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Laplace Approximation for Logistic Gaussian

Process Density Estimation and Regression

Jaakko Riihimäki ∗ and Aki Vehtari †

Abstract. Logistic Gaussian process (LGP) priors provide a flexible alternative
for modelling unknown densities. The smoothness properties of the density esti-
mates can be controlled through the prior covariance structure of the LGP, but the
challenge is the analytically intractable inference. In this paper, we present ap-
proximate Bayesian inference for LGP density estimation in a grid using Laplace’s
method to integrate over the non-Gaussian posterior distribution of latent function
values and to determine the covariance function parameters with type-II maximum
a posteriori (MAP) estimation. We demonstrate that Laplace’s method with MAP
is sufficiently fast for practical interactive visualisation of 1D and 2D densities. Our
experiments with simulated and real 1D data sets show that the estimation accu-
racy is close to a Markov chain Monte Carlo approximation and state-of-the-art
hierarchical infinite Gaussian mixture models. We also construct a reduced-rank
approximation to speed up the computations for dense 2D grids, and demonstrate
density regression with the proposed Laplace approach.

Keywords: Gaussian process, logistic transformation, density estimation, density
regression, approximate inference, Laplace’s method

1 Introduction

Logistic Gaussian process (LGP) priors provide a flexible alternative for modelling un-
known densities (Leonard 1978). With the LGP models densities can be estimated
without restricting to any specific parameterized form and the smoothness properties of
estimates can be controlled through the prior covariance structure. The challenge with
the LGP model is the analytically intractable inference that results from the normal-
ization term required to construct the prior distribution over density functions. This
paper focuses on finite dimensional approximations, where the Gaussian process and the
integral required to ensure normalization are evaluated in a grid as described by Tokdar
(2007). The theoretical properties of LGP are discussed by Tokdar and Ghosh (2007)
who establish conditions for posterior consistency of LGP density estimation and by
van der Vaart and van Zanten (2009) who consider posterior convergence rates. Tokdar
(2007) shows that as the spacing between the grid points decreases, the Kullback–Leibler
divergence from an infinite-dimensional model to the finite-dimensional approximation
converges to zero. Related considerations about a finite element approach for LGP den-
sity estimation are also presented by Griebel and Hegland (2010). Densities are often
estimated on bounded intervals, although the estimation can be extended to unbounded
intervals by transforming them into bounded intervals as proposed by Tokdar (2007).
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Tokdar (2007) integrated over the latent values with Metropolis–Hastings sampling
and over the potential grid point sets with Metropolis–Hastings–Green sampling. The
purpose of the latter part is to keep the number of active grid points small and automat-
ically find the most important grid point locations. By replacing the sampling with an
analytic approximation, inference can be made faster even if a fixed and finer grid is as-
sumed. In this paper, we consider Laplace’s method (LA) to approximate the posterior
inference for LGP density estimation in a grid. Our objective is to obtain an accurate
and quick approximation that enables practical estimation of densities by focusing on
efficient ways to approximate Bayesian inference for LGP density estimation.

The proposed LA approach is related to other approaches in the literature. Given fixed
covariance function parameters, the LA approximation for the posterior distribution
involves finding the posterior mode, which is equivalent to a penalized maximum like-
lihood estimator considered by Leonard (1978) and Thorburn (1986). The marginal
likelihood can be approximated with LA, which enables a fast gradient-based type-II
maximum a posteriori (MAP) estimation of the covariance function parameters, or alter-
natively, the posterior distribution can be integrated over. Lenk (1991) uses a truncated
Karhunen–Loeve representation and derives the moments of the density process, from
which it is also possible to obtain a marginal likelihood approximation. Lenk evalu-
ates the marginal likelihood of hyperparameter values in a grid, while we use gradients
and quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization or Markov
chain Monte Carlo (MCMC) integration. In Lenk’s approach the mean of the density
process is guaranteed to be positive, but there is no such guarantee for the whole pos-
terior. Also the spectral representation restricts the selection of covariance functions.
Lenk (2003) refines his approach with a Fourier series expansion and MCMC sampling
of the hyperparameters.

The computational complexity of the proposed LA approach is dominated by the co-
variance matrix operations, which scale in a straightforward implementation as O(m3),
where m is the number of grid points. However, because of the discretization, the
computational complexity is independent of the number of observations. Applying the
proposed approach with a default grid size 400, 1D and 2D density estimation takes one
to two seconds, which facilitates interactive visualization of data with density estimates
and violin plots (see, e.g., Figures 2–5 and 8). Additionally, we consider fast Fourier
transform (FFT) to speed up the computations with an even grid and stationary covari-
ance functions. To avoid the cubic computational scaling in m with dense 2D grids, we
also exploit Kronecker product computations to obtain a reduced-rank approximation
of the exact prior covariance structure.

The number of grid points grows exponentially with the data dimension d. Although
the Kronecker product approach is suitable for reducing the computation time when
d > 1, the exponentially increasing number of latent function values makes the proposed
approach impractical for more than three or four dimensions. Adams et al. (2009)
propose an alternative GP approach called Gaussian process density sampler (GPDS) in
which the numerical approximation of the normalizing term in the likelihood is avoided
by a conditioning set and an elaborate rejection sampling method. The conditioning
set is generated by the algorithm, which automatically places ms points where they
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are needed, making the estimation in higher-dimensional spaces easier. However, the
computational complexity of GPDS scales as O((n +ms)

3), where n is the number of
data points.

The main contribution of this paper is the construction of the quick approximation for
the LGP density estimation and regression by combining various ideas from the liter-
ature. Using Laplace’s method to integrate over the latent values, we avoid the slow
mixing of MCMC. We present FFT and reduced-rank based speed-ups tailored for LGP
with LA. We demonstrate that LA can be further improved by rejection and importance
sampling. We also show that using the type-II MAP estimation for two to three hyper-
parameters gives good results compared to the integration over the hyperparameters.

