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In this paper we present Laplace approximations for two functions of
matrix argument: the Type I confluent hypergeometric function and the Gauss
hypergeometric function. Both of these functions play an important role in
distribution theory in multivariate analysis, but from a practical point of
view they have proved challenging, and they have acquired a reputation for
being difficult to approximate. Appealing features of the approximations we
present are: (i) they are fully explicit (and simple to evaluate in practice);
and (ii) typically, they have excellent numerical accuracy. The excellent
numerical accuracy is demonstrated in the calculation of noncentral moments
of Wilks’ � and the likelihood ratio statistic for testing block independence,
and in the calculation of the CDF of the noncentral distribution of Wilks’ �
via a sequential saddlepoint approximation. Relative error properties of these
approximations are also studied, and it is noted that the approximations have
uniformly bounded relative errors in important cases.

1. Introduction. Laplace approximations are presented for two hypergeomet-
ric functions of matrix argument: the confluent hypergeometric 1F1(a;b;Z) and
the Gauss hypergeometric 2F1(a, b; c;Z) where Z is a p × p symmetric matrix
argument. The approximations are shown to be extremely accurate by comparison
with simulated values in the statistical applications we consider.

These functions have power series expansions in terms of zonal polynomials
as described in Muirhead [(1982), Chapter 7] or Mathai [(1993), Section 4.6].
Such series generally converge extremely slowly [Muirhead (1978), Section 1]
and are very difficult and time consuming to compute even with current
computing technology. Computational difficulty is cited in Muirhead (1975, 1978),
Sections 1, 2, particularly for large p, large values of a, b and c and large and
small eigenvalues of Z. Underflow and overflow difficulties are also cited which
are problems we also encountered in our numerical simulations. None of these
difficulties occurs with the explicit Laplace approximations. We provide evidence
that the approximations are able to maintain high accuracy in all these settings.

Some discretion is required in the general use of Laplace approximations if
they are to achieve their greatest accuracy. Specifically, a choice must be made
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as to what portion of the integrand is used in the maximization. This issue is
reviewed in Section 3. The issue takes on greater importance in settings involving
higher dimensional integration, such as occur with these special functions,
where the integration is over regions of dimension p(p + 1)/2. The particular
implementation of Laplace’s method proposed here leads to a level of accuracy
that is not achieved by other implementations of Laplace’s method we have tried.

Guidance in this usage of Laplace approximations has been provided by a sec-
ond approach to approximating 1F1. This function is the moment generating func-
tion (MGF) for the null distribution of the Bartlett–Nanda–Pillai trace statistic in
MANOVA as shown in Muirhead (1982), Section 10.6.3. An indirect approxima-
tion to this MGF has been provided in Butler, Huzurbazar and Booth (1992) using
a sequential saddlepoint approach based upon a conditional distributional charac-
terization of the test statistic. Their indirect approximation proved to be extremely
accurate in so far as it allowed the second stage of saddlepoint approximation to
proceed with extreme accuracy. In Section 9 we present a theorem which states
that this sequential saddlepoint approximation to 1F1 is analytically equivalent to
a Laplace approximation applied by making a particular choice for the maximiza-
tion factor. Because this particular approximation proved to be so accurate, we
have used this agreement as partial motivation for our choice of the maximiza-
tion factor to be used with Laplace’s approximation for both 1F1 and 2F1, though
alternative motivation is also given in Section 3.

The scalar and matrix cases of the 1F1 approximation are discussed in Section 4
and 2F1 is considered in Section 5. Applications of the Laplace approximations
when arguments are complex and/or when the integral representation fails to hold
are discussed in Section 6.

Numerical calculations are presented in Section 7. One application is concerned
with computation of the noncentral moments of the likelihood ratio statistic in
MANOVA, which can be expressed as a product of 1F1 and an elementary
function. A second application is concerned with noncentral moments of the
likelihood ratio statistic for testing block independence, which can be expressed
as a product of 2F1 and an elementary function. Comparison with values obtained
by simulation shows that our Laplace approximations provide extremely accurate
approximations to these moments in both cases.

A number of statistical applications of our Laplace approximations are
mentioned in Section 8. The most important of these applications involves
the construction of a sequential saddlepoint approximation to the noncentral
distribution of Wilks’ � in MANOVA, and numerical results are provided in
this case. When applied over a wide range of MANOVA settings, these power
computations incur relative errors of less than 1% with even smaller typical errors.

We now briefly mention some other related work. The hypergeometric function
2F1(a, b; c; zIp) of scalar matrix argument can be expressed as a Pfaffian of
a matrix of scalar argument hypergeometric functions as shown in Gupta and
Richards (1985). This relation also follows from the earlier Pfaffian expression
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in Roy (1939) coupled with Sugiyama (1967) and the fact that the incomplete beta
entries in Roy (1939) can be written in terms of hypergeometric function values.
See Johnson and Kotz (1972), page 184, for details. More recently in Olver (1991,
1993) and Paris (1992), “exponentially improved” asymptotic expansions have
been developed in the scalar argument case of 1F1. Unfortunately, this interesting
approach does not appear to be tractable in the matrix argument case which is our
principal concern here.

We now summarize the principal novel contributions of this paper. First,
the insights about how to implement Laplace’s approximation for the class of
problems considered in the paper (Section 3), resulting in successful Laplace
approximations for 1F1 and 2F1 (Sections 4 and 5); the realization that these
approximations perform well even in regions in which the integral representation
(from which the approximations were derived) does not hold (Section 6);
a substantial amount of numerical evidence that the approximations perform
extremely well in practice (Sections 7 and 8); clarification of the relationship with
an alternative approach (Section 9); and some new theoretical results on the relative
error properties of the approximations (Section 10).

Finally, we note that the use of Laplace’s approximation in classical multivariate
analysis goes back a number of years; see, for instance, Glynn and Muirhead
(1978), Muirhead (1978, 1982) and Srivastava and Carter (1980). However, these
papers are concerned with hypergeometric functions of two matrix arguments, in
contrast to the single matrix argument functions considered here. Moreover, these
earlier papers do not address the question of numerical accuracy of the Laplace
approximations they consider.

