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LAPLACE TRANSFORMS WHICH ARE NEGATIVE POWERS
OF QUADRATIC POLYNOMIALS

G. LETAC AND J. WESO�LOWSKI

Abstract. We find the distributions in R
n for the independent random vari-

ables X and Y such that E(X|X + Y ) = a(X + Y ) and E(q(X)|X + Y ) =
bq(X + Y ) where q runs through the set of all quadratic forms on R

n orthogo-
nal to a given quadratic form v. The essential part of this class is provided by
distributions with Laplace transforms (1 − 2〈c, s〉 + v(s))−p that we describe
completely, obtaining a generalization of a Gindikin theorem. This leads to
the classification of natural exponential families with the variance function of
type 1

p
m⊗m−ϕ(m)Mv, where Mv is the symmetric matrix associated to the

quadratic form v and m �→ ϕ(m) is a real function. These natural exponential
families extend the classical Wishart distributions on Lorentz cones already
considered by Jensen, and later on by Faraut and Korányi.

1. Introduction

As an attempt to extend the celebrated Lukacs’ theorem on characterization
of the gamma distribution (Lukacs, 1955), Wang (1981) observes the following
interesting fact. Its statement uses the entire function

(1.1) fp(z) =
∞∑

m=0

zm

m!Γ(m + p)
,

where p > 0.

Theorem 1.1. Let X = (X1, X2) and Y = (Y1, Y2) be non-Dirac independent
positive random variables valued in R

2 such that there exist real numbers a and b
with the following property:

(1.2) E(X|X + Y ) = a(X + Y ), E(X2
i |X + Y ) = b(Xi + Yi)2, i = 1, 2.

Then 0 < a2 < b < a < 1 and for p = a2−ab
b−a2 there exist non-negative numbers

a1, a2, a12 such that a1a2 − a12 ≥ 0, and for small enough (s1, s2) one has

E(es1X1+s2X2) = (1 − a1s1 − a2s2 + (a1a2 − a12)s1s2)−p,(1.3)

E(es1Y1+s2Y2) = (1 − a1s1 − a2s2 + (a1a2 − a12)s1s2)−
1−a

a p.
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6476 G. LETAC AND J. WESO�LOWSKI

Furthermore if a1a2 − a12 > 0, the distribution of X is

(θ1θ2 − 1)peθ1x1+θ2x2
1

Γ(p)
(x1x2)p−1fp(x1x2)1(0,∞)2(x1, x2)dx1dx2,

where θ1 = −a2
a1a2−a12

and θ2 = −a1
a1a2−a12

.

The result is not difficult: just multiply (1.2) by es1(X1+Y1)+s2(X2+Y2) and take
expectations to obtain differential equations for the Laplace transforms of X and
Y.

A quasi-automatic way to extend Wang’s result is to consider X and Y indepen-
dent in R

n such that there exist a and b with

E(X|X + Y ) = a(X + Y ), E(X2
i |X + Y ) = b(Xi + Yi)2, i = 1, 2, . . . , n.

The same method of proof gives that there exists p > 0 and coefficients cT with
T ⊂ {1, . . . , n} such that the Laplace transform of X has the form

(1.4)

(∑
T

cT sT

)−p

with the convention sT =
∏

i∈T si. Special cases of these distributions occur in liter-
ature (see Bernardoff (2006), Bar-Lev et al. (1994), Griffiths (1984), and comment
4 in Section 6 below). Actually the set of acceptable parameters ((cT )T ; p) is not
known in general, and in most of the known cases, the density is unreachable.

A better way to extend Wang’s bivariate characterization to n dimensions is
based on the following reformulation: let us observe that the second part of (1.2)
can be rewritten by saying that

(1.5) E(q(X)|X + Y ) = bq(X + Y )

for all quadratic forms on R
2 of type q(x) = λ1x

2
1 + λ2x

2
2 that are having a

diagonal representative matrix Mq =
(

λ1 0
0 λ2

)
. This two dimensional linear

space of quadratic forms can be seen as the space of the quadratic forms on
R

2 which are orthogonal to the quadratic form v(x) = 2x1x2 whose representa-

tive matrix is Mv =
(

0 1
1 0

)
. Here the space of quadratic forms has the scalar

product 〈q1, q2〉 = trMq1Mq2 and orthogonality means trMq1Mq2 = 0. Similarly,
Bobecka and Weso�lowski (2004) in their Theorem 3, instead of the second part of
(1.2), consider the conditions E(X2

1 |X + Y ) = b(X1 + Y1)2 and E(X1X2|X + Y ) =
b(X1 + Y1)(X2 + Y2). These conditions can be expressed by taking q’s in (1.5)

with the representative matrices of the form Mq =
(

λ1 λ2

λ2 0

)
. These quadratic

forms are orthogonal to v where Mv =
(

0 0
0 1

)
, namely v(x) = x2

2. Our exten-

sion will be based on the consideration of (1.5) for n ≥ 2 dimensions by taking all
quadratic forms q which are orthogonal to a fixed v as in the previous two cases.
The Laplace transforms of the distributions that we get are essentially of the form
(1 − 2〈c, s〉 + v(s))−p. The discussion is unfortunately somewhat obscured by con-
sideration of several cases. But the heart of our method can be seen in formulas
(2.13) to (2.15). This is covered in Section 2.
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In Section 3 we identify the acceptable triples (c, v, p) for the Laplace transform of
the form (1−2〈c, s〉+v(s))−p. We compute the corresponding probability distribu-
tions. This includes a generalization of the Gindikin Theorem (see Gindikin (1975))
about Wishart distributions on symmetric cones for the Lorentz cone (look at the
comments after Theorem 3.1). Section 4 is devoted to a complete description by
convolution semigroups of the exceptional case isolated by Bobecka and Weso�lowski
(2004).

After the point of view of regression illustrated by (1.5) (recall that statisticians
use the term regression curve for the graph of the function h(u) = E(V |U = u)
when (U, V ) is a vector random variable), after the second point of view of Laplace
transforms which are negative powers of quadratic polynomials, a third one is given
by natural exponential families (NEF) on R

n. We consider the NEF such that their
variance function VF has the following property: for some p > 0 the matrix

VF (m) − 1
p
m ⊗ m

is proportional to a constant symmetric matrix Mv for all m. Surprisingly this
condition is more or less equivalent to (1.5). The source of this point of view is the
fact that when Mv = diag(1,−1, . . . ,−1), then

VF (m) =
1
p
m ⊗ m +

1
4p

(m2
1 − m2

2 − . . . − m2
n)Mv

is the variance function of the NEF of the Wishart distributions on the Lorentz
cone with shape parameter p ≥ (n− 2)/2. This is the subject of Section 5. Section
6 links the present paper with literature, specially on Euclidean Jordan algebras.

2. Characterization by quadratic regression

Here is our extension. As usual, LX(s) = E(e〈s,X〉) denotes the Laplace trans-
form of the random variable X.

Theorem 2.1. Let n ≥ 2. Let v be a quadratic form on R
n of rank r and let Qv

be the space of quadratic forms q on R
n such that tr (MqMv) = 0. Let X and Y

be non-Dirac independent random variables on R
n having exponential moments.

Assume that there exists a ∈ R such that E(X|X +Y ) = a(X +Y ). Then 0 < a < 1
and LY = (LX)(1−a)/a. Furthermore there exists a real number b such that for all
q ∈ Qv,

(2.6) E(q(X)|X + Y ) = bq(X + Y )

if and only if 0 < a2 ≤ b ≤ a < 1 and
1. Either b = a. In this case r = 1. We write v = λe1 ⊗ e1 for some vector e1

of norm 1 and some real λ �= 0. Then X = e1X
′, where X ′ has an arbitrary

distribution on the real line.
2. Or b = a2. In this case X has normal distribution in R

n with arbitrary
mean, and covariance proportional to v, where v or −v is semi-positive
definite.