In the next section, we review the basics of the logistic Gaussian processes. In Sec-
tion 3, we present the LA approach for LGP density estimation. We also introduce
the additional approximations for speeding up the inference and consider briefly a sim-
ilar LA approach for LGP density regression. In Section 4, we demonstrate the LA
approach with several experiments, and compare it against MCMC and hierarchical
infinite Gaussian mixture models by Griffin (2010).

2 Density Estimation with Logistic Gaussian Process

We consider the problem of computing a density estimate p(x) given n independently
drawn d-dimensional data points x1, . . . ,xn from an unknown distribution in a finite
region V of Rd. In this paper, we focus only on d ∈ {1, 2}. To find an estimate p for
the unknown density, we can maximize the following log-likelihood functional

L(p) =

n
∑

i=1

log p(xi) (1)

with the constraints
∫

V
p(x)dx = 1, and p(x) ≥ 0 for x ∈ V . The limiting solution

leads to a mixture of delta functions located at the observations (Leonard 1978), which
is why we need to set prior beliefs about the unknown density to obtain more realistic
estimates.

To introduce the constraints of the density being non-negative and that its integral over
V is equal to one, we employ the logistic density transform (Leonard 1978)

p(x) =
exp(f(x))

∫

V
exp(f(s))ds

, (2)

where f is an unconstrained latent function. To smooth the density estimates, we place
a Gaussian process prior for f , which enables us to set the prior assumptions about the
smoothness properties of the unknown density p via the covariance structure of the GP
prior.

We assume a zero-mean Gaussian process g(x) ∼ GP (0, κ(x,x′)), where the covariance
function is denoted with κ(x,x′) for a pair of inputs x and x′. An example of a widely
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Figure 1: An illustration of the logistic Gaussian process density estimation with and
without the basis functions. The first plot visualizes the posterior latent function with-
out the basis functions, and the second plot shows the corresponding density estimate
with the logistic density transform (2) given 50 observations from the mixture of two
Gaussians: 1

2
N (−2, 1) + 1

2
N (2, 22). The third plot visualizes the posterior latent func-

tion with the second-order polynomials as the basis functions, and the fourth plot shows
the corresponding density estimate. The hyperparameter values of the squared expo-
nential covariance function (3) are in this example σ2 = 1 and l1 = 1

2
.

used covariance function is the stationary squared exponential covariance function

κ(x,x′) = σ2 exp

(

−1

2

d
∑

k=1

l−2

k (xk − x′
k)

2

)

, (3)

where the hyperparameters θ = {σ2, l1, . . . , ld} govern the smoothness properties of
f (Rasmussen and Williams 2006). The length-scale hyperparameters l1, . . . , ld con-
trol how fast the correlation decreases in different dimensions, and σ2 is a magnitude
hyperparameter.

For the latent function f in equation 2, we assume the model f(x) = g(x) + h(x)Tfi,
where the GP prior is combined with the explicit basis functions h(x). Regression
coefficients are denoted with fi, and by placing a Gaussian prior fi ∼ N (b, B) with the
mean b and the covariance B, the parameters fi can be integrated out from the model,
which results in the following GP prior for f (O’Hagan 1978; Rasmussen and Williams
2006):

f(x) ∼ GP
(

h(x)Tb, κ(x,x′) + h(x)TBh(x′)
)

. (4)

We assume the second-order polynomials for the explicit basis functions. We use h(x) =
[x1, x

2
1]

T in 1D, and h(x) = [x1, x
2
1, x2, x

2
2, x1x2]

T in 2D, which leads to a GP prior
that can favour density estimates where the tails of the distribution go eventually to
zero. The effect of the basis functions is demonstrated in an illustrative 1D example of
Figure 1.

We discretize V into m subregions (or intervals in 1D), and collect the coordinates of
the subregions into an m× d matrix X, where the i’th row denotes the center point of
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the i’th subregion. Given X, the GP prior (4) results in the Gaussian distribution over
the latent function values

p(f |X, θ) = N (f |Hb,K +HBHT ), (5)

where f is a column vector of m latent values associated with each subregion. The
entries of the m × m covariance matrix K are determined by the input points X and
the covariance function. The matrix H, of size m× 2 in 1D and m× 5 in 2D, contains
the values of the fixed basis functions evaluated at X. We assume a weakly informative
prior distribution for the regression coefficients by fixing the mean b = 0 (a zero vector
of a length 2 in 1D and 5 in 2D), and the covariance B = 102I, where I is the identity
matrix of a size 2 × 2 (in 1D) and 5 × 5 (in 2D). The regression coefficient for the
quadratic term x2

k should be negative in order to make the tails of a distribution to
go towards zero. However, the prior distribution does not force the negativity of the
coefficient. In our experiments, the posterior of the coefficient was clearly below zero,
but in our implementation it is also possible to force the negativity of the coefficient by
rejection sampling (in 1D).

After the discretization, the log-likelihood contribution of an observation belonging to
the i’th subregion can be written as

Li = log

(

wi exp(fi)
∑m

j=1
wj exp(fj)

)

, (6)

where the latent value fi is associated with the i’th subregion. Throughout this paper,
we assume a regular grid, and therefore the weights w1, . . . , wm have all the same value
and can be omitted from (6). The number of observations that fall within the i’th
subregion is denoted with yi and all the count observations with an m × 1 vector y.
The overall log-likelihood contribution of the n observations is given by

log p(y|f) = yT f − n log





m
∑

j=1

exp(fj)



 . (7)

The prior (5) and the likelihood (7) are combined by Bayes’ rule, which results in the
conditional posterior distribution of the latent values

p(f |X,y, θ) =
1

Z
p(f |X, θ)p(y|f), (8)

where Z = p(y|X, θ) =
∫

p(f |X, θ)p(y|f)df is the marginal likelihood. Due to the
non-Gaussian likelihood (7), the posterior distribution is also non-Gaussian, and ap-
proximate methods are needed to integrate over f .

