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Abstract

Background: In meta-analyses of a binary outcome, double zero events in some studies cause a critical

methodology problem. The generalized linear mixed model (GLMM) has been proposed as a valid statistical tool for

pooling such data. Three parameter estimation methods, including the Laplace approximation (LA), penalized quasi-

likelihood (PQL) and adaptive Gauss–Hermite quadrature (AGHQ) were frequently used in the GLMM. However, the

performance of GLMM via these estimation methods is unclear in meta-analysis with zero events.

Methods: A simulation study was conducted to compare the performance. We fitted five random-effects GLMMs

and estimated the results through the LA, PQL and AGHQ methods, respectively. Each scenario conducted 20,000

simulation iterations. The data from Cochrane Database of Systematic Reviews were collected to form the

simulation settings. The estimation methods were compared in terms of the convergence rate, bias, mean square

error, and coverage probability.

Results: Our results suggested that when the total events were insufficient in either of the arms, the GLMMs did

not show good point estimation to pool studies of rare events. The AGHQ method did not show better properties

than the LA estimation in terms of convergence rate, bias, coverage, and possibility to produce very large odds

ratios. In addition, although the PQL had some advantages, it was not the preferred option due to its low

convergence rate in some situations, and the suboptimal point and variance estimation compared to the LA.

Conclusion: The GLMM is an alternative for meta-analysis of rare events and is especially useful in the presence of

zero-events studies, while at least 10 total events in both arms is recommended when employing GLMM for meta-

analysis. The penalized quasi-likelihood and adaptive Gauss–Hermite quadrature are not superior to the Laplace

approximation for rare events and thus they are not recommended.
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Background
Meta-analysis is a statistical approach to synthesize the

findings from similar studies to the same question and is

widely used in healthcare science to make better deci-

sions [1]. Classical meta-analytic methods are generally

based on a two-stage framework (stage 1: forming the

estimates from each original study; stage 2: pooling these

estimates across studies), which assigns the effect sizes

with a specific weighting scheme (e.g. inverse variance)

and sums up the weighted effect sizes across the studies

to achieve the goal of evidence pooling [2].

Dealing with zero events has been a critical problem

in meta-analysis. When zero events occur in either of

the arms, the effect size on a relative scale, e.g. odds ra-

tio (OR), and its variance within the study are undefined,

challenging the synthesis of such studies [3, 4]. Statisti-

cians have since proposed several methods including the

continuity correction, Mantel–Haenszel, and Yusuf–Peto

as potential solutions, and these methods perform well

under specific conditions (e.g. balanced sample size,

one-arm zero events) [5–10]. However, when zero

events occur in both arms, these methods have been

proven to be questionable [6, 9].

In practice, researchers routinely discard trials that

have zero events in both arms with the argument that

such trials are non-informative for the treatment com-

parison. Unfortunately, this could be problematic for

several reasons. As Kuss et al. claimed, “both-zero studies

with balanced sample size point to no differences in

treatment effects and deleting them might bias the treat-

ment effect … patients who have been recruited in

double-zero studies have a right to their data being also

included in meta-analyses” [9]. Xie et al. have discussed

this problem and advocated that zero-events studies

contains inference information when assuming the

underlying population events rate were not zero [10].

Based on the meta-analysis data from the Cochrane

Database of Systematic Reviews, our investigation also

verified that studies with no events in both arms contain

information for inference [11].

The one-stage framework may serve as an alternative

since it allows studies with no events to be contained for

pooling [8, 12, 13]. As one of one-stage meta-analytic

approaches, the generalized linear mixed model

(GLMM), which treats individuals as level 1 and studies

as level 2, is established to summarize the effect sizes

directly within the multilevel regression model [8, 12–

14]. Simmonds and Higgins have documented the gen-

eral framework of GLMM for different types of meta-

analysis [8]. Jackson et al. described six GLMMs for

head-to-head comparison and compared them to the

generic two-stage random-effects model and demon-

strated that the GLMMs generally showed better statis-

tical inference [15].

