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Laplace spectra as fingerprints for image recognition
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Abstract

In the area of image retrieval from data bases and for copyright protection of large image collections there is a growing demand for unique but

easily computable fingerprints for images. These fingerprints can be used to quickly identify every image within a larger set of possibly similar

images. This paper introduces a novel method to automatically obtain such fingerprints from an image. It is based on a reinterpretation of an

image as a Riemannian manifold. This representation is feasible for gray value images and color images. We discuss the use of the spectrum of

eigenvalues of different variants of the Laplace operator as a fingerprint and show the usability of this approach in several use cases. Contrary

to existing works in this area we do not only use the discrete Laplacian, but also with a particular emphasis the underlying continuous operator.

This allows better results in comparing the resulting spectra and deeper insights in the problems arising. We show how the well known discrete

Laplacian is related to the continuous Laplace–Beltrami operator. Furthermore, we introduce the new concept of solid height functions to overcome

some potential limitations of the method.
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1. Introduction

One of the main tasks of computer science is to manage large

collections of data. In general these collections are maintained

using data base management systems. A variety of such systems

exist, as well as different strategies for data base management

systems to keep track of inserted data. All these strategies

require chunks of data to be identified by a unique key, in order

to distinguish them from other items stored in the data base. It

is common practice to refer to such identifiers as fingerprints,

in analogy to the way a human individual is identified by the

prints of its finger tips.

Furthermore, with the area of copyright protection a new

field of applications has developed recently. In order to identify

unlicensed copies of protected material there have been efforts

to develop watermarks intrinsic to the material in question.

In the case of shape models such watermarks should be
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embedded in the geometry of the shape itself and they should be

robust against distortions, caused e.g. by reconstructing shapes

through scan processes. See [29,30] and [37,38] for recent

developments in this area. For images this means that an image

that is printed out and then scanned again is still identifiable

by its fingerprint. Such fingerprints can be used as watermarks,

too.
For some types of data constructing a suitable fingerprint is

rather straightforward: for example, if the data is a collection

of English words, it is sufficient to identify each word by its

representation as an ASCII- or unicode-string. Well known

techniques like tries (cf. [28]) or the like can then be applied

easily. With the data consisting of images there is no such

straightforward representation. A number of obstacles arise

when trying to construct unique fingerprints for images, e.g.:

• Identical images can be represented in different ways.

Even if we require all the images to be given as pixels,

color images can be expressed in different color spaces.

Thus we would need to restrict ourselves to a fixed color

space, i.e. RGB space. For images given in other spaces a

conversion needs to be applied.
• Unlike ASCII-strings, images may contain minor distor-

tions, e.g. resulting from numerical errors during a color
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space conversion or compression artifacts. We would like

our fingerprints to be robust in the presence of such distor-

tions.

• Pixel images can be given in different resolutions. For some

applications it would be desirable that the same image in a

different resolution would be identified by the same (or a

very similar) fingerprint.

• Sometimes the content of an image is independent of

the colors chosen, i.e. color rotation or inversion does

not change the meaning of an image. For example, the

negative of a photograph still represents the same content

(although it may look strange). Thus we would need

identical fingerprints in those situations.

It is an intricate task to construct fingerprints suitable for

image collections. In general it is impossible to take the image

itself in its RGB-representation as its fingerprint. Even for a

rather tiny image with 200×200 pixels the resulting fingerprint

would be a vector with 40 000 entries. There is no efficient

way to search a 40 000-dimensional space of objects. There has

been some effort to overcome these dimensional restrictions

recently; however, generally speaking the fewer dimensions

that are involved, the more efficient the search that can be

carried out. See [20] for a survey of search methods on higher

dimensional spaces, and see [4] or [3] for examples of efficient

data structures for such applications. Furthermore, there is the

possibility to reduce the dimensionality of a feature space

afterwards using multi-dimensional scaling (MDS); see [2] for

an overview on different methods.

In other words we need to find a map from the space of

images to a much lower dimensional space without losing

information that is relevant for the content. It should be noted,

that there are different approaches to automatically construct

such a map from a given training set of images, e.g. by MDS.

Apart from that, we are looking for fingerprints that are suitable

for different setups without having prior training sets.

There have been different approaches to construct finger-

prints, the best known of which are feature vectors. These vec-

tors are constructed from a number of features that can be ex-

tracted from an image, including:

• brightness (i.e. mean pixel value) of an image

• contrast (i.e. variance of the pixel values) of an image (see

e.g. [32] for an overview of these features and more)

• overall roundness of contained shapes

• approximate fractal dimension (see [36])

• Fourier transform and wavelet transform (see [41])

• skeletal transforms (e.g. discrete medial axis transforms, see

e.g. [10]).

Some of these features obviously do not fulfill our

requirements, e.g. changing the brightness or contrast of an

image does not change important content of the image. Most

of the classical techniques are only suitable for certain special

classes of images and not for others; i.e. they cannot be applied

in a general situation where there is no further knowledge about

the nature of the images available. For example, computing the

medial axis of a shape is impossible if the image in question

does not contain any obvious shape at all, e.g. for gradient

images. Of course there is a large number of more elaborate

techniques but a detailed discussion would be beyond the scope

of this short introduction. See e.g. [46,31,43] or [34] for an

overview of different methods.

In this paper we will introduce a method that works in

the general case where there is no restriction concerning the

kind of images. We will develop criteria to be met in such

a setup, and show that our fingerprints fulfill these criteria.

We will explain how to obtain these fingerprints using the

spectra of a family of operators known as Laplace or Kirchhoff

operators. Only discrete versions of these operators have been

used in image processing traditionally, while others (like the

continuous Laplace–Beltrami operator) are relatively new in

this area. In order to compute the operators’ eigenvalues, we

will interpret images as Riemannian manifolds. This is a novel

approach in the area of image analysis. Based on the theory

developed in [35] we will explain the techniques from the point

of view of its application on images, although they can be

used for more general shapes also. See [47] and [37,38] for an

introduction to the theory of Laplace spectra in general shape

matching.

2. Related work

Using the Laplace operator and more generally using

eigenvalues of different operators and matrices derived from

this operator is a well known and established technique in

the community of shape and image recognition. Most of the

applications mentioned in this section use discrete forms of the

Laplacian directly, i.e. they are using some kind of admittance

matrix.

One of the best known applications of the Laplace spectrum

of a graph is graph partitioning. This is useful in areas where

one has to find a segmentation of a given mesh, e.g. to identify

different components of a scene. See [33,9] for an overview of

the mathematical foundations. Closely related is the application

of eigenfunctions to remesh given objects (see [15,16]).

Another popular application of the Laplacian can be found in

image processing. A local version of the mesh Laplacian is well

established for smoothing of images and meshes; see [19,21,23,

7,18,45] for examples. A variant of the Laplace operator can be

used for mesh partitioning and compression. This technique is

known as spectral compression; details can be found in [26].

