{: SCISPACE

formerly Typeset

@ Open access + Book Chapter « DOI:10.1007/978-3-662-04790-3_15
Laplace transforms and suprema of stochastic processes — Source link [£

Klaus Schurger

Institutions: University of Bonn

Published on: 01 May 2002 - Research Papers in Economics (Springer, Berlin, Heidelberg)

Topics: Two-sided Laplace transform, Laplace transform applied to differential equations, Inverse Laplace transform,
Laplace transform and Bessel process

Related papers:

« A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options
» Robust Replication of Volatility Derivatives

« The effect of jumps and discrete sampling on volatility and variance swaps

« The Pricing of Options on Assets with Stochastic Volatilities

« Theory of rational option pricing

Share this paper: @ ¥ M &

View more about this paper here: https://typeset.io/papers/laplace-transforms-and-suprema-of-stochastic-processes-
o4ad0xuw4k


https://typeset.io/
https://www.doi.org/10.1007/978-3-662-04790-3_15
https://typeset.io/papers/laplace-transforms-and-suprema-of-stochastic-processes-o4ad0xuw4k
https://typeset.io/authors/klaus-schurger-ipn3m3tdq8
https://typeset.io/institutions/university-of-bonn-15mmd3k0
https://typeset.io/journals/research-papers-in-economics-1xma2naz
https://typeset.io/topics/two-sided-laplace-transform-2qdgni9w
https://typeset.io/topics/laplace-transform-applied-to-differential-equations-1m76iztl
https://typeset.io/topics/inverse-laplace-transform-3kxevisx
https://typeset.io/topics/laplace-transform-2g4f8rn8
https://typeset.io/topics/bessel-process-2xymp069
https://typeset.io/papers/a-closed-form-solution-for-options-with-stochastic-2mnz9ol71o
https://typeset.io/papers/robust-replication-of-volatility-derivatives-rn8eb2rf9l
https://typeset.io/papers/the-effect-of-jumps-and-discrete-sampling-on-volatility-and-55h12cw8n5
https://typeset.io/papers/the-pricing-of-options-on-assets-with-stochastic-uv8n4snh95
https://typeset.io/papers/theory-of-rational-option-pricing-23aogl7sv7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/laplace-transforms-and-suprema-of-stochastic-processes-o4ad0xuw4k
https://twitter.com/intent/tweet?text=Laplace%20transforms%20and%20suprema%20of%20stochastic%20processes&url=https://typeset.io/papers/laplace-transforms-and-suprema-of-stochastic-processes-o4ad0xuw4k
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/laplace-transforms-and-suprema-of-stochastic-processes-o4ad0xuw4k
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/laplace-transforms-and-suprema-of-stochastic-processes-o4ad0xuw4k
https://typeset.io/papers/laplace-transforms-and-suprema-of-stochastic-processes-o4ad0xuw4k

ECONZTOR

Make Your Publications Visible.

Schurger, Klaus

Working Paper

A Service of

ﬂ Leibniz-Informationszentrum
° B Wirtschaft
o Leibniz Information Centre
h w for Economics

Laplace transforms and suprema of stochastic

processes

Bonn Econ Discussion Papers, No. 10/2002

Provided in Cooperation with:

Bonn Graduate School of Economics (BGSE), University of Bonn

Suggested Citation: Schirger, Klaus (2002) : Laplace transforms and suprema of stochastic
processes, Bonn Econ Discussion Papers, No. 10/2002, University of Bonn, Bonn Graduate

School of Economics (BGSE), Bonn

This Version is available at:
http://hdl.handle.net/10419/22839

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, &ffentlich zuganglich

machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort

genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECOMSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;



BONN ECON DISCUSSION PAPERS

Discussion Paper 10/2002

Laplace transforms and suprema of stochastic
processes

by

Klaus Schurger

May 2002

Bonn Graduate School of Economics
Department of Economics
University of Bonn
Adenauerallee 24 - 42
D-53113 Bonn




The Bonn Graduate School of Economics is
sponsored by the

Deutsche Post 'Q World Net

MAIL EXPRESS LOGISTICS FINANCE



LAPLACE TRANSFORMS AND SUPREMA OF
STOCHASTIC PROCESSES

KLAUS SCHURGER

Department of Statistics, University of Bonn

ABSTRACT. It is shown that moments of negative order as well
as positive non-integral order of a nonnegative random variable X
can be expressed by the Laplace transform of X. Applying these
results to certain first passage times gives explicit formulae for mo-
ments of suprema of Bessel processes as well as strictly stable Lévy
processes having no positive jumps.