3. Or a2 < b < a.
– Either r ≥ 2, and there exist a real number λ and c ∈ R

n such that for
p = a2−ab

b−a2 one has

(2.7) E(e〈s,X〉) = (1 − 2〈c, s〉 + λv(s))−p.
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6478 G. LETAC AND J. WESO�LOWSKI

– Or r = 1. We write v = λe1 ⊗ e1 for some vector e1 of norm 1
and some real λ �= 0. Then there exists c in R

n orthogonal to e1 and
a real function f1 defined on some open interval in R such that for
X = 〈X, e1〉e1 + X ′ one has

(2.8) E(e〈s,X〉) = E(es1〈X,e1〉+〈s′,X′〉) = (f1(s1) − 〈c, s′〉)−p,

where s = s1e1 + s′ with 〈s′, e1〉 = 0.

Proof. Since X and Y have exponential moments there exist two open maximal
convex sets Θ(X) and Θ(Y ) containing 0 on which their Laplace transforms LX(s)
and LY are finite. Denote their intersection by Θ. We also write κX = log LX and
κY = log LY . Since E(X|X + Y ) = a(X + Y ) holds, let us multiply both sides by
e〈s,X+Y 〉 and take expectations. We get for s in Θ:

(1 − a)L′
X(s)LY (s) = aLX(s)L′

Y (s)

that we rewrite as (1 − a)κ′
X = aκ′

Y . Since X and Y are non-Dirac, a = 0 and
a = 1 are impossible. Since κX and κY are convex, a and (1 − a) have the same
sign and a ∈ (0, 1). Since κX(0) = κY (0) = 0 we get LY (s) = (LX(s))(1−a)/a

on Θ and by the principle of maximal analyticity for Laplace transforms we get
Θ(X) = Θ(Y ) = Θ. For simplicity we now denote κ = κX .

We use the following notation: if P (s) =
∑

α∈Nn pαsα1
1 . . . sαn

n is any real poly-
nomial with respect to n variables, we denote by P ( ∂

∂s ) the differential operator

P

(
∂

∂s

)
=

∑
α∈Nn

pα

(
∂

∂s1

)α1

. . .

(
∂

∂sn

)αn

.

In particular if f is any C2 real function of n variables with gradient f ′ and Hessian
f ′′ and if q is a quadratic form, note that we can write q

(
∂
∂s

)
(f) = tr (Mqf

′′) and
q(f ′) = tr (Mq(f ′ ⊗ f ′)).

The next equality is again rather standard. For s ∈ Θ we multiply both sides of
(2.6) by e〈s,X+Y 〉 and take expectations. We get for all q ∈ Qv

(2.9)
(

1 − b

a

)
q

(
∂

∂s

)
κ =

(
b

a2
− 1

)
q(κ′),

since in general we have for any quadratic form q on R
n

q

(
∂

∂s

)
eκ(s) = eκ(s)

(
q

(
∂

∂s

)
κ(s) + q(κ′(s))

)
and

q

(
∂

∂s

)
(fg)(s) = g(s)q

(
∂

∂s

)
f(s) + 2q(f ′(s), g′(s)) + f(s)q

(
∂

∂s

)
g(s)

with the notation q(x, y) = 1
2 (q(x+y)−q(x)−q(y)) for the polarized form of q. We

now discuss the solutions of (2.9) in the various cases b = a, b = a2, a2 < b < a,
and we will show after that b /∈ [a2, a] is impossible.
The case b = a.

From (2.9) we can claim that q(κ′(s)) = 0 for all q ∈ Qv and for all s ∈ Θ.
Suppose first that v = 0. Then Qv is the set of all quadratic forms: taking q positive
definite implies κ′(s) = 0 and X Dirac, a case that we have excluded. Suppose that
v �= 0. Then q(κ′(s)) = 0 can be reformulated as tr [Mq(κ′(s) ⊗ κ′(s))] = 0. Since
this is true for any q ∈ Qv, this implies the existence of a scalar function f(s) such
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LAPLACE TRANSFORMS 6479

that κ′(s)⊗κ′(s) = f(s)v. Since X is non-Dirac, there exists s0 such that κ′(s0) �= 0
and thus v has rank 1. Without loss of generality, by changing the orthonormal
basis into a new basis (e1, . . . , en) if necessary, we assume that Mv is written by

blocks as Mv =
[

1 0
0 0

]
, where the square diagonal blocks are of order 1 and

n − 1, respectively. Thus(
∂κ

∂s1

)2

= f(s),
∂κ

∂sj
= 0, j = 2, . . . , n.

Thus X is concentrated on the line Re1. This leads to the result.

The case b = a2
.

By (2.9) we get that q( ∂
∂s )κ(s) = 0 for all s. Furthermore this is true for all

q ∈ Qv. Thus there exists a scalar function s 	→ g(s) on Θ such that κ′′(s) = g(s)v.
We show that g is a constant function. To see this, without loss of generality by
changing the orthonormal basis if necessary, we assume that Mv = (vij) is diagonal.
Thus we can write for any i, j, l in {1, . . . , n}

∂3κ

∂si∂sj∂sl
=

∂g

∂sl
vij =

∂g

∂si
vlj =

∂g

∂sj
vil.

Since n ≥ 2, by choosing i = j �= l we easily deduce from this that ∂g
∂si

= 0 for all
i. Thus X is Gaussian as indicated, and v or −v has to be semipositive definite.

The case a2 < b < a.
We introduce the positive number p = a2−ab

b−a2 such that (2.9) becomes pq( ∂
∂s)κ =

q(κ′) which can be rewritten

tr (Mq(pκ′′ − κ′ ⊗ κ′)) = 0.

Since this holds true for all q ∈ Qv, this is equivalent to the existence of a scalar
function g on Θ such that

κ′′(s) − 1
p
κ′(s) ⊗ κ′(s) = g(s)v.

The subcase a2 < b < a and 2 ≤ r.
We assume that r ≥ 2. We prove first that either g has no zeros, or g is identically

0. If g(s0) = 0 for some s0 ∈ Θ, by changing the orthonormal basis if necessary
we assume that κ′(s0) is a multiple of e1, where e = (e1, . . . , en) is the canonical

basis of R
n. Thus κ′′(s0) is proportional to the block matrix

[
1 0
0 0

]
, where the

diagonal blocks are square matrices of order 1 and n− 1, respectively. Since κ′′(s0)
is the covariance of the probability e〈s0,x〉−κ(s0)µ(dx) where X ∼ µ, this implies

that µ is concentrated on Re1, thus κ′′(s) is proportional to
[

1 0
0 0

]
for all s,

which implies that g(s) = 0 for all s ∈ Θ. Thus κ is a function of s1 alone and we
get

(2.10)
∂2κ

∂s2
1

=
1
p

(
∂κ

∂s1

)2

.
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6480 G. LETAC AND J. WESO�LOWSKI

This easily shows that X1 is gamma distributed with the shape parameter p. This
provides formula (2.7) for the case λ = 0.

We now assume that g has no zeros on Θ. Thus we denote f = −1/g. We now
rewrite

(2.11) κ′′(s) =
1
p
κ′(s) ⊗ κ′(s) − 1

f(s)
v

as an equality between two symmetric bilinear forms on R
n with respect to the

variables h1 and h2 of R
n. We obtain

(2.12) κ′′(s)(h1, h2) =
1
p
κ′(s)(h1)κ′(s)(h2) −

1
f(s)

v(h1, h2).

We now take the differential of both sides of (2.12) and estimate it in the direction
h3 of R

n. For simplification, write ai = κ′(s)(hi) = 〈κ′(s), hi〉. We get the equality

κ′′′(s)(h1, h2, h3) =
1
p
a1κ

′′(s)(h2, h3) +
1
p
a2κ

′′(s)(h1, h3) +
〈f ′(s), h3〉

f(s)2
v(h1, h2)

(2.13)

=
2
p2

a1a2a3 −
1

pf(s)
(a1v(h2, h3) + a2v(h1, h3) + a3v(h1, h2))(2.14)

+
(

a3

pf(s)
+

〈f ′(s), h3〉
f(s)2

)
v(h1, h2)(2.15)

(we have transformed (2.13) with the help of (2.12)). Now since (2.13) and (2.14)
are trilinear symmetric forms in (h1, h2, h3), this implies that (2.15) is also a trilinear
symmetric form.

