. Furthermore, the protocol
has completeness error εc(τ, τ ′, n) ≈ c(τ ′, τ)−n.

Proof. The completeness error εc(τ, τ ′, n) is (an upper bound on) the probability that
an honestly generated Tag gets rejected. In our protocol this is exactly the case when
the error e′ has weight ≥ n · τ ′, i.e.

εc(τ, τ
′, n) = Pr[wt(e′) > n · τ ′ : e

$← BerRτ ]

Levieil and Fouque [LF06] show that one can approximate this probability as εc ≈
c(τ ′, τ)−n.

To prove the security of the protocol against active attacks we proceed in sequences
of games. Game0 is the security experiment describing an active attack on our scheme
by an adversaryA making q queries and running in time t′, i.e.

– Sample the secret key s, s′ $← R.
– (1st phase of active attack) A queries the tag T on c ∈ {0, 1}λ and receives (r, z)

computed as illustrated in Figure 1.
– (2nd phase of active attack) A gets a random challenge c∗ $← {0, 1}λ and outputs
(r, z). A wins if the readerR accepts, i.e. wt(z − r · (s · π(c∗) + s′)) ≤ n · τ ′.

By definition we have Pr[A wins in Game0] ≤ ε′.
Game1 is as Game0, except that all the values (r, z) returned by the Tag oracle in the

first phase (in return to a query c ∈ {0, 1}λ) are uniform random elements (r, z) ∈ R2.
We now show that if A is successful against Game0, then it will also be successful
against Game1.

Claim. |Pr[A wins in Game1]− Pr[A wins in Game0]| ≤ ε+ q · 2−λ

To prove this claim, we construct an adversary D (distinguisher) against the Ring-LPN
problem which runs in time t = t′ + exp(R) and has advantage

ε ≥ |Pr[A wins in Game1]− Pr[A wins in Game0]| − q · 2−λ

D has access to a Ring-LPN oracle O and has to distinguish between O = ΛR,s
τ for

some secret s ∈ R and O = U(R× R).

– D picks a random challenge c∗ $← {0, 1}λ and a
$← R. Next, it runs A and simu-

lates its view with the unknown secret s, s′, where s ∈ R comes from the oracle O
and s′ is implicitly defined as s′ := −π(c∗) · s+ a ∈ R.

– In the 1st phase, A can make q (polynomial many) queries to the Tag oracle. On
query c ∈ {0, 1}λ to the Tag oracle, D proceeds as follows. If π(c) − π(c∗) �∈ R∗,
then abort. Otherwise, D queries its oracle O() to obtain (r′, z′) ∈ R2. Finally, D
returns (r, z) to A, where

r := r′ · (π(c) − π(c∗))−1, z := z′ + ra. (4.2)
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– In the 2nd phase, D uses c∗ ∈ {0, 1}λ to challenge A. On answer (r, z), D returns
0 to the Ring-LPN game if wt(z − r · a) > n · τ ′ or r �∈ R∗, and 1 otherwise. Note
that sπ(c∗) + s′ = (π(c∗)− π(c∗))s+ a = a and hence the above check correctly
simulates the output of a reader with the simulated secret s, s′.

Note that the running time of D is that of A plus O(q) exponentiations in R.
Let bad be the event that for at least one query c made by A to the Tag oracle, we

have that π(c) − π(c∗) �∈ R∗. Since c∗ is uniform random in R and hidden from A’s
view in the first phase we have by the union bound over the q queries

Pr[bad] ≤ q · Pr
c∗∈{0,1}λ

[π(c) − π(c∗) ∈ R \ R∗]

= q · 2−λ. (4.3)

The latter inequality holds because π is suitable for R.
Let us now assume bad does not happen. IfO = ΛR,s

τ is the real oracle (i.e., it returns
(r′, z′) with z′ = r′s+ e) then by the definition of (r, z) from (4.2),

z = (r′s+ e) + ra = r(π(c)s − π(c∗)s+ a) + e = r(sπ(c) + s′) + e.

Hence the simulation perfectly simulates A’s view in Game0. If O = U(R × R) is the
random oracle then (r, z) are uniformly distributed, as in Game1. That concludes the
proof of Claim 4.2.