KEY WORDSs: Laplace transform, Bessel process, Lévy process.

0. INTRODUCTION

In the sequel (B;) denotes a d-dimensional standard linear Brownian
motion starting at 0 € R* (denoted BM(d)). In Shiryaev (1999,p.251)
a beautiful trick is used in order to show that if (B;) is a BM(1),

(0.0.1) E[ sup |Bs|] = \/7/2.

0<s<1

In fact, the verification of (0.0.1) can be based on the stopping time

(0.0.2) T(1) :=inf{t > 0] |B,| =1}
and its Laplace transform
1
(0.0.3) p1(t) =E[exp(-t T(1))] = ———=, t>0.

cosh(v2t)"  ~

The latter is easily obtained by applying the optional stopping theorem
to the martingale

cosh(sB;) exp(—s®t/2) (t>0) for fixed s > 0;

see, e.g., Revuz/Yor (1991,p.68) or Rogers/Williams (1994,p.19). Al-
though there is no explicit inversion of the Laplace transform in (0.0.3)
in any particularly useful form, it turns out, however, that (0.0.3) con-
tains enough information in order to yield (0.0.1). In fact, putting

(0.0.4) M(t) = sup |Bs|, t>0,
0<s<t
1



we get by Brownian scaling, for any ¢ > 0,

P(M(l) < t) - P( sup | By | < 1) - P(M(1/t2) < 1)

= P(T() = 1/#) = P((T(1)) 2 <),
(0.0.5) M(1) and (T(1))"'/2 have the same distribution
which implies
(0.0.6) E[M(1)] = E[(T@))—l/?].

Next, using the density of a normal distribution with mean 0 and vari-
ance s?/2 we get

o0

(0.0.7) o= 2 /exp(—(t/s)Q) dt, 5> 0.

0
Hence if X > 0 is a random variable having Laplace transform ¢x we
obtain from (0.0.7) by using the Fubini-Tonelli theorem,

o0

(0.0.8) E[X 2] = % /(px(tZ) dt.

0
Applying (0.0.8) to X = T'(1) and taking into account (0.0.6) as well

as (0.0.3) we arrive at

E[M dt.

Ry -
T ) cosh(ﬂt)
Using the substitution u = exp(v/2t) we end up with (0.0.1).

In the sequel we first extend (0.0.8) in two different ways (see The-
orems 1.1 and 1.2 in the next section). Using the same pattern of
proof as before allows us to obtain results similar to (0.0.1) for Bessel
processes as well as for a certain class of Lévy processes.

1. CALCULATION OF MOMENTS VIA LAPLACE TRANSFORMS

We first derive an extension of (0.0.8). In order to achieve this it is
natural to start with the identity

I'(1/r) = /ul/Tl exp(—u) du, 7 >0.

0
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Using the substitution u = (¢/s)” (s > 0,7 > 0 being constants) we
get

o0

(1.0.1) s = F(lT/T) /exp ( - (t/s)T) dt, s>0, 7>0.

0

1.1. Theorem. Let X > 0 be a random variable having Laplace trans-
form ¢x. Then

1
r T(r)

(1.1.1) B[X~7] = /@X(tl/r) dt, 1> 0.

Proof. Apply (1.0.1) to s = X", 7 = 1/r and use the Fubini-Tonelli
theorem. O

There are interesting connections between (1.1.1) and the ”fractional
calculus” (see Ross (1974) and Wolfe (1974)). It has been noticed in
Wolfe (1974) that it is possible to calculate moments of positive non-
integral order of a nonnegative random variable X by using the Laplace
transform ¢y of X. In fact, we have the

1.2. Theorem. Let X > 0 be a random variable having Laplace trans-
form @x. Then,

[1—ox(t
(1.2.1) Ex"=—" / ox) gy gcr<t.

I'(1—r) tr+l
0

More generally, we have for any integer n >0 andn <r <n+1

R (™ (o) o™
(122) P = i /( D™ );E?l ox M) gy

0

Proof. In order to prove (1.2.1) we use the identity

oo

1 — exp(—st) 1 .
(123) /?dt:;lj(l—r)s, 0<T<]_, SZO

0
which can be derived by using partial integration and the definition
of the gamma function (see, e.g., Gradshteyn/Ryzhik (1965,p.333)).
Applying (1.2.3) to s = X and using the Fubini-Tonelli theorem we
obtain (1.2.1). In a similar way we get (1.2.2), noting that

A1) = (~)" B[X"exp(~tX)], t>0, n>0.