General linear models usually employ the maximum

likelihood or restricted maximum likelihood method for

parameter estimation. However, the GLMMs involve

more complex random-effects variance components, so

there is no closed form for the log likelihood, making

the estimation intractable [16, 17]. Several methods were

available as solutions to approximate the likelihood; they

include the Laplace approximation (LA), the penalized

quasi-likelihood (PQL) and the adaptive Gauss–Hermite

quadrature (AGHQ) [17–19]. These methods are valid

in certain situations and the AGHQ method has been

regarded as the most accurate one among them [20]. For

meta-analysis of rare events, there is currently no clear

picture on the three methods’ performance. Thomas

et al. have compared the performance of the PQL and

AGHQ based on two standard GLMMs and demon-

strated no meaningful difference between them [21].

However, the LA method and other GLMMs were not

investigated in their simulation.

Jackson et al. and Thomas et al. [15, 21] made signifi-

cant steps forward for the use of GLMMs on rare events

and showed possibilities of solving the zero-events prob-

lem in meta-analysis. There are, however, two further

questions that have not been well understood: 1) When

GLMMs can be used for meta-analyses of rare events? 2)

Do the PQL and AGHQ have better statistical properties

than the LA in such meta-analyses? The elucidation of

these two questions will have implications for methodo-

logical guidelines and evidence synthesis practice. This

study reported the statistical properties of five random-

effects GLMMs with the three parameter estimation

methods (i.e. LA, PQL, AGHQ) by simulating meta-

analyses of rare events. Some recommendations were

also provided based on our findings.

Methods
The GLMMs

We consider five random-effects GLMM models de-

scribed by Jackson et al. [15], including the random

slope model (model 1), the random intercept and slope

model (model 2), the modified random slope model

(model 3), the modified random intercept and slope

model (model 4), and the bivariate random slope model

(model 5) [15]. All GLMMs are considered under a fre-

quentist framework within this manuscript. Of note,

these five methods are originally denoted as models 2 to

6 in Jackson et al. [15]. We consider these as random-

effects models because all of them use a random slope in

the GLMM framework. Let i index studies and j index

treatment status (1 for treatment and 0 for control).

Model 1: the random slope model

The random slope model employs a random treatment

effect term θi~N(θ, τ
2) with a fixed study effect (γi) based
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on the multilevel logistic model. Here θi is the study-

specific true log odds ratio. Denote the study-specific

event rate by πij, the model can be written as:

logit πij

� �

¼ γ i þ jθi;

where θi = logit(πi1) − logit(πi0) = θ + εi and εi is the ran-

dom error term with the variance of τ2, i.e. εi~N(0, τ
2).

By expressing θi in terms of θ and εi, the model can be

written as:

logit πij

� �

¼ γ i þ jθ þ jεi:

Model 2: the random intercept and slope model

The random intercept and slope model employs both a

random study effect γi~N(γ, σ
2) and a random treatment

effect θi~N(θ, τ
2); that is, this model considers both the

between-study variance (τ2) and the variance of the

study effect (baseline risk):

logit πij

� �

¼ γ i þ jθ þ jεi:

Model 3: the modified random slope model

The modified random slope model is the modification of

model 1 that uses a different parameterization by adding

a design matrix with elements zij = j − 0.5 for θi so that

the elements in the variance of log odds for treatment

effect are “averaged” (±[τ/2]2). Let us use the true effect

θ and the random error εi to express θi, i.e. θi = θ + εi.

Note that replacing jθ by zijθ (0.5 for treatment and −

0.5 for control) does not change the form of the treat-

ment status and is simply a model reparameterization.