Furthermore, the Laplace operator is used for dimensionality

reduction of high dimensional data spaces (cf. [1]). This method

could be seen as a complement of the method developed

in this paper. Belkin and Niyogi assume the existence of a

manifold containing all the objects of a given set of objects

represented as points in a feature space. One can assume that

these points form a low dimensional manifold since for most

applications the space of possible data depends continuously

on few parameters. For example, given a set of images shot

from an indoor scene by a movable camera the results depend

solely on six parameters, i.e. placement and orientation of

the camera. Belkin and Niyogi then use some interpolation

technique to form a discrete mesh resembling the assumed

manifold containing the objects representations in feature space
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and compute eigenvalues and eigenfunctions of the associated

mesh Laplacian. These eigenfunctions can be used to reduce

the dimensionality of the embedding feature space to a lower

dimension, e.g. six dimensions for the camera example.
The principal difference (aside from using the mesh

Laplacian rather than the Laplace–Beltrami operator) is that

Belkin and Niyogi compute the eigenvalues of the manifold

defined by points in a given feature space, that is each of their

points represents an entire manifold in our approach. We use the

manifold’s eigenvalues as features. The Belkin/Niyogi method

is useful when there is a set of features present that has to be

reduced for some reasons, while our method is useful when

there is a manifold representation for each object possible but

no efficient features are known. The Belkin/Niyogi technique

can roughly be classified as a multi-dimensional scaling method

(MDS) although it is implemented differently from the classical

approaches (cf. [6] and [2]).
Another use of MDS is to map shapes to a canonical

signature surface (cf. [17]). Ideally two isometric shapes

should be mapped to an (almost) identical signature surface.

It would be possible to use the Belkin/Niyogi technique for this

application also.
These uses of the Laplacian show that the application

of (non-Riemannian!) manifolds in feature space are well

established in the image analysis community. On the other hand

the duality of the image as a discrete height function and its

continuous representation as a surface is also well known in the

theory of image processing (see [22]). Nevertheless there seems

to be no transfer between the two fields, i.e. the discussion of

an image as a Riemannian manifold. We will see in Section 5

how to acquire a Riemannian metric for an image and use it for

image classification. This discussion seems to be new.
Using the eigenvalues of a special matrix derived from point

sets of two given objects in Euclidean space, one can compute

a best match of these points. This technique, called modal

matching, was developed by Sclaroff and Pentland [42] based

on the classical well known technique of momentum matrices.

No features are derived from the shapes in this approach;

instead, the chosen points are matched to each other directly.

3. Features and invariants

In this section we will develop criteria for a fingerprint to

be used in image identification. We will make precise what we

mean by a feature and an invariant.
We call a map ι : A → B a feature map if it makes

some kind of higher level information from the objects in the

set A available. Features may include any kind of meaningful

information, e.g. placement of certain objects within a scene,

overall contrast or brightness of an image, and so on. For

purposes of efficiency one would expect a feature to take up

less space than the object itself. Nevertheless some features may

require more space for representation than the original dataset.

Definition 1. Let A, B, I be sets, P = (Pi : i ∈ I ) be a

partition of A with representatives pi ∈ Pi , and ι : A → B

be a map (and in our case even a feature map) with

ι(a) = ι(pi ) ⇔ a ∈ Pi ∀i ∈ I.

Then ι is called a P-invariant for A.

If |Pi | = 1 for all i ∈ I we call ι a characteristic. There is a

relation between partitions and maps. Suppose we have a family

of maps F = ( f j ) with f j : A → A, j ∈ J for some index set

J with ∪i∈I ∪ j∈J f −1
j (pi ) = A and f −1

j (pi ) ∩ f −1
j (pl) = ∅

for all j ∈ J and i 6= l. Then there exists a natural partition of

A with

a ∈ Pi ⇔ ∃ j ∈ J : f j (a) = pi .

It is therefore perfectly admissible to speak of an F-invariant,

e.g. for F being the family of isometries of an isometry

invariant.

We can now give some criteria for fingerprints feasible for

image identification, based on arguments from the introduction:

[COMPRESSION] Fingerprints should have a shorter repre-

sentation than the associated image.

[ISOMETRY] Fingerprints should be isometry invariants.

This is a natural requirement if we are dealing

with fingerprints of objects that are metric spaces

themselves. Here we will interpret images as

Riemannian manifolds (see Section 5); this discussion

seems to be new in the area of image analysis. In

the context of image classification this is motivated

by the fact that most content preserving operations

are isometries, i.e. this map and its inverse preserve

the arclength of all curves (see [14]). This includes

changes of brightness, rotations, mirror operations,

color rotations and inversions.

[SCALING] Fingerprints should optionally be made scaling

invariants, in order to identify different resolutions of

the same image.

There is another important criterion that is not directly

related to invariance:

[SIMILARITY] Fingerprints of similar images should be

similar. To develop a notion of similarity one needs

to have a metric structure (or at least semimetric

structure) for both images and fingerprints. Similarity

of images may be measured by simple Euclidean

distances. Refer to Section 7 to find out more about

the way similarity may be measured for fingerprints

resulting from spectra. One should note that the metric

structure generated by comparing fingerprints does

not necessarily correspond to a direct comparison of

images.

This cannot be taken for granted: even small almost

isometric changes in the object’s geometry may change some

feature’s values non-continuously. This is especially true for

discrete features, e.g. the number of “dark” regions on a photo

(the number of components in a level set) and similar features.

Concerning criterion [COMPRESSION], any method of

compression could be used in order to generate fingerprints.

This way a compressed representation of an image could be

viewed as its fingerprint. Nevertheless, traditional compression

schemes tend to change significantly for small changes in the
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data, thus violating [SIMILARITY]. This behaviour is even

wanted in some application, e.g. with MD5 hashes (see [39]),

where small changes to a file are required to cause a significant

change in the hash. Nevertheless, methods used especially for

geometry compression often change continuously, e.g. if they

are based on Fourier transformations.

4. The Laplace operator and the Kirchhoff operator

In this section we will describe the Laplace operator, also

known as the Laplacian. First we will take a look at the

traditional continuous case; then we will examine the analogous

construction in the discrete case.

Definition 2. Given a compact Riemannian manifold M of

dimension n, f : M → R with f ∈ Ck(M) and k ≥ 2. Let

grad denote the gradient and div the divergence on the manifold

M . Then

1 f := div(grad f )

defines the Laplace operator 1 on M .

For M being a domain of the Euclidean plane M ⊂ R
2 the

Laplace operator reduces to

1 f =
(

∂2 f

∂x2
1

+ ∂2 f

∂x2
2

)

. (1)

In the non-Euclidean case for a Riemannian metric given by

(gi j ) and n = 2 the Laplace operator can be expressed as

(cf. [8])

1 f =
2∑

i=1

2∑

j=1

gi j

(

∂2 f

∂xi∂x j

−
2∑

k=1

Γ
k
i j

∂ f

∂xk

)

(2)

with (gi j ) := (gi j )
−1 and Γ

k
i j being the well known Christoffel

symbols (of the second kind, see e.g. [14]):

Γ
m
i j = 1

2

∑

k

gkm

(
∂

∂ j

gik + ∂

∂i

g jk − ∂

∂k

gi j

)

.

Note that these are invariant against isometries and scaling.

One can easily check that, for the Euclidean case, Eq. (2)

specializes to Eq. (1). We will sometimes refer to the Laplace

operator in the non-Euclidean case as the Laplace–Beltrami

operator.