Since (h1, h2) 	→ v(h1, h2) is not of rank 0 or 1, the fact that (2.15) is a trilinear
symmetric form implies that the linear form

h3 	→ a3

pf(s)
+

〈f ′(s), h3〉
f(s)2

is zero, that is, f(s)κ′(s) + pf ′(s) = 0. Taking the differential of this equality and
using (2.12) gives f ′′(s) = 1

pv. This implies the existence of constants α ∈ R and
β ∈ R

n such that f(s) = α+〈β, s〉+ 1
2pv(s). Now the equality f(s)κ′(s)+pf ′(s) = 0

gives that κ(s) = −p log(f(s)/α) since κ(0) = 0 (note that f is never zero on Θ
and thus α = f(0) �= 0). Thus there exists λ = 1

2pα �= 0 and c = − β
2α ∈ R

n such
that E(e〈s,X〉) = (1 − 2〈c, s〉 + λv(s))−p. For further use in Section 5, note that

(2.16) f(s) =
λ

2p
(1 − 2〈c, s〉 + λv(s)).

The subcase a2 < b < a and r = 1.
If g is identically zero on Θ we are sent back to (2.10) as in the case r ≥ 2. In

this case, (2.8) holds with c = 0 and an affine f1 which is the same as (2.7) with
λ = 0.

If g is not identically zero, denote

Θ0 = {s ∈ Θ ; g(s) �= 0}.
Since g is analytic, Θ0 is an open set and we define f = −1/g on Θ0.

We write v(s) = ±〈w, s〉2 for some non-zero vector w ∈ R
n. We take without loss

of generality w as the unit vector e1 (by doing a suitable linear transformation),
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and we write s = s1e1 + . . . + snen where (e1, . . . , en) is the standard basis of R
n.

We rewrite (2.11) suitably expressed in coordinates as

∂2κ(s)
∂s2

1

=
1
p

(
∂κ(s)
∂s1

)2

− 1
f(s)

,(2.17)

∂2κ(s)
∂si∂sj

=
1
p

∂κ(s)
∂si

∂κ(s)
∂sj

if (i, j) �= (1, 1).(2.18)

First differentiate (2.17) with respect to sj with j �= 1. In (2.18) take i = 1 and
differentiate with respect to s1. Taking the difference between these two equalities
makes that the third derivatives disappear. Plugging in the resulting equation
formulas (2.17) and (2.18) we get for j �= 1:

(2.19)
1
p

∂κ(s)
∂sj

= − 1
f(s)

∂f(s)
∂sj

.

Now differentiate (2.19) with respect to si, i = 1, . . . , n, and using again (2.18) and
(2.19) we get for (i, j) �= (1, 1):

(2.20)
∂2f(s)
∂si∂sj

= 0.

Since Θ0 is not empty, it contains an open cube Θ1 = (u1, v1) × . . . × (un, vn)
and there exists a real function s1 	→ C1(s1) on (u1, v1) and constants C2, . . . , Cn

such that for all s in Θ1 we have

(2.21) f(s) = C1(s1) + C2s2 + . . . + Cnsn.

Furthermore, by definition, f is never zero on Θ0, and without loss of generality we
may assume that f > 0 on Θ1 (if not, we change v into −v). Here we have used
the fact that Θ1 is connected.

On the other hand integrating (2.19) leads to the existence of functions Dj(s) on
Θ1 such that Dj does not depend on sj and such that for any j = 2, . . . , n, we have
κ(s) = −p log f(s) + Dj(s). All the Dj ’s are therefore equal to a common function
s1 	→ D(s1) defined on (u1, v1), and thus

(2.22) κ(s) = −p log f(s) + D(s1).

We carry (2.22) into (2.18) taken for (i, j) = (1, 2). After cancellation with the
help of (2.20) we find that D is a constant. Finally writing cj = −Cje

−D/p for
j = 2, . . . , n and f1(s1) = C1(s1)e−D/p, we get (2.8) on Θ1. By the principle of
maximal analyticity for Laplace transforms, we conclude that (2.8) holds on Θ
itself.

The case b /∈ [a2, a].
The last thing to prove is to check that b /∈ [a2, a] is impossible. The algebraic

calculations of the case a2 < b < a are still valid, but with p < 0. If r ≥ 2 we end up
with the Laplace transform (1−2〈c, s〉+λv(s))−p. We discuss the case λ �= 0. Since
Qv = Qλv, we replace λv by v. Without loss of generality we can also choose the
coordinates such that v(s) = s2

1+s2
2+. . .+s2

k−s2
k+1−. . .−s2

r, where 0 ≤ k ≤ r ≤ n.
Then

1−2〈c, s〉+v(s)=1−2c1s1−. . .−2crsr−. . .−2cnsn+s2
1+s2

2+. . .+s2
k−s2

k+1−. . .−s2
r.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6482 G. LETAC AND J. WESO�LOWSKI

This shows that for j > r the second derivative of the convex function sj 	→
−p log(1 − 2〈c, s〉 + λv(s)) is 4pc2

j(1 − 2〈c, s〉 + λv(s))2. Since p < 0 this implies
cj = 0.

Thus without loss of generality we assume r = n. Equality (2.11) applied to the
case p < 0 shows that either k = 0 or k = n: this comes from the fact that

κ′′(s) +
1
|p|κ

′(s) ⊗ κ′(s) =
1

f(s)
v

is necessarily positive definite as the sum of a positive definite operator κ′′(s) and
of a semipositive definite one. Write ε = −1 for k = 0 and ε = 1 for k = n.
Furthermore we see that 1 − 2〈c, s〉 + v(s) = a + v(s − εc) where a = 1 − v(c).
If µ(dx) is the probability with Laplace transform (1 − 2〈c, s〉 + v(s))−p defined
on an open convex set Θ containing 0, consider the possibly unbounded measure
e〈εc,x〉µ(dx) with Laplace transform (a+v(s))−p defined on Θ+εc. Renormalization
according to a and discussion according to the facts that either v or −v is positive
definite and that a < 0, a = 0, a > 0 leads us to consider the four cases

(1 − s2
1 − . . . − s2

n)−p,

(1 + s2
1 + . . . + s2

n)−p,

(s2
1 + . . . + s2

n)−p,

(−1 + s2
1 + . . . + s2

n)−p.

None of these 4 functions ψ(s) can be the Laplace transform of some positive
measure on R

n. Because if it is the case, then for a fixed s0 ∈ R
n \ {0} the function

t 	→ ψ(s0t) defined on some interval of the real line would be the Laplace transform
of a positive measure on R. But t 	→ log ψ(ts0) is never convex. We finally treat
the case λ = 0 in a similar way. Thus the case r ≥ 2 is settled.

If r = 1 we end up with a Laplace transform L(s1)(1 − C(s1)s2)−p (after some
changing of coordinates). Since the logarithm of s2 	→ L(s1)(1− C(s1)s2)−p is not
convex for p < 0 the proof of the direct part of Theorem 2.1 is complete. The
converse statements are easily obtained by reversing the above process.

3. Laplace transforms (1 − 2〈c, s〉 + v(s))−p

In this section we will describe distributions µ = µp,c,v on R
n whose Laplace

transforms on a certain open convex set Θ containing 0 are of the form
(1 − 2〈c, s〉 + v(s))−p, where v is a quadratic form of rank r ≤ n, c ∈ R

n and
p > 0. These distributions occur in Theorem 2.1 with λv replacing v. However since
Qv = Qλv for λ �= 0 we may assume λ = 1.

Before this, we recall a famous result due to Gindikin (1975): there exists a
positive measure νp on R

n such that for −θ in the open Lorentz cone

(3.23) Ω = {x ∈ R
n; x1 > (x2

2 + . . . + x2
n)1/2}

one has ∫
e〈θ,x〉νp(dx) = (θ2

1 − (θ2
2 + . . . + θ2

n))−p

if and only if p ≥ (n − 2)/2. Under these circumstances for p > (n − 2)/2 the
measure νp is concentrated on Ω and is equal to

(3.24) νp(dx) = (x2
1 − x2

2 − . . . − x2
n)p−n

2
dx

22p−n
2 ΓΩ(p)
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where ΓΩ(p) = (2π)
n−2

2 Γ(p)Γ(p− n−2
2 ). For p = (n−2)/2 the measure νp is the im-

age of the Lebesgue measure on R
n−1 by (x2, . . . , xn)	→((x2

2+. . .+x2
n)1/2, x2, . . . , xn),

up to a suitable multiplicative constant and is thus concentrated on the boundary
of Ω.