Consequently, this model can be written as:

logit πij

� �

¼ γ i þ zijθ þ zijεi:

Model 4: the modified random intercept and slope model

Model 4 is the modification of model 2 with respect to

the variance-covariance structure. This model can also

be derived from model 3 that assumes the study effect as

random γi~N(γ, σ
2) [15]. Again, we use the true effect θ

and the random error εi to express θi, and model 4 is:

logit πij

� �

¼ γ i þ zijθ þ zijεi

It is notable that model 4 and model 3 have the same

equation form, the distinguish could be that model 4 as-

sumes study effect as random effect while model 3 as

fixed effect.

Model 5: the modified bivariate random slope model

Unlike the previous four models, model 5 considers the

potential correlation of the probability for an event of

the two comparative arms from model 3. Therefore, it

uses a bivariate GLMM structure with the slopes being

random effects:

logit πi0ð Þ
logit πi1ð Þ

� �

� N
γ

γ þ θ

� �

;Σ

� �

;Σ �
σ2
0 ρσ0σ1

ρσ0σ1 σ21

� �

;

where σ21 and σ2
0 are the variances according to the event

rates in treatment and control arms, respectively, and ρ

is the correlation coefficient between them. Thus, the

variance of θ is:

τ2 ¼ σ20 þ σ21−2ρσ0σ1:

The three parameter estimation methods

We consider three parameter estimation methods, i.e.

the LA, PQL, and AGHQ methods; they were used for

each GLMM. As a result, they led to a total of 15 (5 × 3)

one-stage meta-analytic methods (Fig. 1). The LA

method uses Taylor series expansion of the log-

likelihood function and takes the first three terms (the

second term is zero) to approximate the log-likelihood

for a numerical solution. The PQL method uses the

second-order approximation for the Taylor series expan-

sion of the quasi-likelihood function to approximate the

quasi-likelihood and obtain a solution. The AGHQ

method uses the n th power (here we use the default

value n = 7) to minimax approximation for the log-

likelihood function, with an adaptive procedure to refine

the knots in order to reach a better approximation. A

detailed description of the three methods has been docu-

mented elsewhere [17, 18].

Data generation

We used the “pCFixed” data-generating model for

current simulation (grouped data) [22]. The empirical

distribution of the meta-analysis data from the Cochrane

Database of Systematic Reviews was used for the simula-

tion [23, 24]. We identified 550 meta-analyses (with

4122 trials) that contained studies with no events [11],

and the sample size information was fitted into 71

commonly-used distributions to estimate the optimal

values for the parameters (sample size distribution) for

simulating meta-analyses (by minimizing the sum of

square errors). Based on the above, the log-normal dis-

tribution fitted well in both the treatment (mean =

3.4418, standard error = 0.9823) and the control (mean =

3.3537, standard error = 0.9992) arms of the sample size.

Considering the potential correlations on the sample size

of the two arms, we further analyzed the sample size ra-

tio of them and utilized the ratio and the log-normal dis-

tribution of the control arm to get the sample size of the

treatment arm. More specifically, a uniform distribution

was fitted and then the first and the third quartiles of

the sample size ratio were taken from the empirical

Ju et al. BMC Medical Research Methodology          (2020) 20:152 Page 3 of 11



Cochrane data (0.84–2.04). Let’s denote n1 and n2 as the

sample size of treatment and control arms, then: log n2
~ N (3.3537, 0.9992), n1 = exp. (log n2)*ratio, where

ratio ~ uniform (0.84, 2.04).

The mean event risk in the control arm from the 4122

trials was 0.07; we however set it as 0.01 to improve the

possibility for generating studies with zero events. This

definition of rare events was also used in Jackson et al.

[15]. For the true effect size, i.e. the odds ratio (OR), we

considered five equally-spaced values from 1 to 5 and

each log OR was normally distributed with the variance

of τ2 across studies (i.e. between-study variance). For ex-

ample, log OR ~N (log (2), τ2). For the between-study

variance, five monotonic τ from mild to substantial (0.2,

0.4, 0.6, 0.8, 1.0) were considered. The event risk in the

treatment arm was then calculated by the risk in the

control arm, the OR, and the between-study variance.

