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Laplace transform in spaces of ultradistributions

Bojan Prangoskia

aUniversity Ss. Cyril and Methodius, Skopje, Republic of Macedonia

Abstract. The Laplace transform in Komatsu ultradistributions is considered. Also, conditions are given
under which an analytic function is a Laplace transformation of an ultradistribution.

0. Introduction

The Laplace transform of distributions was defined and studied by Schwartz, [12]. Later, Carmichael
and Pilipović in [1] (see also [2]), considered the Laplace transform in Σ′α of Beurling-Gevrey tempered
ultradistributions and obtained some results concerning the so-called tempered convolution. In particular,
they gave a characterization of the space of Laplace transforms of elements from Σ′α supported by an
acute closed cone in Rd. Komatsu has given a great contribution to the investigations of the Laplace
transform in ultradistribution and hyperfunction spaces considering them over appropriate domains, see
[7] and references therein (see also [14]). Michalik in [9] and Lee and Kim in [8] have adapted the space
of ultradistribution and Fourier hyperfunctions to the definition of the Laplace transform, following ideas
of Komatsu. Our approach is different. We develop the theory within the space of already constructed
ultradistributions of Beurling and Roumieu type. The ideas in the proofs of the two main theorems (theorem
2.1 and theorem 2.5) are similar to those in [13] in the case of Schwartz distributions. In these theorems are
characterized ultradistributions defined on the wholeRd through the estimates of their Laplace transforms.
This is the main point of our investigations contrary to other authors who investigated generalized functions
supported by cones. We consider a restricted class of ultradistributions assuming conditions (M.1), (M.2)
and (M.3) (for example, cases Mp = p!s, s > 1) in order to obtain fine representations through the analysis
of the corresponding class of subexponentially bounded entire functions. With weaker conditions, (M.3)′

instead of (M.3), or even in the case of quasianalyticity, we can obtain different, technically more complicate,
structural representations.

1. Preliminaries

The sets of natural, integer, positive integer, real and complex numbers are denoted byN,Z,Z+,R,C. We
use the symbols for x ∈ Rd: ⟨x⟩ = (1 + |x|2)1/2, Dα = Dα1

1 . . .Dαd
n , Dα j

j = i−1∂α j/∂xα j , α = (α1, α2, . . . , αd) ∈Nd.

If z ∈ Cd, by z2 we will denote z2
1 + ... + z2

d. Note that, if x ∈ Rd, x2 = |x|2.
Following [4], we denote by Mp a sequence of positive numbers M0 = 1 so that:
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(M.1) M2
p ≤Mp−1Mp+1, p ∈ Z+;

(M.2) Mp ≤ c0Hp min
0≤q≤p
{Mp−qMq}, p, q ∈N, for some c0,H ≥ 1;

(M.3)
∞∑

p=q+1

Mp−1

Mp
≤ c0q

Mq

Mq+1
, q ∈ Z+,

although in some assertions we could assume the weaker ones (M.2)′ and (M.3)′ (see [4]). For a multi-index
α ∈Nd, Mα will mean M|α|, |α| = α1 + ... + αd. Recall, mp =Mp/Mp−1, p ∈ Z+ and the associated function for
the sequence Mp is defined by

M(ρ) = sup
p∈N

log+
ρp

Mp
, ρ > 0.

It is non-negative, continuous, monotonically increasing function, which vanishes for sufficiently small
ρ > 0 and increases more rapidly then lnρp when ρ tends to infinity, for any p ∈N.

Let U ⊆ Rd be an open set and K ⊂⊂ U (we will use always this notation for a compact subset of an

open set). Then E{Mp},h(K) is the space of all φ ∈ C∞(U) which satisfy sup
α∈Nd

sup
x∈K

|Dαφ(x)|
hαMα

< ∞ and D{Mp},h
K is

the space of all φ ∈ C∞
(
Rd

)
with supports in K, which satisfy sup

α∈Nd

sup
x∈K

|Dαφ(x)|
hαMα

< ∞;

E(Mp)(U) = lim←−
K⊂⊂U

lim←−
h→0

E{Mp},h(K), E{Mp}(U) = lim←−
K⊂⊂U

lim−→
h→∞
E{Mp},h(K),

D(Mp)
K = lim←−

h→0

D{Mp},h
K , D(Mp)(U) = lim−→

K⊂⊂U
D(Mp)

K ,

D{Mp}
K = lim−→

h→∞
D{Mp},h

K , D{Mp}(U) = lim−→
K⊂⊂U

D{Mp}
K .

The spaces of ultradistributions and ultradistributions with compact support of Beurling and Roumieu type
are defined as the strong duals ofD(Mp)(U) and E(Mp)(U), resp. D{Mp}(U) and E{Mp}(U). For the properties of
these spaces, we refer to [4], [5] and [6]. In the future we will not emphasize the set U when U = Rd. Also,
the common notation for the symbols (Mp) and {Mp}will be *.

If f ∈ L1, then its Fourier transform is defined by (F f )(ξ) = f̂ (ξ) =
∫
Rd e−ixξ f (x)dx, ξ ∈ Rd.

By R is denoted a set of positive sequences which monotonically increases to infinity. For (rp) ∈ R,
consider the sequence N0 = 1, Np = Mp

∏p
j=1 r j, p ∈ Z+. One easily sees that this sequence satisfies (M.1)

and (M.3)′ and its associated function will be denoted by Nrp (ρ), i.e. Nrp (ρ) = sup
p∈N

log+
ρp

Mp
∏p

j=1 r j
, ρ > 0.

Note, for given rp and every k > 0 there is ρ0 > 0 such that Nrp (ρ) ≤M(kρ), for ρ > ρ0.

It is said that P(ξ) =
∑
α∈Nd

cαξα, ξ ∈ Rd, is an ultrapolynomial of the class (Mp), resp. {Mp}, whenever the

coefficients cα satisfy the estimate |cα| ≤ CLα/Mα, α ∈ Nd for some L > 0 and C > 0, resp. for every L > 0
and some CL > 0. The corresponding operator P(D) =

∑
α cαDα is an ultradifferential operator of the class

(Mp), resp. {Mp} and they act continuously on E(Mp)(U) and D(Mp)(U), resp. E{Mp}(U) and D{Mp}(U) and the
corresponding spaces of ultradistributions.

We denote by SMp,m
2

(
Rd

)
, m > 0, the space of all smooth functions φ which satisfy

σm,2(φ) :=

 ∑
α,β∈Nd

∫
Rd

∣∣∣∣∣∣m|α|+|β|⟨x⟩|α|Dβφ(x)
MαMβ

∣∣∣∣∣∣
2

dx


1/2

< ∞, (1)

supplied with the topology induced by the norm σm,2. The spaces S′(Mp) and S′{Mp} of tempered ultra-
distributions of Beurling and Roumieu type respectively, are defined as the strong duals of the spaces
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S(Mp) = lim←−
m→∞

SMp,m
2

(
Rd

)
andS{Mp} = lim−→

m→0
SMp,m

2

(
Rd

)
, respectively. All the good properties ofS∗ and its strong

dual follow from the equivalence of the sequence of norms σm,2, m > 0, with each of the following sequences
of norms (see [2], [10]):

(a) σm,p, m > 0; p ∈ [1,∞] is fixed;

(b) sm,p, m > 0; p ∈ [1,∞] is fixed, where sm,p(φ) :=
∑
α,β∈Nd

m|α|+|β|∥| · |βDαφ(·)∥Lp

MαMβ
;

(c) sm, m > 0, where sm(φ) := sup
α∈Nd

m|α|∥Dαφ(·)eM(m|·|)∥L∞
Mα

.