Next, if ρ is a non-negative number and if p is still ≥ (n − 2)/2 we use νp(dx)
to build a more general measure νp,ρ on the closure Ω of Lorentz cone (3.23). It is
defined by

νp,ρ =
∞∑

j=0

p(p + 1) . . . (p + j − 1)
ρj

j!
νp+j

where νp is defined in (3.24). By the Newton binomial theorem

(1 − z)−p =
∞∑

j=0

p(p + 1) . . . (p + j − 1)
zj

j!

correct for |z| < 1 and applied to z = ρ/(θ2
1−(θ2

2 + . . .+θ2
n)), the Laplace transform

of νp,ρ is defined on −Ωρ where

(3.25) Ωρ = {θ ∈ R
n; θ1 > (θ2

2 + . . . + θ2
n + ρ)1/2}

and is
(θ2

1 − θ2
2 − . . . − θ2

n − ρ)−p.

Note that νp,0 = νp and that Ω0 = Ω. If p > (n− 2)/2 the explicit form of νp given
in (3.24) leads to the relatively explicit form

(3.26) νp,ρ(dx) =
[v(x)]p−

n
2

22p−n
2 (2π)

n−2
2 ΓΩ(p)

fp−n−2
2

(
ρv(x)

4
)1Ω(x)dx

where the function fp is defined by (1.1) and where v(x) = x2
1 − x2

2 − . . . − x2
n. If

p = (n − 2)/2 the measure νp,ρ contains the singular part νn−2
2

and an absolutely
continuous part. It is

(3.27) νn−2
2 ,ρ(dx) = νn−2

2
(dx) +

ρ

2
n
2 (2π)

n−2
2 Γ(n−2

2 )
f2(

ρv(x)
4

)1Ω(x)dx.

We skip the proofs of (3.26) and of (3.27), which are easily done by checking either
the densities or the Laplace transforms of both sides.

In order to state the theorem, we introduce a notation. Given a quadratic form
v on a Euclidean space E with rank r ≤ dimE = n we associate to v a symmetric
endomorphism sv of E defined by 〈sv(x), x〉 = v(x). Its image F has dimension r,
and the restriction of sv is an automorphism of F which has an inverse. Therefore
we define a quadratic form v−1 on F by 〈s−1

v (x), x〉 = v−1(x). For instance if
E = R

n has its natural Euclidean structure, a suitable change of orthonormal basis
gives v(x) = λ1x

2
1 + . . . + λkx2

k − λk+1x
2
k+1 − . . . − λrx

2
r with λj > 0 and r ≤ n.

Then F = R
r × {0} and

v−1(x) =
x2

1

λ1
+ . . . +

x2
k

λk
−

x2
k+1

λk+1
− . . . − x2

r

λr
.

If c = (c1, . . . , cn) in this new system of coordinates, then the projection cF of c on
the space F is cF = (c1, . . . , cr, 0, . . . , 0).
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Theorem 3.1. Let p > 0, let c ∈ R
n and let v be a quadratic form on R

n with
signature (k, r − k, n − r) (that is, having, respectively, k plus signs, r − k minus
signs and n−r zeros in the Sylvester decomposition). We write cF as the orthogonal
projection of c on the image F of the symmetric endomorphism sv, and we write
ρ = v−1(cF ) − 1. Denote by µp,c,v the probability on R

n with Laplace transform
(1 − 2〈c, s〉 + v(s))−p. Then µp,c,v exists if and only if the following circumstances
are met:

1. k = 0. In this case, −v is semipositive definite and µp,c,v is the distribution
of the random vector

(3.28) XT 1/2 + Tc ,

where X and T are independent, X is centered and normally distributed in
R

n with covariance −v and T is a gamma variable γp,2.
2. k = 1 = n, p > 0 and c2

1 ≥ 1. If c1 = ε cosh θ with ε = ±1 let T1 ∼ γp,eθ

and T2 ∼ γp,eθ be independent. With this notation µp,c,v is the distribution
of ε(T1 + T2).

3. k = 1 < n, (n − 2)/2 ≤ p and ρ ≥ 0. Changing the coordinates we may
assume that v(x) = x2

1 − x2
2 − . . . − x2

n and c1 > 0. With this notation

(3.29) µp,c,v(dx) = e−c1x1+c2x2+...+cnxnνp,ρ(dx).

Comments. Note that this statement offers a generalization of the Gyndikin The-
orem, by showing that if ρ ≥ 0 the function defined on −Ωρ (see (3.25)) by
(θ2

1 − θ2
2 − . . .− θ2

n −ρ)−p is the Laplace transform of a positive measure if and only
if p ≥ (n − 2)/2.

To get an intuitive feeling of the probability (3.29) in case 3, observe that for
ρ = 0 it is the classical Wishart distribution on the closed Lorentz cone Ω. Now,
for ρ > 0, define R = 1 − (1 + ρ)1/3, c0 = (1 − R)c and v0 = (1 − R)v. This choice
of R implies ρ0 = v0(c0) − 1 = 0. Now consider the random variable (X, J) valued
in Ω × N such that the distribution of the integer valued random variable J is the
negative binomial distribution⎛

⎝δ0 +
∞∑

j=1

p(p + 1) . . . (p + j − 1)
j!

Rjδj

⎞
⎠ (1 − R)p

and such that the distribution of X conditioned by J = j is the Wishart distribution
on the closed Lorentz cone µp+j, c0,v0(dx). Then routine calculation of the Laplace
transform of X shows that X ∼ µp,c,v.

Proof. Given v with the signature (k, r − k, n − r) we first choose orthonormal
coordinates such that v(s) = λ1s

2
1+ . . .+λks2

k−λk+1s
2
k+1− . . .−λrs

2
r, where λj > 0

for j = 1, . . . , r. If (X1, . . . , Xn) is a random variable having Laplace transform
(1 − 2〈c, s〉 + v(s))−p, then (Y1, . . . , Yn) = (λ−1/2

1 X1, . . . , λ
−1/2
r Xr, Xr+1, . . . , Xn)

has Laplace transform (1−2〈c′, s〉+v′(s))−p, with v′(s) = s2
1+. . .+s2

k−s2
k+1−. . .−s2

r

and with c′j = λ
−1/2
1 cj for j ≤ r and c′j = cj for j > r. Note that v′(c′) = v−1(cF ).

Thus from now on in the remainder of the proof of the present theorem we assume
that

v(s) = s2
1 + . . . + s2

k − s2
k+1 − . . . − s2

r.
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Note that the Hessian matrix v′′(s) is constant and equal to Mv. Since the convex
function κ(s) = −p log(1 − 2〈c, s〉 + v(s)) has second derivative

κ′′(s) =
p

(1 − 2〈c, s〉 + v(s))2
[(2c − v′(s))⊗(2c − v′(s)) − (1 − 2〈c, s〉 + v(s))v′′(s)],

this implies that k = 0 or 1. To see this, observe that k ≥ 2 would imply that the
restriction of the above quadratic form to s1, . . . , sk is not positive definite: the
sum of a quadratic form containing at least two negative signs in its signature and
of a quadratic form of rank one cannot be positive definite.

The case k = 0. Writing

1
(1 − 2〈c, s〉 − s2

1 − . . . − s2
r)p

=
∫ ∞

0

e−t(1−2〈c,s〉−s2
1−...−s2

r)tp−1 dt

Γ(p)
,

the existence and the probabilistic interpretation of the corresponding distribution
µ is as follows: suppose that X is standard normal in R

r and is considered as a
variable in R

n concentrated on R
r ×{0}. If T is a gamma variable γp,2 independent

of X, then the distribution µp,c,v of

(3.30) XT 1/2 + cT

has the above Laplace transform.

The case k = n = 1. First we observe that k = n = 1 implies that c2
1 ≥ 1. Indeed

c2
1 < 1 implies that 1 − 2c1s1 + s2

1 has no real root. Thus the Laplace transform
is defined on the whole line, but computation shows that its logarithm κ satisfies
κ′′(c) < 0. If c2

1 = cosh2 θ ≥ 1 with ε = ±1 being the sign of c1, then

(3.31)
1

(1 − 2c1s1 + s2
1)p

=
1

(1 − s1εeθ)p

1
(1 − s1εe−θ)p

,

and µp,c,v is clearly the convolution of two gamma distributions γp,eθ and γp,e−θ

when ε = 1 and symmetric of this one when ε = −1.