2. Review of 1F1 and 2F1. The classical Type I confluent hypergeometric
function and Gauss hypergeometric function have well-known integral represen-
tations; see Abramowitz and Stegun (1972). In the case of 1F1, this is given
by

1F1(a;b; z)= B(a, b − a)−1
∫ 1

0
ya−1(1 − y)b−a−1ezy dy,(1)

which is valid for all z ∈ C and all a, b ∈ C satisfying �(a) > 0 and �(b − a) > 0.
In the above, B(·, ·) is the beta function, defined by B(α,β) = �(α)�(β)/

�(α + β), where �(·) is the gamma function.
In the case of 2F1, the integral representation is given by

2F1(a, b; c; z)= B(a, c − a)−1
∫ 1

0
ya−1(1 − y)c−a−1(1 − zy)−b dy,(2)

which is valid whenever �(z) < 1, �(a) > 0 and �(c − a) > 0.
These, and other, classical functions have natural generalizations to the case

in which z ∈ C is replaced by a symmetric p × p matrix Z with complex
entries. It is a remarkable fact that these generalizations inherit many of the
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important properties of their classical versions. We shall write these functions
as 1F1(a;b;Z) and 2F1(a, b; c;Z), with Z understood to be a p × p matrix
argument. These functions can be expressed as infinite power series in the scalar
argument case, and infinite series of zonal polynomials in the matrix argument
case; see Muirhead (1982), page 258. In this paper, however, we shall focus
on integral representations of 1F1(a;b;Z) and 2F1(a, b; c;Z) which are natural
generalizations of (1) and (2).

We first introduce some notation. Let (dY ) denote Lebesgue measure on the
space of p × p positive definite matrices. Given p × p matrices A and B , we
say that A > B (A ≥ B) if A − B is positive (nonnegative) definite. Write tr(A)

and |A| for the trace and determinant, respectively, of a square matrix A and de-
note exp{tr(A)} by etr(A). The p × p identity and zero matrix are denoted by Ip
and 0p, respectively.

For integer p ≥ 1, the multivariate gamma and beta functions, �p(a) and
Bp(α,β), are defined equivalently by

�p(a) =
∫
Y>0p

etr(−Y )|Y |a−(p+1)/2(dY )= πp(p−1)/4
p∏

i=1

�{a − (i − 1)/2}

and

Bp(α,β) = �p(α)�p(β)

�p(α + β)
=
∫

0p<Y<Ip

|Y |α−(p+1)/2|Ip − Y |β−(p+1)/2(dY );

see, for example, Muirhead (1982). Note that when p = 1 the classical gamma and
beta functions are recovered.

The integral representation for 1F1(a;b;Z) is given by

1F1(a;b;Z)= Bp(a, b − a)−1

×
∫

0p<Y<Ip

etr(ZY )|Y |a−(p+1)/2|Ip − Y |b−a−(p+1)/2(dY )
(3)

and is valid under the following conditions: Z ∈ Cp×p is symmetric; �(a) >

(p − 1)/2; and �(b − a) > (p − 1)/2.
The integral representation for 2F1(a, b; c;Z) is given by

2F1(a, b; c;Z)

= Bp(a, c − a)−1

×
∫

0p<Y<Ip

|Y |a−(p+1)/2|Ip − Y |c−a−(p+1)/2|Ip −ZY |−b(dY )

(4)

and is valid under the following conditions: Z ∈ Cp×p is symmetric and satisfies
�(Z) < Ip; �(a) > (p − 1)/2; and �(c − a) > (p − 1)/2. See Muirhead (1982)
for further details of (3) and (4).

Our principal purpose in this paper is to present Laplace approximations to 1F1
and 2F1 based on the integral representations (3) and (4).
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We shall mainly be concerned with real Z here (the only exception being in
Section 6), and to emphasize this point we will, from now on, write X for Z, on
the understanding that X is a real symmetric matrix. The scalar quantities a, b
and c may also be assumed real from now on (except in Section 6).

Finally, we recall a key invariance property of 1F1 and 2F1: for any symmetric
p × p matrix X, 1F1(a;b;X) and 2F1(a, b; c;X) depend only on the eigenvalues
of X, so that there is no loss of generality in assuming that X is a diagonal matrix.

3. Review of Laplace’s approximation. Consider the integral

I =
∫
y∈D

h(y)e−λg(y) dy

where D ⊆ Rd is an open set and λ is a real parameter. If g(y) has a unique
minimum over the closure of D, and this minimum occurs at stationary point ŷ ∈ D

of g(y), then Laplace’s approximation to I is given by

Ĩ = (2π)d/2λ−d/2|g′′(ŷ)|−1/2h(ŷ)e−λg(ŷ)(5)

where

g′′(y) = ∂2g(y)

∂y∂yT

is the Hessian of g.
Under mild conditions, the accuracy of the approximation is given by

I = Ĩ {1 +O(λ−1)} as λ → ∞.

However, there are many examples which show that Laplace’s approximation is
often quite accurate even in subasymptotic situations (i.e., when λ is not large).
In this paper, the concern will be with subasymptotic settings, so for simplicity we
shall usually take λ = 1.

When implementing Laplace’s approximation there are two important points
to consider that can affect accuracy: the choice of (g;h) representation, and the
possibility of calibration. These are discussed in Sections 3.1 and 3.2.

3.1. The (g;h) representation. In practice, we need to decide on a (g;h)
representation for the integrand, the point being that h does not play a role in the
determination of ŷ. For example, if h is everywhere-positive, and we take λ = 1,
the integrand f (y) may be written in the equivalent forms

f (y) = h(y)e−g(y) = h0(y)e
−g0(y)

where h0(y) = 1 and g0(y) = g(y)− logh(y), and we may approximate I by

Ĩ0 = (2π)d/2|g′′
0 (ŷ0)|−1/2h0(ŷ0)e

−g0(ŷ0)
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instead of Ĩ in (5), where ŷ0 is the minimum of g0 in D. Clearly Ĩ and Ĩ0 will
be different in general, so we do need to give some consideration to the choice
of (g;h) representation for the integrand.

However, once we have chosen a (g;h) representation for the integrand,
Laplace’s approximation is invariant with respect to 1–1 transformations of y in
the following sense. Write u = q(y), where q :D → Rd is smooth and 1–1, and so
has an inverse q−1 say. Now consider the transformed integral

I =
∫
u∈q(D)

h1(u)e
−g1(u) du

where

h1(u) = h{q−1(u)}
∣∣∣∣∂y(u)∂uT

∣∣∣∣ and g1(u)= g{q−1(u)}.

Then by elementary calculus, I is invariant with respect to the change of variables.
Interestingly, it turns out that Laplace’s approximation Ĩ is also invariant in this
sense. See, for example, Efstathiou, Gutiérrez–Peña and Smith (1998) for a proof.
For further discussion of Laplace and related saddlepoint approximations, see
Jensen (1995) and Barndorff-Nielsen and Wood (1998).