3 Approximate Inference

In this section, we discuss the implementation issues of Laplace’s method for logistic
GP density estimation. In Section 3.1, we present an efficient approach for the mode
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finding and computation of the marginal likelihood and predictions. Further speed-
ups are obtained by using the fast Fourier transform for matrix-vector multiplications
and by Kronecker product and reduced-rank approximations suitable for d > 1 cases
with dense grids (large m). In Section 3.2, we consider the LA approach for logistic
GP density regression, and in Section 3.3, we give a brief description of inference with
MCMC.

3.1 Inference with the Laplace Approximation

Our approach resembles the Laplace approximation for GP classification (Williams and
Barber 1998; Rasmussen and Williams 2006) and GP point process intensity estimation
(Cunningham et al. 2008), but the implementation is different because in LGP each
term in the likelihood (7) depends on all the latent values f .

The Laplace approximation is based on a second-order Taylor expansion for
log p(f |X,y, θ) around the posterior mode f̂ , which results in the Gaussian approxi-
mation

q(f |X,y, θ) = N (f |f̂ ,Σ), (9)

where f̂ = argmaxf p(f |X,y, θ). The covariance matrix is given by

Σ = (C−1 +W )−1, (10)

where C = K + HBHT and W = −∇∇f log p(y|f)|f=f̂
. The likelihood (7) leads to a

full matrix W with the following structure1

W = n(diag(u)− uuT ), (11)

where the non-negative entries of the vector u are given by

ui =
exp(fi)

∑m
j=1

exp(fj)
. (12)

In the implementation, forming the full matrix W can be avoided by using the vector u
and the structure (11). Similarly to multiclass classification with the softmax likelihood
(Williams and Barber 1998; Rasmussen and Williams 2006), W is positive semidefinite,
and because C is positive definite, p(f |X,y, θ) has a unique maximum.

Newton’s Method for Finding the Mode

We use Newton’s method for finding the mode f̂ . At each iteration, we need to compute

fnew = (C−1 +W )−1v, (13)

1We use the following notation: diag(w) with a vector argument means a diagonal matrix with the
elements of the vector w on its diagonal, and diag(W ) with a matrix argument means a column vector
consisting of the diagonal elements of the matrix W .
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where v = W f +∇f log p(y|f). To increase the numerical stability of the computations,
we use the factorization W = RRT , where

R =
√
n((diag(u))

1

2 − uuT (diag(u))−
1

2 ). (14)

Instead of a direct implementation of equation 13, we can apply the matrix inversion
lemma (see, e.g., Harville 1997) to write the Newton step in a numerically preferable
way as

fnew = C(Im −R(Im +RTCR)−1RTC)v. (15)

The inversion of equation 15 can be computed by solving z from the linear system
(Im+RTCR)z = RTCv with the conjugate gradient method. As discussed, for example,
by Cunningham et al. (2008), a stationary covariance function and evenly spaced grid
points lead to a Toeplitz covariance matrix which can be embedded in a larger circulant
matrix enabling efficient computations by using the fast Fourier transform. With a
Toeplitz covariance matrix K, we can achieve a small speed-up with larger grid sizes
in the evaluation of the Newton step (15) because all the multiplications of K and any
vector can be done efficiently in the frequency domain. By using FFT, these matrix-
vector multiplications become convolution operations for which we are required only to
form a single row of the embedded circulant matrix instead of the full matrix K. The
rest of the matrix-vector multiplications in equation 15 are fast because the matrix H

has only two (in 1D) or five (in 2D) columns, and instead of forming the full matrix R,
we can use the vector u and exploit the structure of R from equation 14.

The Approximate Marginal Likelihood and Predictions

Approximating the integration over f with the LA approximation enables fast gradient-
based type-II MAP estimation for choosing the values for the covariance function hyper-
parameters. After finding f̂ , the approximate log marginal likelihood can be evaluated
as

log p(y|X, θ) ≈ log q(y|X, θ) = −1

2
f̂TC−1f̂ + log p(y|f̂)− 1

2
log|Im +RTCR| (16)

(see, e.g., Rasmussen and Williams 2006). The first and second terms of equation 16
are fast to compute by using the results from Newton’s algorithm, but the determinant
term is more difficult to evaluate.

Cunningham et al. (2008) show that for the point process intensity estimation with the
GP priors, the evaluation of a corresponding determinant term can be done efficiently
by exploiting a low-rank structure of the observation model. In density estimation W

has rank m− 1 due to the normalization over V, and a similar low-rank representation
as in intensity estimation cannot be used for W . Therefore, we form the full m × m

matrix and compute the Cholesky decomposition that scales as O(m3). Although this
is computationally burdensome for large m, it is required only once per each evaluation
of the marginal likelihood after the convergence of Newton’s algorithm. Typically, in
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1D cases with the number of intervals m being less than one thousand, the LA approach
is sufficiently fast for practical purposes (in our implementation the default size for m

is 400). However, the computations can become restrictive in 2D with large m. In such
cases, we consider a reduced-rank approximation for the prior covariance K to find a
faster way to compute the determinant term and the approximate posterior covariance,
as will be discussed in Section 3.1. The gradients of the log marginal likelihood with
respect to the hyperparameters θ can be computed by evaluating explicit and implicit
derivatives similarly as shown by Rasmussen and Williams (2006).