We set the number of included studies as a uniform dis-

tribution ranged from 4 to 10 (step width: 1) for each

meta-analysis based on the first and third quartiles of

the empirical data [11]. Finally, a total of 25 (5 × 5) sce-

narios were considered according to the above condi-

tions (Table 1).

Data analysis

The following measures were used to assess each

model’s performance:

� Convergence rate, defined as the ratio of the

number of iterations that generated finite estimates

over the total number after excluding zero-event

meta-analyses;

� Percentage bias (PB), calculated as: PB = (OR −

ORTrue)/ORTrue × 100%;

� Mean squared error (MSE), calculated as: MSE =

Var(OR) + (OR −ORTrue)
2;

� Coverage probability, i.e. the probability of the 95%

CI containing the true value among every 1000

iterations;

The PB reflects the unbiasedness of a point estimate

(e.g. regression coefficient) with a lower value indicating

smaller bias. The MSE measures both the point and vari-

ance estimation. The coverage reflects the ability to

cover the true value. Theoretically, a coverage of 95%

under 95% confidence level is optimal. Considering that

PB and MSE are not normally distributed (with long

tails), we compared their medians instead of their mean

values. For such types of distribution, the median value

Fig. 1 The five random-effects GLMM meta-analytic models

Table 1 Simulation parameter setup

Parameter Assigned values

Incidence rate of the control
group (pc)

0.01

Number of patients in control
group (n2)

mean (log) =3.3537,
sd (log) =0.9992

Sample size ratio (ratio) Uniform (0.84, 2.04)

Number of patients in experimental
group (n1)

n1 = exp. (log n2)*ratio

Effect sizes (OR) 1, 2, 3, 4, 5

Between-study variance (τ2) τ=(0.2, 0.4, 0.6, 0.8, 1.0)

Number of studies included in
each meta-analysis (m)

Uniform (4, 10)
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is usually smaller than the mean value. For the PB, we

pre-defined the acceptable percentage as 50%; the pro-

portion of meta-analyses exceeding this cutoff point was

reported as the primary index to rank the properties of

the models.

To better understand the statistical properties for the

LA, PQL, and AGHQ, we stratified the number of events

for treatment and control arms in each meta-analysis by

the following total events setting scheme:

Group 1: Both arms ≥10;

Group 2: One arm ≥10 and one ≥5 but less than 10;

Group 3: Both arms ≥5 but less than 10;

Group 4: One arm > = 10 and one < 5.

Group 5: One arm ≥5 while < 10 and another arm < 5;

Group 6: Both arms less than 5.

This was because a previous simulation study for logis-

tic regression suggested that 10 events for each variable

would be stable for the estimation, 5–10 would be some-

what stable, and less than 5 would be unstable [25]. We

excluded those with zero total events in its treatment

and/or control arm, because none of the three methods

was valid in this situation by producing infinite

estimates.

We simulated 20,000 iterations (meta-analyses) for

each scenario. All simulations and analyses were con-

ducted using the R software (version 3.4.2) with the

“lme4” and “GLMMadaptive” packages [26, 27]. The

Stata14.0/SE (STATA, College Station, TX) and Excel

2013 (Microsoft, America) were used for visualization of

the results. The R code for meta-analysis is provided in

the Additional file 1.

Results
LA, PQL, and AGHQ

Convergence rate

Table 2 presents the convergence rate of the three esti-

mation methods. The LA kept consistently high conver-

gence rate (100% in most of the cases) in all models.

The AGHQ method kept a similar high convergence

rate in Models 1 and 3 while the rate reduced by about

5–10% in Models 2, 4, and 5 when OR = 1. For the PQL

method, Models 2, 4, and 5 had extremely low conver-

gence rates (< 20% in most of the cases). Models 1 and 3

based on the PQL kept a high convergence rate similar

to the LA and AGHQ. The results enlightened that, due

to the low convergence rate, the PQL estimation proced-

ure was not the optimal option when fitting models with

two random-effects terms or bivariate term.

