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Abstract A unified theory of the Laplace-transform analytic-element method (LT-AEM) for solving transient
porous-media flow problems is presented. LT-AEM applies the analytic-element method (AEM) to the modified
Helmholtz equation, the Laplace-transformed diffusion equation. LT-AEM uses superposition and boundary col-
location with Laplace-space convolution to compute flexible semi-analytic solutions from a small collection of
fundamental elements. The elements discussed are derived using eigenfunction expansions of element shapes in
their natural coordinates. A new formulation for a constant-strength line source is presented in terms of elliptical
coordinates and complex-parameter Mathieu functions. Examples are given illustrating how leaky and damped-wave
hydrologic problems can be solved with little modification using existing LT-AEM techniques.

Keywords Analytic element · Diffusion equation · Elliptical coordinates · Laplace transform ·
Mathieu functions · Modified Helmholtz equation · Transient line source

Abbreviations
AEM Analytic-element method
LT-AEM Laplace-transform analytic-element method

1 Introduction

The analytic-element method (AEM) provides semi-analytic solutions to linear porous-media flow problems through
superposition of fundamental solutions. The original development of AEM is due to Strack and his co-workers at
the University of Minnesota [1]. During its initial development, it was compared to the boundary-element method
[2], but the eigenfunction-expansion approach discussed here may be considered a special case of the spectral
method (see [3, Sect. 3.1] and [4, Appendix C]). Each AEM element satisfies the governing equation, while spectral
elements typically do not. The majority of AEM applications to date have been concerned with vertically averaged
steady-state groundwater flow (the two-dimensional (2D) Laplace and Poisson equations in the horizontal plane).
AEM has been extended to three-dimensional [5], transient [6], multi-layer [7], and linearized unsaturated [8] flow
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114 K. L. Kuhlman, S. P. Neuman

problems. Review papers [9–11] and textbooks by Strack [12] and Haitjema [13] cover the fundamentals, discuss
applications, and mention some recent advances.

AEM partially fills a gap between analytic solutions derived for simple geometries (e.g. radially symmetric flow
to a well) and distributed-parameter gridded models (e.g. finite-element methods). AEM is well-suited for time-
independent boundary-value problems; applications to transient diffusion have proceeded in several directions.

The earliest extension of AEM to transient flow [14] was discontinuous in time, using a grid to simulate transient
storage. The corresponding space discretization offset the mesh-free benefit normally associated with AEM. Another
early approach [15] combined steady and transient elements, using line and area sources to model transient effects;
transient storage effects were assumed piecewise-constant in time and the method required zero net withdrawal of
water from the aquifer. While not an AEM solution, Butler and Liu [16] developed a solution for transient flow
to a well in the presence of a single circular inhomogeneity, using an approach similar to that taken here. Bakker
[17] used a temporal Fourier transform to apply the AEM to problems comprised of a finite number of temporal
harmonics. Strack [18] described a general AEM approach in which localized transient perturbation elements are
superimposed on a confined steady background that uses finite differences in time.

Furman and Neuman [6] first used AEM to solve the Laplace-transformed diffusion equation. LT-AEM numeri-
cally back-transforms the solution into the time domain using an inverse-Laplace-transform algorithm. In contrast to
the Fourier-transform approach, the use of the Laplace transform obviates the need for periodicity and can incorpo-
rate initial conditions. We illustrate LT-AEM elements constructed using eigenfunction expansion and Laplace-space
convolution. Steady-state multi-layer aquifer systems [7] and linearized steady unsaturated flow [19,20] also lead
to the Helmholtz equation. We show how these types of homogeneous distributed sources can be incorporated into
the LT-AEM. The elements outlined here are restricted to simple geometries (i.e., circles and ellipses), but other
techniques (e.g. those utilized in spectral-element modeling [3, Chap. 17]) can be used to extend LT-AEM to more
general geometries.

2 Laplace-transform AEM

Hydraulic head in a transient, 2D, confined, elastic aquifer is described by the diffusion equation,

K b∇2h(x, t)+ bG = bSs
∂h(x, t)

∂t
, (1)

where h(x, t) is the vertically averaged hydraulic head [L], b is the aquifer thickness [L], G is a volumetric source
term [1/T ], K is the hydraulic conductivity [L/T ], and Ss is the specific storage [1/L]. K is assumed isotropic;
both K and Ss are assumed homogeneous. For horizontal 2D flow, a unit aquifer thickness is assumed for simplic-
ity (unless stated otherwise), without loss of generality. 2D vertical-plane flow could also be simulated with this
approach, e.g. flow under a wide dam on a permeable foundation.

In AEM it is standard to work with a discharge potential [L3/T ], � = bK h + C , where C is an arbitrary
reference [12] that we conveniently set to zero. Applying the Laplace transform [21, Chap. 4] to (1), written in
terms of �, with G = 0, we have

α∇2�̄(x) = �̄(x)p −�0, (2)

where α = K/Ss is the hydraulic diffusivity [L2/T ], p is the Laplace-transform parameter [T −1], �̄(x) is the
transformed discharge potential [L3], and�0 is the initial value of�. To render (2) homogeneous, we set�0 = 0;
non-zero initial conditions are introduced using impulse area sources at t = 0 [22]. The governing equation in
Laplace space is the Yukawa [23] or modified Helmholtz equation

∇2�̄(x)− κ2�̄(x) = 0, (3)

where κ2 = p/α [L−2] is analogous to the wave number in wave-propagation problems [24, Sect. 1.1.2], or
alternatively κ = 1/(Z0 K ), where Z0 is the mechanical analog of impedance [25, Chap. 7].
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LT-AEM for transient porous-media flow 115

2.1 Laplace-space convolution

Duhamel’s theorem [26, Chap. 5] states that temporal behavior of a function can be obtained from convolution of
the impulse response, �imp(x, t), and a time behavior, g(t), through the convolution integral

�gen(x, t) =
∫ t

0
�imp(x, t − τ)g(τ ) dτ. (4)

LT-AEM elements are derived in Laplace space where (4) becomes

�̄gen(x, p) = �̄imp(x, p)ḡ(p). (5)

When convolution is performed in the time domain [15], each different time behavior (e.g. constant, pulse, or
linearly increasing in time) requires approximation of (4). LT-AEM allows for separate handling of the time (ḡ) and
space (�̄imp) behavior of elements through the numerical inverse Laplace transform.