We next upper bound the probability thatA can be successful in Game1. This bound
will be information theoretic and even holds if A is computationally unbounded and
can make an unbounded number of queries in the 1st phase. To this end we introduce
the minimal soundness error, εms, which is an upper bound on the probability that a tag
(r, z) chosen independently of the secert key is valid, i.e.

εms(τ
′, n) := max

(z,r)∈R×R∗
Pr

s,s′ $←R

[wt(z − r · (s · π(c∗) + s′)
︸ ︷︷ ︸

e′

) ≤ nτ ′]

As r ∈ R∗ and s′ ∈ R is uniform, also e′ = z − r · (s · π(c∗) + s′ is uniform, thus εms

is simply
εms(τ

′, n) := Pr
e′ $←R

[wt(e′) ≤ nτ ′]

Again, it was shown in [LF06] that this probability can be approximated as

εms(τ
′, n) ≈ c(τ ′, 1/2)−n. (4.4)

Clearly, εms is a trivial lower bound on the advantage ofA in forging a valid tag, by the
following claim in Game1 one cannot do any better than this.

Claim. Pr[A wins in Game1] = εms(τ
′, n)

To see that this claim holds one must just observe that the answers A gets in the first
phase of the active attack in Game1 are independent of the secret s, s′. Hence A’s
advantage is εms(τ

′, n) by definition.
Claims 4.2 and 4.2 imply (4.1) and conclude the proof of Theorem 1.
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We require the mapping π : {0, 1}λ → R used in the protocol to be suitable for R,
i.e. for all c, c′ ∈ {0, 1}λ, π(c) − π(c′) ∈ R \ R∗ iff c = c′. In Section 5 we describe
efficient suitable maps for any R = F2[X ]/(f) where f has no factor of degree ≤ λ.
This condition is necessary, as no suitable mapping exists if f has a factor fi of degree
≤ λ: in this case, by the pigeonhole principle, there exist distinct c, c′ ∈ {0, 1}λ such
that π(c) = π(c′) mod fi, and thus π(c) − π(c′) ∈ R \ R∗.

We stress that for our security proof we need π to be suitable for R, since otherwise
(4.3) is no longer guaranteed to hold. It is an interesting question if this is inherent, or
if the security of our protocol can be reduced to the Ring-LPNR problem for arbitrary
rings R = F2[X ]/(f), or even R = Fq[X ]/(f) (This is interesting since, if f has factors
of degree� λ, the protocol could be implemented more efficiently and even become
based on the worst-case hardness of lattice problems). Similarly, it is unclear how to
prove security of our protocol instantiated with Toeplitz matrices.

5 Implementation

There are two objectives that we pursue with the implementation of our protocol. First,
we will show that the protocol is in fact practical with concrete parameters, even on
extremely constrained CPUs. Second, we investigate possible application scenarios
where the protocol might have additional advantages. From a practical point of view, we
are particularly interested in comparing our protocol to classical symmetric challenge-
response schemes employing AES. Possible advantages of the protocol at hand are (i)
the security properties and (ii) improved implementation properties. With respect to the
former aspect, our protocol has the obvious advantage of being provably secure under
a reasonable and static hardness assumption. Even though AES is arguably the most
trusted symmetric cipher, it is “merely” computationally secure with respect to known
attacks.

In order to investigate implementation properties, constrained microprocessors are
particularly relevant. We chose an 8-bit AVR ATmega163 [Atm] based smartcard, which
is widely used in myriads of embedded applications. It can be viewed as a typical rep-
resentative of a CPU used in tokens that are in need for an authentication protocol, e.g.,
computational RFID tags or (contactless) smart cards. The main metrics we consider
for the implementation are run-time and code size. We note at this point that in many
lightweight crypto applications, code size is the most precious resource once the run-
time constraints are fulfilled. This is due to the fact that EEPROM or flash memory is
often heavily constrained. For instance, the WISP, a computational RFID tag, has only
8 kBytes of program memory [Wik, MSP].

We implemented two variants of the protocol described in Section 4. The first variant
uses a ring R = F2[X ]/(f), where f splits into five irreducible polynomials; the second
variant uses a field, i.e., f is irreducible. For both implementations, we chose parameters
which provide a security level of λ = 80 bits, i.e., the parameters are chosen such that ε′

in (4.1) is bounded by 2−80 and the completeness εc is bounded by 2−40. This security
level is appropriate for the lightweight applications which we are targeting.
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5.1 Implementation with a Reducible Polynomial

From an implementation standpoint, the case of reducible polynomial is interesting
since one can take advantage of arithmetic based on the Chinese Remainder Theorem.