If we denote by SMp,m
∞

(
Rd

)
the space of all infinitely differentiable functions on Rd for which the norm σm,∞

is finite (obviously it is a Banach space), then S(Mp)
(
Rd

)
= lim←−

m→∞
SMp,m
∞

(
Rd

)
and S{Mp}

(
Rd

)
= lim−→

m→0
SMp,m
∞

(
Rd

)
.

Also, for m2 > m1, the inclusion SMp,m2
∞

(
Rd

)
−→ SMp,m1

∞
(
Rd

)
is a compact mapping. In [11] and [2]

it is proved that S{Mp} = lim←−
ri,s j∈R

SMp

(rp),(sq), where SMp

(rp),(sq) =
{
φ ∈ C∞

(
Rd

)
|γ(rp),(sq)(φ) < ∞

}
and γ(rp),(sq)(φ) =

sup
α,β∈Nd

∥∥∥⟨x⟩|β|Dαφ(x)
∥∥∥

L2(∏|α|
p=1 rp

)
Mα

(∏|β|
q=1 sq

)
Mβ

. Also, the Fourier transform is a topological automorphism of S∗ and

of S′∗.

2. Laplace transform

For a set B ⊆ Rd denote by ch B the convex hull of B.

Theorem 2.1. Let B be a connected open set in Rd
ξ and T ∈ D′∗(Rd

x) be such that, for all ξ ∈ B, e−xξT(x) ∈ S′∗(Rd
x).

Then the Fourier transform Fx→η
(
e−xξT(x)

)
is an analytic function of ζ = ξ + iη for ξ ∈ ch B, η ∈ Rd. Furthermore,

it satisfies the following estimates:
for every K ⊂⊂ ch B there exist k > 0 and C > 0, resp. for every k > 0 there exists C > 0, such that

|Fx→η(e−xξT(x))(ξ + iη)| ≤ CeM(k|η|), ∀ξ ∈ K,∀η ∈ Rd. (2)

Proof. Let K be a fixed compact subset of ch B. There exists 0 < ε < 1/4 and ξ(1), ..., ξ(l) ∈ B such that the
convex hull Π of the set {ξ(1), ..., ξ(l)} contains the closed 4ε neighborhood of K (obviously Π ⊂⊂ ch B). We
shell prove that the set{

S ∈ D′∗|S(x) = T(x)e−xξ+ε
√

1+|x|2 , ξ ∈ K
}

(3)

is bounded in S′∗. Note that by the condition in the theorem T(x)e−xξ ∈ S′∗ and eε
√

1+|x|2 is the restriction on
the real axis of the function eε

√
1+z2 that is analytic and single valued on the strip Rd + i{y ∈ Rd||y| < 1/4},

and hence eε
√

1+|x|2 is in E∗. Note that

T(x)e−xξ+ε
√

1+|x|2 =
l∑

k=1

eε
√

1+|x|2 a(x, ξ)T(x)e−xξ(k)
, (4)

where a(x, ξ) = e−xξ

 l∑
k=1

e−xξ(k)


−1

. The function a(x, ξ) satisfies the following conditions:

i) 0 < a(x, ξ) ≤ 1, (x, ξ) ∈ Rd ×Π;

ii) eε′
√

1+|x|2 a(x, ξ) ≤ eε′ , (x, ξ) ∈ Rd × K, and ∀ε′ ≤ 4ε;



B. Prangoski / Filomat 27:5 (2013), 747–760 750

iii) a(x, ξ) ∈ C∞
(
R2d

)
.

iii) it’s obvious. To prove i), take ξ ∈ Π. Then there exist t1, ..., tl ≥ 0 such that ξ =
l∑

k=1

tkξ
(k) and

l∑
k=1

tk = 1.

Then, by the weighted arithmetic mean-geometric mean inequality, we have

e−xξ =

l∏
k=1

e−xtkξ(k) ≤
l∑

k=1

tke−xξ(k) ≤
l∑

k=1

e−xξ(k)
,

from where it follows i). For the prove of ii), note that, for (x, ξ) ∈ Rd × K,

eε
′
√

1+|x|2 a(x, ξ) ≤ eε
′+ε′ |x|a(x, ξ) = eε

′
max
|t|≤ε′

e−txa(x, ξ) = eε
′
max
|t|≤ε′

a(x, ξ + t) ≤ eε
′
,

where the last inequality follows from i).
Now we will estimate the derivatives of a(x, ξ). Let s = max

ξ∈Π
|ξ|. Then a(z, ξ) is an analytic function of

z = x + iy on the strip Rd + i{y ∈ Rd||y|s < π/4}, for every fixed ξ ∈ Π, because∣∣∣∣∣∣∣
l∑

k=1

e−zξ(k)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
l∑

k=1

e−xξ(k)
e−iyξ(k)

∣∣∣∣∣∣∣
2

≥
 l∑

k=1

e−xξ(k)
cos yξ(k)


2

≥
 l∑

k=1

e−xξ(k)

√
2

2


2

,

and hence∣∣∣∣∣∣∣
l∑

k=1

e−zξ(k)

∣∣∣∣∣∣∣ ≥
√

2
2

l∑
k=1

e−xξ(k)
> 0, (5)

Take 0 < r < 1/
√

d so small such that rs
√

d < π/4. Then, from Cauchy integral formula, we have

|∂αz a(x, ξ)| ≤ α!
r|α|

sup
|w1−x1 |≤r,...,|wd−xd |≤r

∣∣∣∣∣∣ e−wξ∑l
k=1 e−wξ(k)

∣∣∣∣∣∣ .
If we use the inequality (5), we get (we put w = u + iv)∣∣∣∣∣∣ e−(u+iv)ξ∑l

k=1 e−(u+iv)ξ(k)

∣∣∣∣∣∣ ≤
√

2e−uξ∑l
k=1 e−uξ(k)

=

√
2e−xξe−(u−x)ξ∑l

k=1 e−xξ(k) e−(u−x)ξ(k)

≤
√

2e−xξe|u−x||ξ|∑l
k=1 e−xξ(k) e−|u−x||ξ(k)| ≤

√
2e−xξers

√
d∑l

k=1 e−xξ(k) e−rs
√

d
=
√

2e2rs
√

da(x, ξ).