An example directly relevant to present concerns is the beta integral

B(α,β) = �(α)�(β)

�(α + β)
=
∫ 1

0
xα−1(1 − x)β−1 dx =

∫ 1

0
h(x)e−g(x) dx

for some choice of g and h. A family of possible choices is given by

hγ (x) = xγ−1(1 − x)γ−1 and gγ (x) = −(α − γ ) logx − (β − γ ) log(1 − x),

with γ = 0 and γ = 1 especially plausible contenders. We present four reasons
why γ = 0 is to be preferred.

1. The Stirling connection. Taking g(x) to be gγ (x) with γ = 0 yields a unique
minimum at x̂ = α/(α +β). An application of (5) with p = 1 and λ = 1 yields the
approximation

B̂(α,β) = (2π)1/2
[
(α + β)2

α
+ (α + β)2

β

]−1/2(
α

α + β

)α−1(
β

α + β

)β−1

= �̂(α)�̂(β)

�̂(α + β)

where �̂(α) = (2π)1/2αα−(1/2)e−α is Stirling’s approximation to �. No other
choice of γ leads to Stirling’s approximation in this way.
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2. Normalizing transformation. In view of the invariance property of Laplace’s
approximation mentioned above, taking h(x) = hγ (x) with γ = 0 is equivalent
to applying Fisher’s [(1990), Chapter 6] “normalizing” z-transformation u =
log{x/(1 − x)} in the original integral, and then applying Laplace with the new
variable u, taking h(u) ≡ 1. Thus taking γ = 0 has a transparent interpretation,
and this interpretation suggests that γ = 0 is a good choice.

3. Convenience. If we take γ > 0 then problems occur with Laplace’s appro-
ximation if α ∈ (0, γ ) and/or β ∈ (0, γ ), because then gγ (x) does not have
a minimum in (0,1). This problem does not arise if we choose γ ≤ 0; so from
this point of view γ = 0 is preferable to γ = 1.

4. Invariant distribution. The choice γ = 0 can also be motivated by considera-
tion of invariant distributions.

The above discussion provides motivation for taking h(y) proportional to
y−1(1 − y)−1 in (1) and (2) [equivalently, (3) and (4) with p = 1]. In the
matrix-argument case (p > 1) we recommend taking h(Y ) proportional to
|Y |−(p+1)/2|Ip − Y |−(p+1)/2, a natural generalization. Justification of this choice
rests principally on Theorem 1 below. Theorem 1 states that, with this choice
of h(Y ), the implied Laplace approximation is identical to an approximation
derived by saddlepoint methods which is known to be very accurate.

3.2. Calibration. Given the “raw” Laplace approximation in (5), it may
be beneficial to employ some form of calibration. Consider, for example,
1F1(a;b;X). From the first definition of the multivariate beta function given
in (2), it follows that 1F1(a;b; 0p) = 1. So, if we are interested in approximating

1F1(a;b;X) when X is not too different from 0p , and we write 1F̃1(a;b;X) for
the raw Laplace approximation to 1F1(a;b;X) obtained via (5), it would make
sense to use an approximation 1F̂1 which is “calibrated at X = 0p” as follows:

1F̂1(a;b;X)= 1F̃1(a;b;X)/1F̃1(a;b; 0p),(6)

the point being that 1F̂1(a;b;X) = 1F1(a;b;X) when X = 0p . The function
2F1(a, b; c;X) may be calibrated at X = 0p in the same manner. Other forms
of calibration are possible but we shall only consider calibration at 0p.

Calibration at 0p also has subtler benefits: in particular, it leads to convenient
and accurate approximations to 1F1 and 2F1 which maintain high accuracy outside
the domain of each integral representation. See Section 6 for further discussion.

4. Laplace approximation to 1F1. We shall first consider the case in which
p = 1, so that X is a real scalar quantity, x say. Then we shall consider the general
case in which X is a real symmetric p × p matrix.
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4.1. The scalar case. In view of the discussion in the previous section, we
shall adopt the following (g;h) representation of the integrand in (1): h(y) =
B(a, b − a)−1y−1(1 − y)−1 and

g(y) = −{a log(y)+ (b − a) log(1 − y)+ xy
}
.

We shall see later that, with this particular choice of (g;h), the calibrated Laplace
approximation agrees with a sequential saddlepoint approximation for 1F1. As the
first and second derivatives of g are given by

g′(y) = b − a

1 − y
− a

y
− x and g′′(y) = b − a

(1 − y)2
+ a

y2
,

it is seen that g is minimized over y ∈ [0,1] at y = ŷ, say, where ŷ is the
appropriate solution of the quadratic equation

P (y;a, b, x)≡ xy2 − y(x − b)− a = 0.(7)

It is straightforward to check that, for 0 < a < b and x ∈ R, P (y;a, b, x) has
a unique solution ŷ ∈ (0,1) given by

ŷ = 2a

b − x +√
(x − b)2 + 4ax

(8)

and that this solution is the value of y at which g is minimized. Therefore,
using (5), we obtain the raw Laplace approximation

1F̃1(a;b;x)= (2π)1/2B(a, b − a)−1j
−1/2
1,1 ŷa(1 − ŷ)b−aexŷ(9)

where

j1,1 ≡ j1,1(a, b, x)= a(1 − ŷ)2 + (b − a)ŷ2.(10)

The calibrated approximation 1F̂1(a;b;x) is given by

1F̂1(a;b;x)= 1F̃1(a;b;x)
1F̃1(a;b; 0)

= bb−1/2r
−1/2
1,1

(
ŷ

a

)a(1 − ŷ

b − a

)b−a

exŷ

(11)

where

r1,1 = ŷ2

a
+ (1 − ŷ)2

b − a
.(12)
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4.2. The matrix case. In view of the invariance property mentioned at the
end of Section 2, we may without loss of generality take X = diag{x1, . . . , xp}.
Motivated by the scalar case p = 1 and our intent to have the calibrated Laplace
approximation agree with the sequential saddlepoint approximation considered in
Theorem 1, we adopt the following (g;h) representation for the integrand in (3):

g(Y ) = − tr(XY )− a log |Y | − (b − a) log |Ip − Y |(13)

and

h(Y )= Bp(a, b − a)−1|Y |−(p+1)/2|Ip − Y |−(p+1)/2.(14)

Using (5) again, it may be shown that the raw Laplace approximation to
1F1(a;b;X) is given by