PARAMETERS. To define the ring R = F2[X ]/(f), we chose the reducible polynomial
f to be the product of the m = 5 irreducible pentanomials specified by the follow-
ing powers with non-zero coefficients: (127, 8, 7, 3, 0), (126, 9, 6, 5, 0), (125, 9, 7, 4, 0),
(122, 7, 4, 3, 0), (121, 8, 5, 1, 0)5. Hence f is a polynomial of degreen = 621. We chose
τ = 1/6 and τ ′ = .29 to obtain minimal soundness error εms ≈ c(τ ′, 1/2)−n ≤ 2−82

and completeness error εc ≤ 2−42. From the discussion of Section 3 the best known
attack on Ring-LPNR

τ with the above parameters has complexity > 280. The mapping
π : {0, 1}80 → R is defined as follows. On input c ∈ {0, 1}80, for each 1 ≤ i ≤ 5, pad
c ∈ {0, 1}80 with deg(fi) − 80 zeros and view the result as coefficients of an element
vi ∈ F2[X ]/(fi). This defines π(c) = (v1, . . . , v5) in CRT representation. Note that,
for fixed c, c∗ ∈ {0, 1}80, we have that π(c) − π(c∗) ∈ R \ R∗ iff c = c∗ and hence π
is suitable for R.

IMPLEMENTATION DETAILS. The main operations are multiplications and additions of
polynomials that are represented by 16 bytes. We view the CRT-based multiplication in
three stages. In the first stage, the operands are reduced modulo each of the five irre-
ducible polynomials. This part has a low computational complexity. Note that only the
error e has to be chosen in the ring and afterwards transformed to CRT representation. It
is possible to save the secret key (s, s′) and to generate r directly in the CRT represen-
tation. This is not possible for e because e has to come from BerRτ . In the second stage,
one multiplication in each of the finite fields defined by the five pentanomials has to
be performed. We used the right-to-left comb multiplication algorithm from [HMV03].
For the multiplication with π(c) we exploit the fact that only the first 80 coefficients
can be non-zero. Hence we wrote one function for normal multiplication and one for
sparse multiplication. The latter is more than twice as fast as the former. The subse-
quent reduction takes care of the special properties of the pentanomials, thus code reuse
is not possible for the different fields. The third stage, constructing the product poly-
nomial in the ring, is shifted to the prover (RFID reader) which normally has more
computational power than the tag T . Hence the response (r, z) is sent in CRT form to
the reader. If non-volatile storage — in our case we need 2 · 5 · 16 = 160 bytes —
is available we can heavily reduce the response time of the tag. At an arbitrary point
in time, choose e and r according to their distribution and precompute tmp1 = r · s
and tmp2 = r · s′ + e. When a challenge c is received afterwards, tag T only has to
compute z = tmp1 · π(c) + tmp2. Because π(c) is sparse, the tag can use the sparse
multiplication and response very quickly. The results of the implementation are shown
in Table 2 in Section 5.3. Note that all multiplication timings given already include the
necessary reductions and addition of a value according to Figure 1.

5.2 Implementation with an Irreducible Polynomial

PARAMETERS. To define the field F = F2[X ]/(f), we chose the irreducible trinomial
f(X) = X532 + X + 1 of degree n = 532. We chose τ = 1/8 and τ ′ = .27 to

5 (127, 8, 7, 3, 0) refers to the polynomial X127 +X8 +X7 +X3 + 1.
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obtain minimal soundness error εms ≈ c(τ ′, 1/2)−n ≤ 2−80 and completeness error
εc ≈ 2−55. From the discussion in Section 3 the best known attack on Ring-LPNF

τ with
the above parameters has complexity > 280. The mapping π : {0, 1}80 → F is defined
as follows. View c ∈ {0, 1}80 as c = (c1, . . . , c16) where ci is a number between 1 and
32. Define the coefficients of the polynomial v = π(c) ∈ F as zero except all positions
i of the form i = 16 · (j − 1) + cj , for some j = 1, . . . , 16. Hence π(c) is sparse, i.e.,
it has exactly 16 non-zero coefficients. Since π is injective and F is a field, the mapping
π is suitable for F.