As a special case we could identify the map generating the

manifold and the function the operator is applied to, i.e. given

coordinate functions F(u, v) := (x(u, v), y(u, v), z(u, v)) we

calculate 1F with respect to the manifold given by F . Note

that we use a generalized version of the Laplacian here that

is defined coordinate wise by 1F := (1x,1y,1z). In this

special case of a “double entry” where F serves the double

purpose of representing the manifold and defining a vector field

on this manifold we get the well known equation:

1F(u, v) = 2H(u, v)n(u, v) (3)

where H is the mean curvature and n is the surface normal of

the point F(u, v). This form where the parameterization of the

manifold and the argument of the operator are being identified

is often used for mesh smoothing (see [18,45] for the discrete

case). Eq. (3) follows directly from Eq. (2) and the Gauss

equations (see [14]):

∂i∂ j F =
∑

k

Γ
k
i j∂k F + hi j n

⇒ hi j n = ∂i∂ j F −
∑

k

Γ
k
i j∂k F. (4)

Here hi j are the coefficients of the second fundamental form. It

follows that

2Hn =
∑

i j

hi j g
i j n by definition of H

=
∑

i j

gi j

(

∂i∂ j F −
∑

k

Γ
k
i j∂k F

)

with (4)

= 1F with (2).

There is a long tradition in studying the eigenvalues of the

Laplace operator. Formally we define an eigenvalue λ by:

1 f − λ f = 0. (5)

The (multi-)set of possible solutions λ to this equation is

defined to be the Laplacian spectrum of M . This spectrum

has a variety of interesting properties some of which make it

interesting for image and shape identification.

• The spectrum is an isometry invariant (see [8]), i.e. if

one maps M to an isometric manifold M ′ the spectrum

remains unchanged. This fulfills criterion [ISOMETRY].

For experimental results and a detailed discussion we refer

to [38].
• Continuous changes of the manifold’s geometry result

in continuous changes of the spectrum. Furthermore, we

will demonstrate that small changes of the geometry

yield likewise small changes of the spectrum; see [12],

p. 366. This corresponds to criterion [SIMILARITY]. It

is important to notice that a topological change of the

manifold can change its spectrum radically. I.e. given the

full disc, removing an infinitesimal small open disc at the

center transforms the surrounding disc into a topological

annulus. One will observe a significant change of the

spectrum without changing the visual appearance. Luckily

this restriction does not apply to images, as we will see in

Section 5.
• The multiset of eigenvalues form an infinite but countable

growing sequence, i.e.

0 ≤ λ1 ≤ λ2 ≤ · · · .
Nevertheless a finite number of these eigenvalues is

sufficient to distinguish shapes in a practical situation. This

is because the smaller eigenvalues correspond to “raw”

features of the geometry (like area and boundary length)

whereas the higher eigenvalues are related to finer details of

the geometry. In a practical setup the number of eigenvalues

being sufficient to distinguish images is much smaller

than the data needed to present the whole image. This

corresponds to criterion [COMPRESSION].
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• For a uniform scaling of the manifold by an factor a > 0 in

every dimension, the spectrum is scaled by 1
a2 . We will show

how to use this knowledge to cancel this effect of scaling,

thus making the spectrum scaling invariant. This fulfills our

criterion [SCALING].

Summarizing the points above, we take a finite number of

eigenvalues of the Laplace operator as a fingerprint of the given

manifold. We will see in Section 5 how images are related to

manifolds.

4.1. The Laplacian with a mass density function

In extension to Eq. (5) we can introduce a mass density

function ρ. This function assigns a mass density to each point

of the manifold that influences the vibration of the material.

Formally we can reformulate the equation as

1 f − λρ f = 0 (6)

with ρ : M → R. A mass density of 1 means the usual

density; therefore setting ρ = 1 everywhere leads to the

classical problem in Eq. (5). The new formulation yields some

interesting properties:

• The solutions of the problem depend continuously on

changes of the manifold and of the mass density function

(see [12], pp. 304).
• Given two isometric manifolds M and M ′ with an isometry

I and mass densities ρ and ρ′ that are conformal to the

isometry, that is

I (M) = M ′ and ρ(m) = ρ′(I (m)) ∀m ∈ M

then the spectra are identical. In different words, for a fixed

mass density function the spectrum is isometry invariant.
• The statement above still holds if I is not an isometry but an

isospectral transplantation (see Section 6.3), i.e. a function

that maps a manifold to an isospectral twin.
• Scaling the mass density function by a factor of 1/k results

in a spectrum also scaled by 1/k. Let ρ′ := kρ and 1 f =
λρ f , then:

1 f = λρ f = λ
1

k
ρ′ f = 1

k
λρ′ f.

For each eigenvalue λ of the problem with density ρ an

eigenvalue λ′ := 1
k
λ of the problem with density ρ′ exists

with identical eigenfunction f .
• When scaling the manifold by k while keeping the mass

density function, one gets

1′ f = 1

k2
1 f and ρ′ = ρ

⇒ 1′ f = 1

k2
1 f = 1

k2
λρ f = 1

k2
λρ′ f.

Thus the spectrum is scaled by 1
k2 .

4.2. Numerical calculations

In order to solve the stated eigenvalue problems 5 and

6 using a computer we need to discretize them. This can

be accomplished by transforming the respective eigenvalue

problem into an equivalent variational problem for the manifold

M (cf. [38] for the steps involved in the transformation):
∫

M

〈∇φ,∇ f 〉 dξ =
∫

M

φ1 f dξ = λ

∫

M

ρφ f dξ.

Here ξ represents the area element of M , φ is an arbitrary

function from the same space as f , and ρ is the mass density

function. For the classical problem we set ρ = 1. Now we

approximate f by

f =
m∑

k=1

ckφk

with {φ1, . . . , φm} being an FEM base for the intended space of

solutions. Sometimes we will refer to these functions as form

functions. Furthermore, we choose φ ∈ {φ1, . . . , φm}. This way

the problem is transformed into a generalized matrix eigenvalue

problem (again see [38] for details):

AEc = λBEc (7)

A = (a jk) =
(∫

G

〈gradφ j , gradφk〉W dudv

)

(8)

B = (b jk) =
(∫

G

ρφ jφk W dudv

)

. (9)

This problem can be solved using standard numerical libraries.

The existence of boundary conditions can have some impact

on the choice of form functions also. Given a Dirichlet

boundary condition f (x) = 0 for all x ∈ Γ , with Γ being

the boundary, given a point Pi on the boundary, and given that

the intended form functions have local character, that is each is

associated to a special point and is only defined on a compact

surrounding of that point, then the boundary condition mostly

implies that the corresponding form function φi is zero. This is

the case for most sets of popular form functions like piecewise

linear function (“hat functions”), polynomial bases, etc. In this

case every product with φi and its derivative is cancelled also.

This implies that the corresponding entries in the FEM matrices

A and B become zero.

Given a mesh that covers each pixel of an image, the

matrices A and B can be computed in a time proportional to

O(n) for a n-pixel image. In practice this leaves the complexity

of the approach up to the method for calculating the eigenvalues

of A and B. Since the matrices are sparse one can greatly benefit

from using a suitable method, e.g. the Lanczos algorithm.

4.3. The Laplace–Kirchhoff operator

There is a different version of the Laplace operator in the

discrete case. It is defined as follows:

Definition 3. Given a node weighted graph G = (A,M)

with A ∈ R
n×n being the adjacency matrix of the graph. In

the case of an (edge-)weighted graph the entry Ai j contains

the weight of the edge connecting nodes i and j . For an

unweighted graph the weights are simply 0 or 1. Most of the

time we will use the unweighted case, but there are many

applications for the weighted graph also (see e.g. [16,18,45]).
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Fig. 1. Application of the Laplace–Kirchhoff operator to an image.

M = diag(m1, . . . ,mn) ∈ R
n×n
+ is the diagonal matrix

containing the weights of the nodes, if there are any. Let

Di i =
n∑

j=1

Ai j

define the valence matrix of G, i.e. the diagonal matrix

containing all degrees of the nodes of G. Then the discrete

Laplace operator of G is given by

L = L(G) := M−1(D − A).