1F̃1(a;b;X)= 2p/2πp(p+1)/4Bp(a, b − a)−1J
−1/2
1,1

p∏
i=1

{
ŷa
i (1 − ŷi)

b−aexi ŷi
}

(15)

where, for i = 1, . . . , p, ŷi is the solution to P (y;a, b, xi) = 0 given by (8), with P

given in (7); and

J1,1 =
p∏

i=1

p∏
j=i

{
a(1 − ŷi )(1 − ŷj )+ (b − a)ŷi ŷj

}
.(16)

Note that (15) and (16) reduce to (9) and (10) when p = 1.
The calibrated approximation 1F̂1(a;b;X) is given by

1F̂1(a;b;X)= 1F̃1(a;b;X)

1F̃1(a, b; 0p)

= bbp−p(p+1)/4R
−1/2
1,1

p∏
i=1

{(
ŷi

a

)a(1 − ŷi

b − a

)b−a

exiŷi
}(17)

where

R1,1 =
p∏

i=1

p∏
j=i

{
ŷi ŷj

a
+ (1 − ŷi)(1 − ŷj )

b − a

}
.(18)

The above formulas are derived in Butler and Wood (2000). As noted in Butler
and Wood (2000), certain important properties of 1F1, such as the Kummer relation
given in Muirhead [(1982), Theorem 7.4.3] are inherited by the approximations
1F̃1 and 1F̂1.

5. Laplace approximation to 2F1. As in the previous section, we shall first
consider the scalar case and then proceed to the matrix case.
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5.1. The scalar case. We use a similar (g;h) representation of the integrand
in (1), with h(y) defined as in Section 4.1 and

g(y) = −{a log(y)+ (c − a) log(1 − y)− b log(1 − xy)
}
.

The first and second derivatives of g are given by

g′(y) = c − a

1 − y
− a

y
− bx

1 − xy
and g′′(y) = c − a

(1 − y)2 + a

y2 − bx2

(1 − xy)2 .

If we set g′(y) = 0, the appropriate solution of the resulting quadratic equation is

ŷ = 2a√
τ 2 − 4ax(c − b)− τ

(19)

where τ = x(b − a)− c.
It can be shown that, provided 0 < a < c, b ≥ 0 and x ∈ [0,1), ŷ yields the

unique minimum of g(y) on [0,1]. Moreover, given that 0 < a < c, there is no
effective restriction in taking b ≥ 0 and x ∈ [0,1) because the Euler relations
[see (15.3.3)–(15.3.5) in Abramowitz and Stegun (1972)]

2F1(a, b; c;x)= (1 − x)−b
2F1

(
c − a, b; c;− x

1 − x

)
(20)

= (1 − x)c−a−b
2F1(c − a, c − b; c;x)(21)

allow us to extend consideration to x < 0 [using (20)] and/or b < 0 [using (21)].
It follows that the raw Laplace approximation 2F̃1(a, b; c;x) is given by

2F̃1(a, b; c;x)= (2π)1/2B(a, c − a)−1j
−1/2
2,1 ŷa(1 − ŷ)c−a(1 − xŷ)−b(22)

where j2,1 ≡ j2,1(a, b, c, x) is given by

j2,1 = a(1 − ŷ)2 + (c − a)ŷ2 − bx2ŷ2(1 − ŷ)2/(1 − xŷ)2.(23)

The calibrated approximation 2F̂1(a, b; c;x) is given by

2F̂1(a, b; c;x)= 2F̃1(a, b; c;x)
2F̃1(a, b; c; 0)

= cc−1/2r
−1/2
2,1

(
ŷ

a

)a(1 − ŷ

c − a

)c−a

(1 − xŷ)−b

(24)

where

r2,1 = ŷ2

a
+ (1 − ŷ)2

c − a
− bx2

(1 − xŷ)2

ŷ2

a

(1 − ŷ)2

c − a
.(25)
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5.2. The matrix case. Given that X is symmetric then, as noted at the end of
Section 2, we may without loss of generality take X = diag{x1, . . . , xp}. Following
from the 1F1 approximation, we make use of the following (g;h) representation:

g(Y ) = −a log |Y | − (c − a) log |Ip − Y | + b log |Ip −XY |(26)

and

h(Y ) = Bp(a, c − a)−1|Y |−(p+1)/2|Ip − Y |−(p+1)/2.(27)

Using (5) again, it may be shown that the raw Laplace approximation to
2F1(a, b; c;X) is given by

2F̃1(a, b; c;X)= 2p/2πp(p+1)/4

Bp(a, c − a)
J

−1/2
2,1

p∏
i=1

{
ŷa
i (1 − ŷi )

c−a(1 − xiŷi)
−b}(28)

where ŷi is defined by (19) with x = xi , J2,1 ≡ J2,1(a, b, c,X) is given by

J2,1 =
p∏

i=1

p∏
j=i

{
a(1 − ŷi)(1 − ŷj )+ (c − a)ŷi ŷj − bLiLj

}
(29)

and

Li = xi ŷi(1 − ŷi)/(1 − xi ŷi).(30)

The calibrated approximation 2F̂1(a, b; c;X) is given by

2F̂1(a, b; c;X)= 2F̃1(a, b; c;X)/2F̃1(a, b; c; 0p)

= ccp−p(p+1)/4R
−1/2
2,1

p∏
i=1

{(
ŷi

a

)a(1 − ŷi

c − a

)c−a

(1 − xiŷi)
−b

}(31)

where

R2,1 =
p∏

i=1

p∏
j=i

{
ŷi ŷj

a
+ (1 − ŷi )(1 − ŷj )

c − a
− bxixj ŷi ŷj (1 − ŷi)(1 − ŷj )

(1 − xiŷi)(1 − xj ŷj )a(c − a)

}
.(32)

Note that when p = 1, (28), (29) and (30) reduce to (22) and (23). These
formulas are derived in Butler and Wood (2000) where it is also noted that certain
important properties of 2F1, such as the Euler relations given in Muirhead (1982),
Theorem 7.4.3, are shared by the approximations 2F̃1 and 2F̂1.

6. Extended interpretation of the approximations. In Sections 4 and 5 we
presented Laplace approximations to 1F1 and 2F1 using the integral representa-
tions (1) and (2) in the scalar argument case, and (3) and (4) in the matrix argu-
ment case. These derivations assumed that all arguments are real. In this section
we discuss these approximations when some arguments are complex and/or the in-
tegral representations do not hold. The discussion of complex arguments in Butler
and Wood (2000) provides additional insight into the accuracy achieved with our
particular (g;h) representation using Laplace’s approximation.
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6.1. Complex arguments. In some statistical applications we may wish to
evaluate 1F1 or 2F1 when some arguments are complex. For example, the char-
acteristic functions of the multivariate test statistics considered in Sections 8.1–8.3
depend on 1F1 and 2F1 evaluated at complex arguments. With such arguments,
the integral representations of these functions must now be regarded as contour
integrals to which Laplace’s approximation is no longer applicable. As contour
integrals however, the method of steepest descents becomes applicable [see Blei-
stein and Handelsman (1975) for a description of this method]. The main points
to note with this method are that: (1) ŷ-values (8) and (19) are the appropriate
complex-valued saddlepoints if we just substitute in our complex arguments; and
(2) the Laplace approximation, also evaluated at our complex arguments, is the
leading and dominant term in the expansion resulting from the method of steepest
descents. Further discussion and numerical results are given in Butler and Wood
(2000).

