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times related to one-dimensional Brownian motion are derived in a uni®ed way by excursion theory
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1. Introduction

It is well known that the Laplace transforms of many random times derived from a one-

dimensional Brownian motion (BM) admit simple expressions in terms of hyperbolic

functions. This paper offers a uni®ed approach to these results, and presents their

generalizations for a one-dimensional diffusion, using ItoÃ's (1971) excursion theory. See

Jeanblanc et al. (1997) for a survey of related results involving the Feynman±Kac formula

for the distribution of an additive functional of BM, and see Borodin and Salminen (1996) for

a vast array of fomulae for the distribution of functionals of a one-dimensional diffusion.

Section 2 presents the basic univariate formulae in a table, together with commentary and

proofs. Section 3 shows how the univariate formulae can be combined with independence

results from excursion theory to obtain various multivariate Laplace transforms. In the case

of BM, these results have been applied to process control and stockmarket prices by Taylor

(1975), and to the asymptotic distribution of windings of planar BM by Pitman and Yor

(1986).

2. Univariate transforms

Let I be a subinterval of the real line. Let (Px, x 2 I) govern X � (X t, t > 0) as a non-

singular diffusion on I. For background and precise de®nitions, see ItoÃ and McKean (1965),

Rogers and Williams (1987) or Borodin and Salminen (1996). Assume for simplicity that X is

recurrent. Let 0, x 2 I with 0 < x. Let ë > 0. In each row of Table 1, the left-hand entry is
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the Px expectation of some functional of the diffusion path, mostly for x � 0. The middle

entry gives a general expression for this expectation in terms of three basic functions:

gë(x, 0), the ë-potential density with respect to the speed measure; s(x), the scale function;

öë(x), the P0 Laplace transform of Tx � inf ft: X t � xg. These basic functions are

interpreted probabilistically by Rows 1, 3 and 5 of Table 1. Analytic expressions for these

functions, in terms of the semigroup or generator of X, are standard.

Explicit formulae for the basic functions are known for many diffusions, including Bessel

and Ornstein±Uhlenbeck processes (Borodin and Salminen 1996). In particular, the third

column of the table gives formulae derived from the second column in the case when X is a

re¯ecting Brownian motion (RBM) on I � [0, 1), in terms of hyperbolic functions of èx,

where è � (2ë)1=2. All the formulae in the third column were obtained by Knight (1969),

who also inverted most of these transforms. For X a standard BM on I � (ÿ1, 1) the

formulae in Table 1 apply for all x > 0 with

gë(x, 0) � èÿ1eÿèx, s(x) � 2x, öë(x) � eÿèx,

where è � (2ë)1=2. Then së(x) � èÿ1(1ÿ eÿ2èx).

The following commentary introduces the notation of Table 1, line by line, and indicates

proofs of the formulae by application of ItoÃ's excursion theory.

Table 1. Some basic Laplace transforms

Row Probabilistic quantity General expression

for 0 < x

Expression for RBM

with è � (2ë)1=2

1 Px(LWë
) gë(x, 0)

exp(ÿèx)

è
2 P0(eÿëôl ) exp

ÿl
gë(0, 0)

� �
exp(ÿl è)

3 P0(LTx
) s(x) x

4 P0(Môl < x) exp
ÿl
s(x)

� �
exp

ÿl
x

� �
5 P0(eÿëTx ) öë(x)

1

cosh(èx)

6 P0(LTx^Wë
) së(x) � gë(0, 0)ÿ öë(x)gë(x, 0)

tanh(èx)

è

7 P0feÿëôl 1(Môl < x)g exp
ÿl
së(x)

� �
expfÿl è coth(èx)g

8 P0(eÿëGx )
së(x)

s(x)

tanh(èx)

èx

9 P0feÿë(TxÿGx))
öë(x)s(x)

së(x)

èx

sinh(èx)
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2.1. Row 1

Let L � (Lt, t > 0) be a local time process of X at 0, and let Wë be exponentially distributed

with rate ë, independent of X. This row identi®es the potential density probabilistically as

gë(x, 0) � Px(LWë
) � Px

�1
0

ë eÿë t Lt dt � Px

�1
0

eÿë t dLt � c

�1
0

eÿë t p(t, x, 0) dt,

where p(t, x, y) � p(t, y, x) � Px(X t 2 dy)=(m dy) is the jointly continuous transition

density of X relative to the speed measure m, and c is a constant depending on the

normalization of local time and conventions regarding constant factors in the de®nition of the

scale function and speed measure of X. To be precise, it is supposed that Lt � L0
t where the

process of local times (L
y
t , t > 0, y 2 I) is such that� t

0

f (X s) ds � c

�
I

f (y)L
y
t m dy

almost surely for every non-negative Borel function f. In the third column, for X a RBM, say

X � jBj where B is a BM, and also for X � B, we take L to be the occupation density of B

at 0 relative to Lebesgue measure. Then LeÂvy's equivalence holds; Lt and jBtj have the same

P0 distribution.