The discrete Laplace operator is also known from the Matrix-

Tree theorem by G. Kirchhoff and is therefore sometimes

referred to as the Kirchoff operator. To distinguish the operator

from the Laplacian in the continuous case we will refer to it as

the Laplace–Kirchhoff operator.

The Laplace–Kirchhoff operator is a difference operator on

G since it maps each function f : G → R to a difference

function f ′ : G → R. Here we identify f and f ′ with

vectors from R
n by fi := f (i) and get f ′ = L · f . It is

then possible to interpret a gray value image as a node weighted

graph by connecting each pixel with its four direct neighbours,

and assigning each pixel its gray value as a weight. The gray

value function then becomes a function on the graph where we

can apply the Laplace–Kirchhoff operator to. Fig. 1 shows an

image before and after applying its Laplace–Kirchhoff operator.

The operator has no impact on an image corresponding to

an eigenfunction. Its frequency response on the image can be

characterized as a band pass convolution filter (see [35,19,22,

23]).

The spectrum of the Laplace–Kirchhoff operator is given by

the ordinary eigenvalue problem

Lx − λx = 0 (10)

with x ∈ R
n . One can easily check that this is equivalent to

(D − A)x = λMx ⇔ det(D − A − λM) = 0 (11)

which is a generalized eigenvalue problem. The advantage

of (11) over the formulation in (10) is, that all matrices are

given in symmetric form, whereas L might be non-symmetric

in general. This can be easily reformulated to the ordinary

eigenvalue problem:

M−1/2(D − A)M−1/2x = λx . (12)

For symmetric eigenvalue problems more accurate numerical

solutions are available.

Fig. 2. Orthogonal FEM base function.

Note that again the main part of the calculations is finding

the eigenvalues. Therefore the complexity of this approach is

given by the chosen method for calculating the eigenvalues,

e.g. the Lanczos algorithm.

The Laplace–Kirchhoff operator can be seen as a special

discrete formulation of the Laplace–Beltrami operator. If we

choose the FEM base from Section 4.2 to be the set {φi j :
(i, j) ∈ Z

2} we can define a FEM base for the space of

functions defined on R
2 with

φi j (x, y) := φi (x)φ j (y)

φi (x) := φ(x − i)

φ(x) :=







x + C for − 1 ≤ x < 0

−x + C for 0 ≤ x < 1

0 else

using C = 3+
√

3
6 (see Fig. 2). This yields the following matrices

(by evaluating Eqs. (8) and (9); note that we choose pairs of

numbers as indices here):

A = (ai j,kl) =







4 for (i, j) = (k, l)

−1 for |(i, j)− (k, l)| = 1

0 else

B = (bi j,kl) =







√
3 − 1

3
for (i, j) = (k, l)

0 else

after dividing by a factor of
√

3−1
3 on both sides of the equation.

This conforms to the Laplace–Kirchhoff operator of a regular

grid, except for a factor of
√

3−1
3 for the B matrix. This factor

is of no practical importance, since it only leads to a scaling

of the spectrum and can be divided from the spectrum after

calculation. Now let there be a mass density function given by

ρ(x, y) := K[x][y]

where B ∈ N
n×m is a grey value image. For each square in R

2

this function ρ is constant, therefore we get (again after dividing

by a factor):

A = (ai j,kl) =







4 for (i, j) = (k, l)

−1 for |(i, j)− (k, l)| = 1

0 else
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B = (bi j,kl) =







Ki j

√
3 − 1

3
for (i, j) = (k, l)

0 else.

This conforms to the Laplace–Kirchhoff operator with mass

density function ρ. So far we have constructed discrete

operators for the case of a uniformly spaced grid with grid

size 1. Now let the grid have a grid size of 1/w. We define

φ[w](x) := φ(wx)

φ
[w]
i (x) := φ[w](x − i) = φ(w(x − i)).

By applying the substitution rule for integration we get:
∫ ∞

−∞
φ

[w]
i φ

[w]
j dx = 1

w

∫ ∞

−∞
φiφ j dx

∫ ∞

−∞
φ

′[w]
i φ

′[w]
j dx = 1

w

∫ ∞

−∞
wφ′

iφ
′
j dx =

∫ ∞

−∞
φ′

iφ
′
j dx .

This shows that the mass matrix B is scaled by an additional

factor of 1/w in the one-dimensional (1D) case; for the two-

dimensional (2D) case B is scaled by 1/w2 and A is scaled by

1/w. Again we can divide by 1/w.

Summarizing the above results, the Laplace–Kirchhoff

operator can be seen as a discrete approximation of the

Laplace–Beltrami operator with mass density operator on a

regular grid. Given that the mass matrix B is scaled by

w
√

3−1
3 , the resulting spectrum is an approximation of the

spectrum of the Laplace–Beltrami operator. Note that according

to Section 4.2 one needs to zero out the matrix entries

corresponding to a boundary point to zero if there is a Dirichlet

boundary condition.

Instead of interpreting the Laplace–Kirchhoff operator as a

special case of the Laplacian resulting from FEM calculations,

we could also view it as an approximation: Let B be a small

geodesic disc with boundary ∂B and center point p, φ, ψ :
B → R with ψ ≡ 1 on B and φ being C2-smooth. Then we

obtain (cf. [5])
∫

B

ψ1φdξ = −
∫

∂B

ψ
∂

∂n
φds −

∫

B

〈∇φ,∇ψ〉dξ

⇒
∫

B

1φdξ = −
∫

∂B

∂

∂n
φds − 0

as 〈∇φ,∇ψ〉 = ∑

i j gi j∂iφ∂ jψ = 0 since ψ ≡ 1. This gives:

∫

B

1φdξ =
∫

∂B

∂

∂n
φds. (13)

It is well known that for the arclength l and area F of a geodesic

circle the following approximations hold (with K (p) being the

Gaussian curvature at center p, cf. [5], p. 204):

lim
r→0

2πr − l

r3
= π

3
K (p)

⇒ l ≈ 2π

(

r − r3

6
K (p)

)

lim
r→0

πr2 − F

r4
= π

12
K (p)

⇒ F ≈ π

(

r2 − r4

12
K (p)

)

.

For a sufficiently small radius of B, 1φ is approximately

constant; thus we have in geodesic polar coordinates (r, α):

∫

B

1φdξ = (1φ + o(r))

∫

B

1dξ

= 1φ

(

πr2

(

1 − r2

12
K (p)

)

+ o(r4)

)

+ o(r)

︸ ︷︷ ︸

Area of the geodesic disc

=
∫

∂B

∂

∂n
φds using (13)

=
∫ 2π

0

∂

∂n
φ

√

G(r, α)
︸ ︷︷ ︸

Arclength element

dα

=
∫ 2π

0

∂φ

∂n

((

r − r3

6
K (p)

)

+ o(r4)

)

︸ ︷︷ ︸

Arclength element

dα

=
∫ 2π

0

∂φ

∂n
r + γ r3 K (p)dα γ ∈ [−1, 1].

Let Erα be the Cartesian vector of the point with coordinates

(r, α). Then we have, using a linear approximation:

∂φ(r, α)

∂n
r

= ∇φ(r, α) · Erα (directional deriv. of φ along rα)

= ∇φ(0, 0)Erα + Er t
α

(

φxx (0, 0) φxy(0, 0)

φxy(0, 0) φyy(0, 0)

)

Erα + o(|Erα|2)

= φ(r, α)− φ(0, 0)+ o(|Erα|2).