We place a prior distribution p(θ) for the hyperparameters to improve the identifiability
of the ratio of the magnitude and the length-scale parameters of the covariance func-
tion. We assume a weakly informative half Student-t distribution, as recommended for
hierarchical models by Gelman (2006), with one degree of freedom and a variance that
is equal to ten in 1D and a thousand in 2D for σ (magnitude). For l1, . . . , ld (length-
scales), we assume otherwise the same prior but with a variance that is equal to one.
The MAP estimate for the hyperparameters is found by maximizing the approximate
marginal posterior p(θ|y, X) ∝ q(y|X, θ)p(θ), in which we use the BFGS quasi-Newton
optimization. In addition to the MAP estimate, we also approximate the integration
over the hyperparameters with the central composite design (LA-CCD-LGP) scheme,
similarly as proposed by Rue et al. (2009).

To compute the joint posterior predictive distribution, we marginalize over the latent
values by Monte Carlo using 8000 latent samples drawn from the multivariate normal
posterior predictive distribution. This sampling is needed only once after the MAP
estimate for the hyperparameters has been found, and time consumed in this step is
negligible compared to the other parts of the computations. In many cases, we have
observed that the posterior weights of the quadratic terms x2

k of the basis function are
automatically small and thus the effect of basis functions is not strong for densities not
well represented by them. We consider an optional rejection sampling step based on
finite differences to force the tails to go to zero (in 1D), if necessary (not used if the
density is defined to be bounded).

To improve the Gaussian approximation of the posterior distribution, we also consider
an additional importance sampling step (LA-IS-LGP). Following Geweke (1989) we use
the multivariate split Gaussian density as an approximation for the exact posterior. The
multivariate split Gaussian is based on the posterior mode and covariance, but the den-
sity is scaled along the principal component axes (in the positive and negative direction
separately) adaptively to match to the skewness of the true distribution (see also Villani
and Larsson 2006). To further improve the performance the discontinuous split Gaus-
sian used by Geweke (1989) was replaced with a continuous version. We observed that
scaling is not needed along the principal component axis corresponding to the smallest
eigenvalues. To speed up the computation, we scale only along the first 50 principal
component axes. The importance sampling step took approximately an additional 0.3
seconds, whereas direct sampling from the Gaussian posterior distribution (to compute
the predictions) took about 0.05 seconds. Due to this small additional computational
demand, we added the importance sampling correction also in the experiments. In all
the experiments the estimated effective number of samples (Kong et al. 1994) was rea-
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sonable, but we also included a sanity check to the code and give a warning and use a
soft thresholding of the importance weights if the estimated effective number of samples
is less than 200. As a comparison, using scaled Metropolis–Hastings sampling to obtain
500 effectively independent samples from the latent posterior given fixed hyperparam-
eters took 24 minutes (similar inefficiency in mixing was observed with other MCMC
methods usually used for GPs).

The Reduced-Rank Approximation for 2D Density Estimation

To speed up the inference with 2D grids when m is large, we propose a reduced-rank
approximation that can be formed efficiently by exploiting Kronecker product compu-
tations. For separable covariance functions, the covariance structure of evenly spaced
grid points can be presented in a Kronecker product form K = K1⊗K2, where Kk is an
mk ×mk matrix representing the covariances between the latent values associated with
mk grid points in the k’th dimension. For Kronecker products, many matrix operations
scale efficiently: for example, the determinant |K1 ⊗K2| can be computed by using the
determinants of the smaller matrices K1 and K2 as |K1|m2 |K2|m1 (Harville 1997). To
compute the approximate marginal likelihood (16), we need to evaluate the determinant
term of a form |Im + RT (K1 ⊗ K2 + HBHT )R|. Unfortunately, the Kronecker prod-
uct covariance structure does not preserve due to the multiplication and summation
operations, leading to the unfavourable O(m3) scaling. However, we can exploit the
Kronecker product K1⊗K2 to obtain the eigendecomposition of K efficiently, and then
form a reduced-rank approximation for K by using only the largest eigenvalues with
the corresponding eigenvectors. The idea of using the eigendecomposition to construct
a reduced-rank approximation for the covariance matrix has been previously mentioned
by Rasmussen and Williams (2006, Chapter 8). By denoting an eigenvalue of K1 with
r1 and an eigenvector of K1 with v1, and similarly, an eigenvalue of K2 with r2 and an
eigenvector of K2 with v2, then, r1r2 is an eigenvalue of K1 ⊗K2 and v1 ⊗v2 an eigen-
vector of K1⊗K2 corresponding to the eigenvalue r1r2 (Harville 1997). Thus, instead of
computing the eigendecomposition of K, which is an O(m3) operation, we can compute
the eigendecompositions of K1 and K2, which scales as O(m3

1+m3
2), and form a desired

number of eigenvalues and eigenvectors with the Kronecker product computations to
obtain the reduced-rank approximation for K.

We approximate the exact prior covariance with

K ≈ V SV T + Λ, (17)

where S is a diagonal matrix of size s×s having the s largest eigenvalues on its diagonal
and V is an m× s matrix consisting of the corresponding eigenvectors. Similarly to the
fully independent conditional (FIC) approximation (Snelson and Ghahramani 2006),
we use the exact full-rank diagonal by setting Λ = diag(diag(K) − diag(V SV T )) in
equation 17 to obtain a more accurate approximation.

With the approximate prior (17), the mode can be found using Newton’s method in a
similar way as described in Section 3.1. To evaluate the marginal likelihood approxima-
tion, we need to compute efficiently the determinant in equation 16. The determinant
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term can be written as n|A||1TD1/2A−1D1/21|, where 1 is an m × 1 column vector
of ones, D = n(diag(u)) is a diagonal matrix, and A = Im + D1/2(Λ + Ṽ S̃Ṽ T )D1/2.