So, we obtain the estimate∣∣∣∂αx a(x, ξ)
∣∣∣ ≤ √2e2s α!

r|α|
a(x, ξ). (6)

Note that, by the previous estimate and the property ii) of a(x, ξ), it follows that a(x, ξ) ∈ S∗ for every ξ ∈ K

and the set {a(x, ξ)|ξ ∈ K} is a bounded set in S∗. We will estimate the derivatives of eε
√

1+|x|2 . The function
eε
√

1+z2 is analytic on the stripRd + i{y ∈ Rd||y| < 1/4}, where we take the principal branch of the square root
which is single valued and analytic on C\(−∞, 0]. If we take r < 1/(8d), from the Cauchy integral formula,

we get the estimate
∣∣∣∣∣∂αz eε

√
1+|x|2

∣∣∣∣∣ ≤ α!
r|α|

sup
|w1−x1 |≤r,...,|wd−xd |≤r

∣∣∣∣eε√1+w2
∣∣∣∣. Put w = u + iv and estimate as follows

∣∣∣∣eε√1+w2
∣∣∣∣ = eRe

(
ε
√

1+w2
)
≤ e

∣∣∣∣ε√1+w2
∣∣∣∣ ≤ eε

4
√

(1+|u|2−|v|2)2+4(uv)2 ≤ eε
√

1+|u|2−|v|2+2|uv|

≤ eε
√

1+2|u|2 ≤ eε
√

1+4|u−x|2+4|x|2 ≤ eε
√

1+1+4|x|2 ≤ e2ε
√

1+|x|2 .
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Hence∣∣∣∣∣∂αx eε
√

1+|x|2
∣∣∣∣∣ ≤ α!

r|α|
e2ε
√

1+|x|2 . (7)

If we take r small enough we can make the previous estimates for the derivatives of a(x, ξ) and eε
√

1+|x|2 to
hold for the same r. Now we obtain∣∣∣∣∣Dα

x

(
eε
√

1+|x|2 a(x, ξ)
)∣∣∣∣∣ ≤ ∑

β≤α

(
α
β

)
(α − β)!

r|α−β|
e2ε
√

1+|x|2 ·
√

2e2s β!
r|β|

a(x, ξ)

≤
√

2e2s α!
r|α|

2|α|e2ε
√

1+|x|2 a(x, ξ).

Using the property ii) of the function a(x, ξ), we get∣∣∣∣∣Dα
x

(
eε
√

1+|x|2 a(x, ξ)
)∣∣∣∣∣ ≤ √2e2sα!2|α|

r|α|
e2ε
√

1+|x|2 a(x, ξ) ≤
√

2e2s+2εα!2|α|

r|α|
, ∀ξ ∈ K. (8)

By this estimate and proposition 7 of [3] one has eε
√

1+|x|2 a(x, ξ) is a multiplier for S′∗. Because of (4), (3) is
a subset of S′∗. Now to prove that (3) is bounded in S′∗. We will give the prove only in the {Mp} case, the

(Mp) case is similar. Let ψ ∈ S{Mp}. There exists h > 0 such that ψ ∈ SMp,h
∞ . Note that⟨

eε
√

1+|x|2 a(x, ξ)T(x)e−xξ(k)
, ψ(x)

⟩
=

⟨
T(x)e−xξ(k)

, eε
√

1+|x|2 a(x, ξ)ψ(x)
⟩
, ∀k ∈ {1, ..., l},∀ξ ∈ K.

Choose m ≤ h/4. By (8), we have

m|α|+|β|⟨x⟩β
∣∣∣∣∣Dα

(
eε
√

1+|x|2 a(x, ξ)ψ(x)
)∣∣∣∣∣

MαMβ

≤ m|α|+|β|⟨x⟩β
∑
γ≤α

(
α
γ

) √
2e2s+2ε(α − γ)!2|α−γ||Dγψ(x)|

r|α−γ|MαMβ

≤ C1σh,∞(ψ)
∑
γ≤α

(
α
γ

)
h|α|+|β|(α − γ)!2|α−γ|

4|α|+|β|r|α−γ|Mα−γh|γ|+|β|
≤ C1σh,∞(ψ)

∑
γ≤α

(
α
γ

)
h|α|−|γ|(α − γ)!
2|α|r|α−γ|Mα−γ

≤ Cσh,∞(ψ), ∀ξ ∈ K.

Hence eε
√

1+|x|2 a(x, ξ)T(x)e−xξ(k)
, ξ ∈ K, is bounded in S′{Mp}. Buy (4), the set (3) is bounded in S′{Mp}.

We will prove that e−ε
√

1+|x|2 ∈ S∗. In order to do that we will estimate the derivatives of e−ε
√

1+|x|2 with

the Cauchy integral formula (similarly as for eε
√

1+|x|2 ). We obtain∣∣∣∣∣∂αz e−ε
√

1+|x|2
∣∣∣∣∣ ≤ α!

r|α|
sup

|w1−x1 |≤r,...,|wd−xd |≤r

∣∣∣∣e−ε√1+w2
∣∣∣∣ ,

where, 0 < r < 1/(8d). Let w = u + iv. Then, if we put ρ =
√

(1 + |u|2 − |v|2)2 + 4(uv)2, cosθ =
1 + |u|2 − |v|2√

(1 + |u|2 − |v|2)2 + 4(uv)2

, sinθ =
2uv√

(1 + |u|2 − |v|2)2 + 4(uv)2

(where θ ∈ (−π, π)), we have that θ ∈

(−π/2, π/2) (because cosθ > 0 and θ ∈ (−π, π)) and

Re
√

1 + |u|2 − |v|2 + 2iuv = Re
√
ρ(cosθ + i sinθ) = Re

√
ρ
(
cos

θ
2
+ i sin

θ
2

)
=
√
ρ cos

θ
2
≥
√
ρ

2
,
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where the second equality holds because we take the principal branch of
√

z. Because r < 1/(8d), we get∣∣∣∣e−ε√1+w2
∣∣∣∣ = eRe

(
−ε
√

1+w2
)
≤ e−

ε
2

4
√

(1+|u|2−|v|2)2+4(uv)2 ≤ e−
ε
2

√
1+|u|2−|v|2

≤ e−
ε
2

√
1+ |x|

2
2 −|u−x|2−|v|2 ≤ e−

ε
4

√
1+|x|2 .

Hence, we obtain∣∣∣∣∣∂αx e−ε
√

1+|x|2
∣∣∣∣∣ ≤ α!

r|α|
e−

ε
4

√
1+|x|2 . (9)

From this, it easily follows that e−ε
√

1+|x|2 ∈ S∗. So e−xξT(x) ∈ S′∗
(
Rd

x

)
, for ξ ∈ K, because e−xξT(x) =

T(x)e−xξ+ε
√

1+|x|2 e−ε
√

1+|x|2 and we proved that T(x)e−xξ+ε
√

1+|x|2 ∈ S′∗
(
Rd

x

)
, for ξ ∈ K.