Bias

Figure 2 (OR = 1, τ =0.2) shows the distribution of the

PB of the three estimation methods under different total

events settings. A small proportion of them had very

large bias based on the LA and PQL methods, while a

large proportion of very large bias occurred on the

AGHQ method. We did not plot the distribution graph

for other scenarios (e.g. OR = 2, τ =0.4), because as the

between-study variance increased there would be huge

bias that impacted the visualization

Large ORs

Very large bias occurred when ORs were very large. This

is due to the systematic error when the total events are

rare. Table 3 (OR = 1, τ =0.2) and Table S1 (All scenar-

ios) summarize the proportion of large ORs (defined as

OR ≥ 250 [27]) for different estimation methods. Under

the PQL method, a large proportion (> 80%) of large

ORs occurred in Model 2, 4, and 5, while a low propor-

tion in Model 1 and 3.

Under the LA method, a low proportion (less than

1.02%) that produced large ORs was observed, regardless

of which models utilized. The AGHQ method had a low,

but slightly higher proportion of large ORs than the LA

method.

Sectional summary

� The PQL and AGHQ did not show better properties

than the LA in terms of convergence rate, bias, and

probability to generate large ORs.

Total events and GLMM properties

The number of meta-analyses in each group is shown

in Table S2. Generally, the number of meta-analyses

in each group was sufficient. Group 4 had the largest

number of meta-analyses. It is notable that, in two

scenarios (OR = 4 and 5), the number of meta-

analyses in Group 3 were small. Therefore, in this

section, we did not use the data of OR = 4 and 5 for

comparison to avoid the large uncertainty due to the

small number of observations [28].

Figure 3 shows the performance (τ =0.2). From Group

3 to Group 6, most meta-analyses had biases larger than

50%, regardless of the estimation method utilized. In

Group 1 and Group 2 the biases were much smaller. We

observed that when OR = 1, Group 1 had lower propor-

tion of bias that larger than 50% compared to Group 2;

while when OR > 1, inverted results occurred. This is be-

cause when the events in two arms were comparable

(Group 1), the pooled OR converged to 1, and thus in

Group 1 the proportion of bias > 50% was lower when

OR = 1; otherwise, when the events in two arms were in-

comparable (Group 2), the pooled OR diverged to 1, and

thus in Group 1 the proportion of bias > 50% was higher

when OR > 1.

Again, the PQL estimation had a poor performance

based on Model 2, 4, and 5, even if the total events were

relative sufficient (Group 1 and 2). The LA estimation
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had lower proportions of bias larger than 50% than the

AGHQ in all of the situations. The results were similar

in other scenarios (e.g. τ =0.4), but they became worse

as the between-study variance increased (Figures S1–S4).

As a consequence, when the total events were insuffi-

cient (Group 3–6) in either of the arms, the GLMMs did

not show good point estimation to pool studies of rare

events.

Sectional summary

� When the total events were insufficient in either of

the arms, the GLMMs did not show good point

estimation to pool studies of rare events.

Conservatively, at least 10 total events in both arms

were needed when employing GLMMs for meta-

analysis.

Five random-effects GLMMs

Accounting for the above findings, we compared the

performance of remaining potential models, including all

five random-effects models (Models 1 to 5) based on LA

estimation, all five random-effect models based on

AGHQ, and the two classical models (Models 1 and 3)

based on the PQL. Therefore, 12 models were further

compared in total.