We have defined Ṽ =
[

V H
]

, which is of size m × (s + 5), and S̃ =

[

S 0
0 B

]

of

size (s + 5) × (s + 5). To avoid forming any m × m matrix, |A| can be evaluated by
applying the matrix determinant lemma (see, e.g., Harville 1997) and A−1 by applying
the matrix inversion lemma. With the prior (17), we can also compute the approximate
gradients of the marginal likelihood with respect to hyperparameters without resorting
to any O(m3) matrix operations.

For large m, we use the same fixed grid for the observations and predictions. After
we have found the MAP estimate for the hyperparameters, we need to draw samples
from q(f |X,y, θ) to marginalize over the latent values. The posterior covariance is
approximated by

Σ ≈ C̃ − C̃(C̃ +W−1)−1C̃, (18)

where C̃ = Λ + Ṽ S̃Ṽ T is the approximate prior covariance with the explicit basis
functions evaluated at the grid points. We can rewrite (C̃ +W−1)−1 in equation 18 as

(C̃ +W−1)−1 = E − E1(1TE1)−11TE, (19)

where

E = D1/2(Z − ZD1/2Ṽ S̃1/2(LLT )−1S̃1/2Ṽ TD1/2Z)D1/2. (20)

In equation 20 we have denoted Z = (Im +DΛ)−1 which is diagonal and therefore fast
to evaluate. The matrix L in equation 20 is an (s+5)× (s+5) lower triangular matrix,
and it can be computed using the Cholesky decomposition

L = chol(Is+5 + S̃1/2Ṽ TD1/2ZD1/2Ṽ S̃1/2), (21)

which scales as O((s+ 5)3). When drawing samples from the Gaussian approximation
q(f |X,y, θ) given the covariance matrix (18), the structure of C̃ can be exploited to
avoid forming any m×m matrix.

With the reduced-rank approximation based on the eigendecomposition, we avoid choos-
ing (or optimizing) the locations of inducing inputs, which is required in many sparse
approximations, such as, fully independent conditional (FIC) sparse approaches (e.g.
Snelson and Ghahramani 2006; Quiñonero-Candela and Rasmussen 2005). With the
possibility to choose the locations of inducing inputs, the reduced-rank approximation
would be more expressive although choosing automatically the locations of inputs can
be challenging if the correlation structure of a GP prior is wanted to be preserved using
a smaller number of inducing inputs. In addition, the optimization of the locations of
inducing inputs is not trivial and can lead to overfitting (see, e.g., the discussion and
visualizations of different correlation structures by Vanhatalo et al. 2010). The problem
with the reduced-rank approximation based on Kronecker products, however, is that
the covariance function must be separable with respect to the inputs, which leads to
a restricted class of possible covariance functions. In this paper, we have tested the
reduced-rank approximation with the squared exponential covariance function.
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3.2 Density Regression with the Laplace Approximation

Logistic Gaussian processes are also suitable for estimating conditional densities p(t|x),
where t is a target variable (see, e.g., Tokdar et al. 2010). We discretize both the
covariate and target space in a finite region to model the conditional densities with the
logistic GP. In this paper, we focus on modelling the conditional density of t given a
univariate predictor x, which leads to a 2D grid similarly as in the case of 2D density
estimation. We denote the number of intervals in the covariate space with mx and the
number of intervals in target space with mt. To estimate the conditional densities, we
write the log-likelihood contribution of all the observations as

log p(y|f) =
mx
∑

i=1



yT
i fi − ni log





mt
∑

j=1

exp(fi,j)







 , (22)

where fi,j is the j’th element of fi. The mt × 1 vector fi contains all the latent values
associated with each subregion conditioned to the covariate xi, that is, the latent values
associated with the i’th slice of the grid. Similarly, yi is a vector of length mt and
consists of the number of observations in each subregion of the i’th slice of the grid
associated with xi. The vector f contains all the latent values of the grid and y all the
count observations. To approximate the resulting non-Gaussian posterior distribution,
we use Laplace’s method. The likelihood (22) results in that W in equation 10 is a
block-diagonal matrix. Similarly as in Section 3.1, the i’th block of W can be factorized
into RiR

T
i , where

Ri =
√
ni((diag(ui))

1

2 − uiu
T
i (diag(ui))

− 1

2 ). (23)

The total number of observations in the i’th slice of the grid is denoted with ni, and
the vector ui is formed as in equation 12, but by considering only the latent values fi.
Because the LA approach for the LGP density regression follows closely to the derivation
presented in Section 3.1, the implementation issues are omitted here. The density
regression becomes computationally challenging with dense grids and when applied to
a larger number of covariate dimensions d, and therefore, computational speed-ups are
required, but we do not consider these in this paper.

3.3 Markov Chain Monte Carlo

MCMC sampling enables approximating the integration over the posterior distribution
without limiting to a Gaussian form approximation. MCMC can be extremely slow but
in the limit of a long run it provides an exact result by which the accuracy of the LA
approach can be measured.

We approximate the posterior distribution by sampling alternatively from the condi-
tional posterior of the latent values p(f |X,y, θ) by using scaled Metropolis–Hastings
sampling (Neal 1998) and from the conditional posterior of the hyperparameters
p(θ|f , X,y) by using the no-U-turn sampler (NUTS) (Hoffmann and Gelman 2013).
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In the experiments, this combination was more efficient than other MCMC methods
usually used for GPs.