IMPLEMENTATION DETAILS. The main operation for the protocol is now a 67-byte
multiplication. Again we used the right-to-left comb multiplication algorithm from
[HMV03] and an optimized reduction algorithm. Like in the reducible case, the tag
can do similar precomputations if 2 · 67 = 134 bytes non-volatile storage are available.
Because of the special type of the mapping v = π(c), the gain of the sparse multipli-
cation is even larger than in the reducible case. Here we are a factor of 7 faster, making
the response time with precomputations faster, although the field is larger. The results
are shown in Table 3 in Section 5.3.

5.3 Implementation Results

All results presented in this section consider only the clock cycles of the actual arith-
metic functions. The communication overhead and the generation of random bytes is
excluded because they occur in every authentication scheme, independent of the un-
derlying cryptographic functions. The time for building e from BerRτ out of the random
bytes and converting it to CRT form is included in Overhead. Table 2 and Table 3 shows
the results for the ring based and field based variant, respectively.

Table 2. Results for the ring based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 17, 500 264
Mul 5× 13, 000 164
sparse Mul 5× 6, 000 170

total 112, 500 1356

The overall code size is not the sum of the other values because, as mentioned before,
the same multiplication code is used for all normal and sparse multiplications, respec-
tively, while the reduction code is different for every field (≈ 134 byte each). The same
code for reduction is used independently of the type of the multiplication for the same
field. If precomputation is acceptable, the tag can answer the challenge after approxi-
mately 30, 000 clock cycles, which corresponds to a 15 msec if the CPU is clocked at
2 MHz.

For the field-based protocol, the overall performance is slower due to the large
operands used in the multiplication routine. But due to the special mapping v = π(c),
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Table 3. Results for the field based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 3, 000 150
Mul 150, 000 161
sparse Mul 21, 000 148

total 174, 000 459

here the tag can do a sparse multiplications in only 21, 000 clocks cycles. This allows
the tag to respond in 10.5 msec at 2 MHz clock rate if non-volatile storage is available.

As mentioned in the introduction, we want to compare our scheme with a conven-
tional challenge-response authentication protocol based on AES. The tag’s main oper-
ation in this case is one AES encryption. The implementation in [LLS09] states 8, 980
clock cycles for one encryption on a similar platform, but unfortunately no code size is
given; [Tik] reports 10121 cycles per encryption and a code size of 4644 bytes.6 In com-
parison with these highly optimizedAES implementations, our scheme is around eleven
times slower when using the ring based variant without precomputations. If non-volatile
storage allows precomputations, the ring based variant is only three times slower than
AES. But the code size is by a factor of two to three smaller, making it attractive for
Flash constrained devices. The field based variant without precomputations is 17 to 19
times slower than AES, but with precompuations it is only twice as slow as AES, while
only consuming one tenths of the code size. From a practical point of view, it is im-
portant to note that even our slowest implementation is executed in less than 100 msec
if the CPU is clocked at 2 MHz. This response time is sufficient in many application
scenarios. (For authentications involving humans, a delay of 1 sec is often considered
acceptable.)

The performance drawback compared to AES is not surprising, but it is consider-
ably less dramatic compared to asymmetric schemes like RSA or ECC [GPW+04]. But
exploiting the special structure of the multiplications in our scheme and using only a
small amount of non-volatile data memory provides a response time in the same order
of magnitude as AES, while keeping the code size much smaller.

6 Conclusions and Open Problems

We proposed a new [KPC+11]-like authentication protocol with provable security
against active attacks based on theRing-LPN assumption, consisting of only two rounds,
and having small communication complexity. Furthermore, our implementations on an
8-bit AVR ATmega163 based smartcard demonstrated that it has very small code size
and its efficiency can be of the same order as traditional AES-based authentication pro-
tocols. Overall, we think that its features make it very applicable in scenarios that in-
volve low-cost, resource-constrained devices.

6 An internet source [Poe] claims to encrypt in 3126 cycles with code size of 3098 bytes but
since this is unpublished material we do not consider it in our comparison.
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Our protocol cannot be proved secure against man-in-the-middle (MIM) attacks, but
using a recent transformation from [DKPW12] we can get a MIM secure scheme with
small extra cost (one application of a universal hash function.) Still, finding a more
direct construction which achieves MIM security (or proving that the current protocol
already has this property) but doesn’t require any hashing remains an interesting open
problem.