6.2. Integral representation not valid. In some statistical applications involv-
ing 1F1 and 2F1 (see, e.g., Section 8) it is necessary to approximate these functions
when the integral representations do not hold. In the case of 1F1, the integral rep-
resentation (3) is not valid if a < (p − 1)/2 or b − a < (p − 1)/2. However, it
can be seen after careful study of the formulae in Section 4 that the calibrated
Laplace approximation 1F̂1 is well behaved as a passes through 0 or b, in that
the apparent singularities turn out to be removable. This is very important from
a practical point of view. Presumably, the Laplace approximation is able to retain
high accuracy when the integral representation does not hold because, through
analytic continuation, 1F̂1 continues to “track” 1F1 outside the domain of the inte-
gral representation. It is difficult to make this argument precise, but this does seem
a plausible explanation for the excellent numerical accuracy in Section 8 when the
integral representation does not hold.

The story is essentially the same with 2F1 (except that, in this case, c plays the
role of b).

7. Numerical accuracy. For certain values of a, b and c, the accuracy of
1F̂1(a;b;X) and 2F̂1(a, b; c;X) may be checked using simulation as shown
below. The simulations demonstrate extremely high accuracy for the Laplace
approximations even in the difficult setting in which there are p = 32 dimensions.

7.1. Accuracy of 1F̂1(s;b + s;X). Function 1F1(s;b + s;X) appears as
a factor in the sth noncentral moment of Wilks’ �. Thus simulated estimates of
this function may be computed by averaging 106 noncentral �s-values in order to
check the accuracy of our Laplace approximation.

Suppose E is a p × p matrix error sums of squares with a central
Wishartp(n,3) distribution. Let T = V T V be the treatment sum of squares
with a noncentral Wishartp(m,6,3) distribution with m degrees of freedom
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and noncentrality matrix 6 = 3−1MTM . This results when V is (m × p) with
a Normalm×p(M,3) distribution, with mean E(V ) = M and columns that are in-
dependent with common covariance 3. The likelihood ratio statistic is � = Wn/2

where W = |E|/|T + E|. The noncentral moments of W are specified in Theo-
rem 10.5.1 of Muirhead (1982) as

E(Ws) = �p(n/2 + s)�p((n +m)/2)

�p(n/2)�p((n+m)/2 + s)
1F1

(
s; n+m

2
+ s;−1

2
6

)
.(33)

We approximate these moments by replacing 1F1 with 1F̂1, where 1F̂1 is given
in (17).

Table 1 displays simulation-based and 1F̂1-based approximations to the first
four moments of W for various choices of p, n, m and noncentrality matrix 6.
There is remarkable agreement in Table 1 between the simulated values of the

TABLE 1
The first four moments about zero for the noncentral distribution of the likelihood ratio test

in MANOVA (“Sim.” denotes simulated values based upon averaging 106 values, 1F̂1 denotes
the approximation, and the percentage relative error is listed as “% rel. err ”)

Moment

(p,n,m) 1 2 3 4

(2,10,3) 6 = diag{ 1
2 ,1}

Sim. 106 0.52304 0.30478 0.19201 0.12829

1F̂1 0.52303 0.30480 0.19205 0.12835
% rel. err. −0.02223% 0.02793% 0.0244% 0.0453%

(5,20,5) 6 = diag{ 1
4 ( 1

4 )1,1 1
2 }

Sim. 106 0.25194 0.072381 0.023191 0.0281460

1F̂1 0.25216 0.072492 0.023234 0.0281616
% rel. err. 0.0874% 0.152% 0.188% −0.191%

(8,40,7) 6 = diag{0, 1
4 ,

1
2 ,1 ( 1

2 )3}
Sim. 106 0.19717 0.042299 0.0297948 0.0224312

1F̂1 0.19715 0.042283 0.0297861 0.0224271
% rel. err. −0.02688% −0.0358% −0.0889% −0.166%

(16,40,14) 616 = diag{2 (0), 1
4 ,

1
2 ( 1

2 )3,3 1
4 ( 1

4 )4 3
4 }

Sim. 106 0.0215154 0.0532231 0.0893082 0.01035496

1F̂1 0.0215158 0.0532242 0.0893101 0.01035468
% rel. err. 0.0230% 0.0356% 0.0204% −0.0785%

(32,60,28) 632 = I2 ⊗616

Sim. 106 0.0744805 0.01437381 0.02155062 0.02713461

1F̂1 0.0744761 0.01437267 0.02155161 0.02713942
% rel. err. −0.0991% −0.303% 0.179% 3.57%
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moments and those based on 1F̂1. The percentage relative errors in estimating 1F1
are exactly those for the moment estimates and are listed in Table 1. Note that very
high accuracy is maintained even when the dimension is quite large (see p = 16,
32). In many of the cases considered in Table 1 [in fact, all those cases in which
s ≤ (p − 1)/2], 1F1 does not have the integral representation (3), because the
requirement a > (p − 1)/2 does not hold; yet the very high level of accuracy is
maintained in these cases.

A zonal polynomial expansion for the 1F1 term in (33) with large 6 has been
derived in Constantine and Muirhead [(1976), Theorem 3.2] and Muirhead
[(1978), equation 7.2 and below]. The leading term of this expansion, when used
to approximate the mean for the p = 5 example of Table 1, gives the value
1.323 × 107 which is quite far from the simulated value 0.25194.

7.2. Accuracy of 2F̂1(a, a;a + s;X). The function 2F1 is a factor in the
noncentral moments of the likelihood ratio test for block independence and we
may check its accuracy in the same manner.