A fixed length of MCMC chains was determined by estimating the convergence and
effective sample size for different data sets. The convergences of MCMC chains were
diagnosed with visual inspection and the potential scale reduction factor (Brooks and
Gelman 1998). The effective sample size was estimated with Geyer’s initial monotone
sequence estimator (Geyer 1992). As the sampling from the conditional posterior of the
latent values was significantly faster, each meta-iteration consisted of a hundred sam-
pling steps for p(f |X,y, θ) and one step for p(θ|f , X,y). The sampling was initialised by
using the hyperparameter values at the mode of the LA approximated marginal poste-
rior and the initial latent values were sampled from the Gaussian approximation given
the initial hyperparameter values. The sampling consisted of 5100 meta-iterations of
which 100 iterations were removed as a burn-in. The effective sample sizes with differ-
ent data sets and random number sequences were about 50–100, which gives sufficient
accuracy for the posterior mean of the density estimate. For a grid size of 400, the
computation time was about 2200 seconds.

4 Experiments

In this section, we examine the performance of the Laplace approximation for the logistic
Gaussian process (LA-LGP) with several simulated and real data sets. We compare
LA-LGP to the MCMC approximation (MCMC-LGP) and to Griffin’s (2010) Dirichlet
process mixture of Gaussians with common component variance (CCV-mixture) and
different component variance (DCV-mixture). The CCV model assumes that all mixture
components have equal variances. The DCV model allows different variances for the
components. Computation for Dirichlet process mixture models is done with Gibbs
sampling. We compare LA-LGP only to advanced Bayesian kernel methods (Griffin
2010), since Tokdar (2007) and Adams (2009) have already shown that logistic GP
works better than simple kernel methods (such as the Parzen method). Griffin showed
that CCV- and DCV-mixture models performed equally or better than other default
priors for mixture models, which is why the other priors are excluded in our comparisons.
We do not compare the performance to other MCMC based LGP approaches by Tokdar
(2007) and Adams (2009) as the prior is the same and if using the same grid the
difference would only be in the implemantation speed and convergence speed of the
different MCMC methods. LA-LGP and MCMC-LGP were implemented using the
GPstuff toolbox2 (Vanhatalo et al. 2013), and CCV/DCV-mixtures were computed
using Griffin’s code3.

The squared exponential covariance function was employed in all the experiments with
LGP. We also tested Matérn, exponential, rational quadratic and additive combinations,
but the results did not improve considerably with these different covariance functions.
To ensure that the same prior is suitable for different scales, we normalized the grid to

2http://mloss.org/software/view/451/ or http://becs.aalto.fi/en/research/bayes/gpstuff/
3http://www.kent.ac.uk/ims/personal/jeg28/BDEcode.zip
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Figure 2: Example results of density estimation and related uncertainties for four dif-
ferent simulated data sets with n = 100.

have a zero mean and unit variance in all the experiments. If not otherwise mentioned
we used LGP with a grid size 400.

The rest of this section is divided into five parts. We compare the performances of LA-
LGP, MCMC-LGP and CCV/DCV-mixtures with simulated 1D data in Section 4.1,
and with real 1D data in Section 4.2. In Section 4.3, we test how different grid sizes
and the number of data points affect density estimates. We illustrate density estimation
with simulated 2D data in Section 4.4, and finally, we demonstrate density regression
with one simulated data in Section 4.5.

4.1 Simulated 1D Data

Figure 2 shows the density estimates and the corresponding 95% credible intervals for
single random realisations from simulated data sets with n = 100. The simulated data
sets are:

❼ t4: Student-t4 (0, 1)

❼ Mixture of two t4:
3

4
t4 (0, 1) +

1

4
t4
(

3, 1

82

)

❼ Gamma: Gamma
(

1, 1

3

)

❼ Truncated Gamma+Gaussian x ∈ (0, 1): 3

4
Gamma

(

1, 1

3

)

+ 1

4
N
(

3

4
, 1

82

)

.

Student’s t4-distribution was chosen as a simple unimodal distribution with thicker tails
than Gaussian. The mixture of two t4-distributions was chosen as a more challenging
case, where there are two separate modes with different widths. In the second plot
of Figure 2, it can be seen that the short length-scale required to model the narrow
peak makes the density estimate bumpy also elsewhere. Gamma was chosen as a simple
distribution with a mode on the boundary, and a truncated Gamma+Gaussian, x ∈
(0, 1), as a more difficult case with one mode on the boundary and another mode in
the middle of the distribution. Truncated Gamma+Gaussian was also used by Tokdar
(2007) and Adams (2009).
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Figure 3: The pairwise comparison of LA-LGP to (1) LA-LGP (no IS), (2) LA-CCD-
LGP, (3) MCMC-LGP, (4) CCV-mixture and (5) DCV-mixture. The plot shows the
distribution of differences in the mean log-predictive density (MLPD) along with the
median and 95% lines. The values above zero indicate that a method is performing
better than LA-LGP. The MLPDs were computed using the true density as the reference.
The violin plots were produced using LA-LGP from the results of 100 independent
random repetitions.

Figure 3 shows the pairwise comparison of LA-LGP to LA-LGP without importance
sampling (LA-LGP, no IS), LA-LGP with the CCD integration (LA-CCD-LGP), MCMC-
LGP, CCV-mixture and DCV-mixture. We made 100 realisations of n = 100 random
samples from the true density and computed for each method the mean log-predictive
densities (MLPD) over the true distribution. Distributions of the differences between
MLPDs are plotted with violin plots generated using LA-LGP along with the median
and 95% lines. There are no statistically significant differences between the methods for
the first three data sets. For the last data set the Gaussian mixture models do not work
well for the data with the mode on the boundary. The violin plots in Figures 3 and 5
also illustrate another practical application of density estimation with the LA approach
which facilitates interactive visualisation.

4.2 Real 1D Data

Figure 4 shows the density estimates and the corresponding 95% credible intervals for
the following real data sets:

❼ Galaxy n = 82

❼ Enzyme n = 245

❼ Log acidity n = 155

❼ Sodium lithium n = 190,

which were studied by Griffin (2010). The density estimates are visually similar to the
results by Griffin (2010, Figure 5).