Many useful ḡ(p) functions can be found tabulated in the literature (e.g. [27, Chap. 29], [21, Appendix A], and
[26, Sect. 7.3]); piecewise linear or constant functions can be used to describe fairly general behavior. While it
would be possible to perform the convolution in the time domain, we expect that this increases the required effort.
The time-domain convolution integral (4) requires integrating 0 ≤ τ ≤ t , essentially equivalent to time-marching
required by an initial-value problem (e.g. explicit finite differences in time).

2.2 Boundary matching

Elements are mathematical entities that represent physical objects in the flow system. AEM and LT-AEM use non-
intersecting elements to represent areas of differing properties and source terms (see Fig. 1), by enforcing head and
normal flux continuity along the element boundaries. Each LT-AEM element is derived with implied zero initial
condition and zero effect at large distance. The elements in Fig. 1 will be used as an example, 2 point sources of
prescribed strength and 3 circular regions of different K with unknown strengths. Head matching consists of setting

h̄+
tot(rn0) = h̄−

tot(rn0), (6)

the total head, h̄±
tot = ∑

k h̄±
k , interior (−) and exterior (+) to the element boundary being set equal along the

boundary of element n, rn = rn0. Head matching along the circumference of element 2 is expressed in terms of �̄
as
1

K0

[
�̄+

2 + �̄+
1 + �̄4

]
r20

= 1

K2

[
�̄−

2 + �̄+
3

]
r20
, (7)

where the subscript indicates a local coordinate system, and the super-scripted sign indicates the side of a two-sided
element. Point source Q5 and the insides of circles 1 and 3 do not appear in this expression, as they are neither
immediately internal nor external to element 2. This convention is used by other AEM applications that solve the
modified Helmholtz equation [19,28] and is equivalent to the non-overlapping domain decomposition approach
called substructuring [29]; it allows regions with different coefficients in the governing equation to be matched,
since they cannot be combined by superposition.

Flux matching applies to the same elements as head matching and consists of setting

nn · q̄+
tot(rn0) = nn · q̄−

tot(rn0), (8)

Fig. 1 Example with 3
circular elements with
different K (background
K0) and 2 prescribed point
sources, Q4 and Q5
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where nn is the unit boundary normal for element n and q̄ = −∇�̄ is the Darcy flux; the total normal flux,
n · q̄±

tot = ∑
k n · q̄±

k , is balanced along the boundary of element n. For element 2 in Fig. 1, in terms of �̄, this yields[
∂�̄+

2

∂r2
+ ∂�̄+

1

∂r1
Jr1r2 + ∂�̄+

1

∂θ1
Jθ1r2 + ∂�̄4

∂r4
Jr4r2

]

r20

=
[
∂�̄−

2

∂r2
+ ∂�̄+

3

∂r3
Jr3r2 + ∂�̄+

3

∂θ3
Jθ3,r2

]

r20

, (9)

where Jθ1r2 = ∂θ1
∂x

∂x
∂r2

+ ∂θ1
∂y

∂y
∂r2

is a Jacobian relating derivatives in two coordinate systems. Each of these coordinate

derivatives in the Jacobian can be computed explicitly from the geometry of the elements. �̄ for each element is
defined in terms of a local coordinate system (corresponding to the one used in separation of variables); differentia-
tion with respect to local coordinates (e.g. ∂�̄+

2 /∂r2) leads to more concise expressions than working with a single
set of coordinates everywhere.

2.3 Solution for coefficients

The modified Helmholtz equation (3) involves 2 or 3 independent variables (depending on the dimension, D). The
eigenfunction expansion solution is the tensor product of the solutions obtained through separation of variables [3],

�̄±
k (x) =

D∏
i=1

�̄±
k (xi ), (10)

where �̄±
k (xi ) is a sum of eigenfunctions for the coordinate xi and element k. The orthogonal eigenfunctions here

are special functions (e.g. Bessel [30, Chap. 6–8], Mathieu [31, Chap. 9] and other [32] functions). �̄ is expanded
in eigenfunctions along element boundaries; the solution is then computed on or away from the boundaries using
the coefficients determined from the boundary expansion. The second-order ordinary differential equations used
here have solutions of the form,

�̄±
k (xi ) =

N−1∑
j=0

ak±
j φ j (xi )+ bk±

j ψ j (xi )+ Rk
N , (11)

where φ j (xi ) and ψ j (xi ) are the eigenfunctions associated with the j th eigenvalue and coordinate xi ; ak±
j and bk±

j

are free coefficients [L3] to be determined for the ± side of element k. The residual, RN , arises from truncating the
infinite expansion. Upon recombination of the solutions corresponding to the different coordinate variables (10)
products of coefficients are consolidated.

Equations (10) and (11) constitute an exact expression for �̄±
k , since Rk

N → 0 as N → ∞ in a least-squares
sense [33, pp. 726–729] if the eigenfunctions form a complete set. Convergence is at least O(N−2) for smooth
functions with continuous first derivatives [3, Sect. 2.3]. The condition of smoothness is not overly restrictive for
physical problems. In cases where discontinuous functions must be expanded (e.g. intersecting or touching ele-
ments), convergence will be degraded, but the situation can often be improved with series transformation [34] or
smoothing [35, Sect. 49] techniques.

Elements either have specified strength (ak
j and bk

j are prescribed) or they have total head or flux specified in a
way which depends on the strength of other elements. LT-AEM requires three steps to compute head or flux. The first
step solves for the coefficients of the eigenfunctions using boundary collocation, based on a desired arrangement
of elements, source terms, and material properties. The solutions to (11) that arise in the current coordinate system
are substituted in (10) at matching points along the element boundaries to obtain expressions for the coefficients of
the elements. In problems with multiple elements, the coefficients must be either estimated iteratively (a fixed-point
iteration over all elements) or using a direct matrix formulation. The second step evaluates the solution at the desired
x and p, using the coefficients. Once the Laplace-space solution and its derivatives have been computed, the third step
computes the time-domain solution for head and flux at each location using a numerical inverse-Laplace-transform
algorithm.
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LT-AEM for transient porous-media flow 117

2.4 LT-AEM in relation to AEM

Although conceptually LT-AEM is an application of AEM to (3), the implementation is different in several respects.
Since (3) contains p, which is complex, the special functions that satisfy (11) have complex arguments or para-
meters. Although some inverse Laplace-transform methods only require real p, they are usually less successful at
inverting discontinuous time behaviors (e.g. [36, Chap. 9] and [37, Chap. 19]), unless the calculations are performed
using very high numerical precision [38].