The case k = 1 and r = n ≥ 2. The case k = n = 1 has shown c2
1 ≥ 1. We denote

ρ = c2
1 − c2

2 − . . . − c2
n − 1.

We discuss separately the three cases ρ = 0, ρ > 0 and ρ < 0.

The subcase k = 1, r = n ≥ 2 and ρ = 0.
With ρ = 0 denote

c1 = ε(1 + c2
2 + . . . + c2

n)1/2

with ε = ±1. Suppose ε = 1. Then (−c1, c2, . . . , cn) is in −Ω and for p ≥ (n − 2)/2
the measure e−c1x1+c2x2+...+cnxnνp(dx) is bounded, with Laplace transform

((s1 − c1)2 − (s2 + c2)2 − . . . − (sn + cn)2)−p.

This shows that

(3.32) e−c1x1+c2x2+...+cnxnνp(dx)

is the desired probability. This probability is a Wishart distribution on the cone
Ω in the sense of Jordan algebras (see Faraut and Korányi (1994), Jensen (1988),
Massam (1994) or Casalis and Letac (1994)). If ε = −1 we take its image by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6486 G. LETAC AND J. WESO�LOWSKI

x 	→ −x. If p < (n − 2)/2 it is easy to use the Gindikin Theorem to see that the
probability µp,c,v does not exist.

The subcase k = 1, r = n ≥ 2 and ρ > 0.
Assume first that p ≥ (n−2)/2. Suppose that c1 > 0. The fact that ρ > 0 implies

that (−c1, c2, . . . , cn) is in −Ωρ, and the measure on Ω defined by e−c1x1+c2x2νp,ρ(dx)
is bounded and has the Laplace transform

((s1 − c1)2 − (s2 + c2)2 − . . . − (sn + cn)2 − ρ)−p = (1 − 2〈c, s〉 + v(s))−p.

This shows that e−c1x1+c2x2+...+cnxnνp,ρ(dx) is the desired probability µp,c,v . If
c1 < 0 we consider its image by x 	→ −x for getting µp,c,v .

Recall that ρ > 0. We now assume p < (n − 2)/2, and we prove that µp,c,v does
not exist. Suppose that µp,c,v exists. For any integer N we have µ∗N

p,c,v = µNp,c,v .

Since µNp,c,v is concentrated on the closed convex cone Ω for N large enough by
the previous analysis, µp,c,v is also concentrated on Ω.

We now consider two polynomials

v(θ) = θ2
1 − θ2

2 − . . . − θ2
n, ∆(θ) = 1 − 2〈c, θ〉 + v(θ).

Observe that if x and x′ are in the cone Ω defined by (3.23), the Schwarz inequal-
ity applied to (x2, . . . , xn) and (x′

2, . . . , x
′
n) shows that v(x + x′) > v(x) + v(x′).

Since
Ω ⊃ Ωρ = {x ∈ R

n ; x1 > 0, v(x) > ρ}
the inequality v(x + x′) > v(x) + v(x′) holds on Ωρ. This shows that Ωρ is an
additive semigroup, that is, x + x′ is in Ωρ if x and x′ are in Ωρ. We apply it to
x = −θ and x′ = c to obtain that ∆ is positive on −Ωρ:

∆(θ) = 1 − 2〈c, θ〉 + v(θ) = v(−θ + c) − v(c) + 1 = v(−θ + c) − ρ > 0.

We now apply the operator v( ∂
∂θ ) to the two members of the following identity:

(∆(θ))−p =
∫

Ω

e〈θ,x〉µp,c,v(dx).

This identity is true for all θ in −Ωρ since ∆ is positive there. We get

(3.33) v

(
∂

∂θ

)
(∆(θ))−p =

∫
Ω

e〈θ,x〉v(x)µp,c,v(dx).

Now a thorough and standard computation of the left hand side of (3.33) shows
that it is equal to 4(ρ + ∆(θ))(∆(θ))−p−2p(p − p0(θ)), where

p0(θ) =
(n − 2)∆(θ) − 2ρ

2(∆(θ) + ρ)
<

n − 2
2

.

Note that ρ + ∆(θ) is positive on −Ωρ . Furthermore ρ + ∆(θ) does not depend
on p. Since the right hand side of (3.33) is non-negative the existence of µp,c,v would
imply p ≥ p0(θ) for all θ ∈ −Ωρ. Since ∆ is unbounded on −Ωρ, this implies that
p ≥ (n − 2)/2, which contradicts our assumption.

The subcase k = 1, 2 ≤ r = n and ρ < 0.
With ρ < 0 and p ≥ (n − 2)/2 we now prove that µp,c,v does not exist. If not,

standard reasoning shows that there would exist a positive measure νp,ρ such that
either (3.26) or (3.27) hold (according to p > (n − 2)/2 or p = (n − 2)/2): for this
compute the Laplace transforms of the right hand sides of (3.26) or (3.27). But the
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function x 	→ fp(ρv(x)) is not positive when ρ < 0. To see this we relate fp to the
classical Bessel function Jp by the formula(z

2

)p−1

fp

(
−1

4
z2

)
= Jp−1(z)

which implies (see Watson (1966)Jensen (1988), Massam (1994) or Casalis and Letac
(1994)), chapter XV) that fp has an infinity of simple zeros on (−∞, 0) (and no
other zeros in the complex plane).

Finally, we show that k = 1 and 0 < p < (n − 2)/2 implies that µp,c,v does not
exist. The statement is clear: since ρ < 0, the existence of µp,c,v would imply the
existence of µNp,c,v for any integer N. But we have already seen that µp,c,v does
not exist for ρ < 0 and p > (n − 2)/2.

The case k = 1 and 1 ≤ r < n.

In this case, if cr+1 = . . . = cn = 0 the problem of the existence of µp,c,v is
solved by the previous cases k = 1, r = n ≥ 2 or k = 1 = n. If ci �= 0 for some i
with r < i ≤ n, we prove that µp,c,v does not exist. To see this, we observe that
(1−2c1s1+s2

1−2c2s2)−p is not a Laplace transform of the distribution of a random
variable (X1, X2). For in this case we have E(et(X1−X2c1/c2)) = (1 + t2)−p which is
impossible since t 	→ (1 + t2)−p is not a convex function around 0. More generally
the following function defined in a neighborhood of zero by

(1 − 2c1s1 + s2
1 − 2c2s2 − s2

2 − . . . − s2
r − 2cr+1sr+1 − . . . − 2cnsn)−p

cannot be the Laplace transform of a probability if (cr+1, . . . , cn) �= 0. If cr+1 �= 0
(say), then inserting si = 0 for i �= 1 and i �= r + 1 brings us back to the preceding
impossible case.

4. Laplace transforms (f1(s1) − s2)−p

Our next task is to study the distributions µp,f1 in R
2 (essentially) which occur

in Theorem 2.1 for r = 1 and a2 < b < a, with Laplace transform (f1(s1) − s2)−p.
Actually, replacing R

2 by R
m+1 is rather natural. Note that since (s1, s2) 	→

(f1(s1) − s2)−p is a Laplace transform, then it must be convex, thus f1 must be
concave. Furthermore, the domain of definition of a Laplace transform is convex,
thus the interior of the domain of definition of f1 must be an open convex subset
C of R

m and the interior of the domain of definition of (s1, s2) 	→ (f1(s1)− s2)−p is
{(s1, s2) ∈ C × R; f1(s1) − s2 > 0}. In order to avoid difficulties about continuity
at the boundary of the Laplace transforms, we prefer to work with the interior
of the domain of definition of Laplace transforms rather than with the domain
itself. Recall that the Laplace transform of a probability is not continuous in
general at one of the boundary points: continuity holds only along straight lines
containing the boundary point (an example due to Hoffmann-Jorgensen can be
found in Barndorff-Nielsen (1978), page 104).