2.2. Row 2

Let (ôl , l > 0) be the inverse of L. The general expression for the Laplace transform of ôl

is well known for L, the local time process of X at 0 for any recurrent point 0 of a strong

Markov process X. This formula follows immediately from the probabilistic de®nition of

gë(0, 0) in Row 1, by ItoÃ's excursion theory. Let P0 govern a Poisson point process N on

(0, 1) with rate ë, independent of X, and mark each excursion of X away from 0 by the

times of points of N during the excursion, if any. Then, as explained by Greenwood and

Pitman (1980) and Rogers and Williams (1987, Section VI.53), one obtains a homogeneous

Poisson point process of marked excursions on the local time scale. (In the case when X

spends positive Lebesgue time at 0, this process must also count marks between excursions.)

Let Wë be the time of the ®rst point of N. Then LWë
is the time of the ®rst marked excursion

on the local time scale; so LWë
has exponential distribution with rate 1=P(LWë

) � 1=gë(0, 0).

Thus

P0(eÿëôl ) � P0(Wë . ôl ) � P0(LWë
. l ) � exp

ÿl
gë(0, 0)

� �
:

Analysis of this formula, together with Krein's theory of strings, allowed Knight (1981) and

Kotani and Watanabe (1982) to characterize the LeÂvy measures of the process of inverse

local times (ôl , l > 0). In particular, these LeÂvy measures are absolutely continuous with

respect to Lebesgue measure on (0, 1), and the densities are Laplace transforms. See also

Section 6 of Pitman (1996).
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2.3. Row 3

This row de®nes s(x) for x . 0. Note that 1=s(x) is the rate per unit local time of excursions

from 0 that reach x. So, by the Poisson character of the excursion process, and the strong

Markov property of X, for 0 , x , y, given that an excursion reaches x, the chance that it

reaches y is

Px(T y , T0) � 1=s(y)

1=s(x)
� s(x)

s(y)
:

That is to say, the function s(x) serves as a scale function for X on the interval [0, 1], with

s(0) � 0.

2.4. Row 4

Here M t � max0<s< t X s. This is implied by Row 3 and the Poisson character of excursions

on the local time scale, just as Row 1 implied Row 2.

2.5. Row 5

This row de®nes öë(x). The evaluation of öë(x) for RBM is made by the following well-

known argument: for è � (2ë)1=2, apply the optional sampling theorem to the martingale

cosh(èjBtj) exp(ÿët) which is the average of the two martingales exp(�èBt ÿ ët).

2.6. Row 6

This row de®nes a new function

së(x) :� P0(LTx^Wë
)

� P0(LWë
)ÿ P0f(LWë

ÿ LTx
)1(Tx , Wë)g

� gë(0, 0)ÿ öë(x)gë(x, 0)

by application of the strong Markov property of X at time Tx, and the de®nitions of Rows 1

and 3. Substituting the formulae of Rows 1 and 3 for RBM gives the expression

së(x) � èÿ1 tanh(èx) for RBM.

2.7. Row 7

This is implied by Row 6, just as Row 1 implies Row 2, and Row 3 implies Row 4. In terms of

the Poisson point process of marked excursions, Row 6 shows that 1=së(x) is the rate of

excursions that either reach x or are marked. The left-hand and middle entries of Row 7 show

two different ways of computing the probability of no such excursions up to local time l .
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2.8. Row 8

Here Gx is the last zero of X before time Tx. Consider the ®rst excursion that either reaches x

or is marked. Compute the probability that this excursion reaches x, ®rst by conditioning on

Gx, then from the ratio of Poisson rates f1=s(x)g=f1=së(x)g, to see that this probability is

given by both the left and central entries of Row 8.

2.9. Row 9

The Poisson character of the excursion process implies that Gx and Tx ÿ Gx are independent

(last exit decomposition). So Row 9 follows from Rows 5 and 8. For X a BM or RBM, the

result is implicit in Williams' description of the process (X Gx� t, 0 < t < Tx ÿ Gx) as a

BES(3) process started at 0 and run till it ®rst hits x (Williams 1974, equation (67.2) of

Chapter II). More generally, if the upper end point of the basic interval I on which X is

de®ned is b say, Williams' results show that the P0 distribution of (X Gx� t, 0 < t < Tx ÿ Gx)

is identical with the P̂0 distribution of (X t, 0 < t < Tx) where the family of diffusion laws

(P̂x, x 2 [0, b)) conditions X to hit b before 0 (the Doob h transform of X for h(x) � s(x)).

