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LAPLACE TRANSFORMS AND SUPREMA OF

STOCHASTIC PROCESSES

KLAUS SCH�URGER

Department of Statisti
s, University of Bonn

Abstra
t. It is shown that moments of negative order as well

as positive non-integral order of a nonnegative random variable X


an be expressed by the Lapla
e transform of X . Applying these

results to 
ertain �rst passage times gives expli
it formulae for mo-

ments of suprema of Bessel pro
esses as well as stri
tly stable L�evy

pro
esses having no positive jumps.

Key Words: Lapla
e transform, Bessel pro
ess, L�evy pro
ess.

0. Introdu
tion

In the sequel (Bt) denotes a d-dimensional standard linear Brownian

motion starting at 0 2 IRd (denoted BM(d)). In Shiryaev (1999,p.251)

a beautiful tri
k is used in order to show that if (Bt) is a BM(1),

(0.0.1) E
h
sup
0�s�1

jBsj
i
=
p
�=2:

In fa
t, the veri�
ation of (0.0.1) 
an be based on the stopping time

(0.0.2) T (1) := infft � 0j jBtj = 1g

and its Lapla
e transform

(0.0.3) '1(t) = E
�
exp(�t T (1))

�
=

1


osh(
p
2t)

; t � 0:

The latter is easily obtained by applying the optional stopping theorem

to the martingale


osh(sBt) exp(�s2t=2) (t � 0) for �xed s � 0;

see, e.g., Revuz/Yor (1991,p.68) or Rogers/Williams (1994,p.19). Al-

though there is no expli
it inversion of the Lapla
e transform in (0.0.3)

in any parti
ularly useful form, it turns out, however, that (0.0.3) 
on-

tains enough information in order to yield (0.0.1). In fa
t, putting

(0.0.4) M(t) = sup
0�s�t

jBsj; t � 0;
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we get by Brownian s
aling, for any t > 0,

P
�
M(1) � t

�
= P

�
sup
0�s�1

jBs=t2j � 1
�
= P

�
M(1=t2) � 1

�
= P

�
T (1) � 1=t2

�
= P

�
(T (1))�1=2 � t

�
;

i.e.,

(0.0.5) M(1) and (T (1))�1=2 have the same distribution

whi
h implies

(0.0.6) E[M(1)℄ = E
h
(T (1))�1=2

i
:

Next, using the density of a normal distribution with mean 0 and vari-

an
e s2=2 we get

(0.0.7) s =
2p
�

1Z
0

exp(�(t=s)2) dt; s > 0:

Hen
e if X � 0 is a random variable having Lapla
e transform 'X we

obtain from (0.0.7) by using the Fubini-Tonelli theorem,

(0.0.8) E
�
X�1=2

�
=

2p
�

1Z
0

'X(t
2) dt:

Applying (0.0.8) to X = T (1) and taking into a

ount (0.0.6) as well

as (0.0.3) we arrive at

E[M(1)℄ =
2p
�

1Z
0

1


osh(
p
2t)

dt:

Using the substitution u = exp(
p
2t) we end up with (0.0.1).

In the sequel we �rst extend (0.0.8) in two di�erent ways (see The-

orems 1.1 and 1.2 in the next se
tion). Using the same pattern of

proof as before allows us to obtain results similar to (0.0.1) for Bessel

pro
esses as well as for a 
ertain 
lass of L�evy pro
esses.

1. Cal
ulation of Moments via Lapla
e Transforms

We �rst derive an extension of (0.0.8). In order to a
hieve this it is

natural to start with the identity

�(1=�) =

1Z
0

u1=��1 exp(�u) du; � > 0:
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Using the substitution u = (t=s)� (s > 0; � > 0 being 
onstants) we

get

(1.0.1) s =
�

�(1=�)

1Z
0

exp
�
� (t=s)�

�
dt; s � 0; � > 0:

1.1. Theorem. Let X � 0 be a random variable having Lapla
e trans-

form 'X . Then

(1.1.1) E[X�r℄ =
1

r �(r)