Suppose blocks of variables with dimensions p1 and p2 where p1 + p2 = p.
Let A be the matrix of sample covariances with a Wishartp (n,3) distribution.
Specify A in block form as

A =
(
A11 A12

A21 A22

)

where Aij is pi × pj . The likelihood ratio test for block independence rejects for
small values of W = |A|/(|A11||A22|). The noncentral moments of W are specified
in Theorem 11.2.6 of Muirhead (1982) as

E(Ws) = �p1(n/2)�p1((n − p2)/2 + s)

�p1(n/2 + s)�p1((n − p2)/2)

×|Ip1 − P 2|n/2
2F1

(
n

2
,
n

2
; n

2
+ s;P 2

)
,

(34)

where P = diag{ρ1, . . . , ρp1} contains the population canonical correlations or
the eigenvalues of 3−1

11 3123
−1
22 321 where {3ij } form the conformable subblocks

of 3. We approximate these moments by substituting 2F̂1 into (34). Such
approximate moments are given in Table 2 and are compared with empirical
moments based on simulating 106 values of W . There is remarkable agreement
between the explicit analytical approximations using 2F̂1 and those obtained
through long and time-consuming simulations.

Theorem 1 in Glynn and Muirhead (1978) provides a different Laplace
approximation to 2F1(

n
2 ,

n
2 ; n

2 + s;P 2) based upon representing the 2F1 function
as an integral over a different space of considerably higher dimension. Numerical
computation of this approximation for the mean of the p1 = 5 example gives
a mean of 4.061 × 10−8 which is not close to the simulated value of 0.00743.
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TABLE 2
The first four moments about zero for the noncentral distribution of the likelihood ratio test

for block independence

Moment

(p1,p2,n) 1 2 3 4

(2,3,10) P = diag{0.3,0.8}
Sim. 106 0.17602 0.045659 0.015584 0.0264957

2F̂1 0.17606 0.045722 0.015628 0.0265209
% rel. err. 0.0234% 0.140% 0.282% 0.387%

(5,7,20) P = diag{0.4 (0.1)0.8}
Sim. 106 0.0274312 0.0310603 0.05255842 0.0795614

2F̂1 0.0274248 0.0310588 0.0525496 0.0794246
% rel. err. −0.0869% −0.143% −0.344% −1.43%

(10,13,40) P = diag{0.1 (0.1)0.9,0.95}
Sim. 106 0.0414332 0.0940854 0.01321700 0.01720176

2F̂1 0.0414328 0.0940727 0.01321577 0.01720214
% rel. err. −0.0284% −0.312% −0.566% 0.187%

(25,28,70) P = diag{2 (0.1),2 (0.2),3 (0.3), . . . ,3 (0.7),2 (0.8),2 (0.9),2 (0.95)}
Sim. 106 0.01313552 0.02772427 0.03913915 0.05273407

2F̂1 0.01313552 0.02772142 0.03913553 0.05281928
% rel. err. −0.03156% −0.393% −2.60% 11.6%

We suggest two reasons for this inaccuracy. First the integral representation
for 2F1 is over a much larger space. Secondly, their approximation is undefined
at P = diag{0, . . . ,0} and therefore cannot be calibrated, an adjustment that leads
to considerable improvement in accuracy.

8. Statistical applications. There are many statistical inference applications
in which these Laplace approximations could serve as surrogates for the true
values of 1F1 and 2F1. A summary of such applications is given below. Prominent
among these applications are the proposed sequential saddlepoint applications
for the noncentral distributions of the various test statistics listed in item 1.
In each of these 5 settings, 1F1 or 2F1 is a factor in the Mellin transform of
the test statistic. Replacement of the true function by its Laplace approximation
provides an approximate Mellin transform that is subsequently inverted using the
Lugannani and Rice (1980) saddlepoint procedure. The net result is an extremely
accurate CDF approximation for each of the noncentral distributions that is listed.
Application to the noncentral CDF of Wilks’ � is shown in Section 8.1.

The functions 1F1 and 2F1 are needed to determine the following transforms,
densities and CDFs:
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1. The Mellin transform for the following distributions. Sequential saddlepoint
approximations may be used to approximate their CDFs using 1F̂1 for (a)–(c)
and 2F̂1 for (d) and (e).
(a) The noncentral distribution of the likelihood ratio test or Wilks’ Lambda in

MANOVA [Muirhead (1982), Theorem 10.5.1, and Constantine (1963)].
See Section 8.1 for numerical examples.

(b) The distribution of the generalized variance for a noncentral Wishart
[Muirhead (1982), Theorem 10.3.7; Herz (1955); and Constantine (1963)].

(c) The null distribution of Bartlett–Nanda–Pillai trace statistic in MANOVA
[Muirhead (1982), Section 10.6.3, and James (1964)]. Numerical work is
given in Butler, Huzurbazar and Booth (1992).

(d) The noncentral distribution of the likelihood ratio test statistic for block
independence with two block groups [Muirhead (1982), Theorem 11.2.6,
and Sugiura and Fujikoshi (1969)].

(e) The noncentral distribution of the likelihood ratio test statistic for equality
of two covariance matrices [Muirhead (1982), Theorem 8.2.11, and Sugiura
(1969)].

2. The CDF of the largest eigenvalue of a Wishart [Muirhead (1982) Theo-
rem 9.7.1, and Constantine (1963)].

3. The CDF of the largest eigenvalue of a matrix Beta [Mathai (1993), page 223,
and Constantine (1963)].

4. The density for the p × 1 instrumental variable regression estimator used in
econometric simultaneous equation models with p + 1 endogenous variables
[Phillips (1983)].

5. Applications to shape analysis including the Bingham distribution [Bingham,
Chang and Richards (1992)].

6. Bayesian posterior analysis for distributions on circles, cylinders, and hyper-
cylinders [Bagchi and Kadane (1991)].

7. The matrix F density [Muirhead (1982), Theorem 10.4.1, and James (1964)]
and the Studentized Wishart density [Muirhead (1982), Theorem 10.4.4, and
James (1964)].

8. Kernel density estimation on the Stiefel manifold [Chikuse (1998)].

8.1. Sequential saddlepoint approximation to noncentral Wilks’ �. Expres-
sion (33) determines the MGF for the noncentral distribution of logW in terms
of 1F1. The substitution of 1F̂1 as its surrogate, followed by saddlepoint inver-
sion using the Lugannani and Rice (1980) approximation, produces a sequential
saddlepoint approximation, as in Fraser, Reid and Wong (1991), for the nonnull
distribution function which we compute below. In our implementation, derivatives
are calculated numerically.