Steady 2D AEM traditionally utilize the complex potential formulation, 	 = � + i
 (where 
 is a stream
function), based on the Cauchy–Riemann relations. In LT-AEM both �̄ and 
̄ are complex, hence this convention
is not applicable, although there are analogous Cauchy–Riemann expressions for the modified Helmholtz equation if
� and
 are real-valued [23]. For steady flow
 coincides with particle traces, but in transient problems streamlines
and pathlines are generally different.

For steady 2D AEM, an important distinction is made between elements which have an effect at “infinity” and
those which do not (functions of 	 with and without a branch cut) [12, Sect. 19]. LT-AEM elements are derived
considering that at finite time there is no effect at ∞, which simplifies derivation and implementation. In the limit
as t → ∞ (p → 0), these elements would have effects at infinite distance (as p → 0, Eq. 3 becomes the Laplace
equation). Therefore, in LT-AEM there are no branch cuts to consider or far-field fixed heads that must be set to
obtain a solution, as is required for several common elements in 2D steady-state AEM.

Lastly, LT-AEM can readily be modified to handle certain distributed source terms. Analogous source terms
for ∇2� = 0 also lead to the Helmholtz equation [7,19,20], but would require a significant change in the solu-
tion approach. Leakance and transient effects must be dealt with approximately [18] or using area sources [15] in
traditional AEM for the Laplace equation, but are readily handled with, or lead to, the Helmholtz equation.

3 LT-AEM elements

3.1 Taxonomy

Two-dimensional LT-AEM elements can be categorized with respect to:

1. boundary condition and whether element coefficients are prescribed (i.e., “given” in AEM literature);
2. element geometry (e.g. line or area);
3. changes to source terms or constants in the governing equation (e.g. wave number or initial conditions);
4. element time behavior (e.g. constant, square wave, or pulse).

The free parameters for prescribed elements are independent of other elements in the system (e.g. a well with
specified pumping rate). Circles, ellipses, and lines usually define regions of different aquifer parameters, and their
coefficients must be determined at run-time. Variable time behavior for any type of element is handled in LT-AEM
using Laplace-space convolution.

3.2 Boundary conditions

We use boundary-condition matching to determine free coefficients; boundary conditions can be of Dirichlet,
Neumann or mixed type. Interface (i.e., matching or continuity) boundary conditions are posed along boundaries
between regions defined by 2D elements. A mixed boundary condition along the circumference of an element is

ξ∇�̄ · n + ζ �̄ = F̄(s, p), (12)

where s is the arc length along the boundary. Setting ξ = 0, ζ = 1 leaves a Dirichlet boundary condition; F̄D(s, p)=
K h̄BC(s, p) is the transformed head along the circumference of the element. With ζ = 0, ξ = 1, Eq. 12 becomes a
Neumann boundary condition; now F̄N (s, p) = q̄BC(s, p) is the transformed normal flux on the element boundary.
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118 K. L. Kuhlman, S. P. Neuman

Fig. 2 Example with
no-flow ellipse, prescribed
point sources and circular
matching element with
different α inside and out
(+ and − parts of matching
element offset for clarity)

Interface boundary conditions are associated with a two-sided element (see circle in Fig. 2); we relate the Neumann
and Dirichlet boundary conditions on each side, setting F̄+

N (s, p) = F̄−
N (s, p) and (K −/K +)F̄+

D (s, p) = F̄−
D (s, p),

which enforce (6) and (8).
We can specify both a Dirichlet and a Neumann condition along the boundary for an elliptic differential equation

because we do not specify a value, but only indicate equality of the inside and outside. Elements that are not interface
conditions have their boundary conditions specified in terms of total discharge potential (6) or normal flux, (8); if
there are at least two elements, their strengths must be determined simultaneously.

To determine element coefficients, M matching points are chosen along the element boundaries, creating a system
of 2M equations (M normal flux + M head), for the 2N , unknowns. We use overspecification [39]; by choosing
2M ≥ 2N , the system of equations is solved in a least-squares sense. Overspecification often produces a smoother
solution than 2M = 2N does, and for the same M , N is smaller (i.e., the solution does not require the 2M − 2N
highest-order basis functions). For these reasons it is utilized in the LT-AEM. We use QR decomposition (as done
in the LAPACK [40] routine ZGELSS) to solve the least-squares problem, rather than posing the traditional normal
equations (e.g. [41, Sect. 5.3] and [42, Chap. 19]).

3.3 Geometric considerations

Table 1 categorizes elements related to Helmholtz-separable 2D coordinates. Elliptical coordinates are the most
general 2D coordinates; polar, parabolic, and Cartesian coordinates can be obtained by moving the elliptical foci
together or moving one or both of the foci to ∞, respectively. In 2D, singular elements are sources or sinks, while
areas are defined by finite boundaries or infinite lines.

3.4 Source terms

Individual elements or entire domains can be governed by differential equations other than (3); they can be com-
pletely different (e.g. Laplace’s equation) or only differ by material properties or the presence of source terms.
Source terms can be either homogeneous (functions of �̄) or inhomogeneous (a Poisson term). Homogeneous
LT-AEM area sources can be handled without modification to the solution process, since (3) contains this type of
term, additional terms only change the definition of κ2, the wave number. Poisson terms (including�0 in (2)) must
be expressed in terms of a particular solution.

Table 1 Helmholtz-separable 2D coordinate systems ([69], [53, Chap. 1], and [33, pp. 655–666])

Coordinate system Finite boundary Singular element Infinite boundary Modified Helmholtz special functions

Cartesian None ∞ line ∞ line Exponential
Polar (circular) Circle Point Ray Modified Bessel
Elliptical Ellipse Line segment Hyperbola Modified Mathieu
Parabolic None Semi-∞ line Parabola Parabolic cylinder
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LT-AEM for transient porous-media flow 119

3.4.1 Homogeneous leaky-aquifer source term

Homogeneous source terms arise from effects that are proportional to changes in head or drawdown in the aquifer.
For example, transient leakage from adjacent aquitards, delayed yield in unconfined systems, and dual-domain
behavior all lead to homogeneous source terms [4, Sect. 4.2]. Because the 2D LT-AEM does not represent the third
dimension explicitly, Neumann boundary conditions with respect to the third dimension (e.g. ∂�̄/∂z|z=0) must be
represented as distributed source terms.