So Row 9 implies an expression for the P̂0 Laplace transform of Tx:

P̂0fexp(ÿëTx)g � öë(x)s(x)

së(x)
: (1)

The generator Â for this conditioned diffusion is Â � sÿ1 As, where A is the generator of X.

Using the standard fact (ItoÃ and McKean 1965, Section 4.6) that 1=öë(x) is a solution of

Af � ë f , it is easy enough to check that the inverse of the right side of (1) solves Â f � ë f

off 0. A more careful discussion of boundary behaviour is required to make this observation

into an analytic proof of (1). See Jeanblanc et al. (1997) for related results.

3. Multivariate transforms

As noted by Knight (1969, 1978), for each x . 0 the Poisson character of the excursion

process implies that (X t, 0 < t < Gx) given LTx
� l has the same distribution as

(X t, 0 < t < ôl ) given (Môl , x). Combined with Rows 4 and 7 of Table 1 this implies that

P0fexp(ÿëGx)jLTx
� l g � P0fexp(ÿëôl )jMôl , xg � expfÿl îë(x)g, (2)

where

îë(x) :� 1

së(x)
ÿ 1

s(x)
�RBM

è coth(èx)ÿ 1

x
(3)

and the notation �RBM
means equality in the case when X is RBM, with è � (2ë)1=2. This

result for RBM is due to Knight (1969). Combine (2) and (3) with the fact that LTx
has

exponential distribution with rate 1=s(x) to obtain
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P0fexp(ÿáLTx
ÿ ëGx)g � së(x)

s(x)f1� ásë(x)g �
RBM 1

èx coth(èx)� áx
: (4)

Using the independence of (LTx
, Gx) and Tx ÿ Gx, and Row 9, this implies that

P0fexp(ÿáLTx
ÿ ëTx)g � öë(x)

1� ásë(x)
�RBM è

è cosh(èx)� á sinh(èx)
: (5)

Williams (1976) obtained this formula for RBM and used it to deduce the closely related

formulae of Taylor (1975).

Consider now the occupation times

A�t :�
� t

0

ds 1(X s . 0), Aÿt :�
� t

0

ds 1(X s < 0): (6)

As a preliminary for computation of the P0 joint Laplace transform of A�Tx
, AÿTx

and LTx
,

observe from (2) and the independence of positive and negative excursions that there is the

identity

P0fexp(ÿëA�ôl
)Môl , xgP0fexp(ÿëAÿôl

)g � expfÿl îë(x)g: (7)

Now write A�ôl
� Bl (x)� Cl (x) where Bl (x) is the total length of those positive excursions

before time ôl which fail to reach x, and Cl (x) is the total length of those positive excursions

before time ôl which do reach x. By another application of the Poisson character of the

excursion process, Bl (x) and Cl (x) are independent. Since the events (Môl , x) and

(Cl (x) � 0) are identical, and Bl (x) # 0 as x # 0, it follows that

P0fexp(ÿëA�ô
l
)jMôl , xg � P0[expfÿëBl (x)g] " 1 as x # 0

and hence from (7)

P0fexp(ÿëAÿôl
)g � expfÿl îë(0�)g, (8)

where

îë(0�) :� lim
x#0

îë(x) �BM è

2
(9)

and �BM
means equality in the case when X is BM, with è � (2ë)1=2. Now (7) gives

P0fexp(ÿëA�ôl
)jMôl , xg � exp[ÿl fîë(x)ÿ îë(0�)g] (10)

and (8), (10) and the independence of positive and negative excursions combine to yield

P0fexp(ÿëA�ôl
ÿ ìAÿôl

)jMôl , xg � exp[ÿl fîë(x)ÿ îë(0�)� îì(0�)g]: (11)

Conditioning on LTx
� l , as before, and then integrating out l yields the formula

P0fexp(ÿáLTx
ÿ ëA�Gx

ÿ ìAÿGx
)g � së(x)=s(x)

1� fá� îì(0�)ÿ îë(0�)gsë(x)
: (12)

Since AÿTx
� AÿGx

and A�Tx
� A�Gx

� (Tx ÿ Gx) where Tx ÿ Gx is independent of (LTx
,

AÿGx
, A�Gx

) by the last exit decomposition, (12) combined with Row 9 of Table 1 yields ®nally
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P0fexp(ÿáLTx
ÿ ëA�Tx

ÿ ìAÿTx
)g � öë(x)

1� fá� îì(0�)ÿ îë(0�)gsë(x)
(13)

�BM è

è cosh(èx)� f2á� (2ì)1=2 sinh(èx)
: (14)

Pitman and Yor (1986, Proof of Theorem 4.2) found this formula for BM by martingale

calculus and applied it to the asymptotic distribution of windings of a planar BM.
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