Proposition 4.1. Let f1 be a concave function defined on some convex open subset
C of R

m containing 0 in its closure and let p > 0. A necessary and sufficient
condition for the existence of a probability µp,f1 on R

m+1 with Laplace transform
(f1(s1)−s2)−p is the existence of some infinitely divisible distribution (νt)t>0 on R

m

such that the Laplace transform of νt is exp t(1−f1(s1)). Under these circumstances

(4.34) µp,f1(dx, dt) = νt(dx)γp,1(dt).
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That means that if (Y (t))t≥0 is a Lévy process on R
m governed by (νt)t>0 and if

T is an independent random variable with distribution γp,1(dt), then µp,f1 is the
distribution in R

m+1 of (Y (T ), T ).

Proof. The part ⇐ is standard. In order to prove the converse ⇒ we consider a
random variable (X, T ) ∼ µp,f1(dx, dt) in R

m × R such that on the set

D = {(s1, s2) ; s1 ∈ C, s2 < f1(s1)}
we have

E(e〈s1,X〉+s2T ) = (f1(s1) − s2)−p.

Since µp,f1 is a probability, (0, 0) belongs to the closure of D, and therefore
lims1→0 f1(s1) = 1 for radial limit. Thus we can claim that for s2 < 1 we have
E(es2T ) = (1 − s2)−p. In other words the marginal distribution of T must be
γp,1, where for a > 0 we denote γp,a(dt) = e−ataptp−11(0,∞)(t) dt

Γ(p) . Therefore if
we denote by νt(dx) the conditional distribution of X knowing T = t, we get
µp,f1(dx, dt) = νt(dx)γp,1(dt), and thus on D:

(f1(s1) − s2)−p =
∫

Rm

∫ ∞

0

e〈s1,x〉+s2tνt(dx)γp,1(dt)

=
∫ ∞

0

es2t

(∫
Rm

e〈s1,x〉νt(dx)
)

γp,1(dt).

Since lims1→0 f1(s1) = 1 there is a non-empty convex subset C1 of C on which the
concave function f1 is positive. For s1 ∈ C1 and s2 < f1(s1) we have(

f1(s1)
f1(s1) − s2

)p

=
∫ ∞

0

es2t

(∫
Rm

e〈s1,x〉νt(dx)
)

(f1(s1))pγp,1(dt).

Thus for fixed s1 ∈ C1 we can claim that(∫
Rm

e〈s1,x〉νt(dx)
)

(f1(s1))pγp,1(dt) = γp,f1(s1)(dt).

Equating the densities we get that for almost all t > 0 we have on C1:∫
Rm

e〈s1,x〉νt(dx) = et(1−f1(s1)).

Since the the function on C1 defined by et(1−f1(s1)) is the Laplace transform of
a probability νt for almost all t > 0, one concludes by continuity that it is the
Laplace transform of some probability νt for all t > 0, and (νt)t>0 is a convolution
semigroup. This ends the proof.

Comments.
1. Note that in the above proof C1 �= C in general: for example if f1(s1) =

1 − ‖s1‖2, then C1 is the open unit ball and C is the Euclidean space R
m.

2. There is nothing special in the gamma distribution in the statement of
Proposition 4.1. If E(e〈s1,X〉+s2T ) has the form eκ0(κ1(s1)+s2) and if the
distribution α of T is concentrated in [0,∞), consider the conditional dis-
tribution X|T = t ∼ νt(dx). Then α almost surely we have

(4.35) et(κ1(s1)−κ1(0)) =
∫

Rm

e〈s1,x〉νt(dx).

If (4.35) holds for t = 1 (say), then the fact that (4.35) holds α al-
most surely implies that the Jorgensen set of ν1 contains the support of α.
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In particular, if the support of α contains some interval [0, a], then ν1 is
infinitely divisible. See also comment 5 in Section 6.

3. Let us also mention that in Theorem 2.1, the second part of 3, we have
considered X = 〈X, e1〉 + X ′ where X ′ = Tc is a multiple of a constant
vector c orthogonal to e1. With the notation of Proposition 4.1, we have
〈X, e1〉 = Y (T ).

5. Variance functions
1
pm ⊗ m − ϕ(m)Mv

In this section, we are going to interpret some of the above results in terms of
natural exponential families (NEF). Recall some definitions about NEF. Given a
positive measure µ on R

n, not necessarily bounded, consider its Laplace transform,
namely the function on R

n valued in [0,∞] defined by

θ 	→ Lµ(θ) =
∫

Rn

e〈θ,x〉µ(dx) ≤ ∞.

We denote by D(µ) the set of θ ∈ R
n such that Lµ(θ) < ∞. Hölder inequal-

ity implies that D(µ) is a convex set and that κµ = log Lµ is a convex func-
tion on it. One denotes by Θ(µ) the interior of D(µ). For instance, if µ is a
probability which has exponential moments (that is, there exists a > 0 such that∫

Rn ea(|x1|+...+|xn|)µ(dx) < ∞), then Θ(µ) is not empty.
Let us assume that Θ(µ) is not empty. If furthermore µ is not concentrated on

some affine hyperplane, then κµ is strictly convex and real-analytic on Θ(µ). This
implies that its differential κ′

µ (that we consider as taking its values in R
n) is one-to-

one. Denote the image of Θ(µ) by the function κ′
µ as the open subset M(µ) ⊂ R

n.
Denote also by m 	→ θ = ψµ(m) the inverse of θ 	→ m = κ′

µ(θ). The NEF F = F (µ)
generated by µ is the set of probabilities F (µ) = {P (θ, µ); θ ∈ Θ(µ)} where

P (θ, µ)(dx) = e〈θ,x〉−κµ(θ)µ(dx).

Note that F = F (µ) = F (µ1) does not imply µ = µ1, but only the existence of
(a, b) ∈ R

n+1 such that µ1(dx) = e〈a,x〉+bµ(dx). In this case Θ(µ1) = a + Θ(µ)
but M(µ1) = M(µ), and we would rather denote it by M(F ). Note also that any
element of F generates F , although the converse is not true: F = F (µ) does not
necessarily imply that µ ∈ F. The Laplace transform of P (θ, µ) is s 	→ Lµ(θ+s)

Lµ(θ) and
is defined for s ∈ Θ(µ) − θ.

It is easily seen that m = κ′
µ(θ) =

∫
Rn xP (θ, µ)(dx). For this reason M(F )

is called the domain of the means of F. The Hessian matrix κ′′
µ(θ) is the covari-

ance matrix of P (θ, µ). Therefore, for m ∈ M(F ) the symmetric matrix VF (m) =
κ′′

µ(ψµ(m)) is the covariance matrix of the unique element P (m, F ) of F with mean
m. The function defined on M(F ) by m 	→ VF (m) and valued among the symmet-
ric positive definite (n, n) matrices is called the variance function of F. Because of
the relation V (k′

µ(θ)) = κ′′
µ(θ) the variance function determines kµ up to constants

(a, b) ∈ R
n+1, and thus (VF , M(F )) determines F. Finally, we mention that if we

take the image G of an NEF F given by (VF , M(F )) by some affine transforma-
tion x 	→ A(x) + b of R

n where b ∈ R
n and A is an invertible n × n matrix, then

MG = AM(F ) + b and

(5.36) VG(m) = AVF (A−1(m − b))AT .
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In this section we are going to find all NEF’s F such that there exists a quadratic
form v, a positive number p and a real function ϕ on M(F ) such that VF (m) =
1
pm⊗m−ϕ(m)Mv on M(F ), where Mv is the representative matrix of the quadratic
form v. As an example, for v(x) = x2

1 − x2
2 − . . . − x2

n the family Fp of Wishart
distributions with the shape parameter p ≥ (n−2)/2 on the Lorentz cone Ω = {x ∈
R

n ; x1 > 0, v(x) > 0} has this property. If P denotes the quadratic representation
of the Jordan algebra associated to Ω in the sense of Faraut and Korányi (1994),
page 32, then the variance function is P (m)/p. Surprisingly we have on Ω

VFp
(m) =

1
p
P (m) =

1
p
m ⊗ m − 1

4p
(m2

1 − m2
2 − . . . − m2

n)Diag(1,−1, . . . ,−1).

Note that from (5.36) the image G of an NEF F with VF (m) = m ⊗ m/p −
ϕ(m)Mv by the linear automorphism x 	→ Ax has a variance function of the same
form, namely

VG(m) =
1
p
m ⊗ m − ϕ(A−1m)AMvA

T .