2. BESSEL PROCESSES

In the sequel (B;) denotes a BM(d). Then (|By|) is a realization of
a d-dimensional Bessel process starting at 0 € R? (|B| denoting the
Euclidean norm of B;). Consider the stopping time

(2.0.1) T(s):=inf{t > 0| |B| = s}, s>0.

The Laplace transform ¢, of T'(s) is given by

(2.0.2) @ (t) = (V22 TA+1) I (sV20)] ', >0, t>0
(see, e.g., Getoor/Sharpe (1979) and Getoor(1979)). Here,

(2.0.3) A= (d—2)/2> —1/2,

and I, is denoting the modified Bessel function of order v given by

(2.0.4) LH=% — ét(/leer - t>0, v>-—1/2.

In particular,

(2.0.5) I () = \/2/(xt) cosh(t), t> 0.

(Note that, in the one-dimensional case, this yields the Laplace trans-
form

1
2.0.6 E|lexp(—tT(s))| = ——, s>0, t>0.
206)  Blew(tTE)) = oo 52 )
Putting
(2.0.7) M(t) = sup |Bs|, t>0
0<s<t

we obtain by Brownian scaling

(2.0.8) M(1) and (T(1))~"/? have the same distribution.
By (1.1.1) this implies for any r > 0

E[(M(1))] =E[(T(1)"/?] = —= / (£2/7) d
(Y] = By 77 = 2 [
0
Using (2.0.2) and substituting v = v/2t"/" yields, for any r > 0,

T A d/2+r—2
(209)  E[(MO))] = 555 [(d/2) T(r/2) / hw "

(A= (d —2)/2). In the case d = 1 we get from (2.0.9) (using (2.0.5))

o0

E[M@)] = or/2 I?(T/2) /C(:;;(U) =0

4




The substitution ¢ = exp(u), i.e. u = logt, yields for any r > 0

4 i (log t)"!
2.0.10 E|(M(1)"| = dt (d=1
2010 EB[MO)] = gy [ SR (=)
1

In the special case 7 = 2n + 1 (n > 0) the integral in (2.0.10) equals

0o 1

(lOg t)QTL / (].Og t)2n 7.‘.2n+1

2.0.11 08U = dt = By,
( ) /t2+1 241 iz 1Bl

1 0

(see Gradshteyn/Ryzhik (1965,p.549)), Ey, Fs, ... denoting the Euler
numbers determined by

o0
t2n

1
cosh () - ; EQ"W'

The first Euler numbers are Fy =1, Fy = —1,F, =5, Fg = —61, Fy =
1385, F1g = —50521, E5 = 2702765, £, = —199360981. Combining
(2.0.10) and (2.0.11) gives for n =0,1,...

2

(2.0.12) B[(M(1))] = g(%) (2%)' |Bon|  (d=1)

In order to investigate the asymptotic behaviour of E[(M(1))"] (as
r — o0) we need

2.1. Lemma. Ast — o0

(2.1.1) L(t) ~ (t/e)' /21 /t
and
(2.1.2) I(t) ~ (27mt) Y% exp(t)

independently of v > —1/2.

Proof. For a proof of (2.1.1) see Bender/Orszag (1978,p.275); a proof
of (2.1.2) can be found in Courant/Hilbert (1966,p.526) (see also Ben-
der/Orszag (1978,p.271)). O

2.2. Proposition. Asr — oo

4\/7_1' ,r(d+r71)/2

(2.2.1) E[(M(1)] ~ 2 T (d)2) T

In particular
(2.2.2) E[(M(1))] ~2V2(r/e)? (d=1)

Proof. For the integral in (2.0.9) we get

I(u) er

5



by using some routine estimates and applying (2.1.2). Combining this
with (2.1.1) gives (2.2.1). O

2.3. Corollary. For any d > 1 the distribution of M (1) is uniquely
determined by its moments

pn =E[(M(1)"], n=0,1,...
Proof. 1t suffices to show that

o0

(2.3.1) > 5P = 00

n=0

(see Feller (1966,p.224)). But, by (2.2.1),

WV~ fanfe (0 o)
which implies (2.3.1). O

2.4. Remark. Comparing (2.0.12) and (2.2.2) we obtain for the as-
ymptotic behaviour of the Euler numbers F,,

8
(2.4.1) vn

Bl ~ == (

\/7_T 4_n)2n

e

3. STRICTLY STABLE LEVY PROCESSES

Let X = (X;) be a one-dimensional Lévy process starting at 0 such
that X; is not a.s. constant. Furthermore X is assumed to be a.s.
cadlag, i.e. almost all paths of X are right continuous and have finite
left-hand limits at every point. In the sequel a denotes a real number
such that

(3.0.1) l<a<2.