1Z
0

'X(t
1=r) dt; r > 0:

Proof. Apply (1.0.1) to s = X�r, � = 1=r and use the Fubini-Tonelli

theorem. �

There are interesting 
onne
tions between (1.1.1) and the "fra
tional


al
ulus" (see Ross (1974) and Wolfe (1974)). It has been noti
ed in

Wolfe (1974) that it is possible to 
al
ulate moments of positive non-

integral order of a nonnegative random variableX by using the Lapla
e

transform 'X of X. In fa
t, we have the

1.2. Theorem. Let X � 0 be a random variable having Lapla
e trans-

form 'X . Then,

(1.2.1) E[Xr℄ =
r

�(1� r)

1Z
0

1� 'X(t)

tr+1
dt; 0 < r < 1:

More generally, we have for any integer n � 0 and n < r < n+ 1

(1.2.2) E[Xr℄ =
r � n

�(n+ 1� r)

1Z
0

(�1)n('(n)

X (0)� '
(n)

X (t))

tr+1�n
dt:

Proof. In order to prove (1.2.1) we use the identity

(1.2.3)

1Z
0

1� exp(�st)
tr+1

dt =
1

r
�(1� r) sr; 0 < r < 1; s � 0

whi
h 
an be derived by using partial integration and the de�nition

of the gamma fun
tion (see, e.g., Gradshteyn/Ryzhik (1965,p.333)).

Applying (1.2.3) to s = X and using the Fubini-Tonelli theorem we

obtain (1.2.1). In a similar way we get (1.2.2), noting that

'
(n)

X (t) = (�1)n E
�
Xn exp(�tX)

�
; t � 0; n � 0:

�
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2. Bessel Pro
esses

In the sequel (Bt) denotes a BM(d). Then (jBtj) is a realization of

a d-dimensional Bessel pro
ess starting at 0 2 IRd (jBtj denoting the

Eu
lidean norm of Bt). Consider the stopping time

(2.0.1) T (s) := infft � 0j jBtj = sg; s � 0:

The Lapla
e transform 's of T (s) is given by

(2.0.2) 's(t) = (s
p
2t)�

�
2� �(�+ 1) I� (s

p
2t)
��1

; s > 0; t > 0

(see, e.g., Getoor/Sharpe (1979) and Getoor(1979)). Here,

(2.0.3) � := (d� 2)=2 � �1=2;
and I� is denoting the modi�ed Bessel fun
tion of order � given by

(2.0.4) I�(t) =

1X
m=0

(t=2)�+2m

m! �(� +m + 1)
; t > 0; � � �1=2:

In parti
ular,

(2.0.5) I�1=2(t) =
p
2=(�t) 
osh(t); t > 0:

(Note that, in the one-dimensional 
ase, this yields the Lapla
e trans-

form

(2.0.6) E
�
exp(�t T (s))

�
=

1


osh(s
p
2t)

; s � 0; t � 0:)

Putting

(2.0.7) M(t) = sup
0�s�t

jBsj; t � 0

we obtain by Brownian s
aling

(2.0.8) M(1) and (T (1))�1=2 have the same distribution.

By (1.1.1) this implies for any r > 0

E
�
(M(1))r

�
= E

�
(T (1))�r=2

�
=

2

r �(r=2)

1Z
0

'1(t
2=r) dt:

Using (2.0.2) and substituting u =
p
2t1=r yields, for any r > 0,

(2.0.9) E
�
(M(1))r

�
=

4

2(d+r)=2 �(d=2) �(r=2)

1Z
0

ud=2+r�2

I�(u)
du

(� = (d� 2)=2). In the 
ase d = 1 we get from (2.0.9) (using (2.0.5))

E
�
(M(1))r

�
=

2

2r=2 �(r=2)

1Z
0

ur�1


osh(u)
du; r > 0:

4



The substitution t = exp(u), i.e. u = log t, yields for any r > 0

(2.0.10) E
�
(M(1))r

�
=

4

2r=2 �(r=2)

1Z
1

(log t)r�1

t2 + 1
dt (d = 1)