We believe that the Ring-LPN assumption is very natural and will find further cryp-
tographic applications, especially for constructions of schemes for low-cost devices.
In particular, we think that if the LPN-based line of research is to lead to a practical
protocol in the future, then the security of this protocol will be based on a hardness as-
sumption with some “extra algebraic structure”, such as Ring-LPN in this work, or LPN
with Toeplitz matrices in the work of Gilbert et al. [GRS08a]. More research, however,
needs to be done on understanding these problems and their computational complexity.
In terms of Ring-LPN, it would be particularly interesting to find out whether there ex-
ists an equivalence between the decision and the search versions of the problem similar
to the reductions that exist for LPN [BFKL93, Reg09, KS06a] and Ring-LWE [LPR10].
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ence and those of the ECRYPT Workshop on Lightweight Cryptography for very useful
comments, and in particular for the suggestion that the scheme is somewhat vulnerable
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what the reviewer had in mind. We also thank Tanja Lange for pointing us to the pa-
per of [Kir11] and for discussions of some of her recent work. This work was partially
supported by the European Research Council.
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A Man-In-The-Middle Attack

In this section, we sketch a man-in-the-middle attack against the protocol in Figure 1
that recovers the secret key in time approximately O

(

n1.5 · 2λ/2
)

when the adversary
is able to insert himself into that many valid interactions between the reader and the
tag. For a ring R = F2[X ]/(f) and a polynomial g ∈ R, define the vector g to be a
vector of dimension deg(f) whose ith coordinate is the X i coefficient of g. Similarly,
for a polynomial h ∈ R, let Rot(h) be a deg(f)×deg(f) matrix whose ith column (for

0 ≤ i < deg(f)) is
−−−→
h ·X i, or in other words, the coefficients of the polynomial h ·X i

in the ring R. From this description, one can check that for two polynomials g, h ∈ R,
the product

−−→
g · h = Rot(g) · h mod 2 = Rot(h) · g mod 2.

We now move on to describing the attack. The ith (successful) interaction between
a reader R and a tag T consists of the reader sending the challenge ci, and the tag
replying with the pair (ri, zi) where zi− ri · (s ·π(ci)+ s′) is a low-weight polynomial
of weight at most n · τ ′. The adversary who is observing this interaction will forward
the challenge ci untouched to the tag, but reply to the reader with the ordered pair
(ri, z

′
i = zi + ei) where ei is a vector that is strategically chosen with the hope that the

vector z′i−ri·(s·π(ci)+s′) is exactly of weight n·τ ′. It’s not hard to see that it’s possible
to choose such a vector ei so that the probability of z′i−ri ·(s·π(ci)+s′) being of weight
n · τ ′ is approximately 1/

√
n. The response (ri, z′i) will still be valid, and so the reader

will accept. By the birthday bound, after approximately 2λ/2 interactions, there will be
a challenge cj that is equal to some previous challenge ci. In this case, the adversary
replies to the reader with (ri, z

′′
i ), where the polynomial z′′i is just the polynomial z′i

whose first bit (i.e. the constant coefficient) is flipped. What the adversary is hoping for
is that the reader accepted the response (ri, z′i) but rejects (ri, z′′i ). Notice that the only
way this can happen is if the first bit of z′i is equal to the first bit of ri ·(s·π(ci)+s′), and
thus flipping it, increases the error by 1 and makes the reader reject. We now explain
how finding such a pair of responses can be used to recover the secret key.

http://point-at-infinity.org/avraes/
http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html
http://wisp.wikispaces.com/WISP+4.0+DL
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Since the polynomial expression z′i− ri · (s ·π(ci) + s′) = z′i− ri ·π(ci) · s− ri · s′
can be written as matrix-vector multiplications as

z′
i −Rot(ri · π(ci)) · s−Rot(ri) · s′ mod 2,

if we let the first bit of z′
i be βi, the first row of Rot(ri · π(ci)) be ai and the first row

of Rot(ri) be bi, then we obtain the linear equation

〈ai, s〉+ 〈bi, s′〉 = βi.

To recover the entire secret s, s′, the adversary needs to repeat the above attack until
he obtains 2n linearly-independent equations (which can be done with O(n) successful
attacks), and then use Gaussian elimination to recover the full secret.
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