Leakage from an adjacent unpumped aquitard leads to a homogeneous distributed source in 2D. We adapt
Hantush’s modified leaky system [43] to LT-AEM (see Fig. 3). Beginning with (1) but considering a non-zero
source term, G, when expressing the system in terms of �, and taking the Laplace transform leads to

∇2�̄1 − κ2
1 �̄1 + Ḡ = 0, (13)

where subscript 1 indicates the aquifer and 2 the aquitard. Assuming vertical flow in the overlying aquitard (a
common assumption when K1 � K2), (3) simplifies to an ordinary differential equation for �̄2,

d2�̄2

dz2 − κ2
2 �̄2 = 0, (14)

where the initial value of�2 is zero. The head-matching boundary condition at the aquifer-aquitard interface (z = 0)
is �̄2 = K2�̄1/K1, and at the top the aquitard (z = b2) there is a no-drawdown condition, �̄2 = 0 (see case I of
Fig. 3). The solution to (14) that satisfies both conditions is

�̄2(z) = K2�̄1

K1
[cosh κ2z − coth κ2b2 sinh κ2z]. (15)

Differentiating (15) and evaluating it at z = 0 gives the vertical flux from the aquitard at the interface,

Ḡ = 1

b1

[
∂�̄2

∂z

]
z=0

, (16)

when this is substituted in (13), the governing equation in the aquifer becomes

∇2�̄1 −
[
κ2

1 + κ2
K2

b1 K1
coth κ2b2

]
�̄1 = 0. (17)

This can be solved using the same solution techniques used for (3) because the new terms in (17) are all constants
that redefine the wave number. Since the governing equation in the aquitard is linear with homogeneous initial and
boundary conditions, superposition is valid.

Figures 4, 5, and 6 show effects due to a constant-strength finite-radius well source (e.g. [6] and [44, Sect. 4.3.2]),
which for (3) is

�̄well(r) = Q

2πb1 p

K0(rκ)

κrwK1(rwκ)
, (18)

where K0 and K1 are modified Bessel functions (see [30, Sect. 7.2] for properties), rw is the pumping well radius
[L], and Q is the pumping rate [L3/T ]. To exploit axial symmetry, the plots show dimensionless results; tD =
t K1/(Ss1r2) is dimensionless time and sD = 4π |� − �0|/Q is dimensionless drawdown. The curve labeled
E1(tD/4) represents the non-leaky Theis solution [45], an exponential integral (see [27, Chap. 5] for properties).
The well solution (18) to (17) produces the flattening curves in Fig. 4.

A similar procedure is used to develop a leaky solution with a different aquitard boundary condition; the equation
for a no-flow boundary condition at z = b2 is (case II, the upwardly-deviating curves in Fig. 4)

∇2�̄1 −
[
κ2

1 + κ2
K2

b1 K1
tanh κ2b2

]
�̄1 = 0. (19)

For the thick-aquitard case (b2 → ∞), coth κ2b2 in (17) and tanh κ2b2 in (19) simplify to unity (the middle leaky
curve in Fig. 4). The effects of the boundary condition at z = b2 are only observed at later time when the three
curves separate (the thin curves in Fig. 4 represent an aquitard 1/10 as thick as the heavy curves—they deviate at an
earlier time). The effects of two aquitards (above and below) can be included, as done by Hantush [43]. The second
aquitard adds another term, analogous to those in (17) and (19).
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Fig. 3 Leaky system diagram

10-1

100

101

100 102 104 106 108 1010 1012

h D

tD

E1(tD/4)

leaky case I

leaky case II
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b2=1

b 2
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0

Fig. 4 Leaky response at r = 1 due to point source (18), compar-
ing results for different aquitard boundary conditions and aqui-
tard thicknesses with the non-leaky E1 solution; Ss2/Ss1 = 100,
K1/K2 = 5

3.4.2 Homogeneous source due to extended form of Darcy’s law

Higher-order time derivatives in the governing time-domain equation (representing inertia) also lead to a homoge-
neous source term in the Laplace-domain. The effect of not considering this inertia term, in situations where it may
be significant (e.g. the coarse gravel-packed region surrounding a pumping well), may lead to slight over-estimation
of storage parameters with diffusion models. Consider the more complete transient form of Darcy’s law (averaged
from, or through analogy with, the Navier–Stokes equations (e.g. [46, Sect. 5.10.6] and [47, Sect. 1.5.1])), given as

q = −
(

∇�+ τ
∂q
∂t

)
, (20)

where τ is the relaxation parameter [T ], a property related to the time it takes the system to become diffusion-
dominated. Typically τ is small and the time-derivative term is neglected. Löfqvist and Rehbinder [48] define
τ = K/(ng), where n is the dimensionless porosity and g is the acceleration due to gravity [L/T 2]. Combining
the Laplace-space mass-conservation equation,

− ∇ · q̄ − κ2�̄ = 0, (21)

with the Laplace transform of (20), the governing equation becomes

∇ ·
[

1

1 + τp
∇�̄

]
− κ2�̄ = 0, (22)

assuming initial head and flux are zero. This can be put into the form

∇2�̄−
[
κ2 + τ

p2

α

]
�̄ = 0, (23)

which is again similar to (3), but with an additional p2 term in the wave number. Equation (23) can be solved for a
point source by redefining the wave number in (18) (see Figs. 5 and 6).

Equation (23) is the transformed damped wave equation, a more general form of the diffusion equation [25,
Chap. 8]. For problems governed by the wave equation, pulses always propagate at finite speed (e.g. see steep
leading edge of sD surface in Fig. 6), while the diffusion equation allows changes to propagate at infinite speed
[49, Sect. 1.2.1]. For example, sD = E1(tD/4) (Theis’s [45] solution) produces non-zero drawdown at every r for
t > 0; as r → ∞ sD → 0, so this discrepancy is usually tolerated. In the damped-wave equation τ is inversely
proportional to the maximum propagation velocity squared; as τ → 0, the maximum velocity → ∞, and the
damped wave equation becomes the diffusion equation.
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Fig. 5 Time-drawdown at r = 1 for point source (18) consider-
ing inertia effects
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Fig. 6 Distance-drawdown at t = 0.01 for point source (18) con-
sidering inertia effects

The two distributed source terms discussed in this section are illustrated using (18), but are easily extended to
other elements [4, Sect. 4.2]. An elliptical line or area source [22] with a wave number corresponding to a leaky
problem is a trivial extension to the existing line or area element, thus analytic solutions to other geometries and
superpositions thereof are readily found.