Put f (ξ + iη) = Fx→η(e−xξT(x)). We will prove that f is an analytic function on ch B + iRd. Let U be an
arbitrary bounded open subset of ch B such that K = U ⊂⊂ ch B. For ψ ∈ S∗ and ξ ∈ U, we have

⟨ f (ξ + iη), ψ(η)⟩ =
⟨
Fx→η

(
e−xξT(x)

)
, ψ(η)

⟩
=

⟨
e−xξT(x),F (ψ)(x)

⟩
=

⟨
e−xξT(x),

∫
Rd

e−ixηψ(η)dη
⟩
=

⟨
eε
√

1+|x|2 e−xξT(x), e−ε
√

1+|x|2
∫
Rd

e−ixηψ(η)dη
⟩

=
⟨(

eε
√

1+|x|2 e−xξT(x)
)
⊗ 1η, e−ε

√
1+|x|2 e−ixηψ(η)

⟩
=

∫
Rd

⟨
eε
√

1+|x|2 e−xξT(x)e−ixη, e−ε
√

1+|x|2
⟩
ψ(η)dη.

Hence

f (ξ + iη) =
⟨
eε
√

1+|x|2 e−xξT(x)e−ixη, e−ε
√

1+|x|2
⟩
. (10)

First we will prove that f ∈ C∞
(
U ×Rd

η

)
. We will prove the differentiability only in ξ1 and in the {Mp} case.

The existence of the rest of the derivatives is proved in analogous way and the (Mp) case is treated similarly.
Let ξ(0) =

(
ξ(0)

1 , ..., ξ
(0)
d

)
=

(
ξ(0)

1 , ξ
′
)
∈ U, ξ =

(
ξ(0)

1 + ξ1, ξ
(0)
2 , ..., ξ

(0)
d

)
=

(
ξ(0)

1 + ξ1, ξ′
)
, x = (x1, ..., xd) = (x1, x′). Let

0 < |ξ1| < δ < ε < 1 such that the ball with radius δ and center in ξ(0) is contained in U. Then, by using (4)
and (10), we obtain
f (ξ + iη) − f (ξ(0) + iη)

ξ1
−

⟨
eε
√

1+|x|2 (−x1)e−xξ(0)
T(x)e−ixη, e−ε

√
1+|x|2

⟩

=

l∑
k=1

⟨
e−ixηe−xξ(k)

T(x)eε
√

1+|x|2
a(x, ξ) − a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

) , e−ε√1+|x|2
⟩
.

It is enough to prove that, for every ψ ∈ S{Mp}, eε
√

1+|x|2
a(x, ξ) − a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

)ψ(x) −→ 0, when

ξ1 −→ 0, in S{Mp}. First note that

eε
√

1+|x|2
a(x, ξ) − a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

) = eε
√

1+|x|2 a
(
x, ξ(0)

) ( e−x1ξ1 − 1
ξ1

+ x1

)
.

Now, we get

e−x1ξ1 − 1
ξ1

+ x1 =
1
ξ1

∞∑
n=1

(−1)nxn
1ξ

n
1

n!
+ x1 =

∞∑
n=2

(−1)nxn
1ξ

n−1
1

n!
.



B. Prangoski / Filomat 27:5 (2013), 747–760 753

So, for j ∈N, j ≥ 2 and 0 < |ξ1| < δ < ε < 1, we have

∣∣∣∣∣∣D j
x1

(
e−x1ξ1 − 1

ξ1
+ x1

)∣∣∣∣∣∣ =
∣∣∣∣∣∣∣D j

x1

 ∞∑
n=2

(−1)nxn
1ξ

n−1
1

n!


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑

n= j

(−1)nn!xn− j
1 ξn−1

1

(n − j)!n!

∣∣∣∣∣∣∣∣
≤ |ξ1|

∞∑
n= j

|x1|n− j|ξ1|n−2

(n − j)!
≤ |ξ1|

∞∑
n= j

|x1|n− j|ξ1|n− j

(n − j)!
≤ δe|x1 |δ.

Using similar technic, we obtain the estimates∣∣∣∣∣∣Dx1

(
e−x1ξ1 − 1

ξ1
+ x1

)∣∣∣∣∣∣ ≤ δ|x1|e|x1 |δ and

∣∣∣∣∣∣
(

e−x1ξ1 − 1
ξ1

+ x1

)∣∣∣∣∣∣ ≤ δ|x1|2e|x1 |δ.

So, in all cases, we have

∣∣∣∣∣∣D j
x1

(
e−x1ξ1 − 1

ξ1
+ x1

)∣∣∣∣∣∣ ≤ δ⟨x1⟩2e|x1 |δ. By using (8), we get (for simpler notation we

write j for the d-tuple ( j, 0, ..., 0))∣∣∣∣∣∣Dα

(
eε
√

1+|x|2 a
(
x, ξ(0)

) ( e−x1ξ1 − 1
ξ1

+ x1

)
ψ(x)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
β≤α

∑
j≤β

(
α
β

)(
β

j

)
Dβ− j

(
eε
√

1+|x|2 a
(
x, ξ(0)

))
D j

(
e−x1ξ1 − 1

ξ1
+ x1

)
Dα−βψ(x)

∣∣∣∣∣∣∣∣
≤

∑
β≤α

∑
j≤β

(
α
β

)(
β

j

)√
2e2s (β − j)!2|β− j|

r|β− j| e2ε
√

1+|x|2 a
(
x, ξ(0)

)
δ⟨x1⟩2e|x1 |δ|Dα−βψ(x)|

≤ Cδ⟨x1⟩2
∑
β≤α

∑
j≤β

(
α
β

)(
β

j

) (2
r

)|β− j|
(β − j)!|Dα−βψ(x)|,

where we used the inequality e2ε
√

1+|x|2 a(x, ξ(0))e|x1 |δ ≤ e3ε
√

1+|x|2 a(x, ξ(0)) ≤ e3ε, which follows from the prop-
erty ii) of a(x, ξ). Because ψ ∈ S{Mp}, there exists m > 0 such that ψ ∈ SMp,m

∞ . Choose h such that h < m/4,
h < 1/4 and hH < m. We get

h|α|+|β|⟨x⟩β
∣∣∣∣∣∣Dα

(
eε
√

1+|x|2 a
(
x, ξ(0)

) ( e−x1ξ1 − 1
ξ1

+ x1

)
ψ(x)

)∣∣∣∣∣∣
MαMβ

≤ Cδ
∑
γ≤α

∑
j≤γ

(
α
γ

)(
γ

j

) (2
r

)|γ− j|
(γ − j)!

⟨x1⟩2⟨x⟩|β|h|α|+|β||Dα−γψ(x)|
Mα−γMγ− jM jMβ

≤ C1δ
∑
γ≤α

∑
j≤γ

(
α
γ

)(
γ

j

) (2
r

)|γ− j|
(γ − j)!