In the spe
ial 
ase r = 2n+ 1 (n � 0) the integral in (2.0.10) equals

(2.0.11)

1Z
1

(log t)2n

t2 + 1
dt =

1Z
0

(log t)2n

t2 + 1
dt =

�2n+1

22n+2
jE2nj

(see Gradshteyn/Ryzhik (1965,p.549)), E0; E2; : : : denoting the Euler

numbers determined by

1


osh(t)
=

1X
n=0

E2n

t2n

(2n)!
:

The �rst Euler numbers are E0 = 1; E2 = �1; E4 = 5; E6 = �61; E8 =

1385; E10 = �50521; E12 = 2702765; E14 = �199360981. Combining

(2.0.10) and (2.0.11) gives for n = 0; 1; : : :

(2.0.12) E
�
(M(1))2n+1

�
=

r
�

2

��2
2

�n n!

(2n)!
jE2nj (d = 1)

In order to investigate the asymptoti
 behaviour of E
�
(M(1))r

�
(as

r!1) we need

2.1. Lemma. As t!1
(2.1.1) �(t) � (t=e)t

p
2�=t

and

(2.1.2) I�(t) � (2�t)�1=2 exp(t)

independently of � � �1=2.
Proof. For a proof of (2.1.1) see Bender/Orszag (1978,p.275); a proof

of (2.1.2) 
an be found in Courant/Hilbert (1966,p.526) (see also Ben-

der/Orszag (1978,p.271)). �

2.2. Proposition. As r !1

(2.2.1) E
�
(M(1))r

�
� 4

p
� r(d+r�1)=2

2d=2 �(d=2) er=2
:

In parti
ular

(2.2.2) E
�
(M(1))r

�
� 2
p
2(r=e)r=2 (d = 1)

Proof. For the integral in (2.0.9) we get

1Z
0

ud=2+r�2

I�(u)
du � 2�

er
rd=2+r�1 (r !1)

5



by using some routine estimates and applying (2.1.2). Combining this

with (2.1.1) gives (2.2.1). �

2.3. Corollary. For any d � 1 the distribution of M(1) is uniquely

determined by its moments

�n = E
�
(M(1))n

�
; n = 0; 1; : : :

Proof. It suÆ
es to show that

(2.3.1)

1X
n=0

�
�1=(2n)
2n =1

(see Feller (1966,p.224)). But, by (2.2.1),

�
1=(2n)
2n �

p
2n=e (n!1)

whi
h implies (2.3.1). �

2.4. Remark. Comparing (2.0.12) and (2.2.2) we obtain for the as-

ymptoti
 behaviour of the Euler numbers E2n

(2.4.1) jE2nj �
8
p
np
�

�4n
e�

�2n
:

3. Stri
tly Stable L�evy Pro
esses

Let X = (Xt) be a one-dimensional L�evy pro
ess starting at 0 su
h

that X1 is not a.s. 
onstant. Furthermore X is assumed to be a.s.


�adl�ag, i.e. almost all paths of X are right 
ontinuous and have �nite

left-hand limits at every point. In the sequel � denotes a real number

su
h that

(3.0.1) 1 < � < 2:

The distribution � ofX1 is assumed to be stri
tly �-stable with parame-

ters (�; �; 
) for 
onstants �1 � � � 1 and 
 > 0, i.e. the 
hara
teristi


fun
tion b� of � is of the form

(3.0.2) b�(t) = exp(�	(t)); t 2 IR:

Here, 	 is the 
hara
teristi
 exponent given by

(3.0.3) 	(t) = 
jtj�
h
1� i�(sgn t) tan

���
2

�i
; t 2 IR

where sgn t is equal to 1,0,-1 when t is > 0;= 0; < 0, respe
tively (see

Bertoin (1996,p.217) or Sato (1999,p.86)). It follows from the above

assumptions that, for any a > 0,

(3.0.4) (Xat) has the same law as
�
a1=� Xt

�
:

From now on we will additionally assume

(3.0.5) � = �1:
6



This implies (see Bertoin (1996,p.217) or Sato (1999,p.346)) that the

L�evy measure of X has support in ℄�1; 0℄, and X has no positive

jumps, i.e.