3.4.3 Inhomogeneous source terms

Area sources can be used to represent constant recharge or discharge, or variable recharge where the source term
is not proportional to aquifer drawdown. For circular elements, Kuhlman and Neuman [22] showed that �0 �= 0
can be represented as impulse area sources by decomposing the solution to the inhomogeneous governing equation
into a homogeneous and a particular solution [12, Sect. 37].

The particular solution for an initial condition that is linear or constant in space can be found by inspection,
since the Laplacian of this type of function has zero contribution to the particular solution. Inhomogeneous terms
with more general spatial behavior may be computed numerically using area integration of the Green’s function,
through variation of parameters using known eigenfunctions, or derived as area sources in general functional forms
(e.g. 2D multi-quadric surfaces [50]).

4 Elliptical elements

Circular LT-AEM elements are given by Furman and Neuman [6], while elliptical elements are derived here using
an analogous procedure [4, Sect. 3.2]. Bakker [28,51] and Bakker and Nieber [8] derived elliptical AEM elements
for the modified Helmholtz equation. A significant difference between their elliptical AEM solutions and that given
here is the presence of the complex Laplace parameter, p, which becomes large at small time; this is because p and
t are multiplicative arguments to the exponential in the definition of the Laplace transform (e.g. [35, Sect. 4.24]
and [26, Chap. 7]).

Elliptical coordinates (see Fig. 7) are defined as x = f cosh η cosψ and y = f sinh η sinψ , where (η, ψ) are
dimensionless elliptical coordinates and f is the semi-focal length [L]. The transforms are given succinctly in
terms of a conformal map; when z = x + iy and ζ = η + iψ , the forward transform is z = f cosh ζ and the
backward transform is ζ = arccosh z/ f . The multi-valued complex inverse hyperbolic cosine can be expressed as
a single-valued function [52] in the form
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Fig. 7 Components of elliptical coordinates (η, ψ); f is semi-
focal distance
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Fig. 8 Constant-strength line source solution for f = 0.5, Q =
1, α = 5.0 × 104, t = 0.0125; h contour interval is 0.1

ζ =

⎧⎪⎪⎨
⎪⎪⎩

log

(
z/ f +

√
(z/ f )2 − 1

)
x > 0,

log

(
z/ f −

√
(z/ f )2 − 1

)
x ≤ 0.

(24)

The modified Helmholtz equation (3) in elliptical coordinates (e.g. [31, Chap. 9], [53, p 17], [33, p 1407]) is

2

f 2 [cosh 2η − cos 2ψ]

[
∂2�̄

∂η2 + ∂2�̄

∂ψ2

]
− κ2�̄ = 0, (25)

with the condition that �̄(ψ) = �̄(ψ + 2π). Upon substitution of the form �̄(η, ψ) = H(η)
(ψ), Eq. 25 can be
separated into two ordinary differential equations,

d2


dψ2 + (ω − 2q cos 2ψ)
 = 0, (26a)

d2 H

dη2 − (ω − 2q cosh 2η) H = 0, (26b)

where ω is a separation constant (Mathieu characteristic number a or b in Mathieu-function literature) and q =
− f 2κ2/4 is the Mathieu parameter. These are the angular (26a) and radial (26b) Mathieu equations. The parameter
q is specified through the aquifer properties, element geometry, and p, whileω is determined to make the solution to
(26a) periodic on π ≤ ψ < −π . The special functions that are solutions to (26a) and (26b) are Mathieu functions;
see [8,54,55] for characteristic functional plots. Solutions to (25) for Re(q) < 0 are

�̄+
e (η, ψ) =

∞∑
n=0

an Ken(η;−q) cen(ψ;−q)+
∞∑

n=1

bn Kon(η;−q) sen(ψ;−q), (27a)

�̄−
e (η, ψ) =

∞∑
n=0

cn Ien(η;−q) cen(ψ;−q)+
∞∑

n=1

dn Ion(η;−q) sen(ψ;−q), (27b)

where an , bn , cn and dn are the coefficients to be determined; Ien , Ion , Ken , and Kon are the even (e) and odd (o)
radial Mathieu function of first and second kind, and cen and sen are the even (cosine-elliptic) and odd (sine-elliptic)
first-kind angular Mathieu function. Equation (27a) only contains the second-kind radial Mathieu functions
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(Ken, Kon) which are finite as η → ∞. Similarly, Eq. 27b only contains the first-kind radial Mathieu func-
tion (Ien, Ion) that has continuous value and slope across the focal line, η = 0. Because Re(q) < 0, these are
modified Mathieu functions.

To simplify the expression for head matching (6) on the boundary of the ellipse, the radial Mathieu functions are
normalized, resulting in

�̄+
e (η ≥ η0, ψ) ≈

N−1∑
n=0

an
Ken(η;−q+)
Ken(η0;−q+)

cen(ψ;−q+)+
N−1∑
n=1

bn
Kon(η;−q+)
Kon(η0;−q+)

sen(ψ;−q+), (28a)

�̄−
e (η ≤ η0, ψ) ≈

N−1∑
n=0

cn
Ien(η;−q−)
Ien(η0;−q−)

cen(ψ;−q−)+
N−1∑
n=1

dn
Ion(η;−q−)
Ion(η0;−q−)

sen(ψ;−q−), (28b)

where the infinite sum has been truncated and the ± superscripts on q indicate whether it involves aquifer parameters
from inside (−) or outside (+) the ellipse η = η0. In polar coordinates, a similar set of expressions is derived [6,16];
they are

�̄+
c (r ≥ r0, θ) ≈ γ0

K0(rκ+)
K0(r0κ+)

+
N−1∑
n=1

Kn(rκ+)
Kn(r0κ+)

[
γn cos(nθ)+ δn sin(nθ)

]
. (29)

The first difference between (29) and (28a) is the “even” and “odd” radial functions in elliptical coordinates. A
second difference is the appearance of both an argument (η or ψ) and a parameter, q±, in (28a) and (28b). Thirdly,
both radial and angular Mathieu functions depend on the coefficients of the partial differential equation (through
q), while sine and cosine in (29) do not.