Note that here (x, y) denote Riemannian normal coordinates

with center p, implying that 1φ(p) = φxx (0, 0) + φyy(0, 0).

Since
∫ 2π

0 ∇φ(0, 0)Erα dα = 0, and the same is true for the

mixed partial derivatives, we get

∫ 2π

0

∂φ(r, α)

∂n
rdα

=
∫ 2π

0

Er t
α

(

φxx (0, 0) 0

0 φyy(0, 0)

)

Erα + o(|Erα|2) dx

=
∫ 2π

0

φ(r, α)− φ(0, 0)+ o(|Erα|2)dα.

Choosing a symmetric discretization of the geodesic disc B

with angle steps D = π/n we obtain, with αi := iD,

∣
∣
∣
∣
∣

∫ 2π

0

Er t

(

φxx (0, 0) 0

0 φyy(0, 0)

)

Erdx

−
2n∑

i=1

DEr t
αi

(

φxx (0, 0) 0

0 φyy(0, 0)

)

Erαi

∣
∣
∣
∣
∣

≤ r2 2π

n
(|φxx | + |φyy |).
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Using the above equations we get:

∫ 2π

0

∂φ

∂n
r + γ r3 K (p)dα γ ∈ [−1, 1]

=
2n∑

i=1

D

(

Er t
αi

(

φxx (0, 0) 0

0 φyy(0, 0)

)

Erαi

+ β

(

r2 2π

n
(|φxx | + |φyy |)

)

+ o(|Erα|3)
)

β ∈ [−1, 1]

=
2n∑

i=1

D(φ(iD, r)− φ(0, 0)+ o(r2))+ O

(
1

n

)

r2.

Therefore we get:

1φ(p) = lim
r→0








2n∑

i=1

φ(iD, r)− φ(0, 0)+ O
(

1
n

)

r2 + o(r2)

πr2







.

Hence

1φ(p) = lim
r→0








2n∑

i=1

φ(iD, r)− φ(0, 0)

πr2








+ O

(
1

n

)

.

This corresponds to the well known non-matrix formulation

of the Laplace–Kirchhoff operator, i.e. for a function f =
( f1, . . . , fn) defined on a graph with each fi located at a node

pi we get the respective discrete form 1 fi = ∑

j ( f j − fi )wi j

for edge weights wi j . In matrix formulation this is 1 f = −L f

with L as defined in Definition 3.

5. Images

In this section we will explain how to represent images in

order to compute fingerprints. First we will restrict ourselves to

gray value images to keep the description simple, but we will

also explain how to extend the technique developed to images

given in arbitrary color spaces.

Definition 4. Let m, n, k,∈ N, G = {0, . . . , k − 1} and B ∈
Gm×n . Then we call B a discrete gray value image with k steps.

We define a gray value image to be a matrix, but as one

can easily see, this is the same as defining B to be a discrete

height map B : {1, . . . ,m} × {1, . . . , n} → G. We will use

both definitions interchangeably. See Fig. 3 for an example. We

will define a gray value of 0 to represent “black” and k − 1 to

represent “white”, with the values in between defining shades

of gray. This specification is arbitrary and – as we will see later

– without effect on the actual calculations.

5.1. Fingerprints and the Laplace–Beltrami operator

One way to calculate a fingerprint for an image is to take

the image as a discrete height map and transform it into a

continuous manifold. Then the eigenvalues of its associated

Laplace–Beltrami operator can be used as a fingerprint. At

Fig. 3. An image and its height map.

first glance it is not clear how to transform the image into a

continuous form. An ad hoc technique could be to interpolate

the manifold with any kind of 2D spline, e.g. a tensor product

NURBS. However, the interpolation would take some time and

there would also be calculation time needed for evaluating the

resulting rather large spline representation of the surface.

An obvious solution to calculate the needed coefficients of

the first fundamental form is to create a bilinear surface and

then use the partial derivatives of that surface. For given pixel

values z1, z2, z3, z4 the associated patch is:

f (h, v) := (1 − v)((1 − h)z1 + hz2)+ v((1 − h)z3 + hz4)

with local coordinates h, v ∈ [0, 1] (see Fig. 4). We get the

partial derivatives

fh = v(z4 − z3)+ (1 − v)(z2 − z1)

fv = h(z4 − z2)+ (1 − h)(z3 − z1)

and therefore the coefficients

g11 = 1 + f 2
h

= 1 + (v(z4 − z3)+ (1 − v)(z2 − z1))
2

g12 = fh fv
= (v(z4 − z3)+ (1 − v)

(z2 − z1))(h(z4 − z2)+ (1 − h)(z3 − z1))
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Fig. 4. Bilinear interpolation of partial derivatives.

g22 = 1 + f 2
v

= 1 + (h(z4 − z2)+ (1 − h)(z3 − z1))
2.

Given this Riemannian metric of an image one can use the

finite element method to obtain the eigenvalues. See Section 4.2

and [37,38] for the details of this calculation.

In Section 4 we have noted that a change of the topology

of a given object changes its spectrum fundamentally without

affecting the point set of the object significantly. For images

this is of no relevance since we take each image to be a

height function defined on a rectangular area, i.e. the resulting

manifold is always homeomorphic to the full disc. Therefore

changes in topology cannot occur and we only have to deal with

changes in geometry. As noted in Section 4, these changes take

place continuously, which is the desired behaviour.

These small changes of the geometry could also include

noise, compression artifacts and transmission errors on the

images, given that these errors are kept within a certain range

resulting in a similar geometry. Therefore the approach is robust

against noise up to a certain degree.

Furthermore, we have noted that uniform scaling of a

manifold by a modifies the associated Laplace–Beltrami

spectrum by 1/a2. This might be problematic with images since

images are usually either scaled along their x and y directions

(which represents a uniform scaling of an image) or along their

z direction only (which corresponds to a change of contrast). As

a result of this, changing e.g. the contrast of an image modifies

its spectrum in a rather unpredictable manner. To make the

spectrum invariant against contrast changes we need to scale the

gray values to the range [0, . . . , smax], where smax represents

the larger value of image width and image height. This way

the effect of contrast changes are canceled and a scaling of

the image in x and y directions becomes a uniform scaling

along all axes. To make this spectrum scaling invariant we

could simply divide it by its first non-zero eigenvalue. This

way scaled spectra become identical. Note that this effect can

be achieved also using a different method for computing the

similarity of two spectra. For example, if we use the correlation

coefficient instead of a simple Euclidean distance, scaling

effects are canceled. See [38] for more detailed insights on

this.

Fig. 5. The 4-neighborhood of a pixel.

5.2. Fingerprints from the Laplace–Kirchhoff operator

Another possibility is to choose the eigenvalues of the

Laplace–Kirchhoff operator as a fingerprint. To accomplish

this, the image is transformed into a node weighted graph.

Each pixel is interpreted as a node whose weight corresponds

to the given gray value. Then two nodes are connected iff

they are adjacent in the image. One can choose different

models of neighborhoods here; for our experiments we

implemented the 4-neighborhood (see Fig. 5) for the sake of

simplicity. Note that for arbitrary neighborhoods the spectrum

of the Laplace–Kirchhoff operator should also converge against

the underlying spectrum of the Laplace–Beltrami operator

for finer resolutions of the image. For the resulting graph

the Laplace–Kirchhoff operator according to Definition 3 is

calculated and its eigenvalues are computed numerically. Note

that one needs only the n smallest eigenvalues, so efficient

techniques like the Lanczos algorithm (see [13]) can be applied.