⟨x⟩|β|+2h|α|+|β|H|β|+2|Dα−γψ(x)|
Mα−γMγ− jM jMβ+2

≤ C2δσm,∞(ψ)
∑
γ≤α

∑
j≤γ

(
α
γ

)(
γ

j

) (2
r

)|γ− j|
(γ − j)!

h|α|+|β|H|β|

m|α|−|γ|m|β|+2Mγ− jM j

≤ C3δσm,∞(ψ)
∑
γ≤α

∑
j≤γ

(
α
γ

)(
γ

j

) (2
r

)|γ− j| ( h
m

)|α|−|γ| (hH
m

)|β| h|γ|(γ − j)!
Mγ− jM j

≤ C0δσm,∞(ψ),
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where we use (M.2) and the fact
kpp!
Mp
→ 0, when p→∞. Now, from this it follows that

eε
√

1+|x|2
a(x, ξ) − a

(
x, ξ(0)

)
ξ1

+ x1a
(
x, ξ(0)

)ψ(x) −→ 0, ξ1 −→ 0

in S{Mp} and by the above remarks, the differentiability of f (ξ + iη) on U × Rd
η follows. Also, from the

previous, we can conclude that ∂αξ f (ξ+iη) =
⟨
eε
√

1+|x|2 (−x)αe−xξT(x)e−ixη, e−ε
√

1+|x|2
⟩

and similarly ∂αη f (ξ+iη) =⟨
eε
√

1+|x|2 (−ix)αe−xξT(x)e−ixη, e−ε
√

1+|x|2
⟩
. From this and the arbitrariness of U, the analyticity of f (ξ+iη) follows

because it satisfies the Cauchy-Riemann equations. So, for ζ = ξ + iη, we get

f (ζ) =
⟨
eε
√

1+|x|2 e−xζT(x), e−ε
√

1+|x|2
⟩

(11)

and ∂αζ f (ζ) =
⟨
eε
√

1+|x|2 (−x)αe−xζT(x), e−ε
√

1+|x|2
⟩
, for ζ ∈ U + iRd

η, for each fixed U (ε depends on U).

Now we will prove the estimates (2) for f (ξ + iη). Let K ⊂⊂ ch B be arbitrary but fixed. First we will
consider the (Mp) case. We know that S(Mp) is a (FS) - space and S(Mp) = lim←−

h→∞
SMp,h
∞ . If we denote the closure

of S(Mp) in SMp,h
∞ by S̃Mp,h

∞ then S(Mp) = lim←−
h→∞
S̃Mp,h
∞ and the projective limit is reduced. Then S′(Mp) = lim−→

h→∞
S̃′Mp,h
∞

which is injective inductive limit with compact maps (because the projective limit is with compact maps).

Because we proved that the set
{
S ∈ D′∗|S(x) = T(x)e−xξ+ε

√
1+|x|2 , ξ ∈ K

}
is bounded in S′(Mp), it follows that

there exists h > 0 such that
{
S ∈ D′∗|S(x) = T(x)e−xξ+ε

√
1+|x|2 , ξ ∈ K

}
⊆ S̃′Mp,h

∞ and it’s bounded there. By (9),

we have the estimate

h|α|+|β|⟨x⟩β
∣∣∣∣∣Dα

x

(
e−ixηe−ε

√
1+|x|2

)∣∣∣∣∣
MαMβ

≤
∑
γ≤α

(
α
γ

)
(2h)|α|−|γ|(2h)|γ|h|β|⟨x⟩β|η|γ(α − γ)!e−

ε
4

√
1+|x|2

2|α|r|α−γ|Mα−γMγMβ

≤ C1
1

2|α|
∑
γ≤α

(
α
γ

) (
2h
r

)|α|−|γ| (α − γ)!eM(h⟨x⟩)eM(2h|η|)e−
ε
4 ⟨x⟩

Mα−γ

≤ C′eM(2h|η|),

where we use that eM(h⟨x⟩)e−
ε
4 ⟨x⟩ is bounded and

kpp!
Mp
→ 0 when p→∞. Then, for ξ ∈ K and η ∈ Rd,

| f (ξ + iη)| =
∣∣∣∣∣⟨eε
√

1+|x|2 e−xξT(x), e−ixηe−ε
√

1+|x|2
⟩∣∣∣∣∣ ≤ C

∥∥∥∥∥e−ixηe−ε
√

1+|x|2
∥∥∥∥∥S̃Mp ,h
∞

≤ C̃eM(2h|η|).

Now we will consider the {Mp} case. S{Mp} is a (DFS) - space and S{Mp} = lim−→
h→0

SMp,h
∞ , where the inductive

limit is injective with compact maps. Let h > 0 be fixed. For shorter notation, denote by F the set{
S ∈ D′∗|S(x) = T(x)e−xξ+ε

√
1+|x|2 , ξ ∈ K

}
and by J the inclusion SMp,h

∞ −→ S{Mp}. Because we already proved

that F is a bounded subset of S′{Mp}, its image under t J (the transposed mapping of J) is a bounded subset

of S′Mp,h
∞ . By the above calculations we see that e−ixηe−ε

√
1+|x|2 is in SMp,m

∞ , for every m > 0. Hence, for ξ ∈ K
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and η ∈ Rd, we have

| f (ξ + iη)| =
∣∣∣∣∣⟨eε
√

1+|x|2 e−xξT(x), e−ixηe−ε
√

1+|x|2
⟩∣∣∣∣∣ = ∣∣∣∣∣⟨t J

(
eε
√

1+|x|2 e−xξT(x)
)
, e−ixηe−ε

√
1+|x|2

⟩∣∣∣∣∣
≤ C′h

∥∥∥∥∥e−ixηe−ε
√

1+|x|2
∥∥∥∥∥SMp ,h
∞

≤ CheM(2h|η|),

where we used the above estimate for
h|α|+|β|⟨x⟩β

∣∣∣∣∣Dα
(
e−ixηe−ε

√
1+|x|2

)∣∣∣∣∣
MαMβ

.

Remark 2.2. If, for S ∈ D′∗, the conditions of the theorem are fulfilled, we call Fx→η
(
e−xξS(x)

)
the Laplace transform

of S and denote it by L(S). Moreover, by (11), L(S)(ζ) =
⟨
eε
√

1+|x|2 e−xζS(x), e−ε
√

1+|x|2
⟩
, for ζ ∈ U + iRd

η, where

U ⊂⊂ ch B and ε depends on U.
Note that, if for S ∈ D′∗ the conditions of the theorem are fulfilled for B = Rd, then the choice of ε can be made

uniform for all K ⊂⊂ Rd.

For the next theorem we need the following technical results.

Lemma 2.3. Let (kp) ∈ R. There exists (k′p) ∈ R such that k′p ≤ kp and
p+q∏
j=1

k′j ≤ 2p+q
p∏

j=1

k′j ·
q∏

j=1

k′j, for all p, q ∈ Z+.

Proof. Define k′1 = k1 and inductively k′j = min
{

k j,
j

j − 1
k′j−1

}
, for j ≥ 2, j ∈ N. Obviously k′j ≤ k j and one

easily checks that (k′j) is monotonically increasing. To prove that k′j tends to infinity, suppose the contrary.
Then, because (k′j) is a monotonically increasing sequence of positive numbers, it follows that it is bounded
by some C > 0. Because (k j) ∈ R, there exists j0, such that, for all j ≥ j0, j ∈N, k j ≥ 2C. So, for all j ≥ j0 + 1,

k′j =
j

j − 1
k′j−1. We get that k′j =

j
j0

k′j0 → ∞, when j −→ ∞, which is a contradiction. Hence (k′j) ∈ R.