4.1 Line source

An expression for a constant-flux line source (along y = 0, from − f ≤ x ≤ f ) is obtained from (27a), using
only ce2n(ψ;−q) due to symmetry . To simplify flux matching (8) we normalize by the radial Mathieu function
derivative, Ke′

2n(0;−q), giving

�̄line(η, ψ) =
∞∑

n=0

β2n ce2n(ψ;−q)
Ke2n(η;−q)

Ke′
2n(0;−q)

, (30)

where β2n are the coefficients to be determined. The boundary condition for a specified flux line element in elliptical
coordinates is

q̄BC = ḡ(p)
λ̄

2 f
= − 1

f
√

1
2 (cosh 2η − cos 2ψ)

∂�̄line

∂η

∣∣∣∣
η=η0

, (31)

where λ̄ is the transformed constant flowrate [L3], 2 f is the length of the line segment, and q̄BC is the normal flux [L]
due to the line source. The metric coefficient in the denominator is required to preserve the correct dimensions [33,
Sect. 1.3]. Differentiating (30) with respect to η, evaluating it at η = 0, and using orthogonality over 0 < ψ < π

gives

− ḡ(p)
λ̄

2

∫ π

0
sinψ ce∗

2m(ψ;−q) dψ =
∞∑

n=0

β2n

∫ π

0
ce2n(ψ;−q) ce∗

2m(ψ;−q) dψ, (32)

where ce2m(ψ;−q) has period π and ∗ denotes the complex conjugate. Due to the orthogonality of the angular
Mathieu functions, the integral on the right in (32) is 0 for m �= n and is defined as π/2 for m = n [31, Sect. 2.19],
reducing the infinite sum to the 2mth term. The expression for the coefficients is

β2m = −ḡ(p)
λ̄

π

∫ π

0
ce∗

2m(ψ;−q) sinψ dψ. (33)
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Fig. 9 Flux boundary condition and error in Mathieu function expansion for line source in Fig. 8

Expanding ce∗
2m in terms of its defining infinite cosine series (A1a), and evaluating the resulting integral leaves

β2m = ḡ(p)
2λ̄

π
(−1)m+1

[ ∞∑
r=0

(−1)r
A(2m)

2r

∗

1 − (2r)2

]
, (34)

where A(2m)
2r is a matrix of Mathieu coefficients (see Appendix A). The terms in the infinite sum quickly become

small as r increases and the largest magnitude terms in A(2m)
2r occur surrounding the diagonal r = m (as q → 0,

A(2m)
2r becomes a diagonal matrix). Substituting (34) back in (30) gives the final expression for a constant strength

passive line source as

�̄line(η, ψ) = ḡ(p)
4λ̄

π

∞∑
n=0

(−1)n+1

[ ∞∑
r=0

(−1)r
A(2n)

2r

∗

1 − (2r)2

]
ce2n(ψ;−q)

Ke2n(η;−q)

Ke′
2n(0;−q)

. (35)

This formulation of the transient line source is valid for any-length line source and can take on different time
behaviors through convolution with various ḡ(p). Figure 8 illustrates the solution for ḡ(p) = 1/p (a constant
strength starting at t = 0), using M = 20 and an infinite matrix for the Mathieu functions truncated at 42 terms.
Tranter [56] derived a real-valued Mathieu function solution for the case of an ellipse with a Dirichlet boundary
condition. Kucûk and Brigham [57] applied Tranter’s solution to flow in anisotropic petroleum reservoirs, and Riley
[58] derived expression for flow in a petroleum reservoir to a linear crack. Kuhlman and Warrick [20] derived a
Mathieu function solution for linearized infiltration from an ellipse. Morse and Feshbach [33, pp. 1419–1425] give
a solution in terms of Mathieu functions for a Neumann boundary condition similar to flow through a slot, with real
and positive q, while Erricolo [59] shows how these types of series can be accelerated to minimize the number of
Mathieu-function evaluations.

The flux normal to the line source at η = 0, illustrated in Fig. 8, is compared to the true boundary condition in
Fig. 9 for increasing numbers of terms in the Mathieu-function expansion. The numerically integrated average error,
along the boundary of the element, is 0.011 for N = 4 and reduces to −3.6 × 10−3 for N = 12; the average error
decreases slowly beyond that as more terms are added. The solution converges slowest at the ends of the interval,
where the even function ce2n(ψ) must force the flux to zero.

An ellipse or line element expressed in elliptical coordinates using Mathieu functions is useful as an LT-AEM
element with the coefficients of (27a) determined at run time or as an element for the special case of strength
constant in space (35). Using approximate methods, rather than the appropriate eigenfunctions, may be better suited
for intersecting line elements; similar to those in [28], but using an approximation can accommodate large p values
accurately.
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5 Numerical inverse Laplace transform

Complex contour-integration techniques could be used to analytically compute the time-domain solution from the
Mellin contour integral (e.g. [21, Sect. 66] and [44, Sect. 3.2]), defined as

�(x, t) = L−1 {
�̄(x, p)

} = 1

i2π

∫ σ0+i∞

σ0−i∞
�̄(x, p)ept d p, (36)

where σ0 ≥ 0 is larger than the real part of the right-most singularity in �̄(x, p). Analytic inversion techniques (e.g.
method of residues) are very problem-specific and may only yield a solution in the form of a slowly converging infi-
nite series; using a numerical L−1 allows flexibility and generality. See [36, Chap. 9], and the references therein, for
general reviews and comparisons of popular numerical numerical inverse Laplace-transform algorithms; Kuhlman
[4, Chap. 5] discusses the details related to several alternative inverse methods in the context of the LT-AEM.

A set of LT-AEM solutions are computed for required values of p, whose optimum values depend on the algorithm
being used. The time-domain solution is then approximated from this set using a numerical inverse-Laplace-trans-
form algorithm. Furman and Neuman [6] utilized the doubly accelerated Fourier-series approach of de Hoog et al.
[60], but no method is universally best. The Fourier-series method can accurately invert an LT-AEM solution over
a log-cycle of t values for a set of p optimized for tmax (the largest t desired). The unaccelerated form of the
Fourier-series algorithm is [37, Chap. 19],

�(t) ≈ eσ t

T

2M∑
k=0

′
Re

[
�̄

(
σ + iπk

T

)
exp

(
iπ t

T

)]
, (37)

where T is a scaling parameter (typically 2tmax); the first and last terms in the summation are halved, and σ depends
on the locations of the singularities in �̄. The argument of �̄, the results of the Laplace-space LT-AEM, are not
directly a function of the desired time being inverted, although the optimal value of T is dependent on tmax. Choosing
M ≥ 20 will successfully invert most time behaviors over a log-cycle of time (e.g. two discontinuities in g(t), rep-
resenting turning a pumping well on and off), but a smaller M can be used (as low as M = 3 for smooth functions)
when T is chosen optimally for each value of time, rather than inverting a whole log-cycle of times at once.