These eigenvalues, possibly normalized to avoid scaling effects,

are then taken as a fingerprint.

5.3. Color images

Usually color images are given in some color space

representation. The most commonly used color space is the

RGB space, i.e. each color pixel is given by a triple (r, g, b)

with r representing the red value, g the green value and b the

blue value of the pixel. Most color spaces are three dimensional,

although there are some four-dimensional (4D) spaces also,

e.g. the CMYK space used in printing. We will outline a

technique for three-dimensional (3D) spaces here; the extension

to four dimensions is straightforward.

Definition 5. Let m, n, k ∈ N,G = {0, . . . , k − 1} and B ∈
(G × G × G)m×n . Then we call B a discrete RGB value image

with k steps.

Just like in the monochrome case, we can interpret B as a

map B : {1, . . . ,m} × {1, . . . , n} → G × G × G. This is some

kind of generalized height function. Like the monochrome

image can be understood as a two-manifold embedded in 3D

space, we can interpret the color image as a two-manifold

embedded in 5D space. The manifold is parameterized by:

(u, v) 7→ (u, v, r(u, v), g(u, v), b(u, v)).

Thus we get the following components for the first fundamental

form:

g11 = 1 + r2
u + g2

u + b2
u

g22 = 1 + r2
v + g2

v + b2
v

g12 = g21 = rurv + gu gv + bubv
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with ru and rv denoting the partial derivatives of r(u, v) and

similar definitions for g and b. We can then apply exactly

the same interpolation techniques as in the monochrome case

in Section 5.1 and then use the Laplace Beltrami operator to

gain a fingerprint for the color image. See Section 6.2 for a

discussion of advantages and disadvantages that may arise from

this approach.

Interestingly this approach is compatible with the method

developed for gray value images in Section 5.1. In RGB colour

space a gray value image can be represented by a colour image

with equal channels f := r = g = b. Thus we get:

g11 = 1 + 3 f 2
u

g22 = 1 + 3 f 2
v

g12 = g21 = 3 fu fv.

This can be seen as the calculation done for a gray value image

with height function
√

3 f . This means that we get the same

spectrum as with an ordinary height function f , only scaled by

1/3.

6. Isometry and isospectrality

In Section 5 we have presented two possibilities for

constructing fingerprints of an image applying variants of the

Laplace operator. The question we are dealing with now is to

what extent a fingerprint is unique for a given image.

6.1. Isometry

Let us first discuss the spectrum of the Laplace–Beltrami

operator. From Section 4, we know that isometric manifolds

share identical spectra. So we would have to find out in which

cases two images can be considered isometric. Furthermore,

there are some rare cases where manifolds are isospectral

(i.e. they share the same spectrum) but are non-isometric. We

will discuss them in Section 6.3. In particular, two manifolds

generated by the process described in Section 5.1 are isometric

if their Riemannian metrics (gi j ) are identical:

Theorem 1. Let the manifolds be defined by height functions

f : [0,m−1]×[0, n−1] → R and g : [0,m−1]×[0, n−1] →
R with g

f

i j = g
g

i j =: gi j . Then:

f = g + α or f = −g + α

for any α ∈ R.

Proof. We first show that the partial derivatives of f and g are

identical up to their sign:

g11 = 1 + f 2
x ∧ g11 = 1 + g2

x

g22 = 1 + f 2
y ∧ g22 = 1 + g2

y

g12 = g21 = fx fy ∧ g12 = g21 = gx gy

⇒ (1) f 2
x = g2

x

(2) f 2
y = g2

y

(3) fx fy = gx gy

⇒ (from (1)) | fx | = |gx |

(from (2)) | fy | = |gy |
⇒ (with (3)) ( fx = gx ∧ fy = gy)

∨( fx = −gx ∧ fy = −gy).

Now let fx = gx and fy = gy . Then we have:

(1) f =
∫ x2

x1

fx dx + C(y)

(2) f =
∫ y2

y1

fydy + D(x)

(3) g =
∫ x2

x1

fx dx + E(y)

(4) g =
∫ y2

y1

fydy + F(x)

where C(y) and E(y) are functions depending solely on y,

D(x) and F(x) solely on x . We get:

(5) 0 =
∫ x2

x1

fx dx −
∫ y2

y1

fydy + C(y)− D(x)

(6) 0 =
∫ x2

x1

fx dx −
∫ y2

y1

fydy + E(y)− F(x)

and finally:

(7) 0 = C(y)− D(x)− E(y)+ F(x).

This means that there has to be some constant α fulfilling:

D(x)− F(x) = α = C(y)− E(y).

By substitution in (1) and (3), respectively (2) and (4) we get:

f = g + α.

Now let fx = −gx ∧ fy = −gy . From an analogous argument

we get:

f = −g + α.

There is an alternative proof of Theorem 1 using knowledge

about Riemannian manifolds: Given two surfaces defined by

height functions f and g we can define a solid height function

for f by:

S f (x, y; z) :=





x

y

f (x, y)+ z



 with z ∈ R
n

and the same for g. One can easily check that its Riemannian

(volume) metric is given by:

(gS
i j ) =






g
f

11 g
f

12 fx

g
f

21 g
f

22 fy

fx fy 1




 =






1 + f 2
x fx fv fx

fx fv 1 + f 2
v fy

fx fy 1




 .

We know from our elementary considerations at the beginning

of this proof that ( fx = gx ∧ fy = gy) ∨ ( fx = −gx ∧ fy =
−gy), hence for Sg we get

(gS
i j ) =






g
g

11 g
g

12 gx

g
g

21 g
g

22 gy

gx gy 1




 .
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This resolves to one of




1 + f 2
x fx fv fx

fx fv 1 + f 2
v fy

fx fy 1









1 + f 2
x fx fv − fx

fx fv 1 + f 2
v − fy

− fx − fy 1



 .

Therefore S f and Sg are isometric. Two solids in Euclidean

three space are isometric if and only if they are congruent;

that is, they are related by a series of Euclidean motions (see

e.g. [27], p. 88). Hence all their faces including the original

height functions must be identical up to Euclidean motions.

�

Theorem 1 shows that if two images share the same Riemannian

metric, one is either a brighter version of the other, its negative

or a combination of both. However, in order to be isometric

two images do not need to share the same Riemannian metric

of their height functions. They could also be rotations or

mirror images of each other. This still perfectly conforms to

criterion [ISOMETRY]. Furthermore, there are some cases

where isometries result from a change of parameterization. For

example, let

f1(x, y) :=
√

1 − (x − 1)2

f2(x, y) := x

2

√

π2 − 4.

One can easily check that these functions do not have identical

Riemannian metrics of their height functions; however, their

graphs on the parameter space [0, 2] × [0, 2] are both isometric

to the Euclidean rectangle [0, π] × [0, 2]. This way they are

related by an isometry flattening the cylindrical surface to the

rectangle. Fig. 6 shows the corresponding manifolds. Another

possibility to construct isometric images is to determine the

maximal and minimal partial derivative along one axis and then

rotate the image at angles α and −α along the other axis (see

Fig. 7). Since one needs to make sure that the rotated manifold

remains describable by a height function, α can be calculated

as

α < 90 − arctan mmax and α < 90 + arctan mmin

with mmin and mmax being the minimal respectively maximal

derivative (see Fig. 8). Fig. 9 shows an image and the same

image rotated by 5◦. Note that the image needs to be rather

blurred to allow even a small possible rotation angle of 5◦. For

a monochrome image mmin and mmax are determined by the

maximal possible difference of two gray values, i.e. g − 1:

mmin = −g + 1 and mmax = g − 1

(see Fig. 10). Typically g − 1 = 255 so it follows:

α < 90 − 89.775312 = 0.22468818.