Note that, for all p, j ∈ Z+, we have k′p+ j ≤
p + j

j
k′j. Hence

p+q∏
j=1

k′j =
p∏

j=1

k′j ·
q∏

j=1

k′p+ j ≤
p∏

j=1

k′j ·
q∏

j=1

p + j
j

k′j =

(p + q)!
p!q!

p∏
j=1

k′j ·
q∏

j=1

k′j ≤ 2p+q
p∏

j=1

k′j ·
q∏

j=1

k′j.

We will construct certain class of ultrapolynomials similar to those in [4], (see (10.9)’ in [4]), which will
have the added beneficence of not having zeroes in a strip containing the real axis.

Let c > 0 be fixed. Let k > 0, l > 0 and (kp) ∈ R, (lp) ∈ R be arbitrary but fixed. Choose q ∈ Z+ such that
c
√

d
lmp

<
1
2

, for all p ∈ N, p ≥ q in the (Mp) case and
c
√

d
lpmp

<
1
2

, for all p ∈ N, p ≥ q in the {Mp} case. Consider

the entire functions

Pl(w) =
∞∏
j=q

1 +
w2

l2m2
j

 , w ∈ Cd (12)

in the (Mp) case, resp.

Plp (w) =
∞∏
j=q

1 +
w2

l2j m
2
j

 , w ∈ Cd (13)
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in the {Mp} case. It is easily checked that the entire function Pl(w1, 0, ..., 0), resp. Plp (w1, 0, ..., 0), of one
variable satisfies the condition c) of proposition 4.6 of [4]. Hence, Pl(w), resp. Plp (w), satisfies the equivalent
conditions a) and b) of proposition 4.5 of [4]. Hence, there exist L > 0 and C′ > 0, resp. for every L > 0 there
exists C′ > 0, such that |Pl(w)| ≤ C′eM(L|w|), resp. |Plp (w)| ≤ C′eM(L|w|), for all w ∈ Cd and Pl(D), resp. Plp (D),
are ultradifferential operators of (Mp), resp. {Mp}, type. It is easy to check that Pl(w) and Plp (w) don’t have

zeroes in W = Rd + i{v ∈ Rd||v j| ≤ c, j = 1, ..., d}. For w = u + iv ∈ W, |u| ≥ 2c
√

d, we have
∣∣∣w2

∣∣∣ ≥ |w|2
4

and∣∣∣∣∣∣∣1 + w2

l2j m
2
j

∣∣∣∣∣∣∣ ≥ 1, for j ≥ q. We estimate as follows

|Plp (w)| =

∣∣∣∣∣∣∣∣
∞∏
j=q

1 +
w2

l2j m
2
j


∣∣∣∣∣∣∣∣ = sup

p

p∏
j=q

∣∣∣∣∣∣∣1 + w2

l2j m
2
j

∣∣∣∣∣∣∣ ≥ sup
p

p∏
j=q

∣∣∣w2
∣∣∣

l2j m
2
j

≥ sup
p

p∏
j=q

|w|2
4l2j m

2
j

=

∏q−1
j=1 4l2j
|w|2q−2

sup
p

|w|pMq−1

Mp
∏p

j=1 2l j


2

= C′0

Mq−1
∏q−1

j=1 k j

|w|q−1


2

e2N2lp (|w|) ≥ C′0
eN2lp (|w|)

e2Nkp (|w|) ,

where we put C′0 =
q−1∏
j=1

4l2j
k2

j

and lp = l and kp = k in the (Mp) case. For w ∈ W, because Pl(w), resp. Plp (w),

doesn’t have zeroes in W, we get that there exist C0 > 0 such that

|Pl(w)| ≥ C0e−2M(|w|/k)eM(|w|/(2l)), resp. |Plp (w)| ≥ C0e−2Nkp (|w|)eN2lp (|w|), w ∈W. (14)

Now, by using Cauchy integral formula, we can estimate the derivatives of 1/Pl(x), resp. 1/Plp (ξ). We will
introduce some notations to make the calculations less cumbersome. For r > 0, denote by Br(a) the polydisc
with center at a and radii r, i.e. {z ∈ Cd||z j − a j| < r, j = 1, 2, ..., d} and by Tr(a) the corresponding polytorus
{z ∈ Cd||z j − a j| = r, j = 1, 2, ..., d}. We will do it for the {Mp} case, for the (Mp) case it is similar. We already
know that on W, 1/Plp (w) is analytic function (Plp doesn’t have zeroes in W). Hence∣∣∣∣∣∣∂αw 1

Plp (x)

∣∣∣∣∣∣ ≤ α!
r|α|
·
∥∥∥∥∥∥ 1

Plp (z)

∥∥∥∥∥∥
L∞(Tr(x))

≤ α!
C0r|α|

·
∥∥∥∥∥∥ e2Nkp (|z|)

eN2lp (|z|)

∥∥∥∥∥∥
L∞(Tr(x))

,

for arbitrary but fixed r ≤ c (so Br(x) ⊆W). For x ∈ Rd\B2r
√

d(0), there exists j ∈ {1, ..., d} such that |x j| ≥ 2r
√

d.

Then, on Tr(x), |z| ≥ |x| − |z − x| = |x| − r
√

d ≥ |x|/2, i.e. eN2lp (|z|) ≥ eN2lp (|x|/2) = eN4lp (|x|). Moreover, for such x, we
have

e2Nkp (|z|) ≤ e2Nkp (|x|+r
√

d) ≤ 4e2Nkp (2r
√

d)e2Nkp (2|x|) = C1e2Nkp (2|x|),

where in the last inequality we used that eM(λ+ν) ≤ 2eM(2λ)eM(2ν), for λ ≥ 0, ν ≥ 0. So, we obtain

∣∣∣∣∣∣∂αw 1
Plp (x)

∣∣∣∣∣∣ ≤
C · α!

r|α|
e2Nkp (2|x|)

eN4lp (|x|) . For x in B2r
√

d(0),
∥∥∥e2Nkp (|z|)e−N2lp (|z|)∥∥∥

L∞(Tr(x))
is bounded, so we can conclude that the above

inequality holds, possible with another constant C. Analogously, we can prove that, for the (Mp) case,∣∣∣∣∣∂αw 1
Pl(x)

∣∣∣∣∣ ≤ C · α!
r|α|

e2M(2|x|/k)

eM(|x|/(4l))
. This is important, because, if k > 0 is fixed, resp. (kp) ∈ R is fixed, then we

can find l > 0, resp. (lp) ∈ R, such that e2M(2|x|/k)e−M(|x|/(4l)) ≤ C′′e−M(|x|/k), resp. e2Nkp (2|x|)e−N4lp (|x|) ≤ C′′e−Nkp (|x|),
for some C′′ > 0. This inequality trivially follows from proposition 3.6 of [4] in the (Mp) case. To prove
the inequality in the {Mp} case, first note that e2Nkp (2|x|)eNkp (|x|) ≤ e3Nkp/2(|x|). By lemma 2.3, there exists (k′p) ∈ R

such that k′p ≤ kp/2 and
p+q∏
j=1

k′j ≤ 2p+q
p∏

j=1

k′j ·
q∏

j=1

k′j, for all p, q ∈ Z+. So e3Nkp/2(|x|) ≤ e3Nk′p (|x|). If we put
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N0 = 1 and Np = Mp

p∏
j=1

k′j, for p ∈ Z+, then, by the properties of (k′p), it follows that Np satisfies (M.1),