Bias

Figure 4 compares the 12 models in terms of the median

PB. Generally, Model 1 had a low bias regardless of

which estimation method was utilized. Model 3 had

lower bias than Model 1 when the between-study

Fig. 2 The performance of each GLMM model under different estimation method when the OR = 1 & Tau (τ) = 0.2

Table 3 The proportion of large ORs in each estimation

procedure under different models

Models Model 1 Model 2 Model 3 Model 4 Model 5

OR = 1 (τ =0.2)

LA 0.22% 0.32% 0.00% 0.29% 0.3%

PQL 1.88% 83.74% 0.09% 84.41% 80.5%

AGHQ 1.25% 14.79% 1.17% 14.39% 10.22%

OR = 2 (τ =0.2)

LA 0.03% 0.43% 0.00% 0.43% 0.43%

PQL 1.03% 83.01% 0.15% 83.76% 79.63%

AGHQ 0.03% 0.50% 0.03% 1.28% 0.27%

OR = 3 (τ =0.2)

LA 0.00% 0.68% 0.00% 0.66% 0.70%

PQL 0.96% 82.55% 0.31% 83.03% 79.01%

AGHQ 0.72% 4.98% 0.69% 5.39% 4.52%

OR = 4 (τ =0.2)

LA 0.00% 1.00% 0.00% 0.94% 1.02%

PQL 0.74% 81.15% 0.41% 82.06% 77.49%

AGHQ 0.48% 4.90% 0.59% 4.78% 4.07%

OR = 5 (τ =0.2)

LA 0.00% 0.74% 0.00% 0.74% 0.77%

PQL 0.50% 80.35% 0.21% 81.38% 76.24%

AGHQ 0.01% 0.37% 0.02% 0.71% 0.21%

All the results were based on 20,000 iterations
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Fig. 3 The proportion of percentage bias larger than 50% under different models and estimation methods when the Tau (τ) = 0.2

Fig. 4 The comparison of the median percentage bias, MSE, and coverage probability for the 12 models
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variance was not large (τ <=0.6). However, when there

was large variance (τ > = 0.8), Model 3 had larger bias.

Model 2, 4, and 5 had similar amount of bias (lower than

Model 1 when OR < 3 while larger when OR > 3), and

the bias in Model 5 was slightly larger. These three

were less susceptible to the changes of between-study

variance than Model 3. On average, the PB of

GLMMs ranged from − 11.24% to 13.05 (less than

10% on absolute scale in most of the cases) when the

between-study variance was not large (τ <=0.6); as the

variance increased the bias also increased, but less

than 40% in most of the cases.

Mean squared error

Again, Model 1 and Model 3 had the lowest MSE in

most of the cases and Model 3 generally had higher

MSE than Model 1. But for Model 3 based on PQL esti-

mation, the MSE were large when the between-study

variance was large (τ =1.0). Model 1 based on the PQL

estimation (green bar) had the lowest MSE and

Model 1 based on the LA estimation (blue bar) had

the second lowest MSE. Model 2, 4, and 5 have simi-

lar MSEs that larger than Model 1 and 3. A larger

between-study variance and/or a larger effect size

generally led to a larger MSE.

Coverage

As expected, Model 2, 4 and 5 generally had better

coverage than Model 1 and 3. We observed that differ-

ent estimation procedures (i.e. LA, PQL, AGHQ) had

some impacts on the coverage probability: models based

on LA tend to have better coverage than models based

on AGHQ and PQL. The two models based on the PQL

had coverage probabilities under the normal level (95%)

in almost all cases. In 14 out of the 25 scenarios, Model

2, 4, and 5 based on AGHQ estimation had coverage

probabilities under the normal level. The five random-

effects models based on the LA had good coverage prob-

abilities in most situations (τ <= 0.6). As the between-

study variance increased, the coverage decreased, espe-

cially for Model 1 and 3.

Sectional summary

� The AGHQ and PQL were not superior to the LA

with respect to bias, MSE, and coverage.

� Model 1 and 3 had lower bias and MSE than Model

2, 4, and 5, while the later three had better coverage

and were less susceptible to variance on bias;

� When there was large between-study variance, none

of these models had a good performance.

Discussion
In this study, we compared the statistical properties of five

random-effects GLMMs and three parameter estimation

methods (LA, PQL, AGHQ) by simulations for meta-

analyses of rare events. Based on the findings, when the

total events were insufficient (e.g. less than 10) in either of

the arms, the GLMMs did not show good point estimation

to pool studies of rare events. The AGHQ estimation

method did not show better properties than the LA esti-

mation. We further found that although the PQL had

some advantages, it was neither the preferred option due

to the low convergence rate in some situations nor the

suboptimal point and variance estimation.