This gives a maximal rotation angle of 0.22468818◦, resulting

for an original image width of w in a width of w · cosα

after the rotation. In a typical situation with g − 1 = 255

and α = 0.22468818 this yields a width of 99.999231% of

the original, that is for a total image width of 100 000 pixels

less than 1 pixel difference! Effectively the rotation would be

invisible.

Fig. 6. Isometric height functions.

Fig. 7. Rotated height function.

Fig. 8. Computation of the rotation angle.

Therefore in practice one rarely encounters images that

meet the above conditions, so isometry usually means that

two images are identical up to Euclidean motions and mirror

operations.

6.2. Isometry and color images

Using the Laplace–Beltrami spectrum for color images

introduces some differences from the monochrome case that

can be both advantageous and disadvantageous. First of all,
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Fig. 9. Original image and by 5◦ rotated version.

Fig. 10. Maximal gray value difference.

there are some well known cases of isometric but non-

congruent two-manifolds in spaces with more than two

dimensions. A popular example is the pair catenoide and

helicoide (cf. [14]): These are isometric but not congruent.

Since they are isometric we can construct a parameterization so

that both share identical gi j values. This way we have defined

two color images (namely maps from two dimensions to three

dimensions) that are isometric but look notably different. This

can be stated more formally as follows. Let f, g : R
2 →

R
3 be maps from the parameter space to the color space

defining the two images. Clearly most of the time the manifolds

defined by f and g are degenerate (cf. Fig. 14). This is a

result of images containing the same color in possibly adjacent

places: the extreme case is a uniformly black image where

the resulting gamut collapses to a single point. Nevertheless,

the above examples show that there are non-degenerate cases

also. Suppose the resulting manifolds in R
3 are isometric.

Then there exists some parameterization so that the gi j values

are identical for both manifolds. Suppose f, g are given by

such a parameterization. Now define two two-manifolds in

five dimensions by the maps F(u, v) := (u, v, f (u, v)) and

G(u, v) := (u, v, g(u, v)). Then the first fundamental form for

the manifold F are given by

gF
11 = 1 + g

f

11 · g
f

11 gF
22 = 1 + g

f

22 · g
f

22 gF
12 = g

f

12

and they are identical for G. Fig. 11 shows the resulting

helicoide and catenoide images with marking lines between the

areas where each prime color (red, green and blue) dominates

to emphasize the difference. Fig. 12 shows the color gamuts of

these images. Note that these gamuts approximate the geometry

of helicoide and catenoide in RGB-space. Thus we have the

disadvantage of non-similar images sharing identical spectra

Fig. 11. Color images associated to helicoide and catenoide. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 12. Color gamuts of helicoide and catenoide. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 13. Color rotation. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

here. Of course one could calculate separate spectra for each of

the colors, but in that case we lose the invariance with respect

to color rotations, an advantage of this approach which we will

describe below.

Another possibility to create isometric manifolds associated

with color images is to apply Euclidean motions in color space,

most notably color rotations. In other words: the fingerprints

are invariant with respect to color rotations. This can be a

big advantage in some applications since color rotations rather

represent a change in the look of an image but not in its intended

content. Fig. 13 shows an example of a color rotation by 90◦.

Fig. 14 shows the two images from Fig. 13 in RGB-space (their

color gamuts). Note that the resulting two-manifolds in three

dimensions are congruent up to rotation. Also note that the

gamuts almost fill the entire RGB cube. In such cases color

rotation angles are naturally limited to multiples of 90◦. Further

Euclidean motions in color space correspond to translations.

These are effectively linear changes of the dominant image

color: once again the principal content of the image remains

unchanged. Another advantage is that the fingerprints are
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Fig. 14. Color gamuts. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Fig. 15. Two isospectral domains.

invariant to changes of the color space, given that the color

spaces are connected by an Euclidean motion. For example,

one can obtain a representation in CMY space from an RGB

representation by the transformation




c

m

y



 =





1 − r

1 − g

1 − b



 .

Clearly this is an Euclidean motion (an inversion and a

translation); thus the fingerprint does not change.

6.3. Isospectrality

On the other hand, there are cases where two manifolds

share an identical spectrum while they are not isometric.

We have seen how to represent monochrome images as two-

manifolds; thus we have to investigate if it is possible for a

pair of two-manifolds to be isospectral. Indeed, examples for

non-isometric but isospectral two-manifolds have been found;

see [11] for some planar domains. Fig. 15 shows a typical pair.

However, none of those manifolds can be expressed by height

functions over a convex domain, i.e. their parameter space must

be a non-convex domain. Thus it is very unlikely that there

exist isospectral monochrome images, since they are defined

by height functions over rectangular (and therefore convex)

domains. Fig. 16 shows a possible parameter domain for the

manifolds from Fig. 15. From all we know so far isospectrality

seems to be a rare phenomenon. Only pairs of isospectral

domains have been found in two dimensions and all of them

are non-convex. Therefore isospectrality should not be a serious

problem and should not prevent the discrimination of images

via their spectra.

When using the Laplace–Kirchhoff operator instead of the

Laplace–Beltrami operator, one has to deal with isospectral

Fig. 16. Parameter domain for the isospectral domains.

graphs instead of isospectral manifolds. Just like in the

continuous case, the phenomenon is not understood completely,

but theories exist of how to construct such graphs; see e.g. [24].

Halbeisen and Hungerbühler describe a method for obtaining

an isospectral “twin” for a given graph. An interesting property

of their method is that the constructed graph is either not simple

or has at least two more nodes than the original graph.

7. Spectra and fingerprints

Formally we have defined the Laplacian spectra in Eqs. (5),

(6) and in Eq. (10). Following the first definition a spectrum is

an infinite countable multiset of real numbers, i.e. a sequence

0 ≤ λ0 ≤ λ1 ≤ · · · ≤ ∞. It is a multiset since one can

have eigenvalues with multiplicities larger than 1. According

to the second definition it is a finite multiset of real numbers

with λ0 = 0. The first eigenvalue is always zero if there is

no boundary condition, since the sum of all rows of the matrix

D − A is zero; therefore its determinant is zero.

We define the fingerprint of an image to be a suitable finite

subset of one of the possible spectra. We will see in Section 8

that for practical applications most of the time the first n ≤ 10

eigenvalues suffice.

To effectively compare two images one has to compare their

associated fingerprints. This can be accomplished by defining a

suitable metric on the space of the fingerprints. If we choose our

fingerprints to be the first n eigenvalues we are dealing with the

vector space R
n , where we can choose between a large number

of well known metrics. For our tests we have used different

p-norms given by

dp(u, v) :=
(

n−1∑

i=0

|ui − vi |p

) 1
p

with u = (u1, . . . , un) and v = (v1, . . . , vn) being fingerprints.

Furthermore, we have tested the Hausdorff distance and the

Pearson correlation distance:

dc(u, v) := 1 −

∣
∣
∣
∣
∣
∣
∣
∣
∣

(n − 1)
n−1∑

i=0

(ui − ū)(vi − v̄)

n−1∑

i=0

(ui − ū)2
n−1∑

i=0

(vi − v̄)2

∣
∣
∣
∣
∣
∣
∣
∣
∣

where ū and v̄ denote the arithmetic means of u and v. We

observed that for most applications the Euclidean distance d2

yields acceptable results (see Section 8) while being easy to

implement.