(M.2) and (M.3)′ where the constant H in (M.2) for this sequence is equal to 2H. Moreover, note that
N(λ) = Nk′p (λ), for all λ ≥ 0. We can now use proposition 3.6 of [4] for N(|x|) (i.e. for Nk′p (|x|)) and obtain

e3Nk′p (|x|) ≤ c′′eNk′p (4H2 |x|)
= c′′e

Nk′p/(4H2)(|x|), for some c′′ > 0. Now take lp such that 4lp = k′p/(4H2), p ∈ Z+ and the
desired inequality follows. So, we obtain∣∣∣∣∣∂αx 1

Pl(x)

∣∣∣∣∣ ≤ C · α!
r|α|

e−M(|x|/k), resp.

∣∣∣∣∣∣∂αx 1
Plp (x)

∣∣∣∣∣∣ ≤ C · α!
r|α|

e−Nkp (|x|), x ∈ Rd, α ∈Nd,

where C depends on k and l, resp. (kp) and (lp), and Mp; r ≤ c arbitrary but fixed. Moreover, from the above
observation and (14), we obtain

|Pl(w)| ≥ C̃eM(|w|/k), resp. |Plp (w)| ≥ C̃eNkp (|w|), w ∈W, (15)

for some C̃ > 0.

Lemma 2.4. let 1 : [0,∞) −→ [0,∞) be an increasing function that satisfies the following estimate:
for every L > 0 there exists C > 0 such that 1(ρ) ≤M(Lρ) + ln C.

Then there exists subordinate function ϵ(ρ) such that 1(ρ) ≤M(ϵ(ρ)) + ln C′, for some constant C′ > 1.

For the definition of subordinate function see [4].

Proof. If 1(ρ) is bounded then the claim of the lemma is trivial (we can take C′ large enough such that the
inequality will hold for arbitrary subordinate function). Assume that 1 is not bounded. We can easily find
continuous strictly increasing function f : [0,∞) −→ [0,∞) which majorizes 1 such that for every L > 0
there exists C > 0 such that f (ρ) ≤ M(Lρ) + ln C. Hence, there exists ρ1 > 0 such that f (ρ) > 0 for ρ ≥ ρ1.
There exists ρ0 > 0 such that M(ρ) = 0 for ρ ≤ ρ0 and M(ρ) > 0 for ρ > ρ0. Because M(ρ) is continuous
and strictly increasing on the interval [ρ0,∞) and lim

ρ→∞
M(ρ) = ∞, M is bijection from [ρ0,∞) to [0,∞) with

continuous and strictly increasing inverse M−1 : [0,∞) −→ [ρ0,∞). Define ϵ(ρ) on [ρ1,∞) in the following
way ϵ(ρ) = M−1( f (ρ)) and define it linearly on [0, ρ1) such that it will be continuous on [0,∞) and ϵ(0) = 0.
Then ϵ(ρ) is strictly increasing and continuous on [0,∞). Moreover, for ρ ∈ [ρ1,∞), it satisfies f (ρ) =M(ϵ(ρ)).
Hence, there exists C′ > 1 such that f (ρ) ≤ M(ϵ(ρ)) + ln C′, for ρ ≥ 0. It remains to prove that ϵ(ρ)/ρ −→ 0
when ρ −→ ∞. Assume the contrary. Then, there exist L > 0 and a strictly increasing sequence ρ j which
tends to infinity when j −→ ∞, such that ϵ(ρ j) ≥ 2Lρ j, i.e. f (ρ j) ≥ M(2Lρ j). For this L, by the condition for
f , choose C > 1 such that f (ρ) ≤M(Lρ)+ ln C. Then we have M(2Lρ j) ≤M(Lρ j)+ ln C, which contradicts the
fact that eM(ρ) increases faster then ρp for any p. One can obtain this contradiction by using equality (3.11)
of [4].

Theorem 2.5. Let B be a connected open set inRd
ξ and f an analytic function on B+ iRd

η. Let f satisfies the condition:
for every compact subset K of B there exist C > 0 and k > 0, resp. for every k > 0 there exists C > 0, such that

| f (ξ + iη)| ≤ CeM(k|η|), ∀ξ ∈ K,∀η ∈ Rd. (16)

Then, there exists S ∈ D′∗(Rd
x) such that e−xξS(x) ∈ S′∗(Rd

x), for all ξ ∈ B and

L(S)(ξ + iη) = Fx→η
(
e−xξS(x)

)
(ξ + iη) = f (ξ + iη), ξ ∈ B, η ∈ Rd. (17)

Proof. Because of (16), for every fixed ξ ∈ B, fξ = f (ξ + iη) ∈ S′∗(Rd
η). Put Tξ(x) = F −1

η→x
(

fξ(η)
)

(x) ∈ S′∗(Rd
x)

and Sξ(x) = exξTξ(x) ∈ D′∗(Rd
x). We will show that Sξ does not depend on ξ ∈ B. Let U be an arbitrary, but

fixed, bounded connected open subset of B, such that K = U ⊂⊂ B.
Let c > 2 be such that |ξ j| ≤ c/2, for ξ = (ξ1, ..., ξd) ∈ K. In the (Mp) case, choose s > 0 such that
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Rd

eM(k|η|)e−M( s
2 |η|)dη < ∞ and e2M(k|η|) ≤ c̃eM( s

2 |η|), for some constant c̃ > 0. For the {Mp} case, by the conditions

in the theorem, for every k > 0 there exists C > 0, such that ln+ | f (ξ + iη)| ≤ M(k|η|) + ln C for all ξ ∈ K and
η ∈ Rd. The same estimate holds for the nonnegative increasing function

1(ρ) = sup
|η|≤ρ

sup
ξ∈K

ln+ | f (ξ + iη)|.

If we use lemma 2.4 for this function we get that there exists subordinate function ϵ(ρ) and a constant C > 1
such that 1(ρ) ≤M(ϵ(ρ)) + ln C. From this we have that ln+ | f (ξ + iη)| ≤ 1(|η|) ≤M(ϵ(|η|)) + ln C, i.e.

| f (ξ + iη)| ≤ CeM(ϵ(|η|)), ∀ξ ∈ K,∀η ∈ Rd, (18)

for some C > 1. By lemma 3.12 of [4], there exists another sequence Ñp, which satisfies (M.1), such that
Ñ(ρ) ≥M(ϵ(ρ)) and k′p = ñp/mp −→ ∞when p −→ ∞. Take (kp) ∈ R such that kp ≤ k′p, p ∈ Z+. Then

eNkp (ρ) = sup
p

ρp

Mp
∏p

j=1 k j
≥ sup

p

ρp

Mp
∏p

j=1 k′j
= eÑ(ρ) ≥ eM(ϵ(ρ)).