This remark will considerably simplify the presentation of our results, since it allows
us by proper choice of A to assume that Mv has the simple form

(5.37) Mv =

⎡
⎣ Ik 0 0

0 −Ir−k 0
0 0 0

⎤
⎦ .

Theorem 5.1. Let v be a quadratic form on R
n with representative matrix Mv

having rank r and signature (k, r − k, n − r). Let p > 0. We assume n ≥ 2. Let
M be a connected open set of R

n and ϕ a real function defined on M such that
m 	→ 1

pm ⊗ m − ϕ(m)Mv is the variance function VF of some NEF F whose
domain of the means is M = M(F ).

Then ϕ is real analytic on M , has no zeros and has constant sign. Assuming
ϕ > 0, then either k = 1, r = n, or k = 0, r = n, or k = 0, r = n − 1 or
k = r = 1, n = 2. Except when k = r = 1, n = 2 there exist some c ∈ R

n and some
real λ > 0 such that the NEF F is generated by a probability µp,c,λv with Laplace
transform ∆(s)−p with ∆(s) = 1 − 2〈c, s〉 + λv(s). Every element P (θ; µp,c,λv) of
F has the form µp,cθ ,λθv with cθ = (c − Mvθ)/∆(θ) and λθ = λ/∆(θ).

1. If k = 1, r = n the vector c must satisfy ρ = v−1(c)
λ − 1 ≥ 0. The domain

of the means is M(F ) = Ωρ defined by (3.25). If ρ > 0 the proportionality
factor ϕ(m) > 0 is

ϕ(m) =
pλ

2ρ

([
1 + ρ

v−1(m)
p2λ

]1/2

− 1

)
.

If ρ = 0 the natural exponential family F is the family of Wishart distri-
butions on the Lorentz cone Ω associated to v, with the shape parameter
p ≥ (n − 2)/2. In this case ϕ(m) = v−1(m)

4p .

2. If k = 0, r = n the domain of the means is R
n. With the Euclidean structure

‖x‖2 = −v−1(x) we have

ϕ(m) =
p

λ(‖c‖2 + λ)

[(
λ2 + (‖c‖2 + λ)‖m‖2

)1/2
+ λ

]
.
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3. If k = 0, r = n−1 we take for simplicity v(x) = v−1(x) = −x2
1−. . .−x2

n−1.
Then cn �= 0 and we have ϕ(m) = λmn

2cn
, and the domain of the means is

R
n−1 × (0,∞) if cn > 0 and R

n−1 × (−∞, 0) if cn < 0.
4. In the exceptional case k = r = 1, n = 2 the NEF is generated by a

probability measure µp,f1(dx, dt) = νt(dx)γp,1(dt) as defined in Section IV.
Denote by F1 the NEF in R generated by ν1, denote by (a, b) the domain of
the means of F1 and denote by VF1 its variance function. Then the domain
of the means of F is the cone

{(m1, m2) ; m2 > 0, am2 < m1 < bm2}

and ϕ(m1, m2) is −m2VF1(m1/m2). Consequently

VF (m1, m2) =

[
m2

1
p + m2VF1(

m1
m2

) m1m2
p

m1m2
p

m2
2

p

]
.

Proof. The quadratic form v cannot be 0 since the rank of VF (m) is always n ≥ 2.
Since a variance function is real analytic and since v �= 0, the real analyticity
of ϕ is obvious. If ϕ(m0) = 0 for some m0 ∈ M , then the rank of V (m0) is
1 �= n, a contradiction. Since M is connected, ϕ has constant sign. Without loss of
generality, we choose in the sequel ϕ(m) > 0. If not, we change v into −v.

Since n=rank VF (m) ≤ 1 + r we get r ≥ n − 1. If r = n

VF (m) =
1
p
m ⊗ m +

[
−ϕ(m)Ik 0

0 ϕ(m)In−k

]
.

Clearly since ϕ(m) > 0, this matrix is positive definite only if k ≤ 1: just watch
the first (k, k) block of the matrix VF (m).

For r = n − 1 we consider the matrix

VF (m) =
1
p
m ⊗ m +

⎡
⎣ −ϕ(m)Ik 0 0

0 ϕ(m)In−1−k 0
0 0 0

⎤
⎦ .

Similarly as above we see that k ≤ 1. However, k = 1 is excluded by considering
the (2, 2) submatrix obtained with the first and last rows and columns.

The case k = 1, r = n.

Let µ be a generating measure of F and write κ as the log of the Laplace
transform of µ defined on the open convex set Θ. Then s 	→ κ′(s) is a bijective
mapping from Θ on M. Since ϕ has no zeros, we denote f(s) = 1

ϕ(κ′(s)) . Thus we
have

κ′′(s) =
1
p
κ′(s) ⊗ κ′(s) − 1

f(s)
v.

At this point we can use the discussion made after (2.11) and claim that since r ≥ 2
there exists c ∈ R

n and λ > 0 such that f has the form (2.16) and µ = µp,c,λv .
This implies that the domain of the means M is the Lorentz cone Ω and that the
domain of the Laplace transform Θ is −Ωρ, where ρ = v−1(c)

λ − 1 ≥ 0 (by Theorem
3.1, part 3) and Ωρ is defined by (3.25).

The only thing left to do is to compute ϕ(m). We use Mv as the representative
matrix of v. As usual, the quadratic form associated to M−1

v is denoted v−1. Since
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κ(s) = −p log ∆ with ∆ = 1− 2〈c, s〉+ λv(s), we write m = κ′(s) = 2p
∆ (c− λMvs).

Denote by ψ : M → Θ the inverse function of κ′. Thus

s = ψ(m) =
1
λ

M−1
v c − ∆

2λp
M−1

v m.

We carry this in the definition of ∆(s) for computing ∆:

∆ = 1 − 2
λ
〈c, M−1

v c〉 +
∆
λp

〈c, M−1
v m〉 +

1
λ

v

(
M−1

v c − ∆
2p

M−1
v m

)

= 1 − 1
λ

v−1(c) +
∆2

4λp2
v−1(m) = −ρ +

∆2

4λp2
v−1(m).

In order to solve this second degree equation in ∆ we denote

δ =
[
1 + ρ

v−1(m)
λp2

]1/2

.

Introducing ε = ±1 gives ∆ = 2λp2

v−1(m) (1 + εδ), and finally for ρ > 0 we get

ϕ(m) =
1

f(ψ(m))
=

λp

∆
=

λp

2
εδ − 1

ρ
.

In order to decide whether ε = 1 or not, we observe that −ϕ(m)v must have
at least n − 1 positive signs in its signature. Since k = 1 and r = n, this implies
ϕ(m) > 0 and ε = 1. For ρ = 0 an easy discussion shows that ϕ(m) = v−1(m)

4p .

The case k = 0, r = n.

The discussion is rather similar, and changes occur only when finding the sign
of ε for choosing the correct root of the second degree equation giving ∆. We skip
the details.

The case k = 0, r = n − 1.
For n = 2 by the discussion given in the proof of Theorem 2.1, case a2 < b < a,

r = 1 (the second part where g is not identically zero), we get that ∆(s) = 1 −
2c1s1 − λs2

1 − 2c2s2. For n > 2 we have ∆(s) = 1 − 2〈c, s〉 − λ(s2
1 + . . . + s2

n−1).
Thus in both cases n = 2 and n > 2 we are sent back to a similar discussion as in
the case k = 1 and r = n. Thus ϕ(m) = pλ/∆. Moreover

mn =
∂κ

∂sn
=

2pcn

∆
.

Combining the two formulas we get ϕ(m) = λmn

2cn
.

The exceptional case k = r = 1, n = 2.
We have seen in Section 2 that the family is generated by a probability µp,f1 on

R
2 with Laplace transform (f1(s1) − s2)−p. By analyticity, this Laplace transform

is defined on

Θ = {(s1, s2) ; s1 ∈ I, s2 < f1(s1)},
where I is the open domain of the definition of f1. Since this domain is convex,
this implies that I is an open interval and that f1 is concave. Furthermore 0 ∈ I
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and lims1→0 f1(s1) = 1. The cumulant function is k = −p log f where f(s1, s2) =
f1(s1) − s2. Thus

m1 = −p
f ′
1(s1)
f

, m2 = p
1
f

.