Figure 5 shows the pairwise comparison of LA-LGP to LA-LGP (no IS), LA-CCD-
LGP, MCMC-LGP, CCV-mixture and DCV-mixture with the real data sets. For each
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Figure 4: Example results of density estimation and related uncertainties for four dif-
ferent real data sets with n = {82, 245, 155, 190}.

method, we computed leave-one-out cross-validation mean log-predictive densities (CV-
MLPD). Samples from the distributions of the differences between CV-MLPDs were
obtained using the Bayesian bootstrap (Rubin 1981; Vehtari and Lampinen 2002) and
violin plots were generated using LA-LGP.

There is no substantial difference in the performances of LA-LGP and MCMC-LGP
across the data sets. Importance sampling improves the performance of the Laplace
approximation for the Galaxy data set, but there is no improvement for the other data
sets. CCD and MCMC improved the performance only for the Enzyme data set. CCV-
mixture and DCV-mixture perform similar to LA-LGP for all the other data sets except
for the Sodium lithium data set for which they have slightly worse performance.

Figure 6 shows the effect of the rejection sampling and the importance sampling in the
density estimation of the Galaxy data set. The rejection sampling helps to make the
tails decreasing. The importance sampling makes the estimate to be lower on the areas
with no observations and respectively higher at the modes. When looking at MCMC
posterior samples, the Galaxy data had most skewed marginal posterior distributions
of the latent values, explaining the benefit of the importance sampling.

4.3 The Effect of the Number of Data and Grid Points

Figure 7 illustrates the effect of the number of grid and data points to the accuracy
of LA-LGP and MCMC-LGP. The number of grid points was 400 when the number
of data points was varied, and the number of data points was 100 when the number
of grid points was varied. For each combination, we made 100 realisations of random
samples from the mixture of two t4-distributions and the truncated Gamma+Gaussian
distribution. For both data sets the KL divergence approaches to zero when the number
of data points increase. It seems that about 50–100 grid points are sufficient for the
mixture of two t4-distributions, whereas the truncated Gamma+Gaussian distribution
is less sensitive to the number of grid points. There is no practical difference in the
performances of LA-LGP and MCMC-LGP.

We measured computation times for density estimation with different grid sizes using
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Figure 5: The pairwise comparison of LA-LGP to (1) LA-LGP (no IS), (2) LA-CCD-
LGP, (3) MCMC-LGP, (4) CCV-mixture and (5) DCV-mixture. The plot shows the dis-
tribution of differences in the cross-validation mean log-predictive density (CV-MLPD)
along with the median and 95% lines. The values above zero indicate that a method is
performing better than LA-LGP. CV-MLPDs were computed using leave-one-out cross-
validation. Violin plots were produced with LA-LGP given 1000 Bayesian bootstrap
draws from the distribution of CV-MLPD.
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Figure 6: Density estimates for the Galaxy data set with different sampling options.
The plots show the estimate with the Laplace approximation (LA), with additional
rejection sampling (LA-RS) or importance sampling (LA-IS), or with both rejection
and importance sampling (LA-RS-IS). See the text for an explanation.
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Figure 7: The effect of the number of data and grid points to the accuracy of density
estimation with two simulated data sets. The number of grid points was 400 when
the number of data points was varied, and the number of data points was 100 when
the number of grid points was varied. For both data sets, as the number of data
points increases, the KL divergence decreases to near zero. About 50–100 grid points
seem to be sufficient for the mixture of two t4-distributions, whereas the truncated
Gamma+Gaussian distribution is less sensitive to the number of grid points. There is
no practical difference in the performances of LA-LGP and MCMC-LGP.

100 random samples from the Student-t4 distribution. LA-LGP with the grid sizes
(50, 100, 200, 400, 900) took about (0.1, 0.2, 0.3, 0.9, 4.5) seconds using four cores of In-
tel(R) Xeon(R) 2.67GHz. If the matrix-vector multiplications in Newton’s algorithm
were made with FFT, the times were about (0.3, 0.3, 0.4, 0.8, 3.4) seconds. MCMC-LGP
with the same grid sizes took approximately (350, 460, 640, 2200, 8100) seconds. Using
Griffin’s code with the default options, CCV-mixture took about 200 seconds and DCV-
mixture about 800 seconds. Note that these time comparisons are only approximate,
and the computation times depend considerably on the specific implementation and on
the chosen convergence criteria.

4.4 Simulated and Real 2D Data

The columns 1–4 of Figure 8 show the following four simulated 2D distributions:

❼ Student-t8: t8

([

0
0

]

,

[

1 .7
.7 1

])

❼ Mixture of two Gaussians: 1

2
N
([

0
0

]

,

[

1 0
0 1

])

+ 1

2
N
([

2
2

]

,

[

1

2
0

0 1

2

])

❼ Banana: x1 ∼ N
(

0, 102
)

, x2 ∼ N
(

1

50
x2
1 − 1

5
, 1
)

❼ Ring: 1

2π

∫ π

−π

N
(

3

2

[

cosϕ
sinϕ

]

,

[

0.22 0
0 0.22

])

dϕ.

Given a random sample with n = 100 from each distribution, we compute the 2D density
estimates with LA-LGP. The mean estimates are illustrated in the lower row of Figure
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Figure 8: Example results of 2D density estimation for four different simulated data
sets (Columns 1–4, n = 100 observations) and for one real data set (Column 5, n = 272
observations). The upper row shows the contour plots of the true densities for the
simulated data sets and the MCMC-LGP result for the Old Faithful data. The lower
row shows the contour plots of the estimated densities inferred with LA-LGP.