Hence, from (18), it follows that | f (ξ + iη)| ≤ CeNkp (|η|), for all ξ ∈ K and η ∈ Rd. Choose (sp) ∈ R such that∫
Rd

eNkp (|η|)e−N2sp (|η|)dη < ∞ and e2Nkp (|η|) ≤ c̃eN2sp (|η|), for some c̃ > 0.

Now, for the chosen c and s, resp. (sp), by the discussion before the theorem, we can find l > 0, resp.
(lp) ∈ R, and entire functions Pl(w) as in (12), resp. Plp (w) as in (13), such that they don’t have zeroes in
W = Rd + i{v ∈ Rd||v j| ≤ c, j = 1, ..., d} and the following estimates hold∣∣∣∣∣∂αx 1

Pl(x)

∣∣∣∣∣ ≤ C · α!
r|α|

e−M(s|x|), resp.

∣∣∣∣∣∣∂αx 1
Plp (x)

∣∣∣∣∣∣ ≤ C · α!
r|α|

e−Nsp (|x|), x ∈ Rd, α ∈Nd,

where C depends on s and l, resp. (sp) and (lp), and Mp; r ≤ c is arbitrary but fixed. For shorter notation,
we will denote Pl(w) and Plp (w) by P(w) in both cases. Define the entire functions Pξ(w) = P(w − iξ) =
∞∏
j=q

1 +
(w − iξ)2

l2m2
j

 in the (Mp) case, resp. Pξ(w) = P(w − iξ) =
∞∏
j=q

1 +
(w − iξ)2

l2j m
2
j

 in the {Mp} case. As we

noted in the construction of the entire functions P(w) (the discussion before the theorem), P(w) satisfies the
equivalent conditions a) and b) of proposition 4.5 of [4]. Hence, there exist L > 0 and C′ > 0, resp. for every
L > 0 there exists C′ > 0, such that |P(w)| ≤ C′eM(L|w|), w ∈ Cd and P(D) are ultradifferential operators of (Mp),
resp. {Mp}, type. So, we obtain

|Pξ(w)| = |P(w − iξ)| ≤ C′eM(L|w−iξ|) ≤ C′′eM(2L|w|), w ∈ Cd,

because ξ = (ξ1, ..., ξd) is such that |ξ j| ≤ c/2, for j = 1, ..., d. Hence, by proposition 4.5 of [4], Pξ(D) is an
ultradifferential operator of class (Mp), resp. of class {Mp}, for every ξ = (ξ1, ..., ξd) such that |ξ j| ≤ c/2,
j = 1, ..., d. Moreover, by the properties of P(w), it follows that Pξ(w) is an entire function that doesn’t have
zeroes in Rd + i{v ∈ Rd||v j| ≤ c/2, j = 1, ..., d} for all ξ ∈ K. So, by using the Cauchy integral formula to
estimate the derivatives, one obtains that Pξ(η) and 1/Pξ(η) are multipliers for S′∗(Rd

η). Also, by (15), we
have |Pξ(η)| = |P(η − iξ)| ≥ C̃eM(s|η−iξ|) ≥ C̃′eM( s

2 |η|), for all ξ ∈ K and η ∈ Rd in the (Mp) case and similarly,
|Pξ(η)| = |P(η − iξ)| ≥ C̃eNsp (|η−iξ|) ≥ C̃′eN2sp (|η|), for all ξ ∈ K and η ∈ Rd, in the {Mp} case. For ξ ∈ B, put
fξ(η) = f (ξ + iη). Then fξ(η)/Pξ(η) ∈ L1

(
Rd
η

)
∩ E∗

(
Rd
η

)
, for all ξ ∈ K. Observe that

exξF −1
η→x

(
fξ(η)

)
(x) = exξF −1

η→x

(
fξ(η)Pξ(η)

Pξ(η)

)
(x) = exξPξ(Dx)

(
F −1
η→x

(
fξ(η)
Pξ(η)

)
(x)

)
,
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i.e.

Sξ(x) = exξPξ(Dx)
(
F −1
η→x

(
fξ(η)
Pξ(η)

)
(x)

)
. (19)

Let P(w) =
∑
α

cαwα. For simpler notation, put R(η) = fξ(η)/Pξ(η) and calculate as follows

P(Dx)
(
exξF −1

η→x(R)(x)
)
=

∑
α

cα
∑
β≤α

(
α
β

)
(−iξ)βexξDα−β

x F −1
η→x(R)(x)

= exξ
∑
α

cα
∑
β≤α

(
α
β

)
(−iξ)βDα−β

x F −1
η→x(R)(x).

Note that∑
α

cα
∑
β≤α

(
α
β

)
(−iξ)βDα−β

x F −1
η→x(R)(x)

= F −1
η→x

∑
α

cα
∑
β≤α

(
α
β

)
(−iξ)βηα−βR(η)

 (x) = F −1
η→x

∑
α

cα(η − iξ)αR(η)

 (x)

= F −1
η→x

(
P(η − iξ)R(η)

)
(x) = F −1

η→x
(
Pξ(η)R(η)

)
(x) = Pξ(Dx)F −1

η→x(R)(x).

From this and (19), we get Sξ(x) = P(Dx)
(
exξF −1

η→x

(
fξ(η)
Pξ(η)

)
(x)

)
. Now, for w = η − iξ, we have

exξF −1
η→x

(
fξ(η)
Pξ(η)

)
(x) =

1
(2π)d

∫
Rd

f (ξ + iη)e(ξ+iη)x

P(η − iξ)
dη =

1
(2π)d

∫
Rd−iξ

f (iw)eiwx

P(w)
dw.

The function
f (iw)eiwx

P(w)
is analytic for iw ∈ U+ iRd, i.e. w ∈ Rd− iU (because P(w) is analytic in the last set and

doesn’t have zeroes there). Using the growth estimates for f and P, from the theorem of Cauchy-Poincaré,
it follows that the last integral doesn’t depend on ξ ∈ U. From this and the arbitrariness of U it follows that
Sξ(x) doesn’t depend on ξ ∈ B. We will denote this by S(x). Now, by the observations in the beginning, it
follows that Fx→η

(
e−xξS(x)

)
= fξ as ultradistributions in η for every fixed ξ ∈ B. By theorem 2.1, it follows

that Fx→η
(
e−xξS(x)

)
is analytic function for ζ = ξ+ iη ∈ B+ iRd, hence the equality (17) holds pointwise.

Remark 2.6. If f is an analytic function on O = B + iRd
η and satisfies the conditions of the previous theorem then,

by this theorem and theorem 2.1, it follows that f is analytic on ch B + iRd
η and satisfies the estimates (2) for every

K ⊂⊂ ch B.

References

[1] R. Carmichael and S. Pilipović, On the convolution and the Laplace transformation in the space of Beurling-Gevrey tempered ultradis-
tributions, Math. Nachr. 158 (1992), 119-131
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