(3.0.6) P
�
Xt � Xt� for all t > 0

�
= 1:

Furthermore (see Sato (1999,p.350))

(3.0.7) P
�
lim sup
t!1

Xt =1
�
= 1:

Let R(s) denote the �rst passage time de�ned by

(3.0.8) R(s) = infft > 0jXt > sg; s � 0:

Note that, by (3.0.7), R(s) < 1 a.s., s � 0. For the following result

see Sato (1999,pp.346,347).

3.1. Theorem. We 
ontinue to assume (3.0.1) and (3.0.5). Then the

following results hold.

(a) P
�
XR(s) = s for all s � 0

�
= 1:

(b) The fun
tion

(3.1.1)  (t) := �	(�it) = � 



os(��
2
)
t�; t � 0

(	 given by (3.0.3)) is stri
tly in
reasing, 
ontinuous and sat-

is�es  (0) = 0 and  (t)!1 (t!1).

(
) The Lapla
e transforms of the �rst passage times R(s) (s > 0)

are given by

(3.1.2) E
�
exp(�t R(s))

�
= exp(�s  �1(t)); s > 0; t � 0

( �1 denoting the inverse fun
tion of  ).

It follows from (3.1.1) that  �1 is given by

(3.1.3)  �1(t) =
�1



��� 
os���
2

�����1=�

t1=�; t � 0:

Combining Theorems 3.1 and 1.1 gives

3.2. Proposition. We 
ontinue to assume (3.0.1) and (3.0.5). Then

the following results hold.

(a) For any r > 0,

(3.2.1) E
h
( sup
0�s�1

Xs)
r
i
=
� �(r)

�(r=�)

�

�� 
os ���

2

���
�r=�

:

(b) We have, as r !1,

(3.2.2) E
h
( sup
0�s�1

Xs)
r
i
�
p
�

�
� 
 r��1�� 
os ���

2

���e��1
�r=�

:

7



Proof. In order to prove (3.2.1) �rst note that it follows from (3.0.6)

that fM(t) := sup
0�s�t

Xs � 1() R(1) � t a.s.; t > 0;

whi
h, by (3.0.4), implies that fM(1) and (R(1))�1=� have the same

distribution. Hen
e, by Theorem 1.1 and (3.1.2),

E
�
(fM(1))r

�
= E

�
(R(1))�r=�

�
=

�

r �(r=�)

1Z
0

exp
�
�  �1(t�=r)

�
dt; r > 0:

Taking into a

ount (3.1.3) and putting

(3.2.3) e
 := �
1




��� 
os���
2

�����1=�

;

we get, using the substitution u = e
 t1=r,
E
h
(fM(1))r

i
=

� �(r)

�(r=�) e
r ;
i.e. (3.2.1). The assertion (3.2.2) is immediate from (3.2.1) and (2.1.1).

�

As a �nal result we mention

3.3. Proposition. We 
ontinue to assume (3.0.1) and (3.0.5). Then,

for any s > 0,

(3.3.1) E
�
(R(s))r

�
=

�(1� �r)
�(1� r)

��� 
os ���
2

���



�r

s�r; 0 � r < 1=�

and

(3.3.2) E
�
(R(s))r

�
=1; r � 1=�:

Proof. Put Æ := s e
 (s > 0; e
 given by (3.2.3)). Taking into a

ount

(3.1.2), (1.2.1) and (3.1.3) we obtain, for any 0 < r < 1,

E
�
(R(s))r

�
=

r

�(1� r)

1Z
0

1� exp(�Æt1=�)
tr+1

dt:

Using the substitution u = Æt1=� we arrive at

E
�
(R(s))r

�
=

� r Æ�r

�(1� r)

1Z
0

1� exp(�u)
u� r+1

du; 0 < r < 1:

This 
learly entails (3.3.2) and (using partial integration) also (3.3.1).

�
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