This implies that f ′
1(s1) = −m1/m2. Observe that since k is strictly convex, then

(s1, s2) 	→ f1(s1) − s2 is strictly concave and thus s1 	→ f1(s1) is strictly concave,
too. Hence s1 	→ f ′

1(s1) = −m1/m2 is one to one and s1 is a function of m1/m2.
Since the cumulant function of F1 is 1 − f1(s1), the domain of the means of F1 is
(a, b) = −f ′

1(I). We now check that the map from Θ to (a, b) × (0,∞) is bijective:
for any (c, y) ∈ (a, b)×(0,∞) there exists a unique s1 ∈ I such that c = −f ′

1(s1) and
a s2 < f(s1) such that y = p

f(s1)−p . Thus the domain of the means is as claimed.

Since ∂2k
∂s2

1
= m2

1
p − m2f

′′
1 (s1) = m2

1
p − ϕ(m1, m2) and since s1 is a function of

m1/m2 we get that ϕ(m1, m2) = m2ϕ1(m1/m2), where ϕ1 is defined on (a, b).
Since VF1(−f ′

1(s1)) = −f ′′
1 (s1) we can claim that ϕ1 = −VF1 , and this ends the

proof.

6. Comments and examples

1. Examples. We concentrate on the case a2 < b < a and n = 2. Up to linear
changes we can assume that the possible representative matrix Mv of v is

B =
[

1 0
0 0

]
, −I2 =

[
−1 0
0 −1

]
, W =

[
0 1
1 0

]
.

To see this we observe that (2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), and (0, 1, 1) are the
possible signatures (k, r − k, n − r) for a non-zero v, and n = 2. However cases
(2, 0, 0) and (0, 2, 0) coincide (corresponding to −I2) as well as (1, 0, 1) and (0, 1, 1)
(corresponding to B) since Qv = Q−v: see the comments at the beginning of Section
3. Cases B and W have been covered in Bobecka and Weso�lowski (2004) and Wang
(1981). The case −I2 is new and is described by (3.30).

2. Exponential moments. Wang’s theorem is for positive random vari-
ables: they do not necessarily have exponential moments, but they have non-trivial
Laplace transforms, and this is equivalent after a trivial change of the probability
measures of X and Y. In Theorem 2.1, we do not make a hypothesis about posi-
tiveness, but only about exponential moments. One can wonder if the hypothesis
could be reduced to the existence of the first two moments. There is apparently
serious difficulty in deducing from the analog of (2.9), written in terms of Fourier
transforms which holds only for all q ∈ Qv, the fact that all higher derivatives
of the Fourier transform of X do exist. This problem does not exist in the one
dimensional cases as considered by Lukacs (1955).

3. Simple quadratic families. In a celebrated paper Casalis (1996) has
characterized all the natural exponential families on R

n (called simple quadratic
families, or Casalis families) such that their variance functions have the form

VF (m) = am ⊗ m + B(m) + C,

where m 	→ B(m) is linear, C is a constant matrix and a is a real number. If
a > 0, C = 0 and B(m) is the product of a constant matrix Mv by a linear form
m 	→ ϕ(m), we get the simple quadratic families covered by our Section 5. If n ≥ 3,
among these 2n+4 Casalis families, only one has this property, namely her gamma
family of type 1 which coincides with case 3 of Theorem 5.1. If n = 2 two of the
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8 Casalis families appear in the exceptional case 4 of Theorem 5.1 by taking F1

either as a normal family or a Poisson family.
4. Diagonal variance families. In Bar-Lev et al. (1994) all the natural

exponential families on R
n such that their variance functions satisfy

Diag(VF (m)) = (f1(m1), . . . , fn(mn))

are characterized and called diagonal variance families. When v �= 0 and Mv has
zero diagonal, our natural exponential families are of the diagonal variance type.
If n = 2 we are in the Wang case. For n ≥ 3 clearly k = r or k = 0 is impossible,
since it implies that Mv or −Mv would be a semipositive definite matrix, which is
impossible if its diagonal is 0. An example of the case where k = 1 and r = n ≥ 3
is Mv = In − Jn, where Jn is the matrix of ones. For instance for n = 3

Mv =

⎡
⎣ 0 −1 −1

−1 0 −1
−1 −1 0

⎤
⎦ .

It is easily seen that the characteristic polynomial of Mv is

(−1)n(λ − n + 1)(λ + 1)n−1,

thus the signature is (1, n − 1, 0).
This example is rather interesting since Theorem 5.1 provides the value of ϕ(m)

(part 1). Here v(m) =
∑n

j=1 m2
j−(

∑n
j=1 mj)2. There are very few cases of diagonal

variance families for n ≥ 3 such that the off diagonal elements can be computed,
and the present calculation offers an example of such a situation. Note that for
n ≥ 3 any signature (k, r−k, n−r) can be reached by a symmetric matrix Mv with
zero diagonal when 0 < k < r.

The diagonal variance families such that the diagonal of the variance function
is (m2

1/p, . . . , m2
n/p) have a Laplace transform of the form P (s)−p as in (1.4).

Bernardoff (2006) has given the necessary and sufficient conditions of infinite di-
visibility of such a distribution in R

n under the extra hypothesis that c{1,...,n} �= 0.
In our case P (s) is a second degree polynomial, thus for n ≥ 3 this condition
c{1,...,n} �= 0 cannot be satisfied. Note that Theorem 3.1 shows that our distribu-
tions are not infinitely divisible, since p must be ≥ (n−2)/2. For n = 2 we are sent
back again to Wang’s theorem, where the distributions are infinitely divisible.

5. Exceptional case. It is easy to see that the NEF generated on R
m+1 by

the distribution appearing in (4.35) is simply[
V0(m2)

m2
2

m1 ⊗ m1 + m2V1(m1
m2

) m1
m2

V0(m2)
mT

1
m2

V0(m2) V0(m2)

]
,

where V0 and V1 are the variance functions of the NEFs generated by α and ν1

(assuming that 1 is in the support of α).
6. Quadratic regression for Wishart distributions on Jordan al-

gebras. In Letac and Massam (1998) a characterization of Wishart distributions
on the symmetric cone Ω associated to a Euclidean Jordan algebra E based on
regression conditions is given: consider the two symmetric operators on E,

Q1(x) = d′x ⊗ x + P (x), Q2(x) = −x ⊗ x + P (x),

where P is the quadratic representation of E and 2d′ is the Peirce constant of E.
Suppose that X and Y are independent random variables valued in Ω and that
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there exist real numbers a, b1 and b2 such that E(X|X + Y ) = a(X + Y ) and

E(Qi(X)|X + Y ) = biQi(X + Y )

for i = 1, 2. Then one proves that X and Y are Wishart distributed with the same
scale parameter and with shape parameters p and q. In this case

b1 =
p

p + q
× p + 1

p + q + 1
, b2 =

p

p + q
× p − d′

p + q − d′
.

It is interesting to compare this result with the present paper.
If S is any symmetric operator on E, consider the quadratic form on E defined

by x 	→ qi(S)(x) = trace (SQi(x)). Denote by Qi the space of all quadratic forms
qi(S) on V . Then a reformulation of the above characterization of the Wishart
distributions on V is obtained by saying that E(q(X)|X + Y ) = biq(X + Y ) for all
q ∈ Qi and for i = 1, 2 and E(X|X + Y ) = a(X + Y ) (here q(x) = qi(S)(x) for
some symmetric operator S on E).

The above example suggests that possibly new interesting distributions on a
Euclidean space E could be discovered by choosing independent linear subspaces
Q1, . . . ,Ql of the space of quadratic forms on E such that E(Qi(X)|X + Y ) =
biQi(X + Y ) holds for all Qi ∈ Qi with i = 1, . . . , l and some fixed real numbers
b1, . . . , bl. The paper by Letac and Massam (1998) was therefore devoted to a
particular case where l = 2. The present paper is devoted to the case l = 1 where
the only restriction for Q1 is to be of codimension 1 (while (1.4) was considering
the case where Q1 is the set of q such that Mq is diagonal).
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