Table 3 displays sequential saddlepoint (seq. sad.) percentages whose accuracy
is measured in terms of how close the entries are to the true percentages listed
in the top row. The approximations were computed for dimensions p = 2, . . . ,64
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TABLE 3
Sequential saddlepoint approximations (Seq. sad.), the O(n−3) expansions of Sugiura and

Fujikoshi (1969) and the O(n−3/2) expansions of Sugiura (1973) for percentages of the noncentral
CDF of Wilks’ logW in the general linear MANOVA hypothesis. (The table entries are the three
CDF approximations evaluated at the simulated empirical percentiles listed in Table 4. Accuracy
may be judged by comparing the table entries to the true percentile levels given in the top row.)

(p,n,m) 1 5 10 30 50 70 90 95 99

(2,10,3) 6 = diag{ 1
2 ,1}

Seq. sad. 1.011 5.021 9.987 30.07 50.06 70.00 89.99 94.99 98.99
O(n−3) 1.332 5.393 10.32 30.10 49.99 69.96 89.98 94.99 99.00
O(n−3/2) 0.07132 0.02193 0.1272 14.31 57.63 101.1 129.1 132.2 129.4

(5,20,5) 6 = diag{ 1
4 ( 1

4 )1,1 1
2 }

Seq. sad. 1.003 4.974 9.944 29.90 49.88 69.90 89.98 94.98 99.00
O(n−3) 1.283 5.488 10.53 30.31 50.03 69.96 89.95 94.93 98.99

(8,40,7) 6 = diag{0, 1
4 ,

1
2 ,1 ( 1

2 )3}
Seq. sad. 0.9919 4.996 9.992 29.96 49.93 70.00 90.04 95.05 99.01
O(n−3) 1.276 5.492 10.53 30.31 50.03 69.96 89.95 94.93 98.99

(16,40,14) 616 = diag{2 (0), 1
4 ,

1
2 ( 1

2 )3,3 1
4 ( 1

4 )4 3
4 }

Seq. sad. 0.9969 5.001 9.987 29.98 49.95 69.98 89.99 94.99 98.99
O(n−3) 4.817 12.10 17.66 33.76 49.26 66.63 87.26 93.26 98.52

(32,60,28) 632 = I2 ⊗ 616

Seq. sad. 1.006 5.034 10.00 29.98 49.97 69.98 90.04 95.03 99.01
O(n−3) 2.254 9.708 17.55 41.22 57.32 69.69 82.71 88.24 95.71

(64,75,56) 664 = I4 ⊗ 616

Seq. sad. 0.9908 4.984 9.966 29.95 49.90 69.94 89.96 94.99 99.00
O(n−3) 0.01420 0.01120 0.01058 0.0734 0.0518 0.0463 0.0256 0.364 0.7270

with error and hypothesis degrees of freedom n and m and sample size assumed
to be n + 1. The entries show two and often three significant digit accuracy and
the largest percentage absolute relative error for the whole table is ≤ 1%. This
is astonishing accuracy considering the range of dimensionalities and quite small
degrees of freedom used. Also included are computations for the expansions of
Sugiura and Fujikoshi (1969) in terms of noncentral chi-square distributions that
admit errors of O(n−3), and the Edgeworth-type expansions of Sugiura (1973)
with error O(n−3/2) for the case p = 2.

The former expansion provides good accuracy in dimensions up to p = 8 but
its accuracy deteriorates for p ≥ 16. The latter approximation was considerably
less accurate. These findings are partially explained by the following points: in our
examples, 6 has entries of modest size (corresponding to an alternative hypothesis
not very far from the null hypothesis); Sugiura and Fujikoshi (1969) assumes that
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TABLE 4
Empirical percentiles (top) and saddlepoint percentiles (bottom; not shown when identical to table
accuracy) for noncentral logW . (The empirical percentiles were determined from 106 independent

simulations of logW . The cases in which p = 32 and 64 resulted in equal percentiles to table
accuracy. The approximate means and standard deviations µ̂ and σ̂ were determined from

the approximated CGF while those in parentheses were determined from simulation.)

1 5 10 30 50 70 90 95 99

(p,n,m) = (2,10,3) µ̂= −0.7166 (−0.7164) σ̂ = 0.3945 (0.3940)

−1.919 −1.461 −1.247 −0.8644 −0.6485 −0.4705 −0.2756 −0.2059 −0.1108
−1.916 −1.460 −1.247 −0.8635 −0.6480 −0.4704 −0.2758 −0.2061 −0.1111

(p,n,m) = (5,20,5) µ̂ = −1.452 (−1.453) σ̂ = 0.4000 (0.4001)

−2.536 −2.165 −1.983 −1.634 −1.417 −1.220 −0.9681 −0.8608 −0.6820
−2.167 −1.984 −1.635 −1.418 −1.221 −0.9684 −0.8613

(p,n,m) = (8,40,7) µ̂ = −1.669 (−1.669) σ̂ = 0.3056 (0.3059)

−2.458 −2.200 −2.070 −1.815 −1.651 −1.496 −1.290 −1.199 −1.038
−2.459 −2.071 −1.816 −1.197 −1.037

(p,n,m) = (16,40,14) µ̂ = −6.674 (−6.674) σ̂ = 0.6142 (0.6144)

−8.184 −7.715 −7.472 −6.982 −6.655 −6.339 −5.900 −5.696 −5.327
−8.185 −6.656 −5.697 −5.330

(p,n,m) = (32,60,28) µ̂ = −17.25 (−17.25) σ̂ = 0.8193 (0.8196)

−19.21 −18.62 −18.31 −17.67 −17.24 −16.81 −16.21 −15.92 −15.40

(p,n,m) = (64,75,56) µ̂ = −61.29 (−61.30) σ̂ = 1.613 (1.613)

−65.14 −63.98 −63.37 −62.13 −61.28 −60.44 −59.24 −58.67 −57.62

6 has O(1) entries as n → ∞; and Sugiura (1973) assumes that 6 has O(n)

entries as n → ∞.
On the computational side, the noncentral chi-square approximations, upon

which the Sugiura and Fujikoshi (1969) approximation is based, were quite
difficult to perform as a result of register underflow problems in floating
point computation. By contrast the sequential saddlepoint approximations were
straightforward and instantaneous.

All the table entries were determined in the following way. Empirical quantiles
for the noncentral distribution of logW associated with the probabilities in
the top row were determined by simulating 106 independent values of logW .
These empirical quantiles are displayed in Table 4. Sequential saddlepoint
approximations and other expansions were then evaluated at these empirical
percentiles so that Table 1 shows the accuracy of the saddlepoint approximations
were the empirical percentiles regarded as exact.