We observed that the Model 2, 4, and 5 had some ad-

vantages in dealing with heterogeneous studies (i.e. less

susceptible to between-study variance on bias and better

coverage), which has been described in Jackson et al. [15].

This could be expected – by fitting with two random-

effects terms or a bivariate term, they give more “freedom”

to estimate the difference [13]. And this is why the MSE

tend to be larger than the random slope models (Model 1

and 3). These properties allow the above models to gener-

ate a more conservative estimation. However, the bias of

them tends to be large when compared to the random

slope models (Model 1 and 3). We further found that, al-

though Model 1 and Model 3 performed better in light of

bias and MSE but showed lower coverage possibility. This

suggested that some caution should be noticed as the re-

sults were at risk of overconfident by Model 1 and 3 when

the between-study variance was large.

In our simulation, there was no evidence that the PQL

and AGHQ showed better statistical properties even when

the total events were rare. The PQL had a low conver-

gence rate when modeled with Model 2, 4, and Model 5.

This is because these three models involve more parame-

ters to be estimated than Model 1 and 3. Our results sug-

gested that when the total events were insufficient (Group

3–6), none of the three estimation methods performs well.

The Firth’s logistic regression based on the penalized max-

imum likelihood is a potential solution for it [29]. How-

ever, it is infeasible to establish a multilevel model for

Firth’s logistic regression, and no software package is cur-

rently available for its implementation. Whether the pe-

nalized maximum likelihood faces the same problem (less

convergent) in random-effect models is unclear. A further

investigation on multilevel firth’s regression on meta-

analysis of rare events would be valuable for this topic.

Based on the pros and cons of these models and the

simulation results, we propose some recommendations

for model selection. First, studies with no events in both

arms contain information for inference and GLMMs can

serve as a valid method to pool such studies [11]. Sec-

ond, when using GLMMs to pool studies with rare

events, meta-analysts should ensure a sufficient number

Ju et al. BMC Medical Research Methodology          (2020) 20:152 Page 9 of 11



of total events in both arms (i.e., ≥10). Third, we do not

suggest to use GLMMs with the PQL or AGHQ estima-

tion method; the LA has sufficiently satisfactory per-

formance. Fourth, when there is substantial variance

between studies, the bias increases significantly that the

results should be treated with caution.

This study’s strength includes that we used empirical data

to determine the simulation settings, so our comparisons

and results were closer to reality. We investigated the ap-

plicability of the GLMMs for meta-analysis of rare events

and verified the least requirement on total events. We also

verified that the PQL or AGHQ estimation did not show

better properties than the LA estimation. To the best of

our knowledge, this is the first simulation study that ad-

dress these questions. Our study is expected to provide po-

tential guidance for further systematic reviews and meta-

analyses. Several limitations should be highlighted. The first

one would be the number of simulations. Although there

were 20,000 iterations for each scenario, we noticed that in

some groups (e.g. group 3) the number of iterations were

relatively small. And the limited observations may hamper

the credibility the between-group comparisons. The second

one is the data-generation mechanism that was applied.

This mechanism assumes that all the heterogeneity in the

simulation is placed on the treatment arm. This simulative

strategy introduces unequal number of zero events between

the experimental and the control group, which possibly has

implications in the comparisons as well (see [22] for

details).

Conclusion
The GLMM is an alternative for meta-analysis of rare

events and is especially useful in the presence of no-

events studies; however, this model should be used with

caution when the total events are insufficient. Conserva-

tively, at least 10 total events in both arms were needed

when employing GLMM for meta-analysis. The penal-

ized quasi-likelihood and adaptive Gauss–Hermite quad-

rature are not superior to the Laplace approximation for

rare events and usually take much longer computing

time thus they are not recommended.
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