Other algorithms sample the Laplace-space function in different ways. Not all numerical inverse-Laplace-trans-
form algorithms are appropriate, depending on problem-specific restrictions on �̄ (e.g. real valued only, or invalid
for Re(p) < 0).

6 Example: leaky circles

We simulate six circular regions where κ2 corresponds to a leaky problem (Case I, (17)); they are surrounded by
material with a wave number κ2 = p/α (Fig. 10). A point source at (−0.5, 0), in the background of the leaky circles,
is pumped at a constant rate, starting at t = 0. The circles represent permeable regions in an otherwise impermeable
aquiclude separating two aquifers, the upper aquifer being at constant head. The initial and far-field conditions are
�(r, 0) = limr→∞ �(r, t) = 0. Contours of h are logarithmically spaced between −0.01 and −10. The pumped
aquifer has the same properties everywhere, but the wave number is different inside the circles, representing the
effects of an aquitard with the properties: K2 = K1/2, Ss2 = (5 × 103)Ss1, b2 = 2. Twelfth-order eigenfunction
approximations and 41 values (M = 20 in (37)) of p were used to compute the solution in Figs. 10 and 11.

The effects of the leaky circles are clear in the contour plot; the circles behave as area sources, with their recharge
rate proportional to the drawdown in the aquifer. The circles “bend” the h contours, reducing the drawdown compared
to the non-leaky case.

Figure 11 shows drawdown observed at points A (0.5, 0) and B (1.75, 0) through time, located in Fig. 10.
The upper curve represents Theis’s solution [45] (entire domain non-leaky) and the lower solid curves represent
Hantush’s solution [43] (whole domain leaky). The curves representing the domain with discontinuous leaky layers
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Fig. 11 Time-drawdown at
two points (see Fig. 10 for
locations), showing the
effects of leaky circles
(thick dashed lines)
compared to Theis’s
(E1, non-leaky) and
Hantush’s (thin solid lines,
uniformly leaky) solutions
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(dashed lines) plot between these two extremes. When the entire domain is leaky, a steady state is reached. With
only leaky circles, the drawdown does not completely flatten out in the figure, the time when the near-steady portion
is reached is shifted compared to Hantush’s solutions. For the circles, the approximate steady-state is approached
at a higher value of drawdown, which produces a larger flux from the aquitard, to compensate for the smaller area
producing flux to the aquifer.

7 Conclusions

AEM and LT-AEM lie between analytic solutions and gridded models in terms of flexibility and accuracy; they
extend some of the elegance of analytic solutions to a broader set of geometries. LT-AEM additionally utilizes the
Laplace transform to achieve flexible analytic temporal behavior through convolution, while retaining the benefits
of AEM.

The eigenfunction-expansion approach is an elegant method for deriving flexible semi-analytic solutions for
some geometries. Complex non-separable geometries can be approached using approximate techniques borrowed
from the boundary- and spectral-element literature. As examples, the LT-AEM approach was extended to two prob-
lems of potential interest to hydrologists, which are easily solvable using the same solution techniques used for the
standard LT-AEM. These new leaky and damped-wave solutions exemplify how LT-AEM can be extended to more
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general aquifer test-analysis scenarios; unconfined, dual porosity, and multi-aquifer flow may be similarly handled
[4, Sect. 4.2].

Sections 3.4.1 and 3.4.2 illustrate the potential usefulness of LT-AEM for interpreting observed results from
aquifer tests. The inhomogeneous example (Figs. 10 and 11) illustrates how LT-AEM has flexibility not found in
standard analytic aquifer-flow solutions and both elegance and insight lacking from gridded numerical solutions.
Future and ongoing extension of LT-AEM to three-dimensional flow (i.e., cylindrical and rotational 3D coordinates),
elements with anisotropic material properties (e.g. K is not a scalar), the inclusion of transient particle tracking,
the addition of more aquifer test related elements (e.g. elements with unconfined behavior, wellbore storage, or a
skin), and the addition of approximate elements will increase the flexibility and usefullness of LT-AEM.

While the nomenclature and examples used here are given in terms of hydrogeology, LT-AEM would also be use-
ful for the solution of heat conduction, neutron scattering, and other diffusion-dominated processes. The extension
to the damped-wave problem also shows that LT-AEM has the ability to solve additional problems which can be
transformed into the modified Helmholtz equation using the Laplace transform, which includes other non-diffusion
wave-like processes.
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Appendix A: Mathieu functions

To compute Mathieu functions of complex argument, the matrix formulation of the eigenvalue problem is used
here [61–64], solved with LAPACK [40] routine ZGEEV. The traditional continued-fraction approach to solving
for the eigenvalues [65] is potentially more efficient than the matrix method, but it requires an initial guess and is
only valid for small Mathieu parameter, |q| ≤ 4n, with asymptotic relationships required for larger q (e.g. [66,67]
and [68, Chap. 5]). The matrix used to compute the eigenvalues, ω, and eigenvectors, An

r and Bn
r , is a truncated

infinite matrix, obtained by substituting the definitions of the angular Mathieu functions back in (26a); the size of
the matrix required is in general proportional to the highest order of Mathieu function needed, the accuracy desired,
and |q| [62,63].

With either the matrix or continued-fraction approach, when the Mathieu parameter takes on complex values,
pairs of eigenvalues (and their associated eigenvectors) degenerate at isolated branch points (double points) in the
complex q-plane. References [65] and [67] discuss the location of and ramification of these double points.