Since we know that scaling an image can be transformed to

an associated scaling of the fingerprint (see Sections 4 and 5),
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Fig. 17. Original test image and modified versions.

Fig. 18. Distances for the Laplace–Kirchhoff operator.

one could use a distance that is insensitive against linear

scaling. For example, the correlation distance has this property

by definition. Other possibilities include dividing the fingerprint

by its first non-zero eigenvalue or normalizing the slope of

the best fitting line of the sequence of eigenvalues to 1 before

comparing. This way one makes sure that fingerprints being in

fact scaled variations of each other are considered identical.

8. Examples

To test the implementation of the methods described

above an image from the collection of Snodgrass [44] was

modified (see Fig. 17). We calculated the eigenvalues of the

Laplace–Kirchhoff operator with Dirichlet boundary condition.

All images were scaled to 32 × 32 pixels to allow a fast

computation. The fingerprints were divided by the second

eigenvalue (since the first one is always zero), cropped to

10 eigenvalues and compared via Euclidean distance. Fig. 18

shows the result for the 15 best matches. The computed

distances are shown in the figure; note that the distances plotted

are not linearly scaled: the shorter distances are scaled up.

It can be observed that images that are not very similar in

terms of human perception may be considered similar by our

methods. This is a result of interpreting an image as a height

function, i.e. taking the (white) background of an image as a

part of the described shape (see also Fig. 23). If one does not

wish to consider the background one could separate the content

of the image from a possible background (see Section 9).

Fig. 19. Distances for the Laplace–Beltrami operator.

The experiment was repeated using the Laplace–Beltrami

operator obtained from the height function. The fingerprints

were computed using 338 elements and cubic form functions

(cf. [38] for details of the FEM calculations used). They were

divided by the first eigenvalue and compared via Euclidean

distance. Fig. 19 shows the result.

One observes that both methods – using the Laplace–

Kirchhoff operator and using the Laplace–Beltrami operator –

perform similarly. In fact there is no notable difference in terms

of run time. However, while the Laplace–Kirchhoff operator is

more easily implemented, the Laplace–Beltrami variants open

up the possibility to use a coarser mesh and thus save some time

while computing eigenvalues while the size of the matrices for

the Laplace–Kirchhoff operator is fixed for a given image size.

To test the robustness against scaling, each image from the

collection of Rossion (see [40]) was scaled by a factor of 2

and added to the collection. The fingerprints were calculated

using the Laplace–Beltrami operator obtained from the height

function with 338 finite elements. They were compared using

Euclidean distances with best fitting lines (see Section 7). For

511 of 532 the double sized images were the second best

fits (behind the respective image itself); for the remaining 21

images the double sized versions were the third best fits. This

corresponds to a reliability of about 96% for scaling.

The experiment was repeated with the images being changed

in contrast instead of size. For each image a copy with 50% of

the original contrast was added to the collection. In this case

all of the 532 images could be matched to their low contrast

counterparts. This corresponds to a reliability of 100% for

change of contrast. Combining changes of scale with changes

of contrast again gives the same results like changing scale only,

i.e. 96% reliability. This makes the method especially useful in

setups where combinations of such operations occur.

By simply averaging the results of the preceding experi-

ments one could conclude that the method performs similarly

to the combined Wavelet–Fourier approach of Sabharwal and

Subramanya (see [41]). However, one should keep in mind that
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Fig. 20. Original colour test image and modified versions.

Fig. 21. Distances for the Laplace–Beltrami operator (colour images).

our test set was considerably larger (532 against only 78), and

using less information: Sabharwal and Subramanya used 64

bytes of information while we compared the images using their

first 10 eigenvalues amounting to only 40 bytes. For shorter

set of images, e.g. 78 like the test set of Sabharwal and Subra-

manya, even fewer eigenvalues can be used, e.g. the first three

(3·4 = 12 bytes). This said, our method performs as good while

using shorter representations which is a substantial advantage

when working with large data bases where typical feature vec-

tors should not be of dimension much greater than 10.

To test the methods developed for colour images an image

from the collection of Kambeck [25] was modified in different

ways (see Fig. 20). Thirty eigenvalues were calculated using

the Laplace–Beltrami operator for generalized height functions

with 338 finite elements and cubic form functions. They were

compared using the Euclidean distance with best fitting lines.

Fig. 21 shows the calculated distances for the best matches.

Fig. 22 shows an MDS plot of the best matches depicted in

Fig. 21, that means the resulting spectra projected to a 2D

space using the standard MDS method. One can identify the

cluster of the microscope images. Of course projecting the high

dimensional spectra to a very low dimensional space means

a massive loss of information, resulting in the formation of

additional clusters, and thus cannot serve more than purposes

Fig. 22. Cluster for the colour images (Laplace–Beltrami).

Fig. 23. One parameter family of images.

Fig. 24. One parameter curve of the fingerprints.

of illustration. For practical applications one should work

with more than two dimensions. Using the Pearson correlation

distance (see Section 7) yielded similar good results in this case,

whereas using the Hausdorff distance showed inferior results.

This is because for the Hausdorff distance to become small it

is sufficient that there are two eigenvalues at a relatively small

distance, while for the other distances all eigenvalues need to

be near their corresponding partners.
Finally we generated a family of images containing a moved

full disc (see Fig. 23). Clearly, this is a one parameter family of

different images, so one should predict the set of fingerprints to

depend on one parameter as well. Note that we interpret these

images to be different since we chose the height function of

the image as a manifold for computing the spectrum. If one

wishes to treat such images as principally the same image, more

precisely as the same content, one has to cut the background

from the represented content and use only this as the manifold.

Fig. 24 shows an MDS plot of the calculated fingerprints. It

forms a one parameter curve.

9. Conclusion and outlook

We have presented three methods for obtaining finger-

prints from discrete monochrome or color images. Namely,
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the Laplace–Beltrami operator with height functions, the

Laplace–Beltrami operator with density functions, and its

discrete counterpart the Laplace–Kirchhoff operator were

used. We have shown an interlink between the discrete

Laplace–Kirchhoff operator and the Laplace–Beltrami opera-

tor. Furthermore, we have introduced concepts from the theory

of Riemannian geometry into the field of image fingerprints. We

have demonstrated these techniques to work in a set of practical

situations. The methods were shown to be especially useful in

the presence of rotations or color rotations, changes of contrast

and scale, and combinations of all these operations, since the

calculations are invariant against such transformations. We have

shown that our method uses substantially less information than

established techniques for discriminating collections of images,

while maintaining a high reliability. This is especially useful for

data bases of images where high dimensional searches are very

cost intensive (see [4,3]).

Future work will include investigations on how to apply the

Laplace–Kirchhoff operator and the Laplace–Beltrami operator

with density functions to color images.

As shown in Section 8 a drawback for some applications

could be the representation of the image content together

with its background as a single height function. A preprocess

of separating the background from the content should be

investigated.

Furthermore, methods would have to be provided to cancel

the effects of special non-Euclidean transformations (e.g. most

color space transformations) on color images. These problems

could probably be solved by transforming images in a pre-

process in such a way that the non-Euclidean transformations

are mapped to Euclidean transformations, although this could

mean that the former Euclidean transformations become non-

Euclidean.
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