8. The fifth column of Figure 8 shows two density estimates for the Old Faithful data
(n = 272). The upper plot shows the estimate with MCMC-LGP and the lower plot
shows the estimate with LA-LGP. The density estimation for LA-LGP with a 20 × 20
grid took about two seconds and for MCMC-LGP about 29 minutes.

We tested the reduced-rank approximation with two 2D data sets. Given n = 100
observations from the Student-t8 and the mixture of two Gaussians distributions, we
measured the computation times and the KL divergences from the true density to the
estimated density with different grid sizes. Figure 9 shows the elapsed times and the KL
divergences as a function of the grid sizes for LA-LGP with the exact prior covariance
(Full) and with the reduced-rank prior covariance (Kron) of equation 17. We formed
the reduced-rank approximation by excluding all the eigenvalues smaller than 10−6, or
taking at most 50% of all the eigenvalues. The differences between the exact and the
reduced-rank prior are small in the KL sense, but for the grid sizes larger than 30× 30,
LA-LGP with the full prior covariance matrix becomes computationally more expensive
than with the reduced-rank approximation.

4.5 Density Regression with Simulated Data

The estimation of a conditional density in a grid with the LA approach is essentially
similar to 1D density modelling with LA-LGP. Therefore, we consider density regression
with only one simulated data set in this paper.
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Figure 9: The comparison of LA-LGP with the full prior covariance (Full) and with
the reduced-rank approximation (Kron.) of equation 17 for two 2D data sets. The
performances are similar in the KL sense, but for grid sizes larger than 30 × 30, the
computation times are larger with the full prior covariance matrix.

We demonstrate density regression with a simulated case studied by Kundu and Dun-
son (2011). The first plot of Figure 10 shows the simulated density regression scheme,
where the predictors zi (i = 1, . . . , 50) are generated from the following trimodal density:
9

20
N (− 6

5
, ( 3

5
)2) + 9

20
N ( 6

5
, ( 3

5
)2) + 1

10
N (0, ( 1

4
)2). The generating model for a univariate

target is ti = λ exp
(

− ezi

1+ezi

)

+ ezi

1+ezi ǫi, where ǫi ∼ N (0, σ2
ǫ ). We fixed λ = 3 and σǫ = 1.

The second and third plots of Figure 10 show estimates with the Laplace approximation
(LA-DR) and the MCMC sampling (MCMC-DR) given a single realisation of n = 50
samples. Density regression in a 20 × 20 grid with LA-DR took about three seconds
and with MCMC 1600 seconds. Finally, to show the differences between the estimates
obtained with LA-DR and LA-LGP, we illustrate a conditional density estimate com-
puted directly from a 2D density estimate obtained with LA-LGP (the fourth plot of
Figure 10).

5 Discussion

In this paper, we have proposed to use Laplace’s method for fast logistic Gaussian
process density estimation. The empirical results with 1D data sets indicate that the
accuracy of the proposed LA approach with type-II MAP estimation is close to the
state-of-the-art MCMC methods for density estimation. The logistic Gaussian process
with Laplace’s method also avoids the sampling and convergence assessment problems
related to the highly multimodal posterior distributions of the mixture models.

Density estimation with LA-LGP and 400 grid points takes one to two seconds, which
in interactive use is a reasonable waiting time. For a finer grid or more dimensions,
more grid points could be placed, but this requires additional approximations. In this
paper, we have considered a reduced-rank approximation for LA-LGP that avoids the
infamous cubic scaling of the basic Gaussian process computation. In addition, we
have demonstrated the suitability of the Laplace approach for estimating conditional
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Figure 10: An illustration of density regression with one simulated data set. Dots
represent a single realisation of n = 50 samples from the simulated density. The first plot
shows the percentiles of the true conditional density. The second and third plots show
the estimates with the Laplace approximation (LA-DR) and with the MCMC sampling
(MCMC-DR). The fourth plot shows the conditional density estimate computed from
a 2D density estimate with LA-LGP.

densities with one predictor variable.

Instead of Laplace’s method, other deterministic approximations could be applied to
speed up the posterior inference compared to MCMC. Variational approximations, in-
cluding variational bounding and factorized variational approximations have been con-
sidered for GP models. Although these are close to LA in speed, and can be more
accurate than LA with suitable hyperparameter settings, they can also have problems
in estimating the hyperparameters (see, e.g., the comparisons between various Gaus-
sian approximations in GP classification problems by Nickisch and Rasmussen 2008).
Expectation propagation (EP) has been shown to perform better than the Laplace or
variational approximations for binary classification (Nickisch and Rasmussen 2008) and
for Student-t regression (Jylänki et al. 2011). However, for the Poisson model EP was
only slightly better than the Laplace approximation (Vanhatalo et al. 2010). Because
the Laplace approximation for the logistic Gaussian process performed almost as well
as the MCMC approximation, we believe that EP could only slightly improve the per-
formance of LA. The implementation of expectation propagation for non-diagonal W
is non-trivial. A quadrature-free moment matching for EP could also be considered
for density estimation, in a similar way as was done for multiclass GP classification
(Riihimäki et al. 2013), but in our preliminary testing the moment matching of the
distributions turned out to be quite slow.

The Gaussian approximations can be improved by considering corrections for the marginal
posterior distributions (Rue et al. 2009; Cseke and Heskes 2011). These corrections can
be challenging for the LGP model because the likelihood function cannot be factorized
into terms depending only on a single latent value. In the future, it would be interesting
to see whether similar corrections as considered by Rue et al. (2009), could be extended
for LA-LGP where each likelihood term depends on multiple latent values.

The code for LA-LGP, MCMC-LGP and violin plots are available as part of the free



J. Riihimäki and A. Vehtari 445

GPstuff toolbox for Matlab and Octave (http://becs.aalto.fi/en/research/bayes/
gpstuff/ or http://mloss.org/software/view/451/).
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