The distribution p of X is assumed to be strictly a-stable with parame-
ters (a, 3, ¢) for constants —1 < § < 1 and ¢ > 0, i.e. the characteristic
function fi of pu is of the form

(3.0.2) [i(t) = exp(=V(t)), teR.
Here, W is the characteristic exponent given by
(3.0.3) U(t) = clt|*[1 — iB(sgn ¢) tan (?)] teR

where sgn ¢ is equal to 1,0,-1 when ¢ is > 0,= 0, < 0, respectively (see
Bertoin (1996,p.217) or Sato (1999,p.86)). It follows from the above
assumptions that, for any a > 0,

(3.0.4) (X4) has the same law as (al/o‘ Xt).
From now on we will additionally assume
(3.0.5) g =—1.

6



This implies (see Bertoin (1996,p.217) or Sato (1999,p.346)) that the
Lévy measure of X has support in |—o00,0], and X has no positive
Jumps, i.e.

(3.0.6) P(Xt < X, forall t > o) ~1.

Furthermore (see Sato (1999,p.350))

(3.0.7) P(hm sup X, = oo> ~ 1.
t—00

Let R(s) denote the first passage time defined by

(3.0.8) R(s) = inf{t > 0|X; > s}, s>0.

Note that, by (3.0.7), R(s) < oo a.s., s > 0. For the following result
see Sato (1999,pp.346,347).

3.1. Theorem. We continue to assume (3.0.1) and (3.0.5). Then the
following results hold.

(a) P(XR(S) = s for all s > O) =1.

(b) The function
c
3.1.1 t) = —-V(—it) = ———=t% t>0
BLY) ()= i) ==t e
(¥ given by (3.0.3)) is strictly increasing, continuous and sat-

isfies (0) =0 and Y(t) — oo (t — 00).

(c) The Laplace transforms of the first passage times R(s) (s > 0)
are given by

(3.1.2) E[exp(—t R(s))] =exp(—s ¢ '(t)), s>0, ¢t>0

(=1 denoting the inverse function of ).
It follows from (3.1.1) that ¢! is given by
1 1/«
(3.1.3) Pl(t) = (— ‘cos (%)D e >0,
c
Combining Theorems 3.1 and 1.1 gives

3.2. Proposition. We continue to assume (3.0.1) and (3.0.5). Then
the following results hold.

(a) For any r >0,

(3.2.1) E[( sup XS)T] _ ol ( ¢ )‘>W.

0<s<1 I'(r/a) ‘ cos (’TQ—“

(b) We have, as r — oo,

acre ! r/a
(@)

(3.2.2) E[( sup Xs)’"] ~ \/5<

0<s<1
7



Proof. In order to prove (3.2.1) first note that it follows from (3.0.6)
that

M(t):= sup X, <1< R(1)>t as, ¢>0,
0<s<t
which, by (3.0.4), implies that M (1) and (R(1))~"/% have the same
distribution. Hence, by Theorem 1.1 and (3.1.2),

E[(M(1))"] = E[(R(1)) /"]

- ﬁj/a) /exp ( - 1/}_1(1?0‘/’")) dt, r>0.

Taking into account (3.1.3) and putting
1/a

()"

we get, using the substitution u = ¢ ¢'/7,

(3.2.3) o (1

Cc

B(T0))] = ot

i.e. (3.2.1). The assertion (3.2.2) is immediate from (3.2.1) and (2.1.1).
([

As a final result we mention

3.3. Proposition. We continue to assume (3.0.1) and (3.0.5). Then,
for any s > 0,

(33.1) E[(R(s))] = FF((11—_0;3) <‘C°SC(%)‘>T 7 0<r<1/a

and
(3.3.2) E[(R(s))"] =0c0, r>1/a.

Proof. Put § := s ¢ (s > 0; ¢ given by (3.2.3)). Taking into account
(3.1.2), (1.2.1) and (3.1.3) we obtain, for any 0 < r < 1,

r 11— exp(—6t1/
B[RO = iy [ .

1—r) trtt

0

Using the substitution u = §¢'/* we arrive at

o0

50¢T‘ 1 _
E[(R(s))r _ alr_ 5 / ;:(}:_1 du, 0<r<1.
0

This clearly entails (3.3.2) and (using partial integration) also (3.3.1).

U
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