Table 4 displays empirical percentiles along with saddlepoint percentiles (when
different to table accuracy) associated with the computations of Table 3. It also
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shows the approximate mean µ̂ and standard deviation σ̂ for the noncentral
distribution of logW as computed from the approximated cumulant generating
function (CGF) K̂(s) of logW . These cumulants were computed as µ̂ = K̂ ′(0)
and σ̂ =

√
K̂ ′′(0). For comparison, the empirical averages and standard deviations

of logW from the 106 simulated values are given in parentheses and show virtually
no differences.

9. Sequential saddlepoint connections. The integral expression for
1F1(a;b;Z) in (3) specifies that it is the MGF of a Matrix Betap(a, b) density
when Z is taken to have (i, i)th component zii and (i, j)th component zij /2 for
i �= j . This MGF is also a conditional MGF when based upon the following con-
struction. Suppose that A ∼ Wishartp(a,3) independent of B ∼ Wishartp(b,3).
Then A given S = A + B = Ip has a Matrix Betap(a, b) density and the condi-
tional MGF of A|S = Ip is 1F1(a;b;Z).

The sequential saddlepoint method discussed in Fraser, Reid and Wong (1991)
and Butler, Huzurbazar and Booth (1992) is concerned with approximating this
conditional MGF using the double saddlepoint density approximation for the tilted
conditional density of A|S = Ip.

THEOREM 1. The calibrated conditional MGF approximation for A|S = Ip ,
obtained through the double saddlepoint density approximation, is analytically
equivalent to 1F̂1(a;b;Z), the calibrated Laplace approximation.

A proof of this result is given in Butler and Wood (2000).

10. Relative error properties. In this section we briefly discuss the relative
error properties of (i) the calibrated Laplace approximations for 1F1 and 2F1, and
(ii) the sequential saddlepoint approximation referred to in Section 8.1.

10.1. Relative error of 1F̂1 and 2F̂1. As noted in Butler and Wood (2000),
Section 7, there are many asymptotic regimes we may wish to consider for 1F1
and 2F1, and for this reason it seems difficult to give a complete summary of
the global relative error properties of 1F̂1 and 2F̂1 in the form of a theorem.
However, in each of the long list of cases reported in Butler and Wood (2000),
it turned out that the relative error of the approximation remained uniformly
bounded in the limit. Given the simplicity of 1F̂1 and 2F̂1 and the complexity of
1F1 and 2F1, these findings are remarkable. All the theoretical evidence we have
points towards the following speculative conclusion: for fixed p, b0 > (p − 1)/2
and c0 > (p − 1)/2, and symmetric X,

sup
b≥b0,a∈R,X∈Rp×p

∣∣log 1F̂1(a;b;X)− log 1F1(a;b;X)
∣∣< ∞
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and for any ε ∈ (0,1),

sup
c≥c0,a,b∈R,0p≤X<(1−ε)Ip

∣∣log 2F̂1(a, b; c;X)− log 2F1(a, b; c;X)
∣∣< ∞.

The conditions b ≥ b0 and c ≥ c0 are required to avoid the regions in which the
singularities of 1F1 and 2F1 occur (these regions are easily identified using the
zonal polynomial expansions of 1F1 and 2F1). Of course bounded relative error
does not in itself guarantee good numerical accuracy in practice, but these relative
error results provide important insight into the excellent numerical accuracy seen
in our examples.

10.2. Relative error of the sequential saddlepoint approximation. Let Y =
− logW be the random variable whose moment generating function is given by the
right-hand side of (33), but with s replaced by −s. Let F̂SSA denote the sequential
saddlepoint approximation to the CDF of Y , obtained as indicated in Section 8.1.
Note that, since W ∈ (0,1), we have Y ∈ (0,∞).

THEOREM 2. For fixed p, m, n and 6, we have the following limits:

lim
y→0

P (Y ≤ y)

F̂SSA(y)
= �̂(mp/2 + 1)

�(mp/2 + 1)

and

lim
y→∞

P (Y > y)

1 − F̂SSA(y)
= √

2πe−1 = �̂(1)

�(1)

where �̂(a) = √
2πaa−1/2e−a is Stirling’s approximation to the gamma function.

Thus the relative error in the extreme upper and lower tails is actually rather
small. This does not, of course, fully explain the excellent numerical results in
Tables 3 and 4, but it does provide some insight into why the approximation works
so well.

It should be noted that these limits are the same as in the null case. See,
for example, Booth, Butler, Huzurbazar and Wood (1995) for the upper limit,
and the lower limit is derived similarly. A general discussion of relative error of
saddlepoint approximations is given by Jensen (1995).

To prove Theorem 2, all we need to do is show that: 1F1 makes a negligible
theoretical contribution to the extreme upper and lower tail probability; and that,
in the extremes, 1F̂1 makes a negligible contribution to the Lugannani and Rice
(1980) approximation. We now briefly sketch the proof.

Using the Kummer relation [see Theorem 7.4.3 of Muirhead (1982)], we may
write the cumulant generating function of Y as

KY(s) = K0(s)+K1(s)+ tr(6/2)
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where K1(s) = log 1F1((n+m)/2; (n+m)/2 − s;6/2) and

K0(s) = log
[
�p(n/2 + s)�p((n +m)/2)

�p(n/2)�p((n +m)/2 + s)

]
.

By expressing �p as a product of univariate gamma functions, and using the
fact that the latter has a simple pole at zero, we find that K0(s) is finite for
s ∈ (−∞, (n−p + 1)/2), but has a simple pole at s = (n−p + 1)/2. Also, using
the zonal polynomial expansion for all 1F1 [see, e.g., Muirhead (1982)], we find
that K1(s) is finite for all s ∈ (−∞, (n + m − p + 1)/2) and has a simple pole
at s = (n +m − p + 1)/2. Consequently, since m is positive, the relevant domain
of KY is s ∈ (−∞, (n − p + 1)/2). Moreover, the upper tail of Y is determined
by the behavior of KY around s = (n − p + 1)/2, while the lower tail of Y is
determined by the behavior of KY at s = −∞. Now 1F1 and 1F̂1 make a negligible
contribution to the extreme upper tail because they (and their derivatives) remain
bounded while K0(s) and its derivatives blow up at s = (n − p + 1)/2. They also
make a negligible contribution to the lower tail because, as s → −∞,

K0(s) ∼ −1
2mp log(−s), K ′

0(s) ∼ −1
2mp/s and K ′′

0 (s) ∼ 1
2mp/s2

while [writing K̂1(s) when 1F̂1 replaces 1F1 in K1]

K
(r)
1 (s) = O(s−r−1) and K̂

(r)
1 (s) = O(s−r−1), r = 0,1,2.

Of course this is just a sketch of the proof; the omitted details are straightforward
but lengthy.
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