This degeneracy results in the pairs of eigenvectors being less than orthogonal, depending on the value of q
(numerically, the eigenvectors are not likely to be exactly degenerate). This behavior is not a problem for the overall
convergence of the solution when a more general QR least-squares solution (e.g. LAPACK routine ZGELSS) is
used, which can accommodate this occasional degeneracy. Numerical inverse-Laplace-transform methods utilize
a set of �̄(x, p) to compute the time-domain solution. If an entry in this set coincides with a double point of
Mathieu’s equation, there will be two non-orthogonal eigenvectors. Because this degeneracy only affects a pair of
the N eigenvectors at one (or possibly two) of the values of p, it is not critical to the overall performance of the
method.

Angular Mathieu functions are evaluated from their definitions in terms of infinite sine and cosine series
(second-kind non-period angular Mathieu functions are not useful in our application), for Re(q) < 0 they are:

ce2n(ψ;−q) = (−1)n
∞∑

r=0

(−1)r A(2n)
2r cos(2rψ), (A1a)

ce2n+1(ψ;−q) = (−1)n
∞∑

r=0

(−1)r B(2n+1)
2r+1 cos[(2r + 1)ψ], (A1b)
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se2n+1(ψ;−q) = (−1)n
∞∑

r=0

(−1)r A(2n+1)
2r+1 sin[(2r + 1)ψ], (A1c)

se2n+2(ψ;−q) = (−1)n
∞∑

r=0

(−1)r B(2n+2)
2r+2 sin[(2r + 2)ψ], (A1d)

where A(n)r and B(n)r are matrices of Mathieu coefficients (both functions of q); each is comprised of the eigenvectors
associated with the nth eigenvalue that provides a periodic solution to angular Mathieu equation. Even-order (2n
and 2n + 2) Mathieu functions are periodic in π , while odd-order Mathieu functions are 2π periodic.

Because eigenvectors only define a direction, their lengths must be normalized. An extension of McLachlan’s
normalization [31, Sect. 2.21] is used, since it is readily generalized to the complex case and it produces angular
Mathieu function of root mean squared value 1/

√
2 over the entire range of ψ (LAPACK subroutine ZGEEV returns

this scaling, additionally scaling the largest magnitude element of each vector to be real). The Mathieu coefficients
are normalized by

∫ π
−π ce∗

n(ψ;−q)cen(ψ;−q)dψ = ∫ π
−π se∗

n(ψ;−q)sen(ψ;−q)dψ = π , where ∗ denotes the
complex conjugate; this makes Mathieu functions degenerate to trigonometric functions as q → 0.

Radial Mathieu functions are best defined in terms of Bessel-function product series (convergent for all η).
Expressions for them are lengthy, and can be found in the literature [31, Sect. 13.30]. References [27, p 744] and
[55] have tables relating these functions’ various names found in different publications. Derivatives of Mathieu
functions are found by applying the derivative to the definitions; no recurrence relationships exist.

References

1. Kraemer SR (2007) Analytic element ground water modeling as a research program (1980 to 2006). Ground Water 45(4):402–408
2. Strack ODL, Haitjema HM (1981) Modeling double aquifer flow using a comprehensive potential and distributed singularities 1.

Solution for homogeneous permeability. Water Resour Res 17(5):1535–1549
3. Boyd JP (2000) Chebyshev and Fourier spectral methods. 2nd ed. Dover Publications, New York
4. Kuhlman KL (2008) Laplace transform analytic element method. VDM Verlag, Saarbrücken
5. Fitts CR (1991) Modeling three-dimensional flow about ellipsoidal inhomogeneities with application to flow to a gravel-packed

well and flow through lens-shaped inhomogeneities. Water Resour Res 27(5):815–824
6. Furman A, Neuman SP (2003) Laplace-transform analytic element solution of transient flow in porous-media. Adv Water Res

26(12):1229–1237
7. Bakker M, Strack ODL (2003) Analytic elements for multiaquifer flow. J Hydrol 271(1–4):119–129
8. Bakker M, Nieber JL (2004) Two-dimensional steady unsaturated flow through embedded elliptical layers. Water Resour Res

40(12):W12406
9. Hunt RJ (2006) Ground water modeling applications using the analytic element method. Ground Water 44(1):5–15

10. Strack ODL (1999) Principles of the analytic element method. J Hydrol 226(3–4):128–138
11. Strack ODL (2003) Theory and applications of the analytic element method. Rev Geophys 41(2):1005–1021
12. Strack ODL (1989) Groundwater mechanics. Prentice-Hall, Englewood Cliffs
13. Haitjema HM (1995) Analytic element modeling of groundwater flow. Academic Press, London
14. Haitjema HM, Strack ODL (1985) An initial study of thermal energy storage in unconfined aquifers. Technical report PNL-5818

UC-94e, Pacific Northwest Laboratories
15. Zaadnoordijk WJ, Strack ODL (1993) Area sinks in the analytic element method for transient groundwater flow. Water Resour Res

29(12):4121–4129
16. Butler JJ, Liu W (1993) Pumping tests in nonuniform aquifers: the radially asymmetric case. Water Resour Res 29(2):259–269
17. Bakker M (2004) Transient analytic elements for periodic Dupuit–Forchheimer flow. Adv Water Resour 27(1):3–12
18. Strack ODL (2006) The development of new analytic elements for transient flow and multiaquifer flow. Ground Water 44(1):91–98
19. Bakker M, Nieber JL (2004) Analytic element modeling of cylindrical drains and cylindrical inhomogeneities in steady two-dimen-

sional unsaturated flow. Vadose Zone J 3(3):1038–1049
20. Kuhlman KL, Warrick AW (2008) Quasilinear infiltration from an elliptical cavity. Adv Water Resour 31(8):1057–1065
21. Churchill RV (1972) Operational Mathematics 3rd edn. McGraw-Hill, New York
22. Kuhlman KL, Neuman SP (2006) Recent advances in Laplace transform analytic element method (LT-AEM) theory and application

to transient groundwater flow. In: Computational methods in water resources, vol XVI
23. Duffin RJ (1971) Yukawan potential theory. J Math Anal Appl 35(1):105–130

123



LT-AEM for transient porous-media flow 129

24. Graff KF (1991) Wave motion in elastic solids. Dover Publications, New York
25. Moore RK (1964) Wave and diffusion analogies. McGraw-Hill, New York
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50. Strack ODL, Janković I (1999) A multi-quadric area-sink for analytic element modeling of groundwater flow. J Hydrol 226(3–4):

299–196
51. Bakker M (2008) Derivation and relative performance of strings of line elements for modeling (un)confined and semi-confined

flow. Adv Water Resour 31(6):906–914
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